1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include "opt_wlan.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/sysctl.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/condvar.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/kdb.h> 42 43 #include <net/bpf.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_arp.h> 47 #include <net/ethernet.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #ifdef INET 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/if_ether.h> 57 #include <netinet/ip.h> 58 #endif 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_regdomain.h> 62 #include <net80211/ieee80211_radiotap.h> 63 #include <net80211/ieee80211_ratectl.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include "usbdevs.h" 69 70 #include <dev/usb/wlan/if_zydreg.h> 71 #include <dev/usb/wlan/if_zydfw.h> 72 73 #ifdef USB_DEBUG 74 static int zyd_debug = 0; 75 76 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 77 "USB zyd"); 78 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 79 "zyd debug level"); 80 81 enum { 82 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 85 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 86 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 90 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 91 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 92 ZYD_DEBUG_ANY = 0xffffffff 93 }; 94 #define DPRINTF(sc, m, fmt, ...) do { \ 95 if (zyd_debug & (m)) \ 96 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 97 } while (0) 98 #else 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 (void) sc; \ 101 } while (0) 102 #endif 103 104 #define zyd_do_request(sc,req,data) \ 105 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 106 107 static device_probe_t zyd_match; 108 static device_attach_t zyd_attach; 109 static device_detach_t zyd_detach; 110 111 static usb_callback_t zyd_intr_read_callback; 112 static usb_callback_t zyd_intr_write_callback; 113 static usb_callback_t zyd_bulk_read_callback; 114 static usb_callback_t zyd_bulk_write_callback; 115 116 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 117 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 118 const uint8_t [IEEE80211_ADDR_LEN], 119 const uint8_t [IEEE80211_ADDR_LEN]); 120 static void zyd_vap_delete(struct ieee80211vap *); 121 static void zyd_tx_free(struct zyd_tx_data *, int); 122 static void zyd_setup_tx_list(struct zyd_softc *); 123 static void zyd_unsetup_tx_list(struct zyd_softc *); 124 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 125 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 126 void *, int, int); 127 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 128 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 129 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 130 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 131 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 132 static int zyd_lock_phy(struct zyd_softc *); 133 static int zyd_unlock_phy(struct zyd_softc *); 134 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 135 static const char *zyd_rf_name(uint8_t); 136 static int zyd_hw_init(struct zyd_softc *); 137 static int zyd_read_pod(struct zyd_softc *); 138 static int zyd_read_eeprom(struct zyd_softc *); 139 static int zyd_get_macaddr(struct zyd_softc *); 140 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 141 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 142 static int zyd_switch_radio(struct zyd_softc *, int); 143 static int zyd_set_led(struct zyd_softc *, int, int); 144 static void zyd_set_multi(struct zyd_softc *); 145 static void zyd_update_mcast(struct ieee80211com *); 146 static int zyd_set_rxfilter(struct zyd_softc *); 147 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 148 static int zyd_set_beacon_interval(struct zyd_softc *, int); 149 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 150 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 151 struct ieee80211_node *); 152 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 153 static void zyd_start(struct zyd_softc *); 154 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 155 const struct ieee80211_bpf_params *); 156 static void zyd_parent(struct ieee80211com *); 157 static void zyd_init_locked(struct zyd_softc *); 158 static void zyd_stop(struct zyd_softc *); 159 static int zyd_loadfirmware(struct zyd_softc *); 160 static void zyd_scan_start(struct ieee80211com *); 161 static void zyd_scan_end(struct ieee80211com *); 162 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 163 struct ieee80211_channel[]); 164 static void zyd_set_channel(struct ieee80211com *); 165 static int zyd_rfmd_init(struct zyd_rf *); 166 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 167 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 168 static int zyd_al2230_init(struct zyd_rf *); 169 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 170 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 172 static int zyd_al2230_init_b(struct zyd_rf *); 173 static int zyd_al7230B_init(struct zyd_rf *); 174 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 175 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 176 static int zyd_al2210_init(struct zyd_rf *); 177 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 178 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_gct_init(struct zyd_rf *); 180 static int zyd_gct_switch_radio(struct zyd_rf *, int); 181 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_mode(struct zyd_rf *); 183 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 184 static int zyd_gct_write(struct zyd_rf *, uint16_t); 185 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 186 static int zyd_maxim2_init(struct zyd_rf *); 187 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 188 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 189 190 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 191 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 192 193 /* various supported device vendors/products */ 194 #define ZYD_ZD1211 0 195 #define ZYD_ZD1211B 1 196 197 #define ZYD_ZD1211_DEV(v,p) \ 198 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 199 #define ZYD_ZD1211B_DEV(v,p) \ 200 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 201 static const STRUCT_USB_HOST_ID zyd_devs[] = { 202 /* ZYD_ZD1211 */ 203 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 204 ZYD_ZD1211_DEV(ABOCOM, WL54), 205 ZYD_ZD1211_DEV(ASUS, WL159G), 206 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 207 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 208 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 209 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 210 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 211 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 212 ZYD_ZD1211_DEV(SAGEM, XG760A), 213 ZYD_ZD1211_DEV(SENAO, NUB8301), 214 ZYD_ZD1211_DEV(SITECOMEU, WL113), 215 ZYD_ZD1211_DEV(SWEEX, ZD1211), 216 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 217 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 218 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 219 ZYD_ZD1211_DEV(TWINMOS, G240), 220 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 221 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 222 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 223 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 224 ZYD_ZD1211_DEV(ZCOM, ZD1211), 225 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 226 ZYD_ZD1211_DEV(ZYXEL, AG225H), 227 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 228 ZYD_ZD1211_DEV(ZYXEL, G200V2), 229 /* ZYD_ZD1211B */ 230 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 231 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 232 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 233 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 234 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 235 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 236 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 237 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 238 ZYD_ZD1211B_DEV(MELCO, KG54L), 239 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 240 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 241 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 242 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 243 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 244 ZYD_ZD1211B_DEV(USR, USR5423), 245 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 246 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 247 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 248 ZYD_ZD1211B_DEV(ZYXEL, M202), 249 ZYD_ZD1211B_DEV(ZYXEL, G202), 250 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 251 }; 252 253 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 254 [ZYD_BULK_WR] = { 255 .type = UE_BULK, 256 .endpoint = UE_ADDR_ANY, 257 .direction = UE_DIR_OUT, 258 .bufsize = ZYD_MAX_TXBUFSZ, 259 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 260 .callback = zyd_bulk_write_callback, 261 .ep_index = 0, 262 .timeout = 10000, /* 10 seconds */ 263 }, 264 [ZYD_BULK_RD] = { 265 .type = UE_BULK, 266 .endpoint = UE_ADDR_ANY, 267 .direction = UE_DIR_IN, 268 .bufsize = ZYX_MAX_RXBUFSZ, 269 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 270 .callback = zyd_bulk_read_callback, 271 .ep_index = 0, 272 }, 273 [ZYD_INTR_WR] = { 274 .type = UE_BULK_INTR, 275 .endpoint = UE_ADDR_ANY, 276 .direction = UE_DIR_OUT, 277 .bufsize = sizeof(struct zyd_cmd), 278 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 279 .callback = zyd_intr_write_callback, 280 .timeout = 1000, /* 1 second */ 281 .ep_index = 1, 282 }, 283 [ZYD_INTR_RD] = { 284 .type = UE_INTERRUPT, 285 .endpoint = UE_ADDR_ANY, 286 .direction = UE_DIR_IN, 287 .bufsize = sizeof(struct zyd_cmd), 288 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 289 .callback = zyd_intr_read_callback, 290 }, 291 }; 292 #define zyd_read16_m(sc, val, data) do { \ 293 error = zyd_read16(sc, val, data); \ 294 if (error != 0) \ 295 goto fail; \ 296 } while (0) 297 #define zyd_write16_m(sc, val, data) do { \ 298 error = zyd_write16(sc, val, data); \ 299 if (error != 0) \ 300 goto fail; \ 301 } while (0) 302 #define zyd_read32_m(sc, val, data) do { \ 303 error = zyd_read32(sc, val, data); \ 304 if (error != 0) \ 305 goto fail; \ 306 } while (0) 307 #define zyd_write32_m(sc, val, data) do { \ 308 error = zyd_write32(sc, val, data); \ 309 if (error != 0) \ 310 goto fail; \ 311 } while (0) 312 313 static int 314 zyd_match(device_t dev) 315 { 316 struct usb_attach_arg *uaa = device_get_ivars(dev); 317 318 if (uaa->usb_mode != USB_MODE_HOST) 319 return (ENXIO); 320 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 321 return (ENXIO); 322 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 323 return (ENXIO); 324 325 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 326 } 327 328 static int 329 zyd_attach(device_t dev) 330 { 331 struct usb_attach_arg *uaa = device_get_ivars(dev); 332 struct zyd_softc *sc = device_get_softc(dev); 333 struct ieee80211com *ic = &sc->sc_ic; 334 uint8_t iface_index; 335 int error; 336 337 if (uaa->info.bcdDevice < 0x4330) { 338 device_printf(dev, "device version mismatch: 0x%X " 339 "(only >= 43.30 supported)\n", 340 uaa->info.bcdDevice); 341 return (EINVAL); 342 } 343 344 device_set_usb_desc(dev); 345 sc->sc_dev = dev; 346 sc->sc_udev = uaa->device; 347 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 348 349 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 350 MTX_NETWORK_LOCK, MTX_DEF); 351 STAILQ_INIT(&sc->sc_rqh); 352 mbufq_init(&sc->sc_snd, ifqmaxlen); 353 354 iface_index = ZYD_IFACE_INDEX; 355 error = usbd_transfer_setup(uaa->device, 356 &iface_index, sc->sc_xfer, zyd_config, 357 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 358 if (error) { 359 device_printf(dev, "could not allocate USB transfers, " 360 "err=%s\n", usbd_errstr(error)); 361 goto detach; 362 } 363 364 ZYD_LOCK(sc); 365 if ((error = zyd_get_macaddr(sc)) != 0) { 366 device_printf(sc->sc_dev, "could not read EEPROM\n"); 367 ZYD_UNLOCK(sc); 368 goto detach; 369 } 370 ZYD_UNLOCK(sc); 371 372 ic->ic_softc = sc; 373 ic->ic_name = device_get_nameunit(dev); 374 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 375 ic->ic_opmode = IEEE80211_M_STA; 376 377 /* set device capabilities */ 378 ic->ic_caps = 379 IEEE80211_C_STA /* station mode */ 380 | IEEE80211_C_MONITOR /* monitor mode */ 381 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 382 | IEEE80211_C_SHSLOT /* short slot time supported */ 383 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 384 | IEEE80211_C_WPA /* 802.11i */ 385 ; 386 387 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 388 ic->ic_channels); 389 390 ieee80211_ifattach(ic); 391 ic->ic_raw_xmit = zyd_raw_xmit; 392 ic->ic_scan_start = zyd_scan_start; 393 ic->ic_scan_end = zyd_scan_end; 394 ic->ic_getradiocaps = zyd_getradiocaps; 395 ic->ic_set_channel = zyd_set_channel; 396 ic->ic_vap_create = zyd_vap_create; 397 ic->ic_vap_delete = zyd_vap_delete; 398 ic->ic_update_mcast = zyd_update_mcast; 399 ic->ic_update_promisc = zyd_update_mcast; 400 ic->ic_parent = zyd_parent; 401 ic->ic_transmit = zyd_transmit; 402 403 ieee80211_radiotap_attach(ic, 404 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 405 ZYD_TX_RADIOTAP_PRESENT, 406 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 407 ZYD_RX_RADIOTAP_PRESENT); 408 409 if (bootverbose) 410 ieee80211_announce(ic); 411 412 return (0); 413 414 detach: 415 zyd_detach(dev); 416 return (ENXIO); /* failure */ 417 } 418 419 static void 420 zyd_drain_mbufq(struct zyd_softc *sc) 421 { 422 struct mbuf *m; 423 struct ieee80211_node *ni; 424 425 ZYD_LOCK_ASSERT(sc, MA_OWNED); 426 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 427 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 428 m->m_pkthdr.rcvif = NULL; 429 ieee80211_free_node(ni); 430 m_freem(m); 431 } 432 } 433 434 static int 435 zyd_detach(device_t dev) 436 { 437 struct zyd_softc *sc = device_get_softc(dev); 438 struct ieee80211com *ic = &sc->sc_ic; 439 unsigned x; 440 441 /* 442 * Prevent further allocations from RX/TX data 443 * lists and ioctls: 444 */ 445 ZYD_LOCK(sc); 446 sc->sc_flags |= ZYD_FLAG_DETACHED; 447 zyd_drain_mbufq(sc); 448 STAILQ_INIT(&sc->tx_q); 449 STAILQ_INIT(&sc->tx_free); 450 ZYD_UNLOCK(sc); 451 452 /* drain USB transfers */ 453 for (x = 0; x != ZYD_N_TRANSFER; x++) 454 usbd_transfer_drain(sc->sc_xfer[x]); 455 456 /* free TX list, if any */ 457 ZYD_LOCK(sc); 458 zyd_unsetup_tx_list(sc); 459 ZYD_UNLOCK(sc); 460 461 /* free USB transfers and some data buffers */ 462 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 463 464 if (ic->ic_softc == sc) 465 ieee80211_ifdetach(ic); 466 mtx_destroy(&sc->sc_mtx); 467 468 return (0); 469 } 470 471 static struct ieee80211vap * 472 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 473 enum ieee80211_opmode opmode, int flags, 474 const uint8_t bssid[IEEE80211_ADDR_LEN], 475 const uint8_t mac[IEEE80211_ADDR_LEN]) 476 { 477 struct zyd_vap *zvp; 478 struct ieee80211vap *vap; 479 480 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 481 return (NULL); 482 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 483 vap = &zvp->vap; 484 485 /* enable s/w bmiss handling for sta mode */ 486 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 487 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 488 /* out of memory */ 489 free(zvp, M_80211_VAP); 490 return (NULL); 491 } 492 493 /* override state transition machine */ 494 zvp->newstate = vap->iv_newstate; 495 vap->iv_newstate = zyd_newstate; 496 497 ieee80211_ratectl_init(vap); 498 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 499 500 /* complete setup */ 501 ieee80211_vap_attach(vap, ieee80211_media_change, 502 ieee80211_media_status, mac); 503 ic->ic_opmode = opmode; 504 return (vap); 505 } 506 507 static void 508 zyd_vap_delete(struct ieee80211vap *vap) 509 { 510 struct zyd_vap *zvp = ZYD_VAP(vap); 511 512 ieee80211_ratectl_deinit(vap); 513 ieee80211_vap_detach(vap); 514 free(zvp, M_80211_VAP); 515 } 516 517 static void 518 zyd_tx_free(struct zyd_tx_data *data, int txerr) 519 { 520 struct zyd_softc *sc = data->sc; 521 522 if (data->m != NULL) { 523 ieee80211_tx_complete(data->ni, data->m, txerr); 524 data->m = NULL; 525 data->ni = NULL; 526 } 527 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 528 sc->tx_nfree++; 529 } 530 531 static void 532 zyd_setup_tx_list(struct zyd_softc *sc) 533 { 534 struct zyd_tx_data *data; 535 int i; 536 537 sc->tx_nfree = 0; 538 STAILQ_INIT(&sc->tx_q); 539 STAILQ_INIT(&sc->tx_free); 540 541 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 542 data = &sc->tx_data[i]; 543 544 data->sc = sc; 545 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 546 sc->tx_nfree++; 547 } 548 } 549 550 static void 551 zyd_unsetup_tx_list(struct zyd_softc *sc) 552 { 553 struct zyd_tx_data *data; 554 int i; 555 556 /* make sure any subsequent use of the queues will fail */ 557 sc->tx_nfree = 0; 558 STAILQ_INIT(&sc->tx_q); 559 STAILQ_INIT(&sc->tx_free); 560 561 /* free up all node references and mbufs */ 562 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 563 data = &sc->tx_data[i]; 564 565 if (data->m != NULL) { 566 m_freem(data->m); 567 data->m = NULL; 568 } 569 if (data->ni != NULL) { 570 ieee80211_free_node(data->ni); 571 data->ni = NULL; 572 } 573 } 574 } 575 576 static int 577 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 578 { 579 struct zyd_vap *zvp = ZYD_VAP(vap); 580 struct ieee80211com *ic = vap->iv_ic; 581 struct zyd_softc *sc = ic->ic_softc; 582 int error; 583 584 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 585 ieee80211_state_name[vap->iv_state], 586 ieee80211_state_name[nstate]); 587 588 IEEE80211_UNLOCK(ic); 589 ZYD_LOCK(sc); 590 switch (nstate) { 591 case IEEE80211_S_AUTH: 592 zyd_set_chan(sc, ic->ic_curchan); 593 break; 594 case IEEE80211_S_RUN: 595 if (vap->iv_opmode == IEEE80211_M_MONITOR) 596 break; 597 598 /* turn link LED on */ 599 error = zyd_set_led(sc, ZYD_LED1, 1); 600 if (error != 0) 601 break; 602 603 /* make data LED blink upon Tx */ 604 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 605 606 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 607 zyd_set_bssid(sc, sc->sc_bssid); 608 break; 609 default: 610 break; 611 } 612 fail: 613 ZYD_UNLOCK(sc); 614 IEEE80211_LOCK(ic); 615 return (zvp->newstate(vap, nstate, arg)); 616 } 617 618 /* 619 * Callback handler for interrupt transfer 620 */ 621 static void 622 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 623 { 624 struct zyd_softc *sc = usbd_xfer_softc(xfer); 625 struct ieee80211com *ic = &sc->sc_ic; 626 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 627 struct ieee80211_node *ni; 628 struct zyd_cmd *cmd = &sc->sc_ibuf; 629 struct usb_page_cache *pc; 630 int datalen; 631 int actlen; 632 633 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 634 635 switch (USB_GET_STATE(xfer)) { 636 case USB_ST_TRANSFERRED: 637 pc = usbd_xfer_get_frame(xfer, 0); 638 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 639 640 switch (le16toh(cmd->code)) { 641 case ZYD_NOTIF_RETRYSTATUS: 642 { 643 struct zyd_notif_retry *retry = 644 (struct zyd_notif_retry *)cmd->data; 645 uint16_t count = le16toh(retry->count); 646 647 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 648 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 649 le16toh(retry->rate), ether_sprintf(retry->macaddr), 650 count & 0xff, count); 651 652 /* 653 * Find the node to which the packet was sent and 654 * update its retry statistics. In BSS mode, this node 655 * is the AP we're associated to so no lookup is 656 * actually needed. 