1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include <dev/usb/usbdi_util.h> 73 #include "usbdevs.h" 74 75 #include <dev/usb/wlan/if_zydreg.h> 76 #include <dev/usb/wlan/if_zydfw.h> 77 78 #ifdef USB_DEBUG 79 static int zyd_debug = 0; 80 81 SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 82 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0, 83 "zyd debug level"); 84 85 enum { 86 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 87 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 88 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 89 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 90 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 91 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 92 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 93 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 94 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 95 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 96 ZYD_DEBUG_ANY = 0xffffffff 97 }; 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 if (zyd_debug & (m)) \ 100 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 101 } while (0) 102 #else 103 #define DPRINTF(sc, m, fmt, ...) do { \ 104 (void) sc; \ 105 } while (0) 106 #endif 107 108 #define zyd_do_request(sc,req,data) \ 109 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 110 111 static device_probe_t zyd_match; 112 static device_attach_t zyd_attach; 113 static device_detach_t zyd_detach; 114 115 static usb_callback_t zyd_intr_read_callback; 116 static usb_callback_t zyd_intr_write_callback; 117 static usb_callback_t zyd_bulk_read_callback; 118 static usb_callback_t zyd_bulk_write_callback; 119 120 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 121 const char name[IFNAMSIZ], int unit, int opmode, 122 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 123 const uint8_t mac[IEEE80211_ADDR_LEN]); 124 static void zyd_vap_delete(struct ieee80211vap *); 125 static void zyd_tx_free(struct zyd_tx_data *, int); 126 static void zyd_setup_tx_list(struct zyd_softc *); 127 static void zyd_unsetup_tx_list(struct zyd_softc *); 128 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 129 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 130 void *, int, int); 131 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 132 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 133 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 134 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 135 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 136 static int zyd_lock_phy(struct zyd_softc *); 137 static int zyd_unlock_phy(struct zyd_softc *); 138 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 139 static const char *zyd_rf_name(uint8_t); 140 static int zyd_hw_init(struct zyd_softc *); 141 static int zyd_read_pod(struct zyd_softc *); 142 static int zyd_read_eeprom(struct zyd_softc *); 143 static int zyd_get_macaddr(struct zyd_softc *); 144 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 145 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 146 static int zyd_switch_radio(struct zyd_softc *, int); 147 static int zyd_set_led(struct zyd_softc *, int, int); 148 static void zyd_set_multi(struct zyd_softc *); 149 static void zyd_update_mcast(struct ifnet *); 150 static int zyd_set_rxfilter(struct zyd_softc *); 151 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 152 static int zyd_set_beacon_interval(struct zyd_softc *, int); 153 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 154 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 155 struct ieee80211_node *); 156 static void zyd_start(struct ifnet *); 157 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 158 const struct ieee80211_bpf_params *); 159 static int zyd_ioctl(struct ifnet *, u_long, caddr_t); 160 static void zyd_init_locked(struct zyd_softc *); 161 static void zyd_init(void *); 162 static void zyd_stop(struct zyd_softc *); 163 static int zyd_loadfirmware(struct zyd_softc *); 164 static void zyd_scan_start(struct ieee80211com *); 165 static void zyd_scan_end(struct ieee80211com *); 166 static void zyd_set_channel(struct ieee80211com *); 167 static int zyd_rfmd_init(struct zyd_rf *); 168 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 169 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 170 static int zyd_al2230_init(struct zyd_rf *); 171 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 172 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 173 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_init_b(struct zyd_rf *); 175 static int zyd_al7230B_init(struct zyd_rf *); 176 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 177 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 178 static int zyd_al2210_init(struct zyd_rf *); 179 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 180 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 181 static int zyd_gct_init(struct zyd_rf *); 182 static int zyd_gct_switch_radio(struct zyd_rf *, int); 183 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 184 static int zyd_gct_mode(struct zyd_rf *); 185 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 186 static int zyd_gct_write(struct zyd_rf *, uint16_t); 187 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 188 static int zyd_maxim2_init(struct zyd_rf *); 189 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 190 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 191 192 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 193 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 194 195 /* various supported device vendors/products */ 196 #define ZYD_ZD1211 0 197 #define ZYD_ZD1211B 1 198 199 #define ZYD_ZD1211_DEV(v,p) \ 200 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 201 #define ZYD_ZD1211B_DEV(v,p) \ 202 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 203 static const struct usb_device_id zyd_devs[] = { 204 /* ZYD_ZD1211 */ 205 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 206 ZYD_ZD1211_DEV(ABOCOM, WL54), 207 ZYD_ZD1211_DEV(ASUS, WL159G), 208 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 209 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 210 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 212 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 214 ZYD_ZD1211_DEV(SAGEM, XG760A), 215 ZYD_ZD1211_DEV(SENAO, NUB8301), 216 ZYD_ZD1211_DEV(SITECOMEU, WL113), 217 ZYD_ZD1211_DEV(SWEEX, ZD1211), 218 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 219 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 221 ZYD_ZD1211_DEV(TWINMOS, G240), 222 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 223 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 225 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 226 ZYD_ZD1211_DEV(ZCOM, ZD1211), 227 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 228 ZYD_ZD1211_DEV(ZYXEL, AG225H), 229 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 230 ZYD_ZD1211_DEV(ZYXEL, G200V2), 231 /* ZYD_ZD1211B */ 232 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 233 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 234 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 235 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 236 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 237 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 238 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 239 ZYD_ZD1211B_DEV(MELCO, KG54L), 240 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 241 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 242 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 243 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 244 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 245 ZYD_ZD1211B_DEV(USR, USR5423), 246 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 247 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 248 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 249 ZYD_ZD1211B_DEV(ZYXEL, M202), 250 ZYD_ZD1211B_DEV(ZYXEL, G202), 251 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 252 }; 253 254 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 255 [ZYD_BULK_WR] = { 256 .type = UE_BULK, 257 .endpoint = UE_ADDR_ANY, 258 .direction = UE_DIR_OUT, 259 .bufsize = ZYD_MAX_TXBUFSZ, 260 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 261 .callback = zyd_bulk_write_callback, 262 .ep_index = 0, 263 .timeout = 10000, /* 10 seconds */ 264 }, 265 [ZYD_BULK_RD] = { 266 .type = UE_BULK, 267 .endpoint = UE_ADDR_ANY, 268 .direction = UE_DIR_IN, 269 .bufsize = ZYX_MAX_RXBUFSZ, 270 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 271 .callback = zyd_bulk_read_callback, 272 .ep_index = 0, 273 }, 274 [ZYD_INTR_WR] = { 275 .type = UE_BULK_INTR, 276 .endpoint = UE_ADDR_ANY, 277 .direction = UE_DIR_OUT, 278 .bufsize = sizeof(struct zyd_cmd), 279 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 280 .callback = zyd_intr_write_callback, 281 .timeout = 1000, /* 1 second */ 282 .ep_index = 1, 283 }, 284 [ZYD_INTR_RD] = { 285 .type = UE_INTERRUPT, 286 .endpoint = UE_ADDR_ANY, 287 .direction = UE_DIR_IN, 288 .bufsize = sizeof(struct zyd_cmd), 289 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 290 .callback = zyd_intr_read_callback, 291 }, 292 }; 293 #define zyd_read16_m(sc, val, data) do { \ 294 error = zyd_read16(sc, val, data); \ 295 if (error != 0) \ 296 goto fail; \ 297 } while (0) 298 #define zyd_write16_m(sc, val, data) do { \ 299 error = zyd_write16(sc, val, data); \ 300 if (error != 0) \ 301 goto fail; \ 302 } while (0) 303 #define zyd_read32_m(sc, val, data) do { \ 304 error = zyd_read32(sc, val, data); \ 305 if (error != 0) \ 306 goto fail; \ 307 } while (0) 308 #define zyd_write32_m(sc, val, data) do { \ 309 error = zyd_write32(sc, val, data); \ 310 if (error != 0) \ 311 goto fail; \ 312 } while (0) 313 314 static int 315 zyd_match(device_t dev) 316 { 317 struct usb_attach_arg *uaa = device_get_ivars(dev); 318 319 if (uaa->usb_mode != USB_MODE_HOST) 320 return (ENXIO); 321 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 322 return (ENXIO); 323 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 324 return (ENXIO); 325 326 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 327 } 328 329 static int 330 zyd_attach(device_t dev) 331 { 332 struct usb_attach_arg *uaa = device_get_ivars(dev); 333 struct zyd_softc *sc = device_get_softc(dev); 334 struct ifnet *ifp; 335 struct ieee80211com *ic; 336 uint8_t iface_index, bands; 337 int error; 338 339 if (uaa->info.bcdDevice < 0x4330) { 340 device_printf(dev, "device