xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 2e370a5c7a5528afb124f6273136736e5d5fb798)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 /*	$FreeBSD$	*/
4 
5 /*-
6  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*
26  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_amrr.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usb_error.h>
71 #include <dev/usb/usb_core.h>
72 #include <dev/usb/usb_lookup.h>
73 #include <dev/usb/usb_debug.h>
74 #include <dev/usb/usb_request.h>
75 #include <dev/usb/usb_busdma.h>
76 #include <dev/usb/usb_util.h>
77 #include "usbdevs.h"
78 
79 #include <dev/usb/wlan/if_zydreg.h>
80 #include <dev/usb/wlan/if_zydfw.h>
81 
82 #if USB_DEBUG
83 static int zyd_debug = 0;
84 
85 SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
86 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
87     "zyd debug level");
88 
89 enum {
90 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
91 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
92 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
93 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
94 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
95 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
96 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
97 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
98 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
99 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
100 	ZYD_DEBUG_ANY		= 0xffffffff
101 };
102 #define	DPRINTF(sc, m, fmt, ...) do {				\
103 	if (zyd_debug & (m))					\
104 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
105 } while (0)
106 #else
107 #define	DPRINTF(sc, m, fmt, ...) do {				\
108 	(void) sc;						\
109 } while (0)
110 #endif
111 
112 #define	zyd_do_request(sc,req,data) \
113     usb2_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
114 
115 static device_probe_t zyd_match;
116 static device_attach_t zyd_attach;
117 static device_detach_t zyd_detach;
118 
119 static usb2_callback_t zyd_intr_read_callback;
120 static usb2_callback_t zyd_intr_write_callback;
121 static usb2_callback_t zyd_bulk_read_callback;
122 static usb2_callback_t zyd_bulk_write_callback;
123 
124 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
125 		    const char name[IFNAMSIZ], int unit, int opmode,
126 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
127 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
128 static void	zyd_vap_delete(struct ieee80211vap *);
129 static void	zyd_tx_free(struct zyd_tx_data *, int);
130 static void	zyd_setup_tx_list(struct zyd_softc *);
131 static void	zyd_unsetup_tx_list(struct zyd_softc *);
132 static struct ieee80211_node *zyd_node_alloc(struct ieee80211vap *,
133 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
134 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
135 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
136 		    void *, int, int);
137 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
138 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
139 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
140 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
141 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
142 static int	zyd_lock_phy(struct zyd_softc *);
143 static int	zyd_unlock_phy(struct zyd_softc *);
144 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
145 static const char *zyd_rf_name(uint8_t);
146 static int	zyd_hw_init(struct zyd_softc *);
147 static int	zyd_read_pod(struct zyd_softc *);
148 static int	zyd_read_eeprom(struct zyd_softc *);
149 static int	zyd_get_macaddr(struct zyd_softc *);
150 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
151 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
152 static int	zyd_switch_radio(struct zyd_softc *, int);
153 static int	zyd_set_led(struct zyd_softc *, int, int);
154 static void	zyd_set_multi(struct zyd_softc *);
155 static void	zyd_update_mcast(struct ifnet *);
156 static int	zyd_set_rxfilter(struct zyd_softc *);
157 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
158 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
159 static void	zyd_rx_data(struct usb2_xfer *, int, uint16_t);
160 static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
161 		    struct ieee80211_node *);
162 static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
163 		    struct ieee80211_node *);
164 static void	zyd_start(struct ifnet *);
165 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
168 static void	zyd_init_locked(struct zyd_softc *);
169 static void	zyd_init(void *);
170 static void	zyd_stop(struct zyd_softc *);
171 static int	zyd_loadfirmware(struct zyd_softc *);
172 static void	zyd_newassoc(struct ieee80211_node *, int);
173 static void	zyd_scan_start(struct ieee80211com *);
174 static void	zyd_scan_end(struct ieee80211com *);
175 static void	zyd_set_channel(struct ieee80211com *);
176 static int	zyd_rfmd_init(struct zyd_rf *);
177 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
178 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
179 static int	zyd_al2230_init(struct zyd_rf *);
180 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
181 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
182 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
183 static int	zyd_al2230_init_b(struct zyd_rf *);
184 static int	zyd_al7230B_init(struct zyd_rf *);
185 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 static int	zyd_al2210_init(struct zyd_rf *);
188 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
189 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 static int	zyd_gct_init(struct zyd_rf *);
191 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
192 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 static int	zyd_maxim_init(struct zyd_rf *);
194 static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
195 static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 static int	zyd_maxim2_init(struct zyd_rf *);
197 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 
200 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
201 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
202 
203 /* various supported device vendors/products */
204 #define ZYD_ZD1211	0
205 #define ZYD_ZD1211B	1
206 
207 static const struct usb2_device_id zyd_devs[] = {
208     /* ZYD_ZD1211 */
209     {USB_VPI(USB_VENDOR_3COM2, USB_PRODUCT_3COM2_3CRUSB10075, ZYD_ZD1211)},
210     {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WL54, ZYD_ZD1211)},
211     {USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL159G, ZYD_ZD1211)},
212     {USB_VPI(USB_VENDOR_CYBERTAN, USB_PRODUCT_CYBERTAN_TG54USB, ZYD_ZD1211)},
213     {USB_VPI(USB_VENDOR_DRAYTEK, USB_PRODUCT_DRAYTEK_VIGOR550, ZYD_ZD1211)},
214     {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GD, ZYD_ZD1211)},
215     {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GZL, ZYD_ZD1211)},
216     {USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54GZ, ZYD_ZD1211)},
217     {USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54MINI, ZYD_ZD1211)},
218     {USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG760A, ZYD_ZD1211)},
219     {USB_VPI(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_NUB8301, ZYD_ZD1211)},
220     {USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113, ZYD_ZD1211)},
221     {USB_VPI(USB_VENDOR_SWEEX, USB_PRODUCT_SWEEX_ZD1211, ZYD_ZD1211)},
222     {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_QUICKWLAN, ZYD_ZD1211)},
223     {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_1, ZYD_ZD1211)},
224     {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_2, ZYD_ZD1211)},
225     {USB_VPI(USB_VENDOR_TWINMOS, USB_PRODUCT_TWINMOS_G240, ZYD_ZD1211)},
226     {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_ALL0298V2, ZYD_ZD1211)},
227     {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB_A, ZYD_ZD1211)},
228     {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB, ZYD_ZD1211)},
229     {USB_VPI(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR055G, ZYD_ZD1211)},
230     {USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211, ZYD_ZD1211)},
231     {USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211, ZYD_ZD1211)},
232     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_AG225H, ZYD_ZD1211)},
233     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_ZYAIRG220, ZYD_ZD1211)},
234     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G200V2, ZYD_ZD1211)},
235     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G202, ZYD_ZD1211)},
236     /* ZYD_ZD1211B */
237     {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SMCWUSBG, ZYD_ZD1211B)},
238     {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_ZD1211B, ZYD_ZD1211B)},
239     {USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_A9T_WIFI, ZYD_ZD1211B)},
240     {USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050_V4000, ZYD_ZD1211B)},
241     {USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_ZD1211B, ZYD_ZD1211B)},
242     {USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSBF54G, ZYD_ZD1211B)},
243     {USB_VPI(USB_VENDOR_FIBERLINE, USB_PRODUCT_FIBERLINE_WL430U, ZYD_ZD1211B)},
244     {USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54L, ZYD_ZD1211B)},
245     {USB_VPI(USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_SNU5600, ZYD_ZD1211B)},
246     {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US54GXS, ZYD_ZD1211B)},
247     {USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG76NA, ZYD_ZD1211B)},
248     {USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_ZD1211B, ZYD_ZD1211B)},
249     {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UBC1, ZYD_ZD1211B)},
250     {USB_VPI(USB_VENDOR_USR, USB_PRODUCT_USR_USR5423, ZYD_ZD1211B)},
251     {USB_VPI(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_ZD1211B, ZYD_ZD1211B)},
252     {USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211B, ZYD_ZD1211B)},
253     {USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211B, ZYD_ZD1211B)},
254     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_M202, ZYD_ZD1211B)},
255     {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G220V2, ZYD_ZD1211B)},
256 };
257 
258 static const struct usb2_config zyd_config[ZYD_N_TRANSFER] = {
259 	[ZYD_BULK_WR] = {
260 		.type = UE_BULK,
261 		.endpoint = UE_ADDR_ANY,
262 		.direction = UE_DIR_OUT,
263 		.bufsize = ZYD_MAX_TXBUFSZ,
264 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
265 		.callback = zyd_bulk_write_callback,
266 		.ep_index = 0,
267 		.timeout = 10000,	/* 10 seconds */
268 	},
269 	[ZYD_BULK_RD] = {
270 		.type = UE_BULK,
271 		.endpoint = UE_ADDR_ANY,
272 		.direction = UE_DIR_IN,
273 		.bufsize = ZYX_MAX_RXBUFSZ,
274 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
275 		.callback = zyd_bulk_read_callback,
276 		.ep_index = 0,
277 	},
278 	[ZYD_INTR_WR] = {
279 		.type = UE_BULK_INTR,
280 		.endpoint = UE_ADDR_ANY,
