1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include "opt_wlan.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/condvar.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kdb.h> 46 47 #include <machine/bus.h> 48 #include <machine/resource.h> 49 #include <sys/rman.h> 50 51 #include <net/bpf.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/ethernet.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 60 #ifdef INET 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/if_ether.h> 65 #include <netinet/ip.h> 66 #endif 67 68 #include <net80211/ieee80211_var.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_radiotap.h> 71 #include <net80211/ieee80211_ratectl.h> 72 73 #include <dev/usb/usb.h> 74 #include <dev/usb/usbdi.h> 75 #include <dev/usb/usbdi_util.h> 76 #include "usbdevs.h" 77 78 #include <dev/usb/wlan/if_zydreg.h> 79 #include <dev/usb/wlan/if_zydfw.h> 80 81 #ifdef USB_DEBUG 82 static int zyd_debug = 0; 83 84 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 85 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 86 "zyd debug level"); 87 88 enum { 89 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 90 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 91 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 92 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 93 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 94 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 95 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 96 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 97 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 98 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 99 ZYD_DEBUG_ANY = 0xffffffff 100 }; 101 #define DPRINTF(sc, m, fmt, ...) do { \ 102 if (zyd_debug & (m)) \ 103 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 104 } while (0) 105 #else 106 #define DPRINTF(sc, m, fmt, ...) do { \ 107 (void) sc; \ 108 } while (0) 109 #endif 110 111 #define zyd_do_request(sc,req,data) \ 112 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 113 114 static device_probe_t zyd_match; 115 static device_attach_t zyd_attach; 116 static device_detach_t zyd_detach; 117 118 static usb_callback_t zyd_intr_read_callback; 119 static usb_callback_t zyd_intr_write_callback; 120 static usb_callback_t zyd_bulk_read_callback; 121 static usb_callback_t zyd_bulk_write_callback; 122 123 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 124 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 125 const uint8_t [IEEE80211_ADDR_LEN], 126 const uint8_t [IEEE80211_ADDR_LEN]); 127 static void zyd_vap_delete(struct ieee80211vap *); 128 static void zyd_tx_free(struct zyd_tx_data *, int); 129 static void zyd_setup_tx_list(struct zyd_softc *); 130 static void zyd_unsetup_tx_list(struct zyd_softc *); 131 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 132 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 133 void *, int, int); 134 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 135 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 136 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 137 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 138 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 139 static int zyd_lock_phy(struct zyd_softc *); 140 static int zyd_unlock_phy(struct zyd_softc *); 141 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 142 static const char *zyd_rf_name(uint8_t); 143 static int zyd_hw_init(struct zyd_softc *); 144 static int zyd_read_pod(struct zyd_softc *); 145 static int zyd_read_eeprom(struct zyd_softc *); 146 static int zyd_get_macaddr(struct zyd_softc *); 147 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 148 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 149 static int zyd_switch_radio(struct zyd_softc *, int); 150 static int zyd_set_led(struct zyd_softc *, int, int); 151 static void zyd_set_multi(struct zyd_softc *); 152 static void zyd_update_mcast(struct ieee80211com *); 153 static int zyd_set_rxfilter(struct zyd_softc *); 154 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 155 static int zyd_set_beacon_interval(struct zyd_softc *, int); 156 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 157 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 158 struct ieee80211_node *); 159 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 160 static void zyd_start(struct zyd_softc *); 161 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 162 const struct ieee80211_bpf_params *); 163 static void zyd_parent(struct ieee80211com *); 164 static void zyd_init_locked(struct zyd_softc *); 165 static void zyd_stop(struct zyd_softc *); 166 static int zyd_loadfirmware(struct zyd_softc *); 167 static void zyd_scan_start(struct ieee80211com *); 168 static void zyd_scan_end(struct ieee80211com *); 169 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 170 struct ieee80211_channel[]); 171 static void zyd_set_channel(struct ieee80211com *); 172 static int zyd_rfmd_init(struct zyd_rf *); 173 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 174 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init(struct zyd_rf *); 176 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 177 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 178 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 179 static int zyd_al2230_init_b(struct zyd_rf *); 180 static int zyd_al7230B_init(struct zyd_rf *); 181 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 182 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 183 static int zyd_al2210_init(struct zyd_rf *); 184 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 185 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 186 static int zyd_gct_init(struct zyd_rf *); 187 static int zyd_gct_switch_radio(struct zyd_rf *, int); 188 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 189 static int zyd_gct_mode(struct zyd_rf *); 190 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 191 static int zyd_gct_write(struct zyd_rf *, uint16_t); 192 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 193 static int zyd_maxim2_init(struct zyd_rf *); 194 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 195 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 196 197 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 198 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 199 200 /* various supported device vendors/products */ 201 #define ZYD_ZD1211 0 202 #define ZYD_ZD1211B 1 203 204 #define ZYD_ZD1211_DEV(v,p) \ 205 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 206 #define ZYD_ZD1211B_DEV(v,p) \ 207 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 208 static const STRUCT_USB_HOST_ID zyd_devs[] = { 209 /* ZYD_ZD1211 */ 210 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 211 ZYD_ZD1211_DEV(ABOCOM, WL54), 212 ZYD_ZD1211_DEV(ASUS, WL159G), 213 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 214 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 215 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 216 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 217 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 218 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 219 ZYD_ZD1211_DEV(SAGEM, XG760A), 220 ZYD_ZD1211_DEV(SENAO, NUB8301), 221 ZYD_ZD1211_DEV(SITECOMEU, WL113), 222 ZYD_ZD1211_DEV(SWEEX, ZD1211), 223 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 224 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 225 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 226 ZYD_ZD1211_DEV(TWINMOS, G240), 227 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 228 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 229 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 230 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 231 ZYD_ZD1211_DEV(ZCOM, ZD1211), 232 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 233 ZYD_ZD1211_DEV(ZYXEL, AG225H), 234 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 235 ZYD_ZD1211_DEV(ZYXEL, G200V2), 236 /* ZYD_ZD1211B */ 237 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 238 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 239 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 240 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 241 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 242 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 243 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 244 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 245 ZYD_ZD1211B_DEV(MELCO, KG54L), 246 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 247 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 248 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 249 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 250 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 251 ZYD_ZD1211B_DEV(USR, USR5423), 252 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 253 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 254 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 255 ZYD_ZD1211B_DEV(ZYXEL, M202), 256 ZYD_ZD1211B_DEV(ZYXEL, G202), 257 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 258 }; 259 260 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 261 [ZYD_BULK_WR] = { 262 .type = UE_BULK, 263 .endpoint = UE_ADDR_ANY, 264 .direction = UE_DIR_OUT, 265 .bufsize = ZYD_MAX_TXBUFSZ, 266 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 267 .callback = zyd_bulk_write_callback, 268 .ep_index = 0, 269 .timeout = 10000, /* 10 seconds */ 270 }, 271 [ZYD_BULK_RD] = { 272 .type = UE_BULK, 273 .endpoint = UE_ADDR_ANY, 274 .direction = UE_DIR_IN, 275 .bufsize = ZYX_MAX_RXBUFSZ, 276 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 277 .callback = zyd_bulk_read_callback, 278 .ep_index = 0, 279 }, 280 [ZYD_INTR_WR] = { 281 .type = UE_BULK_INTR, 282 .endpoint = UE_ADDR_ANY, 283 .direction = UE_DIR_OUT, 284 .bufsize = sizeof(struct zyd_cmd), 285 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 286 .callback = zyd_intr_write_callback, 287 .timeout = 1000, /* 1 second */ 288 .ep_index = 1, 289 }, 290 [ZYD_INTR_RD] = { 291 .type = UE_INTERRUPT, 292 .endpoint = UE_ADDR_ANY, 293 .direction = UE_DIR_IN, 294 .bufsize = sizeof(struct zyd_cmd), 295 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 296 .callback = zyd_intr_read_callback, 297 }, 298 }; 299 #define zyd_read16_m(sc, val, data) do { \ 300 error = zyd_read16(sc, val, data); \ 301 if (error != 0) \ 302 goto fail; \ 303 } while (0) 304 #define zyd_write16_m(sc, val, data) do { \ 305 error = zyd_write16(sc, val, data); \ 