xref: /freebsd/sys/dev/usb/wlan/if_zyd.c (revision 24e4dcf4ba5e9dedcf89efd358ea3e1fe5867020)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include "opt_wlan.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/condvar.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/kdb.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #ifdef INET
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/if_ether.h>
57 #include <netinet/ip.h>
58 #endif
59 
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_regdomain.h>
62 #include <net80211/ieee80211_radiotap.h>
63 #include <net80211/ieee80211_ratectl.h>
64 
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include "usbdevs.h"
69 
70 #include <dev/usb/wlan/if_zydreg.h>
71 #include <dev/usb/wlan/if_zydfw.h>
72 
73 #ifdef USB_DEBUG
74 static int zyd_debug = 0;
75 
76 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
77     "USB zyd");
78 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0,
79     "zyd debug level");
80 
81 enum {
82 	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
83 	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
84 	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
85 	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
86 	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
87 	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
88 	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
89 	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
90 	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
91 	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
92 	ZYD_DEBUG_ANY		= 0xffffffff
93 };
94 #define	DPRINTF(sc, m, fmt, ...) do {				\
95 	if (zyd_debug & (m))					\
96 		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
97 } while (0)
98 #else
99 #define	DPRINTF(sc, m, fmt, ...) do {				\
100 	(void) sc;						\
101 } while (0)
102 #endif
103 
104 #define	zyd_do_request(sc,req,data) \
105     usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
106 
107 static device_probe_t zyd_match;
108 static device_attach_t zyd_attach;
109 static device_detach_t zyd_detach;
110 
111 static usb_callback_t zyd_intr_read_callback;
112 static usb_callback_t zyd_intr_write_callback;
113 static usb_callback_t zyd_bulk_read_callback;
114 static usb_callback_t zyd_bulk_write_callback;
115 
116 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
117 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
118 		    const uint8_t [IEEE80211_ADDR_LEN],
119 		    const uint8_t [IEEE80211_ADDR_LEN]);
120 static void	zyd_vap_delete(struct ieee80211vap *);
121 static void	zyd_tx_free(struct zyd_tx_data *, int);
122 static void	zyd_setup_tx_list(struct zyd_softc *);
123 static void	zyd_unsetup_tx_list(struct zyd_softc *);
124 static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
125 static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
126 		    void *, int, int);
127 static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
128 static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
129 static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
130 static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
131 static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
132 static int	zyd_lock_phy(struct zyd_softc *);
133 static int	zyd_unlock_phy(struct zyd_softc *);
134 static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
135 static const char *zyd_rf_name(uint8_t);
136 static int	zyd_hw_init(struct zyd_softc *);
137 static int	zyd_read_pod(struct zyd_softc *);
138 static int	zyd_read_eeprom(struct zyd_softc *);
139 static int	zyd_get_macaddr(struct zyd_softc *);
140 static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
141 static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
142 static int	zyd_switch_radio(struct zyd_softc *, int);
143 static int	zyd_set_led(struct zyd_softc *, int, int);
144 static void	zyd_set_multi(struct zyd_softc *);
145 static void	zyd_update_mcast(struct ieee80211com *);
146 static int	zyd_set_rxfilter(struct zyd_softc *);
147 static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
148 static int	zyd_set_beacon_interval(struct zyd_softc *, int);
149 static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
150 static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
151 		    struct ieee80211_node *);
152 static int	zyd_transmit(struct ieee80211com *, struct mbuf *);
153 static void	zyd_start(struct zyd_softc *);
154 static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
155 		    const struct ieee80211_bpf_params *);
156 static void	zyd_parent(struct ieee80211com *);
157 static void	zyd_init_locked(struct zyd_softc *);
158 static void	zyd_stop(struct zyd_softc *);
159 static int	zyd_loadfirmware(struct zyd_softc *);
160 static void	zyd_scan_start(struct ieee80211com *);
161 static void	zyd_scan_end(struct ieee80211com *);
162 static void	zyd_getradiocaps(struct ieee80211com *, int, int *,
163 		    struct ieee80211_channel[]);
164 static void	zyd_set_channel(struct ieee80211com *);
165 static int	zyd_rfmd_init(struct zyd_rf *);
166 static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
167 static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
168 static int	zyd_al2230_init(struct zyd_rf *);
169 static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
170 static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
171 static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
172 static int	zyd_al2230_init_b(struct zyd_rf *);
173 static int	zyd_al7230B_init(struct zyd_rf *);
174 static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
175 static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
176 static int	zyd_al2210_init(struct zyd_rf *);
177 static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
178 static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
179 static int	zyd_gct_init(struct zyd_rf *);
180 static int	zyd_gct_switch_radio(struct zyd_rf *, int);
181 static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
182 static int	zyd_gct_mode(struct zyd_rf *);
183 static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
184 static int	zyd_gct_write(struct zyd_rf *, uint16_t);
185 static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
186 static int	zyd_maxim2_init(struct zyd_rf *);
187 static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
188 static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
189 
190 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
191 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
192 
193 /* various supported device vendors/products */
194 #define ZYD_ZD1211	0
195 #define ZYD_ZD1211B	1
196 
197 #define	ZYD_ZD1211_DEV(v,p)	\
198 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
199 #define	ZYD_ZD1211B_DEV(v,p)	\
200 	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
201 static const STRUCT_USB_HOST_ID zyd_devs[] = {
202 	/* ZYD_ZD1211 */
203 	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
204 	ZYD_ZD1211_DEV(ABOCOM, WL54),
205 	ZYD_ZD1211_DEV(ASUS, WL159G),
206 	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
207 	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
208 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
209 	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
210 	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
211 	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
212 	ZYD_ZD1211_DEV(SAGEM, XG760A),
213 	ZYD_ZD1211_DEV(SENAO, NUB8301),
214 	ZYD_ZD1211_DEV(SITECOMEU, WL113),
215 	ZYD_ZD1211_DEV(SWEEX, ZD1211),
216 	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
217 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
218 	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
219 	ZYD_ZD1211_DEV(TWINMOS, G240),
220 	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
221 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
222 	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
223 	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
224 	ZYD_ZD1211_DEV(ZCOM, ZD1211),
225 	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
226 	ZYD_ZD1211_DEV(ZYXEL, AG225H),
227 	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
228 	ZYD_ZD1211_DEV(ZYXEL, G200V2),
229 	/* ZYD_ZD1211B */
230 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
231 	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
232 	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
233 	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
234 	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
235 	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
236 	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
237 	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
238 	ZYD_ZD1211B_DEV(MELCO, KG54L),
239 	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
240 	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
241 	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
242 	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
243 	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
244 	ZYD_ZD1211B_DEV(USR, USR5423),
245 	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
246 	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
247 	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
248 	ZYD_ZD1211B_DEV(ZYXEL, M202),
249 	ZYD_ZD1211B_DEV(ZYXEL, G202),
250 	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
251 };
252 
253 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
254 	[ZYD_BULK_WR] = {
255 		.type = UE_BULK,
256 		.endpoint = UE_ADDR_ANY,
257 		.direction = UE_DIR_OUT,
258 		.bufsize = ZYD_MAX_TXBUFSZ,
259 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
260 		.callback = zyd_bulk_write_callback,
261 		.ep_index = 0,
262 		.timeout = 10000,	/* 10 seconds */
263 	},
264 	[ZYD_BULK_RD] = {
265 		.type = UE_BULK,
266 		.endpoint = UE_ADDR_ANY,
267 		.direction = UE_DIR_IN,
268 		.bufsize = ZYX_MAX_RXBUFSZ,
269 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
270 		.callback = zyd_bulk_read_callback,
271 		.ep_index = 0,
272 	},
273 	[ZYD_INTR_WR] = {
274 		.type = UE_BULK_INTR,
275 		.endpoint = UE_ADDR_ANY,
276 		.direction = UE_DIR_OUT,
277 		.bufsize = sizeof(struct zyd_cmd),
278 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
279 		.callback = zyd_intr_write_callback,
280 		.timeout = 1000,	/* 1 second */
281 		.ep_index = 1,
282 	},
283 	[ZYD_INTR_RD] = {
284 		.type = UE_INTERRUPT,
285 		.endpoint = UE_ADDR_ANY,
286 		.direction = UE_DIR_IN,
287 		.bufsize = sizeof(struct zyd_cmd),
