1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ 2 /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ 3 /* $FreeBSD$ */ 4 5 /*- 6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /* 26 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/condvar.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include <dev/usb/usbdi_util.h> 74 #include "usbdevs.h" 75 76 #include <dev/usb/wlan/if_zydreg.h> 77 #include <dev/usb/wlan/if_zydfw.h> 78 79 #ifdef USB_DEBUG 80 static int zyd_debug = 0; 81 82 static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); 83 SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0, 84 "zyd debug level"); 85 86 enum { 87 ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 88 ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ 89 ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ 90 ZYD_DEBUG_INIT = 0x00000008, /* device init */ 91 ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 92 ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 93 ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 94 ZYD_DEBUG_STAT = 0x00000080, /* statistic */ 95 ZYD_DEBUG_FW = 0x00000100, /* firmware */ 96 ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ 97 ZYD_DEBUG_ANY = 0xffffffff 98 }; 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 if (zyd_debug & (m)) \ 101 printf("%s: " fmt, __func__, ## __VA_ARGS__); \ 102 } while (0) 103 #else 104 #define DPRINTF(sc, m, fmt, ...) do { \ 105 (void) sc; \ 106 } while (0) 107 #endif 108 109 #define zyd_do_request(sc,req,data) \ 110 usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) 111 112 static device_probe_t zyd_match; 113 static device_attach_t zyd_attach; 114 static device_detach_t zyd_detach; 115 116 static usb_callback_t zyd_intr_read_callback; 117 static usb_callback_t zyd_intr_write_callback; 118 static usb_callback_t zyd_bulk_read_callback; 119 static usb_callback_t zyd_bulk_write_callback; 120 121 static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, 122 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 123 const uint8_t [IEEE80211_ADDR_LEN], 124 const uint8_t [IEEE80211_ADDR_LEN]); 125 static void zyd_vap_delete(struct ieee80211vap *); 126 static void zyd_tx_free(struct zyd_tx_data *, int); 127 static void zyd_setup_tx_list(struct zyd_softc *); 128 static void zyd_unsetup_tx_list(struct zyd_softc *); 129 static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); 130 static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, 131 void *, int, int); 132 static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 133 static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 134 static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 135 static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 136 static int zyd_rfwrite(struct zyd_softc *, uint32_t); 137 static int zyd_lock_phy(struct zyd_softc *); 138 static int zyd_unlock_phy(struct zyd_softc *); 139 static int zyd_rf_attach(struct zyd_softc *, uint8_t); 140 static const char *zyd_rf_name(uint8_t); 141 static int zyd_hw_init(struct zyd_softc *); 142 static int zyd_read_pod(struct zyd_softc *); 143 static int zyd_read_eeprom(struct zyd_softc *); 144 static int zyd_get_macaddr(struct zyd_softc *); 145 static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 146 static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); 147 static int zyd_switch_radio(struct zyd_softc *, int); 148 static int zyd_set_led(struct zyd_softc *, int, int); 149 static void zyd_set_multi(struct zyd_softc *); 150 static void zyd_update_mcast(struct ifnet *); 151 static int zyd_set_rxfilter(struct zyd_softc *); 152 static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 153 static int zyd_set_beacon_interval(struct zyd_softc *, int); 154 static void zyd_rx_data(struct usb_xfer *, int, uint16_t); 155 static int zyd_tx_start(struct zyd_softc *, struct mbuf *, 156 struct ieee80211_node *); 157 static void zyd_start(struct ifnet *); 158 static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, 159 const struct ieee80211_bpf_params *); 160 static int zyd_ioctl(struct ifnet *, u_long, caddr_t); 161 static void zyd_init_locked(struct zyd_softc *); 162 static