xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 3ef90571c1feac738dd60ea1516df2f974f18b56)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/condvar.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/kdb.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <sys/rman.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_ratectl.h>
70 
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include <dev/usb/usbdi_util.h>
74 #include "usbdevs.h"
75 
76 #include <dev/usb/wlan/if_zydreg.h>
77 #include <dev/usb/wlan/if_zydfw.h>
78 
79 #ifdef USB_DEBUG
80 static int zyd_debug = 0;
81 
82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0,
84     "zyd debug level");
85 
86 enum {
87 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
88 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
89 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
90 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
91 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
92 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
93 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
94 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
95 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
96 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
97 	ZYD_DEBUG_ANY		= 0xffffffff
98 };
99 #define	DPRINTF(sc, m, fmt, ...) do {				\
100 	if (zyd_debug & (m))					\
101 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
102 } while (0)
103 #else
104 #define	DPRINTF(sc, m, fmt, ...) do {				\
105 	(void) sc;						\
106 } while (0)
107 #endif
108 
109 #define	zyd_do_request(sc,req,data) \
110     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
111 
112 static device_probe_t zyd_match;
113 static device_attach_t zyd_attach;
114 static device_detach_t zyd_detach;
115 
116 static usb_callback_t zyd_intr_read_callback;
117 static usb_callback_t zyd_intr_write_callback;
118 static usb_callback_t zyd_bulk_read_callback;
119 static usb_callback_t zyd_bulk_write_callback;
120 
121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
122 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
123 		    const uint8_t [IEEE80211_ADDR_LEN],
124 		    const uint8_t [IEEE80211_ADDR_LEN]);
125 static void	zyd_vap_delete(struct ieee80211vap *);
126 static void	zyd_tx_free(struct zyd_tx_data *, int);
127 static void	zyd_setup_tx_list(struct zyd_softc *);
128 static void	zyd_unsetup_tx_list(struct zyd_softc *);
129 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
130 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
131 		    void *, int, int);
132 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
133 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
134 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
135 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
136 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
137 static int	zyd_lock_phy(struct zyd_softc *);
138 static int	zyd_unlock_phy(struct zyd_softc *);
139 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
140 static const char *zyd_rf_name(uint8_t);
141 static int	zyd_hw_init(struct zyd_softc *);
142 static int	zyd_read_pod(struct zyd_softc *);
143 static int	zyd_read_eeprom(struct zyd_softc *);
144 static int	zyd_get_macaddr(struct zyd_softc *);
145 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
146 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
147 static int	zyd_switch_radio(struct zyd_softc *, int);
148 static int	zyd_set_led(struct zyd_softc *, int, int);
149 static void	zyd_set_multi(struct zyd_softc *);
150 static void	zyd_update_mcast(struct ieee80211com *);
151 static int	zyd_set_rxfilter(struct zyd_softc *);
152 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
153 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
154 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
155 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
156 		    struct ieee80211_node *);
157 static void	zyd_start(struct ifnet *);
158 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
159 		    const struct ieee80211_bpf_params *);
160 static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
161 static void	zyd_init_locked(struct zyd_softc *);
162 static void	zyd_init(void *);
163 static void	zyd_stop(struct zyd_softc *);
164 static int	zyd_loadfirmware(struct zyd_softc *);
165 static void	zyd_scan_start(struct ieee80211com *);
166 static void	zyd_scan_end(struct ieee80211com *);
167 static void	zyd_set_channel(struct ieee80211com *);
168 static int	zyd_rfmd_init(struct zyd_rf *);
169 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
170 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
171 static int	zyd_al2230_init(struct zyd_rf *);
172 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
173 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
174 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
175 static int	zyd_al2230_init_b(struct zyd_rf *);
176 static int	zyd_al7230B_init(struct zyd_rf *);
177 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
178 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
179 static int	zyd_al2210_init(struct zyd_rf *);
180 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
181 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
182 static int	zyd_gct_init(struct zyd_rf *);
183 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
184 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
185 static int	zyd_gct_mode(struct zyd_rf *);
186 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
187 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
188 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
189 static int	zyd_maxim2_init(struct zyd_rf *);
190 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
191 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
192 
193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
195 
196 /* various supported device vendors/products */
197 #define ZYD_ZD1211	0
198 #define ZYD_ZD1211B	1
199 
200 #define	ZYD_ZD1211_DEV(v,p)	\
201 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
202 #define	ZYD_ZD1211B_DEV(v,p)	\
203 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
204 static const STRUCT_USB_HOST_ID zyd_devs[] = {
205 	/* ZYD_ZD1211 */
206 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
207 	ZYD_ZD1211_DEV(ABOCOM, WL54),
208 	ZYD_ZD1211_DEV(ASUS, WL159G),
209 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
210 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
211 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
212 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
213 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
214 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
215 	ZYD_ZD1211_DEV(SAGEM, XG760A),
216 	ZYD_ZD1211_DEV(SENAO, NUB8301),
217 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
218 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
219 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
220 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
221 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
222 	ZYD_ZD1211_DEV(TWINMOS, G240),
223 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
224 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
225 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
226 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
227 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
228 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
229 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
230 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
231 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
232 	/* ZYD_ZD1211B */
233 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
234 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
235 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
236 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
237 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
238 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
239 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
240 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
241 	ZYD_ZD1211B_DEV(MELCO, KG54L),
242 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
243 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
244 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
245 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
246 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
247 	ZYD_ZD1211B_DEV(USR, USR5423),
248 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
249 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
250 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
251 	ZYD_ZD1211B_DEV(ZYXEL, M202),
252 	ZYD_ZD1211B_DEV(ZYXEL, G202),
253 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
254 };
255 
256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
257 	[ZYD_BULK_WR] = {
258 		.type = UE_BULK,
259 		.endpoint = UE_ADDR_ANY,
260 		.direction = UE_DIR_OUT,
261 		.bufsize = ZYD_MAX_TXBUFSZ,
262 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
263 		.callback = zyd_bulk_write_callback,
264 		.ep_index = 0,
265 		.timeout = 10000,	/* 10 seconds */
266 	},
267 	[ZYD_BULK_RD] = {
268 		.type = UE_BULK,
269 		.endpoint = UE_ADDR_ANY,
270 		.direction = UE_DIR_IN,
271 		.bufsize = ZYX_MAX_RXBUFSZ,
272 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
273 		.callback = zyd_bulk_read_callback,
274 		.ep_index = 0,
275 	},
276 	[ZYD_INTR_WR] = {
277 		.type = UE_BULK_INTR,
278 		.endpoint = UE_ADDR_ANY,
279 		.direction = UE_DIR_OUT,
280 		.bufsize = sizeof(struct zyd_cmd),
281 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
282 		.callback = zyd_intr_write_callback,
283 		.timeout = 1000,	/* 1 second */
284 		.ep_index = 1,
285 	},
286 	[ZYD_INTR_RD] = {
287 		.type = UE_INTERRUPT,
288 		.endpoint = UE_ADDR_ANY,
289 		.direction = UE_DIR_IN,
290 		.bufsize = sizeof(struct zyd_cmd),
291 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
292 		.callback = zyd_intr_read_callback,
293 	},
294 };
295 #define zyd_read16_m(sc, val, data)	do {				\
296 	error = zyd_read16(sc, val, data);				\
297 	if (error != 0)							\
298 		goto fail;						\
299 } while (0)
300 #define zyd_write16_m(sc, val, data)	do {				\
301 	error = zyd_write16(sc, val, data);				\
302 	if (error != 0)							\
303 		goto fail;						\
304 } while (0)
