1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include <dev/usb/usbdi_util.h> 73 #include "usbdevs.h" 74 75 #include <dev/usb/wlan/if_zydreg.h> 76 #include <dev/usb/wlan/if_zydfw.h> 77 78 #ifdef USB_DEBUG 79 static int zyd_debug = 0; 80 81 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0, 83 "zyd debug level"); 84 85 enum { 86 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 87 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 88 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 89 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 90 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 91 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 92 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 93 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 94 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 95 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 96 ZYD_DEBUG_ANY = 0xffffffff 97 }; 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 if (zyd_debug & (m)) \ 100 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 101 } while (0) 102 #else 103 #define DPRINTF(sc, m, fmt, ...) do { \ 104 (void) sc; \ 105 } while (0) 106 #endif 107 108 #define zyd_do_request(sc,req,data) \ 109 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 110 111 static device_probe_t zyd_match; 112 static device_attach_t zyd_attach; 113 static device_detach_t zyd_detach; 114 115 static usb_callback_t zyd_intr_read_callback; 116 static usb_callback_t zyd_intr_write_callback; 117 static usb_callback_t zyd_bulk_read_callback; 118 static usb_callback_t zyd_bulk_write_callback; 119 120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 121 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 122 const uint8_t [IEEE80211_ADDR_LEN], 123 const uint8_t [IEEE80211_ADDR_LEN]); 124 static void zyd_vap_delete(struct ieee80211vap *); 125 static void zyd_tx_free(struct zyd_tx_data *, int); 126 static void zyd_setup_tx_list(struct zyd_softc *); 127 static void zyd_unsetup_tx_list(struct zyd_softc *); 128 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 129 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 130 void *, int, int); 131 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 132 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 133 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 134 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 135 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 136 static int zyd_lock_phy(struct zyd_softc *); 137 static int zyd_unlock_phy(struct zyd_softc *); 138 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 139 static const char *zyd_rf_name(uint8_t); 140 static int zyd_hw_init(struct zyd_softc *); 141 static int zyd_read_pod(struct zyd_softc *); 142 static int zyd_read_eeprom(struct zyd_softc *); 143 static int zyd_get_macaddr(struct zyd_softc *); 144 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 145 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 146 static int zyd_switch_radio(struct zyd_softc *, int); 147 static int zyd_set_led(struct zyd_softc *, int, int); 148 static void zyd_set_multi(struct zyd_softc *); 149 static void zyd_update_mcast(struct ifnet *); 150 static int zyd_set_rxfilter(struct zyd_softc *); 151 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 152 static int zyd_set_beacon_interval(struct zyd_softc *, int); 153 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 154 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 155 struct ieee80211_node *); 156 static void zyd_start(struct ifnet *); 157 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 158 const struct ieee80211_bpf_params *); 159 static int zyd_ioctl(struct ifnet *, u_long, caddr_t); 160 static void zyd_init_locked(struct zyd_softc *); 161 static void zyd_init(void *); 162 static void zyd_stop(struct zyd_softc *); 163 static int zyd_loadfirmware(struct zyd_softc *); 164 static void zyd_scan_start(struct ieee80211com *); 165 static void zyd_scan_end(struct ieee80211com *); 166 static void zyd_set_channel(struct ieee80211com *); 167 static int zyd_rfmd_init(struct zyd_rf *); 168 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 169 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 170 static int zyd_al2230_init(struct zyd_rf *); 171 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 172 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 173 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_init_b(struct zyd_rf *); 175 static int zyd_al7230B_init(struct zyd_rf *); 176 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 177 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 178 static int zyd_al2210_init(struct zyd_rf *); 179 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 180 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 181 static int zyd_gct_init(struct zyd_rf *); 182 static int zyd_gct_switch_radio(struct zyd_rf *, int); 183 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 184 static int zyd_gct_mode(struct zyd_rf *); 185 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 186 static int zyd_gct_write(struct zyd_rf *, uint16_t); 187 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 188 static int zyd_maxim2_init(struct zyd_rf *); 189 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 190 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 191 192 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 193 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 194 195 /* various supported device vendors/products */ 196 #define ZYD_ZD1211 0 197 #define ZYD_ZD1211B 1 198 199 #define ZYD_ZD1211_DEV(v,p) \ 200 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 201 #define ZYD_ZD1211B_DEV(v,p) \ 202 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 203 static const STRUCT_USB_HOST_ID zyd_devs[] = { 204 /* ZYD_ZD1211 */ 205 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 206 ZYD_ZD1211_DEV(ABOCOM, WL54), 207 ZYD_ZD1211_DEV(ASUS, WL159G), 208 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 209 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 210 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 212 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 214 ZYD_ZD1211_DEV(SAGEM, XG760A), 215 ZYD_ZD1211_DEV(SENAO, NUB8301), 216 ZYD_ZD1211_DEV(SITECOMEU, WL113), 217 ZYD_ZD1211_DEV(SWEEX, ZD1211), 218 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 219 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 221 ZYD_ZD1211_DEV(TWINMOS, G240), 222 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 223 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 225 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 226 ZYD_ZD1211_DEV(ZCOM, ZD1211), 227 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 228 ZYD_ZD1211_DEV(ZYXEL, AG225H), 229 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 230 ZYD_ZD1211_DEV(ZYXEL, G200V2), 231 /* ZYD_ZD1211B */ 232 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 234 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 235 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 236 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 237 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 238 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 239 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 240 ZYD_ZD1211B_DEV(MELCO, KG54L), 241 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 242 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 243 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 244 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 245 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 246 ZYD_ZD1211B_DEV(USR, USR5423), 247 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 248 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 249 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYXEL, M202), 251 ZYD_ZD1211B_DEV(ZYXEL, G202), 252 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 253 }; 254 255 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 256 [ZYD_BULK_WR] = { 257 .type = UE_BULK, 258 .endpoint = UE_ADDR_ANY, 259 .direction = UE_DIR_OUT, 260 .bufsize = ZYD_MAX_TXBUFSZ, 261 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 262 .callback = zyd_bulk_write_callback, 263 .ep_index = 0, 264 .timeout = 10000, /* 10 seconds */ 265 }, 266 [ZYD_BULK_RD] = { 267 .type = UE_BULK, 268 .endpoint = UE_ADDR_ANY, 269 .direction = UE_DIR_IN, 270 .bufsize = ZYX_MAX_RXBUFSZ, 271 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 272 .callback = zyd_bulk_read_callback, 273 .ep_index = 0, 274 }, 275 [ZYD_INTR_WR] = { 276 .type = UE_BULK_INTR, 277 .endpoint = UE_ADDR_ANY, 278 .direction = UE_DIR_OUT, 279 .bufsize = sizeof(struct zyd_cmd), 280 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 281 .callback = zyd_intr_write_callback, 282 .timeout = 1000, /* 1 second */ 283 .ep_index = 1, 284 }, 285 [ZYD_INTR_RD] = { 286 .type = UE_INTERRUPT, 287 .endpoint = UE_ADDR_ANY, 288 .direction = UE_DIR_IN, 289 .bufsize = sizeof(struct zyd_cmd), 290 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 291 .callback = zyd_intr_read_callback, 292 }, 293 }; 294 #define zyd_read16_m(sc, val, data) do { \ 295 error = zyd_read16(sc, val, data); \ 296 if (error != 0) \ 297 goto fail; \ 298 } while (0) 299 #define zyd_write16_m(sc, val, data) do { \ 300 error = zyd_write16(sc, val, data); \ 301 if (error != 0) \ 302 goto fail; \ 303 } while (0) 304 #define zyd_read32_m(sc, val, data) do { \ 305 error = zyd_read32(sc, val, data); \ 306 if (error != 0) \ 307 goto fail; \ 308 } while (0) 309 #define zyd_write32_m(sc, val, data) do { \ 310 error = zyd_write32(sc, val, data); \ 311 if (error != 0) \ 312 goto fail; \ 313 } while (0) 314 315 static int 316 zyd_match(device_t dev) 317 { 318 struct usb_attach_arg *uaa = device_get_ivars(dev); 319 320 if (uaa->usb_mode != USB_MODE_HOST) 321 return (ENXIO); 322 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 323 return (ENXIO); 324 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 325 return (ENXIO); 326 327 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 328 } 329 330 static int 331 zyd_attach(device_t dev) 332 { 333 struct usb_attach_arg *uaa = device_get_ivars(dev); 334 struct zyd_softc *sc = device_get_softc(dev); 335 struct ifnet *ifp; 336 struct ieee80211com *ic; 337 uint8_t iface_index, bands; 338 int error; 339 340 if (uaa->info.bcdDevice < 0x4330) { 341 device_printf(dev, "device version mismatch: 0x%X " 342 "(only >= 43.30 supported)\n", 343 uaa->info.bcdDevice); 