1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 23 */ 24 25 #include "opt_wlan.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/sysctl.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/condvar.h> 33 #include <sys/mbuf.h> 34 #include <sys/kernel.h> 35 #include <sys/socket.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/kdb.h> 42 43 #include <net/bpf.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_arp.h> 47 #include <net/ethernet.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #ifdef INET 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/if_ether.h> 57 #include <netinet/ip.h> 58 #endif 59 60 #include <net80211/ieee80211_var.h> 61 #include <net80211/ieee80211_regdomain.h> 62 #include <net80211/ieee80211_radiotap.h> 63 #include <net80211/ieee80211_ratectl.h> 64 65 #include <dev/usb/usb.h> 66 #include <dev/usb/usbdi.h> 67 #include <dev/usb/usbdi_util.h> 68 #include "usbdevs.h" 69 70 #include <dev/usb/wlan/if_zydreg.h> 71 #include <dev/usb/wlan/if_zydfw.h> 72 73 #ifdef USB_DEBUG 74 static int zyd_debug = 0; 75 76 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 77 "USB zyd"); 78 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, 79 "zyd debug level"); 80 81 enum { 82 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 85 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 86 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 90 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 91 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 92 ZYD_DEBUG_ANY = 0xffffffff 93 }; 94 #define DPRINTF(sc, m, fmt, ...) do { \ 95 if (zyd_debug & (m)) \ 96 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 97 } while (0) 98 #else 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 (void) sc; \ 101 } while (0) 102 #endif 103 104 #define zyd_do_request(sc,req,data) \ 105 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 106 107 static device_probe_t zyd_match; 108 static device_attach_t zyd_attach; 109 static device_detach_t zyd_detach; 110 111 static usb_callback_t zyd_intr_read_callback; 112 static usb_callback_t zyd_intr_write_callback; 113 static usb_callback_t zyd_bulk_read_callback; 114 static usb_callback_t zyd_bulk_write_callback; 115 116 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 117 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 118 const uint8_t [IEEE80211_ADDR_LEN], 119 const uint8_t [IEEE80211_ADDR_LEN]); 120 static void zyd_vap_delete(struct ieee80211vap *); 121 static void zyd_tx_free(struct zyd_tx_data *, int); 122 static void zyd_setup_tx_list(struct zyd_softc *); 123 static void zyd_unsetup_tx_list(struct zyd_softc *); 124 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 125 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 126 void *, int, int); 127 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 128 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 129 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 130 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 131 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 132 static int zyd_lock_phy(struct zyd_softc *); 133 static int zyd_unlock_phy(struct zyd_softc *); 134 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 135 static const char *zyd_rf_name(uint8_t); 136 static int zyd_hw_init(struct zyd_softc *); 137 static int zyd_read_pod(struct zyd_softc *); 138 static int zyd_read_eeprom(struct zyd_softc *); 139 static int zyd_get_macaddr(struct zyd_softc *); 140 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 141 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 142 static int zyd_switch_radio(struct zyd_softc *, int); 143 static int zyd_set_led(struct zyd_softc *, int, int); 144 static void zyd_set_multi(struct zyd_softc *); 145 static void zyd_update_mcast(struct ieee80211com *); 146 static int zyd_set_rxfilter(struct zyd_softc *); 147 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 148 static int zyd_set_beacon_interval(struct zyd_softc *, int); 149 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 150 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 151 struct ieee80211_node *); 152 static int zyd_transmit(struct ieee80211com *, struct mbuf *); 153 static void zyd_start(struct zyd_softc *); 154 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 155 const struct ieee80211_bpf_params *); 156 static void zyd_parent(struct ieee80211com *); 157 static void zyd_init_locked(struct zyd_softc *); 158 static void zyd_stop(struct zyd_softc *); 159 static int zyd_loadfirmware(struct zyd_softc *); 160 static void zyd_scan_start(struct ieee80211com *); 161 static void zyd_scan_end(struct ieee80211com *); 162 static void zyd_getradiocaps(struct ieee80211com *, int, int *, 163 struct ieee80211_channel[]); 164 static void zyd_set_channel(struct ieee80211com *); 165 static int zyd_rfmd_init(struct zyd_rf *); 166 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 167 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 168 static int zyd_al2230_init(struct zyd_rf *); 169 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 170 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 172 static int zyd_al2230_init_b(struct zyd_rf *); 173 static int zyd_al7230B_init(struct zyd_rf *); 174 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 175 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 176 static int zyd_al2210_init(struct zyd_rf *); 177 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 178 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_gct_init(struct zyd_rf *); 180 static int zyd_gct_switch_radio(struct zyd_rf *, int); 181 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_mode(struct zyd_rf *); 183 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 184 static int zyd_gct_write(struct zyd_rf *, uint16_t); 185 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 186 static int zyd_maxim2_init(struct zyd_rf *); 187 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 188 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 189 190 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 191 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 192 193 /* various supported device vendors/products */ 194 #define ZYD_ZD1211 0 195 #define ZYD_ZD1211B 1 196 197 #define ZYD_ZD1211_DEV(v,p) \ 198 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 199 #define ZYD_ZD1211B_DEV(v,p) \ 200 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 201 static const STRUCT_USB_HOST_ID zyd_devs[] = { 202 /* ZYD_ZD1211 */ 203 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 204 ZYD_ZD1211_DEV(ABOCOM, WL54), 205 ZYD_ZD1211_DEV(ASUS, WL159G), 206 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 207 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 208 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 209 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 210 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 211 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 212 ZYD_ZD1211_DEV(SAGEM, XG760A), 213 ZYD_ZD1211_DEV(SENAO, NUB8301), 214 ZYD_ZD1211_DEV(SITECOMEU, WL113), 215 ZYD_ZD1211_DEV(SWEEX, ZD1211), 216 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 217 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 218 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 219 ZYD_ZD1211_DEV(TWINMOS, G240), 220 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 221 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 222 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 223 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 224 ZYD_ZD1211_DEV(ZCOM, ZD1211), 225 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 226 ZYD_ZD1211_DEV(ZYXEL, AG225H), 227 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 228 ZYD_ZD1211_DEV(ZYXEL, G200V2), 229 /* ZYD_ZD1211B */ 230 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 231 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 232 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 233 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 234 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 235 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 236 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 237 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 238 ZYD_ZD1211B_DEV(MELCO, KG54L), 239 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 240 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 241 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 242 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 243 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 244 ZYD_ZD1211B_DEV(USR, USR5423), 245 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 246 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 247 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 248 ZYD_ZD1211B_DEV(ZYXEL, M202), 249 ZYD_ZD1211B_DEV(ZYXEL, G202), 250 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 251 }; 252 253 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 254 [ZYD_BULK_WR] = { 255 .type = UE_BULK, 256 .endpoint = UE_ADDR_ANY, 257 .direction = UE_DIR_OUT, 258 .bufsize = ZYD_MAX_TXBUFSZ, 259 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 260 .callback = zyd_bulk_write_callback, 261 .ep_index = 0, 262 .timeout = 10000, /* 10 seconds */ 263 }, 264 [ZYD_BULK_RD] = { 265 .type = UE_BULK, 266 .endpoint = UE_ADDR_ANY, 267 .direction = UE_DIR_IN, 268 .bufsize = ZYX_MAX_RXBUFSZ, 269 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 270 .callback = zyd_bulk_read_callback, 271 .ep_index = 0, 272 }, 273 [ZYD_INTR_WR] = { 274 .type = UE_BULK_INTR, 275 .endpoint = UE_ADDR_ANY, 276 .direction = UE_DIR_OUT, 277 .bufsize = sizeof(struct zyd_cmd), 278 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 279 .callback = zyd_intr_write_callback, 280 .timeout = 1000, /* 1 second */ 281 .ep_index = 1, 282 }, 283 [ZYD_INTR_RD] = { 284 .type = UE_INTERRUPT, 285 .endpoint = UE_ADDR_ANY, 286 .direction = UE_DIR_IN, 287 .bufsize = sizeof(struct zyd_cmd), 288 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 289 .callback = zyd_intr_read_callback, 290 }, 291 }; 292 #define zyd_read16_m(sc, val, data) do { \ 293 error = zyd_read16(sc, val, data); \ 294 if (error != 0) \ 295 goto fail; \ 296 } while (0) 297 #define zyd_write16_m(sc, val, data) do { \ 298 error = zyd_write16(sc, val, data); \ 299 if (error != 0) \ 300 goto fail; \ 301 } while (0) 302 #define zyd_read32_m(sc, val, data) do { \ 303 error = zyd_read32(sc, val, data); \ 304 