305 #define zyd_read32_m(sc, val, data)	do {				\
306 	error = zyd_read32(sc, val, data);				\
307 	if (error != 0)							\
308 		goto fail;						\
309 } while (0)
310 #define zyd_write32_m(sc, val, data)	do {				\
311 	error = zyd_write32(sc, val, data);				\
312 	if (error != 0)							\
313 		goto fail;						\
314 } while (0)
315 
316 static int
317 zyd_match(device_t dev)
318 {
319 	struct usb_attach_arg *uaa = device_get_ivars(dev);
320 
321 	if (uaa->usb_mode != USB_MODE_HOST)
322 		return (ENXIO);
323 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
324 		return (ENXIO);
325 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
326 		return (ENXIO);
327 
328 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
329 }
330 
331 static int
332 zyd_attach(device_t dev)
333 {
334 	struct usb_attach_arg *uaa = device_get_ivars(dev);
335 	struct zyd_softc *sc = device_get_softc(dev);
336 	struct ifnet *ifp;
337 	struct ieee80211com *ic;
338 	uint8_t iface_index, bands;
339 	int error;
340 
341 	if (uaa->info.bcdDevice < 0x4330) {
342 		device_printf(dev, "device version mismatch: 0x%X "
343 		    "(only >= 43.30 supported)\n",
344 		    uaa->info.bcdDevice);
345 		return (EINVAL);
346 	}
347 
348 	device_set_usb_desc(dev);
349 	sc->sc_dev = dev;
350 	sc->sc_udev = uaa->device;
351 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
352 
353 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
354 	    MTX_NETWORK_LOCK, MTX_DEF);
355 	STAILQ_INIT(&sc->sc_rqh);
356 
357 	iface_index = ZYD_IFACE_INDEX;
358 	error = usbd_transfer_setup(uaa->device,
359 	    &iface_index, sc->sc_xfer, zyd_config,
360 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
361 	if (error) {
362 		device_printf(dev, "could not allocate USB transfers, "
363 		    "err=%s\n", usbd_errstr(error));
364 		goto detach;
365 	}
366 
367 	ZYD_LOCK(sc);
368 	if ((error = zyd_get_macaddr(sc)) != 0) {
369 		device_printf(sc->sc_dev, "could not read EEPROM\n");
370 		ZYD_UNLOCK(sc);
371 		goto detach;
372 	}
373 	ZYD_UNLOCK(sc);
374 
375 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
376 	if (ifp == NULL) {
377 		device_printf(sc->sc_dev, "can not if_alloc()\n");
378 		goto detach;
379 	}
380 	ifp->if_softc = sc;
381 	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
382 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
383 	ifp->if_init = zyd_init;
384 	ifp->if_ioctl = zyd_ioctl;
385 	ifp->if_start = zyd_start;
386 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
387 	IFQ_SET_READY(&ifp->if_snd);
388 
389 	ic = ifp->if_l2com;
390 	ic->ic_ifp = ifp;
391 	ic->ic_softc = sc;
392 	ic->ic_name = device_get_nameunit(dev);
393 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
394 	ic->ic_opmode = IEEE80211_M_STA;
395 
396 	/* set device capabilities */
397 	ic->ic_caps =
398 		  IEEE80211_C_STA		/* station mode */
399 		| IEEE80211_C_MONITOR		/* monitor mode */
400 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
401 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
402 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
403 	        | IEEE80211_C_WPA		/* 802.11i */
404 		;
405 
406 	bands = 0;
407 	setbit(&bands, IEEE80211_MODE_11B);
408 	setbit(&bands, IEEE80211_MODE_11G);
409 	ieee80211_init_channels(ic, NULL, &bands);
410 
411 	ieee80211_ifattach(ic, sc->sc_bssid);
412 	ic->ic_raw_xmit = zyd_raw_xmit;
413 	ic->ic_scan_start = zyd_scan_start;
414 	ic->ic_scan_end = zyd_scan_end;
415 	ic->ic_set_channel = zyd_set_channel;
416 
417 	ic->ic_vap_create = zyd_vap_create;
418 	ic->ic_vap_delete = zyd_vap_delete;
419 	ic->ic_update_mcast = zyd_update_mcast;
420 	ic->ic_update_promisc = zyd_update_mcast;
421 
422 	ieee80211_radiotap_attach(ic,
423 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
424 		ZYD_TX_RADIOTAP_PRESENT,
425 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
426 		ZYD_RX_RADIOTAP_PRESENT);
427 
428 	if (bootverbose)
429 		ieee80211_announce(ic);
430 
431 	return (0);
432 
433 detach:
434 	zyd_detach(dev);
435 	return (ENXIO);			/* failure */
436 }
437 
438 static int
439 zyd_detach(device_t dev)
440 {
441 	struct zyd_softc *sc = device_get_softc(dev);
442 	struct ifnet *ifp = sc->sc_ifp;
443 	struct ieee80211com *ic;
444 	unsigned int x;
445 
446 	/*
447 	 * Prevent further allocations from RX/TX data
448 	 * lists and ioctls:
449 	 */
450 	ZYD_LOCK(sc);
451 	sc->sc_flags |= ZYD_FLAG_DETACHED;
452 	STAILQ_INIT(&sc->tx_q);
453 	STAILQ_INIT(&sc->tx_free);
454 	ZYD_UNLOCK(sc);
455 
456 	/* drain USB transfers */
457 	for (x = 0; x != ZYD_N_TRANSFER; x++)
458 		usbd_transfer_drain(sc->sc_xfer[x]);
459 
460 	/* free TX list, if any */
461 	ZYD_LOCK(sc);
462 	zyd_unsetup_tx_list(sc);
463 	ZYD_UNLOCK(sc);
464 
465 	/* free USB transfers and some data buffers */
466 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
467 
468 	if (ifp) {
469 		ic = ifp->if_l2com;
470 		ieee80211_ifdetach(ic);
471 		if_free(ifp);
472 	}
473 	mtx_destroy(&sc->sc_mtx);
474 
475 	return (0);
476 }
477 
478 static struct ieee80211vap *
479 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
480     enum ieee80211_opmode opmode, int flags,
481     const uint8_t bssid[IEEE80211_ADDR_LEN],
482     const uint8_t mac[IEEE80211_ADDR_LEN])
483 {
484 	struct zyd_vap *zvp;
485 	struct ieee80211vap *vap;
486 
487 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
488 		return (NULL);
489 	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
490 	    M_80211_VAP, M_NOWAIT | M_ZERO);
491 	if (zvp == NULL)
492 		return (NULL);
493 	vap = &zvp->vap;
494 
495 	/* enable s/w bmiss handling for sta mode */
496 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
497 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
498 		/* out of memory */
499 		free(zvp, M_80211_VAP);
500 		return (NULL);
501 	}
502 
503 	/* override state transition machine */
504 	zvp->newstate = vap->iv_newstate;
505 	vap->iv_newstate = zyd_newstate;
506 
507 	ieee80211_ratectl_init(vap);
508 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
509 
510 	/* complete setup */
511 	ieee80211_vap_attach(vap, ieee80211_media_change,
512 	    ieee80211_media_status);
513 	ic->ic_opmode = opmode;
514 	return (vap);
515 }
516 
517 static void
518 zyd_vap_delete(struct ieee80211vap *vap)
519 {
520 	struct zyd_vap *zvp = ZYD_VAP(vap);
521 
522 	ieee80211_ratectl_deinit(vap);
523 	ieee80211_vap_detach(vap);
524 	free(zvp, M_80211_VAP);
525 }
526 
527 static void
528 zyd_tx_free(struct zyd_tx_data *data, int txerr)
529 {
530 	struct zyd_softc *sc = data->sc;
531 
532 	if (data->m != NULL) {
533 		if (data->m->m_flags & M_TXCB)
534 			ieee80211_process_callback(data->ni, data->m,
535 			    txerr ? ETIMEDOUT : 0);
536 		m_freem(data->m);
537 		data->m = NULL;
538 
539 		ieee80211_free_node(data->ni);
540 		data->ni = NULL;
541 	}
542 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
543 	sc->tx_nfree++;
544 }
545 
546 static void
547 zyd_setup_tx_list(struct zyd_softc *sc)
548 {
549 	struct zyd_tx_data *data;
550 	int i;
551 
552 	sc->tx_nfree = 0;
553 	STAILQ_INIT(&sc->tx_q);
554 	STAILQ_INIT(&sc->tx_free);
555 
556 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
557 		data = &sc->tx_data[i];
558 
559 		data->sc = sc;
560 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
561 		sc->tx_nfree++;
562 	}
563 }
564 
565 static void
566 zyd_unsetup_tx_list(struct zyd_softc *sc)
567 {
568 	struct zyd_tx_data *data;
569 	int i;
570 
571 	/* make sure any subsequent use of the queues will fail */
572 	sc->tx_nfree = 0;
573 	STAILQ_INIT(&sc->tx_q);
574 	STAILQ_INIT(&sc->tx_free);
575 
576 	/* free up all node references and mbufs */
577 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
578 		data = &sc->tx_data[i];
579 
580 		if (data->m != NULL) {
581 			m_freem(data->m);
582 			data->m = NULL;
583 		}
584 		if (data->ni != NULL) {
585 			ieee80211_free_node(data->ni);
586 			data->ni = NULL;
587 		}
588 	}
589 }
590 
591 static int
592 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
593 {
594 	struct zyd_vap *zvp = ZYD_VAP(vap);
595 	struct ieee80211com *ic = vap->iv_ic;
596 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
597 	int error;
598 
599 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
600 	    ieee80211_state_name[vap->iv_state],
601 	    ieee80211_state_name[nstate]);
602 
603 	IEEE80211_UNLOCK(ic);
604 	ZYD_LOCK(sc);
605 	switch (nstate) {
606 	case IEEE80211_S_AUTH:
607 		zyd_set_chan(sc, ic->ic_curchan);
608 		break;
609 	case IEEE80211_S_RUN:
610 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
611 			break;
612 
613 		/* turn link LED on */
614 		error = zyd_set_led(sc, ZYD_LED1, 1);
615 		if (error != 0)
616 			break;
617 
618 		/* make data LED blink upon Tx */
619 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
620 
621 		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
622 		zyd_set_bssid(sc, sc->sc_bssid);
623 		break;
624 	default:
625 		break;
626 	}
627 fail:
628 	ZYD_UNLOCK(sc);
629 	IEEE80211_LOCK(ic);
630 	return (zvp->newstate(vap, nstate, arg));
631 }
632 
633 /*
634  * Callback handler for interrupt transfer
635  */
636 static void
637 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
638 {
639 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
640 	struct ifnet *ifp = sc->sc_ifp;
641 	struct ieee80211com *ic = ifp->if_l2com;
642 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
643 	struct ieee80211_node *ni;
644 	struct zyd_cmd *cmd = &sc->sc_ibuf;
645 	struct usb_page_cache *pc;
646 	int datalen;
647 	int actlen;
648 
649 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
650 
651 	switch (USB_GET_STATE(xfer)) {
652 	case USB_ST_TRANSFERRED:
653 		pc = usbd_xfer_get_frame(xfer, 0);
654 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
655 
656 		switch (le16toh(cmd->code)) {
657 		case ZYD_NOTIF_RETRYSTATUS:
658 		{
659 			struct zyd_notif_retry *retry =
660 			    (struct zyd_notif_retry *)cmd->data;
661 
662 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
663 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
664 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
665 			    le16toh(retry->count)&0xff, le16toh(retry->count));
666 
667 			/*
668 			 * Find the node to which the packet was sent and
669 			 * update its retry statistics.  In BSS mode, this node
670 			 * is the AP we're associated to so no lookup is
671 			 * actually needed.