306 if (error != 0) \ 307 goto fail; \ 308 } while (0) 309 #define zyd_read32_m(sc, val, data) do { \ 310 error = zyd_read32(sc, val, data); \ 311 if (error != 0) \ 312 goto fail; \ 313 } while (0) 314 #define zyd_write32_m(sc, val, data) do { \ 315 error = zyd_write32(sc, val, data); \ 316 if (error != 0) \ 317 goto fail; \ 318 } while (0) 319 320 static int 321 zyd_match(device_t dev) 322 { 323 struct usb_attach_arg *uaa = device_get_ivars(dev); 324 325 if (uaa->usb_mode != USB_MODE_HOST) 326 return (ENXIO); 327 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 328 return (ENXIO); 329 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 330 return (ENXIO); 331 332 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 333 } 334 335 static int 336 zyd_attach(device_t dev) 337 { 338 struct usb_attach_arg *uaa = device_get_ivars(dev); 339 struct zyd_softc *sc = device_get_softc(dev); 340 struct ieee80211com *ic = &sc->sc_ic; 341 uint8_t iface_index; 342 int error; 343 344 if (uaa->info.bcdDevice < 0x4330) { 345 device_printf(dev, "device version mismatch: 0x%X " 346 "(only >= 43.30 supported)\n", 347 uaa->info.bcdDevice); 348 return (EINVAL); 349 } 350 351 device_set_usb_desc(dev); 352 sc->sc_dev = dev; 353 sc->sc_udev = uaa->device; 354 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 355 356 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 357 MTX_NETWORK_LOCK, MTX_DEF); 358 STAILQ_INIT(&sc->sc_rqh); 359 mbufq_init(&sc->sc_snd, ifqmaxlen); 360 361 iface_index = ZYD_IFACE_INDEX; 362 error = usbd_transfer_setup(uaa->device, 363 &iface_index, sc->sc_xfer, zyd_config, 364 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 365 if (error) { 366 device_printf(dev, "could not allocate USB transfers, " 367 "err=%s\n", usbd_errstr(error)); 368 goto detach; 369 } 370 371 ZYD_LOCK(sc); 372 if ((error = zyd_get_macaddr(sc)) != 0) { 373 device_printf(sc->sc_dev, "could not read EEPROM\n"); 374 ZYD_UNLOCK(sc); 375 goto detach; 376 } 377 ZYD_UNLOCK(sc); 378 379 ic->ic_softc = sc; 380 ic->ic_name = device_get_nameunit(dev); 381 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 382 ic->ic_opmode = IEEE80211_M_STA; 383 384 /* set device capabilities */ 385 ic->ic_caps = 386 IEEE80211_C_STA /* station mode */ 387 | IEEE80211_C_MONITOR /* monitor mode */ 388 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 389 | IEEE80211_C_SHSLOT /* short slot time supported */ 390 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 391 | IEEE80211_C_WPA /* 802.11i */ 392 ; 393 394 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 395 ic->ic_channels); 396 397 ieee80211_ifattach(ic); 398 ic->ic_raw_xmit = zyd_raw_xmit; 399 ic->ic_scan_start = zyd_scan_start; 400 ic->ic_scan_end = zyd_scan_end; 401 ic->ic_getradiocaps = zyd_getradiocaps; 402 ic->ic_set_channel = zyd_set_channel; 403 ic->ic_vap_create = zyd_vap_create; 404 ic->ic_vap_delete = zyd_vap_delete; 405 ic->ic_update_mcast = zyd_update_mcast; 406 ic->ic_update_promisc = zyd_update_mcast; 407 ic->ic_parent = zyd_parent; 408 ic->ic_transmit = zyd_transmit; 409 410 ieee80211_radiotap_attach(ic, 411 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 412 ZYD_TX_RADIOTAP_PRESENT, 413 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 414 ZYD_RX_RADIOTAP_PRESENT); 415 416 if (bootverbose) 417 ieee80211_announce(ic); 418 419 return (0); 420 421 detach: 422 zyd_detach(dev); 423 return (ENXIO); /* failure */ 424 } 425 426 static void 427 zyd_drain_mbufq(struct zyd_softc *sc) 428 { 429 struct mbuf *m; 430 struct ieee80211_node *ni; 431 432 ZYD_LOCK_ASSERT(sc, MA_OWNED); 433 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 434 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 435 m->m_pkthdr.rcvif = NULL; 436 ieee80211_free_node(ni); 437 m_freem(m); 438 } 439 } 440 441 442 static int 443 zyd_detach(device_t dev) 444 { 445 struct zyd_softc *sc = device_get_softc(dev); 446 struct ieee80211com *ic = &sc->sc_ic; 447 unsigned int x; 448 449 /* 450 * Prevent further allocations from RX/TX data 451 * lists and ioctls: 452 */ 453 ZYD_LOCK(sc); 454 sc->sc_flags |= ZYD_FLAG_DETACHED; 455 zyd_drain_mbufq(sc); 456 STAILQ_INIT(&sc->tx_q); 457 STAILQ_INIT(&sc->tx_free); 458 ZYD_UNLOCK(sc); 459 460 /* drain USB transfers */ 461 for (x = 0; x != ZYD_N_TRANSFER; x++) 462 usbd_transfer_drain(sc->sc_xfer[x]); 463 464 /* free TX list, if any */ 465 ZYD_LOCK(sc); 466 zyd_unsetup_tx_list(sc); 467 ZYD_UNLOCK(sc); 468 469 /* free USB transfers and some data buffers */ 470 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 471 472 if (ic->ic_softc == sc) 473 ieee80211_ifdetach(ic); 474 mtx_destroy(&sc->sc_mtx); 475 476 return (0); 477 } 478 479 static struct ieee80211vap * 480 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 481 enum ieee80211_opmode opmode, int flags, 482 const uint8_t bssid[IEEE80211_ADDR_LEN], 483 const uint8_t mac[IEEE80211_ADDR_LEN]) 484 { 485 struct zyd_vap *zvp; 486 struct ieee80211vap *vap; 487 488 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 489 return (NULL); 490 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 491 vap = &zvp->vap; 492 493 /* enable s/w bmiss handling for sta mode */ 494 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 495 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 496 /* out of memory */ 497 free(zvp, M_80211_VAP); 498 return (NULL); 499 } 500 501 /* override state transition machine */ 502 zvp->newstate = vap->iv_newstate; 503 vap->iv_newstate = zyd_newstate; 504 505 ieee80211_ratectl_init(vap); 506 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 507 508 /* complete setup */ 509 ieee80211_vap_attach(vap, ieee80211_media_change, 510 ieee80211_media_status, mac); 511 ic->ic_opmode = opmode; 512 return (vap); 513 } 514 515 static void 516 zyd_vap_delete(struct ieee80211vap *vap) 517 { 518 struct zyd_vap *zvp = ZYD_VAP(vap); 519 520 ieee80211_ratectl_deinit(vap); 521 ieee80211_vap_detach(vap); 522 free(zvp, M_80211_VAP); 523 } 524 525 static void 526 zyd_tx_free(struct zyd_tx_data *data, int txerr) 527 { 528 struct zyd_softc *sc = data->sc; 529 530 if (data->m != NULL) { 531 ieee80211_tx_complete(data->ni, data->m, txerr); 532 data->m = NULL; 533 data->ni = NULL; 534 } 535 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 536 sc->tx_nfree++; 537 } 538 539 static void 540 zyd_setup_tx_list(struct zyd_softc *sc) 541 { 542 struct zyd_tx_data *data; 543 int i; 544 545 sc->tx_nfree = 0; 546 STAILQ_INIT(&sc->tx_q); 547 STAILQ_INIT(&sc->tx_free); 548 549 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 550 data = &sc->tx_data[i]; 551 552 data->sc = sc; 553 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 554 sc->tx_nfree++; 555 } 556 } 557 558 static void 559 zyd_unsetup_tx_list(struct zyd_softc *sc) 560 { 561 struct zyd_tx_data *data; 562 int i; 563 564 /* make sure any subsequent use of the queues will fail */ 565 sc->tx_nfree = 0; 566 STAILQ_INIT(&sc->tx_q); 567 STAILQ_INIT(&sc->tx_free); 568 569 /* free up all node references and mbufs */ 570 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 571 data = &sc->tx_data[i]; 572 573 if (data->m != NULL) { 574 m_freem(data->m); 575 data->m = NULL; 576 } 577 if (data->ni != NULL) { 578 ieee80211_free_node(data->ni); 579 data->ni = NULL; 580 } 581 } 582 } 583 584 static int 585 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 586 { 587 struct zyd_vap *zvp = ZYD_VAP(vap); 588 struct ieee80211com *ic = vap->iv_ic; 589 struct zyd_softc *sc = ic->ic_softc; 590 int error; 591 592 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 593 ieee80211_state_name[vap->iv_state], 594 ieee80211_state_name[nstate]); 595 596 IEEE80211_UNLOCK(ic); 597 ZYD_LOCK(sc); 598 switch (nstate) { 599 case IEEE80211_S_AUTH: 600 zyd_set_chan(sc, ic->ic_curchan); 601 break; 602 case IEEE80211_S_RUN: 603 if (vap->iv_opmode == IEEE80211_M_MONITOR) 604 break; 605 606 /* turn link LED on */ 607 error = zyd_set_led(sc, ZYD_LED1, 1); 608 if (error != 0) 609 break; 610 611 /* make data LED blink upon Tx */ 612 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 613 614 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 615 zyd_set_bssid(sc, sc->sc_bssid); 616 break; 617 default: 618 break; 619 } 620 fail: 621 ZYD_UNLOCK(sc); 622 IEEE80211_LOCK(ic); 623 return (zvp->newstate(vap, nstate, arg)); 624 } 625 626 /* 627 * Callback handler for interrupt transfer 628 */ 629 static void 630 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 631 { 632 struct zyd_softc *sc = usbd_xfer_softc(xfer); 633 struct ieee80211com *ic = &sc->sc_ic; 634 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 635 struct ieee80211_node *ni; 636 struct zyd_cmd *cmd = &sc->sc_ibuf; 637 struct usb_page_cache *pc; 638 int datalen; 639 int actlen; 640 641 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 642 643 switch (USB_GET_STATE(xfer)) { 644 case USB_ST_TRANSFERRED: 645 pc = usbd_xfer_get_frame(xfer, 0); 646 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 647 648 switch (le16toh(cmd->code)) { 649 case ZYD_NOTIF_RETRYSTATUS: 650 { 651 struct zyd_notif_retry *retry = 652 (struct zyd_notif_retry *)cmd->data; 653 uint16_t count = le16toh(retry->count); 654 655 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 656 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 657 le16toh(retry->rate), ether_sprintf(retry->macaddr), 658 count & 0xff, count); 659 660 /* 661 * Find the node to which the packet was sent and 662 * update its retry statistics. In BSS mode, this node 663 * is the AP we're associated to so no lookup is 664 * actually needed. 