if (error != 0) \ 305 goto fail; \ 306 } while (0) 307 #define zyd_write32_m(sc, val, data) do { \ 308 error = zyd_write32(sc, val, data); \ 309 if (error != 0) \ 310 goto fail; \ 311 } while (0) 312 313 static int 314 zyd_match(device_t dev) 315 { 316 struct usb_attach_arg *uaa = device_get_ivars(dev); 317 318 if (uaa->usb_mode != USB_MODE_HOST) 319 return (ENXIO); 320 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 321 return (ENXIO); 322 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 323 return (ENXIO); 324 325 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 326 } 327 328 static int 329 zyd_attach(device_t dev) 330 { 331 struct usb_attach_arg *uaa = device_get_ivars(dev); 332 struct zyd_softc *sc = device_get_softc(dev); 333 struct ieee80211com *ic = &sc->sc_ic; 334 uint8_t iface_index; 335 int error; 336 337 if (uaa->info.bcdDevice < 0x4330) { 338 device_printf(dev, "device version mismatch: 0x%X " 339 "(only >= 43.30 supported)\n", 340 uaa->info.bcdDevice); 341 return (EINVAL); 342 } 343 344 device_set_usb_desc(dev); 345 sc->sc_dev = dev; 346 sc->sc_udev = uaa->device; 347 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 348 349 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 350 MTX_NETWORK_LOCK, MTX_DEF); 351 STAILQ_INIT(&sc->sc_rqh); 352 mbufq_init(&sc->sc_snd, ifqmaxlen); 353 354 iface_index = ZYD_IFACE_INDEX; 355 error = usbd_transfer_setup(uaa->device, 356 &iface_index, sc->sc_xfer, zyd_config, 357 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 358 if (error) { 359 device_printf(dev, "could not allocate USB transfers, " 360 "err=%s\n", usbd_errstr(error)); 361 goto detach; 362 } 363 364 ZYD_LOCK(sc); 365 if ((error = zyd_get_macaddr(sc)) != 0) { 366 device_printf(sc->sc_dev, "could not read EEPROM\n"); 367 ZYD_UNLOCK(sc); 368 goto detach; 369 } 370 ZYD_UNLOCK(sc); 371 372 ic->ic_softc = sc; 373 ic->ic_name = device_get_nameunit(dev); 374 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 375 ic->ic_opmode = IEEE80211_M_STA; 376 377 /* set device capabilities */ 378 ic->ic_caps = 379 IEEE80211_C_STA /* station mode */ 380 | IEEE80211_C_MONITOR /* monitor mode */ 381 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 382 | IEEE80211_C_SHSLOT /* short slot time supported */ 383 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 384 | IEEE80211_C_WPA /* 802.11i */ 385 ; 386 387 ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD; 388 389 zyd_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 390 ic->ic_channels); 391 392 ieee80211_ifattach(ic); 393 ic->ic_raw_xmit = zyd_raw_xmit; 394 ic->ic_scan_start = zyd_scan_start; 395 ic->ic_scan_end = zyd_scan_end; 396 ic->ic_getradiocaps = zyd_getradiocaps; 397 ic->ic_set_channel = zyd_set_channel; 398 ic->ic_vap_create = zyd_vap_create; 399 ic->ic_vap_delete = zyd_vap_delete; 400 ic->ic_update_mcast = zyd_update_mcast; 401 ic->ic_update_promisc = zyd_update_mcast; 402 ic->ic_parent = zyd_parent; 403 ic->ic_transmit = zyd_transmit; 404 405 ieee80211_radiotap_attach(ic, 406 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 407 ZYD_TX_RADIOTAP_PRESENT, 408 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 409 ZYD_RX_RADIOTAP_PRESENT); 410 411 if (bootverbose) 412 ieee80211_announce(ic); 413 414 return (0); 415 416 detach: 417 zyd_detach(dev); 418 return (ENXIO); /* failure */ 419 } 420 421 static void 422 zyd_drain_mbufq(struct zyd_softc *sc) 423 { 424 struct mbuf *m; 425 struct ieee80211_node *ni; 426 427 ZYD_LOCK_ASSERT(sc, MA_OWNED); 428 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 429 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 430 m->m_pkthdr.rcvif = NULL; 431 ieee80211_free_node(ni); 432 m_freem(m); 433 } 434 } 435 436 static int 437 zyd_detach(device_t dev) 438 { 439 struct zyd_softc *sc = device_get_softc(dev); 440 struct ieee80211com *ic = &sc->sc_ic; 441 unsigned x; 442 443 /* 444 * Prevent further allocations from RX/TX data 445 * lists and ioctls: 446 */ 447 ZYD_LOCK(sc); 448 sc->sc_flags |= ZYD_FLAG_DETACHED; 449 zyd_drain_mbufq(sc); 450 STAILQ_INIT(&sc->tx_q); 451 STAILQ_INIT(&sc->tx_free); 452 ZYD_UNLOCK(sc); 453 454 /* drain USB transfers */ 455 for (x = 0; x != ZYD_N_TRANSFER; x++) 456 usbd_transfer_drain(sc->sc_xfer[x]); 457 458 /* free TX list, if any */ 459 ZYD_LOCK(sc); 460 zyd_unsetup_tx_list(sc); 461 ZYD_UNLOCK(sc); 462 463 /* free USB transfers and some data buffers */ 464 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 465 466 if (ic->ic_softc == sc) 467 ieee80211_ifdetach(ic); 468 mtx_destroy(&sc->sc_mtx); 469 470 return (0); 471 } 472 473 static struct ieee80211vap * 474 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 475 enum ieee80211_opmode opmode, int flags, 476 const uint8_t bssid[IEEE80211_ADDR_LEN], 477 const uint8_t mac[IEEE80211_ADDR_LEN]) 478 { 479 struct zyd_vap *zvp; 480 struct ieee80211vap *vap; 481 482 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 483 return (NULL); 484 zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); 485 vap = &zvp->vap; 486 487 /* enable s/w bmiss handling for sta mode */ 488 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 489 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 490 /* out of memory */ 491 free(zvp, M_80211_VAP); 492 return (NULL); 493 } 494 495 /* override state transition machine */ 496 zvp->newstate = vap->iv_newstate; 497 vap->iv_newstate = zyd_newstate; 498 499 ieee80211_ratectl_init(vap); 500 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 501 502 /* complete setup */ 503 ieee80211_vap_attach(vap, ieee80211_media_change, 504 ieee80211_media_status, mac); 505 ic->ic_opmode = opmode; 506 return (vap); 507 } 508 509 static void 510 zyd_vap_delete(struct ieee80211vap *vap) 511 { 512 struct zyd_vap *zvp = ZYD_VAP(vap); 513 514 ieee80211_ratectl_deinit(vap); 515 ieee80211_vap_detach(vap); 516 free(zvp, M_80211_VAP); 517 } 518 519 static void 520 zyd_tx_free(struct zyd_tx_data *data, int txerr) 521 { 522 struct zyd_softc *sc = data->sc; 523 524 if (data->m != NULL) { 525 ieee80211_tx_complete(data->ni, data->m, txerr); 526 data->m = NULL; 527 data->ni = NULL; 528 } 529 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 530 sc->tx_nfree++; 531 } 532 533 static void 534 zyd_setup_tx_list(struct zyd_softc *sc) 535 { 536 struct zyd_tx_data *data; 537 int i; 538 539 sc->tx_nfree = 0; 540 STAILQ_INIT(&sc->tx_q); 541 STAILQ_INIT(&sc->tx_free); 542 543 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 544 data = &sc->tx_data[i]; 545 546 data->sc = sc; 547 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 548 sc->tx_nfree++; 549 } 550 } 551 552 static void 553 zyd_unsetup_tx_list(struct zyd_softc *sc) 554 { 555 struct zyd_tx_data *data; 556 int i; 557 558 /* make sure any subsequent use of the queues will fail */ 559 sc->tx_nfree = 0; 560 STAILQ_INIT(&sc->tx_q); 561 STAILQ_INIT(&sc->tx_free); 562 563 /* free up all node references and mbufs */ 564 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 565 data = &sc->tx_data[i]; 566 567 if (data->m != NULL) { 568 m_freem(data->m); 569 data->m = NULL; 570 } 571 if (data->ni != NULL) { 572 ieee80211_free_node(data->ni); 573 data->ni = NULL; 574 } 575 } 576 } 577 578 static int 579 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 580 { 581 struct zyd_vap *zvp = ZYD_VAP(vap); 582 struct ieee80211com *ic = vap->iv_ic; 583 struct zyd_softc *sc = ic->ic_softc; 584 int error; 585 586 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 587 ieee80211_state_name[vap->iv_state], 588 ieee80211_state_name[nstate]); 589 590 IEEE80211_UNLOCK(ic); 591 ZYD_LOCK(sc); 592 switch (nstate) { 593 case IEEE80211_S_AUTH: 594 zyd_set_chan(sc, ic->ic_curchan); 595 break; 596 case IEEE80211_S_RUN: 597 if (vap->iv_opmode == IEEE80211_M_MONITOR) 598 break; 599 600 /* turn link LED on */ 601 error = zyd_set_led(sc, ZYD_LED1, 1); 602 if (error != 0) 603 break; 604 605 /* make data LED blink upon Tx */ 606 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 607 608 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 609 zyd_set_bssid(sc, sc->sc_bssid); 610 break; 611 default: 612 break; 613 } 614 fail: 615 ZYD_UNLOCK(sc); 616 IEEE80211_LOCK(ic); 617 return (zvp->newstate(vap, nstate, arg)); 618 } 619 620 /* 621 * Callback handler for interrupt transfer 622 */ 623 static void 624 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 625 { 626 struct zyd_softc *sc = usbd_xfer_softc(xfer); 627 struct ieee80211com *ic = &sc->sc_ic; 628 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 629 struct ieee80211_node *ni; 630 struct zyd_cmd *cmd = &sc->sc_ibuf; 631 struct usb_page_cache *pc; 632 int datalen; 633 int actlen; 634 635 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 636 637 switch (USB_GET_STATE(xfer)) { 638 case USB_ST_TRANSFERRED: 639 pc = usbd_xfer_get_frame(xfer, 0); 640 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 641 642 switch (le16toh(cmd->code)) { 643 case ZYD_NOTIF_RETRYSTATUS: 644 { 645 struct zyd_notif_retry *retry = 646 (struct zyd_notif_retry *)cmd->data; 647 uint16_t count = le16toh(retry->count); 648 649 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 650 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 651 le16toh(retry->rate), ether_sprintf(retry->macaddr), 652 count & 0xff, count); 653 654 /* 655 * Find the node to which the packet was sent and 656 * update its retry statistics. In BSS mode, this node 657 * is the AP we're associated to so no lookup is 658 * actually needed. 