version mismatch: 0x%X " 341 "(only >= 43.30 supported)\n", 342 uaa->info.bcdDevice); 343 return (EINVAL); 344 } 345 346 device_set_usb_desc(dev); 347 sc->sc_dev = dev; 348 sc->sc_udev = uaa->device; 349 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 350 351 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 352 MTX_NETWORK_LOCK, MTX_DEF); 353 STAILQ_INIT(&sc->sc_rqh); 354 355 iface_index = ZYD_IFACE_INDEX; 356 error = usbd_transfer_setup(uaa->device, 357 &iface_index, sc->sc_xfer, zyd_config, 358 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 359 if (error) { 360 device_printf(dev, "could not allocate USB transfers, " 361 "err=%s\n", usbd_errstr(error)); 362 goto detach; 363 } 364 365 ZYD_LOCK(sc); 366 if ((error = zyd_get_macaddr(sc)) != 0) { 367 device_printf(sc->sc_dev, "could not read EEPROM\n"); 368 ZYD_UNLOCK(sc); 369 goto detach; 370 } 371 ZYD_UNLOCK(sc); 372 373 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 374 if (ifp == NULL) { 375 device_printf(sc->sc_dev, "can not if_alloc()\n"); 376 goto detach; 377 } 378 ifp->if_softc = sc; 379 if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); 380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 381 ifp->if_init = zyd_init; 382 ifp->if_ioctl = zyd_ioctl; 383 ifp->if_start = zyd_start; 384 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 385 IFQ_SET_READY(&ifp->if_snd); 386 387 ic = ifp->if_l2com; 388 ic->ic_ifp = ifp; 389 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 390 ic->ic_opmode = IEEE80211_M_STA; 391 392 /* set device capabilities */ 393 ic->ic_caps = 394 IEEE80211_C_STA /* station mode */ 395 | IEEE80211_C_MONITOR /* monitor mode */ 396 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 397 | IEEE80211_C_SHSLOT /* short slot time supported */ 398 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 399 | IEEE80211_C_WPA /* 802.11i */ 400 | IEEE80211_C_RATECTL /* use ratectl */ 401 ; 402 403 bands = 0; 404 setbit(&bands, IEEE80211_MODE_11B); 405 setbit(&bands, IEEE80211_MODE_11G); 406 ieee80211_init_channels(ic, NULL, &bands); 407 408 ieee80211_ifattach(ic, sc->sc_bssid); 409 ic->ic_raw_xmit = zyd_raw_xmit; 410 ic->ic_scan_start = zyd_scan_start; 411 ic->ic_scan_end = zyd_scan_end; 412 ic->ic_set_channel = zyd_set_channel; 413 414 ic->ic_vap_create = zyd_vap_create; 415 ic->ic_vap_delete = zyd_vap_delete; 416 ic->ic_update_mcast = zyd_update_mcast; 417 ic->ic_update_promisc = zyd_update_mcast; 418 419 ieee80211_radiotap_attach(ic, 420 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 421 ZYD_TX_RADIOTAP_PRESENT, 422 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 423 ZYD_RX_RADIOTAP_PRESENT); 424 425 if (bootverbose) 426 ieee80211_announce(ic); 427 428 return (0); 429 430 detach: 431 zyd_detach(dev); 432 return (ENXIO); /* failure */ 433 } 434 435 static int 436 zyd_detach(device_t dev) 437 { 438 struct zyd_softc *sc = device_get_softc(dev); 439 struct ifnet *ifp = sc->sc_ifp; 440 struct ieee80211com *ic; 441 442 /* stop all USB transfers */ 443 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 444 445 /* free TX list, if any */ 446 zyd_unsetup_tx_list(sc); 447 448 if (ifp) { 449 ic = ifp->if_l2com; 450 ieee80211_ifdetach(ic); 451 if_free(ifp); 452 } 453 mtx_destroy(&sc->sc_mtx); 454 455 return (0); 456 } 457 458 static struct ieee80211vap * 459 zyd_vap_create(struct ieee80211com *ic, 460 const char name[IFNAMSIZ], int unit, int opmode, int flags, 461 const uint8_t bssid[IEEE80211_ADDR_LEN], 462 const uint8_t mac[IEEE80211_ADDR_LEN]) 463 { 464 struct zyd_vap *zvp; 465 struct ieee80211vap *vap; 466 467 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 468 return (NULL); 469 zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap), 470 M_80211_VAP, M_NOWAIT | M_ZERO); 471 if (zvp == NULL) 472 return (NULL); 473 vap = &zvp->vap; 474 /* enable s/w bmiss handling for sta mode */ 475 ieee80211_vap_setup(ic, vap, name, unit, opmode, 476 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 477 478 /* override state transition machine */ 479 zvp->newstate = vap->iv_newstate; 480 vap->iv_newstate = zyd_newstate; 481 482 ieee80211_ratectl_init(vap); 483 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 484 485 /* complete setup */ 486 ieee80211_vap_attach(vap, ieee80211_media_change, 487 ieee80211_media_status); 488 ic->ic_opmode = opmode; 489 return (vap); 490 } 491 492 static void 493 zyd_vap_delete(struct ieee80211vap *vap) 494 { 495 struct zyd_vap *zvp = ZYD_VAP(vap); 496 497 ieee80211_ratectl_deinit(vap); 498 ieee80211_vap_detach(vap); 499 free(zvp, M_80211_VAP); 500 } 501 502 static void 503 zyd_tx_free(struct zyd_tx_data *data, int txerr) 504 { 505 struct zyd_softc *sc = data->sc; 506 507 if (data->m != NULL) { 508 if (data->m->m_flags & M_TXCB) 509 ieee80211_process_callback(data->ni, data->m, 510 txerr ? ETIMEDOUT : 0); 511 m_freem(data->m); 512 data->m = NULL; 513 514 if (txerr == 0) 515 ieee80211_ratectl_tx_complete(data->ni->ni_vap, 516 data->ni, IEEE80211_RATECTL_TX_SUCCESS, NULL, NULL); 517 ieee80211_free_node(data->ni); 518 data->ni = NULL; 519 } 520 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 521 sc->tx_nfree++; 522 } 523 524 static void 525 zyd_setup_tx_list(struct zyd_softc *sc) 526 { 527 struct zyd_tx_data *data; 528 int i; 529 530 sc->tx_nfree = 0; 531 STAILQ_INIT(&sc->tx_q); 532 STAILQ_INIT(&sc->tx_free); 533 534 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 535 data = &sc->tx_data[i]; 536 537 data->sc = sc; 538 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 539 sc->tx_nfree++; 540 } 541 } 542 543 static void 544 zyd_unsetup_tx_list(struct zyd_softc *sc) 545 { 546 struct zyd_tx_data *data; 547 int i; 548 549 /* make sure any subsequent use of the queues will fail */ 550 sc->tx_nfree = 0; 551 STAILQ_INIT(&sc->tx_q); 552 STAILQ_INIT(&sc->tx_free); 553 554 /* free up all node references and mbufs */ 555 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 556 data = &sc->tx_data[i]; 557 558 if (data->m != NULL) { 559 m_freem(data->m); 560 data->m = NULL; 561 } 562 if (data->ni != NULL) { 563 ieee80211_free_node(data->ni); 564 data->ni = NULL; 565 } 566 } 567 } 568 569 static int 570 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 571 { 572 struct zyd_vap *zvp = ZYD_VAP(vap); 573 struct ieee80211com *ic = vap->iv_ic; 574 struct zyd_softc *sc = ic->ic_ifp->if_softc; 575 struct ieee80211_node *ni; 576 int error; 577 578 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 579 ieee80211_state_name[vap->iv_state], 580 ieee80211_state_name[nstate]); 581 582 IEEE80211_UNLOCK(ic); 583 ZYD_LOCK(sc); 584 switch (nstate) { 585 case IEEE80211_S_AUTH: 586 zyd_set_chan(sc, ic->ic_curchan); 587 break; 588 case IEEE80211_S_RUN: 589 ni = vap->iv_bss; 590 if (vap->iv_opmode == IEEE80211_M_MONITOR) 591 break; 592 593 /* turn link LED on */ 594 error = zyd_set_led(sc, ZYD_LED1, 1); 595 if (error != 0) 596 break; 597 598 /* make data LED blink upon Tx */ 599 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 600 601 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 602 zyd_set_bssid(sc, sc->sc_bssid); 603 break; 604 default: 605 break; 606 } 607 fail: 608 ZYD_UNLOCK(sc); 609 IEEE80211_LOCK(ic); 610 return (zvp->newstate(vap, nstate, arg)); 611 } 612 613 /* 614 * Callback handler for interrupt transfer 615 */ 616 static void 617 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 618 { 619 struct zyd_softc *sc = usbd_xfer_softc(xfer); 620 struct ifnet *ifp = sc->sc_ifp; 621 struct ieee80211com *ic = ifp->if_l2com; 622 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 623 struct ieee80211_node *ni; 624 struct zyd_cmd *cmd = &sc->sc_ibuf; 625 struct usb_page_cache *pc; 626 int datalen; 627 int actlen; 628 629 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 630 631 switch (USB_GET_STATE(xfer)) { 632 case USB_ST_TRANSFERRED: 633 pc = usbd_xfer_get_frame(xfer, 0); 634 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 635 636 switch (le16toh(cmd->code)) { 637 case ZYD_NOTIF_RETRYSTATUS: 638 { 639 struct zyd_notif_retry *retry = 640 (struct zyd_notif_retry *)cmd->data; 641 642 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 643 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 644 le16toh(retry->rate), ether_sprintf(retry->macaddr), 645 le16toh(retry->count)&0xff, le16toh(retry->count)); 646 647 /* 648 * Find the node to which the packet was sent and 649 * update its retry statistics. In BSS mode, this node 650 * is the AP we're associated to so no lookup is 651 * actually needed. 652 */ 653 ni = ieee80211_find_txnode(vap, retry->macaddr); 654 if (ni != NULL) { 655 int retrycnt = 656 (int)(le16toh(retry->count) & 0xff); 657 658 ieee80211_ratectl_tx_complete(vap, ni, 659 IEEE80211_RATECTL_TX_FAILURE, 660 &retrycnt, NULL); 661 ieee80211_free_node(ni); 662 } 663 if (le16toh(retry->count) & 0x100) 664 ifp->if_oerrors++; /* too many retries */ 665 break; 666 } 667 case ZYD_NOTIF_IORD: 668 { 669 struct zyd_rq *rqp; 670 671 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 672 break; /* HMAC interrupt */ 673 674 datalen = actlen - sizeof(cmd->code); 675 datalen -= 2; /* XXX: padding? */ 676 677 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 678 int i, cnt; 679 680 if (rqp->olen != datalen) 681 continue; 682 cnt = rqp->olen / sizeof(struct zyd_pair); 683 for (i = 0; i < cnt; i++) { 684 if (*(((const uint16_t *)rqp->idata) + i) != 685 (((struct zyd_pair *)cmd->data) + i)->reg) 686 break; 687 } 688 if (i != cnt) 689 continue; 690 /* copy answer into caller-supplied buffer */ 691 bcopy(cmd->data, rqp->odata, rqp->olen); 692 DPRINTF(sc, ZYD_DEBUG_CMD, 693 "command %p complete, data = %*D \n", 694 rqp, rqp->olen, rqp->odata, ":"); 695 wakeup(rqp); /* wakeup caller */ 696 break; 697 } 698 if (rqp == NULL) { 699 device_printf(sc->sc_dev, 700 "unexpected IORD notification %*D\n", 701 datalen, cmd->data, ":"); 702 } 703 break; 704 } 705 default: 706 device_printf(sc->sc_dev, "unknown notification %x\n", 707 le16toh(cmd->code)); 708 } 709 710 /* FALLTHROUGH */ 711 case USB_ST_SETUP: 712 tr_setup: 713 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 714 usbd_transfer_submit(xfer); 715 break; 716 717 default: /* Error */ 718 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 719 usbd_errstr(error)); 720 721 if (error != USB_ERR_CANCELLED) { 722 /* try to clear stall first */ 723 usbd_xfer_set_stall(xfer); 724 goto tr_setup; 725 } 726 break; 727 } 728 } 729 730 static void 731 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 732 { 733 struct zyd_softc *sc = usbd_xfer_softc(xfer); 734 struct