281 		.direction = UE_DIR_OUT,
282 		.bufsize = sizeof(struct zyd_cmd),
283 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
284 		.callback = zyd_intr_write_callback,
285 		.timeout = 1000,	/* 1 second */
286 		.ep_index = 1,
287 	},
288 	[ZYD_INTR_RD] = {
289 		.type = UE_INTERRUPT,
290 		.endpoint = UE_ADDR_ANY,
291 		.direction = UE_DIR_IN,
292 		.bufsize = sizeof(struct zyd_cmd),
293 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
294 		.callback = zyd_intr_read_callback,
295 	},
296 };
297 #define zyd_read16_m(sc, val, data)	do {				\
298 	error = zyd_read16(sc, val, data);				\
299 	if (error != 0)							\
300 		goto fail;						\
301 } while (0)
302 #define zyd_write16_m(sc, val, data)	do {				\
303 	error = zyd_write16(sc, val, data);				\
304 	if (error != 0)							\
305 		goto fail;						\
306 } while (0)
307 #define zyd_read32_m(sc, val, data)	do {				\
308 	error = zyd_read32(sc, val, data);				\
309 	if (error != 0)							\
310 		goto fail;						\
311 } while (0)
312 #define zyd_write32_m(sc, val, data)	do {				\
313 	error = zyd_write32(sc, val, data);				\
314 	if (error != 0)							\
315 		goto fail;						\
316 } while (0)
317 
318 static int
319 zyd_match(device_t dev)
320 {
321 	struct usb2_attach_arg *uaa = device_get_ivars(dev);
322 
323 	if (uaa->usb_mode != USB_MODE_HOST)
324 		return (ENXIO);
325 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
326 		return (ENXIO);
327 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
328 		return (ENXIO);
329 
330 	return (usb2_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
331 }
332 
333 static int
334 zyd_attach(device_t dev)
335 {
336 	struct usb2_attach_arg *uaa = device_get_ivars(dev);
337 	struct zyd_softc *sc = device_get_softc(dev);
338 	struct ifnet *ifp;
339 	struct ieee80211com *ic;
340 	uint8_t iface_index, bands;
341 	int error;
342 
343 	if (uaa->info.bcdDevice < 0x4330) {
344 		device_printf(dev, "device version mismatch: 0x%X "
345 		    "(only >= 43.30 supported)\n",
346 		    uaa->info.bcdDevice);
347 		return (EINVAL);
348 	}
349 
350 	device_set_usb2_desc(dev);
351 	sc->sc_dev = dev;
352 	sc->sc_udev = uaa->device;
353 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
354 
355 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
356 	    MTX_NETWORK_LOCK, MTX_DEF);
357 	STAILQ_INIT(&sc->sc_rqh);
358 
359 	iface_index = ZYD_IFACE_INDEX;
360 	error = usb2_transfer_setup(uaa->device,
361 	    &iface_index, sc->sc_xfer, zyd_config,
362 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
363 	if (error) {
364 		device_printf(dev, "could not allocate USB transfers, "
365 		    "err=%s\n", usb2_errstr(error));
366 		goto detach;
367 	}
368 
369 	ZYD_LOCK(sc);
370 	if ((error = zyd_get_macaddr(sc)) != 0) {
371 		device_printf(sc->sc_dev, "could not read EEPROM\n");
372 		ZYD_UNLOCK(sc);
373 		goto detach;
374 	}
375 	ZYD_UNLOCK(sc);
376 
377 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
378 	if (ifp == NULL) {
379 		device_printf(sc->sc_dev, "can not if_alloc()\n");
380 		goto detach;
381 	}
382 	ifp->if_softc = sc;
383 	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
384 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385 	ifp->if_init = zyd_init;
386 	ifp->if_ioctl = zyd_ioctl;
387 	ifp->if_start = zyd_start;
388 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
389 	IFQ_SET_READY(&ifp->if_snd);
390 
391 	ic = ifp->if_l2com;
392 	ic->ic_ifp = ifp;
393 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
394 	ic->ic_opmode = IEEE80211_M_STA;
395 
396 	/* set device capabilities */
397 	ic->ic_caps =
398 		  IEEE80211_C_STA		/* station mode */
399 		| IEEE80211_C_MONITOR		/* monitor mode */
400 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
401 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
402 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
403 	        | IEEE80211_C_WPA		/* 802.11i */
404 		;
405 
406 	bands = 0;
407 	setbit(&bands, IEEE80211_MODE_11B);
408 	setbit(&bands, IEEE80211_MODE_11G);
409 	ieee80211_init_channels(ic, NULL, &bands);
410 
411 	ieee80211_ifattach(ic, sc->sc_bssid);
412 	ic->ic_newassoc = zyd_newassoc;
413 	ic->ic_raw_xmit = zyd_raw_xmit;
414 	ic->ic_node_alloc = zyd_node_alloc;
415 	ic->ic_scan_start = zyd_scan_start;
416 	ic->ic_scan_end = zyd_scan_end;
417 	ic->ic_set_channel = zyd_set_channel;
418 
419 	ic->ic_vap_create = zyd_vap_create;
420 	ic->ic_vap_delete = zyd_vap_delete;
421 	ic->ic_update_mcast = zyd_update_mcast;
422 	ic->ic_update_promisc = zyd_update_mcast;
423 
424 	ieee80211_radiotap_attach(ic,
425 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
426 		ZYD_TX_RADIOTAP_PRESENT,
427 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
428 		ZYD_RX_RADIOTAP_PRESENT);
429 
430 	if (bootverbose)
431 		ieee80211_announce(ic);
432 
433 	return (0);
434 
435 detach:
436 	zyd_detach(dev);
437 	return (ENXIO);			/* failure */
438 }
439 
440 static int
441 zyd_detach(device_t dev)
442 {
443 	struct zyd_softc *sc = device_get_softc(dev);
444 	struct ifnet *ifp = sc->sc_ifp;
445 	struct ieee80211com *ic;
446 
447 	/* stop all USB transfers */
448 	usb2_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
449 
450 	/* free TX list, if any */
451 	zyd_unsetup_tx_list(sc);
452 
453 	if (ifp) {
454 		ic = ifp->if_l2com;
455 		ieee80211_ifdetach(ic);
456 		if_free(ifp);
457 	}
458 	mtx_destroy(&sc->sc_mtx);
459 
460 	return (0);
461 }
462 
463 static struct ieee80211vap *
464 zyd_vap_create(struct ieee80211com *ic,
465 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
466 	const uint8_t bssid[IEEE80211_ADDR_LEN],
467 	const uint8_t mac[IEEE80211_ADDR_LEN])
468 {
469 	struct zyd_vap *zvp;
470 	struct ieee80211vap *vap;
471 
472 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
473 		return (NULL);
474 	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
475 	    M_80211_VAP, M_NOWAIT | M_ZERO);
476 	if (zvp == NULL)
477 		return (NULL);
478 	vap = &zvp->vap;
479 	/* enable s/w bmiss handling for sta mode */
480 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
481 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
482 
483 	/* override state transition machine */
484 	zvp->newstate = vap->iv_newstate;
485 	vap->iv_newstate = zyd_newstate;
486 
487 	ieee80211_amrr_init(&zvp->amrr, vap,
488 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
489 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
490 	    1000 /* 1 sec */);
491 
492 	/* complete setup */
493 	ieee80211_vap_attach(vap, ieee80211_media_change,
494 	    ieee80211_media_status);
495 	ic->ic_opmode = opmode;
496 	return (vap);
497 }
498 
499 static void
500 zyd_vap_delete(struct ieee80211vap *vap)
501 {
502 	struct zyd_vap *zvp = ZYD_VAP(vap);
503 
504 	ieee80211_amrr_cleanup(&zvp->amrr);
505 	ieee80211_vap_detach(vap);
506 	free(zvp, M_80211_VAP);
507 }
508 
509 static void
510 zyd_tx_free(struct zyd_tx_data *data, int txerr)
511 {
512 	struct zyd_softc *sc = data->sc;
513 
514 	if (data->m != NULL) {
515 		if (data->m->m_flags & M_TXCB)
516 			ieee80211_process_callback(data->ni, data->m,
517 			    txerr ? ETIMEDOUT : 0);
518 		m_freem(data->m);
519 		data->m = NULL;
520 
521 		ieee80211_free_node(data->ni);
522 		data->ni = NULL;
523 	}
524 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
525 	sc->tx_nfree++;
526 }
527 
528 static void
529 zyd_setup_tx_list(struct zyd_softc *sc)
530 {
531 	struct zyd_tx_data *data;
532 	int i;
533 
534 	sc->tx_nfree = 0;
535 	STAILQ_INIT(&sc->tx_q);
536 	STAILQ_INIT(&sc->tx_free);
537 
538 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
539 		data = &sc->tx_data[i];
540 
541 		data->sc = sc;
542 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
543 		sc->tx_nfree++;
544 	}
545 }
546 
547 static void
548 zyd_unsetup_tx_list(struct zyd_softc *sc)
549 {
550 	struct zyd_tx_data *data;
551 	int i;
552 
553 	/* make sure any subsequent use of the queues will fail */
554 	sc->tx_nfree = 0;
555 	STAILQ_INIT(&sc->tx_q);
556 	STAILQ_INIT(&sc->tx_free);
557 
558 	/* free up all node references and mbufs */
559 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
560 		data = &sc->tx_data[i];
561 
562 		if (data->m != NULL) {
563 			m_freem(data->m);
564 			data->m = NULL;
565 		}
566 		if (data->ni != NULL) {
567 			ieee80211_free_node(data->ni);
568 			data->ni = NULL;
569 		}
570 	}
571 }
572 
573 /* ARGUSED */
574 static struct ieee80211_node *
575 zyd_node_alloc(struct ieee80211vap *vap __unused,
576 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
577 {
578 	struct zyd_node *zn;
579 
580 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
581 	return (zn != NULL) ? (&zn->ni) : (NULL);
582 }
583 
584 static int
585 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
586 {
587 	struct zyd_vap *zvp = ZYD_VAP(vap);
588 	struct ieee80211com *ic = vap->iv_ic;
589 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
590 	struct ieee80211_node *ni;
591 	int error;
592 
593 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
594 	    ieee80211_state_name[vap->iv_state],
595 	    ieee80211_state_name[nstate]);
596 
597 	IEEE80211_UNLOCK(ic);
598 	ZYD_LOCK(sc);
599 	switch (nstate) {
600 	case IEEE80211_S_AUTH:
601 		zyd_set_chan(sc, ic->ic_curchan);
602 		break;
603 	case IEEE80211_S_RUN:
604 		ni = vap->iv_bss;
605 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
606 			break;
607 
608 		/* turn link LED on */
609 		error = zyd_set_led(sc, ZYD_LED1, 1);
610 		if (error != 0)
611 			break;
612 
613 		/* make data LED blink upon Tx */
614 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
615 
616 		IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
617 		zyd_set_bssid(sc, sc->sc_bssid);
618 		break;
619 	default:
620 		break;
621 	}
622 fail:
623 	ZYD_UNLOCK(sc);
624 	IEEE80211_LOCK(ic);
625 	return (zvp->newstate(vap, nstate, arg));
626 }
627 
628 /*
629  * Callback handler for interrupt transfer
630  */
631 static void
632 zyd_intr_read_callback(struct usb2_xfer *xfer)
633 {
634 	struct zyd_softc *sc = xfer->priv_sc;
635 	struct ifnet *ifp = sc->sc_ifp;
636 	struct ieee80211com *ic = ifp->if_l2com;
637 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
638 	struct ieee80211_node *ni;
639 	struct zyd_cmd *cmd = &sc->sc_ibuf;
640 	int datalen;
641 
642 	switch (USB_GET_STATE(xfer)) {
643 	case USB_ST_TRANSFERRED:
644 		usb2_copy_out(xfer->frbuffers, 0, cmd, sizeof(*cmd));
645 
646 		switch (le16toh(cmd->code)) {
647 		case ZYD_NOTIF_RETRYSTATUS:
648 		{
649 			struct zyd_notif_retry *retry =
650 			    (struct zyd_notif_retry *)cmd->data;
651 
652 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
653 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
654 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
655 			    le16toh(retry->count)&0xff, le16toh(retry->count));
656 
657 			/*
658 			 * Find the node to which the packet was sent and
659 			 * update its retry statistics.  In BSS mode, this node
660 			 * is the AP we're associated to so no lookup is
661 			 * actually needed.
