xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include "opt_wlan.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/condvar.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kdb.h>
46 
47 #include <machine/bus.h>
48 #include <machine/resource.h>
49 #include <sys/rman.h>
50 
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_radiotap.h>
71 #include <net80211/ieee80211_ratectl.h>
72 
73 #include <dev/usb/usb.h>
74 #include <dev/usb/usbdi.h>
75 #include <dev/usb/usbdi_util.h>
76 #include "usbdevs.h"
77 
78 #include <dev/usb/wlan/if_zydreg.h>
79 #include <dev/usb/wlan/if_zydfw.h>
80 
81 #ifdef USB_DEBUG
82 static int zyd_debug = 0;
83 
84 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
85 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0,
86     "zyd debug level");
87 
88 enum {
89 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
90 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
91 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
92 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
93 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
94 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
95 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
96 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
97 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
98 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
99 	ZYD_DEBUG_ANY		= 0xffffffff
100 };
101 #define	DPRINTF(sc, m, fmt, ...) do {				\
102 	if (zyd_debug & (m))					\
103 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
104 } while (0)
105 #else
106 #define	DPRINTF(sc, m, fmt, ...) do {				\
107 	(void) sc;						\
108 } while (0)
109 #endif
110 
111 #define	zyd_do_request(sc,req,data) \
112     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
113 
114 static device_probe_t zyd_match;
115 static device_attach_t zyd_attach;
116 static device_detach_t zyd_detach;
117 
118 static usb_callback_t zyd_intr_read_callback;
119 static usb_callback_t zyd_intr_write_callback;
120 static usb_callback_t zyd_bulk_read_callback;
121 static usb_callback_t zyd_bulk_write_callback;
122 
123 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
124 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
125 		    const uint8_t [IEEE80211_ADDR_LEN],
126 		    const uint8_t [IEEE80211_ADDR_LEN]);
127 static void	zyd_vap_delete(struct ieee80211vap *);
128 static void	zyd_tx_free(struct zyd_tx_data *, int);
129 static void	zyd_setup_tx_list(struct zyd_softc *);
130 static void	zyd_unsetup_tx_list(struct zyd_softc *);
131 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
132 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
133 		    void *, int, int);
134 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
135 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
136 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
137 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
138 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
139 static int	zyd_lock_phy(struct zyd_softc *);
140 static int	zyd_unlock_phy(struct zyd_softc *);
141 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
142 static const char *zyd_rf_name(uint8_t);
143 static int	zyd_hw_init(struct zyd_softc *);
144 static int	zyd_read_pod(struct zyd_softc *);
145 static int	zyd_read_eeprom(struct zyd_softc *);
146 static int	zyd_get_macaddr(struct zyd_softc *);
147 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
148 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
149 static int	zyd_switch_radio(struct zyd_softc *, int);
150 static int	zyd_set_led(struct zyd_softc *, int, int);
151 static void	zyd_set_multi(struct zyd_softc *);
152 static void	zyd_update_mcast(struct ieee80211com *);
153 static int	zyd_set_rxfilter(struct zyd_softc *);
154 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
155 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
156 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
157 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
158 		    struct ieee80211_node *);
159 static int	zyd_transmit(struct ieee80211com *, struct mbuf *);
160 static void	zyd_start(struct zyd_softc *);
161 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
162 		    const struct ieee80211_bpf_params *);
163 static void	zyd_parent(struct ieee80211com *);
164 static void	zyd_init_locked(struct zyd_softc *);
165 static void	zyd_stop(struct zyd_softc *);
166 static int	zyd_loadfirmware(struct zyd_softc *);
167 static void	zyd_scan_start(struct ieee80211com *);
168 static void	zyd_scan_end(struct ieee80211com *);
169 static void	zyd_getradiocaps(struct ieee80211com *, int, int *,
170 		    struct ieee80211_channel[]);
171 static void	zyd_set_channel(struct ieee80211com *);
172 static int	zyd_rfmd_init(struct zyd_rf *);
173 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
174 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
175 static int	zyd_al2230_init(struct zyd_rf *);
176 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
177 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
178 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
179 static int	zyd_al2230_init_b(struct zyd_rf *);
180 static int	zyd_al7230B_init(struct zyd_rf *);
181 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
182 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
183 static int	zyd_al2210_init(struct zyd_rf *);
184 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
185 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
186 static int	zyd_gct_init(struct zyd_rf *);
187 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
188 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
189 static int	zyd_gct_mode(struct zyd_rf *);
190 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
191 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
192 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
193 static int	zyd_maxim2_init(struct zyd_rf *);
194 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
195 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
196 
197 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
198 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
199 
200 /* various supported device vendors/products */
201 #define ZYD_ZD1211	0
202 #define ZYD_ZD1211B	1
203 
204 #define	ZYD_ZD1211_DEV(v,p)	\
205 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
206 #define	ZYD_ZD1211B_DEV(v,p)	\
207 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
208 static const STRUCT_USB_HOST_ID zyd_devs[] = {
209 	/* ZYD_ZD1211 */
210 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
211 	ZYD_ZD1211_DEV(ABOCOM, WL54),
212 	ZYD_ZD1211_DEV(ASUS, WL159G),
213 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
214 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
215 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
216 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
217 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
218 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
219 	ZYD_ZD1211_DEV(SAGEM, XG760A),
220 	ZYD_ZD1211_DEV(SENAO, NUB8301),
221 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
222 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
223 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
224 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
225 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
226 	ZYD_ZD1211_DEV(TWINMOS, G240),
227 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
228 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
229 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
230 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
231 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
232 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
233 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
234 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
235 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
236 	/* ZYD_ZD1211B */
237 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
238 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
239 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
240 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
241 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
242 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
243 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
244 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
245 	ZYD_ZD1211B_DEV(MELCO, KG54L),
246 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
247 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
248 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
249 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
250 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
251 	ZYD_ZD1211B_DEV(USR, USR5423),
252 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
253 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
254 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
255 	ZYD_ZD1211B_DEV(ZYXEL, M202),
256 	ZYD_ZD1211B_DEV(ZYXEL, G202),
257 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
258 };
259 
260 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
261 	[ZYD_BULK_WR] = {
262 		.type = UE_BULK,
263 		.endpoint = UE_ADDR_ANY,
264 		.direction = UE_DIR_OUT,
265 		.bufsize = ZYD_MAX_TXBUFSZ,
266 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
267 		.callback = zyd_bulk_write_callback,
268 		.ep_index = 0,
269 		.timeout = 10000,	/* 10 seconds */
270 	},
271 	[ZYD_BULK_RD] = {
272 		.type = UE_BULK,
273 		.endpoint = UE_ADDR_ANY,
274 		.direction = UE_DIR_IN,
275 		.bufsize = ZYX_MAX_RXBUFSZ,
276 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
277 		.callback = zyd_bulk_read_callback,
278 		.ep_index = 0,
279 	},
280 	[ZYD_INTR_WR] = {
281 		.type = UE_BULK_INTR,
282 		.endpoint = UE_ADDR_ANY,
283 		.direction = UE_DIR_OUT,
284 		.bufsize = sizeof(struct zyd_cmd),
285 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
286 		.callback = zyd_intr_write_callback,
287 		.timeout = 1000,	/* 1 second */
288 		.ep_index = 1,
289 	},
290 	[ZYD_INTR_RD] = {
291 		.type = UE_INTERRUPT,
292 		.endpoint = UE_ADDR_ANY,
293 		.direction = UE_DIR_IN,
294 		.bufsize = sizeof(struct zyd_cmd),
295 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
296 		.callback = zyd_intr_read_callback,
297 	},
298 };