672 			 */
673 			ni = ieee80211_find_txnode(vap, retry->macaddr);
674 			if (ni != NULL) {
675 				int retrycnt =
676 				    (int)(le16toh(retry->count) & 0xff);
677 
678 				ieee80211_ratectl_tx_complete(vap, ni,
679 				    IEEE80211_RATECTL_TX_FAILURE,
680 				    &retrycnt, NULL);
681 				ieee80211_free_node(ni);
682 			}
683 			if (le16toh(retry->count) & 0x100)
684 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);	/* too many retries */
685 			break;
686 		}
687 		case ZYD_NOTIF_IORD:
688 		{
689 			struct zyd_rq *rqp;
690 
691 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
692 				break;	/* HMAC interrupt */
693 
694 			datalen = actlen - sizeof(cmd->code);
695 			datalen -= 2;	/* XXX: padding? */
696 
697 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
698 				int i;
699 				int count;
700 
701 				if (rqp->olen != datalen)
702 					continue;
703 				count = rqp->olen / sizeof(struct zyd_pair);
704 				for (i = 0; i < count; i++) {
705 					if (*(((const uint16_t *)rqp->idata) + i) !=
706 					    (((struct zyd_pair *)cmd->data) + i)->reg)
707 						break;
708 				}
709 				if (i != count)
710 					continue;
711 				/* copy answer into caller-supplied buffer */
712 				memcpy(rqp->odata, cmd->data, rqp->olen);
713 				DPRINTF(sc, ZYD_DEBUG_CMD,
714 				    "command %p complete, data = %*D \n",
715 				    rqp, rqp->olen, (char *)rqp->odata, ":");
716 				wakeup(rqp);	/* wakeup caller */
717 				break;
718 			}
719 			if (rqp == NULL) {
720 				device_printf(sc->sc_dev,
721 				    "unexpected IORD notification %*D\n",
722 				    datalen, cmd->data, ":");
723 			}
724 			break;
725 		}
726 		default:
727 			device_printf(sc->sc_dev, "unknown notification %x\n",
728 			    le16toh(cmd->code));
729 		}
730 
731 		/* FALLTHROUGH */
732 	case USB_ST_SETUP:
733 tr_setup:
734 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
735 		usbd_transfer_submit(xfer);
736 		break;
737 
738 	default:			/* Error */
739 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
740 		    usbd_errstr(error));
741 
742 		if (error != USB_ERR_CANCELLED) {
743 			/* try to clear stall first */
744 			usbd_xfer_set_stall(xfer);
745 			goto tr_setup;
746 		}
747 		break;
748 	}
749 }
750 
751 static void
752 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
753 {
754 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
755 	struct zyd_rq *rqp, *cmd;
756 	struct usb_page_cache *pc;
757 
758 	switch (USB_GET_STATE(xfer)) {
759 	case USB_ST_TRANSFERRED:
760 		cmd = usbd_xfer_get_priv(xfer);
761 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
762 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
763 			/* Ensure the cached rq pointer is still valid */
764 			if (rqp == cmd &&
765 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
766 				wakeup(rqp);	/* wakeup caller */
767 		}
768 
769 		/* FALLTHROUGH */
770 	case USB_ST_SETUP:
771 tr_setup:
772 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
773 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
774 				continue;
775 
776 			pc = usbd_xfer_get_frame(xfer, 0);
777 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
778 
779 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
780 			usbd_xfer_set_priv(xfer, rqp);
781 			rqp->flags |= ZYD_CMD_FLAG_SENT;
782 			usbd_transfer_submit(xfer);
783 			break;
784 		}
785 		break;
786 
787 	default:			/* Error */
788 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
789 		    usbd_errstr(error));
790 
791 		if (error != USB_ERR_CANCELLED) {
792 			/* try to clear stall first */
793 			usbd_xfer_set_stall(xfer);
794 			goto tr_setup;
795 		}
796 		break;
797 	}
798 }
799 
800 static int
801 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
802     void *odata, int olen, int flags)
803 {
804 	struct zyd_cmd cmd;
805 	struct zyd_rq rq;
806 	int error;
807 
808 	if (ilen > (int)sizeof(cmd.data))
809 		return (EINVAL);
810 
811 	cmd.code = htole16(code);
812 	memcpy(cmd.data, idata, ilen);
813 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
814 	    &rq, ilen, idata, ":");
815 
816 	rq.cmd = &cmd;
817 	rq.idata = idata;
818 	rq.odata = odata;
819 	rq.ilen = sizeof(uint16_t) + ilen;
820 	rq.olen = olen;
821 	rq.flags = flags;
822 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
823 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
824 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
825 
826 	/* wait at most one second for command reply */
827 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
828 	if (error)
829 		device_printf(sc->sc_dev, "command timeout\n");
830 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
831 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
832 	    &rq, error);
833 
834 	return (error);
835 }
836 
837 static int
838 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
839 {
840 	struct zyd_pair tmp;
841 	int error;
842 
843 	reg = htole16(reg);
844 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
845 	    ZYD_CMD_FLAG_READ);
846 	if (error == 0)
847 		*val = le16toh(tmp.val);
848 	return (error);
849 }
850 
851 static int
852 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
853 {
854 	struct zyd_pair tmp[2];
855 	uint16_t regs[2];
856 	int error;
857 
858 	regs[0] = htole16(ZYD_REG32_HI(reg));
859 	regs[1] = htole16(ZYD_REG32_LO(reg));
860 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
861 	    ZYD_CMD_FLAG_READ);
862 	if (error == 0)
863 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
864 	return (error);
865 }
866 
867 static int
868 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
869 {
870 	struct zyd_pair pair;
871 
872 	pair.reg = htole16(reg);
873 	pair.val = htole16(val);
874 
875 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
876 }
877 
878 static int
879 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
880 {
881 	struct zyd_pair pair[2];
882 
883 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
884 	pair[0].val = htole16(val >> 16);
885 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
886 	pair[1].val = htole16(val & 0xffff);
887 
888 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
889 }
890 
891 static int
892 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
893 {
894 	struct zyd_rf *rf = &sc->sc_rf;
895 	struct zyd_rfwrite_cmd req;
896 	uint16_t cr203;
897 	int error, i;
898 
899 	zyd_read16_m(sc, ZYD_CR203, &cr203);
900 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
901 
902 	req.code  = htole16(2);
903 	req.width = htole16(rf->width);
904 	for (i = 0; i < rf->width; i++) {
905 		req.bit[i] = htole16(cr203);
906 		if (val & (1 << (rf->width - 1 - i)))
907 			req.bit[i] |= htole16(ZYD_RF_DATA);
908 	}
909 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
910 fail:
911 	return (error);
912 }
913 
914 static int
915 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
916 {
917 	int error;
918 
919 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
920 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
921 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
922 fail:
923 	return (error);
924 }
925 
926 static int
927 zyd_lock_phy(struct zyd_softc *sc)
928 {
929 	int error;
930 	uint32_t tmp;
931 
932 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
933 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
934 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
935 fail:
936 	return (error);
937 }
938 
939 static int
940 zyd_unlock_phy(struct zyd_softc *sc)
941 {
942 	int error;
943 	uint32_t tmp;
944 
945 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
946 	tmp |= ZYD_UNLOCK_PHY_REGS;
947 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
948 fail:
949 	return (error);
950 }
951 
952 /*
953  * RFMD RF methods.
954  */
955 static int
956 zyd_rfmd_init(struct zyd_rf *rf)
957 {
958 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
959 	struct zyd_softc *sc = rf->rf_sc;
960 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
961 	static const uint32_t rfini[] = ZYD_RFMD_RF;
962 	int i, error;
963 
964 	/* init RF-dependent PHY registers */
965 	for (i = 0; i < N(phyini); i++) {
966 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
967 	}
968 
969 	/* init RFMD radio */
970 	for (i = 0; i < N(rfini); i++) {
971 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
972 			return (error);
973 	}
974 fail:
975 	return (error);
976 #undef N
977 }
978 
979 static int
980 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
981 {
982 	int error;
983 	struct zyd_softc *sc = rf->rf_sc;
984 
985 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
986 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
987 fail:
988 	return (error);
989 }
990 
991 static int
992 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
993 {
994 	int error;
995 	struct zyd_softc *sc = rf->rf_sc;
996 	static const struct {
997 		uint32_t	r1, r2;
998 	} rfprog[] = ZYD_RFMD_CHANTABLE;
999 
1000 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1001 	if (error != 0)
1002 		goto fail;
1003 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1004 	if (error != 0)
1005 		goto fail;
1006 
1007 fail:
1008 	return (error);
1009 }
1010 
1011 /*
1012  * AL2230 RF methods.