657 */ 658 ni = ieee80211_find_txnode(vap, retry->macaddr); 659 if (ni != NULL) { 660 struct ieee80211_ratectl_tx_status *txs = 661 &sc->sc_txs; 662 int retrycnt = count & 0xff; 663 664 txs->flags = 665 IEEE80211_RATECTL_STATUS_LONG_RETRY; 666 txs->long_retries = retrycnt; 667 if (count & 0x100) { 668 txs->status = 669 IEEE80211_RATECTL_TX_FAIL_LONG; 670 } else { 671 txs->status = 672 IEEE80211_RATECTL_TX_SUCCESS; 673 } 674 675 ieee80211_ratectl_tx_complete(ni, txs); 676 ieee80211_free_node(ni); 677 } 678 if (count & 0x100) 679 /* too many retries */ 680 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 681 1); 682 break; 683 } 684 case ZYD_NOTIF_IORD: 685 { 686 struct zyd_rq *rqp; 687 688 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 689 break; /* HMAC interrupt */ 690 691 datalen = actlen - sizeof(cmd->code); 692 datalen -= 2; /* XXX: padding? */ 693 694 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 695 int i; 696 int count; 697 698 if (rqp->olen != datalen) 699 continue; 700 count = rqp->olen / sizeof(struct zyd_pair); 701 for (i = 0; i < count; i++) { 702 if (*(((const uint16_t *)rqp->idata) + i) != 703 (((struct zyd_pair *)cmd->data) + i)->reg) 704 break; 705 } 706 if (i != count) 707 continue; 708 /* copy answer into caller-supplied buffer */ 709 memcpy(rqp->odata, cmd->data, rqp->olen); 710 DPRINTF(sc, ZYD_DEBUG_CMD, 711 "command %p complete, data = %*D \n", 712 rqp, rqp->olen, (char *)rqp->odata, ":"); 713 wakeup(rqp); /* wakeup caller */ 714 break; 715 } 716 if (rqp == NULL) { 717 device_printf(sc->sc_dev, 718 "unexpected IORD notification %*D\n", 719 datalen, cmd->data, ":"); 720 } 721 break; 722 } 723 default: 724 device_printf(sc->sc_dev, "unknown notification %x\n", 725 le16toh(cmd->code)); 726 } 727 728 /* FALLTHROUGH */ 729 case USB_ST_SETUP: 730 tr_setup: 731 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 732 usbd_transfer_submit(xfer); 733 break; 734 735 default: /* Error */ 736 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 737 usbd_errstr(error)); 738 739 if (error != USB_ERR_CANCELLED) { 740 /* try to clear stall first */ 741 usbd_xfer_set_stall(xfer); 742 goto tr_setup; 743 } 744 break; 745 } 746 } 747 748 static void 749 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 750 { 751 struct zyd_softc *sc = usbd_xfer_softc(xfer); 752 struct zyd_rq *rqp, *cmd; 753 struct usb_page_cache *pc; 754 755 switch (USB_GET_STATE(xfer)) { 756 case USB_ST_TRANSFERRED: 757 cmd = usbd_xfer_get_priv(xfer); 758 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 759 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 760 /* Ensure the cached rq pointer is still valid */ 761 if (rqp == cmd && 762 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 763 wakeup(rqp); /* wakeup caller */ 764 } 765 766 /* FALLTHROUGH */ 767 case USB_ST_SETUP: 768 tr_setup: 769 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 770 if (rqp->flags & ZYD_CMD_FLAG_SENT) 771 continue; 772 773 pc = usbd_xfer_get_frame(xfer, 0); 774 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 775 776 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 777 usbd_xfer_set_priv(xfer, rqp); 778 rqp->flags |= ZYD_CMD_FLAG_SENT; 779 usbd_transfer_submit(xfer); 780 break; 781 } 782 break; 783 784 default: /* Error */ 785 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 786 usbd_errstr(error)); 787 788 if (error != USB_ERR_CANCELLED) { 789 /* try to clear stall first */ 790 usbd_xfer_set_stall(xfer); 791 goto tr_setup; 792 } 793 break; 794 } 795 } 796 797 static int 798 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 799 void *odata, int olen, int flags) 800 { 801 struct zyd_cmd cmd; 802 struct zyd_rq rq; 803 int error; 804 805 if (ilen > (int)sizeof(cmd.data)) 806 return (EINVAL); 807 808 cmd.code = htole16(code); 809 memcpy(cmd.data, idata, ilen); 810 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 811 &rq, ilen, idata, ":"); 812 813 rq.cmd = &cmd; 814 rq.idata = idata; 815 rq.odata = odata; 816 rq.ilen = sizeof(uint16_t) + ilen; 817 rq.olen = olen; 818 rq.flags = flags; 819 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 820 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 821 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 822 823 /* wait at most one second for command reply */ 824 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 825 if (error) 826 device_printf(sc->sc_dev, "command timeout\n"); 827 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 828 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 829 &rq, error); 830 831 return (error); 832 } 833 834 static int 835 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 836 { 837 struct zyd_pair tmp; 838 int error; 839 840 reg = htole16(reg); 841 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 842 ZYD_CMD_FLAG_READ); 843 if (error == 0) 844 *val = le16toh(tmp.val); 845 return (error); 846 } 847 848 static int 849 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 850 { 851 struct zyd_pair tmp[2]; 852 uint16_t regs[2]; 853 int error; 854 855 regs[0] = htole16(ZYD_REG32_HI(reg)); 856 regs[1] = htole16(ZYD_REG32_LO(reg)); 857 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 858 ZYD_CMD_FLAG_READ); 859 if (error == 0) 860 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 861 return (error); 862 } 863 864 static int 865 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 866 { 867 struct zyd_pair pair; 868 869 pair.reg = htole16(reg); 870 pair.val = htole16(val); 871 872 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 873 } 874 875 static int 876 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 877 { 878 struct zyd_pair pair[2]; 879 880 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 881 pair[0].val = htole16(val >> 16); 882 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 883 pair[1].val = htole16(val & 0xffff); 884 885 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 886 } 887 888 static int 889 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 890 { 891 struct zyd_rf *rf = &sc->sc_rf; 892 struct zyd_rfwrite_cmd req; 893 uint16_t cr203; 894 int error, i; 895 896 zyd_read16_m(sc, ZYD_CR203, &cr203); 897 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 898 899 req.code = htole16(2); 900 req.width = htole16(rf->width); 901 for (i = 0; i < rf->width; i++) { 902 req.bit[i] = htole16(cr203); 903 if (val & (1 << (rf->width - 1 - i))) 904 req.bit[i] |= htole16(ZYD_RF_DATA); 905 } 906 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 907 fail: 908 return (error); 909 } 910 911 static int 912 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 913 { 914 int error; 915 916 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 917 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 918 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 919 fail: 920 return (error); 921 } 922 923 static int 924 zyd_lock_phy(struct zyd_softc *sc) 925 { 926 int error; 927 uint32_t tmp; 928 929 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 930 tmp &= ~ZYD_UNLOCK_PHY_REGS; 931 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 932 fail: 933 return (error); 934 } 935 936 static int 937 zyd_unlock_phy(struct zyd_softc *sc) 938 { 939 int error; 940 uint32_t tmp; 941 942 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 943 tmp |= ZYD_UNLOCK_PHY_REGS; 944 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 945 fail: 946 return (error); 947 } 948 949 /* 950 * RFMD RF methods. 951 */ 952 static int 953 zyd_rfmd_init(struct zyd_rf *rf) 954 { 955 struct zyd_softc *sc = rf->rf_sc; 956 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 957 static const uint32_t rfini[] = ZYD_RFMD_RF; 958 int i, error; 959 960 /* init RF-dependent PHY registers */ 961 for (i = 0; i < nitems(phyini); i++) { 962 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 963 } 964 965 /* init RFMD radio */ 966 for (i = 0; i < nitems(rfini); i++) { 967 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 968 return (error); 969 } 970 fail: 971 return (error); 972 } 973 974 static int 975 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 976 { 977 int error; 978 struct zyd_softc *sc = rf->rf_sc; 979 980 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 981 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 982 fail: 983 return (error); 984 } 985 986 static int 987 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 988 { 989 int error; 990 struct zyd_softc *sc = rf->rf_sc; 991 static const struct { 992 uint32_t r1, r2; 993 } rfprog[] = ZYD_RFMD_CHANTABLE; 994 995 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 996 if (error != 0) 997 goto fail; 998 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 999 if (error != 0) 1000 goto fail; 1001 1002 fail: 1003 return (error); 1004 } 1005 1006 /* 1007 * AL2230 RF methods. 1008 */ 1009 static int 1010 zyd_al2230_init(struct zyd_rf *rf) 1011 { 1012 struct zyd_softc *sc = rf->rf_sc; 1013 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1014 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1015 static const struct zyd_phy_pair phypll[] = { 1016 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1017 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1018 }; 1019 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1020 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1021 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1022 int i, error; 1023 1024 /* init RF-dependent PHY registers */ 1025 for (i = 0; i < nitems(phyini); i++) 1026 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1027 1028 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1029 for (i = 0; i < nitems(phy2230s); i++) 1030 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1031 } 1032 1033 /* init AL2230 radio */ 1034 for (i = 0; i < nitems(rfini1); i++) { 1035 error = zyd_rfwrite(sc, rfini1[i]); 1036 if (error != 0) 1037 goto fail; 1038 } 1039 1040 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1041 error = zyd_rfwrite(sc, 0x000824); 1042 else 1043 error = zyd_rfwrite(sc, 0x0005a4); 1044 if (error != 0) 1045 goto fail; 1046 1047 for (i = 0; i < nitems(rfini2); i++) { 1048 error = zyd_rfwrite(sc, rfini2[i]); 1049 if (error != 0) 1050 goto fail; 1051 } 1052 1053 for (i = 0; i < nitems(phypll); i++) 1054 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1055 1056 for (i = 0; i < nitems(rfini3); i++) { 1057 error = zyd_rfwrite(sc, rfini3[i]); 1058 if (error != 0) 1059 goto fail; 1060 } 1061 fail: 1062 return (error); 1063 } 1064 1065 static int 1066 zyd_al2230_fini(struct zyd_rf *rf) 1067 { 1068 int error, i; 1069 struct zyd_softc *sc = rf->rf_sc; 1070 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1071 1072 for (i = 0; i < nitems(phy); i++) 1073 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1074 1075 if (sc->sc_newphy != 0) 1076 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1077 1078 zyd_write16_m(sc, ZYD_CR203, 0x6); 1079 fail: 1080 return (error); 1081 } 1082 1083 static int 1084 zyd_al2230_init_b(struct zyd_rf *rf) 1085 { 1086 struct zyd_softc *sc = rf->rf_sc; 1087 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1088 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1089 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1090 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1091 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1092 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1093 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1094 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1095 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1096 int i, error; 1097 1098 for (i = 0; i < nitems(phy1); i++) 1099 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1100 