659 */ 660 ni = ieee80211_find_txnode(vap, retry->macaddr); 661 if (ni != NULL) { 662 struct ieee80211_ratectl_tx_status *txs = 663 &sc->sc_txs; 664 int retrycnt = count & 0xff; 665 666 txs->flags = 667 IEEE80211_RATECTL_STATUS_LONG_RETRY; 668 txs->long_retries = retrycnt; 669 if (count & 0x100) { 670 txs->status = 671 IEEE80211_RATECTL_TX_FAIL_LONG; 672 } else { 673 txs->status = 674 IEEE80211_RATECTL_TX_SUCCESS; 675 } 676 677 ieee80211_ratectl_tx_complete(ni, txs); 678 ieee80211_free_node(ni); 679 } 680 if (count & 0x100) 681 /* too many retries */ 682 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 683 1); 684 break; 685 } 686 case ZYD_NOTIF_IORD: 687 { 688 struct zyd_rq *rqp; 689 690 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 691 break; /* HMAC interrupt */ 692 693 datalen = actlen - sizeof(cmd->code); 694 datalen -= 2; /* XXX: padding? */ 695 696 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 697 int i; 698 int count; 699 700 if (rqp->olen != datalen) 701 continue; 702 count = rqp->olen / sizeof(struct zyd_pair); 703 for (i = 0; i < count; i++) { 704 if (*(((const uint16_t *)rqp->idata) + i) != 705 (((struct zyd_pair *)cmd->data) + i)->reg) 706 break; 707 } 708 if (i != count) 709 continue; 710 /* copy answer into caller-supplied buffer */ 711 memcpy(rqp->odata, cmd->data, rqp->olen); 712 DPRINTF(sc, ZYD_DEBUG_CMD, 713 "command %p complete, data = %*D \n", 714 rqp, rqp->olen, (char *)rqp->odata, ":"); 715 wakeup(rqp); /* wakeup caller */ 716 break; 717 } 718 if (rqp == NULL) { 719 device_printf(sc->sc_dev, 720 "unexpected IORD notification %*D\n", 721 datalen, cmd->data, ":"); 722 } 723 break; 724 } 725 default: 726 device_printf(sc->sc_dev, "unknown notification %x\n", 727 le16toh(cmd->code)); 728 } 729 730 /* FALLTHROUGH */ 731 case USB_ST_SETUP: 732 tr_setup: 733 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 734 usbd_transfer_submit(xfer); 735 break; 736 737 default: /* Error */ 738 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 739 usbd_errstr(error)); 740 741 if (error != USB_ERR_CANCELLED) { 742 /* try to clear stall first */ 743 usbd_xfer_set_stall(xfer); 744 goto tr_setup; 745 } 746 break; 747 } 748 } 749 750 static void 751 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 752 { 753 struct zyd_softc *sc = usbd_xfer_softc(xfer); 754 struct zyd_rq *rqp, *cmd; 755 struct usb_page_cache *pc; 756 757 switch (USB_GET_STATE(xfer)) { 758 case USB_ST_TRANSFERRED: 759 cmd = usbd_xfer_get_priv(xfer); 760 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 761 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 762 /* Ensure the cached rq pointer is still valid */ 763 if (rqp == cmd && 764 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 765 wakeup(rqp); /* wakeup caller */ 766 } 767 768 /* FALLTHROUGH */ 769 case USB_ST_SETUP: 770 tr_setup: 771 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 772 if (rqp->flags & ZYD_CMD_FLAG_SENT) 773 continue; 774 775 pc = usbd_xfer_get_frame(xfer, 0); 776 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 777 778 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 779 usbd_xfer_set_priv(xfer, rqp); 780 rqp->flags |= ZYD_CMD_FLAG_SENT; 781 usbd_transfer_submit(xfer); 782 break; 783 } 784 break; 785 786 default: /* Error */ 787 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 788 usbd_errstr(error)); 789 790 if (error != USB_ERR_CANCELLED) { 791 /* try to clear stall first */ 792 usbd_xfer_set_stall(xfer); 793 goto tr_setup; 794 } 795 break; 796 } 797 } 798 799 static int 800 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 801 void *odata, int olen, int flags) 802 { 803 struct zyd_cmd cmd; 804 struct zyd_rq rq; 805 int error; 806 807 if (ilen > (int)sizeof(cmd.data)) 808 return (EINVAL); 809 810 cmd.code = htole16(code); 811 memcpy(cmd.data, idata, ilen); 812 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 813 &rq, ilen, idata, ":"); 814 815 rq.cmd = &cmd; 816 rq.idata = idata; 817 rq.odata = odata; 818 rq.ilen = sizeof(uint16_t) + ilen; 819 rq.olen = olen; 820 rq.flags = flags; 821 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 822 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 823 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 824 825 /* wait at most one second for command reply */ 826 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 827 if (error) 828 device_printf(sc->sc_dev, "command timeout\n"); 829 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 830 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 831 &rq, error); 832 833 return (error); 834 } 835 836 static int 837 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 838 { 839 struct zyd_pair tmp; 840 int error; 841 842 reg = htole16(reg); 843 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 844 ZYD_CMD_FLAG_READ); 845 if (error == 0) 846 *val = le16toh(tmp.val); 847 return (error); 848 } 849 850 static int 851 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 852 { 853 struct zyd_pair tmp[2]; 854 uint16_t regs[2]; 855 int error; 856 857 regs[0] = htole16(ZYD_REG32_HI(reg)); 858 regs[1] = htole16(ZYD_REG32_LO(reg)); 859 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 860 ZYD_CMD_FLAG_READ); 861 if (error == 0) 862 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 863 return (error); 864 } 865 866 static int 867 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 868 { 869 struct zyd_pair pair; 870 871 pair.reg = htole16(reg); 872 pair.val = htole16(val); 873 874 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 875 } 876 877 static int 878 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 879 { 880 struct zyd_pair pair[2]; 881 882 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 883 pair[0].val = htole16(val >> 16); 884 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 885 pair[1].val = htole16(val & 0xffff); 886 887 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 888 } 889 890 static int 891 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 892 { 893 struct zyd_rf *rf = &sc->sc_rf; 894 struct zyd_rfwrite_cmd req; 895 uint16_t cr203; 896 int error, i; 897 898 zyd_read16_m(sc, ZYD_CR203, &cr203); 899 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 900 901 req.code = htole16(2); 902 req.width = htole16(rf->width); 903 for (i = 0; i < rf->width; i++) { 904 req.bit[i] = htole16(cr203); 905 if (val & (1 << (rf->width - 1 - i))) 906 req.bit[i] |= htole16(ZYD_RF_DATA); 907 } 908 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 909 fail: 910 return (error); 911 } 912 913 static int 914 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 915 { 916 int error; 917 918 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 919 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 920 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 921 fail: 922 return (error); 923 } 924 925 static int 926 zyd_lock_phy(struct zyd_softc *sc) 927 { 928 int error; 929 uint32_t tmp; 930 931 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 932 tmp &= ~ZYD_UNLOCK_PHY_REGS; 933 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 934 fail: 935 return (error); 936 } 937 938 static int 939 zyd_unlock_phy(struct zyd_softc *sc) 940 { 941 int error; 942 uint32_t tmp; 943 944 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 945 tmp |= ZYD_UNLOCK_PHY_REGS; 946 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 947 fail: 948 return (error); 949 } 950 951 /* 952 * RFMD RF methods. 953 */ 954 static int 955 zyd_rfmd_init(struct zyd_rf *rf) 956 { 957 struct zyd_softc *sc = rf->rf_sc; 958 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 959 static const uint32_t rfini[] = ZYD_RFMD_RF; 960 int i, error; 961 962 /* init RF-dependent PHY registers */ 963 for (i = 0; i < nitems(phyini); i++) { 964 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 965 } 966 967 /* init RFMD radio */ 968 for (i = 0; i < nitems(rfini); i++) { 969 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 970 return (error); 971 } 972 fail: 973 return (error); 974 } 975 976 static int 977 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 978 { 979 int error; 980 struct zyd_softc *sc = rf->rf_sc; 981 982 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 983 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 984 fail: 985 return (error); 986 } 987 988 static int 989 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 990 { 991 int error; 992 struct zyd_softc *sc = rf->rf_sc; 993 static const struct { 994 uint32_t r1, r2; 995 } rfprog[] = ZYD_RFMD_CHANTABLE; 996 997 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 998 if (error != 0) 999 goto fail; 1000 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1001 if (error != 0) 1002 goto fail; 1003 1004 fail: 1005 return (error); 1006 } 1007 1008 /* 1009 * AL2230 RF methods. 1010 */ 1011 static int 1012 zyd_al2230_init(struct zyd_rf *rf) 1013 { 1014 struct zyd_softc *sc = rf->rf_sc; 1015 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1016 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1017 static const struct zyd_phy_pair phypll[] = { 1018 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1019 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1020 }; 1021 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1022 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1023 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1024 int i, error; 1025 1026 /* init RF-dependent PHY registers */ 1027 for (i = 0; i < nitems(phyini); i++) 1028 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1029 1030 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1031 for (i = 0; i < nitems(phy2230s); i++) 1032 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1033 } 1034 1035 /* init AL2230 radio */ 1036 for (i = 0; i < nitems(rfini1); i++) { 1037 error = zyd_rfwrite(sc, rfini1[i]); 1038 if (error != 0) 1039 goto fail; 1040 } 1041 1042 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1043 error = zyd_rfwrite(sc, 0x000824); 1044 else 1045 error = zyd_rfwrite(sc, 0x0005a4); 1046 if (error != 0) 1047 goto fail; 1048 1049 for (i = 0; i < nitems(rfini2); i++) { 1050 error = zyd_rfwrite(sc, rfini2[i]); 1051 if (error != 0) 1052 goto fail; 1053 } 1054 1055 for (i = 0; i < nitems(phypll); i++) 1056 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1057 1058 for (i = 0; i < nitems(rfini3); i++) { 1059 error = zyd_rfwrite(sc, rfini3[i]); 1060 if (error != 0) 1061 goto fail; 1062 } 1063 fail: 1064 return (error); 1065 } 1066 1067 static int 1068 zyd_al2230_fini(struct zyd_rf *rf) 1069 { 1070 int error, i; 1071 struct zyd_softc *sc = rf->rf_sc; 1072 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1073 1074 for (i = 0; i < nitems(phy); i++) 1075 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1076 1077 if (sc->sc_newphy != 0) 1078 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1079 1080 zyd_write16_m(sc, ZYD_CR203, 0x6); 1081 fail: 1082 return (error); 1083 } 1084 1085 static int 1086 zyd_al2230_init_b(struct zyd_rf *rf) 1087 { 1088 struct zyd_softc *sc = rf->rf_sc; 1089 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1090 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1091 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1092 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1093 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1094 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1095 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1096 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1097 