344 return (EINVAL); 345 } 346 347 device_set_usb_desc(dev); 348 sc->sc_dev = dev; 349 sc->sc_udev = uaa->device; 350 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 351 352 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 353 MTX_NETWORK_LOCK, MTX_DEF); 354 STAILQ_INIT(&sc->sc_rqh); 355 356 iface_index = ZYD_IFACE_INDEX; 357 error = usbd_transfer_setup(uaa->device, 358 &iface_index, sc->sc_xfer, zyd_config, 359 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 360 if (error) { 361 device_printf(dev, "could not allocate USB transfers, " 362 "err=%s\n", usbd_errstr(error)); 363 goto detach; 364 } 365 366 ZYD_LOCK(sc); 367 if ((error = zyd_get_macaddr(sc)) != 0) { 368 device_printf(sc->sc_dev, "could not read EEPROM\n"); 369 ZYD_UNLOCK(sc); 370 goto detach; 371 } 372 ZYD_UNLOCK(sc); 373 374 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 375 if (ifp == NULL) { 376 device_printf(sc->sc_dev, "can not if_alloc()\n"); 377 goto detach; 378 } 379 ifp->if_softc = sc; 380 if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); 381 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 382 ifp->if_init = zyd_init; 383 ifp->if_ioctl = zyd_ioctl; 384 ifp->if_start = zyd_start; 385 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 386 IFQ_SET_READY(&ifp->if_snd); 387 388 ic = ifp->if_l2com; 389 ic->ic_ifp = ifp; 390 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 391 ic->ic_opmode = IEEE80211_M_STA; 392 393 /* set device capabilities */ 394 ic->ic_caps = 395 IEEE80211_C_STA /* station mode */ 396 | IEEE80211_C_MONITOR /* monitor mode */ 397 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 398 | IEEE80211_C_SHSLOT /* short slot time supported */ 399 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 400 | IEEE80211_C_WPA /* 802.11i */ 401 ; 402 403 bands = 0; 404 setbit(&bands, IEEE80211_MODE_11B); 405 setbit(&bands, IEEE80211_MODE_11G); 406 ieee80211_init_channels(ic, NULL, &bands); 407 408 ieee80211_ifattach(ic, sc->sc_bssid); 409 ic->ic_raw_xmit = zyd_raw_xmit; 410 ic->ic_scan_start = zyd_scan_start; 411 ic->ic_scan_end = zyd_scan_end; 412 ic->ic_set_channel = zyd_set_channel; 413 414 ic->ic_vap_create = zyd_vap_create; 415 ic->ic_vap_delete = zyd_vap_delete; 416 ic->ic_update_mcast = zyd_update_mcast; 417 ic->ic_update_promisc = zyd_update_mcast; 418 419 ieee80211_radiotap_attach(ic, 420 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 421 ZYD_TX_RADIOTAP_PRESENT, 422 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 423 ZYD_RX_RADIOTAP_PRESENT); 424 425 if (bootverbose) 426 ieee80211_announce(ic); 427 428 return (0); 429 430 detach: 431 zyd_detach(dev); 432 return (ENXIO); /* failure */ 433 } 434 435 static int 436 zyd_detach(device_t dev) 437 { 438 struct zyd_softc *sc = device_get_softc(dev); 439 struct ifnet *ifp = sc->sc_ifp; 440 struct ieee80211com *ic; 441 442 /* stop all USB transfers */ 443 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 444 445 /* free TX list, if any */ 446 zyd_unsetup_tx_list(sc); 447 448 if (ifp) { 449 ic = ifp->if_l2com; 450 ieee80211_ifdetach(ic); 451 if_free(ifp); 452 } 453 mtx_destroy(&sc->sc_mtx); 454 455 return (0); 456 } 457 458 static struct ieee80211vap * 459 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 460 enum ieee80211_opmode opmode, int flags, 461 const uint8_t bssid[IEEE80211_ADDR_LEN], 462 const uint8_t mac[IEEE80211_ADDR_LEN]) 463 { 464 struct zyd_vap *zvp; 465 struct ieee80211vap *vap; 466 467 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 468 return (NULL); 469 zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap), 470 M_80211_VAP, M_NOWAIT | M_ZERO); 471 if (zvp == NULL) 472 return (NULL); 473 vap = &zvp->vap; 474 /* enable s/w bmiss handling for sta mode */ 475 ieee80211_vap_setup(ic, vap, name, unit, opmode, 476 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 477 478 /* override state transition machine */ 479 zvp->newstate = vap->iv_newstate; 480 vap->iv_newstate = zyd_newstate; 481 482 ieee80211_ratectl_init(vap); 483 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 484 485 /* complete setup */ 486 ieee80211_vap_attach(vap, ieee80211_media_change, 487 ieee80211_media_status); 488 ic->ic_opmode = opmode; 489 return (vap); 490 } 491 492 static void 493 zyd_vap_delete(struct ieee80211vap *vap) 494 { 495 struct zyd_vap *zvp = ZYD_VAP(vap); 496 497 ieee80211_ratectl_deinit(vap); 498 ieee80211_vap_detach(vap); 499 free(zvp, M_80211_VAP); 500 } 501 502 static void 503 zyd_tx_free(struct zyd_tx_data *data, int txerr) 504 { 505 struct zyd_softc *sc = data->sc; 506 507 if (data->m != NULL) { 508 if (data->m->m_flags & M_TXCB) 509 ieee80211_process_callback(data->ni, data->m, 510 txerr ? ETIMEDOUT : 0); 511 m_freem(data->m); 512 data->m = NULL; 513 514 ieee80211_free_node(data->ni); 515 data->ni = NULL; 516 } 517 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 518 sc->tx_nfree++; 519 } 520 521 static void 522 zyd_setup_tx_list(struct zyd_softc *sc) 523 { 524 struct zyd_tx_data *data; 525 int i; 526 527 sc->tx_nfree = 0; 528 STAILQ_INIT(&sc->tx_q); 529 STAILQ_INIT(&sc->tx_free); 530 531 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 532 data = &sc->tx_data[i]; 533 534 data->sc = sc; 535 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 536 sc->tx_nfree++; 537 } 538 } 539 540 static void 541 zyd_unsetup_tx_list(struct zyd_softc *sc) 542 { 543 struct zyd_tx_data *data; 544 int i; 545 546 /* make sure any subsequent use of the queues will fail */ 547 sc->tx_nfree = 0; 548 STAILQ_INIT(&sc->tx_q); 549 STAILQ_INIT(&sc->tx_free); 550 551 /* free up all node references and mbufs */ 552 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 553 data = &sc->tx_data[i]; 554 555 if (data->m != NULL) { 556 m_freem(data->m); 557 data->m = NULL; 558 } 559 if (data->ni != NULL) { 560 ieee80211_free_node(data->ni); 561 data->ni = NULL; 562 } 563 } 564 } 565 566 static int 567 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 568 { 569 struct zyd_vap *zvp = ZYD_VAP(vap); 570 struct ieee80211com *ic = vap->iv_ic; 571 struct zyd_softc *sc = ic->ic_ifp->if_softc; 572 int error; 573 574 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 575 ieee80211_state_name[vap->iv_state], 576 ieee80211_state_name[nstate]); 577 578 IEEE80211_UNLOCK(ic); 579 ZYD_LOCK(sc); 580 switch (nstate) { 581 case IEEE80211_S_AUTH: 582 zyd_set_chan(sc, ic->ic_curchan); 583 break; 584 case IEEE80211_S_RUN: 585 if (vap->iv_opmode == IEEE80211_M_MONITOR) 586 break; 587 588 /* turn link LED on */ 589 error = zyd_set_led(sc, ZYD_LED1, 1); 590 if (error != 0) 591 break; 592 593 /* make data LED blink upon Tx */ 594 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 595 596 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 597 zyd_set_bssid(sc, sc->sc_bssid); 598 break; 599 default: 600 break; 601 } 602 fail: 603 ZYD_UNLOCK(sc); 604 IEEE80211_LOCK(ic); 605 return (zvp->newstate(vap, nstate, arg)); 606 } 607 608 /* 609 * Callback handler for interrupt transfer 610 */ 611 static void 612 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 613 { 614 struct zyd_softc *sc = usbd_xfer_softc(xfer); 615 struct ifnet *ifp = sc->sc_ifp; 616 struct ieee80211com *ic = ifp->if_l2com; 617 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 618 struct ieee80211_node *ni; 619 struct zyd_cmd *cmd = &sc->sc_ibuf; 620 struct usb_page_cache *pc; 621 int datalen; 622 int actlen; 623 624 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 625 626 switch (USB_GET_STATE(xfer)) { 627 case USB_ST_TRANSFERRED: 628 pc = usbd_xfer_get_frame(xfer, 0); 629 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 630 631 switch (le16toh(cmd->code)) { 632 case ZYD_NOTIF_RETRYSTATUS: 633 { 634 struct zyd_notif_retry *retry = 635 (struct zyd_notif_retry *)cmd->data; 636 637 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 638 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 639 le16toh(retry->rate), ether_sprintf(retry->macaddr), 640 le16toh(retry->count)&0xff, le16toh(retry->count)); 641 642 /* 643 * Find the node to which the packet was sent and 644 * update its retry statistics. In BSS mode, this node 645 * is the AP we're associated to so no lookup is 646 * actually needed. 647 */ 648 ni = ieee80211_find_txnode(vap, retry->macaddr); 649 if (ni != NULL) { 650 int retrycnt = 651 (int)(le16toh(retry->count) & 0xff); 652 653 ieee80211_ratectl_tx_complete(vap, ni, 654 IEEE80211_RATECTL_TX_FAILURE, 655 &retrycnt, NULL); 656 ieee80211_free_node(ni); 657 } 658 if (le16toh(retry->count) & 0x100) 659 ifp->if_oerrors++; /* too many retries */ 660 break; 661 } 662 case ZYD_NOTIF_IORD: 663 { 664 struct zyd_rq *rqp; 665 666 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 667 break; /* HMAC interrupt */ 668 669 datalen = actlen - sizeof(cmd->code); 670 datalen -= 2; /* XXX: padding? */ 671 672 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 673 int i; 674 int count; 675 676 if (rqp->olen != datalen) 677 continue; 678 count = rqp->olen / sizeof(struct zyd_pair); 679 for (i = 0; i < count; i++) { 680 if (*(((const uint16_t *)rqp->idata) + i) != 681 (((struct zyd_pair *)cmd->data) + i)->reg) 682 break; 683 } 684 if (i != count) 685 continue; 686 /* copy answer into caller-supplied buffer */ 687 memcpy(rqp->odata, cmd->data, rqp->olen); 688 DPRINTF(sc, ZYD_DEBUG_CMD, 689 "command %p complete, data = %*D \n", 690 rqp, rqp->olen, (char *)rqp->odata, ":"); 691 wakeup(rqp); /* wakeup caller */ 692 break; 693 } 694 if (rqp == NULL) { 695 device_printf(sc->sc_dev, 696 "unexpected IORD notification %*D\n", 697 datalen, cmd->data, ":"); 698 } 699 break; 700 } 701 default: 702 device_printf(sc->sc_dev, "unknown notification %x\n", 703 le16toh(cmd->code)); 704 } 705 706 /* FALLTHROUGH */ 707 case USB_ST_SETUP: 708 tr_setup: 709 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 710 usbd_transfer_submit(xfer); 711 break; 712 713 default: /* Error */ 714 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 715 usbd_errstr(error)); 716 717 if (error != USB_ERR_CANCELLED) { 718 /* try to clear stall first */ 719 usbd_xfer_set_stall(xfer); 720 goto tr_setup; 721 } 722 break; 723 } 724 } 725 726 static void 727 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 728 { 729 struct zyd_softc *sc = usbd_xfer_softc(xfer); 730 struct zyd_rq *rqp, *cmd; 731 struct usb_page_cache *pc; 732 733 switch (USB_GET_STATE(xfer)) { 734 case USB_ST_TRANSFERRED: 735 cmd = usbd_xfer_get_priv(xfer); 736 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 737 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 738 /* Ensure the cached rq pointer is still valid */ 739 if (rqp == cmd && 740 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 741 wakeup(rqp); /* wakeup caller */ 742 } 743 744 /* FALLTHROUGH */ 745 case USB_ST_SETUP: 746 tr_setup: 747 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 748 if (rqp->flags & ZYD_CMD_FLAG_SENT) 749 continue; 750 751 pc = usbd_xfer_get_frame(xfer, 0); 752 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 753 754 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 755 usbd_xfer_set_priv(xfer, rqp); 756 rqp->flags |= ZYD_CMD_FLAG_SENT; 757 usbd_transfer_submit(xfer); 758 break; 759 } 760 break; 761 762 default: /* Error */ 763 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 764 usbd_errstr(error)); 765 766 if (error != USB_ERR_CANCELLED) { 767 /* try to clear stall first */ 768 usbd_xfer_set_stall(xfer); 769 goto tr_setup; 770 } 771 break; 772 } 773 } 774 775 static int 776 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 777 void *odata, int olen, int flags) 778 { 779 struct zyd_cmd cmd; 780 struct zyd_rq rq; 781 int error; 782 783 if (ilen > (int)sizeof(cmd.data)) 784 return (EINVAL); 785 786 cmd.code = htole16(code); 787 memcpy(cmd.data, idata, ilen); 788 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 789 &rq, ilen, idata, ":"); 790 791 rq.cmd = &cmd; 792 rq.idata = idata; 793 rq.odata = odata; 794 rq.ilen = sizeof(uint16_t) + ilen; 795 rq.olen = olen; 796 rq.flags = flags; 797 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 798 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 799 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 800 801 /* wait at most one second for command reply */ 802 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 803 if (error) 804 device_printf(sc->sc_dev, "command timeout\n"); 805 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 806 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 807 &rq, error); 808 809 return (error); 810 } 811 812 static int 813 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 814 { 815 struct zyd_pair tmp; 816 int error; 817 818 reg = htole16(reg); 819 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 820 ZYD_CMD_FLAG_READ); 821 if (error == 0) 822 *val = le16toh(tmp.val); 823 return (error); 824 } 825 826 static int 827 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 828 { 829 struct zyd_pair tmp[2]; 830 uint16_t regs[2]; 831 int error; 832 833 regs[0] = htole16(ZYD_REG32_HI(reg)); 834 regs[1] = htole16(ZYD_REG32_LO(reg)); 835 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 836 ZYD_CMD_FLAG_READ); 837 if (error == 0) 838 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 839 return (error); 840 } 841 842 static int 843 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 844 { 845 struct zyd_pair pair; 846 847 pair.reg = htole16(reg); 848 pair.val = htole16(val); 849 850 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 851 } 852 853 static int 854 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 855 { 856 struct zyd_pair pair[2]; 857 858 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 859 pair[0].val = htole16(val >> 16); 860 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 861 pair[1].val = htole16(val & 0xffff); 862 863 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 864 } 865 866 static int 867 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 868 { 869 struct zyd_rf *rf = &sc->sc_rf; 870 struct zyd_rfwrite_cmd req; 871 uint16_t cr203; 872 int error, i; 873 874 zyd_read16_m(sc, ZYD_CR203, &cr203); 875 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 876 877 req.code = htole16(2); 878 req.width = htole16(rf->width); 879 for (i = 0; i < rf->width; i++) { 880 req.bit[i] = htole16(cr203); 881 if (val & (1 << (rf->width - 1 - i))) 882 req.bit[i] |= htole16(ZYD_RF_DATA); 883 } 884 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 885 fail: 886 return (error); 887 } 888 889 static int 890 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 891 { 892 int error; 893 894 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 895 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 896 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 897 fail: 898 return (error); 899 } 900 901 static int 902 zyd_lock_phy(struct zyd_softc *sc) 903 { 904 int error; 905 uint32_t tmp; 906 907 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 908 tmp &= ~ZYD_UNLOCK_PHY_REGS; 909 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 910 fail: 911 return (error); 912 } 913 914 static int 915 zyd_unlock_phy(struct zyd_softc *sc) 916 { 917 int error; 918 uint32_t tmp; 919 920 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 921 tmp |= ZYD_UNLOCK_PHY_REGS; 922 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 923 fail: 924 return (error); 925 } 926 927 /* 928 * RFMD RF methods. 929 */ 930 static int 931 zyd_rfmd_init(struct zyd_rf *rf) 932 { 933 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 934 struct zyd_softc *sc = rf->rf_sc; 935 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 936 static const uint32_t rfini[] = ZYD_RFMD_RF; 937 int i, error; 938 939 /* init RF-dependent PHY registers */ 940 for (i = 0; i < N(phyini); i++) { 941 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 942 } 943 944 /* init RFMD radio */ 945 for (i = 0; i < N(rfini); i++) { 946 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 947 return (error); 948 } 949 fail: 950 return (error); 951 #undef N 952 } 953 954 static int 955 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 956 { 957 int error; 958 struct zyd_softc *sc = rf->rf_sc; 959 960 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 961 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 962 fail: 963 return (error); 964 } 965 966 static int 967 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 968 { 969 int error; 970 struct zyd_softc *sc = rf->rf_sc; 971 static const struct { 972 uint32_t r1, r2; 973 } rfprog[] = ZYD_RFMD_CHANTABLE; 974 975 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 976 if (error != 0) 977 goto fail; 978 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 979 if (error != 0) 980 goto fail; 981 982 fail: 983 return (error); 984 } 985 986 /* 987 * AL2230 RF methods. 988 */ 989 static int 990 zyd_al2230_init(struct zyd_rf *rf) 991 { 992 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 993 struct zyd_softc *sc = rf->rf_sc; 994 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 995 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 996 static const struct zyd_phy_pair phypll[] = { 997 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 998 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 999 }; 1000 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1001 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1002 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1003 int i, error; 1004 1005 /* init RF-dependent PHY registers */ 1006 for (i = 0; i < N(phyini); i++) 1007 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1008 1009 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1010 for (i = 0; i < N(phy2230s); i++) 1011 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1012 } 1013 1014 /* init AL2230 radio */ 1015 for (i = 0; i < N(rfini1); i++) { 1016 error = zyd_rfwrite(sc, rfini1[i]); 1017 if (error != 0) 1018 goto fail; 1019 } 1020 1021 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1022 error = zyd_rfwrite(sc, 0x000824); 1023 else 1024 error = zyd_rfwrite(sc, 0x0005a4); 1025 if (error != 0) 1026 goto fail; 1027 1028 for (i = 0; i < N(rfini2); i++) { 1029 error = zyd_rfwrite(sc, rfini2[i]); 1030 if (error != 0) 1031 goto fail; 1032 } 1033 1034 for (i = 0; i < N(phypll); i++) 1035 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1036 1037 for (i = 0; i < N(rfini3); i++) { 1038 error = zyd_rfwrite(sc, rfini3[i]); 1039 if (error != 0) 1040 goto fail; 1041 } 1042 fail: 1043 return (error); 1044 #undef N 1045 } 1046 1047 static int 1048 zyd_al2230_fini(struct zyd_rf *rf) 1049 { 1050 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1051 int error, i; 1052 struct zyd_softc *sc = rf->rf_sc; 1053 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1054 1055 for (i = 0; i < N(phy); i++) 1056 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1057 1058 if (sc->sc_newphy != 0) 1059 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1060 1061 zyd_write16_m(sc, ZYD_CR203, 0x6); 1062 fail: 1063 return (error); 1064 #undef N 1065 } 1066 1067 static int 1068 zyd_al2230_init_b(struct zyd_rf *rf) 1069 { 1070 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1071 struct zyd_softc *sc = rf->rf_sc; 1072 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1073 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1074 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1075 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1076 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1077 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1078 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1079 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1080 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1081 int i, error; 1082 1083 for (i = 0; i < N(phy1); i++) 1084 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1085 1086 /* init RF-dependent PHY registers */ 1087 for (i = 0; i < N(phyini); i++) 1088 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1089 1090 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1091 for (i = 0; i < N(phy2230s); i++) 1092 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1093 } 1094 1095 for (i = 0; i < 3; i++) { 1096 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1097 if (error != 0) 1098 return (error); 1099 } 1100 1101 for (i = 0; i < N(rfini_part1); i++) { 1102 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1103 if (error != 0) 1104 return (error); 1105 } 1106 1107 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1108 error = zyd_rfwrite(sc, 0x241000); 1109 else 1110 error = zyd_rfwrite(sc, 0x25a000); 1111 if (error != 0) 1112 goto fail; 1113 1114 for (i = 0; i < N(rfini_part2); i++) { 1115 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1116 if (error != 0) 1117 return (error); 1118 } 1119 1120 for (i = 0; i < N(phy2); i++) 1121 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1122 1123 for (i = 0; i < N(rfini_part3); i++) { 1124 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1125 if (error != 0) 1126 return (error); 1127 } 1128 1129 for (i = 0; i < N(phy3); i++) 1130 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1131 1132 error = zyd_al2230_fini(rf); 1133 fail: 1134 return (error); 1135 #undef N 1136 } 1137 1138 static int 1139 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1140 { 1141 struct zyd_softc *sc = rf->rf_sc; 1142 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1143 1144 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1145 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1146 fail: 1147 return (error); 1148 } 1149 1150 static int 1151 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1152 { 1153 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1154 int error, i; 1155 struct zyd_softc *sc = rf->rf_sc; 1156 static const struct zyd_phy_pair phy1[] = { 1157 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1158 }; 1159 static const struct { 1160 uint32_t r1, r2, r3; 1161 } rfprog[] = ZYD_AL2230_CHANTABLE; 1162 1163 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1164 if (error != 0) 1165 goto fail; 1166 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1167 if (error != 0) 1168 goto fail; 1169 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1170 if (error != 0) 1171 goto fail; 1172 1173 for (i = 0; i < N(phy1); i++) 1174 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1175 fail: 1176 return (error); 1177 #undef N 1178 } 1179 1180 static int 1181 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1182 { 1183 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1184 int error, i; 1185 struct zyd_softc *sc = rf->rf_sc; 1186 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1187 static const struct { 1188 uint32_t r1, r2, r3; 1189 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1190 1191 for (i = 0; i < N(phy1); i++) 1192 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1193 1194 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1195 if (error != 0) 1196 goto fail; 1197 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1198 if (error != 0) 1199 goto fail; 1200 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1201 if (error != 0) 1202 goto fail; 1203 error = zyd_al2230_fini(rf); 1204 fail: 1205 return (error); 1206 #undef N 1207 } 1208 1209 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1210 { \ 1211 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1212 { ZYD_CR47, 0x1e } \ 1213 } 1214 1215 static int 1216 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1217 { 1218 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1219 int error = 0, i; 1220 struct zyd_softc *sc = rf->rf_sc; 1221 struct ifnet *ifp = sc->sc_ifp; 1222 struct ieee80211com *ic = ifp->if_l2com; 1223 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1224 int chan = ieee80211_chan2ieee(ic, c); 1225 1226 if (chan == 1 || chan == 11) 1227 r[0].val = 0x12; 1228 1229 for (i = 0; i < N(r); i++) 1230 zyd_write16_m(sc, r[i].reg, r[i].val); 1231 fail: 1232 return (error); 1233 #undef N 1234 } 1235 1236 /* 1237 * AL7230B RF methods. 1238 */ 1239 static int 1240 zyd_al7230B_init(struct zyd_rf *rf) 1241 { 1242 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1243 struct zyd_softc *sc = rf->rf_sc; 1244 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1245 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1246 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1247 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1248 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1249 int i, error; 1250 1251 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1252 1253 /* init RF-dependent PHY registers, part one */ 1254 for (i = 0; i < N(phyini_1); i++) 1255 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1256 1257 /* init AL7230B radio, part one */ 1258 for (i = 0; i < N(rfini_1); i++) { 1259 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1260 return (error); 1261 } 1262 /* init RF-dependent PHY registers, part two */ 1263 for (i = 0; i < N(phyini_2); i++) 1264 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1265 1266 /* init AL7230B radio, part two */ 1267 for (i = 0; i < N(rfini_2); i++) { 1268 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1269 return (error); 1270 } 1271 /* init RF-dependent PHY registers, part three */ 1272 for (i = 0; i < N(phyini_3); i++) 1273 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1274 fail: 1275 return (error); 1276 #undef N 1277 } 1278 1279 static int 1280 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1281 { 1282 int error; 1283 struct zyd_softc *sc = rf->rf_sc; 1284 1285 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1286 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1287 fail: 1288 return (error); 1289 } 1290 1291 static int 1292 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1293 { 1294 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1295 struct zyd_softc *sc = rf->rf_sc; 1296 static const struct { 1297 uint32_t r1, r2; 1298 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1299 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1300 int i, error; 1301 1302 zyd_write16_m(sc, ZYD_CR240, 0x57); 1303 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1304 1305 for (i = 0; i < N(rfsc); i++) { 1306 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1307 return (error); 1308 } 1309 1310 zyd_write16_m(sc, ZYD_CR128, 0x14); 1311 zyd_write16_m(sc, ZYD_CR129, 0x12); 1312 zyd_write16_m(sc, ZYD_CR130, 0x10); 1313 zyd_write16_m(sc, ZYD_CR38, 0x38); 1314 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1315 1316 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1317 if (error != 0) 1318 goto fail; 1319 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1320 if (error != 0) 1321 goto fail; 1322 error = zyd_rfwrite(sc, 0x3c9000); 1323 if (error != 0) 1324 goto fail; 1325 1326 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1327 zyd_write16_m(sc, ZYD_CR203, 0x06); 1328 zyd_write16_m(sc, ZYD_CR240, 0x08); 1329 fail: 1330 return (error); 1331 #undef N 1332 } 1333 1334 /* 1335 * AL2210 RF methods. 1336 */ 1337 static int 1338 zyd_al2210_init(struct zyd_rf *rf) 1339 { 1340 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1341 struct zyd_softc *sc = rf->rf_sc; 1342 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1343 static const uint32_t rfini[] = ZYD_AL2210_RF; 1344 uint32_t tmp; 1345 int i, error; 1346 1347 zyd_write32_m(sc, ZYD_CR18, 2); 1348 1349 /* init RF-dependent PHY registers */ 1350 for (i = 0; i < N(phyini); i++) 1351 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1352 1353 /* init AL2210 radio */ 1354 for (i = 0; i < N(rfini); i++) { 1355 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1356 return (error); 1357 } 1358 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1359 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1360 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1361 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1362 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1363 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1364 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1365 zyd_write32_m(sc, ZYD_CR18, 3); 1366 fail: 1367 return (error); 1368 #undef N 1369 } 1370 1371 static int 1372 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1373 { 1374 /* vendor driver does nothing for this RF chip */ 1375 1376 return (0); 1377 } 1378 1379 static int 1380 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1381 { 1382 int error; 1383 struct zyd_softc *sc = rf->rf_sc; 1384 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1385 uint32_t tmp; 1386 1387 zyd_write32_m(sc, ZYD_CR18, 2); 1388 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1389 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1390 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1391 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1392 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1393 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1394 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1395 1396 /* actually set the channel */ 1397 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1398 if (error != 0) 1399 goto fail; 1400 1401 zyd_write32_m(sc, ZYD_CR18, 3); 1402 fail: 1403 return (error); 1404 } 1405 1406 /* 1407 * GCT RF methods. 1408 */ 1409 static int 1410 zyd_gct_init(struct zyd_rf *rf) 1411 { 1412 #define ZYD_GCT_INTR_REG 0x85c1 1413 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1414 struct zyd_softc *sc = rf->rf_sc; 1415 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1416 static const uint32_t rfini[] = ZYD_GCT_RF; 1417 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1418 int i, idx = -1, error; 1419 uint16_t data; 1420 1421 /* init RF-dependent PHY registers */ 1422 for (i = 0; i < N(phyini); i++) 1423 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1424 1425 /* init cgt radio */ 1426 for (i = 0; i < N(rfini); i++) { 1427 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1428 return (error); 1429 } 1430 1431 error = zyd_gct_mode(rf); 1432 if (error != 0) 1433 return (error); 1434 1435 for (i = 0; i < (int)(N(vco) - 1); i++) { 1436 error = zyd_gct_set_channel_synth(rf, 1, 0); 1437 if (error != 0) 1438 goto fail; 1439 error = zyd_gct_write(rf, vco[i][0]); 1440 if (error != 0) 1441 goto fail; 1442 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1443 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1444 if ((data & 0xf) == 0) { 1445 idx = i; 1446 break; 1447 } 1448 } 1449 if (idx == -1) { 1450 error = zyd_gct_set_channel_synth(rf, 1, 1); 1451 if (error != 0) 1452 goto fail; 1453 error = zyd_gct_write(rf, 0x6662); 1454 if (error != 0) 1455 goto fail; 1456 } 1457 1458 rf->idx = idx; 1459 zyd_write16_m(sc, ZYD_CR203, 0x6); 1460 fail: 1461 return (error); 1462 #undef N 1463 #undef ZYD_GCT_INTR_REG 1464 } 1465 1466 static int 1467 zyd_gct_mode(struct zyd_rf *rf) 1468 { 1469 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1470 struct zyd_softc *sc = rf->rf_sc; 1471 static const uint32_t mode[] = { 1472 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1473 }; 1474 int i, error; 1475 1476 for (i = 0; i < N(mode); i++) { 1477 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1478 break; 1479 } 1480 return (error); 1481 #undef N 1482 } 1483 1484 static int 1485 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1486 { 1487 int error, idx = chan - 1; 1488 struct zyd_softc *sc = rf->rf_sc; 1489 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1490 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1491 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1492 