1101 /* init RF-dependent PHY registers */ 1102 for (i = 0; i < nitems(phyini); i++) 1103 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1104 1105 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1106 for (i = 0; i < nitems(phy2230s); i++) 1107 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1108 } 1109 1110 for (i = 0; i < 3; i++) { 1111 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1112 if (error != 0) 1113 return (error); 1114 } 1115 1116 for (i = 0; i < nitems(rfini_part1); i++) { 1117 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1118 if (error != 0) 1119 return (error); 1120 } 1121 1122 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1123 error = zyd_rfwrite(sc, 0x241000); 1124 else 1125 error = zyd_rfwrite(sc, 0x25a000); 1126 if (error != 0) 1127 goto fail; 1128 1129 for (i = 0; i < nitems(rfini_part2); i++) { 1130 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1131 if (error != 0) 1132 return (error); 1133 } 1134 1135 for (i = 0; i < nitems(phy2); i++) 1136 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1137 1138 for (i = 0; i < nitems(rfini_part3); i++) { 1139 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1140 if (error != 0) 1141 return (error); 1142 } 1143 1144 for (i = 0; i < nitems(phy3); i++) 1145 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1146 1147 error = zyd_al2230_fini(rf); 1148 fail: 1149 return (error); 1150 } 1151 1152 static int 1153 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1154 { 1155 struct zyd_softc *sc = rf->rf_sc; 1156 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1157 1158 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1159 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1160 fail: 1161 return (error); 1162 } 1163 1164 static int 1165 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1166 { 1167 int error, i; 1168 struct zyd_softc *sc = rf->rf_sc; 1169 static const struct zyd_phy_pair phy1[] = { 1170 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1171 }; 1172 static const struct { 1173 uint32_t r1, r2, r3; 1174 } rfprog[] = ZYD_AL2230_CHANTABLE; 1175 1176 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1177 if (error != 0) 1178 goto fail; 1179 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1180 if (error != 0) 1181 goto fail; 1182 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1183 if (error != 0) 1184 goto fail; 1185 1186 for (i = 0; i < nitems(phy1); i++) 1187 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1188 fail: 1189 return (error); 1190 } 1191 1192 static int 1193 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1194 { 1195 int error, i; 1196 struct zyd_softc *sc = rf->rf_sc; 1197 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1198 static const struct { 1199 uint32_t r1, r2, r3; 1200 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1201 1202 for (i = 0; i < nitems(phy1); i++) 1203 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1204 1205 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1206 if (error != 0) 1207 goto fail; 1208 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1209 if (error != 0) 1210 goto fail; 1211 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1212 if (error != 0) 1213 goto fail; 1214 error = zyd_al2230_fini(rf); 1215 fail: 1216 return (error); 1217 } 1218 1219 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1220 { \ 1221 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1222 { ZYD_CR47, 0x1e } \ 1223 } 1224 1225 static int 1226 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1227 { 1228 int error = 0, i; 1229 struct zyd_softc *sc = rf->rf_sc; 1230 struct ieee80211com *ic = &sc->sc_ic; 1231 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1232 int chan = ieee80211_chan2ieee(ic, c); 1233 1234 if (chan == 1 || chan == 11) 1235 r[0].val = 0x12; 1236 1237 for (i = 0; i < nitems(r); i++) 1238 zyd_write16_m(sc, r[i].reg, r[i].val); 1239 fail: 1240 return (error); 1241 } 1242 1243 /* 1244 * AL7230B RF methods. 1245 */ 1246 static int 1247 zyd_al7230B_init(struct zyd_rf *rf) 1248 { 1249 struct zyd_softc *sc = rf->rf_sc; 1250 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1251 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1252 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1253 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1254 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1255 int i, error; 1256 1257 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1258 1259 /* init RF-dependent PHY registers, part one */ 1260 for (i = 0; i < nitems(phyini_1); i++) 1261 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1262 1263 /* init AL7230B radio, part one */ 1264 for (i = 0; i < nitems(rfini_1); i++) { 1265 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1266 return (error); 1267 } 1268 /* init RF-dependent PHY registers, part two */ 1269 for (i = 0; i < nitems(phyini_2); i++) 1270 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1271 1272 /* init AL7230B radio, part two */ 1273 for (i = 0; i < nitems(rfini_2); i++) { 1274 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1275 return (error); 1276 } 1277 /* init RF-dependent PHY registers, part three */ 1278 for (i = 0; i < nitems(phyini_3); i++) 1279 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1280 fail: 1281 return (error); 1282 } 1283 1284 static int 1285 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1286 { 1287 int error; 1288 struct zyd_softc *sc = rf->rf_sc; 1289 1290 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1291 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1292 fail: 1293 return (error); 1294 } 1295 1296 static int 1297 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1298 { 1299 struct zyd_softc *sc = rf->rf_sc; 1300 static const struct { 1301 uint32_t r1, r2; 1302 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1303 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1304 int i, error; 1305 1306 zyd_write16_m(sc, ZYD_CR240, 0x57); 1307 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1308 1309 for (i = 0; i < nitems(rfsc); i++) { 1310 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1311 return (error); 1312 } 1313 1314 zyd_write16_m(sc, ZYD_CR128, 0x14); 1315 zyd_write16_m(sc, ZYD_CR129, 0x12); 1316 zyd_write16_m(sc, ZYD_CR130, 0x10); 1317 zyd_write16_m(sc, ZYD_CR38, 0x38); 1318 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1319 1320 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1321 if (error != 0) 1322 goto fail; 1323 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1324 if (error != 0) 1325 goto fail; 1326 error = zyd_rfwrite(sc, 0x3c9000); 1327 if (error != 0) 1328 goto fail; 1329 1330 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1331 zyd_write16_m(sc, ZYD_CR203, 0x06); 1332 zyd_write16_m(sc, ZYD_CR240, 0x08); 1333 fail: 1334 return (error); 1335 } 1336 1337 /* 1338 * AL2210 RF methods. 1339 */ 1340 static int 1341 zyd_al2210_init(struct zyd_rf *rf) 1342 { 1343 struct zyd_softc *sc = rf->rf_sc; 1344 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1345 static const uint32_t rfini[] = ZYD_AL2210_RF; 1346 uint32_t tmp; 1347 int i, error; 1348 1349 zyd_write32_m(sc, ZYD_CR18, 2); 1350 1351 /* init RF-dependent PHY registers */ 1352 for (i = 0; i < nitems(phyini); i++) 1353 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1354 1355 /* init AL2210 radio */ 1356 for (i = 0; i < nitems(rfini); i++) { 1357 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1358 return (error); 1359 } 1360 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1361 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1362 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1363 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1364 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1365 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1366 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1367 zyd_write32_m(sc, ZYD_CR18, 3); 1368 fail: 1369 return (error); 1370 } 1371 1372 static int 1373 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1374 { 1375 /* vendor driver does nothing for this RF chip */ 1376 1377 return (0); 1378 } 1379 1380 static int 1381 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1382 { 1383 int error; 1384 struct zyd_softc *sc = rf->rf_sc; 1385 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1386 uint32_t tmp; 1387 1388 zyd_write32_m(sc, ZYD_CR18, 2); 1389 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1390 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1391 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1392 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1393 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1394 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1395 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1396 1397 /* actually set the channel */ 1398 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1399 if (error != 0) 1400 goto fail; 1401 1402 zyd_write32_m(sc, ZYD_CR18, 3); 1403 fail: 1404 return (error); 1405 } 1406 1407 /* 1408 * GCT RF methods. 