zyd_rq *rqp, *cmd; 735 struct usb_page_cache *pc; 736 737 switch (USB_GET_STATE(xfer)) { 738 case USB_ST_TRANSFERRED: 739 cmd = usbd_xfer_get_priv(xfer); 740 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 741 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 742 /* Ensure the cached rq pointer is still valid */ 743 if (rqp == cmd && 744 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 745 wakeup(rqp); /* wakeup caller */ 746 } 747 748 /* FALLTHROUGH */ 749 case USB_ST_SETUP: 750 tr_setup: 751 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 752 if (rqp->flags & ZYD_CMD_FLAG_SENT) 753 continue; 754 755 pc = usbd_xfer_get_frame(xfer, 0); 756 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 757 758 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 759 usbd_xfer_set_priv(xfer, rqp); 760 rqp->flags |= ZYD_CMD_FLAG_SENT; 761 usbd_transfer_submit(xfer); 762 break; 763 } 764 break; 765 766 default: /* Error */ 767 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 768 usbd_errstr(error)); 769 770 if (error != USB_ERR_CANCELLED) { 771 /* try to clear stall first */ 772 usbd_xfer_set_stall(xfer); 773 goto tr_setup; 774 } 775 break; 776 } 777 } 778 779 static int 780 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 781 void *odata, int olen, int flags) 782 { 783 struct zyd_cmd cmd; 784 struct zyd_rq rq; 785 int error; 786 787 if (ilen > sizeof(cmd.data)) 788 return (EINVAL); 789 790 cmd.code = htole16(code); 791 bcopy(idata, cmd.data, ilen); 792 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 793 &rq, ilen, idata, ":"); 794 795 rq.cmd = &cmd; 796 rq.idata = idata; 797 rq.odata = odata; 798 rq.ilen = sizeof(uint16_t) + ilen; 799 rq.olen = olen; 800 rq.flags = flags; 801 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 802 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 803 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 804 805 /* wait at most one second for command reply */ 806 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 807 if (error) 808 device_printf(sc->sc_dev, "command timeout\n"); 809 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 810 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 811 &rq, error); 812 813 return (error); 814 } 815 816 static int 817 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 818 { 819 struct zyd_pair tmp; 820 int error; 821 822 reg = htole16(reg); 823 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 824 ZYD_CMD_FLAG_READ); 825 if (error == 0) 826 *val = le16toh(tmp.val); 827 return (error); 828 } 829 830 static int 831 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 832 { 833 struct zyd_pair tmp[2]; 834 uint16_t regs[2]; 835 int error; 836 837 regs[0] = htole16(ZYD_REG32_HI(reg)); 838 regs[1] = htole16(ZYD_REG32_LO(reg)); 839 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 840 ZYD_CMD_FLAG_READ); 841 if (error == 0) 842 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 843 return (error); 844 } 845 846 static int 847 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 848 { 849 struct zyd_pair pair; 850 851 pair.reg = htole16(reg); 852 pair.val = htole16(val); 853 854 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 855 } 856 857 static int 858 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 859 { 860 struct zyd_pair pair[2]; 861 862 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 863 pair[0].val = htole16(val >> 16); 864 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 865 pair[1].val = htole16(val & 0xffff); 866 867 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 868 } 869 870 static int 871 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 872 { 873 struct zyd_rf *rf = &sc->sc_rf; 874 struct zyd_rfwrite_cmd req; 875 uint16_t cr203; 876 int error, i; 877 878 zyd_read16_m(sc, ZYD_CR203, &cr203); 879 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 880 881 req.code = htole16(2); 882 req.width = htole16(rf->width); 883 for (i = 0; i < rf->width; i++) { 884 req.bit[i] = htole16(cr203); 885 if (val & (1 << (rf->width - 1 - i))) 886 req.bit[i] |= htole16(ZYD_RF_DATA); 887 } 888 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 889 fail: 890 return (error); 891 } 892 893 static int 894 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 895 { 896 int error; 897 898 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 899 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 900 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 901 fail: 902 return (error); 903 } 904 905 static int 906 zyd_lock_phy(struct zyd_softc *sc) 907 { 908 int error; 909 uint32_t tmp; 910 911 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 912 tmp &= ~ZYD_UNLOCK_PHY_REGS; 913 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 914 fail: 915 return (error); 916 } 917 918 static int 919 zyd_unlock_phy(struct zyd_softc *sc) 920 { 921 int error; 922 uint32_t tmp; 923 924 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 925 tmp |= ZYD_UNLOCK_PHY_REGS; 926 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 927 fail: 928 return (error); 929 } 930 931 /* 932 * RFMD RF methods. 933 */ 934 static int 935 zyd_rfmd_init(struct zyd_rf *rf) 936 { 937 #define N(a) (sizeof(a) / sizeof((a)[0])) 938 struct zyd_softc *sc = rf->rf_sc; 939 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 940 static const uint32_t rfini[] = ZYD_RFMD_RF; 941 int i, error; 942 943 /* init RF-dependent PHY registers */ 944 for (i = 0; i < N(phyini); i++) { 945 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 946 } 947 948 /* init RFMD radio */ 949 for (i = 0; i < N(rfini); i++) { 950 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 951 return (error); 952 } 953 fail: 954 return (error); 955 #undef N 956 } 957 958 static int 959 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 960 { 961 int error; 962 struct zyd_softc *sc = rf->rf_sc; 963 964 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 965 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 966 fail: 967 return (error); 968 } 969 970 static int 971 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 972 { 973 int error; 974 struct zyd_softc *sc = rf->rf_sc; 975 static const struct { 976 uint32_t r1, r2; 977 } rfprog[] = ZYD_RFMD_CHANTABLE; 978 979 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 980 if (error != 0) 981 goto fail; 982 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 983 if (error != 0) 984 goto fail; 985 986 fail: 987 return (error); 988 } 989 990 /* 991 * AL2230 RF methods. 992 */ 993 static int 994 zyd_al2230_init(struct zyd_rf *rf) 995 { 996 #define N(a) (sizeof(a) / sizeof((a)[0])) 997 struct zyd_softc *sc = rf->rf_sc; 998 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 999 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1000 static const struct zyd_phy_pair phypll[] = { 1001 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1002 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1003 }; 1004 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1005 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1006 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1007 int i, error; 1008 1009 /* init RF-dependent PHY registers */ 1010 for (i = 0; i < N(phyini); i++) 1011 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1012 1013 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1014 for (i = 0; i < N(phy2230s); i++) 1015 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1016 } 1017 1018 /* init AL2230 radio */ 1019 for (i = 0; i < N(rfini1); i++) { 1020 error = zyd_rfwrite(sc, rfini1[i]); 1021 if (error != 0) 1022 goto fail; 1023 } 1024 1025 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1026 error = zyd_rfwrite(sc, 0x000824); 1027 else 1028 error = zyd_rfwrite(sc, 0x0005a4); 1029 if (error != 0) 1030 goto fail; 1031 1032 for (i = 0; i < N(rfini2); i++) { 1033 error = zyd_rfwrite(sc, rfini2[i]); 1034 if (error != 0) 1035 goto fail; 1036 } 1037 1038 for (i = 0; i < N(phypll); i++) 1039 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1040 1041 for (i = 0; i < N(rfini3); i++) { 1042 error = zyd_rfwrite(sc, rfini3[i]); 1043 if (error != 0) 1044 goto fail; 1045 } 1046 fail: 1047 return (error); 1048 #undef N 1049 } 1050 1051 static int 1052 zyd_al2230_fini(struct zyd_rf *rf) 1053 { 1054 #define N(a) (sizeof(a) / sizeof((a)[0])) 1055 int error, i; 1056 struct zyd_softc *sc = rf->rf_sc; 1057 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1058 1059 for (i = 0; i < N(phy); i++) 1060 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1061 1062 if (sc->sc_newphy != 0) 1063 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1064 1065 zyd_write16_m(sc, ZYD_CR203, 0x6); 1066 fail: 1067 return (error); 1068 #undef N 1069 } 1070 1071 static int 1072 zyd_al2230_init_b(struct zyd_rf *rf) 1073 { 1074 #define N(a) (sizeof(a) / sizeof((a)[0])) 1075 struct zyd_softc *sc = rf->rf_sc; 1076 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1077 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1078 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1079 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1080 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1081 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1082 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1083 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1084 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1085 int i, error; 1086 1087 for (i = 0; i < N(phy1); i++) 1088 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1089 1090 /* init RF-dependent PHY registers */ 1091 for (i = 0; i < N(phyini); i++) 1092 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1093 1094 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1095 for (i = 0; i < N(phy2230s); i++) 1096 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1097 } 1098 1099 for (i = 0; i < 3; i++) { 1100 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1101 if (error != 0) 1102 return (error); 1103 } 1104 1105 for (i = 0; i < N(rfini_part1); i++) { 1106 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1107 if (error != 0) 1108 return (error); 1109 } 1110 1111 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1112 error = zyd_rfwrite(sc, 0x241000); 1113 else 1114 error = zyd_rfwrite(sc, 0x25a000); 1115 if (error != 0) 1116 goto fail; 1117 1118 for (i = 0; i < N(rfini_part2); i++) { 1119 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1120 if (error != 0) 1121 return (error); 1122 } 1123 1124 for (i = 0; i < N(phy2); i++) 1125 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1126 