void zyd_init(void *); 163 static void zyd_stop(struct zyd_softc *); 164 static int zyd_loadfirmware(struct zyd_softc *); 165 static void zyd_scan_start(struct ieee80211com *); 166 static void zyd_scan_end(struct ieee80211com *); 167 static void zyd_set_channel(struct ieee80211com *); 168 static int zyd_rfmd_init(struct zyd_rf *); 169 static int zyd_rfmd_switch_radio(struct zyd_rf *, int); 170 static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 171 static int zyd_al2230_init(struct zyd_rf *); 172 static int zyd_al2230_switch_radio(struct zyd_rf *, int); 173 static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 174 static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); 175 static int zyd_al2230_init_b(struct zyd_rf *); 176 static int zyd_al7230B_init(struct zyd_rf *); 177 static int zyd_al7230B_switch_radio(struct zyd_rf *, int); 178 static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 179 static int zyd_al2210_init(struct zyd_rf *); 180 static int zyd_al2210_switch_radio(struct zyd_rf *, int); 181 static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 182 static int zyd_gct_init(struct zyd_rf *); 183 static int zyd_gct_switch_radio(struct zyd_rf *, int); 184 static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 185 static int zyd_gct_mode(struct zyd_rf *); 186 static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); 187 static int zyd_gct_write(struct zyd_rf *, uint16_t); 188 static int zyd_gct_txgain(struct zyd_rf *, uint8_t); 189 static int zyd_maxim2_init(struct zyd_rf *); 190 static int zyd_maxim2_switch_radio(struct zyd_rf *, int); 191 static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 192 193 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 194 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 195 196 /* various supported device vendors/products */ 197 #define ZYD_ZD1211 0 198 #define ZYD_ZD1211B 1 199 200 #define ZYD_ZD1211_DEV(v,p) \ 201 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } 202 #define ZYD_ZD1211B_DEV(v,p) \ 203 { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } 204 static const STRUCT_USB_HOST_ID zyd_devs[] = { 205 /* ZYD_ZD1211 */ 206 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 207 ZYD_ZD1211_DEV(ABOCOM, WL54), 208 ZYD_ZD1211_DEV(ASUS, WL159G), 209 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 210 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 211 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 212 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 213 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 214 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 215 ZYD_ZD1211_DEV(SAGEM, XG760A), 216 ZYD_ZD1211_DEV(SENAO, NUB8301), 217 ZYD_ZD1211_DEV(SITECOMEU, WL113), 218 ZYD_ZD1211_DEV(SWEEX, ZD1211), 219 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 220 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 221 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 222 ZYD_ZD1211_DEV(TWINMOS, G240), 223 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 224 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 225 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 226 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 227 ZYD_ZD1211_DEV(ZCOM, ZD1211), 228 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 229 ZYD_ZD1211_DEV(ZYXEL, AG225H), 230 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), 231 ZYD_ZD1211_DEV(ZYXEL, G200V2), 232 /* ZYD_ZD1211B */ 233 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), 234 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 235 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 236 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 237 ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), 238 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 239 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 240 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 241 ZYD_ZD1211B_DEV(MELCO, KG54L), 242 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 243 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 244 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 245 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 