665 */ 666 ni = ieee80211_find_txnode(vap, retry->macaddr); 667 if (ni != NULL) { 668 struct ieee80211_ratectl_tx_status *txs = 669 &sc->sc_txs; 670 int retrycnt = count & 0xff; 671 672 txs->flags = 673 IEEE80211_RATECTL_STATUS_LONG_RETRY; 674 txs->long_retries = retrycnt; 675 if (count & 0x100) { 676 txs->status = 677 IEEE80211_RATECTL_TX_FAIL_LONG; 678 } else { 679 txs->status = 680 IEEE80211_RATECTL_TX_SUCCESS; 681 } 682 683 684 ieee80211_ratectl_tx_complete(ni, txs); 685 ieee80211_free_node(ni); 686 } 687 if (count & 0x100) 688 /* too many retries */ 689 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 690 1); 691 break; 692 } 693 case ZYD_NOTIF_IORD: 694 { 695 struct zyd_rq *rqp; 696 697 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 698 break; /* HMAC interrupt */ 699 700 datalen = actlen - sizeof(cmd->code); 701 datalen -= 2; /* XXX: padding? */ 702 703 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 704 int i; 705 int count; 706 707 if (rqp->olen != datalen) 708 continue; 709 count = rqp->olen / sizeof(struct zyd_pair); 710 for (i = 0; i < count; i++) { 711 if (*(((const uint16_t *)rqp->idata) + i) != 712 (((struct zyd_pair *)cmd->data) + i)->reg) 713 break; 714 } 715 if (i != count) 716 continue; 717 /* copy answer into caller-supplied buffer */ 718 memcpy(rqp->odata, cmd->data, rqp->olen); 719 DPRINTF(sc, ZYD_DEBUG_CMD, 720 "command %p complete, data = %*D \n", 721 rqp, rqp->olen, (char *)rqp->odata, ":"); 722 wakeup(rqp); /* wakeup caller */ 723 break; 724 } 725 if (rqp == NULL) { 726 device_printf(sc->sc_dev, 727 "unexpected IORD notification %*D\n", 728 datalen, cmd->data, ":"); 729 } 730 break; 731 } 732 default: 733 device_printf(sc->sc_dev, "unknown notification %x\n", 734 le16toh(cmd->code)); 735 } 736 737 /* FALLTHROUGH */ 738 case USB_ST_SETUP: 739 tr_setup: 740 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 741 usbd_transfer_submit(xfer); 742 break; 743 744 default: /* Error */ 745 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 746 usbd_errstr(error)); 747 748 if (error != USB_ERR_CANCELLED) { 749 /* try to clear stall first */ 750 usbd_xfer_set_stall(xfer); 751 goto tr_setup; 752 } 753 break; 754 } 755 } 756 757 static void 758 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 759 { 760 struct zyd_softc *sc = usbd_xfer_softc(xfer); 761 struct zyd_rq *rqp, *cmd; 762 struct usb_page_cache *pc; 763 764 switch (USB_GET_STATE(xfer)) { 765 case USB_ST_TRANSFERRED: 766 cmd = usbd_xfer_get_priv(xfer); 767 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 768 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 769 /* Ensure the cached rq pointer is still valid */ 770 if (rqp == cmd && 771 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 772 wakeup(rqp); /* wakeup caller */ 773 } 774 775 /* FALLTHROUGH */ 776 case USB_ST_SETUP: 777 tr_setup: 778 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 779 if (rqp->flags & ZYD_CMD_FLAG_SENT) 780 continue; 781 782 pc = usbd_xfer_get_frame(xfer, 0); 783 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 784 785 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 786 usbd_xfer_set_priv(xfer, rqp); 787 rqp->flags |= ZYD_CMD_FLAG_SENT; 788 usbd_transfer_submit(xfer); 789 break; 790 } 791 break; 792 793 default: /* Error */ 794 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 795 usbd_errstr(error)); 796 797 if (error != USB_ERR_CANCELLED) { 798 /* try to clear stall first */ 799 usbd_xfer_set_stall(xfer); 800 goto tr_setup; 801 } 802 break; 803 } 804 } 805 806 static int 807 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 808 void *odata, int olen, int flags) 809 { 810 struct zyd_cmd cmd; 811 struct zyd_rq rq; 812 int error; 813 814 if (ilen > (int)sizeof(cmd.data)) 815 return (EINVAL); 816 817 cmd.code = htole16(code); 818 memcpy(cmd.data, idata, ilen); 819 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 820 &rq, ilen, idata, ":"); 821 822 rq.cmd = &cmd; 823 rq.idata = idata; 824 rq.odata = odata; 825 rq.ilen = sizeof(uint16_t) + ilen; 826 rq.olen = olen; 827 rq.flags = flags; 828 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 829 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 830 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 831 832 /* wait at most one second for command reply */ 833 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 834 if (error) 835 device_printf(sc->sc_dev, "command timeout\n"); 836 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 837 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 838 &rq, error); 839 840 return (error); 841 } 842 843 static int 844 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 845 { 846 struct zyd_pair tmp; 847 int error; 848 849 reg = htole16(reg); 850 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 851 ZYD_CMD_FLAG_READ); 852 if (error == 0) 853 *val = le16toh(tmp.val); 854 return (error); 855 } 856 857 static int 858 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 859 { 860 struct zyd_pair tmp[2]; 861 uint16_t regs[2]; 862 int error; 863 864 regs[0] = htole16(ZYD_REG32_HI(reg)); 865 regs[1] = htole16(ZYD_REG32_LO(reg)); 866 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 867 ZYD_CMD_FLAG_READ); 868 if (error == 0) 869 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 870 return (error); 871 } 872 873 static int 874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 875 { 876 struct zyd_pair pair; 877 878 pair.reg = htole16(reg); 879 pair.val = htole16(val); 880 881 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 882 } 883 884 static int 885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 886 { 887 struct zyd_pair pair[2]; 888 889 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 890 pair[0].val = htole16(val >> 16); 891 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 892 pair[1].val = htole16(val & 0xffff); 893 894 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 895 } 896 897 static int 898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 899 { 900 struct zyd_rf *rf = &sc->sc_rf; 901 struct zyd_rfwrite_cmd req; 902 uint16_t cr203; 903 int error, i; 904 905 zyd_read16_m(sc, ZYD_CR203, &cr203); 906 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 907 908 req.code = htole16(2); 909 req.width = htole16(rf->width); 910 for (i = 0; i < rf->width; i++) { 911 req.bit[i] = htole16(cr203); 912 if (val & (1 << (rf->width - 1 - i))) 913 req.bit[i] |= htole16(ZYD_RF_DATA); 914 } 915 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 916 fail: 917 return (error); 918 } 919 920 static int 921 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 922 { 923 int error; 924 925 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 926 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 927 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 928 fail: 929 return (error); 930 } 931 932 static int 933 zyd_lock_phy(struct zyd_softc *sc) 934 { 935 int error; 936 uint32_t tmp; 937 938 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 939 tmp &= ~ZYD_UNLOCK_PHY_REGS; 940 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 941 fail: 942 return (error); 943 } 944 945 static int 946 zyd_unlock_phy(struct zyd_softc *sc) 947 { 948 int error; 949 uint32_t tmp; 950 951 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 952 tmp |= ZYD_UNLOCK_PHY_REGS; 953 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 954 fail: 955 return (error); 956 } 957 958 /* 959 * RFMD RF methods. 960 */ 961 static int 962 zyd_rfmd_init(struct zyd_rf *rf) 963 { 964 struct zyd_softc *sc = rf->rf_sc; 965 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 966 static const uint32_t rfini[] = ZYD_RFMD_RF; 967 int i, error; 968 969 /* init RF-dependent PHY registers */ 970 for (i = 0; i < nitems(phyini); i++) { 971 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 972 } 973 974 /* init RFMD radio */ 975 for (i = 0; i < nitems(rfini); i++) { 976 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 977 return (error); 978 } 979 fail: 980 return (error); 981 } 982 983 static int 984 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 985 { 986 int error; 987 struct zyd_softc *sc = rf->rf_sc; 988 989 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 990 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 991 fail: 992 return (error); 993 } 994 995 static int 996 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 997 { 998 int error; 999 struct zyd_softc *sc = rf->rf_sc; 1000 static const struct { 1001 uint32_t r1, r2; 1002 } rfprog[] = ZYD_RFMD_CHANTABLE; 1003 1004 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1005 if (error != 0) 1006 goto fail; 1007 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1008 if (error != 0) 1009 goto fail; 1010 1011 fail: 1012 return (error); 1013 } 1014 1015 /* 1016 * AL2230 RF methods. 1017 */ 1018 static int 1019 zyd_al2230_init(struct zyd_rf *rf) 1020 { 1021 struct zyd_softc *sc = rf->rf_sc; 1022 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1023 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1024 static const struct zyd_phy_pair phypll[] = { 1025 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1026 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1027 }; 1028 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1029 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1030 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1031 int i, error; 1032 1033 /* init RF-dependent PHY registers */ 1034 for (i = 0; i < nitems(phyini); i++) 1035 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1036 1037 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1038 for (i = 0; i < nitems(phy2230s); i++) 1039 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1040 } 1041 1042 /* init AL2230 radio */ 1043 for (i = 0; i < nitems(rfini1); i++) { 1044 error = zyd_rfwrite(sc, rfini1[i]); 1045 if (error != 0) 1046 goto fail; 1047 } 1048 1049 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1050 error = zyd_rfwrite(sc, 0x000824); 1051 else 1052 error = zyd_rfwrite(sc, 0x0005a4); 1053 if (error != 0) 1054 goto fail; 1055 1056 for (i = 0; i < nitems(rfini2); i++) { 1057 error = zyd_rfwrite(sc, rfini2[i]); 1058 if (error != 0) 1059 goto fail; 1060 } 1061 1062 for (i = 0; i < nitems(phypll); i++) 1063 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1064 1065 for (i = 0; i < nitems(rfini3); i++) { 1066 error = zyd_rfwrite(sc, rfini3[i]); 1067 if (error != 0) 1068 goto fail; 1069 } 1070 fail: 1071 return (error); 1072 } 1073 1074 static int 1075 zyd_al2230_fini(struct zyd_rf *rf) 1076 { 1077 int error, i; 1078 struct zyd_softc *sc = rf->rf_sc; 1079 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1080 1081 for (i = 0; i < nitems(phy); i++) 1082 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1083 1084 if (sc->sc_newphy != 0) 1085 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1086 1087 zyd_write16_m(sc, ZYD_CR203, 0x6); 1088 fail: 1089 return (error); 1090 } 1091 1092 static int 1093 zyd_al2230_init_b(struct zyd_rf *rf) 1094 { 1095 struct zyd_softc *sc = rf->rf_sc; 1096 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1097 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1098 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1099 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1100 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1101 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1102 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1103 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1104 