299 #define zyd_read16_m(sc, val, data)	do {				\
300 	error = zyd_read16(sc, val, data);				\
301 	if (error != 0)							\
302 		goto fail;						\
303 } while (0)
304 #define zyd_write16_m(sc, val, data)	do {				\
305 	error = zyd_write16(sc, val, data);				\
306 	if (error != 0)							\
307 		goto fail;						\
308 } while (0)
309 #define zyd_read32_m(sc, val, data)	do {				\
310 	error = zyd_read32(sc, val, data);				\
311 	if (error != 0)							\
312 		goto fail;						\
313 } while (0)
314 #define zyd_write32_m(sc, val, data)	do {				\
315 	error = zyd_write32(sc, val, data);				\
316 	if (error != 0)							\
317 		goto fail;						\
318 } while (0)
319 
320 static int
321 zyd_match(device_t dev)
322 {
323 	struct usb_attach_arg *uaa = device_get_ivars(dev);
324 
325 	if (uaa->usb_mode != USB_MODE_HOST)
326 		return (ENXIO);
327 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
328 		return (ENXIO);
329 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
330 		return (ENXIO);
331 
332 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
333 }
334 
335 static int
336 zyd_attach(device_t dev)
337 {
338 	struct usb_attach_arg *uaa = device_get_ivars(dev);
339 	struct zyd_softc *sc = device_get_softc(dev);
340 	struct ieee80211com *ic = &sc->sc_ic;
341 	uint8_t iface_index;
342 	int error;
343 
344 	if (uaa->info.bcdDevice < 0x4330) {
345 		device_printf(dev, "device version mismatch: 0x%X "
346 		    "(only >= 43.30 supported)\n",
347 		    uaa->info.bcdDevice);
348 		return (EINVAL);
349 	}
350 
351 	device_set_usb_desc(dev);
352 	sc->sc_dev = dev;
353 	sc->sc_udev = uaa->device;
354 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
355 
356 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
357 	    MTX_NETWORK_LOCK, MTX_DEF);
358 	STAILQ_INIT(&sc->sc_rqh);
359 	mbufq_init(&sc->sc_snd, ifqmaxlen);
360 
361 	iface_index = ZYD_IFACE_INDEX;
362 	error = usbd_transfer_setup(uaa->device,
363 	    &iface_index, sc->sc_xfer, zyd_config,
364 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
365 	if (error) {
366 		device_printf(dev, "could not allocate USB transfers, "
367 		    "err=%s\n", usbd_errstr(error));
368 		goto detach;
369 	}
370 
371 	ZYD_LOCK(sc);
372 	if ((error = zyd_get_macaddr(sc)) != 0) {
373 		device_printf(sc->sc_dev, "could not read EEPROM\n");
374 		ZYD_UNLOCK(sc);
375 		goto detach;
376 	}
377 	ZYD_UNLOCK(sc);
378 
379 	ic->ic_softc = sc;
380 	ic->ic_name = device_get_nameunit(dev);
381 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
382 	ic->ic_opmode = IEEE80211_M_STA;
383 
384 	/* set device capabilities */
385 	ic->ic_caps =
386 		  IEEE80211_C_STA		/* station mode */
387 		| IEEE80211_C_MONITOR		/* monitor mode */
388 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
389 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
390 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
391 	        | IEEE80211_C_WPA		/* 802.11i */
392 		;
393 
394 	zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
395 	    ic->ic_channels);
396 
397 	ieee80211_ifattach(ic);
398 	ic->ic_raw_xmit = zyd_raw_xmit;
399 	ic->ic_scan_start = zyd_scan_start;
400 	ic->ic_scan_end = zyd_scan_end;
401 	ic->ic_getradiocaps = zyd_getradiocaps;
402 	ic->ic_set_channel = zyd_set_channel;
403 	ic->ic_vap_create = zyd_vap_create;
404 	ic->ic_vap_delete = zyd_vap_delete;
405 	ic->ic_update_mcast = zyd_update_mcast;
406 	ic->ic_update_promisc = zyd_update_mcast;
407 	ic->ic_parent = zyd_parent;
408 	ic->ic_transmit = zyd_transmit;
409 
410 	ieee80211_radiotap_attach(ic,
411 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
412 		ZYD_TX_RADIOTAP_PRESENT,
413 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
414 		ZYD_RX_RADIOTAP_PRESENT);
415 
416 	if (bootverbose)
417 		ieee80211_announce(ic);
418 
419 	return (0);
420 
421 detach:
422 	zyd_detach(dev);
423 	return (ENXIO);			/* failure */
424 }
425 
426 static void
427 zyd_drain_mbufq(struct zyd_softc *sc)
428 {
429 	struct mbuf *m;
430 	struct ieee80211_node *ni;
431 
432 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
433 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
434 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
435 		m->m_pkthdr.rcvif = NULL;
436 		ieee80211_free_node(ni);
437 		m_freem(m);
438 	}
439 }
440 
441 
442 static int
443 zyd_detach(device_t dev)
444 {
445 	struct zyd_softc *sc = device_get_softc(dev);
446 	struct ieee80211com *ic = &sc->sc_ic;
447 	unsigned int x;
448 
449 	/*
450 	 * Prevent further allocations from RX/TX data
451 	 * lists and ioctls:
452 	 */
453 	ZYD_LOCK(sc);
454 	sc->sc_flags |= ZYD_FLAG_DETACHED;
455 	zyd_drain_mbufq(sc);
456 	STAILQ_INIT(&sc->tx_q);
457 	STAILQ_INIT(&sc->tx_free);
458 	ZYD_UNLOCK(sc);
459 
460 	/* drain USB transfers */
461 	for (x = 0; x != ZYD_N_TRANSFER; x++)
462 		usbd_transfer_drain(sc->sc_xfer[x]);
463 
464 	/* free TX list, if any */
465 	ZYD_LOCK(sc);
466 	zyd_unsetup_tx_list(sc);
467 	ZYD_UNLOCK(sc);
468 
469 	/* free USB transfers and some data buffers */
470 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
471 
472 	if (ic->ic_softc == sc)
473 		ieee80211_ifdetach(ic);
474 	mtx_destroy(&sc->sc_mtx);
475 
476 	return (0);
477 }
478 
479 static struct ieee80211vap *
480 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
481     enum ieee80211_opmode opmode, int flags,
482     const uint8_t bssid[IEEE80211_ADDR_LEN],
483     const uint8_t mac[IEEE80211_ADDR_LEN])
484 {
485 	struct zyd_vap *zvp;
486 	struct ieee80211vap *vap;
487 
488 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
489 		return (NULL);
490 	zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO);
491 	vap = &zvp->vap;
492 
493 	/* enable s/w bmiss handling for sta mode */
494 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
495 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
496 		/* out of memory */
497 		free(zvp, M_80211_VAP);
498 		return (NULL);
499 	}
500 
501 	/* override state transition machine */
502 	zvp->newstate = vap->iv_newstate;
503 	vap->iv_newstate = zyd_newstate;
504 
505 	ieee80211_ratectl_init(vap);
506 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
507 
508 	/* complete setup */
509 	ieee80211_vap_attach(vap, ieee80211_media_change,
510 	    ieee80211_media_status, mac);
511 	ic->ic_opmode = opmode;
512 	return (vap);
513 }
514 
515 static void
516 zyd_vap_delete(struct ieee80211vap *vap)
517 {
518 	struct zyd_vap *zvp = ZYD_VAP(vap);
519 
520 	ieee80211_ratectl_deinit(vap);
521 	ieee80211_vap_detach(vap);
522 	free(zvp, M_80211_VAP);
523 }
524 
525 static void
526 zyd_tx_free(struct zyd_tx_data *data, int txerr)
527 {
528 	struct zyd_softc *sc = data->sc;
529 
530 	if (data->m != NULL) {
531 		ieee80211_tx_complete(data->ni, data->m, txerr);
532 		data->m = NULL;
533 		data->ni = NULL;
534 	}
535 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
536 	sc->tx_nfree++;
537 }
538 
539 static void
540 zyd_setup_tx_list(struct zyd_softc *sc)
541 {
542 	struct zyd_tx_data *data;
543 	int i;
544 
545 	sc->tx_nfree = 0;
546 	STAILQ_INIT(&sc->tx_q);
547 	STAILQ_INIT(&sc->tx_free);
548 
549 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
550 		data = &sc->tx_data[i];
551 
552 		data->sc = sc;
553 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
554 		sc->tx_nfree++;
555 	}
556 }
557 
558 static void
559 zyd_unsetup_tx_list(struct zyd_softc *sc)
560 {
561 	struct zyd_tx_data *data;
562 	int i;
563 
564 	/* make sure any subsequent use of the queues will fail */
565 	sc->tx_nfree = 0;
566 	STAILQ_INIT(&sc->tx_q);
567 	STAILQ_INIT(&sc->tx_free);
568 
569 	/* free up all node references and mbufs */
570 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
571 		data = &sc->tx_data[i];
572 
573 		if (data->m != NULL) {
574 			m_freem(data->m);
575 			data->m = NULL;
576 		}
577 		if (data->ni != NULL) {
578 			ieee80211_free_node(data->ni);
579 			data->ni = NULL;
580 		}
581 	}
582 }
583 
584 static int
585 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
586 {
587 	struct zyd_vap *zvp = ZYD_VAP(vap);
588 	struct ieee80211com *ic = vap->iv_ic;
589 	struct zyd_softc *sc = ic->ic_softc;
590 	int error;
591 
592 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
593 	    ieee80211_state_name[vap->iv_state],
594 	    ieee80211_state_name[nstate]);
595 
596 	IEEE80211_UNLOCK(ic);
597 	ZYD_LOCK(sc);
598 	switch (nstate) {
599 	case IEEE80211_S_AUTH:
600 		zyd_set_chan(sc, ic->ic_curchan);
601 		break;
602 	case IEEE80211_S_RUN:
603 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
604 			break;
605 
606 		/* turn link LED on */
607 		error = zyd_set_led(sc, ZYD_LED1, 1);
608 		if (error != 0)
609 			break;
610 
611 		/* make data LED blink upon Tx */
612 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
613 
614 		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
615 		zyd_set_bssid(sc, sc->sc_bssid);
616 		break;
617 	default:
618 		break;
619 	}
620 fail:
621 	ZYD_UNLOCK(sc);
622 	IEEE80211_LOCK(ic);
623 	return (zvp->newstate(vap, nstate, arg));
624 }
625 
626 /*
627  * Callback handler for interrupt transfer
628  */
629 static void
630 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
631 {
632 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
633 	struct ieee80211com *ic = &sc->sc_ic;
634 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
635 	struct ieee80211_node *ni;
636 	struct zyd_cmd *cmd = &sc->sc_ibuf;
637 	struct usb_page_cache *pc;
638 	int datalen;
639 	int actlen;
640 
641 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
642 
643 	switch (USB_GET_STATE(xfer)) {
644 	case USB_ST_TRANSFERRED:
645 		pc = usbd_xfer_get_frame(xfer, 0);
646 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
647 
648 		switch (le16toh(cmd->code)) {
649 		case ZYD_NOTIF_RETRYSTATUS:
650 		{
651 			struct zyd_notif_retry *retry =
652 			    (struct zyd_notif_retry *)cmd->data;
653 			uint16_t count = le16toh(retry->count);
654 
655 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
656 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
657 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
658 			    count & 0xff, count);
659 
660 			/*
661 			 * Find the node to which the packet was sent and
662 			 * update its retry statistics.  In BSS mode, this node
663 			 * is the AP we're associated to so no lookup is
664 			 * actually needed.