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1098 int i, error; 1099 1100 for (i = 0; i < nitems(phy1); i++) 1101 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1102 1103 /* init RF-dependent PHY registers */ 1104 for (i = 0; i < nitems(phyini); i++) 1105 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1106 1107 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1108 for (i = 0; i < nitems(phy2230s); i++) 1109 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1110 } 1111 1112 for (i = 0; i < 3; i++) { 1113 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1114 if (error != 0) 1115 return (error); 1116 } 1117 1118 for (i = 0; i < nitems(rfini_part1); i++) { 1119 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1120 if (error != 0) 1121 return (error); 1122 } 1123 1124 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1125 error = zyd_rfwrite(sc, 0x241000); 1126 else 1127 error = zyd_rfwrite(sc, 0x25a000); 1128 if (error != 0) 1129 goto fail; 1130 1131 for (i = 0; i < nitems(rfini_part2); i++) { 1132 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1133 if (error != 0) 1134 return (error); 1135 } 1136 1137 for (i = 0; i < nitems(phy2); i++) 1138 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1139 1140 for (i = 0; i < nitems(rfini_part3); i++) { 1141 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1142 if (error != 0) 1143 return (error); 1144 } 1145 1146 for (i = 0; i < nitems(phy3); i++) 1147 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1148 1149 error = zyd_al2230_fini(rf); 1150 fail: 1151 return (error); 1152 } 1153 1154 static int 1155 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1156 { 1157 struct zyd_softc *sc = rf->rf_sc; 1158 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1159 1160 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1161 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1162 fail: 1163 return (error); 1164 } 1165 1166 static int 1167 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1168 { 1169 int error, i; 1170 struct zyd_softc *sc = rf->rf_sc; 1171 static const struct zyd_phy_pair phy1[] = { 1172 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1173 }; 1174 static const struct { 1175 uint32_t r1, r2, r3; 1176 } rfprog[] = ZYD_AL2230_CHANTABLE; 1177 1178 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1179 if (error != 0) 1180 goto fail; 1181 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1182 if (error != 0) 1183 goto fail; 1184 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1185 if (error != 0) 1186 goto fail; 1187 1188 for (i = 0; i < nitems(phy1); i++) 1189 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1190 fail: 1191 return (error); 1192 } 1193 1194 static int 1195 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1196 { 1197 int error, i; 1198 struct zyd_softc *sc = rf->rf_sc; 1199 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1200 static const struct { 1201 uint32_t r1, r2, r3; 1202 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1203 1204 for (i = 0; i < nitems(phy1); i++) 1205 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1206 1207 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1208 if (error != 0) 1209 goto fail; 1210 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1211 if (error != 0) 1212 goto fail; 1213 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1214 if (error != 0) 1215 goto fail; 1216 error = zyd_al2230_fini(rf); 1217 fail: 1218 return (error); 1219 } 1220 1221 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1222 { \ 1223 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1224 { ZYD_CR47, 0x1e } \ 1225 } 1226 1227 static int 1228 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1229 { 1230 int error = 0, i; 1231 struct zyd_softc *sc = rf->rf_sc; 1232 struct ieee80211com *ic = &sc->sc_ic; 1233 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1234 int chan = ieee80211_chan2ieee(ic, c); 1235 1236 if (chan == 1 || chan == 11) 1237 r[0].val = 0x12; 1238 1239 for (i = 0; i < nitems(r); i++) 1240 zyd_write16_m(sc, r[i].reg, r[i].val); 1241 fail: 1242 return (error); 1243 } 1244 1245 /* 1246 * AL7230B RF methods. 1247 */ 1248 static int 1249 zyd_al7230B_init(struct zyd_rf *rf) 1250 { 1251 struct zyd_softc *sc = rf->rf_sc; 1252 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1253 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1254 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1255 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1256 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1257 int i, error; 1258 1259 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1260 1261 /* init RF-dependent PHY registers, part one */ 1262 for (i = 0; i < nitems(phyini_1); i++) 1263 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1264 1265 /* init AL7230B radio, part one */ 1266 for (i = 0; i < nitems(rfini_1); i++) { 1267 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1268 return (error); 1269 } 1270 /* init RF-dependent PHY registers, part two */ 1271 for (i = 0; i < nitems(phyini_2); i++) 1272 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1273 1274 /* init AL7230B radio, part two */ 1275 for (i = 0; i < nitems(rfini_2); i++) { 1276 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1277 return (error); 1278 } 1279 /* init RF-dependent PHY registers, part three */ 1280 for (i = 0; i < nitems(phyini_3); i++) 1281 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1282 fail: 1283 return (error); 1284 } 1285 1286 static int 1287 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1288 { 1289 int error; 1290 struct zyd_softc *sc = rf->rf_sc; 1291 1292 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1293 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1294 fail: 1295 return (error); 1296 } 1297 1298 static int 1299 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1300 { 1301 struct zyd_softc *sc = rf->rf_sc; 1302 static const struct { 1303 uint32_t r1, r2; 1304 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1305 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1306 int i, error; 1307 1308 zyd_write16_m(sc, ZYD_CR240, 0x57); 1309 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1310 1311 for (i = 0; i < nitems(rfsc); i++) { 1312 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1313 return (error); 1314 } 1315 1316 zyd_write16_m(sc, ZYD_CR128, 0x14); 1317 zyd_write16_m(sc, ZYD_CR129, 0x12); 1318 zyd_write16_m(sc, ZYD_CR130, 0x10); 1319 zyd_write16_m(sc, ZYD_CR38, 0x38); 1320 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1321 1322 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1323 if (error != 0) 1324 goto fail; 1325 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1326 if (error != 0) 1327 goto fail; 1328 error = zyd_rfwrite(sc, 0x3c9000); 1329 if (error != 0) 1330 goto fail; 1331 1332 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1333 zyd_write16_m(sc, ZYD_CR203, 0x06); 1334 zyd_write16_m(sc, ZYD_CR240, 0x08); 1335 fail: 1336 return (error); 1337 } 1338 1339 /* 1340 * AL2210 RF methods. 1341 */ 1342 static int 1343 zyd_al2210_init(struct zyd_rf *rf) 1344 { 1345 struct zyd_softc *sc = rf->rf_sc; 1346 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1347 static const uint32_t rfini[] = ZYD_AL2210_RF; 1348 uint32_t tmp; 1349 int i, error; 1350 1351 zyd_write32_m(sc, ZYD_CR18, 2); 1352 1353 /* init RF-dependent PHY registers */ 1354 for (i = 0; i < nitems(phyini); i++) 1355 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1356 1357 /* init AL2210 radio */ 1358 for (i = 0; i < nitems(rfini); i++) { 1359 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1360 return (error); 1361 } 1362 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1363 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1364 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1365 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1366 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1367 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1368 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1369 zyd_write32_m(sc, ZYD_CR18, 3); 1370 fail: 1371 return (error); 1372 } 1373 1374 static int 1375 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1376 { 1377 /* vendor driver does nothing for this RF chip */ 1378 1379 return (0); 1380 } 1381 1382 static int 1383 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1384 { 1385 int error; 1386 struct zyd_softc *sc = rf->rf_sc; 1387 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1388 uint32_t tmp; 1389 1390 zyd_write32_m(sc, ZYD_CR18, 2); 1391 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1392 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1393 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1394 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1395 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1396 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1397 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1398 1399 /* actually set the channel */ 1400 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1401 if (error != 0) 1402 goto fail; 1403 1404 zyd_write32_m(sc, ZYD_CR18, 3); 1405 fail: 1406 return (error); 1407 } 1408 1409 /* 1410 * GCT RF methods. 