1493 error = zyd_rfwrite(sc, 1494 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1495 if (error != 0) 1496 return (error); 1497 return zyd_rfwrite(sc, div_synth[idx]); 1498 } 1499 1500 static int 1501 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1502 { 1503 struct zyd_softc *sc = rf->rf_sc; 1504 1505 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1506 } 1507 1508 static int 1509 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1510 { 1511 int error; 1512 struct zyd_softc *sc = rf->rf_sc; 1513 1514 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1515 if (error != 0) 1516 return (error); 1517 1518 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1519 zyd_write16_m(sc, ZYD_CR251, 1520 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1521 fail: 1522 return (error); 1523 } 1524 1525 static int 1526 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1527 { 1528 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1529 int error, i; 1530 struct zyd_softc *sc = rf->rf_sc; 1531 static const struct zyd_phy_pair cmd[] = { 1532 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1533 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1534 }; 1535 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1536 1537 error = zyd_gct_set_channel_synth(rf, chan, 0); 1538 if (error != 0) 1539 goto fail; 1540 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1541 vco[rf->idx][((chan - 1) / 2)]); 1542 if (error != 0) 1543 goto fail; 1544 error = zyd_gct_mode(rf); 1545 if (error != 0) 1546 return (error); 1547 for (i = 0; i < N(cmd); i++) 1548 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1549 error = zyd_gct_txgain(rf, chan); 1550 if (error != 0) 1551 return (error); 1552 zyd_write16_m(sc, ZYD_CR203, 0x6); 1553 fail: 1554 return (error); 1555 #undef N 1556 } 1557 1558 static int 1559 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1560 { 1561 #define N(a) (sizeof(a) / sizeof((a)[0])) 1562 struct zyd_softc *sc = rf->rf_sc; 1563 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1564 uint8_t idx = sc->sc_pwrint[chan - 1]; 1565 1566 if (idx >= N(txgain)) { 1567 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1568 chan, idx); 1569 return 0; 1570 } 1571 1572 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1573 #undef N 1574 } 1575 1576 /* 1577 * Maxim2 RF methods. 1578 */ 1579 static int 1580 zyd_maxim2_init(struct zyd_rf *rf) 1581 { 1582 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1583 struct zyd_softc *sc = rf->rf_sc; 1584 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1585 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1586 uint16_t tmp; 1587 int i, error; 1588 1589 /* init RF-dependent PHY registers */ 1590 for (i = 0; i < N(phyini); i++) 1591 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1592 1593 zyd_read16_m(sc, ZYD_CR203, &tmp); 1594 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1595 1596 /* init maxim2 radio */ 1597 for (i = 0; i < N(rfini); i++) { 1598 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1599 return (error); 1600 } 1601 zyd_read16_m(sc, ZYD_CR203, &tmp); 1602 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1603 fail: 1604 return (error); 1605 #undef N 1606 } 1607 1608 static int 1609 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1610 { 1611 1612 /* vendor driver does nothing for this RF chip */ 1613 return (0); 1614 } 1615 1616 static int 1617 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1618 { 1619 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1620 struct zyd_softc *sc = rf->rf_sc; 1621 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1622 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1623 static const struct { 1624 uint32_t r1, r2; 1625 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1626 uint16_t tmp; 1627 int i, error; 1628 1629 /* 1630 * Do the same as we do when initializing it, except for the channel 1631 * values coming from the two channel tables. 1632 */ 1633 1634 /* init RF-dependent PHY registers */ 1635 for (i = 0; i < N(phyini); i++) 1636 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1637 1638 zyd_read16_m(sc, ZYD_CR203, &tmp); 1639 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1640 1641 /* first two values taken from the chantables */ 1642 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1643 if (error != 0) 1644 goto fail; 1645 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1646 if (error != 0) 1647 goto fail; 1648 1649 /* init maxim2 radio - skipping the two first values */ 1650 for (i = 2; i < N(rfini); i++) { 1651 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1652 return (error); 1653 } 1654 zyd_read16_m(sc, ZYD_CR203, &tmp); 1655 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1656 fail: 1657 return (error); 1658 #undef N 1659 } 1660 1661 static int 1662 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1663 { 1664 struct zyd_rf *rf = &sc->sc_rf; 1665 1666 rf->rf_sc = sc; 1667 rf->update_pwr = 1; 1668 1669 switch (type) { 1670 case ZYD_RF_RFMD: 1671 rf->init = zyd_rfmd_init; 1672 rf->switch_radio = zyd_rfmd_switch_radio; 1673 rf->set_channel = zyd_rfmd_set_channel; 1674 rf->width = 24; /* 24-bit RF values */ 1675 break; 1676 case ZYD_RF_AL2230: 1677 case ZYD_RF_AL2230S: 1678 if (sc->sc_macrev == ZYD_ZD1211B) { 1679 rf->init = zyd_al2230_init_b; 1680 rf->set_channel = zyd_al2230_set_channel_b; 1681 } else { 1682 rf->init = zyd_al2230_init; 1683 rf->set_channel = zyd_al2230_set_channel; 1684 } 1685 rf->switch_radio = zyd_al2230_switch_radio; 1686 rf->bandedge6 = zyd_al2230_bandedge6; 1687 rf->width = 24; /* 24-bit RF values */ 1688 break; 1689 case ZYD_RF_AL7230B: 1690 rf->init = zyd_al7230B_init; 1691 rf->switch_radio = zyd_al7230B_switch_radio; 1692 rf->set_channel = zyd_al7230B_set_channel; 1693 rf->width = 24; /* 24-bit RF values */ 1694 break; 1695 case ZYD_RF_AL2210: 1696 rf->init = zyd_al2210_init; 1697 rf->switch_radio = zyd_al2210_switch_radio; 1698 rf->set_channel = zyd_al2210_set_channel; 1699 rf->width = 24; /* 24-bit RF values */ 1700 break; 1701 case ZYD_RF_MAXIM_NEW: 1702 case ZYD_RF_GCT: 1703 rf->init = zyd_gct_init; 1704 rf->switch_radio = zyd_gct_switch_radio; 1705 rf->set_channel = zyd_gct_set_channel; 1706 rf->width = 24; /* 24-bit RF values */ 1707 rf->update_pwr = 0; 1708 break; 1709 case ZYD_RF_MAXIM_NEW2: 1710 rf->init = zyd_maxim2_init; 1711 rf->switch_radio = zyd_maxim2_switch_radio; 1712 rf->set_channel = zyd_maxim2_set_channel; 1713 rf->width = 18; /* 18-bit RF values */ 1714 break; 1715 default: 1716 device_printf(sc->sc_dev, 1717 "sorry, radio \"%s\" is not supported yet\n", 1718 zyd_rf_name(type)); 1719 return (EINVAL); 1720 } 1721 return (0); 1722 } 1723 1724 static const char * 1725 zyd_rf_name(uint8_t type) 1726 { 1727 static const char * const zyd_rfs[] = { 1728 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1729 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1730 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1731 "PHILIPS" 1732 }; 1733 1734 return zyd_rfs[(type > 15) ? 0 : type]; 1735 } 1736 1737 static int 1738 zyd_hw_init(struct zyd_softc *sc) 1739 { 1740 int error; 1741 const struct zyd_phy_pair *phyp; 1742 struct zyd_rf *rf = &sc->sc_rf; 1743 uint16_t val; 1744 1745 /* specify that the plug and play is finished */ 1746 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1747 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1748 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1749 sc->sc_fwbase); 1750 1751 /* retrieve firmware revision number */ 1752 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1753 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1754 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1755 /* set mandatory rates - XXX assumes 802.11b/g */ 1756 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1757 1758 /* disable interrupts */ 1759 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1760 1761 if ((error = zyd_read_pod(sc)) != 0) { 1762 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1763 goto fail; 1764 } 1765 1766 /* PHY init (resetting) */ 1767 error = zyd_lock_phy(sc); 1768 if (error != 0) 1769 goto fail; 1770 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1771 for (; phyp->reg != 0; phyp++) 1772 zyd_write16_m(sc, phyp->reg, phyp->val); 1773 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1774 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1775 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1776 } 1777 error = zyd_unlock_phy(sc); 1778 if (error != 0) 1779 goto fail; 1780 1781 /* HMAC init */ 1782 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1783 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1784 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1785 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1786 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1787 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1788 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1789 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1790 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1791 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1792 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1793 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1794 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1795 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1796 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1797 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1798 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1799 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1800 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1801 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1802 1803 if (sc->sc_macrev == ZYD_ZD1211) { 1804 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1805 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1806 } else { 1807 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1808 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1809 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1810 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1811 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1812 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1813 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1814 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1815 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1816 } 1817 1818 /* init beacon interval to 100ms */ 1819 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1820 