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1105 int i, error; 1106 1107 for (i = 0; i < nitems(phy1); i++) 1108 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1109 1110 /* init RF-dependent PHY registers */ 1111 for (i = 0; i < nitems(phyini); i++) 1112 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1113 1114 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1115 for (i = 0; i < nitems(phy2230s); i++) 1116 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1117 } 1118 1119 for (i = 0; i < 3; i++) { 1120 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1121 if (error != 0) 1122 return (error); 1123 } 1124 1125 for (i = 0; i < nitems(rfini_part1); i++) { 1126 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1127 if (error != 0) 1128 return (error); 1129 } 1130 1131 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1132 error = zyd_rfwrite(sc, 0x241000); 1133 else 1134 error = zyd_rfwrite(sc, 0x25a000); 1135 if (error != 0) 1136 goto fail; 1137 1138 for (i = 0; i < nitems(rfini_part2); i++) { 1139 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1140 if (error != 0) 1141 return (error); 1142 } 1143 1144 for (i = 0; i < nitems(phy2); i++) 1145 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1146 1147 for (i = 0; i < nitems(rfini_part3); i++) { 1148 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1149 if (error != 0) 1150 return (error); 1151 } 1152 1153 for (i = 0; i < nitems(phy3); i++) 1154 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1155 1156 error = zyd_al2230_fini(rf); 1157 fail: 1158 return (error); 1159 } 1160 1161 static int 1162 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1163 { 1164 struct zyd_softc *sc = rf->rf_sc; 1165 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1166 1167 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1168 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1169 fail: 1170 return (error); 1171 } 1172 1173 static int 1174 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1175 { 1176 int error, i; 1177 struct zyd_softc *sc = rf->rf_sc; 1178 static const struct zyd_phy_pair phy1[] = { 1179 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1180 }; 1181 static const struct { 1182 uint32_t r1, r2, r3; 1183 } rfprog[] = ZYD_AL2230_CHANTABLE; 1184 1185 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1186 if (error != 0) 1187 goto fail; 1188 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1189 if (error != 0) 1190 goto fail; 1191 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1192 if (error != 0) 1193 goto fail; 1194 1195 for (i = 0; i < nitems(phy1); i++) 1196 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1197 fail: 1198 return (error); 1199 } 1200 1201 static int 1202 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1203 { 1204 int error, i; 1205 struct zyd_softc *sc = rf->rf_sc; 1206 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1207 static const struct { 1208 uint32_t r1, r2, r3; 1209 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1210 1211 for (i = 0; i < nitems(phy1); i++) 1212 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1213 1214 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1215 if (error != 0) 1216 goto fail; 1217 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1218 if (error != 0) 1219 goto fail; 1220 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1221 if (error != 0) 1222 goto fail; 1223 error = zyd_al2230_fini(rf); 1224 fail: 1225 return (error); 1226 } 1227 1228 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1229 { \ 1230 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1231 { ZYD_CR47, 0x1e } \ 1232 } 1233 1234 static int 1235 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1236 { 1237 int error = 0, i; 1238 struct zyd_softc *sc = rf->rf_sc; 1239 struct ieee80211com *ic = &sc->sc_ic; 1240 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1241 int chan = ieee80211_chan2ieee(ic, c); 1242 1243 if (chan == 1 || chan == 11) 1244 r[0].val = 0x12; 1245 1246 for (i = 0; i < nitems(r); i++) 1247 zyd_write16_m(sc, r[i].reg, r[i].val); 1248 fail: 1249 return (error); 1250 } 1251 1252 /* 1253 * AL7230B RF methods. 1254 */ 1255 static int 1256 zyd_al7230B_init(struct zyd_rf *rf) 1257 { 1258 struct zyd_softc *sc = rf->rf_sc; 1259 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1260 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1261 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1262 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1263 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1264 int i, error; 1265 1266 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1267 1268 /* init RF-dependent PHY registers, part one */ 1269 for (i = 0; i < nitems(phyini_1); i++) 1270 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1271 1272 /* init AL7230B radio, part one */ 1273 for (i = 0; i < nitems(rfini_1); i++) { 1274 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1275 return (error); 1276 } 1277 /* init RF-dependent PHY registers, part two */ 1278 for (i = 0; i < nitems(phyini_2); i++) 1279 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1280 1281 /* init AL7230B radio, part two */ 1282 for (i = 0; i < nitems(rfini_2); i++) { 1283 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1284 return (error); 1285 } 1286 /* init RF-dependent PHY registers, part three */ 1287 for (i = 0; i < nitems(phyini_3); i++) 1288 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1289 fail: 1290 return (error); 1291 } 1292 1293 static int 1294 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1295 { 1296 int error; 1297 struct zyd_softc *sc = rf->rf_sc; 1298 1299 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1300 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1301 fail: 1302 return (error); 1303 } 1304 1305 static int 1306 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1307 { 1308 struct zyd_softc *sc = rf->rf_sc; 1309 static const struct { 1310 uint32_t r1, r2; 1311 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1312 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1313 int i, error; 1314 1315 zyd_write16_m(sc, ZYD_CR240, 0x57); 1316 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1317 1318 for (i = 0; i < nitems(rfsc); i++) { 1319 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1320 return (error); 1321 } 1322 1323 zyd_write16_m(sc, ZYD_CR128, 0x14); 1324 zyd_write16_m(sc, ZYD_CR129, 0x12); 1325 zyd_write16_m(sc, ZYD_CR130, 0x10); 1326 zyd_write16_m(sc, ZYD_CR38, 0x38); 1327 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1328 1329 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1330 if (error != 0) 1331 goto fail; 1332 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1333 if (error != 0) 1334 goto fail; 1335 error = zyd_rfwrite(sc, 0x3c9000); 1336 if (error != 0) 1337 goto fail; 1338 1339 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1340 zyd_write16_m(sc, ZYD_CR203, 0x06); 1341 zyd_write16_m(sc, ZYD_CR240, 0x08); 1342 fail: 1343 return (error); 1344 } 1345 1346 /* 1347 * AL2210 RF methods. 1348 */ 1349 static int 1350 zyd_al2210_init(struct zyd_rf *rf) 1351 { 1352 struct zyd_softc *sc = rf->rf_sc; 1353 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1354 static const uint32_t rfini[] = ZYD_AL2210_RF; 1355 uint32_t tmp; 1356 int i, error; 1357 1358 zyd_write32_m(sc, ZYD_CR18, 2); 1359 1360 /* init RF-dependent PHY registers */ 1361 for (i = 0; i < nitems(phyini); i++) 1362 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1363 1364 /* init AL2210 radio */ 1365 for (i = 0; i < nitems(rfini); i++) { 1366 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1367 return (error); 1368 } 1369 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1370 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1371 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1372 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1373 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1374 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1375 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1376 zyd_write32_m(sc, ZYD_CR18, 3); 1377 fail: 1378 return (error); 1379 } 1380 1381 static int 1382 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1383 { 1384 /* vendor driver does nothing for this RF chip */ 1385 1386 return (0); 1387 } 1388 1389 static int 1390 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1391 { 1392 int error; 1393 struct zyd_softc *sc = rf->rf_sc; 1394 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1395 uint32_t tmp; 1396 1397 zyd_write32_m(sc, ZYD_CR18, 2); 1398 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1399 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1400 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1401 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1402 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1403 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1404 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1405 1406 /* actually set the channel */ 1407 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1408 if (error != 0) 1409 goto fail; 1410 1411 zyd_write32_m(sc, ZYD_CR18, 3); 1412 fail: 1413 return (error); 1414 } 1415 1416 /* 1417 * GCT RF methods. 