1411 */ 1412 static int 1413 zyd_gct_init(struct zyd_rf *rf) 1414 { 1415 #define ZYD_GCT_INTR_REG 0x85c1 1416 struct zyd_softc *sc = rf->rf_sc; 1417 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1418 static const uint32_t rfini[] = ZYD_GCT_RF; 1419 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1420 int i, idx = -1, error; 1421 uint16_t data; 1422 1423 /* init RF-dependent PHY registers */ 1424 for (i = 0; i < nitems(phyini); i++) 1425 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1426 1427 /* init cgt radio */ 1428 for (i = 0; i < nitems(rfini); i++) { 1429 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1430 return (error); 1431 } 1432 1433 error = zyd_gct_mode(rf); 1434 if (error != 0) 1435 return (error); 1436 1437 for (i = 0; i < (int)(nitems(vco) - 1); i++) { 1438 error = zyd_gct_set_channel_synth(rf, 1, 0); 1439 if (error != 0) 1440 goto fail; 1441 error = zyd_gct_write(rf, vco[i][0]); 1442 if (error != 0) 1443 goto fail; 1444 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1445 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1446 if ((data & 0xf) == 0) { 1447 idx = i; 1448 break; 1449 } 1450 } 1451 if (idx == -1) { 1452 error = zyd_gct_set_channel_synth(rf, 1, 1); 1453 if (error != 0) 1454 goto fail; 1455 error = zyd_gct_write(rf, 0x6662); 1456 if (error != 0) 1457 goto fail; 1458 } 1459 1460 rf->idx = idx; 1461 zyd_write16_m(sc, ZYD_CR203, 0x6); 1462 fail: 1463 return (error); 1464 #undef ZYD_GCT_INTR_REG 1465 } 1466 1467 static int 1468 zyd_gct_mode(struct zyd_rf *rf) 1469 { 1470 struct zyd_softc *sc = rf->rf_sc; 1471 static const uint32_t mode[] = { 1472 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1473 }; 1474 int i, error; 1475 1476 for (i = 0; i < nitems(mode); i++) { 1477 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1478 break; 1479 } 1480 return (error); 1481 } 1482 1483 static int 1484 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1485 { 1486 int error, idx = chan - 1; 1487 struct zyd_softc *sc = rf->rf_sc; 1488 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1489 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1490 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1491 1492 error = zyd_rfwrite(sc, 1493 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1494 if (error != 0) 1495 return (error); 1496 return zyd_rfwrite(sc, div_synth[idx]); 1497 } 1498 1499 static int 1500 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1501 { 1502 struct zyd_softc *sc = rf->rf_sc; 1503 1504 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1505 } 1506 1507 static int 1508 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1509 { 1510 int error; 1511 struct zyd_softc *sc = rf->rf_sc; 1512 1513 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1514 if (error != 0) 1515 return (error); 1516 1517 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1518 zyd_write16_m(sc, ZYD_CR251, 1519 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1520 fail: 1521 return (error); 1522 } 1523 1524 static int 1525 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1526 { 1527 int error, i; 1528 struct zyd_softc *sc = rf->rf_sc; 1529 static const struct zyd_phy_pair cmd[] = { 1530 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1531 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1532 }; 1533 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1534 1535 error = zyd_gct_set_channel_synth(rf, chan, 0); 1536 if (error != 0) 1537 goto fail; 1538 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1539 vco[rf->idx][((chan - 1) / 2)]); 1540 if (error != 0) 1541 goto fail; 1542 error = zyd_gct_mode(rf); 1543 if (error != 0) 1544 return (error); 1545 for (i = 0; i < nitems(cmd); i++) 1546 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1547 error = zyd_gct_txgain(rf, chan); 1548 if (error != 0) 1549 return (error); 1550 zyd_write16_m(sc, ZYD_CR203, 0x6); 1551 fail: 1552 return (error); 1553 } 1554 1555 static int 1556 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1557 { 1558 struct zyd_softc *sc = rf->rf_sc; 1559 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1560 uint8_t idx = sc->sc_pwrint[chan - 1]; 1561 1562 if (idx >= nitems(txgain)) { 1563 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1564 chan, idx); 1565 return 0; 1566 } 1567 1568 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1569 } 1570 1571 /* 1572 * Maxim2 RF methods. 1573 */ 1574 static int 1575 zyd_maxim2_init(struct zyd_rf *rf) 1576 { 1577 struct zyd_softc *sc = rf->rf_sc; 1578 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1579 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1580 uint16_t tmp; 1581 int i, error; 1582 1583 /* init RF-dependent PHY registers */ 1584 for (i = 0; i < nitems(phyini); i++) 1585 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1586 1587 zyd_read16_m(sc, ZYD_CR203, &tmp); 1588 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1589 1590 /* init maxim2 radio */ 1591 for (i = 0; i < nitems(rfini); i++) { 1592 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1593 return (error); 1594 } 1595 zyd_read16_m(sc, ZYD_CR203, &tmp); 1596 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1597 fail: 1598 return (error); 1599 } 1600 1601 static int 1602 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1603 { 1604 1605 /* vendor driver does nothing for this RF chip */ 1606 return (0); 1607 } 1608 1609 static int 1610 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1611 { 1612 struct zyd_softc *sc = rf->rf_sc; 1613 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1614 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1615 static const struct { 1616 uint32_t r1, r2; 1617 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1618 uint16_t tmp; 1619 int i, error; 1620 1621 /* 1622 * Do the same as we do when initializing it, except for the channel 1623 * values coming from the two channel tables. 1624 */ 1625 1626 /* init RF-dependent PHY registers */ 1627 for (i = 0; i < nitems(phyini); i++) 1628 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1629 1630 zyd_read16_m(sc, ZYD_CR203, &tmp); 1631 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1632 1633 /* first two values taken from the chantables */ 1634 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1635 if (error != 0) 1636 goto fail; 1637 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1638 if (error != 0) 1639 goto fail; 1640 1641 /* init maxim2 radio - skipping the two first values */ 1642 for (i = 2; i < nitems(rfini); i++) { 1643 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1644 return (error); 1645 } 1646 zyd_read16_m(sc, ZYD_CR203, &tmp); 1647 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1648 fail: 1649 return (error); 1650 } 1651 1652 static int 1653 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1654 { 1655 struct zyd_rf *rf = &sc->sc_rf; 1656 1657 rf->rf_sc = sc; 1658 rf->update_pwr = 1; 1659 1660 switch (type) { 1661 case ZYD_RF_RFMD: 1662 rf->init = zyd_rfmd_init; 1663 rf->switch_radio = zyd_rfmd_switch_radio; 1664 rf->set_channel = zyd_rfmd_set_channel; 1665 rf->width = 24; /* 24-bit RF values */ 1666 break; 1667 case ZYD_RF_AL2230: 1668 case ZYD_RF_AL2230S: 1669 if (sc->sc_macrev == ZYD_ZD1211B) { 1670 rf->init = zyd_al2230_init_b; 1671 rf->set_channel = zyd_al2230_set_channel_b; 1672 } else { 1673 rf->init = zyd_al2230_init; 1674 rf->set_channel = zyd_al2230_set_channel; 1675 } 1676 rf->switch_radio = zyd_al2230_switch_radio; 1677 rf->bandedge6 = zyd_al2230_bandedge6; 1678 rf->width = 24; /* 24-bit RF values */ 1679 break; 1680 case ZYD_RF_AL7230B: 1681 rf->init = zyd_al7230B_init; 1682 rf->switch_radio = zyd_al7230B_switch_radio; 1683 rf->set_channel = zyd_al7230B_set_channel; 1684 rf->width = 24; /* 24-bit RF values */ 1685 break; 1686 case ZYD_RF_AL2210: 1687 rf->init = zyd_al2210_init; 1688 rf->switch_radio = zyd_al2210_switch_radio; 1689 rf->set_channel = zyd_al2210_set_channel; 1690 rf->width = 24; /* 24-bit RF values */ 1691 break; 1692 case ZYD_RF_MAXIM_NEW: 1693 case ZYD_RF_GCT: 1694 rf->init = zyd_gct_init; 1695 rf->switch_radio = zyd_gct_switch_radio; 1696 rf->set_channel = zyd_gct_set_channel; 1697 rf->width = 24; /* 24-bit RF values */ 1698 rf->update_pwr = 0; 1699 break; 1700 case ZYD_RF_MAXIM_NEW2: 1701 rf->init = zyd_maxim2_init; 1702 rf->switch_radio = zyd_maxim2_switch_radio; 1703 rf->set_channel = zyd_maxim2_set_channel; 1704 rf->width = 18; /* 18-bit RF values */ 1705 break; 1706 default: 1707 device_printf(sc->sc_dev, 1708 "sorry, radio \"%s\" is not supported yet\n", 1709 zyd_rf_name(type)); 1710 return (EINVAL); 1711 } 1712 return (0); 1713 } 1714 1715 static const char * 1716 zyd_rf_name(uint8_t type) 1717 { 1718 static const char * const zyd_rfs[] = { 1719 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1720 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1721 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1722 "PHILIPS" 1723 }; 1724 1725 return zyd_rfs[(type > 15) ? 0 : type]; 1726 } 1727 1728 static int 1729 zyd_hw_init(struct zyd_softc *sc) 1730 { 1731 int error; 1732 const struct zyd_phy_pair *phyp; 1733 struct zyd_rf *rf = &sc->sc_rf; 1734 uint16_t val; 1735 1736 /* specify that the plug and play is finished */ 1737 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1738 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1739 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1740 sc->sc_fwbase); 1741 1742 /* retrieve firmware revision number */ 1743 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1744 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1745 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1746 /* set mandatory rates - XXX assumes 802.11b/g */ 1747 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1748 1749 /* disable interrupts */ 1750 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1751 1752 if ((error = zyd_read_pod(sc)) != 0) { 1753 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1754 goto fail; 1755 } 1756 1757 /* PHY init (resetting) */ 1758 error = zyd_lock_phy(sc); 1759 if (error != 0) 1760 goto fail; 1761 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1762 for (; phyp->reg != 0; phyp++) 1763 zyd_write16_m(sc, phyp->reg, phyp->val); 1764 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1765 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1766 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1767 } 1768 error = zyd_unlock_phy(sc); 1769 if (error != 0) 1770 goto fail; 1771 1772 /* HMAC init */ 1773 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1774 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1775 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1776 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1777 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1778 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1779 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1780 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1781 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1782 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1783 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1784 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1785 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1786 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1787 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1788 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1789 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1790 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1791 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1792 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1793 1794 if (sc->sc_macrev == ZYD_ZD1211) { 