288 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
289 		.callback = zyd_intr_read_callback,
290 	},
291 };
292 #define zyd_read16_m(sc, val, data)	do {				\
293 	error = zyd_read16(sc, val, data);				\
294 	if (error != 0)							\
295 		goto fail;						\
296 } while (0)
297 #define zyd_write16_m(sc, val, data)	do {				\
298 	error = zyd_write16(sc, val, data);				\
299 	if (error != 0)							\
300 		goto fail;						\
301 } while (0)
302 #define zyd_read32_m(sc, val, data)	do {				\
303 	error = zyd_read32(sc, val, data);				\
304 	if (error != 0)							\
305 		goto fail;						\
306 } while (0)
307 #define zyd_write32_m(sc, val, data)	do {				\
308 	error = zyd_write32(sc, val, data);				\
309 	if (error != 0)							\
310 		goto fail;						\
311 } while (0)
312 
313 static int
314 zyd_match(device_t dev)
315 {
316 	struct usb_attach_arg *uaa = device_get_ivars(dev);
317 
318 	if (uaa->usb_mode != USB_MODE_HOST)
319 		return (ENXIO);
320 	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
321 		return (ENXIO);
322 	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
323 		return (ENXIO);
324 
325 	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
326 }
327 
328 static int
329 zyd_attach(device_t dev)
330 {
331 	struct usb_attach_arg *uaa = device_get_ivars(dev);
332 	struct zyd_softc *sc = device_get_softc(dev);
333 	struct ieee80211com *ic = &sc->sc_ic;
334 	uint8_t iface_index;
335 	int error;
336 
337 	if (uaa->info.bcdDevice < 0x4330) {
338 		device_printf(dev, "device version mismatch: 0x%X "
339 		    "(only >= 43.30 supported)\n",
340 		    uaa->info.bcdDevice);
341 		return (EINVAL);
342 	}
343 
344 	device_set_usb_desc(dev);
345 	sc->sc_dev = dev;
346 	sc->sc_udev = uaa->device;
347 	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
348 
349 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
350 	    MTX_NETWORK_LOCK, MTX_DEF);
351 	STAILQ_INIT(&sc->sc_rqh);
352 	mbufq_init(&sc->sc_snd, ifqmaxlen);
353 
354 	iface_index = ZYD_IFACE_INDEX;
355 	error = usbd_transfer_setup(uaa->device,
356 	    &iface_index, sc->sc_xfer, zyd_config,
357 	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
358 	if (error) {
359 		device_printf(dev, "could not allocate USB transfers, "
360 		    "err=%s\n", usbd_errstr(error));
361 		goto detach;
362 	}
363 
364 	ZYD_LOCK(sc);
365 	if ((error = zyd_get_macaddr(sc)) != 0) {
366 		device_printf(sc->sc_dev, "could not read EEPROM\n");
367 		ZYD_UNLOCK(sc);
368 		goto detach;
369 	}
370 	ZYD_UNLOCK(sc);
371 
372 	ic->ic_softc = sc;
373 	ic->ic_name = device_get_nameunit(dev);
374 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
375 	ic->ic_opmode = IEEE80211_M_STA;
376 
377 	/* set device capabilities */
378 	ic->ic_caps =
379 		  IEEE80211_C_STA		/* station mode */
380 		| IEEE80211_C_MONITOR		/* monitor mode */
381 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
382 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
383 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
384 	        | IEEE80211_C_WPA		/* 802.11i */
385 		;
386 
387 	ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD;
388 
389 	zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
390 	    ic->ic_channels);
391 
392 	ieee80211_ifattach(ic);
393 	ic->ic_raw_xmit = zyd_raw_xmit;
394 	ic->ic_scan_start = zyd_scan_start;
395 	ic->ic_scan_end = zyd_scan_end;
396 	ic->ic_getradiocaps = zyd_getradiocaps;
397 	ic->ic_set_channel = zyd_set_channel;
398 	ic->ic_vap_create = zyd_vap_create;
399 	ic->ic_vap_delete = zyd_vap_delete;
400 	ic->ic_update_mcast = zyd_update_mcast;
401 	ic->ic_update_promisc = zyd_update_mcast;
402 	ic->ic_parent = zyd_parent;
403 	ic->ic_transmit = zyd_transmit;
404 
405 	ieee80211_radiotap_attach(ic,
406 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
407 		ZYD_TX_RADIOTAP_PRESENT,
408 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
409 		ZYD_RX_RADIOTAP_PRESENT);
410 
411 	if (bootverbose)
412 		ieee80211_announce(ic);
413 
414 	return (0);
415 
416 detach:
417 	zyd_detach(dev);
418 	return (ENXIO);			/* failure */
419 }
420 
421 static void
422 zyd_drain_mbufq(struct zyd_softc *sc)
423 {
424 	struct mbuf *m;
425 	struct ieee80211_node *ni;
426 
427 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
428 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
429 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
430 		m->m_pkthdr.rcvif = NULL;
431 		ieee80211_free_node(ni);
432 		m_freem(m);
433 	}
434 }
435 
436 static int
437 zyd_detach(device_t dev)
438 {
439 	struct zyd_softc *sc = device_get_softc(dev);
440 	struct ieee80211com *ic = &sc->sc_ic;
441 	unsigned x;
442 
443 	/*
444 	 * Prevent further allocations from RX/TX data
445 	 * lists and ioctls:
446 	 */
447 	ZYD_LOCK(sc);
448 	sc->sc_flags |= ZYD_FLAG_DETACHED;
449 	zyd_drain_mbufq(sc);
450 	STAILQ_INIT(&sc->tx_q);
451 	STAILQ_INIT(&sc->tx_free);
452 	ZYD_UNLOCK(sc);
453 
454 	/* drain USB transfers */
455 	for (x = 0; x != ZYD_N_TRANSFER; x++)
456 		usbd_transfer_drain(sc->sc_xfer[x]);
457 
458 	/* free TX list, if any */
459 	ZYD_LOCK(sc);
460 	zyd_unsetup_tx_list(sc);
461 	ZYD_UNLOCK(sc);
462 
463 	/* free USB transfers and some data buffers */
464 	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
465 
466 	if (ic->ic_softc == sc)
467 		ieee80211_ifdetach(ic);
468 	mtx_destroy(&sc->sc_mtx);
469 
470 	return (0);
471 }
472 
473 static struct ieee80211vap *
474 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
475     enum ieee80211_opmode opmode, int flags,
476     const uint8_t bssid[IEEE80211_ADDR_LEN],
477     const uint8_t mac[IEEE80211_ADDR_LEN])
478 {
479 	struct zyd_vap *zvp;
480 	struct ieee80211vap *vap;
481 
482 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
483 		return (NULL);
484 	zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO);
485 	vap = &zvp->vap;
486 
487 	/* enable s/w bmiss handling for sta mode */
488 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
489 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
490 		/* out of memory */
491 		free(zvp, M_80211_VAP);
492 		return (NULL);
493 	}
494 
495 	/* override state transition machine */
496 	zvp->newstate = vap->iv_newstate;
497 	vap->iv_newstate = zyd_newstate;
498 
499 	ieee80211_ratectl_init(vap);
500 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
501 
502 	/* complete setup */
503 	ieee80211_vap_attach(vap, ieee80211_media_change,
504 	    ieee80211_media_status, mac);
505 	ic->ic_opmode = opmode;
506 	return (vap);
507 }
508 
509 static void
510 zyd_vap_delete(struct ieee80211vap *vap)
511 {
512 	struct zyd_vap *zvp = ZYD_VAP(vap);
513 
514 	ieee80211_ratectl_deinit(vap);
515 	ieee80211_vap_detach(vap);
516 	free(zvp, M_80211_VAP);
517 }
518 
519 static void
520 zyd_tx_free(struct zyd_tx_data *data, int txerr)
521 {
522 	struct zyd_softc *sc = data->sc;
523 
524 	if (data->m != NULL) {
525 		ieee80211_tx_complete(data->ni, data->m, txerr);
526 		data->m = NULL;
527 		data->ni = NULL;
528 	}
529 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
530 	sc->tx_nfree++;
531 }
532 
533 static void
534 zyd_setup_tx_list(struct zyd_softc *sc)
535 {
536 	struct zyd_tx_data *data;
537 	int i;
538 
539 	sc->tx_nfree = 0;
540 	STAILQ_INIT(&sc->tx_q);
541 	STAILQ_INIT(&sc->tx_free);
542 
543 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
544 		data = &sc->tx_data[i];
545 
546 		data->sc = sc;
547 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
548 		sc->tx_nfree++;
549 	}
550 }
551 
552 static void
553 zyd_unsetup_tx_list(struct zyd_softc *sc)
554 {
555 	struct zyd_tx_data *data;
556 	int i;
557 
558 	/* make sure any subsequent use of the queues will fail */
559 	sc->tx_nfree = 0;
560 	STAILQ_INIT(&sc->tx_q);
561 	STAILQ_INIT(&sc->tx_free);
562 
563 	/* free up all node references and mbufs */
564 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
565 		data = &sc->tx_data[i];
566 
567 		if (data->m != NULL) {
568 			m_freem(data->m);
569 			data->m = NULL;
570 		}
571 		if (data->ni != NULL) {
572 			ieee80211_free_node(data->ni);
573 			data->ni = NULL;
574 		}
575 	}
576 }
577 
578 static int
579 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
580 {
581 	struct zyd_vap *zvp = ZYD_VAP(vap);
582 	struct ieee80211com *ic = vap->iv_ic;
583 	struct zyd_softc *sc = ic->ic_softc;
584 	int error;
585 
586 	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
587 	    ieee80211_state_name[vap->iv_state],
588 	    ieee80211_state_name[nstate]);
589 
590 	IEEE80211_UNLOCK(ic);
591 	ZYD_LOCK(sc);
592 	switch (nstate) {
593 	case IEEE80211_S_AUTH:
594 		zyd_set_chan(sc, ic->ic_curchan);
595 		break;
596 	case IEEE80211_S_RUN:
597 		if (vap->iv_opmode == IEEE80211_M_MONITOR)
598 			break;
599 
600 		/* turn link LED on */
601 		error = zyd_set_led(sc, ZYD_LED1, 1);
602 		if (error != 0)
603 			break;
604 
605 		/* make data LED blink upon Tx */
606 		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
607 
608 		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
609 		zyd_set_bssid(sc, sc->sc_bssid);
610 		break;
611 	default:
612 		break;
613 	}
614 fail:
615 	ZYD_UNLOCK(sc);
616 	IEEE80211_LOCK(ic);
617 	return (zvp->newstate(vap, nstate, arg));
618 }
619 
620 /*
621  * Callback handler for interrupt transfer
622  */
623 static void
624 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
625 {
626 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
627 	struct ieee80211com *ic = &sc->sc_ic;
628 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
629 	struct ieee80211_node *ni;
630 	struct zyd_cmd *cmd = &sc->sc_ibuf;
631 	struct usb_page_cache *pc;
632 	int datalen;
633 	int actlen;
634 
635 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
636 
637 	switch (USB_GET_STATE(xfer)) {
638 	case USB_ST_TRANSFERRED:
639 		pc = usbd_xfer_get_frame(xfer, 0);
640 		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
641 
642 		switch (le16toh(cmd->code)) {
643 		case ZYD_NOTIF_RETRYSTATUS:
644 		{
645 			struct zyd_notif_retry *retry =
646 			    (struct zyd_notif_retry *)cmd->data;
647 			uint16_t count = le16toh(retry->count);
648 
649 			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
650 			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
651 			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
652 			    count & 0xff, count);
653 
654 			/*
655 			 * Find the node to which the packet was sent and
656 			 * update its retry statistics.  In BSS mode, this node
657 			 * is the AP we're associated to so no lookup is
658 			 * actually needed.