665 			 */
666 			ni = ieee80211_find_txnode(vap, retry->macaddr);
667 			if (ni != NULL) {
668 				struct ieee80211_ratectl_tx_status *txs =
669 				    &sc->sc_txs;
670 				int retrycnt = count & 0xff;
671 
672 				txs->flags =
673 				    IEEE80211_RATECTL_STATUS_LONG_RETRY;
674 				txs->long_retries = retrycnt;
675 				if (count & 0x100) {
676 					txs->status =
677 					    IEEE80211_RATECTL_TX_FAIL_LONG;
678 				} else {
679 					txs->status =
680 					    IEEE80211_RATECTL_TX_SUCCESS;
681 				}
682 
683 
684 				ieee80211_ratectl_tx_complete(ni, txs);
685 				ieee80211_free_node(ni);
686 			}
687 			if (count & 0x100)
688 				/* too many retries */
689 				if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS,
690 				    1);
691 			break;
692 		}
693 		case ZYD_NOTIF_IORD:
694 		{
695 			struct zyd_rq *rqp;
696 
697 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
698 				break;	/* HMAC interrupt */
699 
700 			datalen = actlen - sizeof(cmd->code);
701 			datalen -= 2;	/* XXX: padding? */
702 
703 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
704 				int i;
705 				int count;
706 
707 				if (rqp->olen != datalen)
708 					continue;
709 				count = rqp->olen / sizeof(struct zyd_pair);
710 				for (i = 0; i < count; i++) {
711 					if (*(((const uint16_t *)rqp->idata) + i) !=
712 					    (((struct zyd_pair *)cmd->data) + i)->reg)
713 						break;
714 				}
715 				if (i != count)
716 					continue;
717 				/* copy answer into caller-supplied buffer */
718 				memcpy(rqp->odata, cmd->data, rqp->olen);
719 				DPRINTF(sc, ZYD_DEBUG_CMD,
720 				    "command %p complete, data = %*D \n",
721 				    rqp, rqp->olen, (char *)rqp->odata, ":");
722 				wakeup(rqp);	/* wakeup caller */
723 				break;
724 			}
725 			if (rqp == NULL) {
726 				device_printf(sc->sc_dev,
727 				    "unexpected IORD notification %*D\n",
728 				    datalen, cmd->data, ":");
729 			}
730 			break;
731 		}
732 		default:
733 			device_printf(sc->sc_dev, "unknown notification %x\n",
734 			    le16toh(cmd->code));
735 		}
736 
737 		/* FALLTHROUGH */
738 	case USB_ST_SETUP:
739 tr_setup:
740 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
741 		usbd_transfer_submit(xfer);
742 		break;
743 
744 	default:			/* Error */
745 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
746 		    usbd_errstr(error));
747 
748 		if (error != USB_ERR_CANCELLED) {
749 			/* try to clear stall first */
750 			usbd_xfer_set_stall(xfer);
751 			goto tr_setup;
752 		}
753 		break;
754 	}
755 }
756 
757 static void
758 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
759 {
760 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
761 	struct zyd_rq *rqp, *cmd;
762 	struct usb_page_cache *pc;
763 
764 	switch (USB_GET_STATE(xfer)) {
765 	case USB_ST_TRANSFERRED:
766 		cmd = usbd_xfer_get_priv(xfer);
767 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
768 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
769 			/* Ensure the cached rq pointer is still valid */
770 			if (rqp == cmd &&
771 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
772 				wakeup(rqp);	/* wakeup caller */
773 		}
774 
775 		/* FALLTHROUGH */
776 	case USB_ST_SETUP:
777 tr_setup:
778 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
779 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
780 				continue;
781 
782 			pc = usbd_xfer_get_frame(xfer, 0);
783 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
784 
785 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
786 			usbd_xfer_set_priv(xfer, rqp);
787 			rqp->flags |= ZYD_CMD_FLAG_SENT;
788 			usbd_transfer_submit(xfer);
789 			break;
790 		}
791 		break;
792 
793 	default:			/* Error */
794 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
795 		    usbd_errstr(error));
796 
797 		if (error != USB_ERR_CANCELLED) {
798 			/* try to clear stall first */
799 			usbd_xfer_set_stall(xfer);
800 			goto tr_setup;
801 		}
802 		break;
803 	}
804 }
805 
806 static int
807 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
808     void *odata, int olen, int flags)
809 {
810 	struct zyd_cmd cmd;
811 	struct zyd_rq rq;
812 	int error;
813 
814 	if (ilen > (int)sizeof(cmd.data))
815 		return (EINVAL);
816 
817 	cmd.code = htole16(code);
818 	memcpy(cmd.data, idata, ilen);
819 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
820 	    &rq, ilen, idata, ":");
821 
822 	rq.cmd = &cmd;
823 	rq.idata = idata;
824 	rq.odata = odata;
825 	rq.ilen = sizeof(uint16_t) + ilen;
826 	rq.olen = olen;
827 	rq.flags = flags;
828 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
829 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
830 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
831 
832 	/* wait at most one second for command reply */
833 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
834 	if (error)
835 		device_printf(sc->sc_dev, "command timeout\n");
836 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
837 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
838 	    &rq, error);
839 
840 	return (error);
841 }
842 
843 static int
844 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
845 {
846 	struct zyd_pair tmp;
847 	int error;
848 
849 	reg = htole16(reg);
850 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
851 	    ZYD_CMD_FLAG_READ);
852 	if (error == 0)
853 		*val = le16toh(tmp.val);
854 	return (error);
855 }
856 
857 static int
858 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
859 {
860 	struct zyd_pair tmp[2];
861 	uint16_t regs[2];
862 	int error;
863 
864 	regs[0] = htole16(ZYD_REG32_HI(reg));
865 	regs[1] = htole16(ZYD_REG32_LO(reg));
866 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
867 	    ZYD_CMD_FLAG_READ);
868 	if (error == 0)
869 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
870 	return (error);
871 }
872 
873 static int
874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
875 {
876 	struct zyd_pair pair;
877 
878 	pair.reg = htole16(reg);
879 	pair.val = htole16(val);
880 
881 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
882 }
883 
884 static int
885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
886 {
887 	struct zyd_pair pair[2];
888 
889 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
890 	pair[0].val = htole16(val >> 16);
891 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
892 	pair[1].val = htole16(val & 0xffff);
893 
894 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
895 }
896 
897 static int
898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
899 {
900 	struct zyd_rf *rf = &sc->sc_rf;
901 	struct zyd_rfwrite_cmd req;
902 	uint16_t cr203;
903 	int error, i;
904 
905 	zyd_read16_m(sc, ZYD_CR203, &cr203);
906 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
907 
908 	req.code  = htole16(2);
909 	req.width = htole16(rf->width);
910 	for (i = 0; i < rf->width; i++) {
911 		req.bit[i] = htole16(cr203);
912 		if (val & (1 << (rf->width - 1 - i)))
913 			req.bit[i] |= htole16(ZYD_RF_DATA);
914 	}
915 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
916 fail:
917 	return (error);
918 }
919 
920 static int
921 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
922 {
923 	int error;
924 
925 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
926 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
927 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
928 fail:
929 	return (error);
930 }
931 
932 static int
933 zyd_lock_phy(struct zyd_softc *sc)
934 {
935 	int error;
936 	uint32_t tmp;
937 
938 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
939 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
940 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
941 fail:
942 	return (error);
943 }
944 
945 static int
946 zyd_unlock_phy(struct zyd_softc *sc)
947 {
948 	int error;
949 	uint32_t tmp;
950 
951 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
952 	tmp |= ZYD_UNLOCK_PHY_REGS;
953 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
954 fail:
955 	return (error);
956 }
957 
958 /*
959  * RFMD RF methods.
960  */
961 static int
962 zyd_rfmd_init(struct zyd_rf *rf)
963 {
964 	struct zyd_softc *sc = rf->rf_sc;
965 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
966 	static const uint32_t rfini[] = ZYD_RFMD_RF;
967 	int i, error;
968 
969 	/* init RF-dependent PHY registers */
970 	for (i = 0; i < nitems(phyini); i++) {
971 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
972 	}
973 
974 	/* init RFMD radio */
975 	for (i = 0; i < nitems(rfini); i++) {
976 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
977 			return (error);
978 	}
979 fail:
980 	return (error);
981 }
982 
983 static int
984 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
985 {
986 	int error;
987 	struct zyd_softc *sc = rf->rf_sc;
988 
989 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
990 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
991 fail:
992 	return (error);
993 }
994 
995 static int
996 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
997 {
998 	int error;
999 	struct zyd_softc *sc = rf->rf_sc;
1000 	static const struct {
1001 		uint32_t	r1, r2;
1002 	} rfprog[] = ZYD_RFMD_CHANTABLE;
1003 
1004 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1005 	if (error != 0)
1006 		goto fail;
1007 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1008 	if (error != 0)
1009 		goto fail;
1010 
1011 fail:
1012 	return (error);
1013 }
1014 
1015 /*
1016  * AL2230 RF methods.