1795 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1796 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1797 } else { 1798 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1799 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1800 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1801 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1802 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1803 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1804 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1805 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1806 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1807 } 1808 1809 /* init beacon interval to 100ms */ 1810 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1811 goto fail; 1812 1813 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1814 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1815 sc->sc_rfrev); 1816 goto fail; 1817 } 1818 1819 /* RF chip init */ 1820 error = zyd_lock_phy(sc); 1821 if (error != 0) 1822 goto fail; 1823 error = (*rf->init)(rf); 1824 if (error != 0) { 1825 device_printf(sc->sc_dev, 1826 "radio initialization failed, error %d\n", error); 1827 goto fail; 1828 } 1829 error = zyd_unlock_phy(sc); 1830 if (error != 0) 1831 goto fail; 1832 1833 if ((error = zyd_read_eeprom(sc)) != 0) { 1834 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1835 goto fail; 1836 } 1837 1838 fail: return (error); 1839 } 1840 1841 static int 1842 zyd_read_pod(struct zyd_softc *sc) 1843 { 1844 int error; 1845 uint32_t tmp; 1846 1847 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1848 sc->sc_rfrev = tmp & 0x0f; 1849 sc->sc_ledtype = (tmp >> 4) & 0x01; 1850 sc->sc_al2230s = (tmp >> 7) & 0x01; 1851 sc->sc_cckgain = (tmp >> 8) & 0x01; 1852 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1853 sc->sc_parev = (tmp >> 16) & 0x0f; 1854 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1855 sc->sc_newphy = (tmp >> 31) & 0x01; 1856 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1857 fail: 1858 return (error); 1859 } 1860 1861 static int 1862 zyd_read_eeprom(struct zyd_softc *sc) 1863 { 1864 uint16_t val; 1865 int error, i; 1866 1867 /* read Tx power calibration tables */ 1868 for (i = 0; i < 7; i++) { 1869 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1870 sc->sc_pwrcal[i * 2] = val >> 8; 1871 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1872 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1873 sc->sc_pwrint[i * 2] = val >> 8; 1874 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1875 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1876 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1877 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1878 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1879 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1880 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1881 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1882 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1883 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1884 } 1885 fail: 1886 return (error); 1887 } 1888 1889 static int 1890 zyd_get_macaddr(struct zyd_softc *sc) 1891 { 1892 struct usb_device_request req; 1893 usb_error_t error; 1894 1895 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1896 req.bRequest = ZYD_READFWDATAREQ; 1897 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1898 USETW(req.wIndex, 0); 1899 USETW(req.wLength, IEEE80211_ADDR_LEN); 1900 1901 error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); 1902 if (error != 0) { 1903 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1904 usbd_errstr(error)); 1905 } 1906 1907 return (error); 1908 } 1909 1910 static int 1911 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1912 { 1913 int error; 1914 uint32_t tmp; 1915 1916 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1917 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1918 tmp = addr[5] << 8 | addr[4]; 1919 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1920 fail: 1921 return (error); 1922 } 1923 1924 static int 1925 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1926 { 1927 int error; 1928 uint32_t tmp; 1929 1930 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1931 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1932 tmp = addr[5] << 8 | addr[4]; 1933 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1934 fail: 1935 return (error); 1936 } 1937 1938 static int 1939 zyd_switch_radio(struct zyd_softc *sc, int on) 1940 { 1941 struct zyd_rf *rf = &sc->sc_rf; 1942 int error; 1943 1944 error = zyd_lock_phy(sc); 1945 if (error != 0) 1946 goto fail; 1947 error = (*rf->switch_radio)(rf, on); 1948 if (error != 0) 1949 goto fail; 1950 error = zyd_unlock_phy(sc); 1951 fail: 1952 return (error); 1953 } 1954 1955 static int 1956 zyd_set_led(struct zyd_softc *sc, int which, int on) 1957 { 1958 int error; 1959 uint32_t tmp; 1960 1961 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1962 tmp &= ~which; 1963 if (on) 1964 tmp |= which; 1965 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1966 fail: 1967 return (error); 1968 } 1969 1970 static u_int 1971 zyd_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1972 { 1973 uint32_t *hash = arg; 1974 uint8_t v; 1975 1976 v = ((uint8_t *)LLADDR(sdl))[5] >> 2; 1977 if (v < 32) 1978 hash[0] |= 1 << v; 1979 else 1980 hash[1] |= 1 << (v - 32); 1981 1982 return (1); 1983 } 1984 1985 static void 1986 zyd_set_multi(struct zyd_softc *sc) 1987 { 1988 struct ieee80211com *ic = &sc->sc_ic; 1989 uint32_t hash[2]; 1990 int error; 1991 1992 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) 1993 return; 1994 1995 hash[0] = 0x00000000; 1996 hash[1] = 0x80000000; 1997 1998 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || 1999 ic->ic_promisc > 0) { 2000 hash[0] = 0xffffffff; 2001 hash[1] = 0xffffffff; 2002 } else { 2003 struct ieee80211vap *vap; 2004 2005 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2006 if_foreach_llmaddr(vap->iv_ifp, zyd_hash_maddr, &hash); 2007 } 2008 2009 /* reprogram multicast global hash table */ 2010 zyd_write32_m(sc, ZYD_MAC_GHTBL, hash[0]); 2011 zyd_write32_m(sc, ZYD_MAC_GHTBH, hash[1]); 2012 fail: 2013 if (error != 0) 2014 device_printf(sc->sc_dev, 2015 "could not set multicast hash table\n"); 2016 } 2017 2018 static void 2019 zyd_update_mcast(struct ieee80211com *ic) 2020 { 2021 struct zyd_softc *sc = ic->ic_softc; 2022 2023 ZYD_LOCK(sc); 2024 zyd_set_multi(sc); 2025 ZYD_UNLOCK(sc); 2026 } 2027 2028 static int 2029 zyd_set_rxfilter(struct zyd_softc *sc) 2030 { 2031 struct ieee80211com *ic = &sc->sc_ic; 2032 uint32_t rxfilter; 2033 2034 switch (ic->ic_opmode) { 2035 case IEEE80211_M_STA: 2036 rxfilter = ZYD_FILTER_BSS; 2037 break; 2038 case IEEE80211_M_IBSS: 2039 case IEEE80211_M_HOSTAP: 2040 rxfilter = ZYD_FILTER_HOSTAP; 2041 break; 2042 case IEEE80211_M_MONITOR: 2043 rxfilter = ZYD_FILTER_MONITOR; 2044 break; 2045 default: 2046 /* should not get there */ 2047 return (EINVAL); 2048 } 2049 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2050 } 2051 2052 static void 2053 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2054 { 2055 int error; 2056 struct ieee80211com *ic = &sc->sc_ic; 2057 struct zyd_rf *rf = &sc->sc_rf; 2058 uint32_t tmp; 2059 int chan; 2060 2061 chan = ieee80211_chan2ieee(ic, c); 2062 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2063 /* XXX should NEVER happen */ 2064 device_printf(sc->sc_dev, 2065 "%s: invalid channel %x\n", __func__, chan); 2066 return; 2067 } 2068 2069 error = zyd_lock_phy(sc); 2070 if (error != 0) 2071 goto fail; 2072 2073 error = (*rf->set_channel)(rf, chan); 2074 if (error != 0) 2075 goto fail; 2076 2077 if (rf->update_pwr) { 2078 /* update Tx power */ 2079 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2080 2081 if (sc->sc_macrev == ZYD_ZD1211B) { 2082 zyd_write16_m(sc, ZYD_CR67, 2083 sc->sc_ofdm36_cal[chan - 1]); 2084 zyd_write16_m(sc, ZYD_CR66, 2085 sc->sc_ofdm48_cal[chan - 1]); 2086 zyd_write16_m(sc, ZYD_CR65, 2087 sc->sc_ofdm54_cal[chan - 1]); 2088 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2089 zyd_write16_m(sc, ZYD_CR69, 0x28); 2090 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2091 } 2092 } 2093 if (sc->sc_cckgain) { 2094 /* set CCK baseband gain from EEPROM */ 2095 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2096 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2097 } 2098 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2099 error = (*rf->bandedge6)(rf, c); 2100 if (error != 0) 2101 goto fail; 2102 } 2103 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2104 2105 error = zyd_unlock_phy(sc); 2106 if (error != 0) 2107 goto fail; 2108 2109 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2110 htole16(c->ic_freq); 2111 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2112 htole16(c->ic_flags); 2113 fail: 2114 return; 2115 } 2116 2117 static int 2118 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2119 { 2120 int error; 2121 uint32_t val; 2122 2123 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2124 sc->sc_atim_wnd = val; 2125 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2126 sc->sc_pre_tbtt = val; 2127 sc->sc_bcn_int = bintval; 2128 2129 if (sc->sc_bcn_int <= 5) 2130 sc->sc_bcn_int = 5; 2131 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2132 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2133 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2134 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2135 2136 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2137 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2138 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2139 fail: 2140 return (error); 2141 } 2142 2143 static void 2144 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2145 { 2146 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2147 struct ieee80211com *ic = &sc->sc_ic; 2148 struct zyd_plcphdr plcp; 2149 struct zyd_rx_stat stat; 2150 struct usb_page_cache *pc; 2151 struct mbuf *m; 2152 int rlen, rssi; 2153 2154 if (len < ZYD_MIN_FRAGSZ) { 2155 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2156 device_get_nameunit(sc->sc_dev), len); 2157 counter_u64_add(ic->ic_ierrors, 1); 2158 return; 2159 } 2160 pc = usbd_xfer_get_frame(xfer, 0); 2161 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2162 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2163 2164 if (stat.flags & ZYD_RX_ERROR) { 2165 DPRINTF(sc, ZYD_DEBUG_RECV, 2166 "%s: RX status indicated error (%x)\n", 2167 device_get_nameunit(sc->sc_dev), stat.flags); 2168 counter_u64_add(ic->ic_ierrors, 1); 2169 return; 2170 } 2171 2172 /* compute actual frame length */ 2173 rlen = len - sizeof(struct zyd_plcphdr) - 2174 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2175 2176 /* allocate a mbuf to store the frame */ 2177 if (rlen > (int)MCLBYTES) { 2178 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2179 device_get_nameunit(sc->sc_dev), rlen); 2180 counter_u64_add(ic->ic_ierrors, 1); 2181 return; 2182 } else if (rlen > (int)MHLEN) 2183 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2184 else 2185 m = m_gethdr(M_NOWAIT, MT_DATA); 2186 if (m == NULL) { 2187 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2188 device_get_nameunit(sc->sc_dev)); 2189 counter_u64_add(ic->ic_ierrors, 1); 2190 return; 2191 } 2192 m->m_pkthdr.len = m->m_len = rlen; 2193 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2194 2195 if (ieee80211_radiotap_active(ic)) { 2196 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2197 2198 tap->wr_flags = 0; 2199 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2200 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2201 /* XXX toss, no way to express errors */ 2202 if (stat.flags & ZYD_RX_DECRYPTERR) 2203 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2204 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2205 (stat.flags & ZYD_RX_OFDM) ? 