1418 */ 1419 static int 1420 zyd_gct_init(struct zyd_rf *rf) 1421 { 1422 #define ZYD_GCT_INTR_REG 0x85c1 1423 struct zyd_softc *sc = rf->rf_sc; 1424 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1425 static const uint32_t rfini[] = ZYD_GCT_RF; 1426 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1427 int i, idx = -1, error; 1428 uint16_t data; 1429 1430 /* init RF-dependent PHY registers */ 1431 for (i = 0; i < nitems(phyini); i++) 1432 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1433 1434 /* init cgt radio */ 1435 for (i = 0; i < nitems(rfini); i++) { 1436 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1437 return (error); 1438 } 1439 1440 error = zyd_gct_mode(rf); 1441 if (error != 0) 1442 return (error); 1443 1444 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1445 error = zyd_gct_set_channel_synth(rf, 1, 0); 1446 if (error != 0) 1447 goto fail; 1448 error = zyd_gct_write(rf, vco[i][0]); 1449 if (error != 0) 1450 goto fail; 1451 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1452 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1453 if ((data & 0xf) == 0) { 1454 idx = i; 1455 break; 1456 } 1457 } 1458 if (idx == -1) { 1459 error = zyd_gct_set_channel_synth(rf, 1, 1); 1460 if (error != 0) 1461 goto fail; 1462 error = zyd_gct_write(rf, 0x6662); 1463 if (error != 0) 1464 goto fail; 1465 } 1466 1467 rf->idx = idx; 1468 zyd_write16_m(sc, ZYD_CR203, 0x6); 1469 fail: 1470 return (error); 1471 #undef ZYD_GCT_INTR_REG 1472 } 1473 1474 static int 1475 zyd_gct_mode(struct zyd_rf *rf) 1476 { 1477 struct zyd_softc *sc = rf->rf_sc; 1478 static const uint32_t mode[] = { 1479 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1480 }; 1481 int i, error; 1482 1483 for (i = 0; i < nitems(mode); i++) { 1484 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1485 break; 1486 } 1487 return (error); 1488 } 1489 1490 static int 1491 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1492 { 1493 int error, idx = chan - 1; 1494 struct zyd_softc *sc = rf->rf_sc; 1495 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1496 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1497 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1498 1499 error = zyd_rfwrite(sc, 1500 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1501 if (error != 0) 1502 return (error); 1503 return zyd_rfwrite(sc, div_synth[idx]); 1504 } 1505 1506 static int 1507 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1508 { 1509 struct zyd_softc *sc = rf->rf_sc; 1510 1511 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1512 } 1513 1514 static int 1515 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1516 { 1517 int error; 1518 struct zyd_softc *sc = rf->rf_sc; 1519 1520 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1521 if (error != 0) 1522 return (error); 1523 1524 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1525 zyd_write16_m(sc, ZYD_CR251, 1526 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1527 fail: 1528 return (error); 1529 } 1530 1531 static int 1532 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1533 { 1534 int error, i; 1535 struct zyd_softc *sc = rf->rf_sc; 1536 static const struct zyd_phy_pair cmd[] = { 1537 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1538 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1539 }; 1540 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1541 1542 error = zyd_gct_set_channel_synth(rf, chan, 0); 1543 if (error != 0) 1544 goto fail; 1545 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1546 vco[rf->idx][((chan - 1) / 2)]); 1547 if (error != 0) 1548 goto fail; 1549 error = zyd_gct_mode(rf); 1550 if (error != 0) 1551 return (error); 1552 for (i = 0; i < nitems(cmd); i++) 1553 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1554 error = zyd_gct_txgain(rf, chan); 1555 if (error != 0) 1556 return (error); 1557 zyd_write16_m(sc, ZYD_CR203, 0x6); 1558 fail: 1559 return (error); 1560 } 1561 1562 static int 1563 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1564 { 1565 struct zyd_softc *sc = rf->rf_sc; 1566 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1567 uint8_t idx = sc->sc_pwrint[chan - 1]; 1568 1569 if (idx >= nitems(txgain)) { 1570 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1571 chan, idx); 1572 return 0; 1573 } 1574 1575 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1576 } 1577 1578 /* 1579 * Maxim2 RF methods. 1580 */ 1581 static int 1582 zyd_maxim2_init(struct zyd_rf *rf) 1583 { 1584 struct zyd_softc *sc = rf->rf_sc; 1585 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1586 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1587 uint16_t tmp; 1588 int i, error; 1589 1590 /* init RF-dependent PHY registers */ 1591 for (i = 0; i < nitems(phyini); i++) 1592 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1593 1594 zyd_read16_m(sc, ZYD_CR203, &tmp); 1595 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1596 1597 /* init maxim2 radio */ 1598 for (i = 0; i < nitems(rfini); i++) { 1599 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1600 return (error); 1601 } 1602 zyd_read16_m(sc, ZYD_CR203, &tmp); 1603 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1604 fail: 1605 return (error); 1606 } 1607 1608 static int 1609 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1610 { 1611 1612 /* vendor driver does nothing for this RF chip */ 1613 return (0); 1614 } 1615 1616 static int 1617 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1618 { 1619 struct zyd_softc *sc = rf->rf_sc; 1620 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1621 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1622 static const struct { 1623 uint32_t r1, r2; 1624 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1625 uint16_t tmp; 1626 int i, error; 1627 1628 /* 1629 * Do the same as we do when initializing it, except for the channel 1630 * values coming from the two channel tables. 1631 */ 1632 1633 /* init RF-dependent PHY registers */ 1634 for (i = 0; i < nitems(phyini); i++) 1635 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1636 1637 zyd_read16_m(sc, ZYD_CR203, &tmp); 1638 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1639 1640 /* first two values taken from the chantables */ 1641 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1642 if (error != 0) 1643 goto fail; 1644 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1645 if (error != 0) 1646 goto fail; 1647 1648 /* init maxim2 radio - skipping the two first values */ 1649 for (i = 2; i < nitems(rfini); i++) { 1650 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1651 return (error); 1652 } 1653 zyd_read16_m(sc, ZYD_CR203, &tmp); 1654 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1655 fail: 1656 return (error); 1657 } 1658 1659 static int 1660 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1661 { 1662 struct zyd_rf *rf = &sc->sc_rf; 1663 1664 rf->rf_sc = sc; 1665 rf->update_pwr = 1; 1666 1667 switch (type) { 1668 case ZYD_RF_RFMD: 1669 rf->init = zyd_rfmd_init; 1670 rf->switch_radio = zyd_rfmd_switch_radio; 1671 rf->set_channel = zyd_rfmd_set_channel; 1672 rf->width = 24; /* 24-bit RF values */ 1673 break; 1674 case ZYD_RF_AL2230: 1675 case ZYD_RF_AL2230S: 1676 if (sc->sc_macrev == ZYD_ZD1211B) { 1677 rf->init = zyd_al2230_init_b; 1678 rf->set_channel = zyd_al2230_set_channel_b; 1679 } else { 1680 rf->init = zyd_al2230_init; 1681 rf->set_channel = zyd_al2230_set_channel; 1682 } 1683 rf->switch_radio = zyd_al2230_switch_radio; 1684 rf->bandedge6 = zyd_al2230_bandedge6; 1685 rf->width = 24; /* 24-bit RF values */ 1686 break; 1687 case ZYD_RF_AL7230B: 1688 rf->init = zyd_al7230B_init; 1689 rf->switch_radio = zyd_al7230B_switch_radio; 1690 rf->set_channel = zyd_al7230B_set_channel; 1691 rf->width = 24; /* 24-bit RF values */ 1692 break; 1693 case ZYD_RF_AL2210: 1694 rf->init = zyd_al2210_init; 1695 rf->switch_radio = zyd_al2210_switch_radio; 1696 rf->set_channel = zyd_al2210_set_channel; 1697 rf->width = 24; /* 24-bit RF values */ 1698 break; 1699 case ZYD_RF_MAXIM_NEW: 1700 case ZYD_RF_GCT: 1701 rf->init = zyd_gct_init; 1702 rf->switch_radio = zyd_gct_switch_radio; 1703 rf->set_channel = zyd_gct_set_channel; 1704 rf->width = 24; /* 24-bit RF values */ 1705 rf->update_pwr = 0; 1706 break; 1707 case ZYD_RF_MAXIM_NEW2: 1708 rf->init = zyd_maxim2_init; 1709 rf->switch_radio = zyd_maxim2_switch_radio; 1710 rf->set_channel = zyd_maxim2_set_channel; 1711 rf->width = 18; /* 18-bit RF values */ 1712 break; 1713 default: 1714 device_printf(sc->sc_dev, 1715 "sorry, radio \"%s\" is not supported yet\n", 1716 zyd_rf_name(type)); 1717 return (EINVAL); 1718 } 1719 return (0); 1720 } 1721 1722 static const char * 1723 zyd_rf_name(uint8_t type) 1724 { 1725 static const char * const zyd_rfs[] = { 1726 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1727 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1728 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1729 "PHILIPS" 1730 }; 1731 1732 return zyd_rfs[(type > 15) ? 0 : type]; 1733 } 1734 1735 static int 1736 zyd_hw_init(struct zyd_softc *sc) 1737 { 1738 int error; 1739 const struct zyd_phy_pair *phyp; 1740 struct zyd_rf *rf = &sc->sc_rf; 1741 uint16_t val; 1742 1743 /* specify that the plug and play is finished */ 1744 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1745 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1746 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1747 sc->sc_fwbase); 1748 1749 /* retrieve firmware revision number */ 1750 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1751 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1752 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1753 /* set mandatory rates - XXX assumes 802.11b/g */ 1754 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1755 1756 /* disable interrupts */ 1757 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1758 1759 if ((error = zyd_read_pod(sc)) != 0) { 1760 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1761 goto fail; 1762 } 1763 1764 /* PHY init (resetting) */ 1765 error = zyd_lock_phy(sc); 1766 if (error != 0) 1767 goto fail; 1768 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1769 for (; phyp->reg != 0; phyp++) 1770 zyd_write16_m(sc, phyp->reg, phyp->val); 1771 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1772 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1773 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1774 } 1775 error = zyd_unlock_phy(sc); 1776 if (error != 0) 1777 goto fail; 1778 1779 /* HMAC init */ 1780 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1781 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1782 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1783 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1784 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1785 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1786 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1787 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1788 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1789 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1790 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1791 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1792 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1793 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1794 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1795 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1796 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1797 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1798 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1799 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1800 1801 if (sc->sc_macrev == ZYD_ZD1211) { 1802 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1803 