1017  */
1018 static int
1019 zyd_al2230_init(struct zyd_rf *rf)
1020 {
1021 	struct zyd_softc *sc = rf->rf_sc;
1022 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1023 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1024 	static const struct zyd_phy_pair phypll[] = {
1025 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1026 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1027 	};
1028 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1029 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1030 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1031 	int i, error;
1032 
1033 	/* init RF-dependent PHY registers */
1034 	for (i = 0; i < nitems(phyini); i++)
1035 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1036 
1037 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1038 		for (i = 0; i < nitems(phy2230s); i++)
1039 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1040 	}
1041 
1042 	/* init AL2230 radio */
1043 	for (i = 0; i < nitems(rfini1); i++) {
1044 		error = zyd_rfwrite(sc, rfini1[i]);
1045 		if (error != 0)
1046 			goto fail;
1047 	}
1048 
1049 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1050 		error = zyd_rfwrite(sc, 0x000824);
1051 	else
1052 		error = zyd_rfwrite(sc, 0x0005a4);
1053 	if (error != 0)
1054 		goto fail;
1055 
1056 	for (i = 0; i < nitems(rfini2); i++) {
1057 		error = zyd_rfwrite(sc, rfini2[i]);
1058 		if (error != 0)
1059 			goto fail;
1060 	}
1061 
1062 	for (i = 0; i < nitems(phypll); i++)
1063 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1064 
1065 	for (i = 0; i < nitems(rfini3); i++) {
1066 		error = zyd_rfwrite(sc, rfini3[i]);
1067 		if (error != 0)
1068 			goto fail;
1069 	}
1070 fail:
1071 	return (error);
1072 }
1073 
1074 static int
1075 zyd_al2230_fini(struct zyd_rf *rf)
1076 {
1077 	int error, i;
1078 	struct zyd_softc *sc = rf->rf_sc;
1079 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1080 
1081 	for (i = 0; i < nitems(phy); i++)
1082 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1083 
1084 	if (sc->sc_newphy != 0)
1085 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1086 
1087 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1088 fail:
1089 	return (error);
1090 }
1091 
1092 static int
1093 zyd_al2230_init_b(struct zyd_rf *rf)
1094 {
1095 	struct zyd_softc *sc = rf->rf_sc;
1096 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1097 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1098 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1099 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1100 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1101 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1102 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1103 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1104 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1105 	int i, error;
1106 
1107 	for (i = 0; i < nitems(phy1); i++)
1108 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1109 
1110 	/* init RF-dependent PHY registers */
1111 	for (i = 0; i < nitems(phyini); i++)
1112 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1113 
1114 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1115 		for (i = 0; i < nitems(phy2230s); i++)
1116 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1117 	}
1118 
1119 	for (i = 0; i < 3; i++) {
1120 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1121 		if (error != 0)
1122 			return (error);
1123 	}
1124 
1125 	for (i = 0; i < nitems(rfini_part1); i++) {
1126 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1127 		if (error != 0)
1128 			return (error);
1129 	}
1130 
1131 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1132 		error = zyd_rfwrite(sc, 0x241000);
1133 	else
1134 		error = zyd_rfwrite(sc, 0x25a000);
1135 	if (error != 0)
1136 		goto fail;
1137 
1138 	for (i = 0; i < nitems(rfini_part2); i++) {
1139 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1140 		if (error != 0)
1141 			return (error);
1142 	}
1143 
1144 	for (i = 0; i < nitems(phy2); i++)
1145 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1146 
1147 	for (i = 0; i < nitems(rfini_part3); i++) {
1148 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1149 		if (error != 0)
1150 			return (error);
1151 	}
1152 
1153 	for (i = 0; i < nitems(phy3); i++)
1154 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1155 
1156 	error = zyd_al2230_fini(rf);
1157 fail:
1158 	return (error);
1159 }
1160 
1161 static int
1162 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1163 {
1164 	struct zyd_softc *sc = rf->rf_sc;
1165 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1166 
1167 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1168 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1169 fail:
1170 	return (error);
1171 }
1172 
1173 static int
1174 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1175 {
1176 	int error, i;
1177 	struct zyd_softc *sc = rf->rf_sc;
1178 	static const struct zyd_phy_pair phy1[] = {
1179 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1180 	};
1181 	static const struct {
1182 		uint32_t	r1, r2, r3;
1183 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1184 
1185 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1186 	if (error != 0)
1187 		goto fail;
1188 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1189 	if (error != 0)
1190 		goto fail;
1191 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1192 	if (error != 0)
1193 		goto fail;
1194 
1195 	for (i = 0; i < nitems(phy1); i++)
1196 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1197 fail:
1198 	return (error);
1199 }
1200 
1201 static int
1202 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1203 {
1204 	int error, i;
1205 	struct zyd_softc *sc = rf->rf_sc;
1206 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1207 	static const struct {
1208 		uint32_t	r1, r2, r3;
1209 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1210 
1211 	for (i = 0; i < nitems(phy1); i++)
1212 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1213 
1214 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1215 	if (error != 0)
1216 		goto fail;
1217 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1218 	if (error != 0)
1219 		goto fail;
1220 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1221 	if (error != 0)
1222 		goto fail;
1223 	error = zyd_al2230_fini(rf);
1224 fail:
1225 	return (error);
1226 }
1227 
1228 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1229 {									\
1230 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1231 	{ ZYD_CR47,  0x1e }						\
1232 }
1233 
1234 static int
1235 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1236 {
1237 	int error = 0, i;
1238 	struct zyd_softc *sc = rf->rf_sc;
1239 	struct ieee80211com *ic = &sc->sc_ic;
1240 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1241 	int chan = ieee80211_chan2ieee(ic, c);
1242 
1243 	if (chan == 1 || chan == 11)
1244 		r[0].val = 0x12;
1245 
1246 	for (i = 0; i < nitems(r); i++)
1247 		zyd_write16_m(sc, r[i].reg, r[i].val);
1248 fail:
1249 	return (error);
1250 }
1251 
1252 /*
1253  * AL7230B RF methods.
1254  */
1255 static int
1256 zyd_al7230B_init(struct zyd_rf *rf)
1257 {
1258 	struct zyd_softc *sc = rf->rf_sc;
1259 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1260 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1261 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1262 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1263 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1264 	int i, error;
1265 
1266 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1267 
1268 	/* init RF-dependent PHY registers, part one */
1269 	for (i = 0; i < nitems(phyini_1); i++)
1270 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1271 
1272 	/* init AL7230B radio, part one */
1273 	for (i = 0; i < nitems(rfini_1); i++) {
1274 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1275 			return (error);
1276 	}
1277 	/* init RF-dependent PHY registers, part two */
1278 	for (i = 0; i < nitems(phyini_2); i++)
1279 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1280 
1281 	/* init AL7230B radio, part two */
1282 	for (i = 0; i < nitems(rfini_2); i++) {
1283 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1284 			return (error);
1285 	}
1286 	/* init RF-dependent PHY registers, part three */
1287 	for (i = 0; i < nitems(phyini_3); i++)
1288 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1289 fail:
1290 	return (error);
1291 }
1292 
1293 static int
1294 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1295 {
1296 	int error;
1297 	struct zyd_softc *sc = rf->rf_sc;
1298 
1299 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1300 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1301 fail:
1302 	return (error);
1303 }
1304 
1305 static int
1306 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1307 {
1308 	struct zyd_softc *sc = rf->rf_sc;
1309 	static const struct {
1310 		uint32_t	r1, r2;
1311 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1312 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1313 	int i, error;
1314 
1315 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1316 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1317 
1318 	for (i = 0; i < nitems(rfsc); i++) {
1319 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1320 			return (error);
1321 	}
1322 
1323 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1324 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1325 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1326 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1327 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1328 
1329 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1330 	if (error != 0)
1331 		goto fail;
1332 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1333 	if (error != 0)
1334 		goto fail;
1335 	error = zyd_rfwrite(sc, 0x3c9000);
1336 	if (error != 0)
1337 		goto fail;
1338 
1339 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1340 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1341 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1342 fail:
1343 	return (error);
1344 }
1345 
1346 /*
1347  * AL2210 RF methods.
1348  */
1349 static int
1350 zyd_al2210_init(struct zyd_rf *rf)
1351 {
1352 	struct zyd_softc *sc = rf->rf_sc;
1353 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1354 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1355 	uint32_t tmp;
1356 	int i, error;
1357 
1358 	zyd_write32_m(sc, ZYD_CR18, 2);
1359 
1360 	/* init RF-dependent PHY registers */
1361 	for (i = 0; i < nitems(phyini); i++)
1362 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1363 
1364 	/* init AL2210 radio */
1365 	for (i = 0; i < nitems(rfini); i++) {
1366 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1367 			return (error);
1368 	}
1369 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1370 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1371 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1372 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1373 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1374 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1375 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1376 	zyd_write32_m(sc, ZYD_CR18, 3);
1377 fail:
1378 	return (error);
1379 }
1380 
1381 static int
1382 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1383 {
1384 	/* vendor driver does nothing for this RF chip */
1385 
1386 	return (0);
1387 }
1388 
1389 static int
1390 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1391 {
1392 	int error;
1393 	struct zyd_softc *sc = rf->rf_sc;
1394 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1395 	uint32_t tmp;
1396 
1397 	zyd_write32_m(sc, ZYD_CR18, 2);
1398 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1399 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1400 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1401 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1402 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1403 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1404 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1405 
1406 	/* actually set the channel */
1407 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1408 	if (error != 0)
1409 		goto fail;
1410 
1411 	zyd_write32_m(sc, ZYD_CR18, 3);
1412 fail:
1413 	return (error);
1414 }
1415 
1416 /*
1417  * GCT RF methods.
1418  */
1419 static int
1420 zyd_gct_init(struct zyd_rf *rf)
1421 {
1422 #define	ZYD_GCT_INTR_REG	0x85c1
1423 	struct zyd_softc *sc = rf->rf_sc;
1424 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1425 	static const uint32_t rfini[] = ZYD_GCT_RF;
1426 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1427 	int i, idx = -1, error;
1428 	uint16_t data;
1429 
1430 	/* init RF-dependent PHY registers */
1431 	for (i = 0; i < nitems(phyini); i++)
1432 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1433 
1434 	/* init cgt radio */
1435 	for (i = 0; i < nitems(rfini); i++) {
1436 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1437 			return (error);
1438 	}
1439 
1440 	error = zyd_gct_mode(rf);
1441 	if (error != 0)
1442 		return (error);
1443 
1444 	for (i = 0; i < (int)(nitems(vco) - 1); i++) {
1445 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1446 		if (error != 0)
1447 			goto fail;
1448 		error = zyd_gct_write(rf, vco[i][0]);
1449 		if (error != 0)
1450 			goto fail;
1451 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1452 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1453 		if ((data & 0xf) == 0) {
1454 			idx = i;
1455 			break;
1456 		}
1457 	}
1458 	if (idx == -1) {
1459 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1460 		if (error != 0)
1461 			goto fail;
1462 		error = zyd_gct_write(rf, 0x6662);
1463 		if (error != 0)
1464 			goto fail;
1465 	}
1466 
1467 	rf->idx = idx;
1468 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1469 fail:
1470 	return (error);
1471 #undef ZYD_GCT_INTR_REG
1472 }
1473 
1474 static int
1475 zyd_gct_mode(struct zyd_rf *rf)
1476 {
1477 	struct zyd_softc *sc = rf->rf_sc;
1478 	static const uint32_t mode[] = {
1479 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1480 	};
1481 	int i, error;
1482 
1483 	for (i = 0; i < nitems(mode); i++) {
1484 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1485 			break;
1486 	}
1487 	return (error);
1488 }
1489 
1490 static int
1491 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1492 {
1493 	int error, idx = chan - 1;
1494 	struct zyd_softc *sc = rf->rf_sc;
1495 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1496 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1497 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1498 
1499 	error = zyd_rfwrite(sc,
1500 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1501 	if (error != 0)
1502 		return (error);
1503 	return zyd_rfwrite(sc, div_synth[idx]);
1504 }
1505 
1506 static int
1507 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1508 {
1509 	struct zyd_softc *sc = rf->rf_sc;
1510 
1511 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1512 }
1513 
1514 static int
1515 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1516 {
1517 	int error;
1518 	struct zyd_softc *sc = rf->rf_sc;
1519 
1520 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1521 	if (error != 0)
1522 		return (error);
1523 
1524 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1525 	zyd_write16_m(sc, ZYD_CR251,
1526 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1527 fail:
1528 	return (error);
1529 }
1530 
1531 static int
1532 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1533 {
1534 	int error, i;
1535 	struct zyd_softc *sc = rf->rf_sc;
1536 	static const struct zyd_phy_pair cmd[] = {
1537 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1538 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1539 	};
1540 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1541 
1542 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1543 	if (error != 0)
1544 		goto fail;
1545 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1546 	    vco[rf->idx][((chan - 1) / 2)]);
1547 	if (error != 0)
1548 		goto fail;
1549 	error = zyd_gct_mode(rf);
1550 	if (error != 0)
1551 		return (error);
1552 	for (i = 0; i < nitems(cmd); i++)
1553 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1554 	error = zyd_gct_txgain(rf, chan);
1555 	if (error != 0)
1556 		return (error);
1557 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1558 fail:
1559 	return (error);
1560 }
1561 
1562 static int
1563 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1564 {
1565 	struct zyd_softc *sc = rf->rf_sc;
1566 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1567 	uint8_t idx = sc->sc_pwrint[chan - 1];
1568 
1569 	if (idx >= nitems(txgain)) {
1570 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1571 		    chan, idx);
1572 		return 0;
1573 	}
1574 
1575 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1576 }
1577 
1578 /*
1579  * Maxim2 RF methods.