2206 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2207 tap->wr_antsignal = stat.rssi + -95; 2208 tap->wr_antnoise = -95; /* XXX */ 2209 } 2210 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2211 2212 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2213 sc->sc_rx_data[sc->sc_rx_count].m = m; 2214 sc->sc_rx_count++; 2215 } 2216 2217 static void 2218 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2219 { 2220 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2221 struct ieee80211com *ic = &sc->sc_ic; 2222 struct ieee80211_node *ni; 2223 struct zyd_rx_desc desc; 2224 struct mbuf *m; 2225 struct usb_page_cache *pc; 2226 uint32_t offset; 2227 uint8_t rssi; 2228 int8_t nf; 2229 int i; 2230 int actlen; 2231 2232 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2233 2234 sc->sc_rx_count = 0; 2235 switch (USB_GET_STATE(xfer)) { 2236 case USB_ST_TRANSFERRED: 2237 pc = usbd_xfer_get_frame(xfer, 0); 2238 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2239 2240 offset = 0; 2241 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2242 DPRINTF(sc, ZYD_DEBUG_RECV, 2243 "%s: received multi-frame transfer\n", __func__); 2244 2245 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2246 uint16_t len16 = UGETW(desc.len[i]); 2247 2248 if (len16 == 0 || len16 > actlen) 2249 break; 2250 2251 zyd_rx_data(xfer, offset, len16); 2252 2253 /* next frame is aligned on a 32-bit boundary */ 2254 len16 = (len16 + 3) & ~3; 2255 offset += len16; 2256 if (len16 > actlen) 2257 break; 2258 actlen -= len16; 2259 } 2260 } else { 2261 DPRINTF(sc, ZYD_DEBUG_RECV, 2262 "%s: received single-frame transfer\n", __func__); 2263 2264 zyd_rx_data(xfer, 0, actlen); 2265 } 2266 /* FALLTHROUGH */ 2267 case USB_ST_SETUP: 2268 tr_setup: 2269 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2270 usbd_transfer_submit(xfer); 2271 2272 /* 2273 * At the end of a USB callback it is always safe to unlock 2274 * the private mutex of a device! That is why we do the 2275 * "ieee80211_input" here, and not some lines up! 2276 */ 2277 ZYD_UNLOCK(sc); 2278 for (i = 0; i < sc->sc_rx_count; i++) { 2279 rssi = sc->sc_rx_data[i].rssi; 2280 m = sc->sc_rx_data[i].m; 2281 sc->sc_rx_data[i].m = NULL; 2282 2283 nf = -95; /* XXX */ 2284 2285 ni = ieee80211_find_rxnode(ic, 2286 mtod(m, struct ieee80211_frame_min *)); 2287 if (ni != NULL) { 2288 (void)ieee80211_input(ni, m, rssi, nf); 2289 ieee80211_free_node(ni); 2290 } else 2291 (void)ieee80211_input_all(ic, m, rssi, nf); 2292 } 2293 ZYD_LOCK(sc); 2294 zyd_start(sc); 2295 break; 2296 2297 default: /* Error */ 2298 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2299 2300 if (error != USB_ERR_CANCELLED) { 2301 /* try to clear stall first */ 2302 usbd_xfer_set_stall(xfer); 2303 goto tr_setup; 2304 } 2305 break; 2306 } 2307 } 2308 2309 static uint8_t 2310 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2311 { 2312 switch (rate) { 2313 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2314 case 12: 2315 return (0xb); 2316 case 18: 2317 return (0xf); 2318 case 24: 2319 return (0xa); 2320 case 36: 2321 return (0xe); 2322 case 48: 2323 return (0x9); 2324 case 72: 2325 return (0xd); 2326 case 96: 2327 return (0x8); 2328 case 108: 2329 return (0xc); 2330 /* CCK rates (NB: not IEEE std, device-specific) */ 2331 case 2: 2332 return (0x0); 2333 case 4: 2334 return (0x1); 2335 case 11: 2336 return (0x2); 2337 case 22: 2338 return (0x3); 2339 } 2340 2341 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2342 return (0x0); 2343 } 2344 2345 static void 2346 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2347 { 2348 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2349 struct ieee80211vap *vap; 2350 struct zyd_tx_data *data; 2351 struct mbuf *m; 2352 struct usb_page_cache *pc; 2353 int actlen; 2354 2355 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2356 2357 switch (USB_GET_STATE(xfer)) { 2358 case USB_ST_TRANSFERRED: 2359 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2360 actlen); 2361 2362 /* free resources */ 2363 data = usbd_xfer_get_priv(xfer); 2364 zyd_tx_free(data, 0); 2365 usbd_xfer_set_priv(xfer, NULL); 2366 2367 /* FALLTHROUGH */ 2368 case USB_ST_SETUP: 2369 tr_setup: 2370 data = STAILQ_FIRST(&sc->tx_q); 2371 if (data) { 2372 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2373 m = data->m; 2374 2375 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2376 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2377 m->m_pkthdr.len); 2378 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2379 } 2380 pc = usbd_xfer_get_frame(xfer, 0); 2381 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2382 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2383 m->m_pkthdr.len); 2384 2385 vap = data->ni->ni_vap; 2386 if (ieee80211_radiotap_active_vap(vap)) { 2387 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2388 2389 tap->wt_flags = 0; 2390 tap->wt_rate = data->rate; 2391 2392 ieee80211_radiotap_tx(vap, m); 2393 } 2394 2395 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2396 usbd_xfer_set_priv(xfer, data); 2397 usbd_transfer_submit(xfer); 2398 } 2399 zyd_start(sc); 2400 break; 2401 2402 default: /* Error */ 2403 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2404 usbd_errstr(error)); 2405 2406 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 2407 data = usbd_xfer_get_priv(xfer); 2408 usbd_xfer_set_priv(xfer, NULL); 2409 if (data != NULL) 2410 zyd_tx_free(data, error); 2411 2412 if (error != USB_ERR_CANCELLED) { 2413 if (error == USB_ERR_TIMEOUT) 2414 device_printf(sc->sc_dev, "device timeout\n"); 2415 2416 /* 2417 * Try to clear stall first, also if other 2418 * errors occur, hence clearing stall 2419 * introduces a 50 ms delay: 2420 */ 2421 usbd_xfer_set_stall(xfer); 2422 goto tr_setup; 2423 } 2424 break; 2425 } 2426 } 2427 2428 static int 2429 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2430 { 2431 struct ieee80211vap *vap = ni->ni_vap; 2432 struct ieee80211com *ic = ni->ni_ic; 2433 struct zyd_tx_desc *desc; 2434 struct zyd_tx_data *data; 2435 struct ieee80211_frame *wh; 2436 const struct ieee80211_txparam *tp = ni->ni_txparms; 2437 struct ieee80211_key *k; 2438 int rate, totlen, type, ismcast; 2439 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2440 uint8_t phy; 2441 uint16_t pktlen; 2442 uint32_t bits; 2443 2444 wh = mtod(m0, struct ieee80211_frame *); 2445 data = STAILQ_FIRST(&sc->tx_free); 2446 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2447 sc->tx_nfree--; 2448 2449 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2450 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2451 2452 if (type == IEEE80211_FC0_TYPE_MGT || 2453 type == IEEE80211_FC0_TYPE_CTL || 2454 (m0->m_flags & M_EAPOL) != 0) { 2455 rate = tp->mgmtrate; 2456 } else { 2457 /* for data frames */ 2458 if (ismcast) 2459 rate = tp->mcastrate; 2460 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2461 rate = tp->ucastrate; 2462 else { 2463 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2464 rate = ieee80211_node_get_txrate_dot11rate(ni); 2465 } 2466 } 2467 2468 ieee80211_output_seqno_assign(ni, -1, m0); 2469 2470 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2471 k = ieee80211_crypto_encap(ni, m0); 2472 if (k == NULL) { 2473 return (ENOBUFS); 2474 } 2475 /* packet header may have moved, reset our local pointer */ 2476 wh = mtod(m0, struct ieee80211_frame *); 2477 } 2478 2479 data->ni = ni; 2480 data->m = m0; 2481 data->rate = rate; 2482 2483 /* fill Tx descriptor */ 2484 desc = &data->desc; 2485 phy = zyd_plcp_signal(sc, rate); 2486 desc->phy = phy; 2487 if (ZYD_RATE_IS_OFDM(rate)) { 2488 desc->phy |= ZYD_TX_PHY_OFDM; 2489 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2490 desc->phy |= ZYD_TX_PHY_5GHZ; 2491 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2492 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2493 2494 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2495 desc->len = htole16(totlen); 2496 2497 desc->flags = ZYD_TX_FLAG_BACKOFF; 2498 if (!ismcast) { 2499 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2500 if (totlen > vap->iv_rtsthreshold) { 2501 desc->flags |= ZYD_TX_FLAG_RTS; 2502 } else if (ZYD_RATE_IS_OFDM(rate) && 2503 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2504 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2505 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2506 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2507 desc->flags |= ZYD_TX_FLAG_RTS; 2508 } 2509 } else 2510 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2511 if (IEEE80211_IS_CTL_PS_POLL(wh)) 2512 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2513 2514 /* actual transmit length (XXX why +10?) */ 2515 pktlen = ZYD_TX_DESC_SIZE + 10; 2516 if (sc->sc_macrev == ZYD_ZD1211) 2517 pktlen += totlen; 2518 desc->pktlen = htole16(pktlen); 2519 2520 bits = (rate == 11) ? (totlen * 16) + 10 : 2521 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2522 desc->plcp_length = htole16(bits / ratediv[phy]); 2523 desc->plcp_service = 0; 2524 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2525 