1127 for (i = 0; i < N(rfini_part3); i++) { 1128 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1129 if (error != 0) 1130 return (error); 1131 } 1132 1133 for (i = 0; i < N(phy3); i++) 1134 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1135 1136 error = zyd_al2230_fini(rf); 1137 fail: 1138 return (error); 1139 #undef N 1140 } 1141 1142 static int 1143 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1144 { 1145 struct zyd_softc *sc = rf->rf_sc; 1146 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1147 1148 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1149 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1150 fail: 1151 return (error); 1152 } 1153 1154 static int 1155 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1156 { 1157 #define N(a) (sizeof(a) / sizeof((a)[0])) 1158 int error, i; 1159 struct zyd_softc *sc = rf->rf_sc; 1160 static const struct zyd_phy_pair phy1[] = { 1161 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1162 }; 1163 static const struct { 1164 uint32_t r1, r2, r3; 1165 } rfprog[] = ZYD_AL2230_CHANTABLE; 1166 1167 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1168 if (error != 0) 1169 goto fail; 1170 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1171 if (error != 0) 1172 goto fail; 1173 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1174 if (error != 0) 1175 goto fail; 1176 1177 for (i = 0; i < N(phy1); i++) 1178 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1179 fail: 1180 return (error); 1181 #undef N 1182 } 1183 1184 static int 1185 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1186 { 1187 #define N(a) (sizeof(a) / sizeof((a)[0])) 1188 int error, i; 1189 struct zyd_softc *sc = rf->rf_sc; 1190 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1191 static const struct { 1192 uint32_t r1, r2, r3; 1193 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1194 1195 for (i = 0; i < N(phy1); i++) 1196 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1197 1198 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1199 if (error != 0) 1200 goto fail; 1201 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1202 if (error != 0) 1203 goto fail; 1204 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1205 if (error != 0) 1206 goto fail; 1207 error = zyd_al2230_fini(rf); 1208 fail: 1209 return (error); 1210 #undef N 1211 } 1212 1213 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1214 { \ 1215 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1216 { ZYD_CR47, 0x1e } \ 1217 } 1218 1219 static int 1220 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1221 { 1222 #define N(a) (sizeof(a) / sizeof((a)[0])) 1223 int error = 0, i; 1224 struct zyd_softc *sc = rf->rf_sc; 1225 struct ifnet *ifp = sc->sc_ifp; 1226 struct ieee80211com *ic = ifp->if_l2com; 1227 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1228 int chan = ieee80211_chan2ieee(ic, c); 1229 1230 if (chan == 1 || chan == 11) 1231 r[0].val = 0x12; 1232 1233 for (i = 0; i < N(r); i++) 1234 zyd_write16_m(sc, r[i].reg, r[i].val); 1235 fail: 1236 return (error); 1237 #undef N 1238 } 1239 1240 /* 1241 * AL7230B RF methods. 1242 */ 1243 static int 1244 zyd_al7230B_init(struct zyd_rf *rf) 1245 { 1246 #define N(a) (sizeof(a) / sizeof((a)[0])) 1247 struct zyd_softc *sc = rf->rf_sc; 1248 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1249 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1250 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1251 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1252 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1253 int i, error; 1254 1255 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1256 1257 /* init RF-dependent PHY registers, part one */ 1258 for (i = 0; i < N(phyini_1); i++) 1259 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1260 1261 /* init AL7230B radio, part one */ 1262 for (i = 0; i < N(rfini_1); i++) { 1263 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1264 return (error); 1265 } 1266 /* init RF-dependent PHY registers, part two */ 1267 for (i = 0; i < N(phyini_2); i++) 1268 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1269 1270 /* init AL7230B radio, part two */ 1271 for (i = 0; i < N(rfini_2); i++) { 1272 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1273 return (error); 1274 } 1275 /* init RF-dependent PHY registers, part three */ 1276 for (i = 0; i < N(phyini_3); i++) 1277 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1278 fail: 1279 return (error); 1280 #undef N 1281 } 1282 1283 static int 1284 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1285 { 1286 int error; 1287 struct zyd_softc *sc = rf->rf_sc; 1288 1289 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1290 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1291 fail: 1292 return (error); 1293 } 1294 1295 static int 1296 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1297 { 1298 #define N(a) (sizeof(a) / sizeof((a)[0])) 1299 struct zyd_softc *sc = rf->rf_sc; 1300 static const struct { 1301 uint32_t r1, r2; 1302 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1303 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1304 int i, error; 1305 1306 zyd_write16_m(sc, ZYD_CR240, 0x57); 1307 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1308 1309 for (i = 0; i < N(rfsc); i++) { 1310 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1311 return (error); 1312 } 1313 1314 zyd_write16_m(sc, ZYD_CR128, 0x14); 1315 zyd_write16_m(sc, ZYD_CR129, 0x12); 1316 zyd_write16_m(sc, ZYD_CR130, 0x10); 1317 zyd_write16_m(sc, ZYD_CR38, 0x38); 1318 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1319 1320 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1321 if (error != 0) 1322 goto fail; 1323 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1324 if (error != 0) 1325 goto fail; 1326 error = zyd_rfwrite(sc, 0x3c9000); 1327 if (error != 0) 1328 goto fail; 1329 1330 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1331 zyd_write16_m(sc, ZYD_CR203, 0x06); 1332 zyd_write16_m(sc, ZYD_CR240, 0x08); 1333 fail: 1334 return (error); 1335 #undef N 1336 } 1337 1338 /* 1339 * AL2210 RF methods. 1340 */ 1341 static int 1342 zyd_al2210_init(struct zyd_rf *rf) 1343 { 1344 #define N(a) (sizeof(a) / sizeof((a)[0])) 1345 struct zyd_softc *sc = rf->rf_sc; 1346 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1347 static const uint32_t rfini[] = ZYD_AL2210_RF; 1348 uint32_t tmp; 1349 int i, error; 1350 1351 zyd_write32_m(sc, ZYD_CR18, 2); 1352 1353 /* init RF-dependent PHY registers */ 1354 for (i = 0; i < N(phyini); i++) 1355 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1356 1357 /* init AL2210 radio */ 1358 for (i = 0; i < N(rfini); i++) { 1359 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1360 return (error); 1361 } 1362 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1363 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1364 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1365 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1366 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1367 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1368 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1369 zyd_write32_m(sc, ZYD_CR18, 3); 1370 fail: 1371 return (error); 1372 #undef N 1373 } 1374 1375 static int 1376 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1377 { 1378 /* vendor driver does nothing for this RF chip */ 1379 1380 return (0); 1381 } 1382 1383 static int 1384 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1385 { 1386 int error; 1387 struct zyd_softc *sc = rf->rf_sc; 1388 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1389 uint32_t tmp; 1390 1391 zyd_write32_m(sc, ZYD_CR18, 2); 1392 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1393 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1394 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1395 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1396 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1397 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1398 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1399 1400 /* actually set the channel */ 1401 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1402 if (error != 0) 1403 goto fail; 1404 1405 zyd_write32_m(sc, ZYD_CR18, 3); 1406 fail: 1407 return (error); 1408 } 1409 1410 /* 1411 * GCT RF methods. 1412 */ 1413 static int 1414 zyd_gct_init(struct zyd_rf *rf) 1415 { 1416 #define ZYD_GCT_INTR_REG 0x85c1 1417 #define N(a) (sizeof(a) / sizeof((a)[0])) 1418 struct zyd_softc *sc = rf->rf_sc; 1419 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1420 static const uint32_t rfini[] = ZYD_GCT_RF; 1421 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1422 int i, idx = -1, error; 1423 uint16_t data; 1424 1425 /* init RF-dependent PHY registers */ 1426 for (i = 0; i < N(phyini); i++) 1427 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1428 1429 /* init cgt radio */ 1430 for (i = 0; i < N(rfini); i++) { 1431 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1432 return (error); 1433 } 1434 1435 error = zyd_gct_mode(rf); 1436 if (error != 0) 1437 return (error); 1438 1439 for (i = 0; i < N(vco) - 1; i++) { 1440 error = zyd_gct_set_channel_synth(rf, 1, 0); 1441 if (error != 0) 1442 goto fail; 1443 error = zyd_gct_write(rf, vco[i][0]); 1444 if (error != 0) 1445 goto fail; 1446 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1447 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1448 if ((data & 0xf) == 0) { 1449 idx = i; 1450 break; 1451 } 1452 } 1453 if (idx == -1) { 1454 error = zyd_gct_set_channel_synth(rf, 1, 1); 1455 if (error != 0) 1456 goto fail; 1457 error = zyd_gct_write(rf, 0x6662); 1458 if (error != 0) 1459 goto fail; 1460 } 1461 1462 rf->idx = idx; 1463 zyd_write16_m(sc, ZYD_CR203, 0x6); 1464 fail: 1465 return (error); 1466 #undef N 1467 #undef ZYD_GCT_INTR_REG 1468 } 1469 1470 static int 1471 zyd_gct_mode(struct zyd_rf *rf) 1472 { 1473 #define N(a) (sizeof(a) / sizeof((a)[0])) 1474 struct zyd_softc *sc = rf->rf_sc; 1475 static const uint32_t mode[] = { 1476 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1477 }; 1478 int i, error; 1479 1480 for (i = 0; i < N(mode); i++) { 1481 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1482 break; 1483 } 1484 return (error); 1485 #undef N 1486 } 1487 1488 static int 1489 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1490 { 1491 int error, idx = chan - 1; 1492 struct zyd_softc *sc = rf->rf_sc; 1493 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1494 