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1804 } else { 1805 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1806 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1807 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1808 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1809 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1810 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1811 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1812 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1813 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1814 } 1815 1816 /* init beacon interval to 100ms */ 1817 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1818 goto fail; 1819 1820 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1821 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1822 sc->sc_rfrev); 1823 goto fail; 1824 } 1825 1826 /* RF chip init */ 1827 error = zyd_lock_phy(sc); 1828 if (error != 0) 1829 goto fail; 1830 error = (*rf->init)(rf); 1831 if (error != 0) { 1832 device_printf(sc->sc_dev, 1833 "radio initialization failed, error %d\n", error); 1834 goto fail; 1835 } 1836 error = zyd_unlock_phy(sc); 1837 if (error != 0) 1838 goto fail; 1839 1840 if ((error = zyd_read_eeprom(sc)) != 0) { 1841 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1842 goto fail; 1843 } 1844 1845 fail: return (error); 1846 } 1847 1848 static int 1849 zyd_read_pod(struct zyd_softc *sc) 1850 { 1851 int error; 1852 uint32_t tmp; 1853 1854 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1855 sc->sc_rfrev = tmp & 0x0f; 1856 sc->sc_ledtype = (tmp >> 4) & 0x01; 1857 sc->sc_al2230s = (tmp >> 7) & 0x01; 1858 sc->sc_cckgain = (tmp >> 8) & 0x01; 1859 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1860 sc->sc_parev = (tmp >> 16) & 0x0f; 1861 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1862 sc->sc_newphy = (tmp >> 31) & 0x01; 1863 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1864 fail: 1865 return (error); 1866 } 1867 1868 static int 1869 zyd_read_eeprom(struct zyd_softc *sc) 1870 { 1871 uint16_t val; 1872 int error, i; 1873 1874 /* read Tx power calibration tables */ 1875 for (i = 0; i < 7; i++) { 1876 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1877 sc->sc_pwrcal[i * 2] = val >> 8; 1878 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1879 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1880 sc->sc_pwrint[i * 2] = val >> 8; 1881 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1882 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1883 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1884 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1885 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1886 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1887 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1888 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1889 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1890 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1891 } 1892 fail: 1893 return (error); 1894 } 1895 1896 static int 1897 zyd_get_macaddr(struct zyd_softc *sc) 1898 { 1899 struct usb_device_request req; 1900 usb_error_t error; 1901 1902 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1903 req.bRequest = ZYD_READFWDATAREQ; 1904 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1905 USETW(req.wIndex, 0); 1906 USETW(req.wLength, IEEE80211_ADDR_LEN); 1907 1908 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1909 if (error != 0) { 1910 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1911 usbd_errstr(error)); 1912 } 1913 1914 return (error); 1915 } 1916 1917 static int 1918 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1919 { 1920 int error; 1921 uint32_t tmp; 1922 1923 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1924 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1925 tmp = addr[5] << 8 | addr[4]; 1926 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1927 fail: 1928 return (error); 1929 } 1930 1931 static int 1932 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1933 { 1934 int error; 1935 uint32_t tmp; 1936 1937 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1938 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1939 tmp = addr[5] << 8 | addr[4]; 1940 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1941 fail: 1942 return (error); 1943 } 1944 1945 static int 1946 zyd_switch_radio(struct zyd_softc *sc, int on) 1947 { 1948 struct zyd_rf *rf = &sc->sc_rf; 1949 int error; 1950 1951 error = zyd_lock_phy(sc); 1952 if (error != 0) 1953 goto fail; 1954 error = (*rf->switch_radio)(rf, on); 1955 if (error != 0) 1956 goto fail; 1957 error = zyd_unlock_phy(sc); 1958 fail: 1959 return (error); 1960 } 1961 1962 static int 1963 zyd_set_led(struct zyd_softc *sc, int which, int on) 1964 { 1965 int error; 1966 uint32_t tmp; 1967 1968 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1969 tmp &= ~which; 1970 if (on) 1971 tmp |= which; 1972 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1973 fail: 1974 return (error); 1975 } 1976 1977 static void 1978 zyd_set_multi(struct zyd_softc *sc) 1979 { 1980 struct ieee80211com *ic = &sc->sc_ic; 1981 uint32_t low, high; 1982 int error; 1983 1984 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1985 return; 1986 1987 low = 0x00000000; 1988 high = 0x80000000; 1989 1990 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1991 ic->ic_promisc > 0) { 1992 low = 0xffffffff; 1993 high = 0xffffffff; 1994 } else { 1995 struct ieee80211vap *vap; 1996 struct ifnet *ifp; 1997 struct ifmultiaddr *ifma; 1998 uint8_t v; 1999 2000 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2001 ifp = vap->iv_ifp; 2002 if_maddr_rlock(ifp); 2003 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2004 if (ifma->ifma_addr->sa_family != AF_LINK) 2005 continue; 2006 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2007 ifma->ifma_addr))[5] >> 2; 2008 if (v < 32) 2009 low |= 1 << v; 2010 else 2011 high |= 1 << (v - 32); 2012 } 2013 if_maddr_runlock(ifp); 2014 } 2015 } 2016 2017 /* reprogram multicast global hash table */ 2018 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2019 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2020 fail: 2021 if (error != 0) 2022 device_printf(sc->sc_dev, 2023 "could not set multicast hash table\n"); 2024 } 2025 2026 static void 2027 zyd_update_mcast(struct ieee80211com *ic) 2028 { 2029 struct zyd_softc *sc = ic->ic_softc; 2030 2031 ZYD_LOCK(sc); 2032 zyd_set_multi(sc); 2033 ZYD_UNLOCK(sc); 2034 } 2035 2036 static int 2037 zyd_set_rxfilter(struct zyd_softc *sc) 2038 { 2039 struct ieee80211com *ic = &sc->sc_ic; 2040 uint32_t rxfilter; 2041 2042 switch (ic->ic_opmode) { 2043 case IEEE80211_M_STA: 2044 rxfilter = ZYD_FILTER_BSS; 2045 break; 2046 case IEEE80211_M_IBSS: 2047 case IEEE80211_M_HOSTAP: 2048 rxfilter = ZYD_FILTER_HOSTAP; 2049 break; 2050 case IEEE80211_M_MONITOR: 2051 rxfilter = ZYD_FILTER_MONITOR; 2052 break; 2053 default: 2054 /* should not get there */ 2055 return (EINVAL); 2056 } 2057 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2058 } 2059 2060 static void 2061 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2062 { 2063 int error; 2064 struct ieee80211com *ic = &sc->sc_ic; 2065 struct zyd_rf *rf = &sc->sc_rf; 2066 uint32_t tmp; 2067 int chan; 2068 2069 chan = ieee80211_chan2ieee(ic, c); 2070 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2071 /* XXX should NEVER happen */ 2072 device_printf(sc->sc_dev, 2073 "%s: invalid channel %x\n", __func__, chan); 2074 return; 2075 } 2076 2077 error = zyd_lock_phy(sc); 2078 if (error != 0) 2079 goto fail; 2080 2081 error = (*rf->set_channel)(rf, chan); 2082 if (error != 0) 2083 goto fail; 2084 2085 if (rf->update_pwr) { 2086 /* update Tx power */ 2087 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2088 2089 if (sc->sc_macrev == ZYD_ZD1211B) { 2090 zyd_write16_m(sc, ZYD_CR67, 2091 sc->sc_ofdm36_cal[chan - 1]); 2092 zyd_write16_m(sc, ZYD_CR66, 2093 sc->sc_ofdm48_cal[chan - 1]); 2094 zyd_write16_m(sc, ZYD_CR65, 2095 sc->sc_ofdm54_cal[chan - 1]); 2096 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2097 zyd_write16_m(sc, ZYD_CR69, 0x28); 2098 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2099 } 2100 } 2101 if (sc->sc_cckgain) { 2102 /* set CCK baseband gain from EEPROM */ 2103 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2104 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2105 } 2106 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2107 error = (*rf->bandedge6)(rf, c); 2108 if (error != 0) 2109 goto fail; 2110 } 2111 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2112 2113 error = zyd_unlock_phy(sc); 2114 if (error != 0) 2115 goto fail; 2116 2117 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2118 htole16(c->ic_freq); 2119 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2120 htole16(c->ic_flags); 2121 fail: 2122 return; 2123 } 2124 2125 static int 2126 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2127 { 2128 int error; 2129 uint32_t val; 2130 2131 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2132 sc->sc_atim_wnd = val; 2133 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2134 sc->sc_pre_tbtt = val; 2135 sc->sc_bcn_int = bintval; 2136 2137 if (sc->sc_bcn_int <= 5) 2138 sc->sc_bcn_int = 5; 2139 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2140 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2141 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2142 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2143 2144 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2145 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2146 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2147 fail: 2148 return (error); 2149 } 2150 2151 static void 2152 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2153 { 2154 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2155 struct ieee80211com *ic = &sc->sc_ic; 2156 struct zyd_plcphdr plcp; 2157 struct zyd_rx_stat stat; 2158 struct usb_page_cache *pc; 2159 struct mbuf *m; 2160 int rlen, rssi; 2161 2162 if (len < ZYD_MIN_FRAGSZ) { 2163 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2164 device_get_nameunit(sc->sc_dev), len); 2165 counter_u64_add(ic->ic_ierrors, 1); 2166 return; 2167 } 2168 pc = usbd_xfer_get_frame(xfer, 0); 2169 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2170 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2171 2172 if (stat.flags & ZYD_RX_ERROR) { 2173 DPRINTF(sc, ZYD_DEBUG_RECV, 2174 "%s: RX status indicated error (%x)\n", 2175 device_get_nameunit(sc->sc_dev), stat.flags); 2176 counter_u64_add(ic->ic_ierrors, 1); 2177 return; 2178 } 2179 2180 /* compute actual frame length */ 2181 rlen = len - sizeof(struct zyd_plcphdr) - 2182 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2183 2184 /* allocate a mbuf to store the frame */ 2185 if (rlen > (int)MCLBYTES) { 2186 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2187 device_get_nameunit(sc->sc_dev), rlen); 2188 counter_u64_add(ic->ic_ierrors, 1); 2189 return; 2190 } else if (rlen > (int)MHLEN) 2191 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2192 else 2193 m = m_gethdr(M_NOWAIT, MT_DATA); 2194 if (m == NULL) { 2195 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2196 device_get_nameunit(sc->sc_dev)); 2197 counter_u64_add(ic->ic_ierrors, 1); 2198 return; 2199 } 2200 m->m_pkthdr.len = m->m_len = rlen; 2201 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2202 2203 if (ieee80211_radiotap_active(ic)) { 2204 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2205 2206 tap->wr_flags = 0; 2207 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2208 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2209 /* XXX toss, no way to express errors */ 2210 if (stat.flags & ZYD_RX_DECRYPTERR) 2211 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2212 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2213 (stat.flags & ZYD_RX_OFDM) ? 