1409 */ 1410 static int 1411 zyd_gct_init(struct zyd_rf *rf) 1412 { 1413 #define ZYD_GCT_INTR_REG 0x85c1 1414 struct zyd_softc *sc = rf->rf_sc; 1415 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1416 static const uint32_t rfini[] = ZYD_GCT_RF; 1417 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1418 int i, idx = -1, error; 1419 uint16_t data; 1420 1421 /* init RF-dependent PHY registers */ 1422 for (i = 0; i < nitems(phyini); i++) 1423 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1424 1425 /* init cgt radio */ 1426 for (i = 0; i < nitems(rfini); i++) { 1427 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1428 return (error); 1429 } 1430 1431 error = zyd_gct_mode(rf); 1432 if (error != 0) 1433 return (error); 1434 1435 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1436 error = zyd_gct_set_channel_synth(rf, 1, 0); 1437 if (error != 0) 1438 goto fail; 1439 error = zyd_gct_write(rf, vco[i][0]); 1440 if (error != 0) 1441 goto fail; 1442 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1443 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1444 if ((data & 0xf) == 0) { 1445 idx = i; 1446 break; 1447 } 1448 } 1449 if (idx == -1) { 1450 error = zyd_gct_set_channel_synth(rf, 1, 1); 1451 if (error != 0) 1452 goto fail; 1453 error = zyd_gct_write(rf, 0x6662); 1454 if (error != 0) 1455 goto fail; 1456 } 1457 1458 rf->idx = idx; 1459 zyd_write16_m(sc, ZYD_CR203, 0x6); 1460 fail: 1461 return (error); 1462 #undef ZYD_GCT_INTR_REG 1463 } 1464 1465 static int 1466 zyd_gct_mode(struct zyd_rf *rf) 1467 { 1468 struct zyd_softc *sc = rf->rf_sc; 1469 static const uint32_t mode[] = { 1470 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1471 }; 1472 int i, error; 1473 1474 for (i = 0; i < nitems(mode); i++) { 1475 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1476 break; 1477 } 1478 return (error); 1479 } 1480 1481 static int 1482 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1483 { 1484 int error, idx = chan - 1; 1485 struct zyd_softc *sc = rf->rf_sc; 1486 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1487 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1488 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1489 1490 error = zyd_rfwrite(sc, 1491 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1492 if (error != 0) 1493 return (error); 1494 return zyd_rfwrite(sc, div_synth[idx]); 1495 } 1496 1497 static int 1498 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1499 { 1500 struct zyd_softc *sc = rf->rf_sc; 1501 1502 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1503 } 1504 1505 static int 1506 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1507 { 1508 int error; 1509 struct zyd_softc *sc = rf->rf_sc; 1510 1511 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1512 if (error != 0) 1513 return (error); 1514 1515 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1516 zyd_write16_m(sc, ZYD_CR251, 1517 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1518 fail: 1519 return (error); 1520 } 1521 1522 static int 1523 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1524 { 1525 int error, i; 1526 struct zyd_softc *sc = rf->rf_sc; 1527 static const struct zyd_phy_pair cmd[] = { 1528 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1529 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1530 }; 1531 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1532 1533 error = zyd_gct_set_channel_synth(rf, chan, 0); 1534 if (error != 0) 1535 goto fail; 1536 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1537 vco[rf->idx][((chan - 1) / 2)]); 1538 if (error != 0) 1539 goto fail; 1540 error = zyd_gct_mode(rf); 1541 if (error != 0) 1542 return (error); 1543 for (i = 0; i < nitems(cmd); i++) 1544 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1545 error = zyd_gct_txgain(rf, chan); 1546 if (error != 0) 1547 return (error); 1548 zyd_write16_m(sc, ZYD_CR203, 0x6); 1549 fail: 1550 return (error); 1551 } 1552 1553 static int 1554 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1555 { 1556 struct zyd_softc *sc = rf->rf_sc; 1557 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1558 uint8_t idx = sc->sc_pwrint[chan - 1]; 1559 1560 if (idx >= nitems(txgain)) { 1561 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1562 chan, idx); 1563 return 0; 1564 } 1565 1566 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1567 } 1568 1569 /* 1570 * Maxim2 RF methods. 1571 */ 1572 static int 1573 zyd_maxim2_init(struct zyd_rf *rf) 1574 { 1575 struct zyd_softc *sc = rf->rf_sc; 1576 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1577 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1578 uint16_t tmp; 1579 int i, error; 1580 1581 /* init RF-dependent PHY registers */ 1582 for (i = 0; i < nitems(phyini); i++) 1583 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1584 1585 zyd_read16_m(sc, ZYD_CR203, &tmp); 1586 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1587 1588 /* init maxim2 radio */ 1589 for (i = 0; i < nitems(rfini); i++) { 1590 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1591 return (error); 1592 } 1593 zyd_read16_m(sc, ZYD_CR203, &tmp); 1594 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1595 fail: 1596 return (error); 1597 } 1598 1599 static int 1600 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1601 { 1602 1603 /* vendor driver does nothing for this RF chip */ 1604 return (0); 1605 } 1606 1607 static int 1608 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1609 { 1610 struct zyd_softc *sc = rf->rf_sc; 1611 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1612 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1613 static const struct { 1614 uint32_t r1, r2; 1615 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1616 uint16_t tmp; 1617 int i, error; 1618 1619 /* 1620 * Do the same as we do when initializing it, except for the channel 1621 * values coming from the two channel tables. 1622 */ 1623 1624 /* init RF-dependent PHY registers */ 1625 for (i = 0; i < nitems(phyini); i++) 1626 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1627 1628 zyd_read16_m(sc, ZYD_CR203, &tmp); 1629 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1630 1631 /* first two values taken from the chantables */ 1632 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1633 if (error != 0) 1634 goto fail; 1635 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1636 if (error != 0) 1637 goto fail; 1638 1639 /* init maxim2 radio - skipping the two first values */ 1640 for (i = 2; i < nitems(rfini); i++) { 1641 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1642 return (error); 1643 } 1644 zyd_read16_m(sc, ZYD_CR203, &tmp); 1645 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1646 fail: 1647 return (error); 1648 } 1649 1650 static int 1651 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1652 { 1653 struct zyd_rf *rf = &sc->sc_rf; 1654 1655 rf->rf_sc = sc; 1656 rf->update_pwr = 1; 1657 1658 switch (type) { 1659 case ZYD_RF_RFMD: 1660 rf->init = zyd_rfmd_init; 1661 rf->switch_radio = zyd_rfmd_switch_radio; 1662 rf->set_channel = zyd_rfmd_set_channel; 1663 rf->width = 24; /* 24-bit RF values */ 1664 break; 1665 case ZYD_RF_AL2230: 1666 case ZYD_RF_AL2230S: 1667 if (sc->sc_macrev == ZYD_ZD1211B) { 1668 rf->init = zyd_al2230_init_b; 1669 rf->set_channel = zyd_al2230_set_channel_b; 1670 } else { 1671 rf->init = zyd_al2230_init; 1672 rf->set_channel = zyd_al2230_set_channel; 1673 } 1674 rf->switch_radio = zyd_al2230_switch_radio; 1675 rf->bandedge6 = zyd_al2230_bandedge6; 1676 rf->width = 24; /* 24-bit RF values */ 1677 break; 1678 case ZYD_RF_AL7230B: 1679 rf->init = zyd_al7230B_init; 1680 rf->switch_radio = zyd_al7230B_switch_radio; 1681 rf->set_channel = zyd_al7230B_set_channel; 1682 rf->width = 24; /* 24-bit RF values */ 1683 break; 1684 case ZYD_RF_AL2210: 1685 rf->init = zyd_al2210_init; 1686 rf->switch_radio = zyd_al2210_switch_radio; 1687 rf->set_channel = zyd_al2210_set_channel; 1688 rf->width = 24; /* 24-bit RF values */ 1689 break; 1690 case ZYD_RF_MAXIM_NEW: 1691 case ZYD_RF_GCT: 1692 rf->init = zyd_gct_init; 1693 rf->switch_radio = zyd_gct_switch_radio; 1694 rf->set_channel = zyd_gct_set_channel; 1695 rf->width = 24; /* 24-bit RF values */ 1696 rf->update_pwr = 0; 1697 break; 1698 case ZYD_RF_MAXIM_NEW2: 1699 rf->init = zyd_maxim2_init; 1700 rf->switch_radio = zyd_maxim2_switch_radio; 1701 rf->set_channel = zyd_maxim2_set_channel; 1702 rf->width = 18; /* 18-bit RF values */ 1703 break; 1704 default: 1705 device_printf(sc->sc_dev, 1706 "sorry, radio \"%s\" is not supported yet\n", 1707 zyd_rf_name(type)); 1708 return (EINVAL); 1709 } 1710 return (0); 1711 } 1712 1713 static const char * 1714 zyd_rf_name(uint8_t type) 1715 { 1716 static const char * const zyd_rfs[] = { 1717 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1718 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1719 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1720 "PHILIPS" 1721 }; 1722 1723 return zyd_rfs[(type > 15) ? 0 : type]; 1724 } 1725 1726 static int 1727 zyd_hw_init(struct zyd_softc *sc) 1728 { 1729 int error; 1730 const struct zyd_phy_pair *phyp; 1731 struct zyd_rf *rf = &sc->sc_rf; 1732 uint16_t val; 1733 1734 /* specify that the plug and play is finished */ 1735 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1736 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1737 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1738 sc->sc_fwbase); 1739 1740 /* retrieve firmware revision number */ 1741 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1742 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1743 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1744 /* set mandatory rates - XXX assumes 802.11b/g */ 1745 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1746 1747 /* disable interrupts */ 1748 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1749 1750 if ((error = zyd_read_pod(sc)) != 0) { 1751 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1752 goto fail; 1753 } 1754 1755 /* PHY init (resetting) */ 1756 error = zyd_lock_phy(sc); 1757 if (error != 0) 1758 goto fail; 1759 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1760 for (; phyp->reg != 0; phyp++) 1761 zyd_write16_m(sc, phyp->reg, phyp->val); 1762 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1763 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1764 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1765 } 1766 error = zyd_unlock_phy(sc); 1767 if (error != 0) 1768 goto fail; 1769 1770 /* HMAC init */ 1771 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1772 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1773 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1774 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1775 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1776 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1777 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1778 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1779 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1780 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1781 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1782 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1783 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1784 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1785 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1786 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1787 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1788 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1789 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1790 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1791 1792 if (sc->sc_macrev == ZYD_ZD1211) { 1793 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1794 