1580  */
1581 static int
1582 zyd_maxim2_init(struct zyd_rf *rf)
1583 {
1584 	struct zyd_softc *sc = rf->rf_sc;
1585 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1586 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1587 	uint16_t tmp;
1588 	int i, error;
1589 
1590 	/* init RF-dependent PHY registers */
1591 	for (i = 0; i < nitems(phyini); i++)
1592 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1593 
1594 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1595 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1596 
1597 	/* init maxim2 radio */
1598 	for (i = 0; i < nitems(rfini); i++) {
1599 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1600 			return (error);
1601 	}
1602 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1603 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1604 fail:
1605 	return (error);
1606 }
1607 
1608 static int
1609 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1610 {
1611 
1612 	/* vendor driver does nothing for this RF chip */
1613 	return (0);
1614 }
1615 
1616 static int
1617 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1618 {
1619 	struct zyd_softc *sc = rf->rf_sc;
1620 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1621 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1622 	static const struct {
1623 		uint32_t	r1, r2;
1624 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1625 	uint16_t tmp;
1626 	int i, error;
1627 
1628 	/*
1629 	 * Do the same as we do when initializing it, except for the channel
1630 	 * values coming from the two channel tables.
1631 	 */
1632 
1633 	/* init RF-dependent PHY registers */
1634 	for (i = 0; i < nitems(phyini); i++)
1635 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1636 
1637 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1638 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1639 
1640 	/* first two values taken from the chantables */
1641 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1642 	if (error != 0)
1643 		goto fail;
1644 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1645 	if (error != 0)
1646 		goto fail;
1647 
1648 	/* init maxim2 radio - skipping the two first values */
1649 	for (i = 2; i < nitems(rfini); i++) {
1650 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1651 			return (error);
1652 	}
1653 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1654 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1655 fail:
1656 	return (error);
1657 }
1658 
1659 static int
1660 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1661 {
1662 	struct zyd_rf *rf = &sc->sc_rf;
1663 
1664 	rf->rf_sc = sc;
1665 	rf->update_pwr = 1;
1666 
1667 	switch (type) {
1668 	case ZYD_RF_RFMD:
1669 		rf->init         = zyd_rfmd_init;
1670 		rf->switch_radio = zyd_rfmd_switch_radio;
1671 		rf->set_channel  = zyd_rfmd_set_channel;
1672 		rf->width        = 24;	/* 24-bit RF values */
1673 		break;
1674 	case ZYD_RF_AL2230:
1675 	case ZYD_RF_AL2230S:
1676 		if (sc->sc_macrev == ZYD_ZD1211B) {
1677 			rf->init = zyd_al2230_init_b;
1678 			rf->set_channel = zyd_al2230_set_channel_b;
1679 		} else {
1680 			rf->init = zyd_al2230_init;
1681 			rf->set_channel = zyd_al2230_set_channel;
1682 		}
1683 		rf->switch_radio = zyd_al2230_switch_radio;
1684 		rf->bandedge6	 = zyd_al2230_bandedge6;
1685 		rf->width        = 24;	/* 24-bit RF values */
1686 		break;
1687 	case ZYD_RF_AL7230B:
1688 		rf->init         = zyd_al7230B_init;
1689 		rf->switch_radio = zyd_al7230B_switch_radio;
1690 		rf->set_channel  = zyd_al7230B_set_channel;
1691 		rf->width        = 24;	/* 24-bit RF values */
1692 		break;
1693 	case ZYD_RF_AL2210:
1694 		rf->init         = zyd_al2210_init;
1695 		rf->switch_radio = zyd_al2210_switch_radio;
1696 		rf->set_channel  = zyd_al2210_set_channel;
1697 		rf->width        = 24;	/* 24-bit RF values */
1698 		break;
1699 	case ZYD_RF_MAXIM_NEW:
1700 	case ZYD_RF_GCT:
1701 		rf->init         = zyd_gct_init;
1702 		rf->switch_radio = zyd_gct_switch_radio;
1703 		rf->set_channel  = zyd_gct_set_channel;
1704 		rf->width        = 24;	/* 24-bit RF values */
1705 		rf->update_pwr   = 0;
1706 		break;
1707 	case ZYD_RF_MAXIM_NEW2:
1708 		rf->init         = zyd_maxim2_init;
1709 		rf->switch_radio = zyd_maxim2_switch_radio;
1710 		rf->set_channel  = zyd_maxim2_set_channel;
1711 		rf->width        = 18;	/* 18-bit RF values */
1712 		break;
1713 	default:
1714 		device_printf(sc->sc_dev,
1715 		    "sorry, radio \"%s\" is not supported yet\n",
1716 		    zyd_rf_name(type));
1717 		return (EINVAL);
1718 	}
1719 	return (0);
1720 }
1721 
1722 static const char *
1723 zyd_rf_name(uint8_t type)
1724 {
1725 	static const char * const zyd_rfs[] = {
1726 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1727 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1728 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1729 		"PHILIPS"
1730 	};
1731 
1732 	return zyd_rfs[(type > 15) ? 0 : type];
1733 }
1734 
1735 static int
1736 zyd_hw_init(struct zyd_softc *sc)
1737 {
1738 	int error;
1739 	const struct zyd_phy_pair *phyp;
1740 	struct zyd_rf *rf = &sc->sc_rf;
1741 	uint16_t val;
1742 
1743 	/* specify that the plug and play is finished */
1744 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1745 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1746 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1747 	    sc->sc_fwbase);
1748 
1749 	/* retrieve firmware revision number */
1750 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1751 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1752 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1753 	/* set mandatory rates - XXX assumes 802.11b/g */
1754 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1755 
1756 	/* disable interrupts */
1757 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1758 
1759 	if ((error = zyd_read_pod(sc)) != 0) {
1760 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1761 		goto fail;
1762 	}
1763 
1764 	/* PHY init (resetting) */
1765 	error = zyd_lock_phy(sc);
1766 	if (error != 0)
1767 		goto fail;
1768 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1769 	for (; phyp->reg != 0; phyp++)
1770 		zyd_write16_m(sc, phyp->reg, phyp->val);
1771 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1772 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1773 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1774 	}
1775 	error = zyd_unlock_phy(sc);
1776 	if (error != 0)
1777 		goto fail;
1778 
1779 	/* HMAC init */
1780 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1781 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1782 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1783 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1784 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1785 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1786 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1787 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1788 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1789 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1790 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1791 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1792 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1793 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1794 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1795 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1796 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1797 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1798 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1799 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1800 
1801 	if (sc->sc_macrev == ZYD_ZD1211) {
1802 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1803 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1804 	} else {
1805 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1806 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1807 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1808 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1809 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1810 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1811 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1812 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1813 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1814 	}
1815 
1816 	/* init beacon interval to 100ms */
1817 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1818 		goto fail;
1819 
1820 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1821 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1822 		    sc->sc_rfrev);
1823 		goto fail;
1824 	}
1825 
1826 	/* RF chip init */
1827 	error = zyd_lock_phy(sc);
1828 	if (error != 0)
1829 		goto fail;
1830 	error = (*rf->init)(rf);
1831 	if (error != 0) {
1832 		device_printf(sc->sc_dev,
1833 		    "radio initialization failed, error %d\n", error);
1834 		goto fail;
1835 	}
1836 	error = zyd_unlock_phy(sc);
1837 	if (error != 0)
1838 		goto fail;
1839 
1840 	if ((error = zyd_read_eeprom(sc)) != 0) {
1841 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1842 		goto fail;
1843 	}
1844 
1845 fail:	return (error);
1846 }
1847 
1848 static int
1849 zyd_read_pod(struct zyd_softc *sc)
1850 {
1851 	int error;
1852 	uint32_t tmp;
1853 
1854 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1855 	sc->sc_rfrev     = tmp & 0x0f;
1856 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1857 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1858 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1859 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1860 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1861 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1862 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1863 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1864 fail:
1865 	return (error);
1866 }
1867 
1868 static int
1869 zyd_read_eeprom(struct zyd_softc *sc)
1870 {
1871 	uint16_t val;
1872 	int error, i;
1873 
1874 	/* read Tx power calibration tables */
1875 	for (i = 0; i < 7; i++) {
1876 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1877 		sc->sc_pwrcal[i * 2] = val >> 8;
1878 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1879 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1880 		sc->sc_pwrint[i * 2] = val >> 8;
1881 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1882 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1883 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1884 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1885 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1886 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1887 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1888 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1889 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1890 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1891 	}
1892 fail:
1893 	return (error);
1894 }
1895 
1896 static int
1897 zyd_get_macaddr(struct zyd_softc *sc)
1898 {
1899 	struct usb_device_request req;
1900 	usb_error_t error;
1901 
1902 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1903 	req.bRequest = ZYD_READFWDATAREQ;