goto fail; 1821 1822 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1823 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1824 sc->sc_rfrev); 1825 goto fail; 1826 } 1827 1828 /* RF chip init */ 1829 error = zyd_lock_phy(sc); 1830 if (error != 0) 1831 goto fail; 1832 error = (*rf->init)(rf); 1833 if (error != 0) { 1834 device_printf(sc->sc_dev, 1835 "radio initialization failed, error %d\n", error); 1836 goto fail; 1837 } 1838 error = zyd_unlock_phy(sc); 1839 if (error != 0) 1840 goto fail; 1841 1842 if ((error = zyd_read_eeprom(sc)) != 0) { 1843 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1844 goto fail; 1845 } 1846 1847 fail: return (error); 1848 } 1849 1850 static int 1851 zyd_read_pod(struct zyd_softc *sc) 1852 { 1853 int error; 1854 uint32_t tmp; 1855 1856 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1857 sc->sc_rfrev = tmp & 0x0f; 1858 sc->sc_ledtype = (tmp >> 4) & 0x01; 1859 sc->sc_al2230s = (tmp >> 7) & 0x01; 1860 sc->sc_cckgain = (tmp >> 8) & 0x01; 1861 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1862 sc->sc_parev = (tmp >> 16) & 0x0f; 1863 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1864 sc->sc_newphy = (tmp >> 31) & 0x01; 1865 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1866 fail: 1867 return (error); 1868 } 1869 1870 static int 1871 zyd_read_eeprom(struct zyd_softc *sc) 1872 { 1873 uint16_t val; 1874 int error, i; 1875 1876 /* read Tx power calibration tables */ 1877 for (i = 0; i < 7; i++) { 1878 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1879 sc->sc_pwrcal[i * 2] = val >> 8; 1880 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1881 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1882 sc->sc_pwrint[i * 2] = val >> 8; 1883 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1884 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1885 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1886 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1887 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1888 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1889 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1890 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1891 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1892 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1893 } 1894 fail: 1895 return (error); 1896 } 1897 1898 static int 1899 zyd_get_macaddr(struct zyd_softc *sc) 1900 { 1901 struct usb_device_request req; 1902 usb_error_t error; 1903 1904 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1905 req.bRequest = ZYD_READFWDATAREQ; 1906 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1907 USETW(req.wIndex, 0); 1908 USETW(req.wLength, IEEE80211_ADDR_LEN); 1909 1910 error = zyd_do_request(sc, &req, sc->sc_bssid); 1911 if (error != 0) { 1912 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1913 usbd_errstr(error)); 1914 } 1915 1916 return (error); 1917 } 1918 1919 static int 1920 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1921 { 1922 int error; 1923 uint32_t tmp; 1924 1925 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1926 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1927 tmp = addr[5] << 8 | addr[4]; 1928 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1929 fail: 1930 return (error); 1931 } 1932 1933 static int 1934 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1935 { 1936 int error; 1937 uint32_t tmp; 1938 1939 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1940 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1941 tmp = addr[5] << 8 | addr[4]; 1942 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1943 fail: 1944 return (error); 1945 } 1946 1947 static int 1948 zyd_switch_radio(struct zyd_softc *sc, int on) 1949 { 1950 struct zyd_rf *rf = &sc->sc_rf; 1951 int error; 1952 1953 error = zyd_lock_phy(sc); 1954 if (error != 0) 1955 goto fail; 1956 error = (*rf->switch_radio)(rf, on); 1957 if (error != 0) 1958 goto fail; 1959 error = zyd_unlock_phy(sc); 1960 fail: 1961 return (error); 1962 } 1963 1964 static int 1965 zyd_set_led(struct zyd_softc *sc, int which, int on) 1966 { 1967 int error; 1968 uint32_t tmp; 1969 1970 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1971 tmp &= ~which; 1972 if (on) 1973 tmp |= which; 1974 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1975 fail: 1976 return (error); 1977 } 1978 1979 static void 1980 zyd_set_multi(struct zyd_softc *sc) 1981 { 1982 int error; 1983 struct ifnet *ifp = sc->sc_ifp; 1984 struct ieee80211com *ic = ifp->if_l2com; 1985 struct ifmultiaddr *ifma; 1986 uint32_t low, high; 1987 uint8_t v; 1988 1989 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1990 return; 1991 1992 low = 0x00000000; 1993 high = 0x80000000; 1994 1995 if (ic->ic_opmode == IEEE80211_M_MONITOR || 1996 (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { 1997 low = 0xffffffff; 1998 high = 0xffffffff; 1999 } else { 2000 if_maddr_rlock(ifp); 2001 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2002 if (ifma->ifma_addr->sa_family != AF_LINK) 2003 continue; 2004 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2005 ifma->ifma_addr))[5] >> 2; 2006 if (v < 32) 2007 low |= 1 << v; 2008 else 2009 high |= 1 << (v - 32); 2010 } 2011 if_maddr_runlock(ifp); 2012 } 2013 2014 /* reprogram multicast global hash table */ 2015 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2016 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2017 fail: 2018 if (error != 0) 2019 device_printf(sc->sc_dev, 2020 "could not set multicast hash table\n"); 2021 } 2022 2023 static void 2024 zyd_update_mcast(struct ifnet *ifp) 2025 { 2026 struct zyd_softc *sc = ifp->if_softc; 2027 2028 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2029 return; 2030 2031 ZYD_LOCK(sc); 2032 zyd_set_multi(sc); 2033 ZYD_UNLOCK(sc); 2034 } 2035 2036 static int 2037 zyd_set_rxfilter(struct zyd_softc *sc) 2038 { 2039 struct ifnet *ifp = sc->sc_ifp; 2040 struct ieee80211com *ic = ifp->if_l2com; 2041 uint32_t rxfilter; 2042 2043 switch (ic->ic_opmode) { 2044 case IEEE80211_M_STA: 2045 rxfilter = ZYD_FILTER_BSS; 2046 break; 2047 case IEEE80211_M_IBSS: 2048 case IEEE80211_M_HOSTAP: 2049 rxfilter = ZYD_FILTER_HOSTAP; 2050 break; 2051 case IEEE80211_M_MONITOR: 2052 rxfilter = ZYD_FILTER_MONITOR; 2053 break; 2054 default: 2055 /* should not get there */ 2056 return (EINVAL); 2057 } 2058 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2059 } 2060 2061 static void 2062 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2063 { 2064 int error; 2065 struct ifnet *ifp = sc->sc_ifp; 2066 struct ieee80211com *ic = ifp->if_l2com; 2067 struct zyd_rf *rf = &sc->sc_rf; 2068 uint32_t tmp; 2069 int chan; 2070 2071 chan = ieee80211_chan2ieee(ic, c); 2072 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2073 /* XXX should NEVER happen */ 2074 device_printf(sc->sc_dev, 2075 "%s: invalid channel %x\n", __func__, chan); 2076 return; 2077 } 2078 2079 error = zyd_lock_phy(sc); 2080 if (error != 0) 2081 goto fail; 2082 2083 error = (*rf->set_channel)(rf, chan); 2084 if (error != 0) 2085 goto fail; 2086 2087 if (rf->update_pwr) { 2088 /* update Tx power */ 2089 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2090 2091 if (sc->sc_macrev == ZYD_ZD1211B) { 2092 zyd_write16_m(sc, ZYD_CR67, 2093 sc->sc_ofdm36_cal[chan - 1]); 2094 zyd_write16_m(sc, ZYD_CR66, 2095 sc->sc_ofdm48_cal[chan - 1]); 2096 zyd_write16_m(sc, ZYD_CR65, 2097 sc->sc_ofdm54_cal[chan - 1]); 2098 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2099 zyd_write16_m(sc, ZYD_CR69, 0x28); 2100 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2101 } 2102 } 2103 if (sc->sc_cckgain) { 2104 /* set CCK baseband gain from EEPROM */ 2105 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2106 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2107 } 2108 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2109 error = (*rf->bandedge6)(rf, c); 2110 if (error != 0) 2111 goto fail; 2112 } 2113 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2114 2115 error = zyd_unlock_phy(sc); 2116 if (error != 0) 2117 goto fail; 2118 2119 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2120 htole16(c->ic_freq); 2121 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2122 htole16(c->ic_flags); 2123 fail: 2124 return; 2125 } 2126 2127 static int 2128 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2129 { 2130 int error; 2131 uint32_t val; 2132 2133 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2134 sc->sc_atim_wnd = val; 2135 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2136 sc->sc_pre_tbtt = val; 2137 sc->sc_bcn_int = bintval; 2138 2139 if (sc->sc_bcn_int <= 5) 2140 sc->sc_bcn_int = 5; 2141 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2142 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2143 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2144 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2145 2146 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2147 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2148 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2149 fail: 2150 return (error); 2151 } 2152 2153 static void 2154 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2155 { 2156 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2157 struct ifnet *ifp = sc->sc_ifp; 2158 struct ieee80211com *ic = ifp->if_l2com; 2159 struct zyd_plcphdr plcp; 2160 struct zyd_rx_stat stat; 2161 struct usb_page_cache *pc; 2162 struct mbuf *m; 2163 int rlen, rssi; 2164 2165 if (len < ZYD_MIN_FRAGSZ) { 2166 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2167 device_get_nameunit(sc->sc_dev), len); 2168 ifp->if_ierrors++; 2169 return; 2170 } 2171 pc = usbd_xfer_get_frame(xfer, 0); 2172 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2173 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2174 2175 if (stat.flags & ZYD_RX_ERROR) { 2176 DPRINTF(sc, ZYD_DEBUG_RECV, 2177 "%s: RX status indicated error (%x)\n", 2178 device_get_nameunit(sc->sc_dev), stat.flags); 2179 ifp->if_ierrors++; 2180 return; 2181 } 2182 2183 /* compute actual frame length */ 2184 rlen = len - sizeof(struct zyd_plcphdr) - 2185 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2186 2187 /* allocate a mbuf to store the frame */ 2188 if (rlen > (int)MCLBYTES) { 2189 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2190 device_get_nameunit(sc->sc_dev), rlen); 2191 ifp->if_ierrors++; 2192 return; 2193 } else if (rlen > (int)MHLEN) 2194 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2195 else 2196 m = m_gethdr(M_NOWAIT, MT_DATA); 2197 if (m == NULL) { 2198 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2199 device_get_nameunit(sc->sc_dev)); 2200 ifp->if_ierrors++; 2201 return; 2202 } 2203 m->m_pkthdr.rcvif = ifp; 2204 m->m_pkthdr.len = m->m_len = rlen; 2205 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2206 2207 if (ieee80211_radiotap_active(ic)) { 2208 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2209 2210 tap->wr_flags = 0; 2211 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2212 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2213 /* XXX toss, no way to express errors */ 2214 if (stat.flags & ZYD_RX_DECRYPTERR) 2215 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2216 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2217 (stat.flags & ZYD_RX_OFDM) ? 