662 			 */
663 			ni = ieee80211_find_txnode(vap, retry->macaddr);
664 			if (ni != NULL) {
665 				ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
666 				    IEEE80211_AMRR_FAILURE, 1);
667 				ieee80211_free_node(ni);
668 			}
669 			if (le16toh(retry->count) & 0x100)
670 				ifp->if_oerrors++;	/* too many retries */
671 			break;
672 		}
673 		case ZYD_NOTIF_IORD:
674 		{
675 			struct zyd_rq *rqp;
676 
677 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
678 				break;	/* HMAC interrupt */
679 
680 			datalen = xfer->actlen - sizeof(cmd->code);
681 			datalen -= 2;	/* XXX: padding? */
682 
683 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
684 				int i, cnt;
685 
686 				if (rqp->olen != datalen)
687 					continue;
688 				cnt = rqp->olen / sizeof(struct zyd_pair);
689 				for (i = 0; i < cnt; i++) {
690 					if (*(((const uint16_t *)rqp->idata) + i) !=
691 					    (((struct zyd_pair *)cmd->data) + i)->reg)
692 						break;
693 				}
694 				if (i != cnt)
695 					continue;
696 				/* copy answer into caller-supplied buffer */
697 				bcopy(cmd->data, rqp->odata, rqp->olen);
698 				DPRINTF(sc, ZYD_DEBUG_CMD,
699 				    "command %p complete, data = %*D \n",
700 				    rqp, rqp->olen, rqp->odata, ":");
701 				wakeup(rqp);	/* wakeup caller */
702 				break;
703 			}
704 			if (rqp == NULL) {
705 				device_printf(sc->sc_dev,
706 				    "unexpected IORD notification %*D\n",
707 				    datalen, cmd->data, ":");
708 			}
709 			break;
710 		}
711 		default:
712 			device_printf(sc->sc_dev, "unknown notification %x\n",
713 			    le16toh(cmd->code));
714 		}
715 
716 		/* FALLTHROUGH */
717 	case USB_ST_SETUP:
718 tr_setup:
719 		xfer->frlengths[0] = xfer->max_data_length;
720 		usb2_start_hardware(xfer);
721 		break;
722 
723 	default:			/* Error */
724 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
725 		    usb2_errstr(xfer->error));
726 
727 		if (xfer->error != USB_ERR_CANCELLED) {
728 			/* try to clear stall first */
729 			xfer->flags.stall_pipe = 1;
730 			goto tr_setup;
731 		}
732 		break;
733 	}
734 }
735 
736 static void
737 zyd_intr_write_callback(struct usb2_xfer *xfer)
738 {
739 	struct zyd_softc *sc = xfer->priv_sc;
740 	struct zyd_rq *rqp;
741 
742 	switch (USB_GET_STATE(xfer)) {
743 	case USB_ST_TRANSFERRED:
744 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n",
745 		    xfer->priv_fifo);
746 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
747 			/* Ensure the cached rq pointer is still valid */
748 			if (rqp == xfer->priv_fifo &&
749 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
750 				wakeup(rqp);	/* wakeup caller */
751 		}
752 
753 		/* FALLTHROUGH */
754 	case USB_ST_SETUP:
755 tr_setup:
756 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
757 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
758 				continue;
759 
760 			usb2_copy_in(xfer->frbuffers, 0, rqp->cmd, rqp->ilen);
761 
762 			xfer->frlengths[0] = rqp->ilen;
763 			xfer->priv_fifo = rqp;
764 			rqp->flags |= ZYD_CMD_FLAG_SENT;
765 			usb2_start_hardware(xfer);
766 			break;
767 		}
768 		break;
769 
770 	default:			/* Error */
771 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
772 		    usb2_errstr(xfer->error));
773 
774 		if (xfer->error != USB_ERR_CANCELLED) {
775 			/* try to clear stall first */
776 			xfer->flags.stall_pipe = 1;
777 			goto tr_setup;
778 		}
779 		break;
780 	}
781 }
782 
783 static int
784 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
785     void *odata, int olen, int flags)
786 {
787 	struct zyd_cmd cmd;
788 	struct zyd_rq rq;
789 	int error;
790 
791 	if (ilen > sizeof(cmd.data))
792 		return (EINVAL);
793 
794 	cmd.code = htole16(code);
795 	bcopy(idata, cmd.data, ilen);
796 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
797 	    &rq, ilen, idata, ":");
798 
799 	rq.cmd = &cmd;
800 	rq.idata = idata;
801 	rq.odata = odata;
802 	rq.ilen = sizeof(uint16_t) + ilen;
803 	rq.olen = olen;
804 	rq.flags = flags;
805 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
806 	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
807 	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
808 
809 	/* wait at most one second for command reply */
810 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
811 	if (error)
812 		device_printf(sc->sc_dev, "command timeout\n");
813 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
814 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
815 	    &rq, error);
816 
817 	return (error);
818 }
819 
820 static int
821 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
822 {
823 	struct zyd_pair tmp;
824 	int error;
825 
826 	reg = htole16(reg);
827 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
828 	    ZYD_CMD_FLAG_READ);
829 	if (error == 0)
830 		*val = le16toh(tmp.val);
831 	return (error);
832 }
833 
834 static int
835 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
836 {
837 	struct zyd_pair tmp[2];
838 	uint16_t regs[2];
839 	int error;
840 
841 	regs[0] = htole16(ZYD_REG32_HI(reg));
842 	regs[1] = htole16(ZYD_REG32_LO(reg));
843 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
844 	    ZYD_CMD_FLAG_READ);
845 	if (error == 0)
846 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
847 	return (error);
848 }
849 
850 static int
851 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
852 {
853 	struct zyd_pair pair;
854 
855 	pair.reg = htole16(reg);
856 	pair.val = htole16(val);
857 
858 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
859 }
860 
861 static int
862 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
863 {
864 	struct zyd_pair pair[2];
865 
866 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
867 	pair[0].val = htole16(val >> 16);
868 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
869 	pair[1].val = htole16(val & 0xffff);
870 
871 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
872 }
873 
874 static int
875 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
876 {
877 	struct zyd_rf *rf = &sc->sc_rf;
878 	struct zyd_rfwrite_cmd req;
879 	uint16_t cr203;
880 	int error, i;
881 
882 	zyd_read16_m(sc, ZYD_CR203, &cr203);
883 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
884 
885 	req.code  = htole16(2);
886 	req.width = htole16(rf->width);
887 	for (i = 0; i < rf->width; i++) {
888 		req.bit[i] = htole16(cr203);
889 		if (val & (1 << (rf->width - 1 - i)))
890 			req.bit[i] |= htole16(ZYD_RF_DATA);
891 	}
892 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
893 fail:
894 	return (error);
895 }
896 
897 static int
898 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
899 {
900 	int error;
901 
902 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
903 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
904 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
905 fail:
906 	return (error);
907 }
908 
909 static int
910 zyd_lock_phy(struct zyd_softc *sc)
911 {
912 	int error;
913 	uint32_t tmp;
914 
915 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
916 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
917 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
918 fail:
919 	return (error);
920 }
921 
922 static int
923 zyd_unlock_phy(struct zyd_softc *sc)
924 {
925 	int error;
926 	uint32_t tmp;
927 
928 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
929 	tmp |= ZYD_UNLOCK_PHY_REGS;
930 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
931 fail:
932 	return (error);
933 }
934 
935 /*
936  * RFMD RF methods.
937  */
938 static int
939 zyd_rfmd_init(struct zyd_rf *rf)
940 {
941 #define N(a)	(sizeof(a) / sizeof((a)[0]))
942 	struct zyd_softc *sc = rf->rf_sc;
943 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
944 	static const uint32_t rfini[] = ZYD_RFMD_RF;
945 	int i, error;
946 
947 	/* init RF-dependent PHY registers */
948 	for (i = 0; i < N(phyini); i++) {
949 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
950 	}
951 
952 	/* init RFMD radio */
953 	for (i = 0; i < N(rfini); i++) {
954 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
955 			return (error);
956 	}
957 fail:
958 	return (error);
959 #undef N
960 }
961 
962 static int
963 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
964 {
965 	int error;
966 	struct zyd_softc *sc = rf->rf_sc;
967 
968 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
969 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
970 fail:
971 	return (error);
972 }
973 
974 static int
975 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
976 {
977 	int error;
978 	struct zyd_softc *sc = rf->rf_sc;
979 	static const struct {
980 		uint32_t	r1, r2;
981 	} rfprog[] = ZYD_RFMD_CHANTABLE;
982 
983 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
984 	if (error != 0)
985 		goto fail;
986 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
987 	if (error != 0)
988 		goto fail;
989 
990 fail:
991 	return (error);
992 }
993 
994 /*
995  * AL2230 RF methods.