1904 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1905 	USETW(req.wIndex, 0);
1906 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1907 
1908 	error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr);
1909 	if (error != 0) {
1910 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1911 		    usbd_errstr(error));
1912 	}
1913 
1914 	return (error);
1915 }
1916 
1917 static int
1918 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1919 {
1920 	int error;
1921 	uint32_t tmp;
1922 
1923 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1924 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1925 	tmp = addr[5] << 8 | addr[4];
1926 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1927 fail:
1928 	return (error);
1929 }
1930 
1931 static int
1932 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1933 {
1934 	int error;
1935 	uint32_t tmp;
1936 
1937 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1938 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1939 	tmp = addr[5] << 8 | addr[4];
1940 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1941 fail:
1942 	return (error);
1943 }
1944 
1945 static int
1946 zyd_switch_radio(struct zyd_softc *sc, int on)
1947 {
1948 	struct zyd_rf *rf = &sc->sc_rf;
1949 	int error;
1950 
1951 	error = zyd_lock_phy(sc);
1952 	if (error != 0)
1953 		goto fail;
1954 	error = (*rf->switch_radio)(rf, on);
1955 	if (error != 0)
1956 		goto fail;
1957 	error = zyd_unlock_phy(sc);
1958 fail:
1959 	return (error);
1960 }
1961 
1962 static int
1963 zyd_set_led(struct zyd_softc *sc, int which, int on)
1964 {
1965 	int error;
1966 	uint32_t tmp;
1967 
1968 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1969 	tmp &= ~which;
1970 	if (on)
1971 		tmp |= which;
1972 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1973 fail:
1974 	return (error);
1975 }
1976 
1977 static void
1978 zyd_set_multi(struct zyd_softc *sc)
1979 {
1980 	struct ieee80211com *ic = &sc->sc_ic;
1981 	uint32_t low, high;
1982 	int error;
1983 
1984 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0)
1985 		return;
1986 
1987 	low = 0x00000000;
1988 	high = 0x80000000;
1989 
1990 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
1991 	    ic->ic_promisc > 0) {
1992 		low = 0xffffffff;
1993 		high = 0xffffffff;
1994 	} else {
1995 		struct ieee80211vap *vap;
1996 		struct ifnet *ifp;
1997 		struct ifmultiaddr *ifma;
1998 		uint8_t v;
1999 
2000 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2001 			ifp = vap->iv_ifp;
2002 			if_maddr_rlock(ifp);
2003 			TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2004 				if (ifma->ifma_addr->sa_family != AF_LINK)
2005 					continue;
2006 				v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
2007 				    ifma->ifma_addr))[5] >> 2;
2008 				if (v < 32)
2009 					low |= 1 << v;
2010 				else
2011 					high |= 1 << (v - 32);
2012 			}
2013 			if_maddr_runlock(ifp);
2014 		}
2015 	}
2016 
2017 	/* reprogram multicast global hash table */
2018 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2019 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2020 fail:
2021 	if (error != 0)
2022 		device_printf(sc->sc_dev,
2023 		    "could not set multicast hash table\n");
2024 }
2025 
2026 static void
2027 zyd_update_mcast(struct ieee80211com *ic)
2028 {
2029 	struct zyd_softc *sc = ic->ic_softc;
2030 
2031 	ZYD_LOCK(sc);
2032 	zyd_set_multi(sc);
2033 	ZYD_UNLOCK(sc);
2034 }
2035 
2036 static int
2037 zyd_set_rxfilter(struct zyd_softc *sc)
2038 {
2039 	struct ieee80211com *ic = &sc->sc_ic;
2040 	uint32_t rxfilter;
2041 
2042 	switch (ic->ic_opmode) {
2043 	case IEEE80211_M_STA:
2044 		rxfilter = ZYD_FILTER_BSS;
2045 		break;
2046 	case IEEE80211_M_IBSS:
2047 	case IEEE80211_M_HOSTAP:
2048 		rxfilter = ZYD_FILTER_HOSTAP;
2049 		break;
2050 	case IEEE80211_M_MONITOR:
2051 		rxfilter = ZYD_FILTER_MONITOR;
2052 		break;
2053 	default:
2054 		/* should not get there */
2055 		return (EINVAL);
2056 	}
2057 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2058 }
2059 
2060 static void
2061 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2062 {
2063 	int error;
2064 	struct ieee80211com *ic = &sc->sc_ic;
2065 	struct zyd_rf *rf = &sc->sc_rf;
2066 	uint32_t tmp;
2067 	int chan;
2068 
2069 	chan = ieee80211_chan2ieee(ic, c);
2070 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2071 		/* XXX should NEVER happen */
2072 		device_printf(sc->sc_dev,
2073 		    "%s: invalid channel %x\n", __func__, chan);
2074 		return;
2075 	}
2076 
2077 	error = zyd_lock_phy(sc);
2078 	if (error != 0)
2079 		goto fail;
2080 
2081 	error = (*rf->set_channel)(rf, chan);
2082 	if (error != 0)
2083 		goto fail;
2084 
2085 	if (rf->update_pwr) {
2086 		/* update Tx power */
2087 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2088 
2089 		if (sc->sc_macrev == ZYD_ZD1211B) {
2090 			zyd_write16_m(sc, ZYD_CR67,
2091 			    sc->sc_ofdm36_cal[chan - 1]);
2092 			zyd_write16_m(sc, ZYD_CR66,
2093 			    sc->sc_ofdm48_cal[chan - 1]);
2094 			zyd_write16_m(sc, ZYD_CR65,
2095 			    sc->sc_ofdm54_cal[chan - 1]);
2096 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2097 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2098 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2099 		}
2100 	}
2101 	if (sc->sc_cckgain) {
2102 		/* set CCK baseband gain from EEPROM */
2103 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2104 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2105 	}
2106 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2107 		error = (*rf->bandedge6)(rf, c);
2108 		if (error != 0)
2109 			goto fail;
2110 	}
2111 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2112 
2113 	error = zyd_unlock_phy(sc);
2114 	if (error != 0)
2115 		goto fail;
2116 
2117 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2118 	    htole16(c->ic_freq);
2119 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2120 	    htole16(c->ic_flags);
2121 fail:
2122 	return;
2123 }
2124 
2125 static int
2126 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2127 {
2128 	int error;
2129 	uint32_t val;
2130 
2131 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2132 	sc->sc_atim_wnd = val;
2133 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2134 	sc->sc_pre_tbtt = val;
2135 	sc->sc_bcn_int = bintval;
2136 
2137 	if (sc->sc_bcn_int <= 5)
2138 		sc->sc_bcn_int = 5;
2139 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2140 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2141 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2142 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2143 
2144 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2145 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2146 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2147 fail:
2148 	return (error);
2149 }
2150 
2151 static void
2152 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2153 {
2154 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2155 	struct ieee80211com *ic = &sc->sc_ic;
2156 	struct zyd_plcphdr plcp;
2157 	struct zyd_rx_stat stat;
2158 	struct usb_page_cache *pc;
2159 	struct mbuf *m;
2160 	int rlen, rssi;
2161 
2162 	if (len < ZYD_MIN_FRAGSZ) {
2163 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2164 		    device_get_nameunit(sc->sc_dev), len);
2165 		counter_u64_add(ic->ic_ierrors, 1);
2166 		return;
2167 	}
2168 	pc = usbd_xfer_get_frame(xfer, 0);
2169 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2170 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2171 
2172 	if (stat.flags & ZYD_RX_ERROR) {
2173 		DPRINTF(sc, ZYD_DEBUG_RECV,
2174 		    "%s: RX status indicated error (%x)\n",
2175 		    device_get_nameunit(sc->sc_dev), stat.flags);
2176 		counter_u64_add(ic->ic_ierrors, 1);
2177 		return;
2178 	}
2179 
2180 	/* compute actual frame length */
2181 	rlen = len - sizeof(struct zyd_plcphdr) -
2182 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2183 
2184 	/* allocate a mbuf to store the frame */
2185 	if (rlen > (int)MCLBYTES) {
2186 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2187 		    device_get_nameunit(sc->sc_dev), rlen);
2188 		counter_u64_add(ic->ic_ierrors, 1);
2189 		return;
2190 	} else if (rlen > (int)MHLEN)
2191 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2192 	else
2193 		m = m_gethdr(M_NOWAIT, MT_DATA);
2194 	if (m == NULL) {
2195 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2196 		    device_get_nameunit(sc->sc_dev));
2197 		counter_u64_add(ic->ic_ierrors, 1);
2198 		return;
2199 	}
2200 	m->m_pkthdr.len = m->m_len = rlen;
2201 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2202 
2203 	if (ieee80211_radiotap_active(ic)) {
2204 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2205 
2206 		tap->wr_flags = 0;
2207 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2208 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2209 		/* XXX toss, no way to express errors */
2210 		if (stat.flags & ZYD_RX_DECRYPTERR)
2211 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2212 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2213 		    (stat.flags & ZYD_RX_OFDM) ?
2214 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2215 		tap->wr_antsignal = stat.rssi + -95;
2216 		tap->wr_antnoise = -95;	/* XXX */
2217 	}
2218 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2219 
2220 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2221 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2222 	sc->sc_rx_count++;
2223 }
2224 
2225 static void
2226 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2227 {
2228 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 	struct ieee80211_node *ni;
2231 	struct zyd_rx_desc desc;
2232 	struct mbuf *m;
2233 	struct usb_page_cache *pc;
2234 	uint32_t offset;
2235 	uint8_t rssi;
2236 	int8_t nf;
2237 	int i;
2238 	int actlen;
2239 
2240 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2241 
2242 	sc->sc_rx_count = 0;
2243 	switch (USB_GET_STATE(xfer)) {
2244 	case USB_ST_TRANSFERRED:
2245 		pc = usbd_xfer_get_frame(xfer, 0);
2246 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2247 
2248 		offset = 0;
2249 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2250 			DPRINTF(sc, ZYD_DEBUG_RECV,
2251 			    "%s: received multi-frame transfer\n", __func__);
2252 
2253 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2254 				uint16_t len16 = UGETW(desc.len[i]);
2255 
2256 				if (len16 == 0 || len16 > actlen)
2257 					break;
2258 
2259 				zyd_rx_data(xfer, offset, len16);
2260 
2261 				/* next frame is aligned on a 32-bit boundary */
2262 				len16 = (len16 + 3) & ~3;
2263 				offset += len16;
2264 				if (len16 > actlen)
2265 					break;
2266 				actlen -= len16;
2267 			}
2268 		} else {
2269 			DPRINTF(sc, ZYD_DEBUG_RECV,
2270 			    "%s: received single-frame transfer\n", __func__);
2271 
2272 			zyd_rx_data(xfer, 0, actlen);
2273 		}
2274 		/* FALLTHROUGH */
2275 	case USB_ST_SETUP:
2276 tr_setup:
2277 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2278 		usbd_transfer_submit(xfer);
2279 
2280 		/*
2281 		 * At the end of a USB callback it is always safe to unlock
2282 		 * the private mutex of a device! That is why we do the
2283 		 * "ieee80211_input" here, and not some lines up!