659 			 */
660 			ni = ieee80211_find_txnode(vap, retry->macaddr);
661 			if (ni != NULL) {
662 				struct ieee80211_ratectl_tx_status *txs =
663 				    &sc->sc_txs;
664 				int retrycnt = count & 0xff;
665 
666 				txs->flags =
667 				    IEEE80211_RATECTL_STATUS_LONG_RETRY;
668 				txs->long_retries = retrycnt;
669 				if (count & 0x100) {
670 					txs->status =
671 					    IEEE80211_RATECTL_TX_FAIL_LONG;
672 				} else {
673 					txs->status =
674 					    IEEE80211_RATECTL_TX_SUCCESS;
675 				}
676 
677 				ieee80211_ratectl_tx_complete(ni, txs);
678 				ieee80211_free_node(ni);
679 			}
680 			if (count & 0x100)
681 				/* too many retries */
682 				if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS,
683 				    1);
684 			break;
685 		}
686 		case ZYD_NOTIF_IORD:
687 		{
688 			struct zyd_rq *rqp;
689 
690 			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
691 				break;	/* HMAC interrupt */
692 
693 			datalen = actlen - sizeof(cmd->code);
694 			datalen -= 2;	/* XXX: padding? */
695 
696 			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
697 				int i;
698 				int count;
699 
700 				if (rqp->olen != datalen)
701 					continue;
702 				count = rqp->olen / sizeof(struct zyd_pair);
703 				for (i = 0; i < count; i++) {
704 					if (*(((const uint16_t *)rqp->idata) + i) !=
705 					    (((struct zyd_pair *)cmd->data) + i)->reg)
706 						break;
707 				}
708 				if (i != count)
709 					continue;
710 				/* copy answer into caller-supplied buffer */
711 				memcpy(rqp->odata, cmd->data, rqp->olen);
712 				DPRINTF(sc, ZYD_DEBUG_CMD,
713 				    "command %p complete, data = %*D \n",
714 				    rqp, rqp->olen, (char *)rqp->odata, ":");
715 				wakeup(rqp);	/* wakeup caller */
716 				break;
717 			}
718 			if (rqp == NULL) {
719 				device_printf(sc->sc_dev,
720 				    "unexpected IORD notification %*D\n",
721 				    datalen, cmd->data, ":");
722 			}
723 			break;
724 		}
725 		default:
726 			device_printf(sc->sc_dev, "unknown notification %x\n",
727 			    le16toh(cmd->code));
728 		}
729 
730 		/* FALLTHROUGH */
731 	case USB_ST_SETUP:
732 tr_setup:
733 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
734 		usbd_transfer_submit(xfer);
735 		break;
736 
737 	default:			/* Error */
738 		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
739 		    usbd_errstr(error));
740 
741 		if (error != USB_ERR_CANCELLED) {
742 			/* try to clear stall first */
743 			usbd_xfer_set_stall(xfer);
744 			goto tr_setup;
745 		}
746 		break;
747 	}
748 }
749 
750 static void
751 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
752 {
753 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
754 	struct zyd_rq *rqp, *cmd;
755 	struct usb_page_cache *pc;
756 
757 	switch (USB_GET_STATE(xfer)) {
758 	case USB_ST_TRANSFERRED:
759 		cmd = usbd_xfer_get_priv(xfer);
760 		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
761 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
762 			/* Ensure the cached rq pointer is still valid */
763 			if (rqp == cmd &&
764 			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
765 				wakeup(rqp);	/* wakeup caller */
766 		}
767 
768 		/* FALLTHROUGH */
769 	case USB_ST_SETUP:
770 tr_setup:
771 		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
772 			if (rqp->flags & ZYD_CMD_FLAG_SENT)
773 				continue;
774 
775 			pc = usbd_xfer_get_frame(xfer, 0);
776 			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
777 
778 			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
779 			usbd_xfer_set_priv(xfer, rqp);
780 			rqp->flags |= ZYD_CMD_FLAG_SENT;
781 			usbd_transfer_submit(xfer);
782 			break;
783 		}
784 		break;
785 
786 	default:			/* Error */
787 		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
788 		    usbd_errstr(error));
789 
790 		if (error != USB_ERR_CANCELLED) {
791 			/* try to clear stall first */
792 			usbd_xfer_set_stall(xfer);
793 			goto tr_setup;
794 		}
795 		break;
796 	}
797 }
798 
799 static int
800 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
801     void *odata, int olen, int flags)
802 {
803 	struct zyd_cmd cmd;
804 	struct zyd_rq rq;
805 	int error;
806 
807 	if (ilen > (int)sizeof(cmd.data))
808 		return (EINVAL);
809 
810 	cmd.code = htole16(code);
811 	memcpy(cmd.data, idata, ilen);
812 	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
813 	    &rq, ilen, idata, ":");
814 
815 	rq.cmd = &cmd;
816 	rq.idata = idata;
817 	rq.odata = odata;
818 	rq.ilen = sizeof(uint16_t) + ilen;
819 	rq.olen = olen;
820 	rq.flags = flags;
821 	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
822 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
823 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
824 
825 	/* wait at most one second for command reply */
826 	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
827 	if (error)
828 		device_printf(sc->sc_dev, "command timeout\n");
829 	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
830 	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
831 	    &rq, error);
832 
833 	return (error);
834 }
835 
836 static int
837 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
838 {
839 	struct zyd_pair tmp;
840 	int error;
841 
842 	reg = htole16(reg);
843 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
844 	    ZYD_CMD_FLAG_READ);
845 	if (error == 0)
846 		*val = le16toh(tmp.val);
847 	return (error);
848 }
849 
850 static int
851 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
852 {
853 	struct zyd_pair tmp[2];
854 	uint16_t regs[2];
855 	int error;
856 
857 	regs[0] = htole16(ZYD_REG32_HI(reg));
858 	regs[1] = htole16(ZYD_REG32_LO(reg));
859 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
860 	    ZYD_CMD_FLAG_READ);
861 	if (error == 0)
862 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
863 	return (error);
864 }
865 
866 static int
867 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
868 {
869 	struct zyd_pair pair;
870 
871 	pair.reg = htole16(reg);
872 	pair.val = htole16(val);
873 
874 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
875 }
876 
877 static int
878 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
879 {
880 	struct zyd_pair pair[2];
881 
882 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
883 	pair[0].val = htole16(val >> 16);
884 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
885 	pair[1].val = htole16(val & 0xffff);
886 
887 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
888 }
889 
890 static int
891 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
892 {
893 	struct zyd_rf *rf = &sc->sc_rf;
894 	struct zyd_rfwrite_cmd req;
895 	uint16_t cr203;
896 	int error, i;
897 
898 	zyd_read16_m(sc, ZYD_CR203, &cr203);
899 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
900 
901 	req.code  = htole16(2);
902 	req.width = htole16(rf->width);
903 	for (i = 0; i < rf->width; i++) {
904 		req.bit[i] = htole16(cr203);
905 		if (val & (1 << (rf->width - 1 - i)))
906 			req.bit[i] |= htole16(ZYD_RF_DATA);
907 	}
908 	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
909 fail:
910 	return (error);
911 }
912 
913 static int
914 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
915 {
916 	int error;
917 
918 	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
919 	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
920 	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
921 fail:
922 	return (error);
923 }
924 
925 static int
926 zyd_lock_phy(struct zyd_softc *sc)
927 {
928 	int error;
929 	uint32_t tmp;
930 
931 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
932 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
933 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
934 fail:
935 	return (error);
936 }
937 
938 static int
939 zyd_unlock_phy(struct zyd_softc *sc)
940 {
941 	int error;
942 	uint32_t tmp;
943 
944 	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
945 	tmp |= ZYD_UNLOCK_PHY_REGS;
946 	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
947 fail:
948 	return (error);
949 }
950 
951 /*
952  * RFMD RF methods.
953  */
954 static int
955 zyd_rfmd_init(struct zyd_rf *rf)
956 {
957 	struct zyd_softc *sc = rf->rf_sc;
958 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
959 	static const uint32_t rfini[] = ZYD_RFMD_RF;
960 	int i, error;
961 
962 	/* init RF-dependent PHY registers */
963 	for (i = 0; i < nitems(phyini); i++) {
964 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
965 	}
966 
967 	/* init RFMD radio */
968 	for (i = 0; i < nitems(rfini); i++) {
969 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
970 			return (error);
971 	}
972 fail:
973 	return (error);
974 }
975 
976 static int
977 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
978 {
979 	int error;
980 	struct zyd_softc *sc = rf->rf_sc;
981 
982 	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
983 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
984 fail:
985 	return (error);
986 }
987 
988 static int
989 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
990 {
991 	int error;
992 	struct zyd_softc *sc = rf->rf_sc;
993 	static const struct {
994 		uint32_t	r1, r2;
995 	} rfprog[] = ZYD_RFMD_CHANTABLE;
996 
997 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
998 	if (error != 0)
999 		goto fail;
1000 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1001 	if (error != 0)
1002 		goto fail;
1003 
1004 fail:
1005 	return (error);
1006 }
1007 
1008 /*
1009  * AL2230 RF methods.