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1495 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1496 1497 error = zyd_rfwrite(sc, 1498 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1499 if (error != 0) 1500 return (error); 1501 return zyd_rfwrite(sc, div_synth[idx]); 1502 } 1503 1504 static int 1505 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1506 { 1507 struct zyd_softc *sc = rf->rf_sc; 1508 1509 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1510 } 1511 1512 static int 1513 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1514 { 1515 #define N(a) (sizeof(a) / sizeof((a)[0])) 1516 int error; 1517 struct zyd_softc *sc = rf->rf_sc; 1518 1519 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1520 if (error != 0) 1521 return (error); 1522 1523 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1524 zyd_write16_m(sc, ZYD_CR251, 1525 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1526 fail: 1527 return (error); 1528 } 1529 1530 static int 1531 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1532 { 1533 #define N(a) (sizeof(a) / sizeof((a)[0])) 1534 int error, i; 1535 struct zyd_softc *sc = rf->rf_sc; 1536 static const struct zyd_phy_pair cmd[] = { 1537 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1538 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1539 }; 1540 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1541 1542 error = zyd_gct_set_channel_synth(rf, chan, 0); 1543 if (error != 0) 1544 goto fail; 1545 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1546 vco[rf->idx][((chan - 1) / 2)]); 1547 if (error != 0) 1548 goto fail; 1549 error = zyd_gct_mode(rf); 1550 if (error != 0) 1551 return (error); 1552 for (i = 0; i < N(cmd); i++) 1553 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1554 error = zyd_gct_txgain(rf, chan); 1555 if (error != 0) 1556 return (error); 1557 zyd_write16_m(sc, ZYD_CR203, 0x6); 1558 fail: 1559 return (error); 1560 #undef N 1561 } 1562 1563 static int 1564 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1565 { 1566 #define N(a) (sizeof(a) / sizeof((a)[0])) 1567 struct zyd_softc *sc = rf->rf_sc; 1568 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1569 uint8_t idx = sc->sc_pwrint[chan - 1]; 1570 1571 if (idx >= N(txgain)) { 1572 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1573 chan, idx); 1574 return 0; 1575 } 1576 1577 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1578 #undef N 1579 } 1580 1581 /* 1582 * Maxim2 RF methods. 1583 */ 1584 static int 1585 zyd_maxim2_init(struct zyd_rf *rf) 1586 { 1587 #define N(a) (sizeof(a) / sizeof((a)[0])) 1588 struct zyd_softc *sc = rf->rf_sc; 1589 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1590 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1591 uint16_t tmp; 1592 int i, error; 1593 1594 /* init RF-dependent PHY registers */ 1595 for (i = 0; i < N(phyini); i++) 1596 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1597 1598 zyd_read16_m(sc, ZYD_CR203, &tmp); 1599 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1600 1601 /* init maxim2 radio */ 1602 for (i = 0; i < N(rfini); i++) { 1603 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1604 return (error); 1605 } 1606 zyd_read16_m(sc, ZYD_CR203, &tmp); 1607 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1608 fail: 1609 return (error); 1610 #undef N 1611 } 1612 1613 static int 1614 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1615 { 1616 1617 /* vendor driver does nothing for this RF chip */ 1618 return (0); 1619 } 1620 1621 static int 1622 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1623 { 1624 #define N(a) (sizeof(a) / sizeof((a)[0])) 1625 struct zyd_softc *sc = rf->rf_sc; 1626 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1627 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1628 static const struct { 1629 uint32_t r1, r2; 1630 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1631 uint16_t tmp; 1632 int i, error; 1633 1634 /* 1635 * Do the same as we do when initializing it, except for the channel 1636 * values coming from the two channel tables. 1637 */ 1638 1639 /* init RF-dependent PHY registers */ 1640 for (i = 0; i < N(phyini); i++) 1641 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1642 1643 zyd_read16_m(sc, ZYD_CR203, &tmp); 1644 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1645 1646 /* first two values taken from the chantables */ 1647 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1648 if (error != 0) 1649 goto fail; 1650 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1651 if (error != 0) 1652 goto fail; 1653 1654 /* init maxim2 radio - skipping the two first values */ 1655 for (i = 2; i < N(rfini); i++) { 1656 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1657 return (error); 1658 } 1659 zyd_read16_m(sc, ZYD_CR203, &tmp); 1660 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1661 fail: 1662 return (error); 1663 #undef N 1664 } 1665 1666 static int 1667 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1668 { 1669 struct zyd_rf *rf = &sc->sc_rf; 1670 1671 rf->rf_sc = sc; 1672 rf->update_pwr = 1; 1673 1674 switch (type) { 1675 case ZYD_RF_RFMD: 1676 rf->init = zyd_rfmd_init; 1677 rf->switch_radio = zyd_rfmd_switch_radio; 1678 rf->set_channel = zyd_rfmd_set_channel; 1679 rf->width = 24; /* 24-bit RF values */ 1680 break; 1681 case ZYD_RF_AL2230: 1682 case ZYD_RF_AL2230S: 1683 if (sc->sc_macrev == ZYD_ZD1211B) { 1684 rf->init = zyd_al2230_init_b; 1685 rf->set_channel = zyd_al2230_set_channel_b; 1686 } else { 1687 rf->init = zyd_al2230_init; 1688 rf->set_channel = zyd_al2230_set_channel; 1689 } 1690 rf->switch_radio = zyd_al2230_switch_radio; 1691 rf->bandedge6 = zyd_al2230_bandedge6; 1692 rf->width = 24; /* 24-bit RF values */ 1693 break; 1694 case ZYD_RF_AL7230B: 1695 rf->init = zyd_al7230B_init; 1696 rf->switch_radio = zyd_al7230B_switch_radio; 1697 rf->set_channel = zyd_al7230B_set_channel; 1698 rf->width = 24; /* 24-bit RF values */ 1699 break; 1700 case ZYD_RF_AL2210: 1701 rf->init = zyd_al2210_init; 1702 rf->switch_radio = zyd_al2210_switch_radio; 1703 rf->set_channel = zyd_al2210_set_channel; 1704 rf->width = 24; /* 24-bit RF values */ 1705 break; 1706 case ZYD_RF_MAXIM_NEW: 1707 case ZYD_RF_GCT: 1708 rf->init = zyd_gct_init; 1709 rf->switch_radio = zyd_gct_switch_radio; 1710 rf->set_channel = zyd_gct_set_channel; 1711 rf->width = 24; /* 24-bit RF values */ 1712 rf->update_pwr = 0; 1713 break; 1714 case ZYD_RF_MAXIM_NEW2: 1715 rf->init = zyd_maxim2_init; 1716 rf->switch_radio = zyd_maxim2_switch_radio; 1717 rf->set_channel = zyd_maxim2_set_channel; 1718 rf->width = 18; /* 18-bit RF values */ 1719 break; 1720 default: 1721 device_printf(sc->sc_dev, 1722 "sorry, radio \"%s\" is not supported yet\n", 1723 zyd_rf_name(type)); 1724 return (EINVAL); 1725 } 1726 return (0); 1727 } 1728 1729 static const char * 1730 zyd_rf_name(uint8_t type) 1731 { 1732 static const char * const zyd_rfs[] = { 1733 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1734 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1735 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1736 "PHILIPS" 1737 }; 1738 1739 return zyd_rfs[(type > 15) ? 0 : type]; 1740 } 1741 1742 static int 1743 zyd_hw_init(struct zyd_softc *sc) 1744 { 1745 int error; 1746 const struct zyd_phy_pair *phyp; 1747 struct zyd_rf *rf = &sc->sc_rf; 1748 uint16_t val; 1749 1750 /* specify that the plug and play is finished */ 1751 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1752 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1753 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1754 sc->sc_fwbase); 1755 1756 /* retrieve firmware revision number */ 1757 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1758 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1759 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1760 /* set mandatory rates - XXX assumes 802.11b/g */ 1761 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1762 1763 /* disable interrupts */ 1764 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1765 1766 if ((error = zyd_read_pod(sc)) != 0) { 1767 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1768 goto fail; 1769 } 1770 1771 /* PHY init (resetting) */ 1772 error = zyd_lock_phy(sc); 1773 if (error != 0) 1774 goto fail; 1775 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1776 for (; phyp->reg != 0; phyp++) 1777 zyd_write16_m(sc, phyp->reg, phyp->val); 1778 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1779 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1780 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1781 } 1782 error = zyd_unlock_phy(sc); 1783 if (error != 0) 1784 goto fail; 1785 1786 /* HMAC init */ 1787 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1788 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1789 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1790 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1791 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1792 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1793 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1794 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1795 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1796 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1797 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1798 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1799 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1800 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1801 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1802 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1803 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1804 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1805 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1806 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1807 1808 if (sc->sc_macrev == ZYD_ZD1211) { 1809 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1810 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1811 } else { 1812 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1813 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1814 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1815 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1816 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1817 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1818 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1819 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1820 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1821 } 1822 1823 /* init beacon interval to 100ms */ 1824 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1825 goto fail; 1826 1827 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1828 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1829 sc->sc_rfrev); 1830 goto fail; 1831 } 1832 1833 /* RF chip init */ 1834 error = zyd_lock_phy(sc); 1835 if (error != 0) 1836 goto fail; 1837 error = (*rf->init)(rf); 1838 if (error != 0) { 1839 device_printf(sc->sc_dev, 1840 "radio initialization failed, error %d\n", error); 1841 goto fail; 1842 } 1843 error = zyd_unlock_phy(sc); 1844 if (error != 0) 1845 goto fail; 1846 1847 if ((error = zyd_read_eeprom(sc)) != 0) { 1848 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1849 goto fail; 1850 } 1851 1852 fail: return (error); 1853 } 1854 1855 static int 1856 zyd_read_pod(struct zyd_softc *sc) 1857 { 1858 int error; 1859 uint32_t tmp; 1860 1861 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1862 sc->sc_rfrev = tmp & 0x0f; 1863 sc->sc_ledtype = (tmp >> 4) & 0x01; 1864 sc->sc_al2230s = (tmp >> 7) & 0x01; 1865 sc->sc_cckgain = (tmp >> 8) & 0x01; 1866 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1867 sc->sc_parev = (tmp >> 16) & 0x0f; 1868 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1869 sc->sc_newphy = (tmp >> 31) & 0x01; 1870 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1871 fail: 1872 return (error); 1873 } 1874 1875 static int 1876 zyd_read_eeprom(struct zyd_softc *sc) 1877 { 1878 uint16_t val; 1879 int error, i; 1880 1881 /* read Tx power calibration tables */ 1882 for (i = 0; i < 7; i++) { 1883 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1884 sc->sc_pwrcal[i * 2] = val >> 8; 1885 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1886 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1887 sc->sc_pwrint[i * 2] = val >> 8; 1888 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1889 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1890 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1891 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1892 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1893 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1894 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1895 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1896 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1897 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1898 } 1899 fail: 1900 return (error); 1901 } 1902 1903 static int 1904 zyd_get_macaddr(struct zyd_softc *sc) 1905 { 1906 struct usb_device_request req; 1907 usb_error_t error; 1908 1909 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1910 req.bRequest = ZYD_READFWDATAREQ; 1911 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1912 USETW(req.wIndex, 0); 1913 USETW(req.wLength, IEEE80211_ADDR_LEN); 1914 1915 error = zyd_do_request(sc, &req, sc->sc_bssid); 1916 if (error != 0) { 1917 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1918 usbd_errstr(error)); 1919 } 1920 1921 return (error); 1922 } 1923 1924 static int 1925 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1926 { 1927 int error; 1928 uint32_t tmp; 1929 1930 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1931 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1932 tmp = addr[5] << 8 | addr[4]; 1933 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1934 fail: 1935 return (error); 1936 } 1937 1938 static int 1939 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1940 { 1941 int error; 1942 uint32_t tmp; 1943 1944 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1945 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1946 tmp = addr[5] << 8 | addr[4]; 1947 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1948 fail: 1949 return (error); 1950 } 1951 1952 static int 1953 zyd_switch_radio(struct zyd_softc *sc, int on) 1954 { 1955 struct zyd_rf *rf = &sc->sc_rf; 1956 int error; 1957 1958 error = zyd_lock_phy(sc); 1959 if (error != 0) 1960 goto fail; 1961 error = (*rf->switch_radio)(rf, on); 1962 if (error != 0) 1963 goto fail; 1964 error = zyd_unlock_phy(sc); 1965 fail: 1966 return (error); 1967 } 1968 1969 static int 1970 zyd_set_led(struct zyd_softc *sc, int which, int on) 1971 { 1972 int error; 1973 uint32_t tmp; 1974 1975 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1976 tmp &= ~which; 1977 if (on) 1978 tmp |= which; 1979 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1980 fail: 1981 return (error); 1982 } 1983 1984 static void 1985 zyd_set_multi(struct zyd_softc *sc) 1986 { 1987 int error; 1988 struct ifnet *ifp = sc->sc_ifp; 1989 struct ieee80211com *ic = ifp->if_l2com; 1990 struct ifmultiaddr *ifma; 1991 uint32_t low, high; 1992 uint8_t v; 1993 1994 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1995 return; 1996 1997 low = 0x00000000; 1998 high = 0x80000000; 1999 2000 if (ic->ic_opmode == IEEE80211_M_MONITOR || 2001 (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { 2002 low = 0xffffffff; 2003 high = 0xffffffff; 2004 } else { 2005 if_maddr_rlock(ifp); 2006 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2007 if (ifma->ifma_addr->sa_family != AF_LINK) 2008 continue; 2009 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2010 ifma->ifma_addr))[5] >> 2; 2011 if (v < 32) 2012 low |= 1 << v; 2013 else 2014 high |= 1 << (v - 32); 2015 } 2016 if_maddr_runlock(ifp); 2017 } 2018 2019 /* reprogram multicast global hash table */ 2020 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2021 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2022 fail: 2023 if (error != 0) 2024 device_printf(sc->sc_dev, 2025 "could not set multicast hash table\n"); 2026 } 2027 2028 static void 2029 zyd_update_mcast(struct ifnet *ifp) 2030 { 2031 struct zyd_softc *sc = ifp->if_softc; 2032 2033 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2034 return; 2035 2036 ZYD_LOCK(sc); 2037 zyd_set_multi(sc); 2038 ZYD_UNLOCK(sc); 2039 } 2040 2041 static int 2042 zyd_set_rxfilter(struct zyd_softc *sc) 2043 { 2044 struct ifnet *ifp = sc->sc_ifp; 2045 struct ieee80211com *ic = ifp->if_l2com; 2046 uint32_t rxfilter; 2047 2048 switch (ic->ic_opmode) { 2049 case IEEE80211_M_STA: 2050 rxfilter = ZYD_FILTER_BSS; 2051 break; 2052 case IEEE80211_M_IBSS: 2053 case IEEE80211_M_HOSTAP: 2054 rxfilter = ZYD_FILTER_HOSTAP; 2055 break; 2056 case IEEE80211_M_MONITOR: 2057 rxfilter = ZYD_FILTER_MONITOR; 2058 break; 2059 default: 2060 /* should not get there */ 2061 return (EINVAL); 2062 } 2063 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2064 } 2065 2066 static void 2067 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2068 { 2069 int error; 2070 struct ifnet *ifp = sc->sc_ifp; 2071 struct ieee80211com *ic = ifp->if_l2com; 2072 struct zyd_rf *rf = &sc->sc_rf; 2073 uint32_t tmp; 2074 int chan; 2075 2076 chan = ieee80211_chan2ieee(ic, c); 2077 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2078 /* XXX should NEVER happen */ 2079 device_printf(sc->sc_dev, 2080 "%s: invalid channel %x\n", __func__, chan); 2081 return; 2082 } 2083 2084 error = zyd_lock_phy(sc); 2085 if (error != 0) 2086 goto fail; 2087 2088 error = (*rf->set_channel)(rf, chan); 2089 if (error != 0) 2090 goto fail; 2091 2092 if (rf->update_pwr) { 2093 /* update Tx power */ 2094 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2095 2096 if (sc->sc_macrev == ZYD_ZD1211B) { 2097 zyd_write16_m(sc, ZYD_CR67, 2098 sc->sc_ofdm36_cal[chan - 1]); 2099 zyd_write16_m(sc, ZYD_CR66, 2100 sc->sc_ofdm48_cal[chan - 1]); 2101 zyd_write16_m(sc, ZYD_CR65, 2102 sc->sc_ofdm54_cal[chan - 1]); 2103 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2104 zyd_write16_m(sc, ZYD_CR69, 0x28); 2105 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2106 } 2107 } 2108 if (sc->sc_cckgain) { 2109 /* set CCK baseband gain from EEPROM */ 2110 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2111 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2112 } 2113 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2114 error = (*rf->bandedge6)(rf, c); 2115 if (error != 0) 2116 goto fail; 2117 } 2118 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2119 2120 error = zyd_unlock_phy(sc); 2121 if (error != 0) 2122 goto fail; 2123 2124 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2125 htole16(c->ic_freq); 2126 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2127 htole16(c->ic_flags); 2128 fail: 2129 return; 2130 } 2131 2132 static int 2133 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2134 { 2135 int error; 2136 uint32_t val; 2137 2138 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2139 sc->sc_atim_wnd = val; 2140 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2141 sc->sc_pre_tbtt = val; 2142 sc->sc_bcn_int = bintval; 2143 2144 if (sc->sc_bcn_int <= 5) 2145 sc->sc_bcn_int = 5; 2146 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2147 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2148 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2149 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2150 2151 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2152 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2153 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2154 fail: 2155 return (error); 2156 } 2157 2158 static void 2159 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2160 { 2161 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2162 struct ifnet *ifp = sc->sc_ifp; 2163 struct ieee80211com *ic = ifp->if_l2com; 2164 struct zyd_plcphdr plcp; 2165 struct zyd_rx_stat stat; 2166 struct usb_page_cache *pc; 2167 struct mbuf *m; 2168 int rlen, rssi; 2169 2170 if (len < ZYD_MIN_FRAGSZ) { 2171 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2172 device_get_nameunit(sc->sc_dev), len); 2173 ifp->if_ierrors++; 2174 return; 2175 } 2176 pc = usbd_xfer_get_frame(xfer, 0); 2177 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2178 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2179 2180 if (stat.flags & ZYD_RX_ERROR) { 2181 DPRINTF(sc, ZYD_DEBUG_RECV, 2182 "%s: RX status indicated error (%x)\n", 2183 device_get_nameunit(sc->sc_dev), stat.flags); 2184 ifp->if_ierrors++; 2185 return; 2186 } 2187 2188 /* compute actual frame length */ 2189 rlen = len - sizeof(struct zyd_plcphdr) - 2190 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2191 2192 /* allocate a mbuf to store the frame */ 2193 if (rlen > MCLBYTES) { 2194 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2195 device_get_nameunit(sc->sc_dev), rlen); 2196 ifp->if_ierrors++; 2197 return; 2198 } else if (rlen > MHLEN) 2199 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2200 else 2201 m = m_gethdr(M_DONTWAIT, MT_DATA); 2202 if (m == NULL) { 2203 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2204 device_get_nameunit(sc->sc_dev)); 2205 ifp->if_ierrors++; 2206 return; 2207 } 2208 m->m_pkthdr.rcvif = ifp; 2209 m->m_pkthdr.len = m->m_len = rlen; 2210 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2211 2212 if (ieee80211_radiotap_active(ic)) { 2213 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2214 2215 tap->wr_flags = 0; 2216 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2217 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2218 /* XXX toss, no way to express errors */ 2219 if (stat.flags & ZYD_RX_DECRYPTERR) 2220 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2221 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2222 (stat.flags & ZYD_RX_OFDM) ? 