2284 		 */
2285 		ZYD_UNLOCK(sc);
2286 		for (i = 0; i < sc->sc_rx_count; i++) {
2287 			rssi = sc->sc_rx_data[i].rssi;
2288 			m = sc->sc_rx_data[i].m;
2289 			sc->sc_rx_data[i].m = NULL;
2290 
2291 			nf = -95;	/* XXX */
2292 
2293 			ni = ieee80211_find_rxnode(ic,
2294 			    mtod(m, struct ieee80211_frame_min *));
2295 			if (ni != NULL) {
2296 				(void)ieee80211_input(ni, m, rssi, nf);
2297 				ieee80211_free_node(ni);
2298 			} else
2299 				(void)ieee80211_input_all(ic, m, rssi, nf);
2300 		}
2301 		ZYD_LOCK(sc);
2302 		zyd_start(sc);
2303 		break;
2304 
2305 	default:			/* Error */
2306 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2307 
2308 		if (error != USB_ERR_CANCELLED) {
2309 			/* try to clear stall first */
2310 			usbd_xfer_set_stall(xfer);
2311 			goto tr_setup;
2312 		}
2313 		break;
2314 	}
2315 }
2316 
2317 static uint8_t
2318 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2319 {
2320 	switch (rate) {
2321 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2322 	case 12:
2323 		return (0xb);
2324 	case 18:
2325 		return (0xf);
2326 	case 24:
2327 		return (0xa);
2328 	case 36:
2329 		return (0xe);
2330 	case 48:
2331 		return (0x9);
2332 	case 72:
2333 		return (0xd);
2334 	case 96:
2335 		return (0x8);
2336 	case 108:
2337 		return (0xc);
2338 	/* CCK rates (NB: not IEEE std, device-specific) */
2339 	case 2:
2340 		return (0x0);
2341 	case 4:
2342 		return (0x1);
2343 	case 11:
2344 		return (0x2);
2345 	case 22:
2346 		return (0x3);
2347 	}
2348 
2349 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2350 	return (0x0);
2351 }
2352 
2353 static void
2354 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2355 {
2356 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2357 	struct ieee80211vap *vap;
2358 	struct zyd_tx_data *data;
2359 	struct mbuf *m;
2360 	struct usb_page_cache *pc;
2361 	int actlen;
2362 
2363 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2364 
2365 	switch (USB_GET_STATE(xfer)) {
2366 	case USB_ST_TRANSFERRED:
2367 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2368 		    actlen);
2369 
2370 		/* free resources */
2371 		data = usbd_xfer_get_priv(xfer);
2372 		zyd_tx_free(data, 0);
2373 		usbd_xfer_set_priv(xfer, NULL);
2374 
2375 		/* FALLTHROUGH */
2376 	case USB_ST_SETUP:
2377 tr_setup:
2378 		data = STAILQ_FIRST(&sc->tx_q);
2379 		if (data) {
2380 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2381 			m = data->m;
2382 
2383 			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2384 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2385 				    m->m_pkthdr.len);
2386 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2387 			}
2388 			pc = usbd_xfer_get_frame(xfer, 0);
2389 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2390 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2391 			    m->m_pkthdr.len);
2392 
2393 			vap = data->ni->ni_vap;
2394 			if (ieee80211_radiotap_active_vap(vap)) {
2395 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2396 
2397 				tap->wt_flags = 0;
2398 				tap->wt_rate = data->rate;
2399 
2400 				ieee80211_radiotap_tx(vap, m);
2401 			}
2402 
2403 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2404 			usbd_xfer_set_priv(xfer, data);
2405 			usbd_transfer_submit(xfer);
2406 		}
2407 		zyd_start(sc);
2408 		break;
2409 
2410 	default:			/* Error */
2411 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2412 		    usbd_errstr(error));
2413 
2414 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
2415 		data = usbd_xfer_get_priv(xfer);
2416 		usbd_xfer_set_priv(xfer, NULL);
2417 		if (data != NULL)
2418 			zyd_tx_free(data, error);
2419 
2420 		if (error != USB_ERR_CANCELLED) {
2421 			if (error == USB_ERR_TIMEOUT)
2422 				device_printf(sc->sc_dev, "device timeout\n");
2423 
2424 			/*
2425 			 * Try to clear stall first, also if other
2426 			 * errors occur, hence clearing stall
2427 			 * introduces a 50 ms delay:
2428 			 */
2429 			usbd_xfer_set_stall(xfer);
2430 			goto tr_setup;
2431 		}
2432 		break;
2433 	}
2434 }
2435 
2436 static int
2437 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2438 {
2439 	struct ieee80211vap *vap = ni->ni_vap;
2440 	struct ieee80211com *ic = ni->ni_ic;
2441 	struct zyd_tx_desc *desc;
2442 	struct zyd_tx_data *data;
2443 	struct ieee80211_frame *wh;
2444 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2445 	struct ieee80211_key *k;
2446 	int rate, totlen, type, ismcast;
2447 	static const uint8_t ratediv[] = ZYD_TX_RATEDIV;
2448 	uint8_t phy;
2449 	uint16_t pktlen;
2450 	uint32_t bits;
2451 
2452 	wh = mtod(m0, struct ieee80211_frame *);
2453 	data = STAILQ_FIRST(&sc->tx_free);
2454 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2455 	sc->tx_nfree--;
2456 
2457 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2458 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2459 
2460 	if (type == IEEE80211_FC0_TYPE_MGT ||
2461 	    type == IEEE80211_FC0_TYPE_CTL ||
2462 	    (m0->m_flags & M_EAPOL) != 0) {
2463 		rate = tp->mgmtrate;
2464 	} else {
2465 		/* for data frames */
2466 		if (ismcast)
2467 			rate = tp->mcastrate;
2468 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2469 			rate = tp->ucastrate;
2470 		else {
2471 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2472 			rate = ni->ni_txrate;
2473 		}
2474 	}
2475 
2476 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2477 		k = ieee80211_crypto_encap(ni, m0);
2478 		if (k == NULL) {
2479 			return (ENOBUFS);
2480 		}
2481 		/* packet header may have moved, reset our local pointer */
2482 		wh = mtod(m0, struct ieee80211_frame *);
2483 	}
2484 
2485 	data->ni = ni;
2486 	data->m = m0;
2487 	data->rate = rate;
2488 
2489 	/* fill Tx descriptor */
2490 	desc = &data->desc;
2491 	phy = zyd_plcp_signal(sc, rate);
2492 	desc->phy = phy;
2493 	if (ZYD_RATE_IS_OFDM(rate)) {
2494 		desc->phy |= ZYD_TX_PHY_OFDM;
2495 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2496 			desc->phy |= ZYD_TX_PHY_5GHZ;
2497 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2498 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2499 
2500 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2501 	desc->len = htole16(totlen);
2502 
2503 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2504 	if (!ismcast) {
2505 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2506 		if (totlen > vap->iv_rtsthreshold) {
2507 			desc->flags |= ZYD_TX_FLAG_RTS;
2508 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2509 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2510 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2511 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2512 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2513 				desc->flags |= ZYD_TX_FLAG_RTS;
2514 		}
2515 	} else
2516 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2517 	if ((wh->i_fc[0] &
2518 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2519 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2520 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2521 
2522 	/* actual transmit length (XXX why +10?) */
2523 	pktlen = ZYD_TX_DESC_SIZE + 10;
2524 	if (sc->sc_macrev == ZYD_ZD1211)
2525 		pktlen += totlen;
2526 	desc->pktlen = htole16(pktlen);
2527 
2528 	bits = (rate == 11) ? (totlen * 16) + 10 :
2529 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2530 	desc->plcp_length = htole16(bits / ratediv[phy]);
2531 	desc->plcp_service = 0;
2532 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2533 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2534 	desc->nextlen = 0;
2535 
2536 	if (ieee80211_radiotap_active_vap(vap)) {
2537 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2538 
2539 		tap->wt_flags = 0;
2540 		tap->wt_rate = rate;
2541 
2542 		ieee80211_radiotap_tx(vap, m0);
2543 	}
2544 
2545 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2546 	    "%s: sending data frame len=%zu rate=%u\n",
2547 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2548 		rate);
2549 
2550 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2551 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2552 
2553 	return (0);
2554 }
2555 
2556 static int
2557 zyd_transmit(struct ieee80211com *ic, struct mbuf *m)
2558 {
2559 	struct zyd_softc *sc = ic->ic_softc;
2560 	int error;
2561 
2562 	ZYD_LOCK(sc);
2563 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2564 		ZYD_UNLOCK(sc);
2565 		return (ENXIO);
2566 	}
2567 	error = mbufq_enqueue(&sc->sc_snd, m);
2568 	if (error) {
2569 		ZYD_UNLOCK(sc);
2570 		return (error);
2571 	}
2572 	zyd_start(sc);
2573 	ZYD_UNLOCK(sc);
2574 
2575 	return (0);
2576 }
2577 
2578 static void
2579 zyd_start(struct zyd_softc *sc)
2580 {
2581 	struct ieee80211_node *ni;
2582 	struct mbuf *m;
2583 
2584 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2585 
2586 	while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
2587 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2588 		if (zyd_tx_start(sc, m, ni) != 0) {
2589 			m_freem(m);
2590 			if_inc_counter(ni->ni_vap->iv_ifp,
2591 			    IFCOUNTER_OERRORS, 1);
2592 			ieee80211_free_node(ni);
2593 			break;
2594 		}
2595 	}
2596 }
2597 
2598 static int
2599 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2600 	const struct ieee80211_bpf_params *params)
2601 {
2602 	struct ieee80211com *ic = ni->ni_ic;
2603 	struct zyd_softc *sc = ic->ic_softc;
2604 
2605 	ZYD_LOCK(sc);
2606 	/* prevent management frames from being sent if we're not ready */
2607 	if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) {
2608 		ZYD_UNLOCK(sc);
2609 		m_freem(m);
2610 		return (ENETDOWN);
2611 	}
2612 	if (sc->tx_nfree == 0) {
2613 		ZYD_UNLOCK(sc);
2614 		m_freem(m);
2615 		return (ENOBUFS);		/* XXX */
2616 	}
2617 
2618 	/*
2619 	 * Legacy path; interpret frame contents to decide
2620 	 * precisely how to send the frame.