1013  */
1014 static int
1015 zyd_al2230_init(struct zyd_rf *rf)
1016 {
1017 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1018 	struct zyd_softc *sc = rf->rf_sc;
1019 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1020 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1021 	static const struct zyd_phy_pair phypll[] = {
1022 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1023 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1024 	};
1025 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1026 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1027 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1028 	int i, error;
1029 
1030 	/* init RF-dependent PHY registers */
1031 	for (i = 0; i < N(phyini); i++)
1032 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1033 
1034 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1035 		for (i = 0; i < N(phy2230s); i++)
1036 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1037 	}
1038 
1039 	/* init AL2230 radio */
1040 	for (i = 0; i < N(rfini1); i++) {
1041 		error = zyd_rfwrite(sc, rfini1[i]);
1042 		if (error != 0)
1043 			goto fail;
1044 	}
1045 
1046 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1047 		error = zyd_rfwrite(sc, 0x000824);
1048 	else
1049 		error = zyd_rfwrite(sc, 0x0005a4);
1050 	if (error != 0)
1051 		goto fail;
1052 
1053 	for (i = 0; i < N(rfini2); i++) {
1054 		error = zyd_rfwrite(sc, rfini2[i]);
1055 		if (error != 0)
1056 			goto fail;
1057 	}
1058 
1059 	for (i = 0; i < N(phypll); i++)
1060 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1061 
1062 	for (i = 0; i < N(rfini3); i++) {
1063 		error = zyd_rfwrite(sc, rfini3[i]);
1064 		if (error != 0)
1065 			goto fail;
1066 	}
1067 fail:
1068 	return (error);
1069 #undef N
1070 }
1071 
1072 static int
1073 zyd_al2230_fini(struct zyd_rf *rf)
1074 {
1075 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1076 	int error, i;
1077 	struct zyd_softc *sc = rf->rf_sc;
1078 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1079 
1080 	for (i = 0; i < N(phy); i++)
1081 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1082 
1083 	if (sc->sc_newphy != 0)
1084 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1085 
1086 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1087 fail:
1088 	return (error);
1089 #undef N
1090 }
1091 
1092 static int
1093 zyd_al2230_init_b(struct zyd_rf *rf)
1094 {
1095 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1096 	struct zyd_softc *sc = rf->rf_sc;
1097 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1098 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1099 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1100 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1101 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1102 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1103 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1104 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1105 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1106 	int i, error;
1107 
1108 	for (i = 0; i < N(phy1); i++)
1109 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1110 
1111 	/* init RF-dependent PHY registers */
1112 	for (i = 0; i < N(phyini); i++)
1113 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1114 
1115 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1116 		for (i = 0; i < N(phy2230s); i++)
1117 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1118 	}
1119 
1120 	for (i = 0; i < 3; i++) {
1121 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1122 		if (error != 0)
1123 			return (error);
1124 	}
1125 
1126 	for (i = 0; i < N(rfini_part1); i++) {
1127 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1128 		if (error != 0)
1129 			return (error);
1130 	}
1131 
1132 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1133 		error = zyd_rfwrite(sc, 0x241000);
1134 	else
1135 		error = zyd_rfwrite(sc, 0x25a000);
1136 	if (error != 0)
1137 		goto fail;
1138 
1139 	for (i = 0; i < N(rfini_part2); i++) {
1140 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1141 		if (error != 0)
1142 			return (error);
1143 	}
1144 
1145 	for (i = 0; i < N(phy2); i++)
1146 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1147 
1148 	for (i = 0; i < N(rfini_part3); i++) {
1149 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1150 		if (error != 0)
1151 			return (error);
1152 	}
1153 
1154 	for (i = 0; i < N(phy3); i++)
1155 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1156 
1157 	error = zyd_al2230_fini(rf);
1158 fail:
1159 	return (error);
1160 #undef N
1161 }
1162 
1163 static int
1164 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1165 {
1166 	struct zyd_softc *sc = rf->rf_sc;
1167 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1168 
1169 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1170 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1171 fail:
1172 	return (error);
1173 }
1174 
1175 static int
1176 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1177 {
1178 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1179 	int error, i;
1180 	struct zyd_softc *sc = rf->rf_sc;
1181 	static const struct zyd_phy_pair phy1[] = {
1182 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1183 	};
1184 	static const struct {
1185 		uint32_t	r1, r2, r3;
1186 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1187 
1188 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1189 	if (error != 0)
1190 		goto fail;
1191 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1192 	if (error != 0)
1193 		goto fail;
1194 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1195 	if (error != 0)
1196 		goto fail;
1197 
1198 	for (i = 0; i < N(phy1); i++)
1199 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1200 fail:
1201 	return (error);
1202 #undef N
1203 }
1204 
1205 static int
1206 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1207 {
1208 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1209 	int error, i;
1210 	struct zyd_softc *sc = rf->rf_sc;
1211 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1212 	static const struct {
1213 		uint32_t	r1, r2, r3;
1214 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1215 
1216 	for (i = 0; i < N(phy1); i++)
1217 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1218 
1219 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1220 	if (error != 0)
1221 		goto fail;
1222 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1223 	if (error != 0)
1224 		goto fail;
1225 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1226 	if (error != 0)
1227 		goto fail;
1228 	error = zyd_al2230_fini(rf);
1229 fail:
1230 	return (error);
1231 #undef N
1232 }
1233 
1234 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1235 {									\
1236 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1237 	{ ZYD_CR47,  0x1e }						\
1238 }
1239 
1240 static int
1241 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1242 {
1243 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1244 	int error = 0, i;
1245 	struct zyd_softc *sc = rf->rf_sc;
1246 	struct ifnet *ifp = sc->sc_ifp;
1247 	struct ieee80211com *ic = ifp->if_l2com;
1248 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1249 	int chan = ieee80211_chan2ieee(ic, c);
1250 
1251 	if (chan == 1 || chan == 11)
1252 		r[0].val = 0x12;
1253 
1254 	for (i = 0; i < N(r); i++)
1255 		zyd_write16_m(sc, r[i].reg, r[i].val);
1256 fail:
1257 	return (error);
1258 #undef N
1259 }
1260 
1261 /*
1262  * AL7230B RF methods.
1263  */
1264 static int
1265 zyd_al7230B_init(struct zyd_rf *rf)
1266 {
1267 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1268 	struct zyd_softc *sc = rf->rf_sc;
1269 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1270 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1271 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1272 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1273 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1274 	int i, error;
1275 
1276 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1277 
1278 	/* init RF-dependent PHY registers, part one */
1279 	for (i = 0; i < N(phyini_1); i++)
1280 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1281 
1282 	/* init AL7230B radio, part one */
1283 	for (i = 0; i < N(rfini_1); i++) {
1284 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1285 			return (error);
1286 	}
1287 	/* init RF-dependent PHY registers, part two */
1288 	for (i = 0; i < N(phyini_2); i++)
1289 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1290 
1291 	/* init AL7230B radio, part two */
1292 	for (i = 0; i < N(rfini_2); i++) {
1293 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1294 			return (error);
1295 	}
1296 	/* init RF-dependent PHY registers, part three */
1297 	for (i = 0; i < N(phyini_3); i++)
1298 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1299 fail:
1300 	return (error);
1301 #undef N
1302 }
1303 
1304 static int
1305 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1306 {
1307 	int error;
1308 	struct zyd_softc *sc = rf->rf_sc;
1309 
1310 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1311 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1312 fail:
1313 	return (error);
1314 }
1315 
1316 static int
1317 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1318 {
1319 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1320 	struct zyd_softc *sc = rf->rf_sc;
1321 	static const struct {
1322 		uint32_t	r1, r2;
1323 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1324 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1325 	int i, error;
1326 
1327 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1328 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1329 
1330 	for (i = 0; i < N(rfsc); i++) {
1331 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1332 			return (error);
1333 	}
1334 
1335 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1336 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1337 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1338 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1339 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1340 
1341 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1342 	if (error != 0)
1343 		goto fail;
1344 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1345 	if (error != 0)
1346 		goto fail;
1347 	error = zyd_rfwrite(sc, 0x3c9000);
1348 	if (error != 0)
1349 		goto fail;
1350 
1351 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1352 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1353 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1354 fail:
1355 	return (error);
1356 #undef N
1357 }
1358 
1359 /*
1360  * AL2210 RF methods.
1361  */
1362 static int
1363 zyd_al2210_init(struct zyd_rf *rf)
1364 {
1365 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1366 	struct zyd_softc *sc = rf->rf_sc;
1367 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1368 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1369 	uint32_t tmp;
1370 	int i, error;
1371 
1372 	zyd_write32_m(sc, ZYD_CR18, 2);
1373 
1374 	/* init RF-dependent PHY registers */
1375 	for (i = 0; i < N(phyini); i++)
1376 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1377 
1378 	/* init AL2210 radio */
1379 	for (i = 0; i < N(rfini); i++) {
1380 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1381 			return (error);
1382 	}
1383 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1384 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1385 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1386 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1387 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1388 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1389 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1390 	zyd_write32_m(sc, ZYD_CR18, 3);
1391 fail:
1392 	return (error);
1393 #undef N
1394 }
1395 
1396 static int
1397 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1398 {
1399 	/* vendor driver does nothing for this RF chip */
1400 
1401 	return (0);
1402 }
1403 
1404 static int
1405 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1406 {
1407 	int error;
1408 	struct zyd_softc *sc = rf->rf_sc;
1409 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1410 	uint32_t tmp;
1411 
1412 	zyd_write32_m(sc, ZYD_CR18, 2);
1413 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1414 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1415 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1416 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1417 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1418 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1419 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1420 
1421 	/* actually set the channel */
1422 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1423 	if (error != 0)
1424 		goto fail;
1425 
1426 	zyd_write32_m(sc, ZYD_CR18, 3);
1427 fail:
1428 	return (error);
1429 }
1430 
1431 /*
1432  * GCT RF methods.
1433  */
1434 static int
1435 zyd_gct_init(struct zyd_rf *rf)
1436 {
1437 #define	ZYD_GCT_INTR_REG	0x85c1
1438 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1439 	struct zyd_softc *sc = rf->rf_sc;
1440 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1441 	static const uint32_t rfini[] = ZYD_GCT_RF;
1442 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1443 	int i, idx = -1, error;
1444 	uint16_t data;
1445 
1446 	/* init RF-dependent PHY registers */
1447 	for (i = 0; i < N(phyini); i++)
1448 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1449 
1450 	/* init cgt radio */
1451 	for (i = 0; i < N(rfini); i++) {
1452 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1453 			return (error);
1454 	}
1455 
1456 	error = zyd_gct_mode(rf);
1457 	if (error != 0)
1458 		return (error);
1459 
1460 	for (i = 0; i < (int)(N(vco) - 1); i++) {
1461 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1462 		if (error != 0)
1463 			goto fail;
1464 		error = zyd_gct_write(rf, vco[i][0]);
1465 		if (error != 0)
1466 			goto fail;
1467 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1468 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1469 		if ((data & 0xf) == 0) {
1470 			idx = i;
1471 			break;
1472 		}
1473 	}
1474 	if (idx == -1) {
1475 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1476 		if (error != 0)
1477 			goto fail;
1478 		error = zyd_gct_write(rf, 0x6662);
1479 		if (error != 0)
1480 			goto fail;
1481 	}
1482 
1483 	rf->idx = idx;
1484 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1485 fail:
1486 	return (error);
1487 #undef N
1488 #undef ZYD_GCT_INTR_REG
1489 }
1490 
1491 static int
1492 zyd_gct_mode(struct zyd_rf *rf)
1493 {
1494 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1495 	struct zyd_softc *sc = rf->rf_sc;
1496 	static const uint32_t mode[] = {
1497 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1498 	};
1499 	int i, error;
1500 
1501 	for (i = 0; i < N(mode); i++) {
1502 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1503 			break;
1504 	}
1505 	return (error);
1506 #undef N
1507 }
1508 
1509 static int
1510 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1511 {
1512 	int error, idx = chan - 1;
1513 	struct zyd_softc *sc = rf->rf_sc;
1514 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1515 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1516 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1517 
1518 	error = zyd_rfwrite(sc,
1519 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1520 	if (error != 0)
1521 		return (error);
1522 	return zyd_rfwrite(sc, div_synth[idx]);
1523 }
1524 
1525 static int
1526 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1527 {
1528 	struct zyd_softc *sc = rf->rf_sc;
1529 
1530 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1531 }
1532 
1533 static int
1534 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1535 {
1536 	int error;
1537 	struct zyd_softc *sc = rf->rf_sc;
1538 
1539 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1540 	if (error != 0)
1541 		return (error);
1542 
1543 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1544 	zyd_write16_m(sc, ZYD_CR251,
1545 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1546 fail:
1547 	return (error);
1548 }
1549 
1550 static int
1551 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1552 {
1553 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1554 	int error, i;
1555 	struct zyd_softc *sc = rf->rf_sc;
1556 	static const struct zyd_phy_pair cmd[] = {
1557 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1558 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1559 	};
1560 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1561 
1562 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1563 	if (error != 0)
1564 		goto fail;
1565 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1566 	    vco[rf->idx][((chan - 1) / 2)]);
1567 	if (error != 0)
1568 		goto fail;
1569 	error = zyd_gct_mode(rf);
1570 	if (error != 0)
1571 		return (error);
1572 	for (i = 0; i < N(cmd); i++)
1573 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1574 	error = zyd_gct_txgain(rf, chan);
1575 	if (error != 0)
1576 		return (error);
1577 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1578 fail:
1579 	return (error);
1580 #undef N
1581 }
1582 
1583 static int
1584 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1585 {
1586 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1587 	struct zyd_softc *sc = rf->rf_sc;
1588 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1589 	uint8_t idx = sc->sc_pwrint[chan - 1];
1590 
1591 	if (idx >= N(txgain)) {
1592 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1593 		    chan, idx);
1594 		return 0;
1595 	}
1596 
1597 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1598 #undef N
1599 }
1600 
1601 /*
1602  * Maxim2 RF methods.