2223 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2224 tap->wr_antsignal = stat.rssi + -95; 2225 tap->wr_antnoise = -95; /* XXX */ 2226 } 2227 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2228 2229 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2230 sc->sc_rx_data[sc->sc_rx_count].m = m; 2231 sc->sc_rx_count++; 2232 } 2233 2234 static void 2235 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2236 { 2237 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2238 struct ifnet *ifp = sc->sc_ifp; 2239 struct ieee80211com *ic = ifp->if_l2com; 2240 struct ieee80211_node *ni; 2241 struct zyd_rx_desc desc; 2242 struct mbuf *m; 2243 struct usb_page_cache *pc; 2244 uint32_t offset; 2245 uint8_t rssi; 2246 int8_t nf; 2247 int i; 2248 int actlen; 2249 2250 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2251 2252 sc->sc_rx_count = 0; 2253 switch (USB_GET_STATE(xfer)) { 2254 case USB_ST_TRANSFERRED: 2255 pc = usbd_xfer_get_frame(xfer, 0); 2256 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2257 2258 offset = 0; 2259 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2260 DPRINTF(sc, ZYD_DEBUG_RECV, 2261 "%s: received multi-frame transfer\n", __func__); 2262 2263 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2264 uint16_t len16 = UGETW(desc.len[i]); 2265 2266 if (len16 == 0 || len16 > actlen) 2267 break; 2268 2269 zyd_rx_data(xfer, offset, len16); 2270 2271 /* next frame is aligned on a 32-bit boundary */ 2272 len16 = (len16 + 3) & ~3; 2273 offset += len16; 2274 if (len16 > actlen) 2275 break; 2276 actlen -= len16; 2277 } 2278 } else { 2279 DPRINTF(sc, ZYD_DEBUG_RECV, 2280 "%s: received single-frame transfer\n", __func__); 2281 2282 zyd_rx_data(xfer, 0, actlen); 2283 } 2284 /* FALLTHROUGH */ 2285 case USB_ST_SETUP: 2286 tr_setup: 2287 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2288 usbd_transfer_submit(xfer); 2289 2290 /* 2291 * At the end of a USB callback it is always safe to unlock 2292 * the private mutex of a device! That is why we do the 2293 * "ieee80211_input" here, and not some lines up! 2294 */ 2295 ZYD_UNLOCK(sc); 2296 for (i = 0; i < sc->sc_rx_count; i++) { 2297 rssi = sc->sc_rx_data[i].rssi; 2298 m = sc->sc_rx_data[i].m; 2299 sc->sc_rx_data[i].m = NULL; 2300 2301 nf = -95; /* XXX */ 2302 2303 ni = ieee80211_find_rxnode(ic, 2304 mtod(m, struct ieee80211_frame_min *)); 2305 if (ni != NULL) { 2306 (void)ieee80211_input(ni, m, rssi, nf); 2307 ieee80211_free_node(ni); 2308 } else 2309 (void)ieee80211_input_all(ic, m, rssi, nf); 2310 } 2311 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2312 !IFQ_IS_EMPTY(&ifp->if_snd)) 2313 zyd_start(ifp); 2314 ZYD_LOCK(sc); 2315 break; 2316 2317 default: /* Error */ 2318 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2319 2320 if (error != USB_ERR_CANCELLED) { 2321 /* try to clear stall first */ 2322 usbd_xfer_set_stall(xfer); 2323 goto tr_setup; 2324 } 2325 break; 2326 } 2327 } 2328 2329 static uint8_t 2330 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2331 { 2332 switch (rate) { 2333 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2334 case 12: 2335 return (0xb); 2336 case 18: 2337 return (0xf); 2338 case 24: 2339 return (0xa); 2340 case 36: 2341 return (0xe); 2342 case 48: 2343 return (0x9); 2344 case 72: 2345 return (0xd); 2346 case 96: 2347 return (0x8); 2348 case 108: 2349 return (0xc); 2350 /* CCK rates (NB: not IEEE std, device-specific) */ 2351 case 2: 2352 return (0x0); 2353 case 4: 2354 return (0x1); 2355 case 11: 2356 return (0x2); 2357 case 22: 2358 return (0x3); 2359 } 2360 2361 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2362 return (0x0); 2363 } 2364 2365 static void 2366 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2367 { 2368 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2369 struct ifnet *ifp = sc->sc_ifp; 2370 struct ieee80211vap *vap; 2371 struct zyd_tx_data *data; 2372 struct mbuf *m; 2373 struct usb_page_cache *pc; 2374 int actlen; 2375 2376 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2377 2378 switch (USB_GET_STATE(xfer)) { 2379 case USB_ST_TRANSFERRED: 2380 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2381 actlen); 2382 2383 /* free resources */ 2384 data = usbd_xfer_get_priv(xfer); 2385 zyd_tx_free(data, 0); 2386 usbd_xfer_set_priv(xfer, NULL); 2387 2388 ifp->if_opackets++; 2389 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2390 2391 /* FALLTHROUGH */ 2392 case USB_ST_SETUP: 2393 tr_setup: 2394 data = STAILQ_FIRST(&sc->tx_q); 2395 if (data) { 2396 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2397 m = data->m; 2398 2399 if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) { 2400 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2401 m->m_pkthdr.len); 2402 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2403 } 2404 pc = usbd_xfer_get_frame(xfer, 0); 2405 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2406 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2407 m->m_pkthdr.len); 2408 2409 vap = data->ni->ni_vap; 2410 if (ieee80211_radiotap_active_vap(vap)) { 2411 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2412 2413 tap->wt_flags = 0; 2414 tap->wt_rate = data->rate; 2415 2416 ieee80211_radiotap_tx(vap, m); 2417 } 2418 2419 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2420 usbd_xfer_set_priv(xfer, data); 2421 usbd_transfer_submit(xfer); 2422 } 2423 ZYD_UNLOCK(sc); 2424 zyd_start(ifp); 2425 ZYD_LOCK(sc); 2426 break; 2427 2428 default: /* Error */ 2429 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2430 usbd_errstr(error)); 2431 2432 ifp->if_oerrors++; 2433 data = usbd_xfer_get_priv(xfer); 2434 usbd_xfer_set_priv(xfer, NULL); 2435 if (data != NULL) 2436 zyd_tx_free(data, error); 2437 2438 if (error != USB_ERR_CANCELLED) { 2439 if (error == USB_ERR_TIMEOUT) 2440 device_printf(sc->sc_dev, "device timeout\n"); 2441 2442 /* 2443 * Try to clear stall first, also if other 2444 * errors occur, hence clearing stall 2445 * introduces a 50 ms delay: 2446 */ 2447 usbd_xfer_set_stall(xfer); 2448 goto tr_setup; 2449 } 2450 break; 2451 } 2452 } 2453 2454 static int 2455 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2456 { 2457 struct ieee80211vap *vap = ni->ni_vap; 2458 struct ieee80211com *ic = ni->ni_ic; 2459 struct zyd_tx_desc *desc; 2460 struct zyd_tx_data *data; 2461 struct ieee80211_frame *wh; 2462 const struct ieee80211_txparam *tp; 2463 struct ieee80211_key *k; 2464 int rate, totlen; 2465 static uint8_t ratediv[] = ZYD_TX_RATEDIV; 2466 uint8_t phy; 2467 uint16_t pktlen; 2468 uint32_t bits; 2469 2470 wh = mtod(m0, struct ieee80211_frame *); 2471 data = STAILQ_FIRST(&sc->tx_free); 2472 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2473 sc->tx_nfree--; 2474 2475 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2476 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2477 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2478 rate = tp->mgmtrate; 2479 } else { 2480 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2481 /* for data frames */ 2482 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2483 rate = tp->mcastrate; 2484 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2485 rate = tp->ucastrate; 2486 else { 2487 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2488 rate = ni->ni_txrate; 2489 } 2490 } 2491 2492 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2493 k = ieee80211_crypto_encap(ni, m0); 2494 if (k == NULL) { 2495 m_freem(m0); 2496 return (ENOBUFS); 2497 } 2498 /* packet header may have moved, reset our local pointer */ 2499 wh = mtod(m0, struct ieee80211_frame *); 2500 } 2501 2502 data->ni = ni; 2503 data->m = m0; 2504 data->rate = rate; 2505 2506 /* fill Tx descriptor */ 2507 desc = &data->desc; 2508 phy = zyd_plcp_signal(sc, rate); 2509 desc->phy = phy; 2510 if (ZYD_RATE_IS_OFDM(rate)) { 2511 desc->phy |= ZYD_TX_PHY_OFDM; 2512 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2513 desc->phy |= ZYD_TX_PHY_5GHZ; 2514 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2515 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2516 2517 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2518 desc->len = htole16(totlen); 2519 2520 desc->flags = ZYD_TX_FLAG_BACKOFF; 2521 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2522 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2523 if (totlen > vap->iv_rtsthreshold) { 2524 desc->flags |= ZYD_TX_FLAG_RTS; 2525 } else if (ZYD_RATE_IS_OFDM(rate) && 2526 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2527 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2528 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2529 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2530 desc->flags |= ZYD_TX_FLAG_RTS; 2531 } 2532 } else 2533 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2534 if ((wh->i_fc[0] & 2535 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2536 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2537 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2538 2539 /* actual transmit length (XXX why +10?) */ 2540 pktlen = ZYD_TX_DESC_SIZE + 10; 2541 if (sc->sc_macrev == ZYD_ZD1211) 2542 pktlen += totlen; 2543 desc->pktlen = htole16(pktlen); 2544 2545 bits = (rate == 11) ? (totlen * 16) + 10 : 2546 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2547 desc->plcp_length = htole16(bits / ratediv[phy]); 2548 desc->plcp_service = 0; 2549 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2550 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2551 desc->nextlen = 0; 2552 2553 if (ieee80211_radiotap_active_vap(vap)) { 2554 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2555 2556 tap->wt_flags = 0; 2557 tap->wt_rate = rate; 2558 2559 