996  */
997 static int
998 zyd_al2230_init(struct zyd_rf *rf)
999 {
1000 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1001 	struct zyd_softc *sc = rf->rf_sc;
1002 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1003 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1004 	static const struct zyd_phy_pair phypll[] = {
1005 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1006 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1007 	};
1008 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1009 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1010 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1011 	int i, error;
1012 
1013 	/* init RF-dependent PHY registers */
1014 	for (i = 0; i < N(phyini); i++)
1015 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1016 
1017 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1018 		for (i = 0; i < N(phy2230s); i++)
1019 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1020 	}
1021 
1022 	/* init AL2230 radio */
1023 	for (i = 0; i < N(rfini1); i++) {
1024 		error = zyd_rfwrite(sc, rfini1[i]);
1025 		if (error != 0)
1026 			goto fail;
1027 	}
1028 
1029 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1030 		error = zyd_rfwrite(sc, 0x000824);
1031 	else
1032 		error = zyd_rfwrite(sc, 0x0005a4);
1033 	if (error != 0)
1034 		goto fail;
1035 
1036 	for (i = 0; i < N(rfini2); i++) {
1037 		error = zyd_rfwrite(sc, rfini2[i]);
1038 		if (error != 0)
1039 			goto fail;
1040 	}
1041 
1042 	for (i = 0; i < N(phypll); i++)
1043 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1044 
1045 	for (i = 0; i < N(rfini3); i++) {
1046 		error = zyd_rfwrite(sc, rfini3[i]);
1047 		if (error != 0)
1048 			goto fail;
1049 	}
1050 fail:
1051 	return (error);
1052 #undef N
1053 }
1054 
1055 static int
1056 zyd_al2230_fini(struct zyd_rf *rf)
1057 {
1058 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1059 	int error, i;
1060 	struct zyd_softc *sc = rf->rf_sc;
1061 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1062 
1063 	for (i = 0; i < N(phy); i++)
1064 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1065 
1066 	if (sc->sc_newphy != 0)
1067 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1068 
1069 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1070 fail:
1071 	return (error);
1072 #undef N
1073 }
1074 
1075 static int
1076 zyd_al2230_init_b(struct zyd_rf *rf)
1077 {
1078 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1079 	struct zyd_softc *sc = rf->rf_sc;
1080 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1081 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1082 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1083 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1084 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1085 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1086 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1087 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1088 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1089 	int i, error;
1090 
1091 	for (i = 0; i < N(phy1); i++)
1092 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1093 
1094 	/* init RF-dependent PHY registers */
1095 	for (i = 0; i < N(phyini); i++)
1096 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1097 
1098 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1099 		for (i = 0; i < N(phy2230s); i++)
1100 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1101 	}
1102 
1103 	for (i = 0; i < 3; i++) {
1104 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1105 		if (error != 0)
1106 			return (error);
1107 	}
1108 
1109 	for (i = 0; i < N(rfini_part1); i++) {
1110 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1111 		if (error != 0)
1112 			return (error);
1113 	}
1114 
1115 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1116 		error = zyd_rfwrite(sc, 0x241000);
1117 	else
1118 		error = zyd_rfwrite(sc, 0x25a000);
1119 	if (error != 0)
1120 		goto fail;
1121 
1122 	for (i = 0; i < N(rfini_part2); i++) {
1123 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1124 		if (error != 0)
1125 			return (error);
1126 	}
1127 
1128 	for (i = 0; i < N(phy2); i++)
1129 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1130 
1131 	for (i = 0; i < N(rfini_part3); i++) {
1132 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1133 		if (error != 0)
1134 			return (error);
1135 	}
1136 
1137 	for (i = 0; i < N(phy3); i++)
1138 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1139 
1140 	error = zyd_al2230_fini(rf);
1141 fail:
1142 	return (error);
1143 #undef N
1144 }
1145 
1146 static int
1147 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1148 {
1149 	struct zyd_softc *sc = rf->rf_sc;
1150 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1151 
1152 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1153 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1154 fail:
1155 	return (error);
1156 }
1157 
1158 static int
1159 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1160 {
1161 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1162 	int error, i;
1163 	struct zyd_softc *sc = rf->rf_sc;
1164 	static const struct zyd_phy_pair phy1[] = {
1165 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1166 	};
1167 	static const struct {
1168 		uint32_t	r1, r2, r3;
1169 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1170 
1171 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1172 	if (error != 0)
1173 		goto fail;
1174 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1175 	if (error != 0)
1176 		goto fail;
1177 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1178 	if (error != 0)
1179 		goto fail;
1180 
1181 	for (i = 0; i < N(phy1); i++)
1182 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1183 fail:
1184 	return (error);
1185 #undef N
1186 }
1187 
1188 static int
1189 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1190 {
1191 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1192 	int error, i;
1193 	struct zyd_softc *sc = rf->rf_sc;
1194 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1195 	static const struct {
1196 		uint32_t	r1, r2, r3;
1197 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1198 
1199 	for (i = 0; i < N(phy1); i++)
1200 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1201 
1202 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1203 	if (error != 0)
1204 		goto fail;
1205 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1206 	if (error != 0)
1207 		goto fail;
1208 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1209 	if (error != 0)
1210 		goto fail;
1211 	error = zyd_al2230_fini(rf);
1212 fail:
1213 	return (error);
1214 #undef N
1215 }
1216 
1217 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1218 {									\
1219 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1220 	{ ZYD_CR47,  0x1e }						\
1221 }
1222 
1223 static int
1224 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1225 {
1226 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1227 	int error = 0, i;
1228 	struct zyd_softc *sc = rf->rf_sc;
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct ieee80211com *ic = ifp->if_l2com;
1231 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1232 	int chan = ieee80211_chan2ieee(ic, c);
1233 
1234 	if (chan == 1 || chan == 11)
1235 		r[0].val = 0x12;
1236 
1237 	for (i = 0; i < N(r); i++)
1238 		zyd_write16_m(sc, r[i].reg, r[i].val);
1239 fail:
1240 	return (error);
1241 #undef N
1242 }
1243 
1244 /*
1245  * AL7230B RF methods.
1246  */
1247 static int
1248 zyd_al7230B_init(struct zyd_rf *rf)
1249 {
1250 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1251 	struct zyd_softc *sc = rf->rf_sc;
1252 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1253 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1254 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1255 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1256 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1257 	int i, error;
1258 
1259 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1260 
1261 	/* init RF-dependent PHY registers, part one */
1262 	for (i = 0; i < N(phyini_1); i++)
1263 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1264 
1265 	/* init AL7230B radio, part one */
1266 	for (i = 0; i < N(rfini_1); i++) {
1267 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1268 			return (error);
1269 	}
1270 	/* init RF-dependent PHY registers, part two */
1271 	for (i = 0; i < N(phyini_2); i++)
1272 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1273 
1274 	/* init AL7230B radio, part two */
1275 	for (i = 0; i < N(rfini_2); i++) {
1276 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1277 			return (error);
1278 	}
1279 	/* init RF-dependent PHY registers, part three */
1280 	for (i = 0; i < N(phyini_3); i++)
1281 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1282 fail:
1283 	return (error);
1284 #undef N
1285 }
1286 
1287 static int
1288 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1289 {
1290 	int error;
1291 	struct zyd_softc *sc = rf->rf_sc;
1292 
1293 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1294 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1295 fail:
1296 	return (error);
1297 }
1298 
1299 static int
1300 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1301 {
1302 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1303 	struct zyd_softc *sc = rf->rf_sc;
1304 	static const struct {
1305 		uint32_t	r1, r2;
1306 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1307 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1308 	int i, error;
1309 
1310 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1311 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1312 
1313 	for (i = 0; i < N(rfsc); i++) {
1314 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1315 			return (error);
1316 	}
1317 
1318 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1319 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1320 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1321 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1322 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1323 
1324 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1325 	if (error != 0)
1326 		goto fail;
1327 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1328 	if (error != 0)
1329 		goto fail;
1330 	error = zyd_rfwrite(sc, 0x3c9000);
1331 	if (error != 0)
1332 		goto fail;
1333 
1334 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1335 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1336 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1337 fail:
1338 	return (error);
1339 #undef N
1340 }
1341 
1342 /*
1343  * AL2210 RF methods.
1344  */
1345 static int
1346 zyd_al2210_init(struct zyd_rf *rf)
1347 {
1348 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1349 	struct zyd_softc *sc = rf->rf_sc;
1350 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1351 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1352 	uint32_t tmp;
1353 	int i, error;
1354 
1355 	zyd_write32_m(sc, ZYD_CR18, 2);
1356 
1357 	/* init RF-dependent PHY registers */
1358 	for (i = 0; i < N(phyini); i++)
1359 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1360 
1361 	/* init AL2210 radio */
1362 	for (i = 0; i < N(rfini); i++) {
1363 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1364 			return (error);
1365 	}
1366 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1367 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1368 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1369 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1370 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1371 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1372 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1373 	zyd_write32_m(sc, ZYD_CR18, 3);
1374 fail:
1375 	return (error);
1376 #undef N
1377 }
1378 
1379 static int
1380 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1381 {
1382 	/* vendor driver does nothing for this RF chip */
1383 
1384 	return (0);
1385 }
1386 
1387 static int
1388 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1389 {
1390 	int error;
1391 	struct zyd_softc *sc = rf->rf_sc;
1392 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1393 	uint32_t tmp;
1394 
1395 	zyd_write32_m(sc, ZYD_CR18, 2);
1396 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1397 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1398 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1399 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1400 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1401 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1402 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1403 
1404 	/* actually set the channel */
1405 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1406 	if (error != 0)
1407 		goto fail;
1408 
1409 	zyd_write32_m(sc, ZYD_CR18, 3);
1410 fail:
1411 	return (error);
1412 }
1413 
1414 /*
1415  * GCT RF methods.
1416  */
1417 static int
1418 zyd_gct_init(struct zyd_rf *rf)
1419 {
1420 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1421 	struct zyd_softc *sc = rf->rf_sc;
1422 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1423 	static const uint32_t rfini[] = ZYD_GCT_RF;
1424 	int i, error;
1425 
1426 	/* init RF-dependent PHY registers */
1427 	for (i = 0; i < N(phyini); i++)
1428 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1429 
1430 	/* init cgt radio */
1431 	for (i = 0; i < N(rfini); i++) {
1432 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1433 			return (error);
1434 	}
1435 fail:
1436 	return (error);
1437 #undef N
1438 }
1439 
1440 static int
1441 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1442 {
1443 	/* vendor driver does nothing for this RF chip */
1444 
1445 	return (0);
1446 }
1447 
1448 static int
1449 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1450 {
1451 	int error;
1452 	struct zyd_softc *sc = rf->rf_sc;
1453 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1454 
1455 	error = zyd_rfwrite(sc, 0x1c0000);
1456 	if (error != 0)
1457 		goto fail;
1458 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1459 	if (error != 0)
1460 		goto fail;
1461 	error = zyd_rfwrite(sc, 0x1c0008);
1462 fail:
1463 	return (error);
1464 }
1465 
1466 /*
1467  * Maxim RF methods.
1468  */
1469 static int
1470 zyd_maxim_init(struct zyd_rf *rf)
1471 {
1472 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1473 	struct zyd_softc *sc = rf->rf_sc;
1474 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1475 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1476 	uint16_t tmp;
1477 	int i, error;
1478 
1479 	/* init RF-dependent PHY registers */
1480 	for (i = 0; i < N(phyini); i++)
1481 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1482 
1483 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1484 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1485 
1486 	/* init maxim radio */
1487 	for (i = 0; i < N(rfini); i++) {
1488 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1489 			return (error);
1490 	}
1491 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1492 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1493 fail:
1494 	return (error);
1495 #undef N
1496 }
1497 
1498 static int
1499 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1500 {
1501 
1502 	/* vendor driver does nothing for this RF chip */
1503 	return (0);
1504 }
1505 
1506 static int
1507 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1508 {
1509 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1510 	struct zyd_softc *sc = rf->rf_sc;
1511 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1512 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1513 	static const struct {
1514 		uint32_t	r1, r2;
1515 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1516 	uint16_t tmp;
1517 	int i, error;
1518 
1519 	/*
1520 	 * Do the same as we do when initializing it, except for the channel
1521 	 * values coming from the two channel tables.
1522 	 */
1523 
1524 	/* init RF-dependent PHY registers */
1525 	for (i = 0; i < N(phyini); i++)
1526 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1527 
1528 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1529 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1530 
1531 	/* first two values taken from the chantables */
1532 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1533 	if (error != 0)
1534 		goto fail;
1535 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1536 	if (error != 0)
1537 		goto fail;
1538 
1539 	/* init maxim radio - skipping the two first values */
1540 	for (i = 2; i < N(rfini); i++) {
1541 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1542 			return (error);
1543 	}
1544 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1545 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1546 fail:
1547 	return (error);
1548 #undef N
1549 }
1550 
1551 /*
1552  * Maxim2 RF methods.