1603  */
1604 static int
1605 zyd_maxim2_init(struct zyd_rf *rf)
1606 {
1607 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1608 	struct zyd_softc *sc = rf->rf_sc;
1609 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1610 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1611 	uint16_t tmp;
1612 	int i, error;
1613 
1614 	/* init RF-dependent PHY registers */
1615 	for (i = 0; i < N(phyini); i++)
1616 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1617 
1618 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1619 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1620 
1621 	/* init maxim2 radio */
1622 	for (i = 0; i < N(rfini); i++) {
1623 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1624 			return (error);
1625 	}
1626 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1627 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1628 fail:
1629 	return (error);
1630 #undef N
1631 }
1632 
1633 static int
1634 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1635 {
1636 
1637 	/* vendor driver does nothing for this RF chip */
1638 	return (0);
1639 }
1640 
1641 static int
1642 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1643 {
1644 #define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1645 	struct zyd_softc *sc = rf->rf_sc;
1646 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1647 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1648 	static const struct {
1649 		uint32_t	r1, r2;
1650 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1651 	uint16_t tmp;
1652 	int i, error;
1653 
1654 	/*
1655 	 * Do the same as we do when initializing it, except for the channel
1656 	 * values coming from the two channel tables.
1657 	 */
1658 
1659 	/* init RF-dependent PHY registers */
1660 	for (i = 0; i < N(phyini); i++)
1661 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1662 
1663 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1664 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1665 
1666 	/* first two values taken from the chantables */
1667 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1668 	if (error != 0)
1669 		goto fail;
1670 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1671 	if (error != 0)
1672 		goto fail;
1673 
1674 	/* init maxim2 radio - skipping the two first values */
1675 	for (i = 2; i < N(rfini); i++) {
1676 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1677 			return (error);
1678 	}
1679 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1680 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1681 fail:
1682 	return (error);
1683 #undef N
1684 }
1685 
1686 static int
1687 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1688 {
1689 	struct zyd_rf *rf = &sc->sc_rf;
1690 
1691 	rf->rf_sc = sc;
1692 	rf->update_pwr = 1;
1693 
1694 	switch (type) {
1695 	case ZYD_RF_RFMD:
1696 		rf->init         = zyd_rfmd_init;
1697 		rf->switch_radio = zyd_rfmd_switch_radio;
1698 		rf->set_channel  = zyd_rfmd_set_channel;
1699 		rf->width        = 24;	/* 24-bit RF values */
1700 		break;
1701 	case ZYD_RF_AL2230:
1702 	case ZYD_RF_AL2230S:
1703 		if (sc->sc_macrev == ZYD_ZD1211B) {
1704 			rf->init = zyd_al2230_init_b;
1705 			rf->set_channel = zyd_al2230_set_channel_b;
1706 		} else {
1707 			rf->init = zyd_al2230_init;
1708 			rf->set_channel = zyd_al2230_set_channel;
1709 		}
1710 		rf->switch_radio = zyd_al2230_switch_radio;
1711 		rf->bandedge6	 = zyd_al2230_bandedge6;
1712 		rf->width        = 24;	/* 24-bit RF values */
1713 		break;
1714 	case ZYD_RF_AL7230B:
1715 		rf->init         = zyd_al7230B_init;
1716 		rf->switch_radio = zyd_al7230B_switch_radio;
1717 		rf->set_channel  = zyd_al7230B_set_channel;
1718 		rf->width        = 24;	/* 24-bit RF values */
1719 		break;
1720 	case ZYD_RF_AL2210:
1721 		rf->init         = zyd_al2210_init;
1722 		rf->switch_radio = zyd_al2210_switch_radio;
1723 		rf->set_channel  = zyd_al2210_set_channel;
1724 		rf->width        = 24;	/* 24-bit RF values */
1725 		break;
1726 	case ZYD_RF_MAXIM_NEW:
1727 	case ZYD_RF_GCT:
1728 		rf->init         = zyd_gct_init;
1729 		rf->switch_radio = zyd_gct_switch_radio;
1730 		rf->set_channel  = zyd_gct_set_channel;
1731 		rf->width        = 24;	/* 24-bit RF values */
1732 		rf->update_pwr   = 0;
1733 		break;
1734 	case ZYD_RF_MAXIM_NEW2:
1735 		rf->init         = zyd_maxim2_init;
1736 		rf->switch_radio = zyd_maxim2_switch_radio;
1737 		rf->set_channel  = zyd_maxim2_set_channel;
1738 		rf->width        = 18;	/* 18-bit RF values */
1739 		break;
1740 	default:
1741 		device_printf(sc->sc_dev,
1742 		    "sorry, radio \"%s\" is not supported yet\n",
1743 		    zyd_rf_name(type));
1744 		return (EINVAL);
1745 	}
1746 	return (0);
1747 }
1748 
1749 static const char *
1750 zyd_rf_name(uint8_t type)
1751 {
1752 	static const char * const zyd_rfs[] = {
1753 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1754 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1755 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1756 		"PHILIPS"
1757 	};
1758 
1759 	return zyd_rfs[(type > 15) ? 0 : type];
1760 }
1761 
1762 static int
1763 zyd_hw_init(struct zyd_softc *sc)
1764 {
1765 	int error;
1766 	const struct zyd_phy_pair *phyp;
1767 	struct zyd_rf *rf = &sc->sc_rf;
1768 	uint16_t val;
1769 
1770 	/* specify that the plug and play is finished */
1771 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1772 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1773 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1774 	    sc->sc_fwbase);
1775 
1776 	/* retrieve firmware revision number */
1777 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1778 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1779 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1780 	/* set mandatory rates - XXX assumes 802.11b/g */
1781 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1782 
1783 	/* disable interrupts */
1784 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1785 
1786 	if ((error = zyd_read_pod(sc)) != 0) {
1787 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1788 		goto fail;
1789 	}
1790 
1791 	/* PHY init (resetting) */
1792 	error = zyd_lock_phy(sc);
1793 	if (error != 0)
1794 		goto fail;
1795 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1796 	for (; phyp->reg != 0; phyp++)
1797 		zyd_write16_m(sc, phyp->reg, phyp->val);
1798 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1799 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1800 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1801 	}
1802 	error = zyd_unlock_phy(sc);
1803 	if (error != 0)
1804 		goto fail;
1805 
1806 	/* HMAC init */
1807 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1808 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1809 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1810 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1811 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1812 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1813 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1814 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1815 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1816 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1817 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1818 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1819 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1820 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1821 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1822 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1823 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1824 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1825 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1826 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1827 
1828 	if (sc->sc_macrev == ZYD_ZD1211) {
1829 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1830 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1831 	} else {
1832 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1833 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1834 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1835 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1836 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1837 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1838 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1839 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1840 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1841 	}
1842 
1843 	/* init beacon interval to 100ms */
1844 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1845 		goto fail;
1846 
1847 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1848 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1849 		    sc->sc_rfrev);
1850 		goto fail;
1851 	}
1852 
1853 	/* RF chip init */
1854 	error = zyd_lock_phy(sc);
1855 	if (error != 0)
1856 		goto fail;
1857 	error = (*rf->init)(rf);
1858 	if (error != 0) {
1859 		device_printf(sc->sc_dev,
1860 		    "radio initialization failed, error %d\n", error);
1861 		goto fail;
1862 	}
1863 	error = zyd_unlock_phy(sc);
1864 	if (error != 0)
1865 		goto fail;
1866 
1867 	if ((error = zyd_read_eeprom(sc)) != 0) {
1868 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1869 		goto fail;
1870 	}
1871 
1872 fail:	return (error);
1873 }
1874 
1875 static int
1876 zyd_read_pod(struct zyd_softc *sc)
1877 {
1878 	int error;
1879 	uint32_t tmp;
1880 
1881 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1882 	sc->sc_rfrev     = tmp & 0x0f;
1883 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1884 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1885 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1886 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1887 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1888 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1889 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1890 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1891 fail:
1892 	return (error);
1893 }
1894 
1895 static int
1896 zyd_read_eeprom(struct zyd_softc *sc)
1897 {
1898 	uint16_t val;
1899 	int error, i;
1900 
1901 	/* read Tx power calibration tables */
1902 	for (i = 0; i < 7; i++) {
1903 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1904 		sc->sc_pwrcal[i * 2] = val >> 8;
1905 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1906 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1907 		sc->sc_pwrint[i * 2] = val >> 8;
1908 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1909 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1910 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1911 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1912 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1913 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1914 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1915 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1916 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1917 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1918 	}
1919 fail:
1920 	return (error);
1921 }
1922 
1923 static int
1924 zyd_get_macaddr(struct zyd_softc *sc)
1925 {
1926 	struct usb_device_request req;
1927 	usb_error_t error;
1928 
1929 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1930 	req.bRequest = ZYD_READFWDATAREQ;
1931 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1932 	USETW(req.wIndex, 0);