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1795 } else { 1796 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1797 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1798 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1799 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1800 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1801 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1802 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1803 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1804 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1805 } 1806 1807 /* init beacon interval to 100ms */ 1808 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1809 goto fail; 1810 1811 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1812 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1813 sc->sc_rfrev); 1814 goto fail; 1815 } 1816 1817 /* RF chip init */ 1818 error = zyd_lock_phy(sc); 1819 if (error != 0) 1820 goto fail; 1821 error = (*rf->init)(rf); 1822 if (error != 0) { 1823 device_printf(sc->sc_dev, 1824 "radio initialization failed, error %d\n", error); 1825 goto fail; 1826 } 1827 error = zyd_unlock_phy(sc); 1828 if (error != 0) 1829 goto fail; 1830 1831 if ((error = zyd_read_eeprom(sc)) != 0) { 1832 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1833 goto fail; 1834 } 1835 1836 fail: return (error); 1837 } 1838 1839 static int 1840 zyd_read_pod(struct zyd_softc *sc) 1841 { 1842 int error; 1843 uint32_t tmp; 1844 1845 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1846 sc->sc_rfrev = tmp & 0x0f; 1847 sc->sc_ledtype = (tmp >> 4) & 0x01; 1848 sc->sc_al2230s = (tmp >> 7) & 0x01; 1849 sc->sc_cckgain = (tmp >> 8) & 0x01; 1850 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1851 sc->sc_parev = (tmp >> 16) & 0x0f; 1852 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1853 sc->sc_newphy = (tmp >> 31) & 0x01; 1854 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1855 fail: 1856 return (error); 1857 } 1858 1859 static int 1860 zyd_read_eeprom(struct zyd_softc *sc) 1861 { 1862 uint16_t val; 1863 int error, i; 1864 1865 /* read Tx power calibration tables */ 1866 for (i = 0; i < 7; i++) { 1867 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1868 sc->sc_pwrcal[i * 2] = val >> 8; 1869 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1870 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1871 sc->sc_pwrint[i * 2] = val >> 8; 1872 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1873 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1874 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1875 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1876 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1877 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1878 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1879 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1880 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1881 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1882 } 1883 fail: 1884 return (error); 1885 } 1886 1887 static int 1888 zyd_get_macaddr(struct zyd_softc *sc) 1889 { 1890 struct usb_device_request req; 1891 usb_error_t error; 1892 1893 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1894 req.bRequest = ZYD_READFWDATAREQ; 1895 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1896 USETW(req.wIndex, 0); 1897 USETW(req.wLength, IEEE80211_ADDR_LEN); 1898 1899 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1900 if (error != 0) { 1901 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1902 usbd_errstr(error)); 1903 } 1904 1905 return (error); 1906 } 1907 1908 static int 1909 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1910 { 1911 int error; 1912 uint32_t tmp; 1913 1914 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1915 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1916 tmp = addr[5] << 8 | addr[4]; 1917 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1918 fail: 1919 return (error); 1920 } 1921 1922 static int 1923 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1924 { 1925 int error; 1926 uint32_t tmp; 1927 1928 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1929 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1930 tmp = addr[5] << 8 | addr[4]; 1931 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1932 fail: 1933 return (error); 1934 } 1935 1936 static int 1937 zyd_switch_radio(struct zyd_softc *sc, int on) 1938 { 1939 struct zyd_rf *rf = &sc->sc_rf; 1940 int error; 1941 1942 error = zyd_lock_phy(sc); 1943 if (error != 0) 1944 goto fail; 1945 error = (*rf->switch_radio)(rf, on); 1946 if (error != 0) 1947 goto fail; 1948 error = zyd_unlock_phy(sc); 1949 fail: 1950 return (error); 1951 } 1952 1953 static int 1954 zyd_set_led(struct zyd_softc *sc, int which, int on) 1955 { 1956 int error; 1957 uint32_t tmp; 1958 1959 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1960 tmp &= ~which; 1961 if (on) 1962 tmp |= which; 1963 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1964 fail: 1965 return (error); 1966 } 1967 1968 static u_int 1969 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1970 { 1971 uint32_t *hash = arg; 1972 uint8_t v; 1973 1974 v = ((uint8_t *)LLADDR(sdl))[5] >> 2; 1975 if (v < 32) 1976 hash[0] |= 1 << v; 1977 else 1978 hash[1] |= 1 << (v - 32); 1979 1980 return (1); 1981 } 1982 1983 static void 1984 zyd_set_multi(struct zyd_softc *sc) 1985 { 1986 struct ieee80211com *ic = &sc->sc_ic; 1987 uint32_t hash[2]; 1988 int error; 1989 1990 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1991 return; 1992 1993 hash[0] = 0x00000000; 1994 hash[1] = 0x80000000; 1995 1996 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1997 ic->ic_promisc > 0) { 1998 hash[0] = 0xffffffff; 1999 hash[1] = 0xffffffff; 2000 } else { 2001 struct ieee80211vap *vap; 2002 2003 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2004 if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash); 2005 } 2006 2007 /* reprogram multicast global hash table */ 2008 zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]); 2009 zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]); 2010 fail: 2011 if (error != 0) 2012 device_printf(sc->sc_dev, 2013 "could not set multicast hash table\n"); 2014 } 2015 2016 static void 2017 zyd_update_mcast(struct ieee80211com *ic) 2018 { 2019 struct zyd_softc *sc = ic->ic_softc; 2020 2021 ZYD_LOCK(sc); 2022 zyd_set_multi(sc); 2023 ZYD_UNLOCK(sc); 2024 } 2025 2026 static int 2027 zyd_set_rxfilter(struct zyd_softc *sc) 2028 { 2029 struct ieee80211com *ic = &sc->sc_ic; 2030 uint32_t rxfilter; 2031 2032 switch (ic->ic_opmode) { 2033 case IEEE80211_M_STA: 2034 rxfilter = ZYD_FILTER_BSS; 2035 break; 2036 case IEEE80211_M_IBSS: 2037 case IEEE80211_M_HOSTAP: 2038 rxfilter = ZYD_FILTER_HOSTAP; 2039 break; 2040 case IEEE80211_M_MONITOR: 2041 rxfilter = ZYD_FILTER_MONITOR; 2042 break; 2043 default: 2044 /* should not get there */ 2045 return (EINVAL); 2046 } 2047 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2048 } 2049 2050 static void 2051 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2052 { 2053 int error; 2054 struct ieee80211com *ic = &sc->sc_ic; 2055 struct zyd_rf *rf = &sc->sc_rf; 2056 uint32_t tmp; 2057 int chan; 2058 2059 chan = ieee80211_chan2ieee(ic, c); 2060 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2061 /* XXX should NEVER happen */ 2062 device_printf(sc->sc_dev, 2063 "%s: invalid channel %x\n", __func__, chan); 2064 return; 2065 } 2066 2067 error = zyd_lock_phy(sc); 2068 if (error != 0) 2069 goto fail; 2070 2071 error = (*rf->set_channel)(rf, chan); 2072 if (error != 0) 2073 goto fail; 2074 2075 if (rf->update_pwr) { 2076 /* update Tx power */ 2077 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2078 2079 if (sc->sc_macrev == ZYD_ZD1211B) { 2080 zyd_write16_m(sc, ZYD_CR67, 2081 sc->sc_ofdm36_cal[chan - 1]); 2082 zyd_write16_m(sc, ZYD_CR66, 2083 sc->sc_ofdm48_cal[chan - 1]); 2084 zyd_write16_m(sc, ZYD_CR65, 2085 sc->sc_ofdm54_cal[chan - 1]); 2086 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2087 zyd_write16_m(sc, ZYD_CR69, 0x28); 2088 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2089 } 2090 } 2091 if (sc->sc_cckgain) { 2092 /* set CCK baseband gain from EEPROM */ 2093 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2094 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2095 } 2096 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2097 error = (*rf->bandedge6)(rf, c); 2098 if (error != 0) 2099 goto fail; 2100 } 2101 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2102 2103 error = zyd_unlock_phy(sc); 2104 if (error != 0) 2105 goto fail; 2106 2107 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2108 htole16(c->ic_freq); 2109 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2110 htole16(c->ic_flags); 2111 fail: 2112 return; 2113 } 2114 2115 static int 2116 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2117 { 2118 int error; 2119 uint32_t val; 2120 2121 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2122 sc->sc_atim_wnd = val; 2123 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2124 sc->sc_pre_tbtt = val; 2125 sc->sc_bcn_int = bintval; 2126 2127 if (sc->sc_bcn_int <= 5) 2128 sc->sc_bcn_int = 5; 2129 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2130 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2131 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2132 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2133 2134 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2135 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2136 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2137 fail: 2138 return (error); 2139 } 2140 2141 static void 2142 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2143 { 2144 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2145 struct ieee80211com *ic = &sc->sc_ic; 2146 struct zyd_plcphdr plcp; 2147 struct zyd_rx_stat stat; 2148 struct usb_page_cache *pc; 2149 struct mbuf *m; 2150 int rlen, rssi; 2151 2152 if (len < ZYD_MIN_FRAGSZ) { 2153 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2154 device_get_nameunit(sc->sc_dev), len); 2155 counter_u64_add(ic->ic_ierrors, 1); 2156 return; 2157 } 2158 pc = usbd_xfer_get_frame(xfer, 0); 2159 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2160 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2161 2162 if (stat.flags & ZYD_RX_ERROR) { 2163 DPRINTF(sc, ZYD_DEBUG_RECV, 2164 "%s: RX status indicated error (%x)\n", 2165 device_get_nameunit(sc->sc_dev), stat.flags); 2166 counter_u64_add(ic->ic_ierrors, 1); 2167 return; 2168 } 2169 2170 /* compute actual frame length */ 2171 rlen = len - sizeof(struct zyd_plcphdr) - 2172 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2173 2174 /* allocate a mbuf to store the frame */ 2175 if (rlen > (int)MCLBYTES) { 2176 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2177 device_get_nameunit(sc->sc_dev), rlen); 2178 counter_u64_add(ic->ic_ierrors, 1); 2179 return; 2180 } else if (rlen > (int)MHLEN) 2181 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2182 else 2183 m = m_gethdr(M_NOWAIT, MT_DATA); 2184 if (m == NULL) { 2185 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2186 device_get_nameunit(sc->sc_dev)); 2187 counter_u64_add(ic->ic_ierrors, 1); 2188 return; 2189 } 2190 m->m_pkthdr.len = m->m_len = rlen; 2191 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2192 2193 if (ieee80211_radiotap_active(ic)) { 2194 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2195 2196 tap->wr_flags = 0; 2197 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2198 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2199 /* XXX toss, no way to express errors */ 2200 if (stat.flags & ZYD_RX_DECRYPTERR) 2201 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2202 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2203 (stat.flags & ZYD_RX_OFDM) ? 