1010  */
1011 static int
1012 zyd_al2230_init(struct zyd_rf *rf)
1013 {
1014 	struct zyd_softc *sc = rf->rf_sc;
1015 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1016 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1017 	static const struct zyd_phy_pair phypll[] = {
1018 		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1019 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1020 	};
1021 	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1022 	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1023 	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1024 	int i, error;
1025 
1026 	/* init RF-dependent PHY registers */
1027 	for (i = 0; i < nitems(phyini); i++)
1028 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1029 
1030 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1031 		for (i = 0; i < nitems(phy2230s); i++)
1032 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1033 	}
1034 
1035 	/* init AL2230 radio */
1036 	for (i = 0; i < nitems(rfini1); i++) {
1037 		error = zyd_rfwrite(sc, rfini1[i]);
1038 		if (error != 0)
1039 			goto fail;
1040 	}
1041 
1042 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1043 		error = zyd_rfwrite(sc, 0x000824);
1044 	else
1045 		error = zyd_rfwrite(sc, 0x0005a4);
1046 	if (error != 0)
1047 		goto fail;
1048 
1049 	for (i = 0; i < nitems(rfini2); i++) {
1050 		error = zyd_rfwrite(sc, rfini2[i]);
1051 		if (error != 0)
1052 			goto fail;
1053 	}
1054 
1055 	for (i = 0; i < nitems(phypll); i++)
1056 		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1057 
1058 	for (i = 0; i < nitems(rfini3); i++) {
1059 		error = zyd_rfwrite(sc, rfini3[i]);
1060 		if (error != 0)
1061 			goto fail;
1062 	}
1063 fail:
1064 	return (error);
1065 }
1066 
1067 static int
1068 zyd_al2230_fini(struct zyd_rf *rf)
1069 {
1070 	int error, i;
1071 	struct zyd_softc *sc = rf->rf_sc;
1072 	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1073 
1074 	for (i = 0; i < nitems(phy); i++)
1075 		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1076 
1077 	if (sc->sc_newphy != 0)
1078 		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1079 
1080 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1081 fail:
1082 	return (error);
1083 }
1084 
1085 static int
1086 zyd_al2230_init_b(struct zyd_rf *rf)
1087 {
1088 	struct zyd_softc *sc = rf->rf_sc;
1089 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1090 	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1091 	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1092 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1093 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1094 	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1095 	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1096 	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1097 	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1098 	int i, error;
1099 
1100 	for (i = 0; i < nitems(phy1); i++)
1101 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1102 
1103 	/* init RF-dependent PHY registers */
1104 	for (i = 0; i < nitems(phyini); i++)
1105 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1106 
1107 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1108 		for (i = 0; i < nitems(phy2230s); i++)
1109 			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1110 	}
1111 
1112 	for (i = 0; i < 3; i++) {
1113 		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1114 		if (error != 0)
1115 			return (error);
1116 	}
1117 
1118 	for (i = 0; i < nitems(rfini_part1); i++) {
1119 		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1120 		if (error != 0)
1121 			return (error);
1122 	}
1123 
1124 	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1125 		error = zyd_rfwrite(sc, 0x241000);
1126 	else
1127 		error = zyd_rfwrite(sc, 0x25a000);
1128 	if (error != 0)
1129 		goto fail;
1130 
1131 	for (i = 0; i < nitems(rfini_part2); i++) {
1132 		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1133 		if (error != 0)
1134 			return (error);
1135 	}
1136 
1137 	for (i = 0; i < nitems(phy2); i++)
1138 		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1139 
1140 	for (i = 0; i < nitems(rfini_part3); i++) {
1141 		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1142 		if (error != 0)
1143 			return (error);
1144 	}
1145 
1146 	for (i = 0; i < nitems(phy3); i++)
1147 		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1148 
1149 	error = zyd_al2230_fini(rf);
1150 fail:
1151 	return (error);
1152 }
1153 
1154 static int
1155 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1156 {
1157 	struct zyd_softc *sc = rf->rf_sc;
1158 	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1159 
1160 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1161 	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1162 fail:
1163 	return (error);
1164 }
1165 
1166 static int
1167 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1168 {
1169 	int error, i;
1170 	struct zyd_softc *sc = rf->rf_sc;
1171 	static const struct zyd_phy_pair phy1[] = {
1172 		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1173 	};
1174 	static const struct {
1175 		uint32_t	r1, r2, r3;
1176 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1177 
1178 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1179 	if (error != 0)
1180 		goto fail;
1181 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1182 	if (error != 0)
1183 		goto fail;
1184 	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1185 	if (error != 0)
1186 		goto fail;
1187 
1188 	for (i = 0; i < nitems(phy1); i++)
1189 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1190 fail:
1191 	return (error);
1192 }
1193 
1194 static int
1195 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1196 {
1197 	int error, i;
1198 	struct zyd_softc *sc = rf->rf_sc;
1199 	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1200 	static const struct {
1201 		uint32_t	r1, r2, r3;
1202 	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1203 
1204 	for (i = 0; i < nitems(phy1); i++)
1205 		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1206 
1207 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1208 	if (error != 0)
1209 		goto fail;
1210 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1211 	if (error != 0)
1212 		goto fail;
1213 	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1214 	if (error != 0)
1215 		goto fail;
1216 	error = zyd_al2230_fini(rf);
1217 fail:
1218 	return (error);
1219 }
1220 
1221 #define	ZYD_AL2230_PHY_BANDEDGE6					\
1222 {									\
1223 	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1224 	{ ZYD_CR47,  0x1e }						\
1225 }
1226 
1227 static int
1228 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1229 {
1230 	int error = 0, i;
1231 	struct zyd_softc *sc = rf->rf_sc;
1232 	struct ieee80211com *ic = &sc->sc_ic;
1233 	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1234 	int chan = ieee80211_chan2ieee(ic, c);
1235 
1236 	if (chan == 1 || chan == 11)
1237 		r[0].val = 0x12;
1238 
1239 	for (i = 0; i < nitems(r); i++)
1240 		zyd_write16_m(sc, r[i].reg, r[i].val);
1241 fail:
1242 	return (error);
1243 }
1244 
1245 /*
1246  * AL7230B RF methods.
1247  */
1248 static int
1249 zyd_al7230B_init(struct zyd_rf *rf)
1250 {
1251 	struct zyd_softc *sc = rf->rf_sc;
1252 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1253 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1254 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1255 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1256 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1257 	int i, error;
1258 
1259 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1260 
1261 	/* init RF-dependent PHY registers, part one */
1262 	for (i = 0; i < nitems(phyini_1); i++)
1263 		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1264 
1265 	/* init AL7230B radio, part one */
1266 	for (i = 0; i < nitems(rfini_1); i++) {
1267 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1268 			return (error);
1269 	}
1270 	/* init RF-dependent PHY registers, part two */
1271 	for (i = 0; i < nitems(phyini_2); i++)
1272 		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1273 
1274 	/* init AL7230B radio, part two */
1275 	for (i = 0; i < nitems(rfini_2); i++) {
1276 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1277 			return (error);
1278 	}
1279 	/* init RF-dependent PHY registers, part three */
1280 	for (i = 0; i < nitems(phyini_3); i++)
1281 		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1282 fail:
1283 	return (error);
1284 }
1285 
1286 static int
1287 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1288 {
1289 	int error;
1290 	struct zyd_softc *sc = rf->rf_sc;
1291 
1292 	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1293 	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1294 fail:
1295 	return (error);
1296 }
1297 
1298 static int
1299 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1300 {
1301 	struct zyd_softc *sc = rf->rf_sc;
1302 	static const struct {
1303 		uint32_t	r1, r2;
1304 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1305 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1306 	int i, error;
1307 
1308 	zyd_write16_m(sc, ZYD_CR240, 0x57);
1309 	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1310 
1311 	for (i = 0; i < nitems(rfsc); i++) {
1312 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1313 			return (error);
1314 	}
1315 
1316 	zyd_write16_m(sc, ZYD_CR128, 0x14);
1317 	zyd_write16_m(sc, ZYD_CR129, 0x12);
1318 	zyd_write16_m(sc, ZYD_CR130, 0x10);
1319 	zyd_write16_m(sc, ZYD_CR38,  0x38);
1320 	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1321 
1322 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1323 	if (error != 0)
1324 		goto fail;
1325 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1326 	if (error != 0)
1327 		goto fail;
1328 	error = zyd_rfwrite(sc, 0x3c9000);
1329 	if (error != 0)
1330 		goto fail;
1331 
1332 	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1333 	zyd_write16_m(sc, ZYD_CR203, 0x06);
1334 	zyd_write16_m(sc, ZYD_CR240, 0x08);
1335 fail:
1336 	return (error);
1337 }
1338 
1339 /*
1340  * AL2210 RF methods.
1341  */
1342 static int
1343 zyd_al2210_init(struct zyd_rf *rf)
1344 {
1345 	struct zyd_softc *sc = rf->rf_sc;
1346 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1347 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1348 	uint32_t tmp;
1349 	int i, error;
1350 
1351 	zyd_write32_m(sc, ZYD_CR18, 2);
1352 
1353 	/* init RF-dependent PHY registers */
1354 	for (i = 0; i < nitems(phyini); i++)
1355 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1356 
1357 	/* init AL2210 radio */
1358 	for (i = 0; i < nitems(rfini); i++) {
1359 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1360 			return (error);
1361 	}
1362 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1363 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1364 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1365 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1366 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1367 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1368 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1369 	zyd_write32_m(sc, ZYD_CR18, 3);
1370 fail:
1371 	return (error);
1372 }
1373 
1374 static int
1375 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1376 {
1377 	/* vendor driver does nothing for this RF chip */
1378 
1379 	return (0);
1380 }
1381 
1382 static int
1383 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1384 {
1385 	int error;
1386 	struct zyd_softc *sc = rf->rf_sc;
1387 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1388 	uint32_t tmp;
1389 
1390 	zyd_write32_m(sc, ZYD_CR18, 2);
1391 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1392 	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1393 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1394 	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1395 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1396 	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1397 	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1398 
1399 	/* actually set the channel */
1400 	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1401 	if (error != 0)
1402 		goto fail;
1403 
1404 	zyd_write32_m(sc, ZYD_CR18, 3);
1405 fail:
1406 	return (error);
1407 }
1408 
1409 /*
1410  * GCT RF methods.
1411  */
1412 static int
1413 zyd_gct_init(struct zyd_rf *rf)
1414 {
1415 #define	ZYD_GCT_INTR_REG	0x85c1
1416 	struct zyd_softc *sc = rf->rf_sc;
1417 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1418 	static const uint32_t rfini[] = ZYD_GCT_RF;
1419 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1420 	int i, idx = -1, error;
1421 	uint16_t data;
1422 
1423 	/* init RF-dependent PHY registers */
1424 	for (i = 0; i < nitems(phyini); i++)
1425 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1426 
1427 	/* init cgt radio */
1428 	for (i = 0; i < nitems(rfini); i++) {
1429 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1430 			return (error);
1431 	}
1432 
1433 	error = zyd_gct_mode(rf);
1434 	if (error != 0)
1435 		return (error);
1436 
1437 	for (i = 0; i < (int)(nitems(vco) - 1); i++) {
1438 		error = zyd_gct_set_channel_synth(rf, 1, 0);
1439 		if (error != 0)
1440 			goto fail;
1441 		error = zyd_gct_write(rf, vco[i][0]);
1442 		if (error != 0)
1443 			goto fail;
1444 		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1445 		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1446 		if ((data & 0xf) == 0) {
1447 			idx = i;
1448 			break;
1449 		}
1450 	}
1451 	if (idx == -1) {
1452 		error = zyd_gct_set_channel_synth(rf, 1, 1);
1453 		if (error != 0)
1454 			goto fail;
1455 		error = zyd_gct_write(rf, 0x6662);
1456 		if (error != 0)
1457 			goto fail;
1458 	}
1459 
1460 	rf->idx = idx;
1461 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1462 fail:
1463 	return (error);
1464 #undef ZYD_GCT_INTR_REG
1465 }
1466 
1467 static int
1468 zyd_gct_mode(struct zyd_rf *rf)
1469 {
1470 	struct zyd_softc *sc = rf->rf_sc;
1471 	static const uint32_t mode[] = {
1472 		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1473 	};
1474 	int i, error;
1475 
1476 	for (i = 0; i < nitems(mode); i++) {
1477 		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1478 			break;
1479 	}
1480 	return (error);
1481 }
1482 
1483 static int
1484 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1485 {
1486 	int error, idx = chan - 1;
1487 	struct zyd_softc *sc = rf->rf_sc;
1488 	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1489 	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1490 	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1491 
1492 	error = zyd_rfwrite(sc,
1493 	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1494 	if (error != 0)
1495 		return (error);
1496 	return zyd_rfwrite(sc, div_synth[idx]);
1497 }
1498 
1499 static int
1500 zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1501 {
1502 	struct zyd_softc *sc = rf->rf_sc;
1503 
1504 	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1505 }
1506 
1507 static int
1508 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1509 {
1510 	int error;
1511 	struct zyd_softc *sc = rf->rf_sc;
1512 
1513 	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1514 	if (error != 0)
1515 		return (error);
1516 
1517 	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1518 	zyd_write16_m(sc, ZYD_CR251,
1519 	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1520 fail:
1521 	return (error);
1522 }
1523 
1524 static int
1525 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1526 {
1527 	int error, i;
1528 	struct zyd_softc *sc = rf->rf_sc;
1529 	static const struct zyd_phy_pair cmd[] = {
1530 		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1531 		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1532 	};
1533 	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1534 
1535 	error = zyd_gct_set_channel_synth(rf, chan, 0);
1536 	if (error != 0)
1537 		goto fail;
1538 	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1539 	    vco[rf->idx][((chan - 1) / 2)]);
1540 	if (error != 0)
1541 		goto fail;
1542 	error = zyd_gct_mode(rf);
1543 	if (error != 0)
1544 		return (error);
1545 	for (i = 0; i < nitems(cmd); i++)
1546 		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1547 	error = zyd_gct_txgain(rf, chan);
1548 	if (error != 0)
1549 		return (error);
1550 	zyd_write16_m(sc, ZYD_CR203, 0x6);
1551 fail:
1552 	return (error);
1553 }
1554 
1555 static int
1556 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1557 {
1558 	struct zyd_softc *sc = rf->rf_sc;
1559 	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1560 	uint8_t idx = sc->sc_pwrint[chan - 1];
1561 
1562 	if (idx >= nitems(txgain)) {
1563 		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1564 		    chan, idx);
1565 		return 0;
1566 	}
1567 
1568 	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1569 }
1570 
1571 /*
1572  * Maxim2 RF methods.