1933 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1934 
1935 	error = zyd_do_request(sc, &req, sc->sc_bssid);
1936 	if (error != 0) {
1937 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1938 		    usbd_errstr(error));
1939 	}
1940 
1941 	return (error);
1942 }
1943 
1944 static int
1945 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1946 {
1947 	int error;
1948 	uint32_t tmp;
1949 
1950 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1951 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1952 	tmp = addr[5] << 8 | addr[4];
1953 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1954 fail:
1955 	return (error);
1956 }
1957 
1958 static int
1959 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1960 {
1961 	int error;
1962 	uint32_t tmp;
1963 
1964 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1965 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1966 	tmp = addr[5] << 8 | addr[4];
1967 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1968 fail:
1969 	return (error);
1970 }
1971 
1972 static int
1973 zyd_switch_radio(struct zyd_softc *sc, int on)
1974 {
1975 	struct zyd_rf *rf = &sc->sc_rf;
1976 	int error;
1977 
1978 	error = zyd_lock_phy(sc);
1979 	if (error != 0)
1980 		goto fail;
1981 	error = (*rf->switch_radio)(rf, on);
1982 	if (error != 0)
1983 		goto fail;
1984 	error = zyd_unlock_phy(sc);
1985 fail:
1986 	return (error);
1987 }
1988 
1989 static int
1990 zyd_set_led(struct zyd_softc *sc, int which, int on)
1991 {
1992 	int error;
1993 	uint32_t tmp;
1994 
1995 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1996 	tmp &= ~which;
1997 	if (on)
1998 		tmp |= which;
1999 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
2000 fail:
2001 	return (error);
2002 }
2003 
2004 static void
2005 zyd_set_multi(struct zyd_softc *sc)
2006 {
2007 	int error;
2008 	struct ifnet *ifp = sc->sc_ifp;
2009 	struct ieee80211com *ic = ifp->if_l2com;
2010 	struct ifmultiaddr *ifma;
2011 	uint32_t low, high;
2012 	uint8_t v;
2013 
2014 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2015 		return;
2016 
2017 	low = 0x00000000;
2018 	high = 0x80000000;
2019 
2020 	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
2021 	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
2022 		low = 0xffffffff;
2023 		high = 0xffffffff;
2024 	} else {
2025 		if_maddr_rlock(ifp);
2026 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2027 			if (ifma->ifma_addr->sa_family != AF_LINK)
2028 				continue;
2029 			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
2030 			    ifma->ifma_addr))[5] >> 2;
2031 			if (v < 32)
2032 				low |= 1 << v;
2033 			else
2034 				high |= 1 << (v - 32);
2035 		}
2036 		if_maddr_runlock(ifp);
2037 	}
2038 
2039 	/* reprogram multicast global hash table */
2040 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2041 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2042 fail:
2043 	if (error != 0)
2044 		device_printf(sc->sc_dev,
2045 		    "could not set multicast hash table\n");
2046 }
2047 
2048 static void
2049 zyd_update_mcast(struct ieee80211com *ic)
2050 {
2051 	struct zyd_softc *sc = ic->ic_softc;
2052 
2053 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2054 		return;
2055 
2056 	ZYD_LOCK(sc);
2057 	zyd_set_multi(sc);
2058 	ZYD_UNLOCK(sc);
2059 }
2060 
2061 static int
2062 zyd_set_rxfilter(struct zyd_softc *sc)
2063 {
2064 	struct ifnet *ifp = sc->sc_ifp;
2065 	struct ieee80211com *ic = ifp->if_l2com;
2066 	uint32_t rxfilter;
2067 
2068 	switch (ic->ic_opmode) {
2069 	case IEEE80211_M_STA:
2070 		rxfilter = ZYD_FILTER_BSS;
2071 		break;
2072 	case IEEE80211_M_IBSS:
2073 	case IEEE80211_M_HOSTAP:
2074 		rxfilter = ZYD_FILTER_HOSTAP;
2075 		break;
2076 	case IEEE80211_M_MONITOR:
2077 		rxfilter = ZYD_FILTER_MONITOR;
2078 		break;
2079 	default:
2080 		/* should not get there */
2081 		return (EINVAL);
2082 	}
2083 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2084 }
2085 
2086 static void
2087 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2088 {
2089 	int error;
2090 	struct ifnet *ifp = sc->sc_ifp;
2091 	struct ieee80211com *ic = ifp->if_l2com;
2092 	struct zyd_rf *rf = &sc->sc_rf;
2093 	uint32_t tmp;
2094 	int chan;
2095 
2096 	chan = ieee80211_chan2ieee(ic, c);
2097 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2098 		/* XXX should NEVER happen */
2099 		device_printf(sc->sc_dev,
2100 		    "%s: invalid channel %x\n", __func__, chan);
2101 		return;
2102 	}
2103 
2104 	error = zyd_lock_phy(sc);
2105 	if (error != 0)
2106 		goto fail;
2107 
2108 	error = (*rf->set_channel)(rf, chan);
2109 	if (error != 0)
2110 		goto fail;
2111 
2112 	if (rf->update_pwr) {
2113 		/* update Tx power */
2114 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2115 
2116 		if (sc->sc_macrev == ZYD_ZD1211B) {
2117 			zyd_write16_m(sc, ZYD_CR67,
2118 			    sc->sc_ofdm36_cal[chan - 1]);
2119 			zyd_write16_m(sc, ZYD_CR66,
2120 			    sc->sc_ofdm48_cal[chan - 1]);
2121 			zyd_write16_m(sc, ZYD_CR65,
2122 			    sc->sc_ofdm54_cal[chan - 1]);
2123 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2124 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2125 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2126 		}
2127 	}
2128 	if (sc->sc_cckgain) {
2129 		/* set CCK baseband gain from EEPROM */
2130 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2131 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2132 	}
2133 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2134 		error = (*rf->bandedge6)(rf, c);
2135 		if (error != 0)
2136 			goto fail;
2137 	}
2138 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2139 
2140 	error = zyd_unlock_phy(sc);
2141 	if (error != 0)
2142 		goto fail;
2143 
2144 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2145 	    htole16(c->ic_freq);
2146 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2147 	    htole16(c->ic_flags);
2148 fail:
2149 	return;
2150 }
2151 
2152 static int
2153 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2154 {
2155 	int error;
2156 	uint32_t val;
2157 
2158 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2159 	sc->sc_atim_wnd = val;
2160 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2161 	sc->sc_pre_tbtt = val;
2162 	sc->sc_bcn_int = bintval;
2163 
2164 	if (sc->sc_bcn_int <= 5)
2165 		sc->sc_bcn_int = 5;
2166 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2167 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2168 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2169 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2170 
2171 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2172 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2173 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2174 fail:
2175 	return (error);
2176 }
2177 
2178 static void
2179 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2180 {
2181 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2182 	struct ifnet *ifp = sc->sc_ifp;
2183 	struct ieee80211com *ic = ifp->if_l2com;
2184 	struct zyd_plcphdr plcp;
2185 	struct zyd_rx_stat stat;
2186 	struct usb_page_cache *pc;
2187 	struct mbuf *m;
2188 	int rlen, rssi;
2189 
2190 	if (len < ZYD_MIN_FRAGSZ) {
2191 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2192 		    device_get_nameunit(sc->sc_dev), len);
2193 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2194 		return;
2195 	}
2196 	pc = usbd_xfer_get_frame(xfer, 0);
2197 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2198 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2199 
2200 	if (stat.flags & ZYD_RX_ERROR) {
2201 		DPRINTF(sc, ZYD_DEBUG_RECV,
2202 		    "%s: RX status indicated error (%x)\n",
2203 		    device_get_nameunit(sc->sc_dev), stat.flags);
2204 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2205 		return;
2206 	}
2207 
2208 	/* compute actual frame length */
2209 	rlen = len - sizeof(struct zyd_plcphdr) -
2210 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2211 
2212 	/* allocate a mbuf to store the frame */
2213 	if (rlen > (int)MCLBYTES) {
2214 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2215 		    device_get_nameunit(sc->sc_dev), rlen);
2216 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2217 		return;
2218 	} else if (rlen > (int)MHLEN)
2219 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2220 	else
2221 		m = m_gethdr(M_NOWAIT, MT_DATA);
2222 	if (m == NULL) {
2223 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2224 		    device_get_nameunit(sc->sc_dev));
2225 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2226 		return;
2227 	}
2228 	m->m_pkthdr.rcvif = ifp;
2229 	m->m_pkthdr.len = m->m_len = rlen;
2230 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2231 
2232 	if (ieee80211_radiotap_active(ic)) {
2233 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2234 
2235 		tap->wr_flags = 0;
2236 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2237 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2238 		/* XXX toss, no way to express errors */
2239 		if (stat.flags & ZYD_RX_DECRYPTERR)
2240 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2241 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2242 		    (stat.flags & ZYD_RX_OFDM) ?
2243 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2244 		tap->wr_antsignal = stat.rssi + -95;
2245 		tap->wr_antnoise = -95;	/* XXX */
2246 	}
2247 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2248 
2249 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2250 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2251 	sc->sc_rx_count++;
2252 }
2253 
2254 static void
2255 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2256 {
2257 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2258 	struct ifnet *ifp = sc->sc_ifp;
2259 	struct ieee80211com *ic = ifp->if_l2com;
2260 	struct ieee80211_node *ni;
2261 	struct zyd_rx_desc desc;
2262 	struct mbuf *m;
2263 	struct usb_page_cache *pc;
2264 	uint32_t offset;
2265 	uint8_t rssi;
2266 	int8_t nf;
2267 	int i;
2268 	int actlen;
2269 
2270 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2271 
2272 	sc->sc_rx_count = 0;
2273 	switch (USB_GET_STATE(xfer)) {
2274 	case USB_ST_TRANSFERRED:
2275 		pc = usbd_xfer_get_frame(xfer, 0);
2276 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2277 
2278 		offset = 0;
2279 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2280 			DPRINTF(sc, ZYD_DEBUG_RECV,
2281 			    "%s: received multi-frame transfer\n", __func__);
2282 
2283 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2284 				uint16_t len16 = UGETW(desc.len[i]);
2285 
2286 				if (len16 == 0 || len16 > actlen)
2287 					break;
2288 
2289 				zyd_rx_data(xfer, offset, len16);
2290 
2291 				/* next frame is aligned on a 32-bit boundary */
2292 				len16 = (len16 + 3) & ~3;
2293 				offset += len16;
2294 				if (len16 > actlen)
2295 					break;
2296 				actlen -= len16;
2297 			}
2298 		} else {
2299 			DPRINTF(sc, ZYD_DEBUG_RECV,
2300 			    "%s: received single-frame transfer\n", __func__);
2301 
2302 			zyd_rx_data(xfer, 0, actlen);
2303 		}
2304 		/* FALLTHROUGH */
2305 	case USB_ST_SETUP:
2306 tr_setup:
2307 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2308 		usbd_transfer_submit(xfer);
2309 
2310 		/*
2311 		 * At the end of a USB callback it is always safe to unlock
2312 		 * the private mutex of a device! That is why we do the
2313 		 * "ieee80211_input" here, and not some lines up!