ieee80211_radiotap_tx(vap, m0); 2560 } 2561 2562 DPRINTF(sc, ZYD_DEBUG_XMIT, 2563 "%s: sending data frame len=%zu rate=%u\n", 2564 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2565 rate); 2566 2567 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2568 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2569 2570 return (0); 2571 } 2572 2573 static void 2574 zyd_start(struct ifnet *ifp) 2575 { 2576 struct zyd_softc *sc = ifp->if_softc; 2577 struct ieee80211_node *ni; 2578 struct mbuf *m; 2579 2580 ZYD_LOCK(sc); 2581 for (;;) { 2582 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2583 if (m == NULL) 2584 break; 2585 if (sc->tx_nfree == 0) { 2586 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2587 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2588 break; 2589 } 2590 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2591 if (zyd_tx_start(sc, m, ni) != 0) { 2592 ieee80211_free_node(ni); 2593 ifp->if_oerrors++; 2594 break; 2595 } 2596 } 2597 ZYD_UNLOCK(sc); 2598 } 2599 2600 static int 2601 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2602 const struct ieee80211_bpf_params *params) 2603 { 2604 struct ieee80211com *ic = ni->ni_ic; 2605 struct ifnet *ifp = ic->ic_ifp; 2606 struct zyd_softc *sc = ifp->if_softc; 2607 2608 ZYD_LOCK(sc); 2609 /* prevent management frames from being sent if we're not ready */ 2610 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2611 ZYD_UNLOCK(sc); 2612 m_freem(m); 2613 ieee80211_free_node(ni); 2614 return (ENETDOWN); 2615 } 2616 if (sc->tx_nfree == 0) { 2617 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2618 ZYD_UNLOCK(sc); 2619 m_freem(m); 2620 ieee80211_free_node(ni); 2621 return (ENOBUFS); /* XXX */ 2622 } 2623 2624 /* 2625 * Legacy path; interpret frame contents to decide 2626 * precisely how to send the frame. 2627 * XXX raw path 2628 */ 2629 if (zyd_tx_start(sc, m, ni) != 0) { 2630 ZYD_UNLOCK(sc); 2631 ifp->if_oerrors++; 2632 ieee80211_free_node(ni); 2633 return (EIO); 2634 } 2635 ZYD_UNLOCK(sc); 2636 return (0); 2637 } 2638 2639 static int 2640 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2641 { 2642 struct zyd_softc *sc = ifp->if_softc; 2643 struct ieee80211com *ic = ifp->if_l2com; 2644 struct ifreq *ifr = (struct ifreq *) data; 2645 int error = 0, startall = 0; 2646 2647 switch (cmd) { 2648 case SIOCSIFFLAGS: 2649 ZYD_LOCK(sc); 2650 if (ifp->if_flags & IFF_UP) { 2651 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2652 zyd_init_locked(sc); 2653 startall = 1; 2654 } else 2655 zyd_set_multi(sc); 2656 } else { 2657 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2658 zyd_stop(sc); 2659 } 2660 ZYD_UNLOCK(sc); 2661 if (startall) 2662 ieee80211_start_all(ic); 2663 break; 2664 case SIOCGIFMEDIA: 2665 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2666 break; 2667 case SIOCGIFADDR: 2668 error = ether_ioctl(ifp, cmd, data); 2669 break; 2670 default: 2671 error = EINVAL; 2672 break; 2673 } 2674 return (error); 2675 } 2676 2677 static void 2678 zyd_init_locked(struct zyd_softc *sc) 2679 { 2680 struct ifnet *ifp = sc->sc_ifp; 2681 struct ieee80211com *ic = ifp->if_l2com; 2682 struct usb_config_descriptor *cd; 2683 int error; 2684 uint32_t val; 2685 2686 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2687 2688 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2689 error = zyd_loadfirmware(sc); 2690 if (error != 0) { 2691 device_printf(sc->sc_dev, 2692 "could not load firmware (error=%d)\n", error); 2693 goto fail; 2694 } 2695 2696 /* reset device */ 2697 cd = usbd_get_config_descriptor(sc->sc_udev); 2698 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2699 cd->bConfigurationValue); 2700 if (error) 2701 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2702 2703 error = zyd_hw_init(sc); 2704 if (error) { 2705 device_printf(sc->sc_dev, 2706 "hardware initialization failed\n"); 2707 goto fail; 2708 } 2709 2710 device_printf(sc->sc_dev, 2711 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2712 "BE%x NP%x Gain%x F%x\n", 2713 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2714 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2715 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2716 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2717 sc->sc_cckgain, sc->sc_fix_cr157); 2718 2719 /* read regulatory domain (currently unused) */ 2720 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2721 sc->sc_regdomain = val >> 16; 2722 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2723 sc->sc_regdomain); 2724 2725 /* we'll do software WEP decryption for now */ 2726 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2727 __func__); 2728 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2729 2730 sc->sc_flags |= ZYD_FLAG_INITONCE; 2731 } 2732 2733 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2734 zyd_stop(sc); 2735 2736 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2737 IF_LLADDR(ifp), ":"); 2738 error = zyd_set_macaddr(sc, IF_LLADDR(ifp)); 2739 if (error != 0) 2740 return; 2741 2742 /* set basic rates */ 2743 if (ic->ic_curmode == IEEE80211_MODE_11B) 2744 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2745 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2746 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2747 else /* assumes 802.11b/g */ 2748 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2749 2750 /* promiscuous mode */ 2751 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2752 /* multicast setup */ 2753 zyd_set_multi(sc); 2754 /* set RX filter */ 2755 error = zyd_set_rxfilter(sc); 2756 if (error != 0) 2757 goto fail; 2758 2759 /* switch radio transmitter ON */ 2760 error = zyd_switch_radio(sc, 1); 2761 if (error != 0) 2762 goto fail; 2763 /* set default BSS channel */ 2764 zyd_set_chan(sc, ic->ic_curchan); 2765 2766 /* 2767 * Allocate Tx and Rx xfer queues. 2768 */ 2769 zyd_setup_tx_list(sc); 2770 2771 /* enable interrupts */ 2772 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2773 2774 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2775 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2776 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2777 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2778 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2779 2780 return; 2781 2782 fail: zyd_stop(sc); 2783 return; 2784 } 2785 2786 static void 2787 zyd_init(void *priv) 2788 { 2789 struct zyd_softc *sc = priv; 2790 struct ifnet *ifp = sc->sc_ifp; 2791 struct ieee80211com *ic = ifp->if_l2com; 2792 2793 ZYD_LOCK(sc); 2794 zyd_init_locked(sc); 2795 ZYD_UNLOCK(sc); 2796 2797 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2798 ieee80211_start_all(ic); /* start all vap's */ 2799 } 2800 2801 static void 2802 zyd_stop(struct zyd_softc *sc) 2803 { 2804 struct ifnet *ifp = sc->sc_ifp; 2805 int error; 2806 2807 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2808 2809 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2810 2811 /* 2812 * Drain all the transfers, if not already drained: 2813 */ 2814 ZYD_UNLOCK(sc); 2815 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2816 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2817 ZYD_LOCK(sc); 2818 2819 zyd_unsetup_tx_list(sc); 2820 2821 /* Stop now if the device was never set up */ 2822 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2823 return; 2824 2825 /* switch radio transmitter OFF */ 2826 error = zyd_switch_radio(sc, 0); 2827 if (error != 0) 2828 goto fail; 2829 /* disable Rx */ 2830 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2831 /* disable interrupts */ 2832 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2833 2834 fail: 2835 return; 2836 } 2837 2838 static int 2839 zyd_loadfirmware(struct zyd_softc *sc) 2840 { 2841 struct usb_device_request req; 2842 size_t size; 2843 u_char *fw; 2844 uint8_t stat; 2845 uint16_t addr; 2846 2847 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2848 return (0); 2849 2850 if (sc->sc_macrev == ZYD_ZD1211) { 2851 fw = (u_char *)zd1211_firmware; 2852 size = sizeof(zd1211_firmware); 2853 } else { 2854 fw = (u_char *)zd1211b_firmware; 2855 size = sizeof(zd1211b_firmware); 2856 } 2857 2858 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2859 req.bRequest = ZYD_DOWNLOADREQ; 2860 USETW(req.wIndex, 0); 2861 2862 addr = ZYD_FIRMWARE_START_ADDR; 2863 while (size > 0) { 2864 /* 2865 * When the transfer size is 4096 bytes, it is not 2866 * likely to be able to transfer it. 2867 * The cause is port or machine or chip? 2868 */ 2869 const int mlen = min(size, 64); 2870 2871 DPRINTF(sc, ZYD_DEBUG_FW, 2872 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2873 2874 USETW(req.wValue, addr); 2875 USETW(req.wLength, mlen); 2876 if (zyd_do_request(sc, &req, fw) != 0) 2877 return (EIO); 2878 2879 addr += mlen / 2; 2880 fw += mlen; 2881 size -= mlen; 2882 } 2883 2884 /* check whether the upload succeeded */ 2885 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2886 req.bRequest = ZYD_DOWNLOADSTS; 2887 USETW(req.wValue, 0); 2888 USETW(req.wIndex, 0); 2889 USETW(req.wLength, sizeof(stat)); 2890 if (zyd_do_request(sc, &req, &stat) != 0) 2891 return (EIO); 2892 2893 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2894 2895 return (stat & 0x80) ? (EIO) : (0); 2896 } 2897 2898 static void 2899 zyd_scan_start(struct ieee80211com *ic) 2900 { 2901 struct ifnet *ifp = ic->ic_ifp; 2902 struct zyd_softc *sc = ifp->if_softc; 2903 2904 ZYD_LOCK(sc); 2905 /* want broadcast address while scanning */ 2906 zyd_set_bssid(sc, ifp->if_broadcastaddr); 2907 ZYD_UNLOCK(sc); 2908 } 2909 2910 static void 2911 zyd_scan_end(struct ieee80211com *ic) 2912 { 2913 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2914 2915 ZYD_LOCK(sc); 2916 /* restore previous bssid */ 2917 zyd_set_bssid(sc, sc->sc_bssid); 2918 ZYD_UNLOCK(sc); 2919 } 2920 2921 static void 2922 zyd_set_channel(struct ieee80211com *ic) 2923 { 2924 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2925 2926 ZYD_LOCK(sc); 2927 zyd_set_chan(sc, ic->ic_curchan); 2928 ZYD_UNLOCK(sc); 2929 } 2930 2931 static device_method_t zyd_methods[] = { 2932 /* Device interface */ 2933 DEVMETHOD(device_probe, zyd_match), 2934 DEVMETHOD(device_attach, zyd_attach), 2935 DEVMETHOD(device_detach, zyd_detach), 2936 2937 { 0, 0 } 2938 }; 2939 2940 static driver_t zyd_driver = { 2941 "zyd", 2942 zyd_methods, 2943 sizeof(struct zyd_softc) 2944 }; 2945 2946 static devclass_t zyd_devclass; 2947 2948 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2949 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2950 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2951