1573  */
1574 static int
1575 zyd_maxim2_init(struct zyd_rf *rf)
1576 {
1577 	struct zyd_softc *sc = rf->rf_sc;
1578 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1579 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1580 	uint16_t tmp;
1581 	int i, error;
1582 
1583 	/* init RF-dependent PHY registers */
1584 	for (i = 0; i < nitems(phyini); i++)
1585 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1586 
1587 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1588 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1589 
1590 	/* init maxim2 radio */
1591 	for (i = 0; i < nitems(rfini); i++) {
1592 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1593 			return (error);
1594 	}
1595 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1596 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1597 fail:
1598 	return (error);
1599 }
1600 
1601 static int
1602 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1603 {
1604 
1605 	/* vendor driver does nothing for this RF chip */
1606 	return (0);
1607 }
1608 
1609 static int
1610 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1611 {
1612 	struct zyd_softc *sc = rf->rf_sc;
1613 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1614 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1615 	static const struct {
1616 		uint32_t	r1, r2;
1617 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1618 	uint16_t tmp;
1619 	int i, error;
1620 
1621 	/*
1622 	 * Do the same as we do when initializing it, except for the channel
1623 	 * values coming from the two channel tables.
1624 	 */
1625 
1626 	/* init RF-dependent PHY registers */
1627 	for (i = 0; i < nitems(phyini); i++)
1628 		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1629 
1630 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1631 	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1632 
1633 	/* first two values taken from the chantables */
1634 	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1635 	if (error != 0)
1636 		goto fail;
1637 	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1638 	if (error != 0)
1639 		goto fail;
1640 
1641 	/* init maxim2 radio - skipping the two first values */
1642 	for (i = 2; i < nitems(rfini); i++) {
1643 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1644 			return (error);
1645 	}
1646 	zyd_read16_m(sc, ZYD_CR203, &tmp);
1647 	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1648 fail:
1649 	return (error);
1650 }
1651 
1652 static int
1653 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1654 {
1655 	struct zyd_rf *rf = &sc->sc_rf;
1656 
1657 	rf->rf_sc = sc;
1658 	rf->update_pwr = 1;
1659 
1660 	switch (type) {
1661 	case ZYD_RF_RFMD:
1662 		rf->init         = zyd_rfmd_init;
1663 		rf->switch_radio = zyd_rfmd_switch_radio;
1664 		rf->set_channel  = zyd_rfmd_set_channel;
1665 		rf->width        = 24;	/* 24-bit RF values */
1666 		break;
1667 	case ZYD_RF_AL2230:
1668 	case ZYD_RF_AL2230S:
1669 		if (sc->sc_macrev == ZYD_ZD1211B) {
1670 			rf->init = zyd_al2230_init_b;
1671 			rf->set_channel = zyd_al2230_set_channel_b;
1672 		} else {
1673 			rf->init = zyd_al2230_init;
1674 			rf->set_channel = zyd_al2230_set_channel;
1675 		}
1676 		rf->switch_radio = zyd_al2230_switch_radio;
1677 		rf->bandedge6	 = zyd_al2230_bandedge6;
1678 		rf->width        = 24;	/* 24-bit RF values */
1679 		break;
1680 	case ZYD_RF_AL7230B:
1681 		rf->init         = zyd_al7230B_init;
1682 		rf->switch_radio = zyd_al7230B_switch_radio;
1683 		rf->set_channel  = zyd_al7230B_set_channel;
1684 		rf->width        = 24;	/* 24-bit RF values */
1685 		break;
1686 	case ZYD_RF_AL2210:
1687 		rf->init         = zyd_al2210_init;
1688 		rf->switch_radio = zyd_al2210_switch_radio;
1689 		rf->set_channel  = zyd_al2210_set_channel;
1690 		rf->width        = 24;	/* 24-bit RF values */
1691 		break;
1692 	case ZYD_RF_MAXIM_NEW:
1693 	case ZYD_RF_GCT:
1694 		rf->init         = zyd_gct_init;
1695 		rf->switch_radio = zyd_gct_switch_radio;
1696 		rf->set_channel  = zyd_gct_set_channel;
1697 		rf->width        = 24;	/* 24-bit RF values */
1698 		rf->update_pwr   = 0;
1699 		break;
1700 	case ZYD_RF_MAXIM_NEW2:
1701 		rf->init         = zyd_maxim2_init;
1702 		rf->switch_radio = zyd_maxim2_switch_radio;
1703 		rf->set_channel  = zyd_maxim2_set_channel;
1704 		rf->width        = 18;	/* 18-bit RF values */
1705 		break;
1706 	default:
1707 		device_printf(sc->sc_dev,
1708 		    "sorry, radio \"%s\" is not supported yet\n",
1709 		    zyd_rf_name(type));
1710 		return (EINVAL);
1711 	}
1712 	return (0);
1713 }
1714 
1715 static const char *
1716 zyd_rf_name(uint8_t type)
1717 {
1718 	static const char * const zyd_rfs[] = {
1719 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1720 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1721 		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1722 		"PHILIPS"
1723 	};
1724 
1725 	return zyd_rfs[(type > 15) ? 0 : type];
1726 }
1727 
1728 static int
1729 zyd_hw_init(struct zyd_softc *sc)
1730 {
1731 	int error;
1732 	const struct zyd_phy_pair *phyp;
1733 	struct zyd_rf *rf = &sc->sc_rf;
1734 	uint16_t val;
1735 
1736 	/* specify that the plug and play is finished */
1737 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1738 	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1739 	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1740 	    sc->sc_fwbase);
1741 
1742 	/* retrieve firmware revision number */
1743 	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1744 	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1745 	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1746 	/* set mandatory rates - XXX assumes 802.11b/g */
1747 	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1748 
1749 	/* disable interrupts */
1750 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1751 
1752 	if ((error = zyd_read_pod(sc)) != 0) {
1753 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1754 		goto fail;
1755 	}
1756 
1757 	/* PHY init (resetting) */
1758 	error = zyd_lock_phy(sc);
1759 	if (error != 0)
1760 		goto fail;
1761 	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1762 	for (; phyp->reg != 0; phyp++)
1763 		zyd_write16_m(sc, phyp->reg, phyp->val);
1764 	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1765 		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1766 		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1767 	}
1768 	error = zyd_unlock_phy(sc);
1769 	if (error != 0)
1770 		goto fail;
1771 
1772 	/* HMAC init */
1773 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1774 	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1775 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1776 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1777 	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1778 	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1779 	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1780 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1781 	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1782 	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1783 	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1784 	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1785 	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1786 	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1787 	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1788 	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1789 	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1790 	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1791 	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1792 	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1793 
1794 	if (sc->sc_macrev == ZYD_ZD1211) {
1795 		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1796 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1797 	} else {
1798 		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1799 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1800 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1801 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1802 		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1803 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1804 		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1805 		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1806 		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1807 	}
1808 
1809 	/* init beacon interval to 100ms */
1810 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1811 		goto fail;
1812 
1813 	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1814 		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1815 		    sc->sc_rfrev);
1816 		goto fail;
1817 	}
1818 
1819 	/* RF chip init */
1820 	error = zyd_lock_phy(sc);
1821 	if (error != 0)
1822 		goto fail;
1823 	error = (*rf->init)(rf);
1824 	if (error != 0) {
1825 		device_printf(sc->sc_dev,
1826 		    "radio initialization failed, error %d\n", error);
1827 		goto fail;
1828 	}
1829 	error = zyd_unlock_phy(sc);
1830 	if (error != 0)
1831 		goto fail;
1832 
1833 	if ((error = zyd_read_eeprom(sc)) != 0) {
1834 		device_printf(sc->sc_dev, "could not read EEPROM\n");
1835 		goto fail;
1836 	}
1837 
1838 fail:	return (error);
1839 }
1840 
1841 static int
1842 zyd_read_pod(struct zyd_softc *sc)
1843 {
1844 	int error;
1845 	uint32_t tmp;
1846 
1847 	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1848 	sc->sc_rfrev     = tmp & 0x0f;
1849 	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1850 	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1851 	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1852 	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1853 	sc->sc_parev     = (tmp >> 16) & 0x0f;
1854 	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1855 	sc->sc_newphy    = (tmp >> 31) & 0x01;
1856 	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1857 fail:
1858 	return (error);
1859 }
1860 
1861 static int
1862 zyd_read_eeprom(struct zyd_softc *sc)
1863 {
1864 	uint16_t val;
1865 	int error, i;
1866 
1867 	/* read Tx power calibration tables */
1868 	for (i = 0; i < 7; i++) {
1869 		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1870 		sc->sc_pwrcal[i * 2] = val >> 8;
1871 		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1872 		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1873 		sc->sc_pwrint[i * 2] = val >> 8;
1874 		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1875 		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1876 		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1877 		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1878 		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1879 		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1880 		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1881 		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1882 		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1883 		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1884 	}
1885 fail:
1886 	return (error);
1887 }
1888 
1889 static int
1890 zyd_get_macaddr(struct zyd_softc *sc)
1891 {
1892 	struct usb_device_request req;
1893 	usb_error_t error;
1894 
1895 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1896 	req.bRequest = ZYD_READFWDATAREQ;