2214 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2215 tap->wr_antsignal = stat.rssi + -95; 2216 tap->wr_antnoise = -95; /* XXX */ 2217 } 2218 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2219 2220 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2221 sc->sc_rx_data[sc->sc_rx_count].m = m; 2222 sc->sc_rx_count++; 2223 } 2224 2225 static void 2226 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2227 { 2228 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2229 struct ieee80211com *ic = &sc->sc_ic; 2230 struct ieee80211_node *ni; 2231 struct zyd_rx_desc desc; 2232 struct mbuf *m; 2233 struct usb_page_cache *pc; 2234 uint32_t offset; 2235 uint8_t rssi; 2236 int8_t nf; 2237 int i; 2238 int actlen; 2239 2240 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2241 2242 sc->sc_rx_count = 0; 2243 switch (USB_GET_STATE(xfer)) { 2244 case USB_ST_TRANSFERRED: 2245 pc = usbd_xfer_get_frame(xfer, 0); 2246 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2247 2248 offset = 0; 2249 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2250 DPRINTF(sc, ZYD_DEBUG_RECV, 2251 "%s: received multi-frame transfer\n", __func__); 2252 2253 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2254 uint16_t len16 = UGETW(desc.len[i]); 2255 2256 if (len16 == 0 || len16 > actlen) 2257 break; 2258 2259 zyd_rx_data(xfer, offset, len16); 2260 2261 /* next frame is aligned on a 32-bit boundary */ 2262 len16 = (len16 + 3) & ~3; 2263 offset += len16; 2264 if (len16 > actlen) 2265 break; 2266 actlen -= len16; 2267 } 2268 } else { 2269 DPRINTF(sc, ZYD_DEBUG_RECV, 2270 "%s: received single-frame transfer\n", __func__); 2271 2272 zyd_rx_data(xfer, 0, actlen); 2273 } 2274 /* FALLTHROUGH */ 2275 case USB_ST_SETUP: 2276 tr_setup: 2277 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2278 usbd_transfer_submit(xfer); 2279 2280 /* 2281 * At the end of a USB callback it is always safe to unlock 2282 * the private mutex of a device! That is why we do the 2283 * "ieee80211_input" here, and not some lines up! 2284 */ 2285 ZYD_UNLOCK(sc); 2286 for (i = 0; i < sc->sc_rx_count; i++) { 2287 rssi = sc->sc_rx_data[i].rssi; 2288 m = sc->sc_rx_data[i].m; 2289 sc->sc_rx_data[i].m = NULL; 2290 2291 nf = -95; /* XXX */ 2292 2293 ni = ieee80211_find_rxnode(ic, 2294 mtod(m, struct ieee80211_frame_min *)); 2295 if (ni != NULL) { 2296 (void)ieee80211_input(ni, m, rssi, nf); 2297 ieee80211_free_node(ni); 2298 } else 2299 (void)ieee80211_input_all(ic, m, rssi, nf); 2300 } 2301 ZYD_LOCK(sc); 2302 zyd_start(sc); 2303 break; 2304 2305 default: /* Error */ 2306 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2307 2308 if (error != USB_ERR_CANCELLED) { 2309 /* try to clear stall first */ 2310 usbd_xfer_set_stall(xfer); 2311 goto tr_setup; 2312 } 2313 break; 2314 } 2315 } 2316 2317 static uint8_t 2318 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2319 { 2320 switch (rate) { 2321 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2322 case 12: 2323 return (0xb); 2324 case 18: 2325 return (0xf); 2326 case 24: 2327 return (0xa); 2328 case 36: 2329 return (0xe); 2330 case 48: 2331 return (0x9); 2332 case 72: 2333 return (0xd); 2334 case 96: 2335 return (0x8); 2336 case 108: 2337 return (0xc); 2338 /* CCK rates (NB: not IEEE std, device-specific) */ 2339 case 2: 2340 return (0x0); 2341 case 4: 2342 return (0x1); 2343 case 11: 2344 return (0x2); 2345 case 22: 2346 return (0x3); 2347 } 2348 2349 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2350 return (0x0); 2351 } 2352 2353 static void 2354 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2355 { 2356 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2357 struct ieee80211vap *vap; 2358 struct zyd_tx_data *data; 2359 struct mbuf *m; 2360 struct usb_page_cache *pc; 2361 int actlen; 2362 2363 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2364 2365 switch (USB_GET_STATE(xfer)) { 2366 case USB_ST_TRANSFERRED: 2367 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2368 actlen); 2369 2370 /* free resources */ 2371 data = usbd_xfer_get_priv(xfer); 2372 zyd_tx_free(data, 0); 2373 usbd_xfer_set_priv(xfer, NULL); 2374 2375 /* FALLTHROUGH */ 2376 case USB_ST_SETUP: 2377 tr_setup: 2378 data = STAILQ_FIRST(&sc->tx_q); 2379 if (data) { 2380 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2381 m = data->m; 2382 2383 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2384 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2385 m->m_pkthdr.len); 2386 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2387 } 2388 pc = usbd_xfer_get_frame(xfer, 0); 2389 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2390 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2391 m->m_pkthdr.len); 2392 2393 vap = data->ni->ni_vap; 2394 if (ieee80211_radiotap_active_vap(vap)) { 2395 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2396 2397 tap->wt_flags = 0; 2398 tap->wt_rate = data->rate; 2399 2400 ieee80211_radiotap_tx(vap, m); 2401 } 2402 2403 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2404 usbd_xfer_set_priv(xfer, data); 2405 usbd_transfer_submit(xfer); 2406 } 2407 zyd_start(sc); 2408 break; 2409 2410 default: /* Error */ 2411 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2412 usbd_errstr(error)); 2413 2414 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2415 data = usbd_xfer_get_priv(xfer); 2416 usbd_xfer_set_priv(xfer, NULL); 2417 if (data != NULL) 2418 zyd_tx_free(data, error); 2419 2420 if (error != USB_ERR_CANCELLED) { 2421 if (error == USB_ERR_TIMEOUT) 2422 device_printf(sc->sc_dev, "device timeout\n"); 2423 2424 /* 2425 * Try to clear stall first, also if other 2426 * errors occur, hence clearing stall 2427 * introduces a 50 ms delay: 2428 */ 2429 usbd_xfer_set_stall(xfer); 2430 goto tr_setup; 2431 } 2432 break; 2433 } 2434 } 2435 2436 static int 2437 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2438 { 2439 struct ieee80211vap *vap = ni->ni_vap; 2440 struct ieee80211com *ic = ni->ni_ic; 2441 struct zyd_tx_desc *desc; 2442 struct zyd_tx_data *data; 2443 struct ieee80211_frame *wh; 2444 const struct ieee80211_txparam *tp = ni->ni_txparms; 2445 struct ieee80211_key *k; 2446 int rate, totlen, type, ismcast; 2447 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2448 uint8_t phy; 2449 uint16_t pktlen; 2450 uint32_t bits; 2451 2452 wh = mtod(m0, struct ieee80211_frame *); 2453 data = STAILQ_FIRST(&sc->tx_free); 2454 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2455 sc->tx_nfree--; 2456 2457 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2458 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2459 2460 if (type == IEEE80211_FC0_TYPE_MGT || 2461 type == IEEE80211_FC0_TYPE_CTL || 2462 (m0->m_flags & M_EAPOL) != 0) { 2463 rate = tp->mgmtrate; 2464 } else { 2465 /* for data frames */ 2466 if (ismcast) 2467 rate = tp->mcastrate; 2468 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2469 rate = tp->ucastrate; 2470 else { 2471 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2472 rate = ni->ni_txrate; 2473 } 2474 } 2475 2476 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2477 k = ieee80211_crypto_encap(ni, m0); 2478 if (k == NULL) { 2479 return (ENOBUFS); 2480 } 2481 /* packet header may have moved, reset our local pointer */ 2482 wh = mtod(m0, struct ieee80211_frame *); 2483 } 2484 2485 data->ni = ni; 2486 data->m = m0; 2487 data->rate = rate; 2488 2489 /* fill Tx descriptor */ 2490 desc = &data->desc; 2491 phy = zyd_plcp_signal(sc, rate); 2492 desc->phy = phy; 2493 if (ZYD_RATE_IS_OFDM(rate)) { 2494 desc->phy |= ZYD_TX_PHY_OFDM; 2495 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2496 desc->phy |= ZYD_TX_PHY_5GHZ; 2497 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2498 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2499 2500 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2501 desc->len = htole16(totlen); 2502 2503 desc->flags = ZYD_TX_FLAG_BACKOFF; 2504 if (!ismcast) { 2505 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2506 if (totlen > vap->iv_rtsthreshold) { 2507 desc->flags |= ZYD_TX_FLAG_RTS; 2508 } else if (ZYD_RATE_IS_OFDM(rate) && 2509 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2510 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2511 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2512 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2513 desc->flags |= ZYD_TX_FLAG_RTS; 2514 } 2515 } else 2516 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2517 if ((wh->i_fc[0] & 2518 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2519 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2520 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2521 2522 /* actual transmit length (XXX why +10?) */ 2523 pktlen = ZYD_TX_DESC_SIZE + 10; 2524 if (sc->sc_macrev == ZYD_ZD1211) 2525 pktlen += totlen; 2526 desc->pktlen = htole16(pktlen); 2527 2528 bits = (rate == 11) ? (totlen * 16) + 10 : 2529 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2530 desc->plcp_length = htole16(bits / ratediv[phy]); 2531 desc->plcp_service = 0; 2532 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2533 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2534 