2204 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2205 tap->wr_antsignal = stat.rssi + -95; 2206 tap->wr_antnoise = -95; /* XXX */ 2207 } 2208 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2209 2210 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2211 sc->sc_rx_data[sc->sc_rx_count].m = m; 2212 sc->sc_rx_count++; 2213 } 2214 2215 static void 2216 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2217 { 2218 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2219 struct ieee80211com *ic = &sc->sc_ic; 2220 struct ieee80211_node *ni; 2221 struct zyd_rx_desc desc; 2222 struct mbuf *m; 2223 struct usb_page_cache *pc; 2224 uint32_t offset; 2225 uint8_t rssi; 2226 int8_t nf; 2227 int i; 2228 int actlen; 2229 2230 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2231 2232 sc->sc_rx_count = 0; 2233 switch (USB_GET_STATE(xfer)) { 2234 case USB_ST_TRANSFERRED: 2235 pc = usbd_xfer_get_frame(xfer, 0); 2236 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2237 2238 offset = 0; 2239 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2240 DPRINTF(sc, ZYD_DEBUG_RECV, 2241 "%s: received multi-frame transfer\n", __func__); 2242 2243 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2244 uint16_t len16 = UGETW(desc.len[i]); 2245 2246 if (len16 == 0 || len16 > actlen) 2247 break; 2248 2249 zyd_rx_data(xfer, offset, len16); 2250 2251 /* next frame is aligned on a 32-bit boundary */ 2252 len16 = (len16 + 3) & ~3; 2253 offset += len16; 2254 if (len16 > actlen) 2255 break; 2256 actlen -= len16; 2257 } 2258 } else { 2259 DPRINTF(sc, ZYD_DEBUG_RECV, 2260 "%s: received single-frame transfer\n", __func__); 2261 2262 zyd_rx_data(xfer, 0, actlen); 2263 } 2264 /* FALLTHROUGH */ 2265 case USB_ST_SETUP: 2266 tr_setup: 2267 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2268 usbd_transfer_submit(xfer); 2269 2270 /* 2271 * At the end of a USB callback it is always safe to unlock 2272 * the private mutex of a device! That is why we do the 2273 * "ieee80211_input" here, and not some lines up! 2274 */ 2275 ZYD_UNLOCK(sc); 2276 for (i = 0; i < sc->sc_rx_count; i++) { 2277 rssi = sc->sc_rx_data[i].rssi; 2278 m = sc->sc_rx_data[i].m; 2279 sc->sc_rx_data[i].m = NULL; 2280 2281 nf = -95; /* XXX */ 2282 2283 ni = ieee80211_find_rxnode(ic, 2284 mtod(m, struct ieee80211_frame_min *)); 2285 if (ni != NULL) { 2286 (void)ieee80211_input(ni, m, rssi, nf); 2287 ieee80211_free_node(ni); 2288 } else 2289 (void)ieee80211_input_all(ic, m, rssi, nf); 2290 } 2291 ZYD_LOCK(sc); 2292 zyd_start(sc); 2293 break; 2294 2295 default: /* Error */ 2296 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2297 2298 if (error != USB_ERR_CANCELLED) { 2299 /* try to clear stall first */ 2300 usbd_xfer_set_stall(xfer); 2301 goto tr_setup; 2302 } 2303 break; 2304 } 2305 } 2306 2307 static uint8_t 2308 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2309 { 2310 switch (rate) { 2311 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2312 case 12: 2313 return (0xb); 2314 case 18: 2315 return (0xf); 2316 case 24: 2317 return (0xa); 2318 case 36: 2319 return (0xe); 2320 case 48: 2321 return (0x9); 2322 case 72: 2323 return (0xd); 2324 case 96: 2325 return (0x8); 2326 case 108: 2327 return (0xc); 2328 /* CCK rates (NB: not IEEE std, device-specific) */ 2329 case 2: 2330 return (0x0); 2331 case 4: 2332 return (0x1); 2333 case 11: 2334 return (0x2); 2335 case 22: 2336 return (0x3); 2337 } 2338 2339 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2340 return (0x0); 2341 } 2342 2343 static void 2344 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2345 { 2346 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2347 struct ieee80211vap *vap; 2348 struct zyd_tx_data *data; 2349 struct mbuf *m; 2350 struct usb_page_cache *pc; 2351 int actlen; 2352 2353 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2354 2355 switch (USB_GET_STATE(xfer)) { 2356 case USB_ST_TRANSFERRED: 2357 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2358 actlen); 2359 2360 /* free resources */ 2361 data = usbd_xfer_get_priv(xfer); 2362 zyd_tx_free(data, 0); 2363 usbd_xfer_set_priv(xfer, NULL); 2364 2365 /* FALLTHROUGH */ 2366 case USB_ST_SETUP: 2367 tr_setup: 2368 data = STAILQ_FIRST(&sc->tx_q); 2369 if (data) { 2370 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2371 m = data->m; 2372 2373 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2374 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2375 m->m_pkthdr.len); 2376 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2377 } 2378 pc = usbd_xfer_get_frame(xfer, 0); 2379 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2380 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2381 m->m_pkthdr.len); 2382 2383 vap = data->ni->ni_vap; 2384 if (ieee80211_radiotap_active_vap(vap)) { 2385 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2386 2387 tap->wt_flags = 0; 2388 tap->wt_rate = data->rate; 2389 2390 ieee80211_radiotap_tx(vap, m); 2391 } 2392 2393 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2394 usbd_xfer_set_priv(xfer, data); 2395 usbd_transfer_submit(xfer); 2396 } 2397 zyd_start(sc); 2398 break; 2399 2400 default: /* Error */ 2401 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2402 usbd_errstr(error)); 2403 2404 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2405 data = usbd_xfer_get_priv(xfer); 2406 usbd_xfer_set_priv(xfer, NULL); 2407 if (data != NULL) 2408 zyd_tx_free(data, error); 2409 2410 if (error != USB_ERR_CANCELLED) { 2411 if (error == USB_ERR_TIMEOUT) 2412 device_printf(sc->sc_dev, "device timeout\n"); 2413 2414 /* 2415 * Try to clear stall first, also if other 2416 * errors occur, hence clearing stall 2417 * introduces a 50 ms delay: 2418 */ 2419 usbd_xfer_set_stall(xfer); 2420 goto tr_setup; 2421 } 2422 break; 2423 } 2424 } 2425 2426 static int 2427 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2428 { 2429 struct ieee80211vap *vap = ni->ni_vap; 2430 struct ieee80211com *ic = ni->ni_ic; 2431 struct zyd_tx_desc *desc; 2432 struct zyd_tx_data *data; 2433 struct ieee80211_frame *wh; 2434 const struct ieee80211_txparam *tp = ni->ni_txparms; 2435 struct ieee80211_key *k; 2436 int rate, totlen, type, ismcast; 2437 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2438 uint8_t phy; 2439 uint16_t pktlen; 2440 uint32_t bits; 2441 2442 wh = mtod(m0, struct ieee80211_frame *); 2443 data = STAILQ_FIRST(&sc->tx_free); 2444 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2445 sc->tx_nfree--; 2446 2447 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2448 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2449 2450 if (type == IEEE80211_FC0_TYPE_MGT || 2451 type == IEEE80211_FC0_TYPE_CTL || 2452 (m0->m_flags & M_EAPOL) != 0) { 2453 rate = tp->mgmtrate; 2454 } else { 2455 /* for data frames */ 2456 if (ismcast) 2457 rate = tp->mcastrate; 2458 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2459 rate = tp->ucastrate; 2460 else { 2461 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2462 rate = ieee80211_node_get_txrate_dot11rate(ni); 2463 } 2464 } 2465 2466 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2467 k = ieee80211_crypto_encap(ni, m0); 2468 if (k == NULL) { 2469 return (ENOBUFS); 2470 } 2471 /* packet header may have moved, reset our local pointer */ 2472 wh = mtod(m0, struct ieee80211_frame *); 2473 } 2474 2475 data->ni = ni; 2476 data->m = m0; 2477 data->rate = rate; 2478 2479 /* fill Tx descriptor */ 2480 desc = &data->desc; 2481 phy = zyd_plcp_signal(sc, rate); 2482 desc->phy = phy; 2483 if (ZYD_RATE_IS_OFDM(rate)) { 2484 desc->phy |= ZYD_TX_PHY_OFDM; 2485 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2486 desc->phy |= ZYD_TX_PHY_5GHZ; 2487 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2488 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2489 2490 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2491 desc->len = htole16(totlen); 2492 2493 desc->flags = ZYD_TX_FLAG_BACKOFF; 2494 if (!ismcast) { 2495 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2496 if (totlen > vap->iv_rtsthreshold) { 2497 desc->flags |= ZYD_TX_FLAG_RTS; 2498 } else if (ZYD_RATE_IS_OFDM(rate) && 2499 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2500 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2501 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2502 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2503 desc->flags |= ZYD_TX_FLAG_RTS; 2504 } 2505 } else 2506 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2507 if (IEEE80211_IS_CTL_PS_POLL(wh)) 2508 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2509 2510 /* actual transmit length (XXX why +10?) */ 2511 pktlen = ZYD_TX_DESC_SIZE + 10; 2512 if (sc->sc_macrev == ZYD_ZD1211) 2513 pktlen += totlen; 2514 desc->pktlen = htole16(pktlen); 2515 2516 bits = (rate == 11) ? (totlen * 16) + 10 : 2517 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2518 desc->plcp_length = htole16(bits / ratediv[phy]); 2519 desc->plcp_service = 0; 2520 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2521 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2522 