1897 	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1898 	USETW(req.wIndex, 0);
1899 	USETW(req.wLength, IEEE80211_ADDR_LEN);
1900 
1901 	error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr);
1902 	if (error != 0) {
1903 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1904 		    usbd_errstr(error));
1905 	}
1906 
1907 	return (error);
1908 }
1909 
1910 static int
1911 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1912 {
1913 	int error;
1914 	uint32_t tmp;
1915 
1916 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1917 	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1918 	tmp = addr[5] << 8 | addr[4];
1919 	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1920 fail:
1921 	return (error);
1922 }
1923 
1924 static int
1925 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1926 {
1927 	int error;
1928 	uint32_t tmp;
1929 
1930 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1931 	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1932 	tmp = addr[5] << 8 | addr[4];
1933 	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1934 fail:
1935 	return (error);
1936 }
1937 
1938 static int
1939 zyd_switch_radio(struct zyd_softc *sc, int on)
1940 {
1941 	struct zyd_rf *rf = &sc->sc_rf;
1942 	int error;
1943 
1944 	error = zyd_lock_phy(sc);
1945 	if (error != 0)
1946 		goto fail;
1947 	error = (*rf->switch_radio)(rf, on);
1948 	if (error != 0)
1949 		goto fail;
1950 	error = zyd_unlock_phy(sc);
1951 fail:
1952 	return (error);
1953 }
1954 
1955 static int
1956 zyd_set_led(struct zyd_softc *sc, int which, int on)
1957 {
1958 	int error;
1959 	uint32_t tmp;
1960 
1961 	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1962 	tmp &= ~which;
1963 	if (on)
1964 		tmp |= which;
1965 	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1966 fail:
1967 	return (error);
1968 }
1969 
1970 static u_int
1971 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1972 {
1973 	uint32_t *hash = arg;
1974 	uint8_t v;
1975 
1976 	v = ((uint8_t *)LLADDR(sdl))[5] >> 2;
1977 	if (v < 32)
1978 		hash[0] |= 1 << v;
1979 	else
1980 		hash[1] |= 1 << (v - 32);
1981 
1982 	return (1);
1983 }
1984 
1985 static void
1986 zyd_set_multi(struct zyd_softc *sc)
1987 {
1988 	struct ieee80211com *ic = &sc->sc_ic;
1989 	uint32_t hash[2];
1990 	int error;
1991 
1992 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0)
1993 		return;
1994 
1995 	hash[0] = 0x00000000;
1996 	hash[1] = 0x80000000;
1997 
1998 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
1999 	    ic->ic_promisc > 0) {
2000 		hash[0] = 0xffffffff;
2001 		hash[1] = 0xffffffff;
2002 	} else {
2003 		struct ieee80211vap *vap;
2004 
2005 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2006 			if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash);
2007 	}
2008 
2009 	/* reprogram multicast global hash table */
2010 	zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]);
2011 	zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]);
2012 fail:
2013 	if (error != 0)
2014 		device_printf(sc->sc_dev,
2015 		    "could not set multicast hash table\n");
2016 }
2017 
2018 static void
2019 zyd_update_mcast(struct ieee80211com *ic)
2020 {
2021 	struct zyd_softc *sc = ic->ic_softc;
2022 
2023 	ZYD_LOCK(sc);
2024 	zyd_set_multi(sc);
2025 	ZYD_UNLOCK(sc);
2026 }
2027 
2028 static int
2029 zyd_set_rxfilter(struct zyd_softc *sc)
2030 {
2031 	struct ieee80211com *ic = &sc->sc_ic;
2032 	uint32_t rxfilter;
2033 
2034 	switch (ic->ic_opmode) {
2035 	case IEEE80211_M_STA:
2036 		rxfilter = ZYD_FILTER_BSS;
2037 		break;
2038 	case IEEE80211_M_IBSS:
2039 	case IEEE80211_M_HOSTAP:
2040 		rxfilter = ZYD_FILTER_HOSTAP;
2041 		break;
2042 	case IEEE80211_M_MONITOR:
2043 		rxfilter = ZYD_FILTER_MONITOR;
2044 		break;
2045 	default:
2046 		/* should not get there */
2047 		return (EINVAL);
2048 	}
2049 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2050 }
2051 
2052 static void
2053 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2054 {
2055 	int error;
2056 	struct ieee80211com *ic = &sc->sc_ic;
2057 	struct zyd_rf *rf = &sc->sc_rf;
2058 	uint32_t tmp;
2059 	int chan;
2060 
2061 	chan = ieee80211_chan2ieee(ic, c);
2062 	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2063 		/* XXX should NEVER happen */
2064 		device_printf(sc->sc_dev,
2065 		    "%s: invalid channel %x\n", __func__, chan);
2066 		return;
2067 	}
2068 
2069 	error = zyd_lock_phy(sc);
2070 	if (error != 0)
2071 		goto fail;
2072 
2073 	error = (*rf->set_channel)(rf, chan);
2074 	if (error != 0)
2075 		goto fail;
2076 
2077 	if (rf->update_pwr) {
2078 		/* update Tx power */
2079 		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2080 
2081 		if (sc->sc_macrev == ZYD_ZD1211B) {
2082 			zyd_write16_m(sc, ZYD_CR67,
2083 			    sc->sc_ofdm36_cal[chan - 1]);
2084 			zyd_write16_m(sc, ZYD_CR66,
2085 			    sc->sc_ofdm48_cal[chan - 1]);
2086 			zyd_write16_m(sc, ZYD_CR65,
2087 			    sc->sc_ofdm54_cal[chan - 1]);
2088 			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2089 			zyd_write16_m(sc, ZYD_CR69, 0x28);
2090 			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2091 		}
2092 	}
2093 	if (sc->sc_cckgain) {
2094 		/* set CCK baseband gain from EEPROM */
2095 		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2096 			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2097 	}
2098 	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2099 		error = (*rf->bandedge6)(rf, c);
2100 		if (error != 0)
2101 			goto fail;
2102 	}
2103 	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2104 
2105 	error = zyd_unlock_phy(sc);
2106 	if (error != 0)
2107 		goto fail;
2108 
2109 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2110 	    htole16(c->ic_freq);
2111 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2112 	    htole16(c->ic_flags);
2113 fail:
2114 	return;
2115 }
2116 
2117 static int
2118 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2119 {
2120 	int error;
2121 	uint32_t val;
2122 
2123 	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2124 	sc->sc_atim_wnd = val;
2125 	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2126 	sc->sc_pre_tbtt = val;
2127 	sc->sc_bcn_int = bintval;
2128 
2129 	if (sc->sc_bcn_int <= 5)
2130 		sc->sc_bcn_int = 5;
2131 	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2132 		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2133 	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2134 		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2135 
2136 	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2137 	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2138 	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2139 fail:
2140 	return (error);
2141 }
2142 
2143 static void
2144 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2145 {
2146 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2147 	struct ieee80211com *ic = &sc->sc_ic;
2148 	struct zyd_plcphdr plcp;
2149 	struct zyd_rx_stat stat;
2150 	struct usb_page_cache *pc;
2151 	struct mbuf *m;
2152 	int rlen, rssi;
2153 
2154 	if (len < ZYD_MIN_FRAGSZ) {
2155 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2156 		    device_get_nameunit(sc->sc_dev), len);
2157 		counter_u64_add(ic->ic_ierrors, 1);
2158 		return;
2159 	}
2160 	pc = usbd_xfer_get_frame(xfer, 0);
2161 	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2162 	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2163 
2164 	if (stat.flags & ZYD_RX_ERROR) {
2165 		DPRINTF(sc, ZYD_DEBUG_RECV,
2166 		    "%s: RX status indicated error (%x)\n",
2167 		    device_get_nameunit(sc->sc_dev), stat.flags);
2168 		counter_u64_add(ic->ic_ierrors, 1);
2169 		return;
2170 	}
2171 
2172 	/* compute actual frame length */
2173 	rlen = len - sizeof(struct zyd_plcphdr) -
2174 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2175 
2176 	/* allocate a mbuf to store the frame */
2177 	if (rlen > (int)MCLBYTES) {
2178 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2179 		    device_get_nameunit(sc->sc_dev), rlen);
2180 		counter_u64_add(ic->ic_ierrors, 1);
2181 		return;
2182 	} else if (rlen > (int)MHLEN)
2183 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2184 	else
2185 		m = m_gethdr(M_NOWAIT, MT_DATA);
2186 	if (m == NULL) {
2187 		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2188 		    device_get_nameunit(sc->sc_dev));
2189 		counter_u64_add(ic->ic_ierrors, 1);
2190 		return;
2191 	}
2192 	m->m_pkthdr.len = m->m_len = rlen;
2193 	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2194 
2195 	if (ieee80211_radiotap_active(ic)) {
2196 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2197 
2198 		tap->wr_flags = 0;
2199 		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2200 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2201 		/* XXX toss, no way to express errors */
2202 		if (stat.flags & ZYD_RX_DECRYPTERR)
2203 			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2204 		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2205 		    (stat.flags & ZYD_RX_OFDM) ?
2206 			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2207 		tap->wr_antsignal = stat.rssi + -95;
2208 		tap->wr_antnoise = -95;	/* XXX */
2209 	}
2210 	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2211 
2212 	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2213 	sc->sc_rx_data[sc->sc_rx_count].m = m;
2214 	sc->sc_rx_count++;
2215 }
2216 
2217 static void
2218 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2219 {
2220 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2221 	struct ieee80211com *ic = &sc->sc_ic;
2222 	struct ieee80211_node *ni;
2223 	struct zyd_rx_desc desc;
2224 	struct mbuf *m;
2225 	struct usb_page_cache *pc;
2226 	uint32_t offset;
2227 	uint8_t rssi;
2228 	int8_t nf;
2229 	int i;
2230 	int actlen;
2231 
2232 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2233 
2234 	sc->sc_rx_count = 0;
2235 	switch (USB_GET_STATE(xfer)) {
2236 	case USB_ST_TRANSFERRED:
2237 		pc = usbd_xfer_get_frame(xfer, 0);
2238 		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2239 
2240 		offset = 0;
2241 		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2242 			DPRINTF(sc, ZYD_DEBUG_RECV,
2243 			    "%s: received multi-frame transfer\n", __func__);
2244 
2245 			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2246 				uint16_t len16 = UGETW(desc.len[i]);
2247 
2248 				if (len16 == 0 || len16 > actlen)
2249 					break;
2250 
2251 				zyd_rx_data(xfer, offset, len16);
2252 
2253 				/* next frame is aligned on a 32-bit boundary */
2254 				len16 = (len16 + 3) & ~3;
2255 				offset += len16;
2256 				if (len16 > actlen)
2257 					break;
2258 				actlen -= len16;
2259 			}
2260 		} else {
2261 			DPRINTF(sc, ZYD_DEBUG_RECV,
2262 			    "%s: received single-frame transfer\n", __func__);
2263 
2264 			zyd_rx_data(xfer, 0, actlen);
2265 		}
2266 		/* FALLTHROUGH */
2267 	case USB_ST_SETUP:
2268 tr_setup:
2269 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2270 		usbd_transfer_submit(xfer);
2271 
2272 		/*
2273 		 * At the end of a USB callback it is always safe to unlock
2274 		 * the private mutex of a device! That is why we do the
2275 		 * "ieee80211_input" here, and not some lines up!