246 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 247 ZYD_ZD1211B_DEV(USR, USR5423), 248 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 249 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 250 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 251 ZYD_ZD1211B_DEV(ZYXEL, M202), 252 ZYD_ZD1211B_DEV(ZYXEL, G202), 253 ZYD_ZD1211B_DEV(ZYXEL, G220V2) 254 }; 255 256 static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { 257 [ZYD_BULK_WR] = { 258 .type = UE_BULK, 259 .endpoint = UE_ADDR_ANY, 260 .direction = UE_DIR_OUT, 261 .bufsize = ZYD_MAX_TXBUFSZ, 262 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 263 .callback = zyd_bulk_write_callback, 264 .ep_index = 0, 265 .timeout = 10000, /* 10 seconds */ 266 }, 267 [ZYD_BULK_RD] = { 268 .type = UE_BULK, 269 .endpoint = UE_ADDR_ANY, 270 .direction = UE_DIR_IN, 271 .bufsize = ZYX_MAX_RXBUFSZ, 272 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 273 .callback = zyd_bulk_read_callback, 274 .ep_index = 0, 275 }, 276 [ZYD_INTR_WR] = { 277 .type = UE_BULK_INTR, 278 .endpoint = UE_ADDR_ANY, 279 .direction = UE_DIR_OUT, 280 .bufsize = sizeof(struct zyd_cmd), 281 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 282 .callback = zyd_intr_write_callback, 283 .timeout = 1000, /* 1 second */ 284 .ep_index = 1, 285 }, 286 [ZYD_INTR_RD] = { 287 .type = UE_INTERRUPT, 288 .endpoint = UE_ADDR_ANY, 289 .direction = UE_DIR_IN, 290 .bufsize = sizeof(struct zyd_cmd), 291 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 292 .callback = zyd_intr_read_callback, 293 }, 294 }; 295 #define zyd_read16_m(sc, val, data) do { \ 296 error = zyd_read16(sc, val, data); \ 297 if (error != 0) \ 298 goto fail; \ 299 } while (0) 300 #define zyd_write16_m(sc, val, data) do { \ 301 error = zyd_write16(sc, val, data); \ 302 if (error != 0) \ 303 goto fail; \ 304 } while (0) 305 #define zyd_read32_m(sc, val, data) do { \ 306 error = zyd_read32(sc, val, data); \ 307 if (error != 0) \ 308 goto fail; \ 309 } while (0) 310 #define zyd_write32_m(sc, val, data) do { \ 311 error = zyd_write32(sc, val, data); \ 312 if (error != 0) \ 313 goto fail; \ 314 } while (0) 315 316 static int 317 zyd_match(device_t dev) 318 { 319 struct usb_attach_arg *uaa = device_get_ivars(dev); 320 321 if (uaa->usb_mode != USB_MODE_HOST) 322 return (ENXIO); 323 if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) 324 return (ENXIO); 325 if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) 326 return (ENXIO); 327 328 return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); 329 } 330 331 static int 332 zyd_attach(device_t dev) 333 { 334 struct usb_attach_arg *uaa = device_get_ivars(dev); 335 struct zyd_softc *sc = device_get_softc(dev); 336 struct ifnet *ifp; 337 struct ieee80211com *ic; 338 uint8_t iface_index, bands; 339 int error; 340 341 if (uaa->info.bcdDevice < 0x4330) { 342 device_printf(dev, "device version mismatch: 0x%X " 343 "(only >= 43.30 supported)\n", 344 uaa->info.bcdDevice); 345 return (EINVAL); 346 } 347 348 device_set_usb_desc(dev); 349 sc->sc_dev = dev; 350 sc->sc_udev = uaa->device; 351 sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); 352 353 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 354 MTX_NETWORK_LOCK, MTX_DEF); 355 STAILQ_INIT(&sc->sc_rqh); 356 357 iface_index = ZYD_IFACE_INDEX; 358 error = usbd_transfer_setup(uaa->device, 359 &iface_index, sc->sc_xfer, zyd_config, 360 ZYD_N_TRANSFER, sc, &sc->sc_mtx); 361 if (error) { 362 device_printf(dev, "could not allocate USB transfers, " 363 "err=%s\n", usbd_errstr(error)); 364 goto detach; 365 } 366 367 ZYD_LOCK(sc); 368 if ((error = zyd_get_macaddr(sc)) != 0) { 369 device_printf(sc->sc_dev, "could not read EEPROM\n"); 370 ZYD_UNLOCK(sc); 371 goto detach; 372 } 373 ZYD_UNLOCK(sc); 374 375 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 376 if (ifp == NULL) { 377 device_printf(sc->sc_dev, "can not if_alloc()\n"); 378 goto detach; 379 } 380 ifp->if_softc = sc; 381 if_initname(ifp, "zyd", device_get_unit(sc->sc_dev)); 382 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 383 ifp->if_init = zyd_init; 384 ifp->if_ioctl = zyd_ioctl; 385 ifp->if_start = zyd_start; 