2218 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2219 tap->wr_antsignal = stat.rssi + -95; 2220 tap->wr_antnoise = -95; /* XXX */ 2221 } 2222 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2223 2224 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2225 sc->sc_rx_data[sc->sc_rx_count].m = m; 2226 sc->sc_rx_count++; 2227 } 2228 2229 static void 2230 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2231 { 2232 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2233 struct ifnet *ifp = sc->sc_ifp; 2234 struct ieee80211com *ic = ifp->if_l2com; 2235 struct ieee80211_node *ni; 2236 struct zyd_rx_desc desc; 2237 struct mbuf *m; 2238 struct usb_page_cache *pc; 2239 uint32_t offset; 2240 uint8_t rssi; 2241 int8_t nf; 2242 int i; 2243 int actlen; 2244 2245 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2246 2247 sc->sc_rx_count = 0; 2248 switch (USB_GET_STATE(xfer)) { 2249 case USB_ST_TRANSFERRED: 2250 pc = usbd_xfer_get_frame(xfer, 0); 2251 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2252 2253 offset = 0; 2254 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2255 DPRINTF(sc, ZYD_DEBUG_RECV, 2256 "%s: received multi-frame transfer\n", __func__); 2257 2258 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2259 uint16_t len16 = UGETW(desc.len[i]); 2260 2261 if (len16 == 0 || len16 > actlen) 2262 break; 2263 2264 zyd_rx_data(xfer, offset, len16); 2265 2266 /* next frame is aligned on a 32-bit boundary */ 2267 len16 = (len16 + 3) & ~3; 2268 offset += len16; 2269 if (len16 > actlen) 2270 break; 2271 actlen -= len16; 2272 } 2273 } else { 2274 DPRINTF(sc, ZYD_DEBUG_RECV, 2275 "%s: received single-frame transfer\n", __func__); 2276 2277 zyd_rx_data(xfer, 0, actlen); 2278 } 2279 /* FALLTHROUGH */ 2280 case USB_ST_SETUP: 2281 tr_setup: 2282 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2283 usbd_transfer_submit(xfer); 2284 2285 /* 2286 * At the end of a USB callback it is always safe to unlock 2287 * the private mutex of a device! That is why we do the 2288 * "ieee80211_input" here, and not some lines up! 2289 */ 2290 ZYD_UNLOCK(sc); 2291 for (i = 0; i < sc->sc_rx_count; i++) { 2292 rssi = sc->sc_rx_data[i].rssi; 2293 m = sc->sc_rx_data[i].m; 2294 sc->sc_rx_data[i].m = NULL; 2295 2296 nf = -95; /* XXX */ 2297 2298 ni = ieee80211_find_rxnode(ic, 2299 mtod(m, struct ieee80211_frame_min *)); 2300 if (ni != NULL) { 2301 (void)ieee80211_input(ni, m, rssi, nf); 2302 ieee80211_free_node(ni); 2303 } else 2304 (void)ieee80211_input_all(ic, m, rssi, nf); 2305 } 2306 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2307 !IFQ_IS_EMPTY(&ifp->if_snd)) 2308 zyd_start(ifp); 2309 ZYD_LOCK(sc); 2310 break; 2311 2312 default: /* Error */ 2313 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2314 2315 if (error != USB_ERR_CANCELLED) { 2316 /* try to clear stall first */ 2317 usbd_xfer_set_stall(xfer); 2318 goto tr_setup; 2319 } 2320 break; 2321 } 2322 } 2323 2324 static uint8_t 2325 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2326 { 2327 switch (rate) { 2328 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2329 case 12: 2330 return (0xb); 2331 case 18: 2332 return (0xf); 2333 case 24: 2334 return (0xa); 2335 case 36: 2336 return (0xe); 2337 case 48: 2338 return (0x9); 2339 case 72: 2340 return (0xd); 2341 case 96: 2342 return (0x8); 2343 case 108: 2344 return (0xc); 2345 /* CCK rates (NB: not IEEE std, device-specific) */ 2346 case 2: 2347 return (0x0); 2348 case 4: 2349 return (0x1); 2350 case 11: 2351 return (0x2); 2352 case 22: 2353 return (0x3); 2354 } 2355 2356 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2357 return (0x0); 2358 } 2359 2360 static void 2361 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2362 { 2363 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2364 struct ifnet *ifp = sc->sc_ifp; 2365 struct ieee80211vap *vap; 2366 struct zyd_tx_data *data; 2367 struct mbuf *m; 2368 struct usb_page_cache *pc; 2369 int actlen; 2370 2371 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2372 2373 switch (USB_GET_STATE(xfer)) { 2374 case USB_ST_TRANSFERRED: 2375 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2376 actlen); 2377 2378 /* free resources */ 2379 data = usbd_xfer_get_priv(xfer); 2380 zyd_tx_free(data, 0); 2381 usbd_xfer_set_priv(xfer, NULL); 2382 2383 ifp->if_opackets++; 2384 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2385 2386 /* FALLTHROUGH */ 2387 case USB_ST_SETUP: 2388 tr_setup: 2389 data = STAILQ_FIRST(&sc->tx_q); 2390 if (data) { 2391 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2392 m = data->m; 2393 2394 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2395 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2396 m->m_pkthdr.len); 2397 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2398 } 2399 pc = usbd_xfer_get_frame(xfer, 0); 2400 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2401 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2402 m->m_pkthdr.len); 2403 2404 vap = data->ni->ni_vap; 2405 if (ieee80211_radiotap_active_vap(vap)) { 2406 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2407 2408 tap->wt_flags = 0; 2409 tap->wt_rate = data->rate; 2410 2411 ieee80211_radiotap_tx(vap, m); 2412 } 2413 2414 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2415 usbd_xfer_set_priv(xfer, data); 2416 usbd_transfer_submit(xfer); 2417 } 2418 ZYD_UNLOCK(sc); 2419 zyd_start(ifp); 2420 ZYD_LOCK(sc); 2421 break; 2422 2423 default: /* Error */ 2424 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2425 usbd_errstr(error)); 2426 2427 ifp->if_oerrors++; 2428 data = usbd_xfer_get_priv(xfer); 2429 usbd_xfer_set_priv(xfer, NULL); 2430 if (data != NULL) 2431 zyd_tx_free(data, error); 2432 2433 if (error != USB_ERR_CANCELLED) { 2434 if (error == USB_ERR_TIMEOUT) 2435 device_printf(sc->sc_dev, "device timeout\n"); 2436 2437 /* 2438 * Try to clear stall first, also if other 2439 * errors occur, hence clearing stall 2440 * introduces a 50 ms delay: 2441 */ 2442 usbd_xfer_set_stall(xfer); 2443 goto tr_setup; 2444 } 2445 break; 2446 } 2447 } 2448 2449 static int 2450 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2451 { 2452 struct ieee80211vap *vap = ni->ni_vap; 2453 struct ieee80211com *ic = ni->ni_ic; 2454 struct zyd_tx_desc *desc; 2455 struct zyd_tx_data *data; 2456 struct ieee80211_frame *wh; 2457 const struct ieee80211_txparam *tp; 2458 struct ieee80211_key *k; 2459 int rate, totlen; 2460 static uint8_t ratediv[] = ZYD_TX_RATEDIV; 2461 uint8_t phy; 2462 uint16_t pktlen; 2463 uint32_t bits; 2464 2465 wh = mtod(m0, struct ieee80211_frame *); 2466 data = STAILQ_FIRST(&sc->tx_free); 2467 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2468 sc->tx_nfree--; 2469 2470 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2471 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2472 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2473 rate = tp->mgmtrate; 2474 } else { 2475 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2476 /* for data frames */ 2477 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2478 rate = tp->mcastrate; 2479 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2480 rate = tp->ucastrate; 2481 else { 2482 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2483 rate = ni->ni_txrate; 2484 } 2485 } 2486 2487 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2488 k = ieee80211_crypto_encap(ni, m0); 2489 if (k == NULL) { 2490 m_freem(m0); 2491 return (ENOBUFS); 2492 } 2493 /* packet header may have moved, reset our local pointer */ 2494 wh = mtod(m0, struct ieee80211_frame *); 2495 } 2496 2497 data->ni = ni; 2498 data->m = m0; 2499 data->rate = rate; 2500 2501 /* fill Tx descriptor */ 2502 desc = &data->desc; 2503 phy = zyd_plcp_signal(sc, rate); 2504 desc->phy = phy; 2505 if (ZYD_RATE_IS_OFDM(rate)) { 2506 desc->phy |= ZYD_TX_PHY_OFDM; 2507 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2508 desc->phy |= ZYD_TX_PHY_5GHZ; 2509 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2510 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2511 2512 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2513 desc->len = htole16(totlen); 2514 2515 desc->flags = ZYD_TX_FLAG_BACKOFF; 2516 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2517 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2518 if (totlen > vap->iv_rtsthreshold) { 2519 desc->flags |= ZYD_TX_FLAG_RTS; 2520 } else if (ZYD_RATE_IS_OFDM(rate) && 2521 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2522 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2523 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2524 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2525 desc->flags |= ZYD_TX_FLAG_RTS; 2526 } 2527 } else 2528 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2529 if ((wh->i_fc[0] & 2530 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2531 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2532 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2533 2534 /* actual transmit length (XXX why +10?) */ 2535 pktlen = ZYD_TX_DESC_SIZE + 10; 2536 if (sc->sc_macrev == ZYD_ZD1211) 2537 pktlen += totlen; 2538 desc->pktlen = htole16(pktlen); 2539 2540 bits = (rate == 11) ? (totlen * 16) + 10 : 2541 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2542 desc->plcp_length = htole16(bits / ratediv[phy]); 2543 desc->plcp_service = 0; 2544 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2545 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2546 desc->nextlen = 0; 2547 2548 if (ieee80211_radiotap_active_vap(vap)) { 2549 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2550 2551 tap->wt_flags = 0; 2552 tap->wt_rate = rate; 2553 2554 ieee80211_radiotap_tx(vap, m0); 2555 } 2556 2557 DPRINTF(sc, ZYD_DEBUG_XMIT, 2558 "%s: sending data frame len=%zu rate=%u\n", 2559 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2560 rate); 2561 2562 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2563 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2564 2565 return (0); 2566 } 2567 2568 static void 2569 zyd_start(struct ifnet *ifp) 2570 { 2571 struct zyd_softc *sc = ifp->if_softc; 2572 struct ieee80211_node *ni; 2573 struct mbuf *m; 2574 2575 ZYD_LOCK(sc); 2576 for (;;) { 2577 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2578 if (m == NULL) 2579 break; 2580 if (sc->tx_nfree == 0) { 2581 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2582 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2583 break; 2584 } 2585 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2586 if (zyd_tx_start(sc, m, ni) != 0) { 2587 ieee80211_free_node(ni); 2588 ifp->if_oerrors++; 2589 break; 2590 } 2591 } 2592 ZYD_UNLOCK(sc); 2593 } 2594 2595 static int 2596 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2597 const struct ieee80211_bpf_params *params) 2598 { 2599 struct ieee80211com *ic = ni->ni_ic; 2600 struct ifnet *ifp = ic->ic_ifp; 2601 struct zyd_softc *sc = ifp->if_softc; 2602 2603 ZYD_LOCK(sc); 2604 /* prevent management frames from being sent if we're not ready */ 2605 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2606 ZYD_UNLOCK(sc); 2607 m_freem(m); 2608 ieee80211_free_node(ni); 2609 return (ENETDOWN); 2610 } 2611 if (sc->tx_nfree == 0) { 2612 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2613 ZYD_UNLOCK(sc); 2614 m_freem(m); 2615 ieee80211_free_node(ni); 2616 return (ENOBUFS); /* XXX */ 2617 } 2618 2619 /* 2620 * Legacy path; interpret frame contents to decide 2621 * precisely how to send the frame. 2622 * XXX raw path 2623 */ 2624 if (zyd_tx_start(sc, m, ni) != 0) { 2625 ZYD_UNLOCK(sc); 2626 ifp->if_oerrors++; 2627 ieee80211_free_node(ni); 2628 return (EIO); 2629 } 2630 ZYD_UNLOCK(sc); 2631 return (0); 2632 } 2633 2634 static int 2635 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2636 { 2637 struct zyd_softc *sc = ifp->if_softc; 2638 struct ieee80211com *ic = ifp->if_l2com; 2639 struct ifreq *ifr = (struct ifreq *) data; 2640 int error = 0, startall = 0; 2641 2642 switch (cmd) { 2643 case SIOCSIFFLAGS: 2644 ZYD_LOCK(sc); 2645 if (ifp->if_flags & IFF_UP) { 2646 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2647 zyd_init_locked(sc); 2648 startall = 1; 2649 } else 2650 zyd_set_multi(sc); 2651 } else { 2652 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2653 zyd_stop(sc); 2654 } 2655 ZYD_UNLOCK(sc); 2656 if (startall) 2657 ieee80211_start_all(ic); 2658 break; 2659 case SIOCGIFMEDIA: 2660 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2661 break; 2662 case SIOCGIFADDR: 2663 error = ether_ioctl(ifp, cmd, data); 2664 break; 2665 default: 2666 error = EINVAL; 2667 break; 2668 } 2669 return (error); 2670 } 2671 2672 static void 2673 zyd_init_locked(struct zyd_softc *sc) 2674 { 2675 struct ifnet *ifp = sc->sc_ifp; 2676 struct ieee80211com *ic = ifp->if_l2com; 2677 struct usb_config_descriptor *cd; 2678 int error; 2679 uint32_t val; 2680 2681 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2682 2683 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2684 error = zyd_loadfirmware(sc); 2685 if (error != 0) { 2686 device_printf(sc->sc_dev, 2687 "could not load firmware (error=%d)\n", error); 2688 goto fail; 2689 } 2690 2691 /* reset device */ 2692 cd = usbd_get_config_descriptor(sc->sc_udev); 2693 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2694 cd->bConfigurationValue); 2695 if (error) 2696 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2697 2698 error = zyd_hw_init(sc); 2699 if (error) { 2700 device_printf(sc->sc_dev, 2701 "hardware initialization failed\n"); 2702 goto fail; 2703 } 2704 2705 device_printf(sc->sc_dev, 2706 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2707 "BE%x NP%x Gain%x F%x\n", 2708 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2709 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2710 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2711 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2712 sc->sc_cckgain, sc->sc_fix_cr157); 2713 2714 /* read regulatory domain (currently unused) */ 2715 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2716 sc->sc_regdomain = val >> 16; 2717 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2718 sc->sc_regdomain); 2719 2720 /* we'll do software WEP decryption for now */ 2721 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2722 __func__); 2723 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2724 2725 sc->sc_flags |= ZYD_FLAG_INITONCE; 2726 } 2727 2728 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2729 zyd_stop(sc); 2730 2731 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2732 IF_LLADDR(ifp), ":"); 2733 error = zyd_set_macaddr(sc, IF_LLADDR(ifp)); 2734 if (error != 0) 2735 return; 2736 2737 /* set basic rates */ 2738 if (ic->ic_curmode == IEEE80211_MODE_11B) 2739 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2740 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2741 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2742 else /* assumes 802.11b/g */ 2743 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2744 2745 /* promiscuous mode */ 2746 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2747 /* multicast setup */ 2748 zyd_set_multi(sc); 2749 /* set RX filter */ 2750 error = zyd_set_rxfilter(sc); 2751 if (error != 0) 2752 goto fail; 2753 2754 /* switch radio transmitter ON */ 2755 error = zyd_switch_radio(sc, 1); 2756 if (error != 0) 2757 goto fail; 2758 /* set default BSS channel */ 2759 zyd_set_chan(sc, ic->ic_curchan); 2760 2761 /* 2762 * Allocate Tx and Rx xfer queues. 2763 */ 2764 zyd_setup_tx_list(sc); 2765 2766 /* enable interrupts */ 2767 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2768 2769 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2770 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2771 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2772 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2773 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2774 2775 return; 2776 2777 fail: zyd_stop(sc); 2778 return; 2779 } 2780 2781 static void 2782 zyd_init(void *priv) 2783 { 2784 struct zyd_softc *sc = priv; 2785 struct ifnet *ifp = sc->sc_ifp; 2786 struct ieee80211com *ic = ifp->if_l2com; 2787 2788 ZYD_LOCK(sc); 2789 zyd_init_locked(sc); 2790 ZYD_UNLOCK(sc); 2791 2792 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2793 ieee80211_start_all(ic); /* start all vap's */ 2794 } 2795 2796 static void 2797 zyd_stop(struct zyd_softc *sc) 2798 { 2799 struct ifnet *ifp = sc->sc_ifp; 2800 int error; 2801 2802 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2803 2804 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2805 2806 /* 2807 * Drain all the transfers, if not already drained: 2808 */ 2809 ZYD_UNLOCK(sc); 2810 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2811 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2812 ZYD_LOCK(sc); 2813 2814 zyd_unsetup_tx_list(sc); 2815 2816 /* Stop now if the device was never set up */ 2817 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2818 return; 2819 2820 /* switch radio transmitter OFF */ 2821 error = zyd_switch_radio(sc, 0); 2822 if (error != 0) 2823 goto fail; 2824 /* disable Rx */ 2825 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2826 /* disable interrupts */ 2827 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2828 2829 fail: 2830 return; 2831 } 2832 2833 static int 2834 zyd_loadfirmware(struct zyd_softc *sc) 2835 { 2836 struct usb_device_request req; 2837 size_t size; 2838 u_char *fw; 2839 uint8_t stat; 2840 uint16_t addr; 2841 2842 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2843 return (0); 2844 2845 if (sc->sc_macrev == ZYD_ZD1211) { 2846 fw = (u_char *)zd1211_firmware; 2847 size = sizeof(zd1211_firmware); 2848 } else { 2849 fw = (u_char *)zd1211b_firmware; 2850 size = sizeof(zd1211b_firmware); 2851 } 2852 2853 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2854 req.bRequest = ZYD_DOWNLOADREQ; 2855 USETW(req.wIndex, 0); 2856 2857 addr = ZYD_FIRMWARE_START_ADDR; 2858 while (size > 0) { 2859 /* 2860 * When the transfer size is 4096 bytes, it is not 2861 * likely to be able to transfer it. 2862 * The cause is port or machine or chip? 2863 */ 2864 const int mlen = min(size, 64); 2865 2866 DPRINTF(sc, ZYD_DEBUG_FW, 2867 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2868 2869 USETW(req.wValue, addr); 2870 USETW(req.wLength, mlen); 2871 if (zyd_do_request(sc, &req, fw) != 0) 2872 return (EIO); 2873 2874 addr += mlen / 2; 2875 fw += mlen; 2876 size -= mlen; 2877 } 2878 2879 /* check whether the upload succeeded */ 2880 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2881 req.bRequest = ZYD_DOWNLOADSTS; 2882 USETW(req.wValue, 0); 2883 USETW(req.wIndex, 0); 2884 USETW(req.wLength, sizeof(stat)); 2885 if (zyd_do_request(sc, &req, &stat) != 0) 2886 return (EIO); 2887 2888 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2889 2890 return (stat & 0x80) ? (EIO) : (0); 2891 } 2892 2893 static void 2894 zyd_scan_start(struct ieee80211com *ic) 2895 { 2896 struct ifnet *ifp = ic->ic_ifp; 2897 struct zyd_softc *sc = ifp->if_softc; 2898 2899 ZYD_LOCK(sc); 2900 /* want broadcast address while scanning */ 2901 zyd_set_bssid(sc, ifp->if_broadcastaddr); 2902 ZYD_UNLOCK(sc); 2903 } 2904 2905 static void 2906 zyd_scan_end(struct ieee80211com *ic) 2907 { 2908 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2909 2910 ZYD_LOCK(sc); 2911 /* restore previous bssid */ 2912 zyd_set_bssid(sc, sc->sc_bssid); 2913 ZYD_UNLOCK(sc); 2914 } 2915 2916 static void 2917 zyd_set_channel(struct ieee80211com *ic) 2918 { 2919 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2920 2921 ZYD_LOCK(sc); 2922 zyd_set_chan(sc, ic->ic_curchan); 2923 ZYD_UNLOCK(sc); 2924 } 2925 2926 static device_method_t zyd_methods[] = { 2927 /* Device interface */ 2928 DEVMETHOD(device_probe, zyd_match), 2929 DEVMETHOD(device_attach, zyd_attach), 2930 DEVMETHOD(device_detach, zyd_detach), 2931 2932 { 0, 0 } 2933 }; 2934 2935 static driver_t zyd_driver = { 2936 .name = "zyd", 2937 .methods = zyd_methods, 2938 .size = sizeof(struct zyd_softc) 2939 }; 2940 2941 static devclass_t zyd_devclass; 2942 2943 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2944 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2945 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2946 MODULE_VERSION(zyd, 1); 2947