2276 		 */
2277 		ZYD_UNLOCK(sc);
2278 		for (i = 0; i < sc->sc_rx_count; i++) {
2279 			rssi = sc->sc_rx_data[i].rssi;
2280 			m = sc->sc_rx_data[i].m;
2281 			sc->sc_rx_data[i].m = NULL;
2282 
2283 			nf = -95;	/* XXX */
2284 
2285 			ni = ieee80211_find_rxnode(ic,
2286 			    mtod(m, struct ieee80211_frame_min *));
2287 			if (ni != NULL) {
2288 				(void)ieee80211_input(ni, m, rssi, nf);
2289 				ieee80211_free_node(ni);
2290 			} else
2291 				(void)ieee80211_input_all(ic, m, rssi, nf);
2292 		}
2293 		ZYD_LOCK(sc);
2294 		zyd_start(sc);
2295 		break;
2296 
2297 	default:			/* Error */
2298 		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2299 
2300 		if (error != USB_ERR_CANCELLED) {
2301 			/* try to clear stall first */
2302 			usbd_xfer_set_stall(xfer);
2303 			goto tr_setup;
2304 		}
2305 		break;
2306 	}
2307 }
2308 
2309 static uint8_t
2310 zyd_plcp_signal(struct zyd_softc *sc, int rate)
2311 {
2312 	switch (rate) {
2313 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2314 	case 12:
2315 		return (0xb);
2316 	case 18:
2317 		return (0xf);
2318 	case 24:
2319 		return (0xa);
2320 	case 36:
2321 		return (0xe);
2322 	case 48:
2323 		return (0x9);
2324 	case 72:
2325 		return (0xd);
2326 	case 96:
2327 		return (0x8);
2328 	case 108:
2329 		return (0xc);
2330 	/* CCK rates (NB: not IEEE std, device-specific) */
2331 	case 2:
2332 		return (0x0);
2333 	case 4:
2334 		return (0x1);
2335 	case 11:
2336 		return (0x2);
2337 	case 22:
2338 		return (0x3);
2339 	}
2340 
2341 	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2342 	return (0x0);
2343 }
2344 
2345 static void
2346 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2347 {
2348 	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2349 	struct ieee80211vap *vap;
2350 	struct zyd_tx_data *data;
2351 	struct mbuf *m;
2352 	struct usb_page_cache *pc;
2353 	int actlen;
2354 
2355 	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2356 
2357 	switch (USB_GET_STATE(xfer)) {
2358 	case USB_ST_TRANSFERRED:
2359 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2360 		    actlen);
2361 
2362 		/* free resources */
2363 		data = usbd_xfer_get_priv(xfer);
2364 		zyd_tx_free(data, 0);
2365 		usbd_xfer_set_priv(xfer, NULL);
2366 
2367 		/* FALLTHROUGH */
2368 	case USB_ST_SETUP:
2369 tr_setup:
2370 		data = STAILQ_FIRST(&sc->tx_q);
2371 		if (data) {
2372 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2373 			m = data->m;
2374 
2375 			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2376 				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2377 				    m->m_pkthdr.len);
2378 				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2379 			}
2380 			pc = usbd_xfer_get_frame(xfer, 0);
2381 			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2382 			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2383 			    m->m_pkthdr.len);
2384 
2385 			vap = data->ni->ni_vap;
2386 			if (ieee80211_radiotap_active_vap(vap)) {
2387 				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2388 
2389 				tap->wt_flags = 0;
2390 				tap->wt_rate = data->rate;
2391 
2392 				ieee80211_radiotap_tx(vap, m);
2393 			}
2394 
2395 			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2396 			usbd_xfer_set_priv(xfer, data);
2397 			usbd_transfer_submit(xfer);
2398 		}
2399 		zyd_start(sc);
2400 		break;
2401 
2402 	default:			/* Error */
2403 		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2404 		    usbd_errstr(error));
2405 
2406 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
2407 		data = usbd_xfer_get_priv(xfer);
2408 		usbd_xfer_set_priv(xfer, NULL);
2409 		if (data != NULL)
2410 			zyd_tx_free(data, error);
2411 
2412 		if (error != USB_ERR_CANCELLED) {
2413 			if (error == USB_ERR_TIMEOUT)
2414 				device_printf(sc->sc_dev, "device timeout\n");
2415 
2416 			/*
2417 			 * Try to clear stall first, also if other
2418 			 * errors occur, hence clearing stall
2419 			 * introduces a 50 ms delay:
2420 			 */
2421 			usbd_xfer_set_stall(xfer);
2422 			goto tr_setup;
2423 		}
2424 		break;
2425 	}
2426 }
2427 
2428 static int
2429 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2430 {
2431 	struct ieee80211vap *vap = ni->ni_vap;
2432 	struct ieee80211com *ic = ni->ni_ic;
2433 	struct zyd_tx_desc *desc;
2434 	struct zyd_tx_data *data;
2435 	struct ieee80211_frame *wh;
2436 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2437 	struct ieee80211_key *k;
2438 	int rate, totlen, type, ismcast;
2439 	static const uint8_t ratediv[] = ZYD_TX_RATEDIV;
2440 	uint8_t phy;
2441 	uint16_t pktlen;
2442 	uint32_t bits;
2443 
2444 	wh = mtod(m0, struct ieee80211_frame *);
2445 	data = STAILQ_FIRST(&sc->tx_free);
2446 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2447 	sc->tx_nfree--;
2448 
2449 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2450 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2451 
2452 	if (type == IEEE80211_FC0_TYPE_MGT ||
2453 	    type == IEEE80211_FC0_TYPE_CTL ||
2454 	    (m0->m_flags & M_EAPOL) != 0) {
2455 		rate = tp->mgmtrate;
2456 	} else {
2457 		/* for data frames */
2458 		if (ismcast)
2459 			rate = tp->mcastrate;
2460 		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2461 			rate = tp->ucastrate;
2462 		else {
2463 			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2464 			rate = ieee80211_node_get_txrate_dot11rate(ni);
2465 		}
2466 	}
2467 
2468 	ieee80211_output_seqno_assign(ni, -1, m0);
2469 
2470 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2471 		k = ieee80211_crypto_encap(ni, m0);
2472 		if (k == NULL) {
2473 			return (ENOBUFS);
2474 		}
2475 		/* packet header may have moved, reset our local pointer */
2476 		wh = mtod(m0, struct ieee80211_frame *);
2477 	}
2478 
2479 	data->ni = ni;
2480 	data->m = m0;
2481 	data->rate = rate;
2482 
2483 	/* fill Tx descriptor */
2484 	desc = &data->desc;
2485 	phy = zyd_plcp_signal(sc, rate);
2486 	desc->phy = phy;
2487 	if (ZYD_RATE_IS_OFDM(rate)) {
2488 		desc->phy |= ZYD_TX_PHY_OFDM;
2489 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2490 			desc->phy |= ZYD_TX_PHY_5GHZ;
2491 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2492 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2493 
2494 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2495 	desc->len = htole16(totlen);
2496 
2497 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2498 	if (!ismcast) {
2499 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2500 		if (totlen > vap->iv_rtsthreshold) {
2501 			desc->flags |= ZYD_TX_FLAG_RTS;
2502 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2503 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2504 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2505 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2506 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2507 				desc->flags |= ZYD_TX_FLAG_RTS;
2508 		}
2509 	} else
2510 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2511 	if (IEEE80211_IS_CTL_PS_POLL(wh))
2512 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2513 
2514 	/* actual transmit length (XXX why +10?) */
2515 	pktlen = ZYD_TX_DESC_SIZE + 10;
2516 	if (sc->sc_macrev == ZYD_ZD1211)
2517 		pktlen += totlen;
2518 	desc->pktlen = htole16(pktlen);
2519 
2520 	bits = (rate == 11) ? (totlen * 16) + 10 :
2521 	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2522 	desc->plcp_length = htole16(bits / ratediv[phy]);
2523 	desc->plcp_service = 0;
2524 	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2525 		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2526 	desc->nextlen = 0;
2527 
2528 	if (ieee80211_radiotap_active_vap(vap)) {
2529 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2530 
2531 		tap->wt_flags = 0;
2532 		tap->wt_rate = rate;
2533 
2534 		ieee80211_radiotap_tx(vap, m0);
2535 	}
2536 
2537 	DPRINTF(sc, ZYD_DEBUG_XMIT,
2538 	    "%s: sending data frame len=%zu rate=%u\n",
2539 	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2540 		rate);
2541 
2542 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2543 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2544 
2545 	return (0);
2546 }
2547 
2548 static int
2549 zyd_transmit(struct ieee80211com *ic, struct mbuf *m)
2550 {
2551 	struct zyd_softc *sc = ic->ic_softc;
2552 	int error;
2553 
2554 	ZYD_LOCK(sc);
2555 	if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2556 		ZYD_UNLOCK(sc);
2557 		return (ENXIO);
2558 	}
2559 	error = mbufq_enqueue(&sc->sc_snd, m);
2560 	if (error) {
2561 		ZYD_UNLOCK(sc);
2562 		return (error);
2563 	}
2564 	zyd_start(sc);
2565 	ZYD_UNLOCK(sc);
2566 
2567 	return (0);
2568 }
2569 
2570 static void
2571 zyd_start(struct zyd_softc *sc)
2572 {
2573 	struct ieee80211_node *ni;
2574 	struct mbuf *m;
2575 
2576 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2577 
2578 	while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
2579 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2580 		if (zyd_tx_start(sc, m, ni) != 0) {
2581 			m_freem(m);
2582 			if_inc_counter(ni->ni_vap->iv_ifp,
2583 			    IFCOUNTER_OERRORS, 1);
2584 			ieee80211_free_node(ni);
2585 			break;
2586 		}
2587 	}
2588 }
2589 
2590 static int
2591 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2592 	const struct ieee80211_bpf_params *params)
2593 {
2594 	struct ieee80211com *ic = ni->ni_ic;
2595 	struct zyd_softc *sc = ic->ic_softc;
2596 
2597 	ZYD_LOCK(sc);
2598 	/* prevent management frames from being sent if we're not ready */
2599 	if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) {
2600 		ZYD_UNLOCK(sc);
2601 		m_freem(m);
2602 		return (ENETDOWN);
2603 	}
2604 	if (sc->tx_nfree == 0) {
2605 		ZYD_UNLOCK(sc);
2606 		m_freem(m);
2607 		return (ENOBUFS);		/* XXX */
2608 	}
2609 
2610 	/*
2611 	 * Legacy path; interpret frame contents to decide
2612 	 * precisely how to send the frame.