1553  */
1554 static int
1555 zyd_maxim2_init(struct zyd_rf *rf)
1556 {
1557 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1558 	struct zyd_softc *sc = rf->rf_sc;
1559 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1560 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1561 	uint16_t tmp;
1562 	int i, error;
1563 
1564 	/* init RF-dependent PHY registers */
1565 	for (i = 0; i < N(phyini); i++)
1566 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1567 
1568 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1569 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1570 
1571 	/* init maxim2 radio */
1572 	for (i = 0; i < N(rfini); i++) {
1573 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1574 			return (error);
1575 	}
1576 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1577 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1578 fail:
1579 	return (error);
1580 #undef N
1581 }
1582 
1583 static int
1584 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1585 {
1586 
1587 	/* vendor driver does nothing for this RF chip */
1588 	return (0);
1589 }
1590 
1591 static int
1592 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1593 {
1594 #define N(a)	(sizeof(a) / sizeof((a)[0]))
1595 	struct zyd_softc *sc = rf->rf_sc;
1596 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1597 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1598 	static const struct {
1599 		uint32_t	r1, r2;
1600 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1601 	uint16_t tmp;
1602 	int i, error;
1603 
1604 	/*
1605 	 * Do the same as we do when initializing it, except for the channel
1606 	 * values coming from the two channel tables.
1607 	 */
1608 
1609 	/* init RF-dependent PHY registers */
1610 	for (i = 0; i < N(phyini); i++)
1611 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1612 
1613 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1614 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1615 
1616 	/* first two values taken from the chantables */
1617 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1618 	if (error != 0)
1619 		goto fail;
1620 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1621 	if (error != 0)
1622 		goto fail;
1623 
1624 	/* init maxim2 radio - skipping the two first values */
1625 	for (i = 2; i < N(rfini); i++) {
1626 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1627 			return (error);
1628 	}
1629 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1630 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1631 fail:
1632 	return (error);
1633 #undef N
1634 }
1635 
1636 static int
1637 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1638 {
1639 	struct zyd_rf *rf = &sc->sc_rf;
1640 
1641 	rf->rf_sc = sc;
1642 
1643 	switch (type) {
1644 	case ZYD_RF_RFMD:
1645 		rf->init         = zyd_rfmd_init;
1646 		rf->switch_radio = zyd_rfmd_switch_radio;
1647 		rf->set_channel  = zyd_rfmd_set_channel;
1648 		rf->width        = 24;	/* 24-bit RF values */
1649 		break;
1650 	case ZYD_RF_AL2230:
1651 	case ZYD_RF_AL2230S:
1652 		if (sc->sc_macrev == ZYD_ZD1211B) {
1653 			rf->init = zyd_al2230_init_b;
1654 			rf->set_channel = zyd_al2230_set_channel_b;
1655 		} else {
1656 			rf->init = zyd_al2230_init;
1657 			rf->set_channel = zyd_al2230_set_channel;
1658 		}
1659 		rf->switch_radio = zyd_al2230_switch_radio;
1660 		rf->bandedge6	 = zyd_al2230_bandedge6;
1661 		rf->width        = 24;	/* 24-bit RF values */
1662 		break;
1663 	case ZYD_RF_AL7230B:
1664 		rf->init         = zyd_al7230B_init;
1665 		rf->switch_radio = zyd_al7230B_switch_radio;
1666 		rf->set_channel  = zyd_al7230B_set_channel;
1667 		rf->width        = 24;	/* 24-bit RF values */
1668 		break;
1669 	case ZYD_RF_AL2210:
1670 		rf->init         = zyd_al2210_init;
1671 		rf->switch_radio = zyd_al2210_switch_radio;
1672 		rf->set_channel  = zyd_al2210_set_channel;
1673 		rf->width        = 24;	/* 24-bit RF values */
1674 		break;
1675 	case ZYD_RF_GCT:
1676 		rf->init         = zyd_gct_init;
1677 		rf->switch_radio = zyd_gct_switch_radio;
1678 		rf->set_channel  = zyd_gct_set_channel;
1679 		rf->width        = 21;	/* 21-bit RF values */
1680 		break;
1681 	case ZYD_RF_MAXIM_NEW:
1682 		rf->init         = zyd_maxim_init;
1683 		rf->switch_radio = zyd_maxim_switch_radio;
1684 		rf->set_channel  = zyd_maxim_set_channel;
1685 		rf->width        = 18;	/* 18-bit RF values */
1686 		break;
1687 	case ZYD_RF_MAXIM_NEW2:
1688 		rf->init         = zyd_maxim2_init;
1689 		rf->switch_radio = zyd_maxim2_switch_radio;
1690 		rf->set_channel  = zyd_maxim2_set_channel;
1691 		rf->width        = 18;	/* 18-bit RF values */
1692 		break;
1693 	default:
1694 		device_printf(sc->sc_dev,
1695 		    "sorry, radio \"%s\" is not supported yet\n",
1696 		    zyd_rf_name(type));
1697 		return (EINVAL);
1698 	}
1699 	return (0);
1700 }
1701 
1702 static const char *
1703 zyd_rf_name(uint8_t type)
1704 {
1705 	static const char * const zyd_rfs[] = {
1706 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1707 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1708 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1709 		"PHILIPS"
1710 	};
1711 
1712 	return zyd_rfs[(type > 15) ? 0 : type];
1713 }
1714 
1715 static int
1716 zyd_hw_init(struct zyd_softc *sc)
1717 {
1718 	int error;
1719 	const struct zyd_phy_pair *phyp;
1720 	struct zyd_rf *rf = &sc->sc_rf;
1721 	uint16_t val;
1722 
1723 	/* specify that the plug and play is finished */
1724 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1725 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1726 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1727 	    sc->sc_fwbase);
1728 
1729 	/* retrieve firmware revision number */
1730 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1731 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1732 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1733 	/* set mandatory rates - XXX assumes 802.11b/g */
1734 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1735 
1736 	/* disable interrupts */
1737 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1738 
1739 	if ((error = zyd_read_pod(sc)) != 0) {
1740 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1741 		goto fail;
1742 	}
1743 
1744 	/* PHY init (resetting) */
1745 	error = zyd_lock_phy(sc);
1746 	if (error != 0)
1747 		goto fail;
1748 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1749 	for (; phyp->reg != 0; phyp++)
1750 		zyd_write16_m(sc, phyp->reg, phyp->val);
1751 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1752 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1753 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1754 	}
1755 	error = zyd_unlock_phy(sc);
1756 	if (error != 0)
1757 		goto fail;
1758 
1759 	/* HMAC init */
1760 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1761 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1762 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1763 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1764 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1765 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1766 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1767 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1768 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1769 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1770 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1771 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1772 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1773 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1774 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1775 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1776 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1777 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1778 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1779 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1780 
1781 	if (sc->sc_macrev == ZYD_ZD1211) {
1782 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1783 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1784 	} else {
1785 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1786 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1787 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1788 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1789 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1790 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1791 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1792 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1793 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1794 	}
1795 
1796 	/* init beacon interval to 100ms */
1797 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1798 		goto fail;
1799 
1800 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1801 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1802 		    sc->sc_rfrev);
1803 		goto fail;
1804 	}
1805 
1806 	/* RF chip init */
1807 	error = zyd_lock_phy(sc);
1808 	if (error != 0)
1809 		goto fail;
1810 	error = (*rf->init)(rf);
1811 	if (error != 0) {
1812 		device_printf(sc->sc_dev,
1813 		    "radio initialization failed, error %d\n", error);
1814 		goto fail;
1815 	}
1816 	error = zyd_unlock_phy(sc);
1817 	if (error != 0)
1818 		goto fail;
1819 
1820 	if ((error = zyd_read_eeprom(sc)) != 0) {
1821 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1822 		goto fail;
1823 	}
1824 
1825 fail:	return (error);
1826 }
1827 
1828 static int
1829 zyd_read_pod(struct zyd_softc *sc)
1830 {
1831 	int error;
1832 	uint32_t tmp;
1833 
1834 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1835 	sc->sc_rfrev     = tmp & 0x0f;
1836 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1837 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1838 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1839 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1840 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1841 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1842 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1843 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1844 fail:
1845 	return (error);
1846 }
1847 
1848 static int
1849 zyd_read_eeprom(struct zyd_softc *sc)
1850 {
1851 	uint16_t val;
1852 	int error, i;
1853 
1854 	/* read Tx power calibration tables */
1855 	for (i = 0; i < 7; i++) {
1856 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1857 		sc->sc_pwrcal[i * 2] = val >> 8;
1858 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1859 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1860 		sc->sc_pwrint[i * 2] = val >> 8;
1861 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1862 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1863 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1864 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1865 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1866 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1867 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1868 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1869 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1870 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1871 	}
1872 fail:
1873 	return (error);
1874 }
1875 
1876 static int
1877 zyd_get_macaddr(struct zyd_softc *sc)
1878 {