386 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 387 IFQ_SET_READY(&ifp->if_snd); 388 389 ic = ifp->if_l2com; 390 ic->ic_ifp = ifp; 391 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 392 ic->ic_opmode = IEEE80211_M_STA; 393 394 /* set device capabilities */ 395 ic->ic_caps = 396 IEEE80211_C_STA /* station mode */ 397 | IEEE80211_C_MONITOR /* monitor mode */ 398 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 399 | IEEE80211_C_SHSLOT /* short slot time supported */ 400 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 401 | IEEE80211_C_WPA /* 802.11i */ 402 ; 403 404 bands = 0; 405 setbit(&bands, IEEE80211_MODE_11B); 406 setbit(&bands, IEEE80211_MODE_11G); 407 ieee80211_init_channels(ic, NULL, &bands); 408 409 ieee80211_ifattach(ic, sc->sc_bssid); 410 ic->ic_raw_xmit = zyd_raw_xmit; 411 ic->ic_scan_start = zyd_scan_start; 412 ic->ic_scan_end = zyd_scan_end; 413 ic->ic_set_channel = zyd_set_channel; 414 415 ic->ic_vap_create = zyd_vap_create; 416 ic->ic_vap_delete = zyd_vap_delete; 417 ic->ic_update_mcast = zyd_update_mcast; 418 ic->ic_update_promisc = zyd_update_mcast; 419 420 ieee80211_radiotap_attach(ic, 421 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 422 ZYD_TX_RADIOTAP_PRESENT, 423 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 424 ZYD_RX_RADIOTAP_PRESENT); 425 426 if (bootverbose) 427 ieee80211_announce(ic); 428 429 return (0); 430 431 detach: 432 zyd_detach(dev); 433 return (ENXIO); /* failure */ 434 } 435 436 static int 437 zyd_detach(device_t dev) 438 { 439 struct zyd_softc *sc = device_get_softc(dev); 440 struct ifnet *ifp = sc->sc_ifp; 441 struct ieee80211com *ic; 442 unsigned int x; 443 444 /* 445 * Prevent further allocations from RX/TX data 446 * lists and ioctls: 447 */ 448 ZYD_LOCK(sc); 449 sc->sc_flags |= ZYD_FLAG_DETACHED; 450 STAILQ_INIT(&sc->tx_q); 451 STAILQ_INIT(&sc->tx_free); 452 ZYD_UNLOCK(sc); 453 454 /* drain USB transfers */ 455 for (x = 0; x != ZYD_N_TRANSFER; x++) 456 usbd_transfer_drain(sc->sc_xfer[x]); 457 458 /* free TX list, if any */ 459 ZYD_LOCK(sc); 460 zyd_unsetup_tx_list(sc); 461 ZYD_UNLOCK(sc); 462 463 /* free USB transfers and some data buffers */ 464 usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); 465 466 if (ifp) { 467 ic = ifp->if_l2com; 468 ieee80211_ifdetach(ic); 469 if_free(ifp); 470 } 471 mtx_destroy(&sc->sc_mtx); 472 473 return (0); 474 } 475 476 static struct ieee80211vap * 477 zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 478 enum ieee80211_opmode opmode, int flags, 479 const uint8_t bssid[IEEE80211_ADDR_LEN], 480 const uint8_t mac[IEEE80211_ADDR_LEN]) 481 { 482 struct zyd_vap *zvp; 483 struct ieee80211vap *vap; 484 485 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 486 return (NULL); 487 zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap), 488 M_80211_VAP, M_NOWAIT | M_ZERO); 489 if (zvp == NULL) 490 return (NULL); 491 vap = &zvp->vap; 492 493 /* enable s/w bmiss handling for sta mode */ 494 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 495 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { 496 /* out of memory */ 497 free(zvp, M_80211_VAP); 498 return (NULL); 499 } 500 501 /* override state transition machine */ 502 zvp->newstate = vap->iv_newstate; 503 vap->iv_newstate = zyd_newstate; 504 505 ieee80211_ratectl_init(vap); 506 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 507 508 /* complete setup */ 509 ieee80211_vap_attach(vap, ieee80211_media_change, 510 ieee80211_media_status); 511 ic->ic_opmode = opmode; 512 return (vap); 513 } 514 515 static void 516 zyd_vap_delete(struct ieee80211vap *vap) 517 { 518 struct zyd_vap *zvp = ZYD_VAP(vap); 519 520 ieee80211_ratectl_deinit(vap); 521 ieee80211_vap_detach(vap); 522 free(zvp, M_80211_VAP); 523 } 524 525 static void 526 zyd_tx_free(struct zyd_tx_data *data, int txerr) 527 { 528 struct zyd_softc *sc = data->sc; 529 530 if (data->m != NULL) { 531 if (data->m->m_flags & M_TXCB) 532 ieee80211_process_callback(data->ni, data->m, 533 txerr ? ETIMEDOUT : 0); 534 m_freem(data->m); 535 data->m = NULL; 536 537 ieee80211_free_node(data->ni); 538 data->ni = NULL; 539 } 540 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 