2314 		 */
2315 		ZYD_UNLOCK(sc);
2316 		for (i = 0; i < sc->sc_rx_count; i++) {
2317 			rssi = sc->sc_rx_data[i].rssi;
2318 			m = sc->sc_rx_data[i].m;
2319 			sc->sc_rx_data[i].m = NULL;
2320 
2321 			nf = -95;	/* XXX */
2322 
2323 			ni = ieee80211_find_rxnode(ic,
2324 			    mtod(m, struct ieee80211_frame_min *));
2325 			if (ni != NULL) {
2326 				(void)ieee80211_input(ni, m, rssi, nf);
2327 				ieee80211_free_node(ni);
2328 			} else
2329 				(void)ieee80211_input_all(ic, m, rssi, nf);
2330 		}
2331 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2332 		    !IFQ_IS_EMPTY(&ifp->if_snd))
2333 			zyd_start(ifp);
2334 		ZYD_LOCK(sc);
2335 		break;
2336 
2337 	default:			/* Error */
2338 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2339 
2340 		if (error != USB_ERR_CANCELLED) {
2341 			/* try to clear stall first */
2342 			usbd_xfer_set_stall(xfer);
2343 			goto tr_setup;
2344 		}
2345 		break;
2346 	}
2347 }
2348 
2349 static uint8_t
2350 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2351 {
2352 	switch (rate) {
2353 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2354 	case 12:
2355 		return (0xb);
2356 	case 18:
2357 		return (0xf);
2358 	case 24:
2359 		return (0xa);
2360 	case 36:
2361 		return (0xe);
2362 	case 48:
2363 		return (0x9);
2364 	case 72:
2365 		return (0xd);
2366 	case 96:
2367 		return (0x8);
2368 	case 108:
2369 		return (0xc);
2370 	/* CCK rates (NB: not IEEE std, device-specific) */
2371 	case 2:
2372 		return (0x0);
2373 	case 4:
2374 		return (0x1);
2375 	case 11:
2376 		return (0x2);
2377 	case 22:
2378 		return (0x3);
2379 	}
2380 
2381 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2382 	return (0x0);
2383 }
2384 
2385 static void
2386 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2387 {
2388 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2389 	struct ifnet *ifp = sc->sc_ifp;
2390 	struct ieee80211vap *vap;
2391 	struct zyd_tx_data *data;
2392 	struct mbuf *m;
2393 	struct usb_page_cache *pc;
2394 	int actlen;
2395 
2396 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2397 
2398 	switch (USB_GET_STATE(xfer)) {
2399 	case USB_ST_TRANSFERRED:
2400 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2401 		    actlen);
2402 
2403 		/* free resources */
2404 		data = usbd_xfer_get_priv(xfer);
2405 		zyd_tx_free(data, 0);
2406 		usbd_xfer_set_priv(xfer, NULL);
2407 
2408 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2409 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2410 
2411 		/* FALLTHROUGH */
2412 	case USB_ST_SETUP:
2413 tr_setup:
2414 		data = STAILQ_FIRST(&sc->tx_q);
2415 		if (data) {
2416 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2417 			m = data->m;
2418 
2419 			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2420 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2421 				    m->m_pkthdr.len);
2422 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2423 			}
2424 			pc = usbd_xfer_get_frame(xfer, 0);
2425 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2426 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2427 			    m->m_pkthdr.len);
2428 
2429 			vap = data->ni->ni_vap;
2430 			if (ieee80211_radiotap_active_vap(vap)) {
2431 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2432 
2433 				tap->wt_flags = 0;
2434 				tap->wt_rate = data->rate;
2435 
2436 				ieee80211_radiotap_tx(vap, m);
2437 			}
2438 
2439 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2440 			usbd_xfer_set_priv(xfer, data);
2441 			usbd_transfer_submit(xfer);
2442 		}
2443 		ZYD_UNLOCK(sc);
2444 		zyd_start(ifp);
2445 		ZYD_LOCK(sc);
2446 		break;
2447 
2448 	default:			/* Error */
2449 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2450 		    usbd_errstr(error));
2451 
2452 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2453 		data = usbd_xfer_get_priv(xfer);
2454 		usbd_xfer_set_priv(xfer, NULL);
2455 		if (data != NULL)
2456 			zyd_tx_free(data, error);
2457 
2458 		if (error != USB_ERR_CANCELLED) {
2459 			if (error == USB_ERR_TIMEOUT)
2460 				device_printf(sc->sc_dev, "device timeout\n");
2461 
2462 			/*
2463 			 * Try to clear stall first, also if other
2464 			 * errors occur, hence clearing stall
2465 			 * introduces a 50 ms delay:
2466 			 */
2467 			usbd_xfer_set_stall(xfer);
2468 			goto tr_setup;
2469 		}
2470 		break;
2471 	}
2472 }
2473 
2474 static int
2475 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2476 {
2477 	struct ieee80211vap *vap = ni->ni_vap;
2478 	struct ieee80211com *ic = ni->ni_ic;
2479 	struct zyd_tx_desc *desc;
2480 	struct zyd_tx_data *data;
2481 	struct ieee80211_frame *wh;
2482 	const struct ieee80211_txparam *tp;
2483 	struct ieee80211_key *k;
2484 	int rate, totlen;
2485 	static const uint8_t ratediv[] = ZYD_TX_RATEDIV;
2486 	uint8_t phy;
2487 	uint16_t pktlen;
2488 	uint32_t bits;
2489 
2490 	wh = mtod(m0, struct ieee80211_frame *);
2491 	data = STAILQ_FIRST(&sc->tx_free);
2492 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2493 	sc->tx_nfree--;
2494 
2495 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT ||
2496 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2497 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2498 		rate = tp->mgmtrate;
2499 	} else {
2500 		tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2501 		/* for data frames */
2502 		if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2503 			rate = tp->mcastrate;
2504 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2505 			rate = tp->ucastrate;
2506 		else {
2507 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2508 			rate = ni->ni_txrate;
2509 		}
2510 	}
2511 
2512 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2513 		k = ieee80211_crypto_encap(ni, m0);
2514 		if (k == NULL) {
2515 			m_freem(m0);
2516 			return (ENOBUFS);
2517 		}
2518 		/* packet header may have moved, reset our local pointer */
2519 		wh = mtod(m0, struct ieee80211_frame *);
2520 	}
2521 
2522 	data->ni = ni;
2523 	data->m = m0;
2524 	data->rate = rate;
2525 
2526 	/* fill Tx descriptor */
2527 	desc = &data->desc;
2528 	phy = zyd_plcp_signal(sc, rate);
2529 	desc->phy = phy;
2530 	if (ZYD_RATE_IS_OFDM(rate)) {
2531 		desc->phy |= ZYD_TX_PHY_OFDM;
2532 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2533 			desc->phy |= ZYD_TX_PHY_5GHZ;
2534 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2535 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2536 
2537 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2538 	desc->len = htole16(totlen);
2539 
2540 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2541 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2542 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2543 		if (totlen > vap->iv_rtsthreshold) {
2544 			desc->flags |= ZYD_TX_FLAG_RTS;
2545 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2546 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2547 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2548 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2549 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2550 				desc->flags |= ZYD_TX_FLAG_RTS;
2551 		}
2552 	} else
2553 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2554 	if ((wh->i_fc[0] &
2555 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2556 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2557 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2558 
2559 	/* actual transmit length (XXX why +10?) */
2560 	pktlen = ZYD_TX_DESC_SIZE + 10;
2561 	if (sc->sc_macrev == ZYD_ZD1211)
2562 		pktlen += totlen;
2563 	desc->pktlen = htole16(pktlen);
2564 
2565 	bits = (rate == 11) ? (totlen * 16) + 10 :
2566 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2567 	desc->plcp_length = htole16(bits / ratediv[phy]);
2568 	desc->plcp_service = 0;
2569 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2570 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2571 	desc->nextlen = 0;
2572 
2573 	if (ieee80211_radiotap_active_vap(vap)) {
2574 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2575 
2576 		tap->wt_flags = 0;
2577 		tap->wt_rate = rate;
2578 
2579 		ieee80211_radiotap_tx(vap, m0);
2580 	}
2581 
2582 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2583 	    "%s: sending data frame len=%zu rate=%u\n",
2584 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2585 		rate);
2586 
2587 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2588 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2589 
2590 	return (0);
2591 }
2592 
2593 static void
2594 zyd_start(struct ifnet *ifp)
2595 {
2596 	struct zyd_softc *sc = ifp->if_softc;
2597 	struct ieee80211_node *ni;
2598 	struct mbuf *m;
2599 
2600 	ZYD_LOCK(sc);
2601 	for (;;) {
2602 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2603 		if (m == NULL)
2604 			break;
2605 		if (sc->tx_nfree == 0) {
2606 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2607 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2608 			break;
2609 		}
2610 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2611 		if (zyd_tx_start(sc, m, ni) != 0) {
2612 			ieee80211_free_node(ni);
2613 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2614 			break;
2615 		}
2616 	}
2617 	ZYD_UNLOCK(sc);
2618 }
2619 
2620 static int
2621 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2622 	const struct ieee80211_bpf_params *params)
2623 {
2624 	struct ieee80211com *ic = ni->ni_ic;
2625 	struct ifnet *ifp = ic->ic_ifp;
2626 	struct zyd_softc *sc = ifp->if_softc;
2627 
2628 	ZYD_LOCK(sc);
2629 	/* prevent management frames from being sent if we're not ready */
2630 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2631 		ZYD_UNLOCK(sc);
2632 		m_freem(m);
2633 		ieee80211_free_node(ni);
2634 		return (ENETDOWN);
2635 	}
2636 	if (sc->tx_nfree == 0) {
2637 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2638 		ZYD_UNLOCK(sc);
2639 		m_freem(m);
2640 		ieee80211_free_node(ni);
2641 		return (ENOBUFS);		/* XXX */
2642 	}
2643 
2644 	/*
2645 	 * Legacy path; interpret frame contents to decide
2646 	 * precisely how to send the frame.