1879 	struct usb2_device_request req;
1880 	usb2_error_t error;
1881 
1882 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1883 	req.bRequest = ZYD_READFWDATAREQ;
1884 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1885 	USETW(req.wIndex, 0);
1886 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1887 
1888 	error = zyd_do_request(sc, &req, sc->sc_bssid);
1889 	if (error != 0) {
1890 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1891 		    usb2_errstr(error));
1892 	}
1893 
1894 	return (error);
1895 }
1896 
1897 static int
1898 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1899 {
1900 	int error;
1901 	uint32_t tmp;
1902 
1903 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1904 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1905 	tmp = addr[5] << 8 | addr[4];
1906 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1907 fail:
1908 	return (error);
1909 }
1910 
1911 static int
1912 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1913 {
1914 	int error;
1915 	uint32_t tmp;
1916 
1917 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1918 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1919 	tmp = addr[5] << 8 | addr[4];
1920 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1921 fail:
1922 	return (error);
1923 }
1924 
1925 static int
1926 zyd_switch_radio(struct zyd_softc *sc, int on)
1927 {
1928 	struct zyd_rf *rf = &sc->sc_rf;
1929 	int error;
1930 
1931 	error = zyd_lock_phy(sc);
1932 	if (error != 0)
1933 		goto fail;
1934 	error = (*rf->switch_radio)(rf, on);
1935 	if (error != 0)
1936 		goto fail;
1937 	error = zyd_unlock_phy(sc);
1938 fail:
1939 	return (error);
1940 }
1941 
1942 static int
1943 zyd_set_led(struct zyd_softc *sc, int which, int on)
1944 {
1945 	int error;
1946 	uint32_t tmp;
1947 
1948 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1949 	tmp &= ~which;
1950 	if (on)
1951 		tmp |= which;
1952 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1953 fail:
1954 	return (error);
1955 }
1956 
1957 static void
1958 zyd_set_multi(struct zyd_softc *sc)
1959 {
1960 	int error;
1961 	struct ifnet *ifp = sc->sc_ifp;
1962 	struct ieee80211com *ic = ifp->if_l2com;
1963 	struct ifmultiaddr *ifma;
1964 	uint32_t low, high;
1965 	uint8_t v;
1966 
1967 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1968 		return;
1969 
1970 	low = 0x00000000;
1971 	high = 0x80000000;
1972 
1973 	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
1974 	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
1975 		low = 0xffffffff;
1976 		high = 0xffffffff;
1977 	} else {
1978 		IF_ADDR_LOCK(ifp);
1979 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1980 			if (ifma->ifma_addr->sa_family != AF_LINK)
1981 				continue;
1982 			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
1983 			    ifma->ifma_addr))[5] >> 2;
1984 			if (v < 32)
1985 				low |= 1 << v;
1986 			else
1987 				high |= 1 << (v - 32);
1988 		}
1989 		IF_ADDR_UNLOCK(ifp);
1990 	}
1991 
1992 	/* reprogram multicast global hash table */
1993 	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
1994 	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
1995 fail:
1996 	if (error != 0)
1997 		device_printf(sc->sc_dev,
1998 		    "could not set multicast hash table\n");
1999 }
2000 
2001 static void
2002 zyd_update_mcast(struct ifnet *ifp)
2003 {
2004 	struct zyd_softc *sc = ifp->if_softc;
2005 
2006 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2007 		return;
2008 
2009 	ZYD_LOCK(sc);
2010 	zyd_set_multi(sc);
2011 	ZYD_UNLOCK(sc);
2012 }
2013 
2014 static int
2015 zyd_set_rxfilter(struct zyd_softc *sc)
2016 {
2017 	struct ifnet *ifp = sc->sc_ifp;
2018 	struct ieee80211com *ic = ifp->if_l2com;
2019 	uint32_t rxfilter;
2020 
2021 	switch (ic->ic_opmode) {
2022 	case IEEE80211_M_STA:
2023 		rxfilter = ZYD_FILTER_BSS;
2024 		break;
2025 	case IEEE80211_M_IBSS:
2026 	case IEEE80211_M_HOSTAP:
2027 		rxfilter = ZYD_FILTER_HOSTAP;
2028 		break;
2029 	case IEEE80211_M_MONITOR:
2030 		rxfilter = ZYD_FILTER_MONITOR;
2031 		break;
2032 	default:
2033 		/* should not get there */
2034 		return (EINVAL);
2035 	}
2036 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2037 }
2038 
2039 static void
2040 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2041 {
2042 	int error;
2043 	struct ifnet *ifp = sc->sc_ifp;
2044 	struct ieee80211com *ic = ifp->if_l2com;
2045 	struct zyd_rf *rf = &sc->sc_rf;
2046 	uint32_t tmp;
2047 	int chan;
2048 
2049 	chan = ieee80211_chan2ieee(ic, c);
2050 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2051 		/* XXX should NEVER happen */
2052 		device_printf(sc->sc_dev,
2053 		    "%s: invalid channel %x\n", __func__, chan);
2054 		return;
2055 	}
2056 
2057 	error = zyd_lock_phy(sc);
2058 	if (error != 0)
2059 		goto fail;
2060 
2061 	error = (*rf->set_channel)(rf, chan);
2062 	if (error != 0)
2063 		goto fail;
2064 
2065 	/* update Tx power */
2066 	zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2067 
2068 	if (sc->sc_macrev == ZYD_ZD1211B) {
2069 		zyd_write16_m(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]);
2070 		zyd_write16_m(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]);
2071 		zyd_write16_m(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]);
2072 		zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2073 		zyd_write16_m(sc, ZYD_CR69, 0x28);
2074 		zyd_write16_m(sc, ZYD_CR69, 0x2a);
2075 	}
2076 	if (sc->sc_cckgain) {
2077 		/* set CCK baseband gain from EEPROM */
2078 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2079 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2080 	}
2081 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2082 		error = (*rf->bandedge6)(rf, c);
2083 		if (error != 0)
2084 			goto fail;
2085 	}
2086 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2087 
2088 	error = zyd_unlock_phy(sc);
2089 	if (error != 0)
2090 		goto fail;
2091 
2092 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2093 	    htole16(c->ic_freq);
2094 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2095 	    htole16(c->ic_flags);
2096 fail:
2097 	return;
2098 }
2099 
2100 static int
2101 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2102 {
2103 	int error;
2104 	uint32_t val;
2105 
2106 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2107 	sc->sc_atim_wnd = val;
2108 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2109 	sc->sc_pre_tbtt = val;
2110 	sc->sc_bcn_int = bintval;
2111 
2112 	if (sc->sc_bcn_int <= 5)
2113 		sc->sc_bcn_int = 5;
2114 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2115 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2116 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2117 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2118 
2119 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2120 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2121 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2122 fail:
2123 	return (error);
2124 }
2125 
2126 static void
2127 zyd_rx_data(struct usb2_xfer *xfer, int offset, uint16_t len)
2128 {
2129 	struct zyd_softc *sc = xfer->priv_sc;
2130 	struct ifnet *ifp = sc->sc_ifp;
2131 	struct ieee80211com *ic = ifp->if_l2com;
2132 	struct zyd_plcphdr plcp;
2133 	struct zyd_rx_stat stat;
2134 	struct mbuf *m;
2135 	int rlen, rssi;
2136 
2137 	if (len < ZYD_MIN_FRAGSZ) {
2138 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2139 		    device_get_nameunit(sc->sc_dev), len);
2140 		ifp->if_ierrors++;
2141 		return;
2142 	}
2143 	usb2_copy_out(xfer->frbuffers, offset, &plcp, sizeof(plcp));
2144 	usb2_copy_out(xfer->frbuffers, offset + len - sizeof(stat),
2145 	    &stat, sizeof(stat));
2146 
2147 	if (stat.flags & ZYD_RX_ERROR) {
2148 		DPRINTF(sc, ZYD_DEBUG_RECV,
2149 		    "%s: RX status indicated error (%x)\n",
2150 		    device_get_nameunit(sc->sc_dev), stat.flags);
2151 		ifp->if_ierrors++;
2152 		return;
2153 	}
2154 
2155 	/* compute actual frame length */
2156 	rlen = len - sizeof(struct zyd_plcphdr) -
2157 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2158 
2159 	/* allocate a mbuf to store the frame */
2160 	if (rlen > MCLBYTES) {
2161 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2162 		    device_get_nameunit(sc->sc_dev), rlen);
2163 		ifp->if_ierrors++;
2164 		return;
2165 	} else if (rlen > MHLEN)
2166 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2167 	else
2168 		m = m_gethdr(M_DONTWAIT, MT_DATA);
2169 	if (m == NULL) {
2170 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2171 		    device_get_nameunit(sc->sc_dev));
2172 		ifp->if_ierrors++;
2173 		return;
2174 	}
2175 	m->m_pkthdr.rcvif = ifp;
2176 	m->m_pkthdr.len = m->m_len = rlen;
2177 	usb2_copy_out(xfer->frbuffers, offset + sizeof(plcp),
2178 	    mtod(m, uint8_t *), rlen);
2179 
2180 	if (ieee80211_radiotap_active(ic)) {
2181 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2182 
2183 		tap->wr_flags = 0;
2184 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2185 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2186 		/* XXX toss, no way to express errors */
2187 		if (stat.flags & ZYD_RX_DECRYPTERR)
2188 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2189 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2190 		    (stat.flags & ZYD_RX_OFDM) ?
2191 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2192 		tap->wr_antsignal = stat.rssi + -95;
2193 		tap->wr_antnoise = -95;	/* XXX */
2194 	}
2195 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2196 
2197 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2198 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2199 	sc->sc_rx_count++;
2200 }
2201 
2202 static void
2203 zyd_bulk_read_callback(struct usb2_xfer *xfer)
2204 {
2205 	struct zyd_softc *sc = xfer->priv_sc;
2206 	struct ifnet *ifp = sc->sc_ifp;
2207 	struct ieee80211com *ic = ifp->if_l2com;
2208 	struct ieee80211_node *ni;
2209 	struct zyd_rx_desc desc;
2210 	struct mbuf *m;
2211 	uint32_t offset;
2212 	uint8_t rssi;
2213 	int8_t nf;
2214 	int i;
2215 
2216 	sc->sc_rx_count = 0;
2217 	switch (USB_GET_STATE(xfer)) {
2218 	case USB_ST_TRANSFERRED:
2219 		usb2_copy_out(xfer->frbuffers, xfer->actlen - sizeof(desc),
2220 		    &desc, sizeof(desc));
2221 
2222 		offset = 0;
2223 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2224 			DPRINTF(sc, ZYD_DEBUG_RECV,
2225 			    "%s: received multi-frame transfer\n", __func__);
2226 
2227 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2228 				uint16_t len16 = UGETW(desc.len[i]);
2229 
2230 				if (len16 == 0 || len16 > xfer->actlen)
2231 					break;
2232 
2233 				zyd_rx_data(xfer, offset, len16);
2234 
2235 				/* next frame is aligned on a 32-bit boundary */
2236 				len16 = (len16 + 3) & ~3;
2237 				offset += len16;
2238 				if (len16 > xfer->actlen)
2239 					break;
2240 				xfer->actlen -= len16;
2241 			}
2242 		} else {
2243 			DPRINTF(sc, ZYD_DEBUG_RECV,
2244 			    "%s: received single-frame transfer\n", __func__);
2245 
2246 			zyd_rx_data(xfer, 0, xfer->actlen);
2247 		}
2248 		/* FALLTHROUGH */
2249 	case USB_ST_SETUP:
2250 tr_setup:
2251 		xfer->frlengths[0] = xfer->max_data_length;
2252 		usb2_start_hardware(xfer);
2253 
2254 		/*
2255 		 * At the end of a USB callback it is always safe to unlock
2256 		 * the private mutex of a device! That is why we do the
2257 		 * "ieee80211_input" here, and not some lines up!