desc->nextlen = 0; 2535 2536 if (ieee80211_radiotap_active_vap(vap)) { 2537 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2538 2539 tap->wt_flags = 0; 2540 tap->wt_rate = rate; 2541 2542 ieee80211_radiotap_tx(vap, m0); 2543 } 2544 2545 DPRINTF(sc, ZYD_DEBUG_XMIT, 2546 "%s: sending data frame len=%zu rate=%u\n", 2547 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2548 rate); 2549 2550 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2551 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2552 2553 return (0); 2554 } 2555 2556 static int 2557 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2558 { 2559 struct zyd_softc *sc = ic->ic_softc; 2560 int error; 2561 2562 ZYD_LOCK(sc); 2563 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2564 ZYD_UNLOCK(sc); 2565 return (ENXIO); 2566 } 2567 error = mbufq_enqueue(&sc->sc_snd, m); 2568 if (error) { 2569 ZYD_UNLOCK(sc); 2570 return (error); 2571 } 2572 zyd_start(sc); 2573 ZYD_UNLOCK(sc); 2574 2575 return (0); 2576 } 2577 2578 static void 2579 zyd_start(struct zyd_softc *sc) 2580 { 2581 struct ieee80211_node *ni; 2582 struct mbuf *m; 2583 2584 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2585 2586 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2587 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2588 if (zyd_tx_start(sc, m, ni) != 0) { 2589 m_freem(m); 2590 if_inc_counter(ni->ni_vap->iv_ifp, 2591 IFCOUNTER_OERRORS, 1); 2592 ieee80211_free_node(ni); 2593 break; 2594 } 2595 } 2596 } 2597 2598 static int 2599 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2600 const struct ieee80211_bpf_params *params) 2601 { 2602 struct ieee80211com *ic = ni->ni_ic; 2603 struct zyd_softc *sc = ic->ic_softc; 2604 2605 ZYD_LOCK(sc); 2606 /* prevent management frames from being sent if we're not ready */ 2607 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2608 ZYD_UNLOCK(sc); 2609 m_freem(m); 2610 return (ENETDOWN); 2611 } 2612 if (sc->tx_nfree == 0) { 2613 ZYD_UNLOCK(sc); 2614 m_freem(m); 2615 return (ENOBUFS); /* XXX */ 2616 } 2617 2618 /* 2619 * Legacy path; interpret frame contents to decide 2620 * precisely how to send the frame. 2621 * XXX raw path 2622 */ 2623 if (zyd_tx_start(sc, m, ni) != 0) { 2624 ZYD_UNLOCK(sc); 2625 m_freem(m); 2626 return (EIO); 2627 } 2628 ZYD_UNLOCK(sc); 2629 return (0); 2630 } 2631 2632 static void 2633 zyd_parent(struct ieee80211com *ic) 2634 { 2635 struct zyd_softc *sc = ic->ic_softc; 2636 int startall = 0; 2637 2638 ZYD_LOCK(sc); 2639 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2640 ZYD_UNLOCK(sc); 2641 return; 2642 } 2643 if (ic->ic_nrunning > 0) { 2644 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2645 zyd_init_locked(sc); 2646 startall = 1; 2647 } else 2648 zyd_set_multi(sc); 2649 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2650 zyd_stop(sc); 2651 ZYD_UNLOCK(sc); 2652 if (startall) 2653 ieee80211_start_all(ic); 2654 } 2655 2656 static void 2657 zyd_init_locked(struct zyd_softc *sc) 2658 { 2659 struct ieee80211com *ic = &sc->sc_ic; 2660 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2661 struct usb_config_descriptor *cd; 2662 int error; 2663 uint32_t val; 2664 2665 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2666 2667 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2668 error = zyd_loadfirmware(sc); 2669 if (error != 0) { 2670 device_printf(sc->sc_dev, 2671 "could not load firmware (error=%d)\n", error); 2672 goto fail; 2673 } 2674 2675 /* reset device */ 2676 cd = usbd_get_config_descriptor(sc->sc_udev); 2677 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2678 cd->bConfigurationValue); 2679 if (error) 2680 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2681 2682 error = zyd_hw_init(sc); 2683 if (error) { 2684 device_printf(sc->sc_dev, 2685 "hardware initialization failed\n"); 2686 goto fail; 2687 } 2688 2689 device_printf(sc->sc_dev, 2690 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2691 "BE%x NP%x Gain%x F%x\n", 2692 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2693 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2694 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2695 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2696 sc->sc_cckgain, sc->sc_fix_cr157); 2697 2698 /* read regulatory domain (currently unused) */ 2699 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2700 sc->sc_regdomain = val >> 16; 2701 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2702 sc->sc_regdomain); 2703 2704 /* we'll do software WEP decryption for now */ 2705 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2706 __func__); 2707 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2708 2709 sc->sc_flags |= ZYD_FLAG_INITONCE; 2710 } 2711 2712 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2713 zyd_stop(sc); 2714 2715 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2716 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2717 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2718 if (error != 0) 2719 return; 2720 2721 /* set basic rates */ 2722 if (ic->ic_curmode == IEEE80211_MODE_11B) 2723 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2724 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2725 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2726 else /* assumes 802.11b/g */ 2727 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2728 2729 /* promiscuous mode */ 2730 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2731 /* multicast setup */ 2732 zyd_set_multi(sc); 2733 /* set RX filter */ 2734 error = zyd_set_rxfilter(sc); 2735 if (error != 0) 2736 goto fail; 2737 2738 /* switch radio transmitter ON */ 2739 error = zyd_switch_radio(sc, 1); 2740 if (error != 0) 2741 goto fail; 2742 /* set default BSS channel */ 2743 zyd_set_chan(sc, ic->ic_curchan); 2744 2745 /* 2746 * Allocate Tx and Rx xfer queues. 2747 */ 2748 zyd_setup_tx_list(sc); 2749 2750 /* enable interrupts */ 2751 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2752 2753 sc->sc_flags |= ZYD_FLAG_RUNNING; 2754 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2755 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2756 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2757 2758 return; 2759 2760 fail: zyd_stop(sc); 2761 return; 2762 } 2763 2764 static void 2765 zyd_stop(struct zyd_softc *sc) 2766 { 2767 int error; 2768 2769 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2770 2771 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2772 zyd_drain_mbufq(sc); 2773 2774 /* 2775 * Drain all the transfers, if not already drained: 2776 */ 2777 ZYD_UNLOCK(sc); 2778 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2779 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2780 ZYD_LOCK(sc); 2781 2782 zyd_unsetup_tx_list(sc); 2783 2784 /* Stop now if the device was never set up */ 2785 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2786 return; 2787 2788 /* switch radio transmitter OFF */ 2789 error = zyd_switch_radio(sc, 0); 2790 if (error != 0) 2791 goto fail; 2792 /* disable Rx */ 2793 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2794 /* disable interrupts */ 2795 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2796 2797 fail: 2798 return; 2799 } 2800 2801 static int 2802 zyd_loadfirmware(struct zyd_softc *sc) 2803 { 2804 struct usb_device_request req; 2805 size_t size; 2806 u_char *fw; 2807 uint8_t stat; 2808 uint16_t addr; 2809 2810 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2811 return (0); 2812 2813 if (sc->sc_macrev == ZYD_ZD1211) { 2814 fw = (u_char *)zd1211_firmware; 2815 size = sizeof(zd1211_firmware); 2816 } else { 2817 fw = (u_char *)zd1211b_firmware; 2818 size = sizeof(zd1211b_firmware); 2819 } 2820 2821 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2822 req.bRequest = ZYD_DOWNLOADREQ; 2823 USETW(req.wIndex, 0); 2824 2825 addr = ZYD_FIRMWARE_START_ADDR; 2826 while (size > 0) { 2827 /* 2828 * When the transfer size is 4096 bytes, it is not 2829 * likely to be able to transfer it. 2830 * The cause is port or machine or chip? 2831 */ 2832 const int mlen = min(size, 64); 2833 2834 DPRINTF(sc, ZYD_DEBUG_FW, 2835 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2836 2837 USETW(req.wValue, addr); 2838 USETW(req.wLength, mlen); 2839 if (zyd_do_request(sc, &req, fw) != 0) 2840 return (EIO); 2841 2842 addr += mlen / 2; 2843 fw += mlen; 2844 size -= mlen; 2845 } 2846 2847 /* check whether the upload succeeded */ 2848 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2849 req.bRequest = ZYD_DOWNLOADSTS; 2850 USETW(req.wValue, 0); 2851 USETW(req.wIndex, 0); 2852 USETW(req.wLength, sizeof(stat)); 2853 if (zyd_do_request(sc, &req, &stat) != 0) 2854 return (EIO); 2855 2856 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2857 2858 return (stat & 0x80) ? (EIO) : (0); 2859 } 2860 2861 static void 2862 zyd_scan_start(struct ieee80211com *ic) 2863 { 2864 struct zyd_softc *sc = ic->ic_softc; 2865 2866 ZYD_LOCK(sc); 2867 /* want broadcast address while scanning */ 2868 zyd_set_bssid(sc, ieee80211broadcastaddr); 2869 ZYD_UNLOCK(sc); 2870 } 2871 2872 static void 2873 zyd_scan_end(struct ieee80211com *ic) 2874 { 2875 struct zyd_softc *sc = ic->ic_softc; 2876 2877 ZYD_LOCK(sc); 2878 /* restore previous bssid */ 2879 zyd_set_bssid(sc, sc->sc_bssid); 2880 ZYD_UNLOCK(sc); 2881 } 2882 2883 static void 2884 zyd_getradiocaps(struct ieee80211com *ic, 2885 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2886 { 2887 uint8_t bands[IEEE80211_MODE_BYTES]; 2888 2889 memset(bands, 0, sizeof(bands)); 2890 setbit(bands, IEEE80211_MODE_11B); 2891 setbit(bands, IEEE80211_MODE_11G); 2892 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 2893 zyd_chan_2ghz, nitems(zyd_chan_2ghz), bands, 0); 2894 } 2895 2896 static void 2897 zyd_set_channel(struct ieee80211com *ic) 2898 { 2899 struct zyd_softc *sc = ic->ic_softc; 2900 2901 ZYD_LOCK(sc); 2902 zyd_set_chan(sc, ic->ic_curchan); 2903 ZYD_UNLOCK(sc); 2904 } 2905 2906 static device_method_t zyd_methods[] = { 2907 /* Device interface */ 2908 DEVMETHOD(device_probe, zyd_match), 2909 DEVMETHOD(device_attach, zyd_attach), 2910 DEVMETHOD(device_detach, zyd_detach), 2911 DEVMETHOD_END 2912 }; 2913 2914 static driver_t zyd_driver = { 2915 .name = "zyd", 2916 .methods = zyd_methods, 2917 .size = sizeof(struct zyd_softc) 2918 }; 2919 2920 static devclass_t zyd_devclass; 2921 2922 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2923 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2924 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2925 MODULE_VERSION(zyd, 1); 2926 USB_PNP_HOST_INFO(zyd_devs); 2927