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2526 desc->nextlen = 0; 2527 2528 if (ieee80211_radiotap_active_vap(vap)) { 2529 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2530 2531 tap->wt_flags = 0; 2532 tap->wt_rate = rate; 2533 2534 ieee80211_radiotap_tx(vap, m0); 2535 } 2536 2537 DPRINTF(sc, ZYD_DEBUG_XMIT, 2538 "%s: sending data frame len=%zu rate=%u\n", 2539 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2540 rate); 2541 2542 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2543 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2544 2545 return (0); 2546 } 2547 2548 static int 2549 zyd_transmit(struct ieee80211com *ic, struct mbuf *m) 2550 { 2551 struct zyd_softc *sc = ic->ic_softc; 2552 int error; 2553 2554 ZYD_LOCK(sc); 2555 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2556 ZYD_UNLOCK(sc); 2557 return (ENXIO); 2558 } 2559 error = mbufq_enqueue(&sc->sc_snd, m); 2560 if (error) { 2561 ZYD_UNLOCK(sc); 2562 return (error); 2563 } 2564 zyd_start(sc); 2565 ZYD_UNLOCK(sc); 2566 2567 return (0); 2568 } 2569 2570 static void 2571 zyd_start(struct zyd_softc *sc) 2572 { 2573 struct ieee80211_node *ni; 2574 struct mbuf *m; 2575 2576 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2577 2578 while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2579 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2580 if (zyd_tx_start(sc, m, ni) != 0) { 2581 m_freem(m); 2582 if_inc_counter(ni->ni_vap->iv_ifp, 2583 IFCOUNTER_OERRORS, 1); 2584 ieee80211_free_node(ni); 2585 break; 2586 } 2587 } 2588 } 2589 2590 static int 2591 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2592 const struct ieee80211_bpf_params *params) 2593 { 2594 struct ieee80211com *ic = ni->ni_ic; 2595 struct zyd_softc *sc = ic->ic_softc; 2596 2597 ZYD_LOCK(sc); 2598 /* prevent management frames from being sent if we're not ready */ 2599 if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { 2600 ZYD_UNLOCK(sc); 2601 m_freem(m); 2602 return (ENETDOWN); 2603 } 2604 if (sc->tx_nfree == 0) { 2605 ZYD_UNLOCK(sc); 2606 m_freem(m); 2607 return (ENOBUFS); /* XXX */ 2608 } 2609 2610 /* 2611 * Legacy path; interpret frame contents to decide 2612 * precisely how to send the frame. 2613 * XXX raw path 2614 */ 2615 if (zyd_tx_start(sc, m, ni) != 0) { 2616 ZYD_UNLOCK(sc); 2617 m_freem(m); 2618 return (EIO); 2619 } 2620 ZYD_UNLOCK(sc); 2621 return (0); 2622 } 2623 2624 static void 2625 zyd_parent(struct ieee80211com *ic) 2626 { 2627 struct zyd_softc *sc = ic->ic_softc; 2628 int startall = 0; 2629 2630 ZYD_LOCK(sc); 2631 if (sc->sc_flags & ZYD_FLAG_DETACHED) { 2632 ZYD_UNLOCK(sc); 2633 return; 2634 } 2635 if (ic->ic_nrunning > 0) { 2636 if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { 2637 zyd_init_locked(sc); 2638 startall = 1; 2639 } else 2640 zyd_set_multi(sc); 2641 } else if (sc->sc_flags & ZYD_FLAG_RUNNING) 2642 zyd_stop(sc); 2643 ZYD_UNLOCK(sc); 2644 if (startall) 2645 ieee80211_start_all(ic); 2646 } 2647 2648 static void 2649 zyd_init_locked(struct zyd_softc *sc) 2650 { 2651 struct ieee80211com *ic = &sc->sc_ic; 2652 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2653 struct usb_config_descriptor *cd; 2654 int error; 2655 uint32_t val; 2656 2657 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2658 2659 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2660 error = zyd_loadfirmware(sc); 2661 if (error != 0) { 2662 device_printf(sc->sc_dev, 2663 "could not load firmware (error=%d)\n", error); 2664 goto fail; 2665 } 2666 2667 /* reset device */ 2668 cd = usbd_get_config_descriptor(sc->sc_udev); 2669 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2670 cd->bConfigurationValue); 2671 if (error) 2672 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2673 2674 error = zyd_hw_init(sc); 2675 if (error) { 2676 device_printf(sc->sc_dev, 2677 "hardware initialization failed\n"); 2678 goto fail; 2679 } 2680 2681 device_printf(sc->sc_dev, 2682 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2683 "BE%x NP%x Gain%x F%x\n", 2684 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2685 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2686 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2687 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2688 sc->sc_cckgain, sc->sc_fix_cr157); 2689 2690 /* read regulatory domain (currently unused) */ 2691 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2692 sc->sc_regdomain = val >> 16; 2693 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2694 sc->sc_regdomain); 2695 2696 /* we'll do software WEP decryption for now */ 2697 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2698 __func__); 2699 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2700 2701 sc->sc_flags |= ZYD_FLAG_INITONCE; 2702 } 2703 2704 if (sc->sc_flags & ZYD_FLAG_RUNNING) 2705 zyd_stop(sc); 2706 2707 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2708 vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); 2709 error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2710 if (error != 0) 2711 return; 2712 2713 /* set basic rates */ 2714 if (ic->ic_curmode == IEEE80211_MODE_11B) 2715 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2716 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2717 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2718 else /* assumes 802.11b/g */ 2719 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2720 2721 /* promiscuous mode */ 2722 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2723 /* multicast setup */ 2724 zyd_set_multi(sc); 2725 /* set RX filter */ 2726 error = zyd_set_rxfilter(sc); 2727 if (error != 0) 2728 goto fail; 2729 2730 /* switch radio transmitter ON */ 2731 error = zyd_switch_radio(sc, 1); 2732 if (error != 0) 2733 goto fail; 2734 /* set default BSS channel */ 2735 zyd_set_chan(sc, ic->ic_curchan); 2736 2737 /* 2738 * Allocate Tx and Rx xfer queues. 2739 */ 2740 zyd_setup_tx_list(sc); 2741 2742 /* enable interrupts */ 2743 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2744 2745 sc->sc_flags |= ZYD_FLAG_RUNNING; 2746 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2747 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2748 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2749 2750 return; 2751 2752 fail: zyd_stop(sc); 2753 return; 2754 } 2755 2756 static void 2757 zyd_stop(struct zyd_softc *sc) 2758 { 2759 int error; 2760 2761 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2762 2763 sc->sc_flags &= ~ZYD_FLAG_RUNNING; 2764 zyd_drain_mbufq(sc); 2765 2766 /* 2767 * Drain all the transfers, if not already drained: 2768 */ 2769 ZYD_UNLOCK(sc); 2770 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2771 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2772 ZYD_LOCK(sc); 2773 2774 zyd_unsetup_tx_list(sc); 2775 2776 /* Stop now if the device was never set up */ 2777 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2778 return; 2779 2780 /* switch radio transmitter OFF */ 2781 error = zyd_switch_radio(sc, 0); 2782 if (error != 0) 2783 goto fail; 2784 /* disable Rx */ 2785 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2786 /* disable interrupts */ 2787 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2788 2789 fail: 2790 return; 2791 } 2792 2793 static int 2794 zyd_loadfirmware(struct zyd_softc *sc) 2795 { 2796 struct usb_device_request req; 2797 size_t size; 2798 u_char *fw; 2799 uint8_t stat; 2800 uint16_t addr; 2801 2802 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2803 return (0); 2804 2805 if (sc->sc_macrev == ZYD_ZD1211) { 2806 fw = (u_char *)zd1211_firmware; 2807 size = sizeof(zd1211_firmware); 2808 } else { 2809 fw = (u_char *)zd1211b_firmware; 2810 size = sizeof(zd1211b_firmware); 2811 } 2812 2813 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2814 req.bRequest = ZYD_DOWNLOADREQ; 2815 USETW(req.wIndex, 0); 2816 2817 addr = ZYD_FIRMWARE_START_ADDR; 2818 while (size > 0) { 2819 /* 2820 * When the transfer size is 4096 bytes, it is not 2821 * likely to be able to transfer it. 2822 * The cause is port or machine or chip? 2823 */ 2824 const int mlen = min(size, 64); 2825 2826 DPRINTF(sc, ZYD_DEBUG_FW, 2827 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2828 2829 USETW(req.wValue, addr); 2830 USETW(req.wLength, mlen); 2831 if (zyd_do_request(sc, &req, fw) != 0) 2832 return (EIO); 2833 2834 addr += mlen / 2; 2835 fw += mlen; 2836 size -= mlen; 2837 } 2838 2839 /* check whether the upload succeeded */ 2840 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2841 req.bRequest = ZYD_DOWNLOADSTS; 2842 USETW(req.wValue, 0); 2843 USETW(req.wIndex, 0); 2844 USETW(req.wLength, sizeof(stat)); 2845 if (zyd_do_request(sc, &req, &stat) != 0) 2846 return (EIO); 2847 2848 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2849 2850 return (stat & 0x80) ? (EIO) : (0); 2851 } 2852 2853 static void 2854 zyd_scan_start(struct ieee80211com *ic) 2855 { 2856 struct zyd_softc *sc = ic->ic_softc; 2857 2858 ZYD_LOCK(sc); 2859 /* want broadcast address while scanning */ 2860 zyd_set_bssid(sc, ieee80211broadcastaddr); 2861 ZYD_UNLOCK(sc); 2862 } 2863 2864 static void 2865 zyd_scan_end(struct ieee80211com *ic) 2866 { 2867 struct zyd_softc *sc = ic->ic_softc; 2868 2869 ZYD_LOCK(sc); 2870 /* restore previous bssid */ 2871 zyd_set_bssid(sc, sc->sc_bssid); 2872 ZYD_UNLOCK(sc); 2873 } 2874 2875 static void 2876 zyd_getradiocaps(struct ieee80211com *ic, 2877 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2878 { 2879 uint8_t bands[IEEE80211_MODE_BYTES]; 2880 2881 memset(bands, 0, sizeof(bands)); 2882 setbit(bands, IEEE80211_MODE_11B); 2883 setbit(bands, IEEE80211_MODE_11G); 2884 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 2885 } 2886 2887 static void 2888 zyd_set_channel(struct ieee80211com *ic) 2889 { 2890 struct zyd_softc *sc = ic->ic_softc; 2891 2892 ZYD_LOCK(sc); 2893 zyd_set_chan(sc, ic->ic_curchan); 2894 ZYD_UNLOCK(sc); 2895 } 2896 2897 static device_method_t zyd_methods[] = { 2898 /* Device interface */ 2899 DEVMETHOD(device_probe, zyd_match), 2900 DEVMETHOD(device_attach, zyd_attach), 2901 DEVMETHOD(device_detach, zyd_detach), 2902 DEVMETHOD_END 2903 }; 2904 2905 static driver_t zyd_driver = { 2906 .name = "zyd", 2907 .methods = zyd_methods, 2908 .size = sizeof(struct zyd_softc) 2909 }; 2910 2911 DRIVER_MODULE(zyd, uhub, zyd_driver, NULL, NULL); 2912 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2913 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2914 MODULE_VERSION(zyd, 1); 2915 USB_PNP_HOST_INFO(zyd_devs); 2916