2613 	 * XXX raw path
2614 	 */
2615 	if (zyd_tx_start(sc, m, ni) != 0) {
2616 		ZYD_UNLOCK(sc);
2617 		m_freem(m);
2618 		return (EIO);
2619 	}
2620 	ZYD_UNLOCK(sc);
2621 	return (0);
2622 }
2623 
2624 static void
2625 zyd_parent(struct ieee80211com *ic)
2626 {
2627 	struct zyd_softc *sc = ic->ic_softc;
2628 	int startall = 0;
2629 
2630 	ZYD_LOCK(sc);
2631 	if (sc->sc_flags & ZYD_FLAG_DETACHED) {
2632 		ZYD_UNLOCK(sc);
2633 		return;
2634 	}
2635 	if (ic->ic_nrunning > 0) {
2636 		if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) {
2637 			zyd_init_locked(sc);
2638 			startall = 1;
2639 		} else
2640 			zyd_set_multi(sc);
2641 	} else if (sc->sc_flags & ZYD_FLAG_RUNNING)
2642 		zyd_stop(sc);
2643 	ZYD_UNLOCK(sc);
2644 	if (startall)
2645 		ieee80211_start_all(ic);
2646 }
2647 
2648 static void
2649 zyd_init_locked(struct zyd_softc *sc)
2650 {
2651 	struct ieee80211com *ic = &sc->sc_ic;
2652 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2653 	struct usb_config_descriptor *cd;
2654 	int error;
2655 	uint32_t val;
2656 
2657 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2658 
2659 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2660 		error = zyd_loadfirmware(sc);
2661 		if (error != 0) {
2662 			device_printf(sc->sc_dev,
2663 			    "could not load firmware (error=%d)\n", error);
2664 			goto fail;
2665 		}
2666 
2667 		/* reset device */
2668 		cd = usbd_get_config_descriptor(sc->sc_udev);
2669 		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2670 		    cd->bConfigurationValue);
2671 		if (error)
2672 			device_printf(sc->sc_dev, "reset failed, continuing\n");
2673 
2674 		error = zyd_hw_init(sc);
2675 		if (error) {
2676 			device_printf(sc->sc_dev,
2677 			    "hardware initialization failed\n");
2678 			goto fail;
2679 		}
2680 
2681 		device_printf(sc->sc_dev,
2682 		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2683 		    "BE%x NP%x Gain%x F%x\n",
2684 		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2685 		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2686 		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2687 		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2688 		    sc->sc_cckgain, sc->sc_fix_cr157);
2689 
2690 		/* read regulatory domain (currently unused) */
2691 		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2692 		sc->sc_regdomain = val >> 16;
2693 		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2694 		    sc->sc_regdomain);
2695 
2696 		/* we'll do software WEP decryption for now */
2697 		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2698 		    __func__);
2699 		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2700 
2701 		sc->sc_flags |= ZYD_FLAG_INITONCE;
2702 	}
2703 
2704 	if (sc->sc_flags & ZYD_FLAG_RUNNING)
2705 		zyd_stop(sc);
2706 
2707 	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2708 	    vap ? vap->iv_myaddr : ic->ic_macaddr, ":");
2709 	error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2710 	if (error != 0)
2711 		return;
2712 
2713 	/* set basic rates */
2714 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2715 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2716 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2717 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2718 	else	/* assumes 802.11b/g */
2719 		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2720 
2721 	/* promiscuous mode */
2722 	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2723 	/* multicast setup */
2724 	zyd_set_multi(sc);
2725 	/* set RX filter  */
2726 	error = zyd_set_rxfilter(sc);
2727 	if (error != 0)
2728 		goto fail;
2729 
2730 	/* switch radio transmitter ON */
2731 	error = zyd_switch_radio(sc, 1);
2732 	if (error != 0)
2733 		goto fail;
2734 	/* set default BSS channel */
2735 	zyd_set_chan(sc, ic->ic_curchan);
2736 
2737 	/*
2738 	 * Allocate Tx and Rx xfer queues.
2739 	 */
2740 	zyd_setup_tx_list(sc);
2741 
2742 	/* enable interrupts */
2743 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2744 
2745 	sc->sc_flags |= ZYD_FLAG_RUNNING;
2746 	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2747 	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2748 	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2749 
2750 	return;
2751 
2752 fail:	zyd_stop(sc);
2753 	return;
2754 }
2755 
2756 static void
2757 zyd_stop(struct zyd_softc *sc)
2758 {
2759 	int error;
2760 
2761 	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2762 
2763 	sc->sc_flags &= ~ZYD_FLAG_RUNNING;
2764 	zyd_drain_mbufq(sc);
2765 
2766 	/*
2767 	 * Drain all the transfers, if not already drained:
2768 	 */
2769 	ZYD_UNLOCK(sc);
2770 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2771 	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2772 	ZYD_LOCK(sc);
2773 
2774 	zyd_unsetup_tx_list(sc);
2775 
2776 	/* Stop now if the device was never set up */
2777 	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2778 		return;
2779 
2780 	/* switch radio transmitter OFF */
2781 	error = zyd_switch_radio(sc, 0);
2782 	if (error != 0)
2783 		goto fail;
2784 	/* disable Rx */
2785 	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2786 	/* disable interrupts */
2787 	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2788 
2789 fail:
2790 	return;
2791 }
2792 
2793 static int
2794 zyd_loadfirmware(struct zyd_softc *sc)
2795 {
2796 	struct usb_device_request req;
2797 	size_t size;
2798 	u_char *fw;
2799 	uint8_t stat;
2800 	uint16_t addr;
2801 
2802 	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2803 		return (0);
2804 
2805 	if (sc->sc_macrev == ZYD_ZD1211) {
2806 		fw = (u_char *)zd1211_firmware;
2807 		size = sizeof(zd1211_firmware);
2808 	} else {
2809 		fw = (u_char *)zd1211b_firmware;
2810 		size = sizeof(zd1211b_firmware);
2811 	}
2812 
2813 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2814 	req.bRequest = ZYD_DOWNLOADREQ;
2815 	USETW(req.wIndex, 0);
2816 
2817 	addr = ZYD_FIRMWARE_START_ADDR;
2818 	while (size > 0) {
2819 		/*
2820 		 * When the transfer size is 4096 bytes, it is not
2821 		 * likely to be able to transfer it.
2822 		 * The cause is port or machine or chip?
2823 		 */
2824 		const int mlen = min(size, 64);
2825 
2826 		DPRINTF(sc, ZYD_DEBUG_FW,
2827 		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2828 
2829 		USETW(req.wValue, addr);
2830 		USETW(req.wLength, mlen);
2831 		if (zyd_do_request(sc, &req, fw) != 0)
2832 			return (EIO);
2833 
2834 		addr += mlen / 2;
2835 		fw   += mlen;
2836 		size -= mlen;
2837 	}
2838 
2839 	/* check whether the upload succeeded */
2840 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2841 	req.bRequest = ZYD_DOWNLOADSTS;
2842 	USETW(req.wValue, 0);
2843 	USETW(req.wIndex, 0);
2844 	USETW(req.wLength, sizeof(stat));
2845 	if (zyd_do_request(sc, &req, &stat) != 0)
2846 		return (EIO);
2847 
2848 	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2849 
2850 	return (stat & 0x80) ? (EIO) : (0);
2851 }
2852 
2853 static void
2854 zyd_scan_start(struct ieee80211com *ic)
2855 {
2856 	struct zyd_softc *sc = ic->ic_softc;
2857 
2858 	ZYD_LOCK(sc);
2859 	/* want broadcast address while scanning */
2860 	zyd_set_bssid(sc, ieee80211broadcastaddr);
2861 	ZYD_UNLOCK(sc);
2862 }
2863 
2864 static void
2865 zyd_scan_end(struct ieee80211com *ic)
2866 {
2867 	struct zyd_softc *sc = ic->ic_softc;
2868 
2869 	ZYD_LOCK(sc);
2870 	/* restore previous bssid */
2871 	zyd_set_bssid(sc, sc->sc_bssid);
2872 	ZYD_UNLOCK(sc);
2873 }
2874 
2875 static void
2876 zyd_getradiocaps(struct ieee80211com *ic,
2877     int maxchans, int *nchans, struct ieee80211_channel chans[])
2878 {
2879 	uint8_t bands[IEEE80211_MODE_BYTES];
2880 
2881 	memset(bands, 0, sizeof(bands));
2882 	setbit(bands, IEEE80211_MODE_11B);
2883 	setbit(bands, IEEE80211_MODE_11G);
2884 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
2885 }
2886 
2887 static void
2888 zyd_set_channel(struct ieee80211com *ic)
2889 {
2890 	struct zyd_softc *sc = ic->ic_softc;
2891 
2892 	ZYD_LOCK(sc);
2893 	zyd_set_chan(sc, ic->ic_curchan);
2894 	ZYD_UNLOCK(sc);
2895 }
2896 
2897 static device_method_t zyd_methods[] = {
2898         /* Device interface */
2899         DEVMETHOD(device_probe, zyd_match),
2900         DEVMETHOD(device_attach, zyd_attach),
2901         DEVMETHOD(device_detach, zyd_detach),
2902 	DEVMETHOD_END
2903 };
2904 
2905 static driver_t zyd_driver = {
2906 	.name = "zyd",
2907 	.methods = zyd_methods,
2908 	.size = sizeof(struct zyd_softc)
2909 };
2910 
2911 DRIVER_MODULE(zyd, uhub, zyd_driver, NULL, NULL);
2912 MODULE_DEPEND(zyd, usb, 1, 1, 1);
2913 MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2914 MODULE_VERSION(zyd, 1);
2915 USB_PNP_HOST_INFO(zyd_devs);
2916