2647 	 * XXX raw path
2648 	 */
2649 	if (zyd_tx_start(sc, m, ni) != 0) {
2650 		ZYD_UNLOCK(sc);
2651 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2652 		ieee80211_free_node(ni);
2653 		return (EIO);
2654 	}
2655 	ZYD_UNLOCK(sc);
2656 	return (0);
2657 }
2658 
2659 static int
2660 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2661 {
2662 	struct zyd_softc *sc = ifp->if_softc;
2663 	struct ieee80211com *ic = ifp->if_l2com;
2664 	struct ifreq *ifr = (struct ifreq *) data;
2665 	int error;
2666 	int startall = 0;
2667 
2668 	ZYD_LOCK(sc);
2669 	error = (sc->sc_flags & ZYD_FLAG_DETACHED) ? ENXIO : 0;
2670 	ZYD_UNLOCK(sc);
2671 	if (error)
2672 		return (error);
2673 
2674 	switch (cmd) {
2675 	case SIOCSIFFLAGS:
2676 		ZYD_LOCK(sc);
2677 		if (ifp->if_flags & IFF_UP) {
2678 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2679 				zyd_init_locked(sc);
2680 				startall = 1;
2681 			} else
2682 				zyd_set_multi(sc);
2683 		} else {
2684 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2685 				zyd_stop(sc);
2686 		}
2687 		ZYD_UNLOCK(sc);
2688 		if (startall)
2689 			ieee80211_start_all(ic);
2690 		break;
2691 	case SIOCGIFMEDIA:
2692 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2693 		break;
2694 	case SIOCGIFADDR:
2695 		error = ether_ioctl(ifp, cmd, data);
2696 		break;
2697 	default:
2698 		error = EINVAL;
2699 		break;
2700 	}
2701 	return (error);
2702 }
2703 
2704 static void
2705 zyd_init_locked(struct zyd_softc *sc)
2706 {
2707 	struct ifnet *ifp = sc->sc_ifp;
2708 	struct ieee80211com *ic = ifp->if_l2com;
2709 	struct usb_config_descriptor *cd;
2710 	int error;
2711 	uint32_t val;
2712 
2713 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2714 
2715 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2716 		error = zyd_loadfirmware(sc);
2717 		if (error != 0) {
2718 			device_printf(sc->sc_dev,
2719 			    "could not load firmware (error=%d)\n", error);
2720 			goto fail;
2721 		}
2722 
2723 		/* reset device */
2724 		cd = usbd_get_config_descriptor(sc->sc_udev);
2725 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2726 		    cd->bConfigurationValue);
2727 		if (error)
2728 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2729 
2730 		error = zyd_hw_init(sc);
2731 		if (error) {
2732 			device_printf(sc->sc_dev,
2733 			    "hardware initialization failed\n");
2734 			goto fail;
2735 		}
2736 
2737 		device_printf(sc->sc_dev,
2738 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2739 		    "BE%x NP%x Gain%x F%x\n",
2740 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2741 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2742 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2743 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2744 		    sc->sc_cckgain, sc->sc_fix_cr157);
2745 
2746 		/* read regulatory domain (currently unused) */
2747 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2748 		sc->sc_regdomain = val >> 16;
2749 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2750 		    sc->sc_regdomain);
2751 
2752 		/* we'll do software WEP decryption for now */
2753 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2754 		    __func__);
2755 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2756 
2757 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2758 	}
2759 
2760 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2761 		zyd_stop(sc);
2762 
2763 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2764 	    IF_LLADDR(ifp), ":");
2765 	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2766 	if (error != 0)
2767 		return;
2768 
2769 	/* set basic rates */
2770 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2771 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2772 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2773 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2774 	else	/* assumes 802.11b/g */
2775 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2776 
2777 	/* promiscuous mode */
2778 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2779 	/* multicast setup */
2780 	zyd_set_multi(sc);
2781 	/* set RX filter  */
2782 	error = zyd_set_rxfilter(sc);
2783 	if (error != 0)
2784 		goto fail;
2785 
2786 	/* switch radio transmitter ON */
2787 	error = zyd_switch_radio(sc, 1);
2788 	if (error != 0)
2789 		goto fail;
2790 	/* set default BSS channel */
2791 	zyd_set_chan(sc, ic->ic_curchan);
2792 
2793 	/*
2794 	 * Allocate Tx and Rx xfer queues.
2795 	 */
2796 	zyd_setup_tx_list(sc);
2797 
2798 	/* enable interrupts */
2799 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2800 
2801 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2802 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2803 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2804 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2805 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2806 
2807 	return;
2808 
2809 fail:	zyd_stop(sc);
2810 	return;
2811 }
2812 
2813 static void
2814 zyd_init(void *priv)
2815 {
2816 	struct zyd_softc *sc = priv;
2817 	struct ifnet *ifp = sc->sc_ifp;
2818 	struct ieee80211com *ic = ifp->if_l2com;
2819 
2820 	ZYD_LOCK(sc);
2821 	zyd_init_locked(sc);
2822 	ZYD_UNLOCK(sc);
2823 
2824 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2825 		ieee80211_start_all(ic);		/* start all vap's */
2826 }
2827 
2828 static void
2829 zyd_stop(struct zyd_softc *sc)
2830 {
2831 	struct ifnet *ifp = sc->sc_ifp;
2832 	int error;
2833 
2834 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2835 
2836 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2837 
2838 	/*
2839 	 * Drain all the transfers, if not already drained:
2840 	 */
2841 	ZYD_UNLOCK(sc);
2842 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2843 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2844 	ZYD_LOCK(sc);
2845 
2846 	zyd_unsetup_tx_list(sc);
2847 
2848 	/* Stop now if the device was never set up */
2849 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2850 		return;
2851 
2852 	/* switch radio transmitter OFF */
2853 	error = zyd_switch_radio(sc, 0);
2854 	if (error != 0)
2855 		goto fail;
2856 	/* disable Rx */
2857 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2858 	/* disable interrupts */
2859 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2860 
2861 fail:
2862 	return;
2863 }
2864 
2865 static int
2866 zyd_loadfirmware(struct zyd_softc *sc)
2867 {
2868 	struct usb_device_request req;
2869 	size_t size;
2870 	u_char *fw;
2871 	uint8_t stat;
2872 	uint16_t addr;
2873 
2874 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2875 		return (0);
2876 
2877 	if (sc->sc_macrev == ZYD_ZD1211) {
2878 		fw = (u_char *)zd1211_firmware;
2879 		size = sizeof(zd1211_firmware);
2880 	} else {
2881 		fw = (u_char *)zd1211b_firmware;
2882 		size = sizeof(zd1211b_firmware);
2883 	}
2884 
2885 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2886 	req.bRequest = ZYD_DOWNLOADREQ;
2887 	USETW(req.wIndex, 0);
2888 
2889 	addr = ZYD_FIRMWARE_START_ADDR;
2890 	while (size > 0) {
2891 		/*
2892 		 * When the transfer size is 4096 bytes, it is not
2893 		 * likely to be able to transfer it.
2894 		 * The cause is port or machine or chip?
2895 		 */
2896 		const int mlen = min(size, 64);
2897 
2898 		DPRINTF(sc, ZYD_DEBUG_FW,
2899 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2900 
2901 		USETW(req.wValue, addr);
2902 		USETW(req.wLength, mlen);
2903 		if (zyd_do_request(sc, &req, fw) != 0)
2904 			return (EIO);
2905 
2906 		addr += mlen / 2;
2907 		fw   += mlen;
2908 		size -= mlen;
2909 	}
2910 
2911 	/* check whether the upload succeeded */
2912 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2913 	req.bRequest = ZYD_DOWNLOADSTS;
2914 	USETW(req.wValue, 0);
2915 	USETW(req.wIndex, 0);
2916 	USETW(req.wLength, sizeof(stat));
2917 	if (zyd_do_request(sc, &req, &stat) != 0)
2918 		return (EIO);
2919 
2920 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2921 
2922 	return (stat & 0x80) ? (EIO) : (0);
2923 }
2924 
2925 static void
2926 zyd_scan_start(struct ieee80211com *ic)
2927 {
2928 	struct ifnet *ifp = ic->ic_ifp;
2929 	struct zyd_softc *sc = ifp->if_softc;
2930 
2931 	ZYD_LOCK(sc);
2932 	/* want broadcast address while scanning */
2933 	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2934 	ZYD_UNLOCK(sc);
2935 }
2936 
2937 static void
2938 zyd_scan_end(struct ieee80211com *ic)
2939 {
2940 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2941 
2942 	ZYD_LOCK(sc);
2943 	/* restore previous bssid */
2944 	zyd_set_bssid(sc, sc->sc_bssid);
2945 	ZYD_UNLOCK(sc);
2946 }
2947 
2948 static void
2949 zyd_set_channel(struct ieee80211com *ic)
2950 {
2951 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2952 
2953 	ZYD_LOCK(sc);
2954 	zyd_set_chan(sc, ic->ic_curchan);
2955 	ZYD_UNLOCK(sc);
2956 }
2957 
2958 static device_method_t zyd_methods[] = {
2959         /* Device interface */
2960         DEVMETHOD(device_probe, zyd_match),
2961         DEVMETHOD(device_attach, zyd_attach),
2962         DEVMETHOD(device_detach, zyd_detach),
2963 	DEVMETHOD_END
2964 };
2965 
2966 static driver_t zyd_driver = {
2967 	.name = "zyd",
2968 	.methods = zyd_methods,
2969 	.size = sizeof(struct zyd_softc)
2970 };
2971 
2972 static devclass_t zyd_devclass;
2973 
2974 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2975 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2976 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2977 MODULE_VERSION(zyd, 1);
2978