2258 		 */
2259 		ZYD_UNLOCK(sc);
2260 		for (i = 0; i < sc->sc_rx_count; i++) {
2261 			rssi = sc->sc_rx_data[i].rssi;
2262 			m = sc->sc_rx_data[i].m;
2263 			sc->sc_rx_data[i].m = NULL;
2264 
2265 			nf = -95;	/* XXX */
2266 
2267 			ni = ieee80211_find_rxnode(ic,
2268 			    mtod(m, struct ieee80211_frame_min *));
2269 			if (ni != NULL) {
2270 				(void)ieee80211_input(ni, m, rssi, nf);
2271 				ieee80211_free_node(ni);
2272 			} else
2273 				(void)ieee80211_input_all(ic, m, rssi, nf);
2274 		}
2275 		ZYD_LOCK(sc);
2276 		break;
2277 
2278 	default:			/* Error */
2279 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usb2_errstr(xfer->error));
2280 
2281 		if (xfer->error != USB_ERR_CANCELLED) {
2282 			/* try to clear stall first */
2283 			xfer->flags.stall_pipe = 1;
2284 			goto tr_setup;
2285 		}
2286 		break;
2287 	}
2288 }
2289 
2290 static uint8_t
2291 zyd_plcp_signal(int rate)
2292 {
2293 	switch (rate) {
2294 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2295 	case 12:
2296 		return (0xb);
2297 	case 18:
2298 		return (0xf);
2299 	case 24:
2300 		return (0xa);
2301 	case 36:
2302 		return (0xe);
2303 	case 48:
2304 		return (0x9);
2305 	case 72:
2306 		return (0xd);
2307 	case 96:
2308 		return (0x8);
2309 	case 108:
2310 		return (0xc);
2311 	/* CCK rates (NB: not IEEE std, device-specific) */
2312 	case 2:
2313 		return (0x0);
2314 	case 4:
2315 		return (0x1);
2316 	case 11:
2317 		return (0x2);
2318 	case 22:
2319 		return (0x3);
2320 	}
2321 	return (0xff);		/* XXX unsupported/unknown rate */
2322 }
2323 
2324 static int
2325 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2326 {
2327 	struct ieee80211vap *vap = ni->ni_vap;
2328 	struct ieee80211com *ic = ni->ni_ic;
2329 	struct zyd_tx_desc *desc;
2330 	struct zyd_tx_data *data;
2331 	struct ieee80211_frame *wh;
2332 	struct ieee80211_key *k;
2333 	int rate, totlen;
2334 	uint16_t pktlen;
2335 
2336 	data = STAILQ_FIRST(&sc->tx_free);
2337 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2338 	sc->tx_nfree--;
2339 	desc = &data->desc;
2340 
2341 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2342 
2343 	wh = mtod(m0, struct ieee80211_frame *);
2344 
2345 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2346 		k = ieee80211_crypto_encap(ni, m0);
2347 		if (k == NULL) {
2348 			m_freem(m0);
2349 			return (ENOBUFS);
2350 		}
2351 	}
2352 
2353 	data->ni = ni;
2354 	data->m = m0;
2355 	data->rate = rate;
2356 
2357 	wh = mtod(m0, struct ieee80211_frame *);
2358 
2359 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2360 
2361 	/* fill Tx descriptor */
2362 	desc->len = htole16(totlen);
2363 
2364 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2365 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2366 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2367 		if (totlen > vap->iv_rtsthreshold) {
2368 			desc->flags |= ZYD_TX_FLAG_RTS;
2369 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2370 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2371 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2372 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2373 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2374 				desc->flags |= ZYD_TX_FLAG_RTS;
2375 		}
2376 	} else
2377 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2378 
2379 	if ((wh->i_fc[0] &
2380 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2381 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2382 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2383 
2384 	desc->phy = zyd_plcp_signal(rate);
2385 	if (ZYD_RATE_IS_OFDM(rate)) {
2386 		desc->phy |= ZYD_TX_PHY_OFDM;
2387 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2388 			desc->phy |= ZYD_TX_PHY_5GHZ;
2389 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2390 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2391 
2392 	/* actual transmit length (XXX why +10?) */
2393 	pktlen = ZYD_TX_DESC_SIZE + 10;
2394 	if (sc->sc_macrev == ZYD_ZD1211)
2395 		pktlen += totlen;
2396 	desc->pktlen = htole16(pktlen);
2397 
2398 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2399 	desc->plcp_service = 0;
2400 	if (rate == 22) {
2401 		const int remainder = (16 * totlen) % 22;
2402 		if (remainder != 0 && remainder < 7)
2403 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2404 	}
2405 
2406 	if (ieee80211_radiotap_active_vap(vap)) {
2407 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2408 
2409 		tap->wt_flags = 0;
2410 		tap->wt_rate = rate;
2411 
2412 		ieee80211_radiotap_tx(vap, m0);
2413 	}
2414 
2415 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2416 	    "%s: sending mgt frame len=%zu rate=%u\n",
2417 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2418 		rate);
2419 
2420 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2421 	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2422 
2423 	return (0);
2424 }
2425 
2426 static void
2427 zyd_bulk_write_callback(struct usb2_xfer *xfer)
2428 {
2429 	struct zyd_softc *sc = xfer->priv_sc;
2430 	struct ifnet *ifp = sc->sc_ifp;
2431 	struct ieee80211vap *vap;
2432 	struct zyd_tx_data *data;
2433 	struct mbuf *m;
2434 
2435 	switch (USB_GET_STATE(xfer)) {
2436 	case USB_ST_TRANSFERRED:
2437 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2438 		    xfer->actlen);
2439 
2440 		/* free resources */
2441 		data = xfer->priv_fifo;
2442 		zyd_tx_free(data, 0);
2443 		xfer->priv_fifo = NULL;
2444 
2445 		ifp->if_opackets++;
2446 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2447 
2448 		/* FALLTHROUGH */
2449 	case USB_ST_SETUP:
2450 tr_setup:
2451 		data = STAILQ_FIRST(&sc->tx_q);
2452 		if (data) {
2453 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2454 			m = data->m;
2455 
2456 			if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) {
2457 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2458 				    m->m_pkthdr.len);
2459 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2460 			}
2461 			usb2_copy_in(xfer->frbuffers, 0, &data->desc,
2462 			    ZYD_TX_DESC_SIZE);
2463 			usb2_m_copy_in(xfer->frbuffers, ZYD_TX_DESC_SIZE, m, 0,
2464 			    m->m_pkthdr.len);
2465 
2466 			vap = data->ni->ni_vap;
2467 			if (ieee80211_radiotap_active_vap(vap)) {
2468 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2469 
2470 				tap->wt_flags = 0;
2471 				tap->wt_rate = data->rate;
2472 
2473 				ieee80211_radiotap_tx(vap, m);
2474 			}
2475 
2476 			xfer->frlengths[0] = ZYD_TX_DESC_SIZE + m->m_pkthdr.len;
2477 			xfer->priv_fifo = data;
2478 			usb2_start_hardware(xfer);
2479 		}
2480 		break;
2481 
2482 	default:			/* Error */
2483 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2484 		    usb2_errstr(xfer->error));
2485 
2486 		ifp->if_oerrors++;
2487 		data = xfer->priv_fifo;
2488 		xfer->priv_fifo = NULL;
2489 		if (data != NULL)
2490 			zyd_tx_free(data, xfer->error);
2491 
2492 		if (xfer->error == USB_ERR_STALLED) {
2493 			/* try to clear stall first */
2494 			xfer->flags.stall_pipe = 1;
2495 			goto tr_setup;
2496 		}
2497 		if (xfer->error == USB_ERR_TIMEOUT)
2498 			device_printf(sc->sc_dev, "device timeout\n");
2499 		break;
2500 	}
2501 }
2502 
2503 static int
2504 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2505 {
2506 	struct ieee80211vap *vap = ni->ni_vap;
2507 	struct ieee80211com *ic = ni->ni_ic;
2508 	struct zyd_tx_desc *desc;
2509 	struct zyd_tx_data *data;
2510 	struct ieee80211_frame *wh;
2511 	const struct ieee80211_txparam *tp;
2512 	struct ieee80211_key *k;
2513 	int rate, totlen;
2514 	uint16_t pktlen;
2515 
2516 	wh = mtod(m0, struct ieee80211_frame *);
2517 	data = STAILQ_FIRST(&sc->tx_free);
2518 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2519 	sc->tx_nfree--;
2520 	desc = &data->desc;
2521 
2522 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2523 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2524 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2525 		rate = tp->mcastrate;
2526 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2527 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2528 		rate = tp->ucastrate;
2529 	} else {
2530 		(void) ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn);
2531 		rate = ni->ni_txrate;
2532 	}
2533 
2534 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2535 		k = ieee80211_crypto_encap(ni, m0);
2536 		if (k == NULL) {
2537 			m_freem(m0);
2538 			return (ENOBUFS);
2539 		}
2540 		/* packet header may have moved, reset our local pointer */
2541 		wh = mtod(m0, struct ieee80211_frame *);
2542 	}
2543 
2544 	data->ni = ni;
2545 	data->m = m0;
2546 
2547 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2548 
2549 	/* fill Tx descriptor */
2550 	desc->len = htole16(totlen);
2551 
2552 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2553 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2554 		if (totlen > vap->iv_rtsthreshold) {
2555 			desc->flags |= ZYD_TX_FLAG_RTS;
2556 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2557 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2558 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2559 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2560 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2561 				desc->flags |= ZYD_TX_FLAG_RTS;
2562 		}
2563 	}
2564 
2565 	if ((wh->i_fc[0] &
2566 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2567 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2568 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2569 
2570 	desc->phy = zyd_plcp_signal(rate);
2571 	if (ZYD_RATE_IS_OFDM(rate)) {
2572 		desc->phy |= ZYD_TX_PHY_OFDM;
2573 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2574 			desc->phy |= ZYD_TX_PHY_5GHZ;
2575 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2576 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2577 
2578 	/* actual transmit length (XXX why +10?) */
2579 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2580 	if (sc->sc_macrev == ZYD_ZD1211)
2581 		pktlen += totlen;
2582 	desc->pktlen = htole16(pktlen);
2583 
2584 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2585 	desc->plcp_service = 0;
2586 	if (rate == 22) {
2587 		const int remainder = (16 * totlen) % 22;
2588 		if (remainder != 0 && remainder < 7)
2589 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2590 	}
2591 
2592 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2593 	    "%s: sending data frame len=%zu rate=%u\n",
2594 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2595 		rate);
2596 
2597 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2598 	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2599 
2600 	return (0);
2601 }
2602 
2603 static void
2604 zyd_start(struct ifnet *ifp)
2605 {
2606 	struct zyd_softc *sc = ifp->if_softc;
2607 	struct ieee80211_node *ni;
2608 	struct mbuf *m;
2609 
2610 	ZYD_LOCK(sc);
2611 	for (;;) {
2612 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2613 		if (m == NULL)
2614 			break;
2615 		if (sc->tx_nfree == 0) {
2616 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2617 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2618 			break;
2619 		}
2620 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2621 		if (zyd_tx_data(sc, m, ni) != 0) {
2622 			ieee80211_free_node(ni);
2623 			ifp->if_oerrors++;
2624 			break;
2625 		}
2626 	}
2627 	ZYD_UNLOCK(sc);
2628 }
2629 
2630 static int
2631 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2632 	const struct ieee80211_bpf_params *params)
2633 {
2634 	struct ieee80211com *ic = ni->ni_ic;
2635 	struct ifnet *ifp = ic->ic_ifp;
2636 	struct zyd_softc *sc = ifp->if_softc;
2637 
2638 	ZYD_LOCK(sc);
2639 	/* prevent management frames from being sent if we're not ready */
2640 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2641 		ZYD_UNLOCK(sc);
2642 		m_freem(m);
2643 		ieee80211_free_node(ni);
2644 		return (ENETDOWN);
2645 	}
2646 	if (sc->tx_nfree == 0) {
2647 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2648 		ZYD_UNLOCK(sc);
2649 		m_freem(m);
2650 		ieee80211_free_node(ni);
2651 		return (ENOBUFS);		/* XXX */
2652 	}
2653 
2654 	/*
2655 	 * Legacy path; interpret frame contents to decide
2656 	 * precisely how to send the frame.