desc->nextlen = 0; 2523 2524 if (ieee80211_radiotap_active_vap(vap)) { 2525 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2526 2527 tap->wt_flags = 0; 2528 tap->wt_rate = rate; 2529 2530 ieee80211_radiotap_tx(vap, m0); 2531 } 2532 2533 DPRINTF(sc, ZYD_DEBUG_XMIT, 2534 "%s: sending data frame len=%zu rate=%u\n", 2535 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2536 rate); 2537 2538 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2539 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2540 2541 return (0); 2542 } 2543 2544 static int 2545 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2546 { 2547 struct zyd_softc *sc = ic->ic_softc; 2548 int error; 2549 2550 ZYD_LOCK(sc); 2551 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2552 ZYD_UNLOCK(sc); 2553 return (ENXIO); 2554 } 2555 error = mbufq_enqueue(&sc->sc_snd, m); 2556 if (error) { 2557 ZYD_UNLOCK(sc); 2558 return (error); 2559 } 2560 zyd_start(sc); 2561 ZYD_UNLOCK(sc); 2562 2563 return (0); 2564 } 2565 2566 static void 2567 zyd_start(struct zyd_softc *sc) 2568 { 2569 struct ieee80211_node *ni; 2570 struct mbuf *m; 2571 2572 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2573 2574 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2575 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2576 if (zyd_tx_start(sc, m, ni) != 0) { 2577 m_freem(m); 2578 if_inc_counter(ni->ni_vap->iv_ifp, 2579 IFCOUNTER_OERRORS, 1); 2580 ieee80211_free_node(ni); 2581 break; 2582 } 2583 } 2584 } 2585 2586 static int 2587 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2588 const struct ieee80211_bpf_params *params) 2589 { 2590 struct ieee80211com *ic = ni->ni_ic; 2591 struct zyd_softc *sc = ic->ic_softc; 2592 2593 ZYD_LOCK(sc); 2594 /* prevent management frames from being sent if we're not ready */ 2595 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2596 ZYD_UNLOCK(sc); 2597 m_freem(m); 2598 return (ENETDOWN); 2599 } 2600 if (sc->tx_nfree == 0) { 2601 ZYD_UNLOCK(sc); 2602 m_freem(m); 2603 return (ENOBUFS); /* XXX */ 2604 } 2605 2606 /* 2607 * Legacy path; interpret frame contents to decide 2608 * precisely how to send the frame. 2609 * XXX raw path 2610 */ 2611 if (zyd_tx_start(sc, m, ni) != 0) { 2612 ZYD_UNLOCK(sc); 2613 m_freem(m); 2614 return (EIO); 2615 } 2616 ZYD_UNLOCK(sc); 2617 return (0); 2618 } 2619 2620 static void 2621 zyd_parent(struct ieee80211com *ic) 2622 { 2623 struct zyd_softc *sc = ic->ic_softc; 2624 int startall = 0; 2625 2626 ZYD_LOCK(sc); 2627 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2628 ZYD_UNLOCK(sc); 2629 return; 2630 } 2631 if (ic->ic_nrunning > 0) { 2632 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2633 zyd_init_locked(sc); 2634 startall = 1; 2635 } else 2636 zyd_set_multi(sc); 2637 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2638 zyd_stop(sc); 2639 ZYD_UNLOCK(sc); 2640 if (startall) 2641 ieee80211_start_all(ic); 2642 } 2643 2644 static void 2645 zyd_init_locked(struct zyd_softc *sc) 2646 { 2647 struct ieee80211com *ic = &sc->sc_ic; 2648 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2649 struct usb_config_descriptor *cd; 2650 int error; 2651 uint32_t val; 2652 2653 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2654 2655 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2656 error = zyd_loadfirmware(sc); 2657 if (error != 0) { 2658 device_printf(sc->sc_dev, 2659 "could not load firmware (error=%d)\n", error); 2660 goto fail; 2661 } 2662 2663 /* reset device */ 2664 cd = usbd_get_config_descriptor(sc->sc_udev); 2665 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2666 cd->bConfigurationValue); 2667 if (error) 2668 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2669 2670 error = zyd_hw_init(sc); 2671 if (error) { 2672 device_printf(sc->sc_dev, 2673 "hardware initialization failed\n"); 2674 goto fail; 2675 } 2676 2677 device_printf(sc->sc_dev, 2678 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2679 "BE%x NP%x Gain%x F%x\n", 2680 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2681 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2682 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2683 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2684 sc->sc_cckgain, sc->sc_fix_cr157); 2685 2686 /* read regulatory domain (currently unused) */ 2687 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2688 sc->sc_regdomain = val >> 16; 2689 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2690 sc->sc_regdomain); 2691 2692 /* we'll do software WEP decryption for now */ 2693 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2694 __func__); 2695 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2696 2697 sc->sc_flags |= ZYD_FLAG_INITONCE; 2698 } 2699 2700 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2701 zyd_stop(sc); 2702 2703 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2704 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2705 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2706 if (error != 0) 2707 return; 2708 2709 /* set basic rates */ 2710 if (ic->ic_curmode == IEEE80211_MODE_11B) 2711 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2712 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2713 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2714 else /* assumes 802.11b/g */ 2715 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2716 2717 /* promiscuous mode */ 2718 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2719 /* multicast setup */ 2720 zyd_set_multi(sc); 2721 /* set RX filter */ 2722 error = zyd_set_rxfilter(sc); 2723 if (error != 0) 2724 goto fail; 2725 2726 /* switch radio transmitter ON */ 2727 error = zyd_switch_radio(sc, 1); 2728 if (error != 0) 2729 goto fail; 2730 /* set default BSS channel */ 2731 zyd_set_chan(sc, ic->ic_curchan); 2732 2733 /* 2734 * Allocate Tx and Rx xfer queues. 2735 */ 2736 zyd_setup_tx_list(sc); 2737 2738 /* enable interrupts */ 2739 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2740 2741 sc->sc_flags |= ZYD_FLAG_RUNNING; 2742 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2743 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2744 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2745 2746 return; 2747 2748 fail: zyd_stop(sc); 2749 return; 2750 } 2751 2752 static void 2753 zyd_stop(struct zyd_softc *sc) 2754 { 2755 int error; 2756 2757 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2758 2759 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2760 zyd_drain_mbufq(sc); 2761 2762 /* 2763 * Drain all the transfers, if not already drained: 2764 */ 2765 ZYD_UNLOCK(sc); 2766 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2767 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2768 ZYD_LOCK(sc); 2769 2770 zyd_unsetup_tx_list(sc); 2771 2772 /* Stop now if the device was never set up */ 2773 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2774 return; 2775 2776 /* switch radio transmitter OFF */ 2777 error = zyd_switch_radio(sc, 0); 2778 if (error != 0) 2779 goto fail; 2780 /* disable Rx */ 2781 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2782 /* disable interrupts */ 2783 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2784 2785 fail: 2786 return; 2787 } 2788 2789 static int 2790 zyd_loadfirmware(struct zyd_softc *sc) 2791 { 2792 struct usb_device_request req; 2793 size_t size; 2794 u_char *fw; 2795 uint8_t stat; 2796 uint16_t addr; 2797 2798 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2799 return (0); 2800 2801 if (sc->sc_macrev == ZYD_ZD1211) { 2802 fw = (u_char *)zd1211_firmware; 2803 size = sizeof(zd1211_firmware); 2804 } else { 2805 fw = (u_char *)zd1211b_firmware; 2806 size = sizeof(zd1211b_firmware); 2807 } 2808 2809 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2810 req.bRequest = ZYD_DOWNLOADREQ; 2811 USETW(req.wIndex, 0); 2812 2813 addr = ZYD_FIRMWARE_START_ADDR; 2814 while (size > 0) { 2815 /* 2816 * When the transfer size is 4096 bytes, it is not 2817 * likely to be able to transfer it. 2818 * The cause is port or machine or chip? 2819 */ 2820 const int mlen = min(size, 64); 2821 2822 DPRINTF(sc, ZYD_DEBUG_FW, 2823 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2824 2825 USETW(req.wValue, addr); 2826 USETW(req.wLength, mlen); 2827 if (zyd_do_request(sc, &req, fw) != 0) 2828 return (EIO); 2829 2830 addr += mlen / 2; 2831 fw += mlen; 2832 size -= mlen; 2833 } 2834 2835 /* check whether the upload succeeded */ 2836 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2837 req.bRequest = ZYD_DOWNLOADSTS; 2838 USETW(req.wValue, 0); 2839 USETW(req.wIndex, 0); 2840 USETW(req.wLength, sizeof(stat)); 2841 if (zyd_do_request(sc, &req, &stat) != 0) 2842 return (EIO); 2843 2844 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2845 2846 return (stat & 0x80) ? (EIO) : (0); 2847 } 2848 2849 static void 2850 zyd_scan_start(struct ieee80211com *ic) 2851 { 2852 struct zyd_softc *sc = ic->ic_softc; 2853 2854 ZYD_LOCK(sc); 2855 /* want broadcast address while scanning */ 2856 zyd_set_bssid(sc, ieee80211broadcastaddr); 2857 ZYD_UNLOCK(sc); 2858 } 2859 2860 static void 2861 zyd_scan_end(struct ieee80211com *ic) 2862 { 2863 struct zyd_softc *sc = ic->ic_softc; 2864 2865 ZYD_LOCK(sc); 2866 /* restore previous bssid */ 2867 zyd_set_bssid(sc, sc->sc_bssid); 2868 ZYD_UNLOCK(sc); 2869 } 2870 2871 static void 2872 zyd_getradiocaps(struct ieee80211com *ic, 2873 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2874 { 2875 uint8_t bands[IEEE80211_MODE_BYTES]; 2876 2877 memset(bands, 0, sizeof(bands)); 2878 setbit(bands, IEEE80211_MODE_11B); 2879 setbit(bands, IEEE80211_MODE_11G); 2880 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 2881 } 2882 2883 static void 2884 zyd_set_channel(struct ieee80211com *ic) 2885 { 2886 struct zyd_softc *sc = ic->ic_softc; 2887 2888 ZYD_LOCK(sc); 2889 zyd_set_chan(sc, ic->ic_curchan); 2890 ZYD_UNLOCK(sc); 2891 } 2892 2893 static device_method_t zyd_methods[] = { 2894 /* Device interface */ 2895 DEVMETHOD(device_probe, zyd_match), 2896 DEVMETHOD(device_attach, zyd_attach), 2897 DEVMETHOD(device_detach, zyd_detach), 2898 DEVMETHOD_END 2899 }; 2900 2901 static driver_t zyd_driver = { 2902 .name = "zyd", 2903 .methods = zyd_methods, 2904 .size = sizeof(struct zyd_softc) 2905 }; 2906 2907 DRIVER_MODULE(zyd, uhub, zyd_driver, NULL, NULL); 2908 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2909 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2910 MODULE_VERSION(zyd, 1); 2911 USB_PNP_HOST_INFO(zyd_devs); 2912