2621 	 * XXX raw path
2622 	 */
2623 	if (zyd_tx_start(sc, m, ni) != 0) {
2624 		ZYD_UNLOCK(sc);
2625 		m_freem(m);
2626 		return (EIO);
2627 	}
2628 	ZYD_UNLOCK(sc);
2629 	return (0);
2630 }
2631 
2632 static void
2633 zyd_parent(struct ieee80211com *ic)
2634 {
2635 	struct zyd_softc *sc = ic->ic_softc;
2636 	int startall = 0;
2637 
2638 	ZYD_LOCK(sc);
2639 	if (sc->sc_flags & ZYD_FLAG_DETACHED) {
2640 		ZYD_UNLOCK(sc);
2641 		return;
2642 	}
2643 	if (ic->ic_nrunning > 0) {
2644 		if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2645 			zyd_init_locked(sc);
2646 			startall = 1;
2647 		} else
2648 			zyd_set_multi(sc);
2649 	} else if (sc->sc_flags & ZYD_FLAG_RUNNING)
2650 		zyd_stop(sc);
2651 	ZYD_UNLOCK(sc);
2652 	if (startall)
2653 		ieee80211_start_all(ic);
2654 }
2655 
2656 static void
2657 zyd_init_locked(struct zyd_softc *sc)
2658 {
2659 	struct ieee80211com *ic = &sc->sc_ic;
2660 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2661 	struct usb_config_descriptor *cd;
2662 	int error;
2663 	uint32_t val;
2664 
2665 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2666 
2667 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2668 		error = zyd_loadfirmware(sc);
2669 		if (error != 0) {
2670 			device_printf(sc->sc_dev,
2671 			    "could not load firmware (error=%d)\n", error);
2672 			goto fail;
2673 		}
2674 
2675 		/* reset device */
2676 		cd = usbd_get_config_descriptor(sc->sc_udev);
2677 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2678 		    cd->bConfigurationValue);
2679 		if (error)
2680 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2681 
2682 		error = zyd_hw_init(sc);
2683 		if (error) {
2684 			device_printf(sc->sc_dev,
2685 			    "hardware initialization failed\n");
2686 			goto fail;
2687 		}
2688 
2689 		device_printf(sc->sc_dev,
2690 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2691 		    "BE%x NP%x Gain%x F%x\n",
2692 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2693 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2694 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2695 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2696 		    sc->sc_cckgain, sc->sc_fix_cr157);
2697 
2698 		/* read regulatory domain (currently unused) */
2699 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2700 		sc->sc_regdomain = val >> 16;
2701 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2702 		    sc->sc_regdomain);
2703 
2704 		/* we'll do software WEP decryption for now */
2705 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2706 		    __func__);
2707 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2708 
2709 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2710 	}
2711 
2712 	if (sc->sc_flags & ZYD_FLAG_RUNNING)
2713 		zyd_stop(sc);
2714 
2715 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2716 	    vap ? vap->iv_myaddr : ic->ic_macaddr, ":");
2717 	error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2718 	if (error != 0)
2719 		return;
2720 
2721 	/* set basic rates */
2722 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2723 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2724 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2725 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2726 	else	/* assumes 802.11b/g */
2727 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2728 
2729 	/* promiscuous mode */
2730 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2731 	/* multicast setup */
2732 	zyd_set_multi(sc);
2733 	/* set RX filter  */
2734 	error = zyd_set_rxfilter(sc);
2735 	if (error != 0)
2736 		goto fail;
2737 
2738 	/* switch radio transmitter ON */
2739 	error = zyd_switch_radio(sc, 1);
2740 	if (error != 0)
2741 		goto fail;
2742 	/* set default BSS channel */
2743 	zyd_set_chan(sc, ic->ic_curchan);
2744 
2745 	/*
2746 	 * Allocate Tx and Rx xfer queues.
2747 	 */
2748 	zyd_setup_tx_list(sc);
2749 
2750 	/* enable interrupts */
2751 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2752 
2753 	sc->sc_flags |= ZYD_FLAG_RUNNING;
2754 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2755 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2756 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2757 
2758 	return;
2759 
2760 fail:	zyd_stop(sc);
2761 	return;
2762 }
2763 
2764 static void
2765 zyd_stop(struct zyd_softc *sc)
2766 {
2767 	int error;
2768 
2769 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2770 
2771 	sc->sc_flags &= ~ZYD_FLAG_RUNNING;
2772 	zyd_drain_mbufq(sc);
2773 
2774 	/*
2775 	 * Drain all the transfers, if not already drained:
2776 	 */
2777 	ZYD_UNLOCK(sc);
2778 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2779 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2780 	ZYD_LOCK(sc);
2781 
2782 	zyd_unsetup_tx_list(sc);
2783 
2784 	/* Stop now if the device was never set up */
2785 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2786 		return;
2787 
2788 	/* switch radio transmitter OFF */
2789 	error = zyd_switch_radio(sc, 0);
2790 	if (error != 0)
2791 		goto fail;
2792 	/* disable Rx */
2793 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2794 	/* disable interrupts */
2795 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2796 
2797 fail:
2798 	return;
2799 }
2800 
2801 static int
2802 zyd_loadfirmware(struct zyd_softc *sc)
2803 {
2804 	struct usb_device_request req;
2805 	size_t size;
2806 	u_char *fw;
2807 	uint8_t stat;
2808 	uint16_t addr;
2809 
2810 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2811 		return (0);
2812 
2813 	if (sc->sc_macrev == ZYD_ZD1211) {
2814 		fw = (u_char *)zd1211_firmware;
2815 		size = sizeof(zd1211_firmware);
2816 	} else {
2817 		fw = (u_char *)zd1211b_firmware;
2818 		size = sizeof(zd1211b_firmware);
2819 	}
2820 
2821 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2822 	req.bRequest = ZYD_DOWNLOADREQ;
2823 	USETW(req.wIndex, 0);
2824 
2825 	addr = ZYD_FIRMWARE_START_ADDR;
2826 	while (size > 0) {
2827 		/*
2828 		 * When the transfer size is 4096 bytes, it is not
2829 		 * likely to be able to transfer it.
2830 		 * The cause is port or machine or chip?
2831 		 */
2832 		const int mlen = min(size, 64);
2833 
2834 		DPRINTF(sc, ZYD_DEBUG_FW,
2835 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2836 
2837 		USETW(req.wValue, addr);
2838 		USETW(req.wLength, mlen);
2839 		if (zyd_do_request(sc, &req, fw) != 0)
2840 			return (EIO);
2841 
2842 		addr += mlen / 2;
2843 		fw   += mlen;
2844 		size -= mlen;
2845 	}
2846 
2847 	/* check whether the upload succeeded */
2848 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2849 	req.bRequest = ZYD_DOWNLOADSTS;
2850 	USETW(req.wValue, 0);
2851 	USETW(req.wIndex, 0);
2852 	USETW(req.wLength, sizeof(stat));
2853 	if (zyd_do_request(sc, &req, &stat) != 0)
2854 		return (EIO);
2855 
2856 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2857 
2858 	return (stat & 0x80) ? (EIO) : (0);
2859 }
2860 
2861 static void
2862 zyd_scan_start(struct ieee80211com *ic)
2863 {
2864 	struct zyd_softc *sc = ic->ic_softc;
2865 
2866 	ZYD_LOCK(sc);
2867 	/* want broadcast address while scanning */
2868 	zyd_set_bssid(sc, ieee80211broadcastaddr);
2869 	ZYD_UNLOCK(sc);
2870 }
2871 
2872 static void
2873 zyd_scan_end(struct ieee80211com *ic)
2874 {
2875 	struct zyd_softc *sc = ic->ic_softc;
2876 
2877 	ZYD_LOCK(sc);
2878 	/* restore previous bssid */
2879 	zyd_set_bssid(sc, sc->sc_bssid);
2880 	ZYD_UNLOCK(sc);
2881 }
2882 
2883 static void
2884 zyd_getradiocaps(struct ieee80211com *ic,
2885     int maxchans, int *nchans, struct ieee80211_channel chans[])
2886 {
2887 	uint8_t bands[IEEE80211_MODE_BYTES];
2888 
2889 	memset(bands, 0, sizeof(bands));
2890 	setbit(bands, IEEE80211_MODE_11B);
2891 	setbit(bands, IEEE80211_MODE_11G);
2892 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
2893 	    zyd_chan_2ghz, nitems(zyd_chan_2ghz), bands, 0);
2894 }
2895 
2896 static void
2897 zyd_set_channel(struct ieee80211com *ic)
2898 {
2899 	struct zyd_softc *sc = ic->ic_softc;
2900 
2901 	ZYD_LOCK(sc);
2902 	zyd_set_chan(sc, ic->ic_curchan);
2903 	ZYD_UNLOCK(sc);
2904 }
2905 
2906 static device_method_t zyd_methods[] = {
2907         /* Device interface */
2908         DEVMETHOD(device_probe, zyd_match),
2909         DEVMETHOD(device_attach, zyd_attach),
2910         DEVMETHOD(device_detach, zyd_detach),
2911 	DEVMETHOD_END
2912 };
2913 
2914 static driver_t zyd_driver = {
2915 	.name = "zyd",
2916 	.methods = zyd_methods,
2917 	.size = sizeof(struct zyd_softc)
2918 };
2919 
2920 static devclass_t zyd_devclass;
2921 
2922 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2923 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2924 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2925 MODULE_VERSION(zyd, 1);
2926 USB_PNP_HOST_INFO(zyd_devs);
2927