2657 	 * XXX raw path
2658 	 */
2659 	if (zyd_tx_mgt(sc, m, ni) != 0) {
2660 		ZYD_UNLOCK(sc);
2661 		ifp->if_oerrors++;
2662 		ieee80211_free_node(ni);
2663 		return (EIO);
2664 	}
2665 	ZYD_UNLOCK(sc);
2666 	return (0);
2667 }
2668 
2669 static int
2670 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2671 {
2672 	struct zyd_softc *sc = ifp->if_softc;
2673 	struct ieee80211com *ic = ifp->if_l2com;
2674 	struct ifreq *ifr = (struct ifreq *) data;
2675 	int error = 0, startall = 0;
2676 
2677 	switch (cmd) {
2678 	case SIOCSIFFLAGS:
2679 		ZYD_LOCK(sc);
2680 		if (ifp->if_flags & IFF_UP) {
2681 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2682 				zyd_init_locked(sc);
2683 				startall = 1;
2684 			} else
2685 				zyd_set_multi(sc);
2686 		} else {
2687 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2688 				zyd_stop(sc);
2689 		}
2690 		ZYD_UNLOCK(sc);
2691 		if (startall)
2692 			ieee80211_start_all(ic);
2693 		break;
2694 	case SIOCGIFMEDIA:
2695 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2696 		break;
2697 	case SIOCGIFADDR:
2698 		error = ether_ioctl(ifp, cmd, data);
2699 		break;
2700 	default:
2701 		error = EINVAL;
2702 		break;
2703 	}
2704 	return (error);
2705 }
2706 
2707 static void
2708 zyd_init_locked(struct zyd_softc *sc)
2709 {
2710 	struct ifnet *ifp = sc->sc_ifp;
2711 	struct ieee80211com *ic = ifp->if_l2com;
2712 	struct usb2_config_descriptor *cd;
2713 	int error;
2714 	uint32_t val;
2715 
2716 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2717 
2718 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2719 		error = zyd_loadfirmware(sc);
2720 		if (error != 0) {
2721 			device_printf(sc->sc_dev,
2722 			    "could not load firmware (error=%d)\n", error);
2723 			goto fail;
2724 		}
2725 
2726 		/* reset device */
2727 		cd = usb2_get_config_descriptor(sc->sc_udev);
2728 		error = usb2_req_set_config(sc->sc_udev, &sc->sc_mtx,
2729 		    cd->bConfigurationValue);
2730 		if (error)
2731 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2732 
2733 		error = zyd_hw_init(sc);
2734 		if (error) {
2735 			device_printf(sc->sc_dev,
2736 			    "hardware initialization failed\n");
2737 			goto fail;
2738 		}
2739 
2740 		device_printf(sc->sc_dev,
2741 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2742 		    "BE%x NP%x Gain%x F%x\n",
2743 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2744 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2745 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2746 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2747 		    sc->sc_cckgain, sc->sc_fix_cr157);
2748 
2749 		/* read regulatory domain (currently unused) */
2750 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2751 		sc->sc_regdomain = val >> 16;
2752 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2753 		    sc->sc_regdomain);
2754 
2755 		/* we'll do software WEP decryption for now */
2756 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2757 		    __func__);
2758 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2759 
2760 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2761 	}
2762 
2763 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2764 		zyd_stop(sc);
2765 
2766 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2767 	    IF_LLADDR(ifp), ":");
2768 	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2769 	if (error != 0)
2770 		return;
2771 
2772 	/* set basic rates */
2773 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2774 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2775 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2776 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2777 	else	/* assumes 802.11b/g */
2778 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2779 
2780 	/* promiscuous mode */
2781 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2782 	/* multicast setup */
2783 	zyd_set_multi(sc);
2784 	/* set RX filter  */
2785 	error = zyd_set_rxfilter(sc);
2786 	if (error != 0)
2787 		goto fail;
2788 
2789 	/* switch radio transmitter ON */
2790 	error = zyd_switch_radio(sc, 1);
2791 	if (error != 0)
2792 		goto fail;
2793 	/* set default BSS channel */
2794 	zyd_set_chan(sc, ic->ic_curchan);
2795 
2796 	/*
2797 	 * Allocate Tx and Rx xfer queues.
2798 	 */
2799 	zyd_setup_tx_list(sc);
2800 
2801 	/* enable interrupts */
2802 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2803 
2804 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2805 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2806 	usb2_transfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2807 	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2808 	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2809 
2810 	return;
2811 
2812 fail:	zyd_stop(sc);
2813 	return;
2814 }
2815 
2816 static void
2817 zyd_init(void *priv)
2818 {
2819 	struct zyd_softc *sc = priv;
2820 	struct ifnet *ifp = sc->sc_ifp;
2821 	struct ieee80211com *ic = ifp->if_l2com;
2822 
2823 	ZYD_LOCK(sc);
2824 	zyd_init_locked(sc);
2825 	ZYD_UNLOCK(sc);
2826 
2827 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2828 		ieee80211_start_all(ic);		/* start all vap's */
2829 }
2830 
2831 static void
2832 zyd_stop(struct zyd_softc *sc)
2833 {
2834 	struct ifnet *ifp = sc->sc_ifp;
2835 	int error;
2836 
2837 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2838 
2839 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2840 
2841 	/*
2842 	 * Drain all the transfers, if not already drained:
2843 	 */
2844 	ZYD_UNLOCK(sc);
2845 	usb2_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2846 	usb2_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2847 	ZYD_LOCK(sc);
2848 
2849 	zyd_unsetup_tx_list(sc);
2850 
2851 	/* Stop now if the device was never set up */
2852 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2853 		return;
2854 
2855 	/* switch radio transmitter OFF */
2856 	error = zyd_switch_radio(sc, 0);
2857 	if (error != 0)
2858 		goto fail;
2859 	/* disable Rx */
2860 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2861 	/* disable interrupts */
2862 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2863 
2864 fail:
2865 	return;
2866 }
2867 
2868 static int
2869 zyd_loadfirmware(struct zyd_softc *sc)
2870 {
2871 	struct usb2_device_request req;
2872 	size_t size;
2873 	u_char *fw;
2874 	uint8_t stat;
2875 	uint16_t addr;
2876 
2877 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2878 		return (0);
2879 
2880 	if (sc->sc_macrev == ZYD_ZD1211) {
2881 		fw = (u_char *)zd1211_firmware;
2882 		size = sizeof(zd1211_firmware);
2883 	} else {
2884 		fw = (u_char *)zd1211b_firmware;
2885 		size = sizeof(zd1211b_firmware);
2886 	}
2887 
2888 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2889 	req.bRequest = ZYD_DOWNLOADREQ;
2890 	USETW(req.wIndex, 0);
2891 
2892 	addr = ZYD_FIRMWARE_START_ADDR;
2893 	while (size > 0) {
2894 		/*
2895 		 * When the transfer size is 4096 bytes, it is not
2896 		 * likely to be able to transfer it.
2897 		 * The cause is port or machine or chip?
2898 		 */
2899 		const int mlen = min(size, 64);
2900 
2901 		DPRINTF(sc, ZYD_DEBUG_FW,
2902 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2903 
2904 		USETW(req.wValue, addr);
2905 		USETW(req.wLength, mlen);
2906 		if (zyd_do_request(sc, &req, fw) != 0)
2907 			return (EIO);
2908 
2909 		addr += mlen / 2;
2910 		fw   += mlen;
2911 		size -= mlen;
2912 	}
2913 
2914 	/* check whether the upload succeeded */
2915 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2916 	req.bRequest = ZYD_DOWNLOADSTS;
2917 	USETW(req.wValue, 0);
2918 	USETW(req.wIndex, 0);
2919 	USETW(req.wLength, sizeof(stat));
2920 	if (zyd_do_request(sc, &req, &stat) != 0)
2921 		return (EIO);
2922 
2923 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2924 
2925 	return (stat & 0x80) ? (EIO) : (0);
2926 }
2927 
2928 static void
2929 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2930 {
2931 	struct ieee80211vap *vap = ni->ni_vap;
2932 
2933 	ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
2934 }
2935 
2936 static void
2937 zyd_scan_start(struct ieee80211com *ic)
2938 {
2939 	struct ifnet *ifp = ic->ic_ifp;
2940 	struct zyd_softc *sc = ifp->if_softc;
2941 
2942 	ZYD_LOCK(sc);
2943 	/* want broadcast address while scanning */
2944 	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2945 	ZYD_UNLOCK(sc);
2946 }
2947 
2948 static void
2949 zyd_scan_end(struct ieee80211com *ic)
2950 {
2951 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2952 
2953 	ZYD_LOCK(sc);
2954 	/* restore previous bssid */
2955 	zyd_set_bssid(sc, sc->sc_bssid);
2956 	ZYD_UNLOCK(sc);
2957 }
2958 
2959 static void
2960 zyd_set_channel(struct ieee80211com *ic)
2961 {
2962 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2963 
2964 	ZYD_LOCK(sc);
2965 	zyd_set_chan(sc, ic->ic_curchan);
2966 	ZYD_UNLOCK(sc);
2967 }
2968 
2969 static device_method_t zyd_methods[] = {
2970         /* Device interface */
2971         DEVMETHOD(device_probe, zyd_match),
2972         DEVMETHOD(device_attach, zyd_attach),
2973         DEVMETHOD(device_detach, zyd_detach),
2974 
2975 	{ 0, 0 }
2976 };
2977 
2978 static driver_t zyd_driver = {
2979         "zyd",
2980         zyd_methods,
2981         sizeof(struct zyd_softc)
2982 };
2983 
2984 static devclass_t zyd_devclass;
2985 
2986 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2987 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2988 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2989 MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
2990