541 sc->tx_nfree++; 542 } 543 544 static void 545 zyd_setup_tx_list(struct zyd_softc *sc) 546 { 547 struct zyd_tx_data *data; 548 int i; 549 550 sc->tx_nfree = 0; 551 STAILQ_INIT(&sc->tx_q); 552 STAILQ_INIT(&sc->tx_free); 553 554 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 555 data = &sc->tx_data[i]; 556 557 data->sc = sc; 558 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 559 sc->tx_nfree++; 560 } 561 } 562 563 static void 564 zyd_unsetup_tx_list(struct zyd_softc *sc) 565 { 566 struct zyd_tx_data *data; 567 int i; 568 569 /* make sure any subsequent use of the queues will fail */ 570 sc->tx_nfree = 0; 571 STAILQ_INIT(&sc->tx_q); 572 STAILQ_INIT(&sc->tx_free); 573 574 /* free up all node references and mbufs */ 575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 576 data = &sc->tx_data[i]; 577 578 if (data->m != NULL) { 579 m_freem(data->m); 580 data->m = NULL; 581 } 582 if (data->ni != NULL) { 583 ieee80211_free_node(data->ni); 584 data->ni = NULL; 585 } 586 } 587 } 588 589 static int 590 zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 591 { 592 struct zyd_vap *zvp = ZYD_VAP(vap); 593 struct ieee80211com *ic = vap->iv_ic; 594 struct zyd_softc *sc = ic->ic_ifp->if_softc; 595 int error; 596 597 DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, 598 ieee80211_state_name[vap->iv_state], 599 ieee80211_state_name[nstate]); 600 601 IEEE80211_UNLOCK(ic); 602 ZYD_LOCK(sc); 603 switch (nstate) { 604 case IEEE80211_S_AUTH: 605 zyd_set_chan(sc, ic->ic_curchan); 606 break; 607 case IEEE80211_S_RUN: 608 if (vap->iv_opmode == IEEE80211_M_MONITOR) 609 break; 610 611 /* turn link LED on */ 612 error = zyd_set_led(sc, ZYD_LED1, 1); 613 if (error != 0) 614 break; 615 616 /* make data LED blink upon Tx */ 617 zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); 618 619 IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); 620 zyd_set_bssid(sc, sc->sc_bssid); 621 break; 622 default: 623 break; 624 } 625 fail: 626 ZYD_UNLOCK(sc); 627 IEEE80211_LOCK(ic); 628 return (zvp->newstate(vap, nstate, arg)); 629 } 630 631 /* 632 * Callback handler for interrupt transfer 633 */ 634 static void 635 zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) 636 { 637 struct zyd_softc *sc = usbd_xfer_softc(xfer); 638 struct ifnet *ifp = sc->sc_ifp; 639 struct ieee80211com *ic = ifp->if_l2com; 640 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 641 struct ieee80211_node *ni; 642 struct zyd_cmd *cmd = &sc->sc_ibuf; 643 struct usb_page_cache *pc; 644 int datalen; 645 int actlen; 646 647 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 648 649 switch (USB_GET_STATE(xfer)) { 650 case USB_ST_TRANSFERRED: 651 pc = usbd_xfer_get_frame(xfer, 0); 652 usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); 653 654 switch (le16toh(cmd->code)) { 655 case ZYD_NOTIF_RETRYSTATUS: 656 { 657 struct zyd_notif_retry *retry = 658 (struct zyd_notif_retry *)cmd->data; 659 660 DPRINTF(sc, ZYD_DEBUG_TX_PROC, 661 "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 662 le16toh(retry->rate), ether_sprintf(retry->macaddr), 663 le16toh(retry->count)&0xff, le16toh(retry->count)); 664 665 /* 666 * Find the node to which the packet was sent and 667 * update its retry statistics. In BSS mode, this node 668 * is the AP we're associated to so no lookup is 669 * actually needed. 670 */ 671 ni = ieee80211_find_txnode(vap, retry->macaddr); 672 if (ni != NULL) { 673 int retrycnt = 674 (int)(le16toh(retry->count) & 0xff); 675 676 ieee80211_ratectl_tx_complete(vap, ni, 677 IEEE80211_RATECTL_TX_FAILURE, 678 &retrycnt, NULL); 679 ieee80211_free_node(ni); 680 } 681 if (le16toh(retry->count) & 0x100) 682 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* too many retries */ 683 break; 684 } 685 case ZYD_NOTIF_IORD: 686 { 687 struct zyd_rq *rqp; 688 689 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 690 break; /* HMAC interrupt */ 691 692 datalen = actlen - sizeof(cmd->code); 693 datalen -= 2; /* XXX: padding? */ 694 695 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 696 int i; 697 int count; 698 699 if (rqp->olen != datalen) 700 continue; 701 count = rqp->olen / sizeof(struct zyd_pair); 702 for (i = 0; i < count; i++) { 703 if (*(((const uint16_t *)rqp->idata) + i) != 704 (((struct zyd_pair *)cmd->data) + i)->reg) 705 break; 706 } 707 if (i != count) 708 continue; 709 /* copy answer into caller-supplied buffer */ 710 memcpy(rqp->odata, cmd->data, rqp->olen); 711 DPRINTF(sc, ZYD_DEBUG_CMD, 712 "command %p complete, data = %*D \n", 713 rqp, rqp->olen, (char *)rqp->odata, ":"); 714 wakeup(rqp); /* wakeup caller */ 715 break; 716 } 717 if (rqp == NULL) { 718 device_printf(sc->sc_dev, 719 "unexpected IORD notification %*D\n", 720 datalen, cmd->data, ":"); 721 } 722 break; 723 } 724 default: 725 device_printf(sc->sc_dev, "unknown notification %x\n", 726 le16toh(cmd->code)); 727 } 728 729 /* FALLTHROUGH */ 730 case USB_ST_SETUP: 731 tr_setup: 732 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 733 usbd_transfer_submit(xfer); 734 break; 735 736 default: /* Error */ 737 DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", 738 usbd_errstr(error)); 739 740 if (error != USB_ERR_CANCELLED) { 741 /* try to clear stall first */ 742 usbd_xfer_set_stall(xfer); 743 goto tr_setup; 744 } 745 break; 746 } 747 } 748 749 static void 750 zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) 751 { 752 struct zyd_softc *sc = usbd_xfer_softc(xfer); 753 struct zyd_rq *rqp, *cmd; 754 struct usb_page_cache *pc; 755 756 switch (USB_GET_STATE(xfer)) { 757 case USB_ST_TRANSFERRED: 758 cmd = usbd_xfer_get_priv(xfer); 759 DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); 760 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 761 /* Ensure the cached rq pointer is still valid */ 762 if (rqp == cmd && 763 (rqp->flags & ZYD_CMD_FLAG_READ) == 0) 764 wakeup(rqp); /* wakeup caller */ 765 } 766 767 /* FALLTHROUGH */ 768 case USB_ST_SETUP: 769 tr_setup: 770 STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { 771 if (rqp->flags & ZYD_CMD_FLAG_SENT) 772 continue; 773 774 pc = usbd_xfer_get_frame(xfer, 0); 775 usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); 776 777 usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); 778 usbd_xfer_set_priv(xfer, rqp); 779 rqp->flags |= ZYD_CMD_FLAG_SENT; 780 usbd_transfer_submit(xfer); 781 break; 782 } 783 break; 784 785 default: /* Error */ 786 DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", 787 usbd_errstr(error)); 788 789 if (error != USB_ERR_CANCELLED) { 790 /* try to clear stall first */ 791 usbd_xfer_set_stall(xfer); 792 goto tr_setup; 793 } 794 break; 795 } 796 } 797 798 static int 799 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, 800 void *odata, int olen, int flags) 801 { 802 struct zyd_cmd cmd; 803 struct zyd_rq rq; 804 int error; 805 806 if (ilen > (int)sizeof(cmd.data)) 807 return (EINVAL); 808 809 cmd.code = htole16(code); 810 memcpy(cmd.data, idata, ilen); 811 DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", 812 &rq, ilen, idata, ":"); 813 814 rq.cmd = &cmd; 815 rq.idata = idata; 816 rq.odata = odata; 817 rq.ilen = sizeof(uint16_t) + ilen; 818 rq.olen = olen; 819 rq.flags = flags; 820 STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); 821 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 822 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); 823 824 /* wait at most one second for command reply */ 825 error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); 826 if (error) 827 device_printf(sc->sc_dev, "command timeout\n"); 828 STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); 829 DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", 830 &rq, error); 831 832 return (error); 833 } 834 835 static int 836 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 837 { 838 struct zyd_pair tmp; 839 int error; 840 841 reg = htole16(reg); 842 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), 843 ZYD_CMD_FLAG_READ); 844 if (error == 0) 845 *val = le16toh(tmp.val); 846 return (error); 847 } 848 849 static int 850 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 851 { 852 struct zyd_pair tmp[2]; 853 uint16_t regs[2]; 854 int error; 855 856 regs[0] = htole16(ZYD_REG32_HI(reg)); 857 regs[1] = htole16(ZYD_REG32_LO(reg)); 858 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), 859 ZYD_CMD_FLAG_READ); 860 if (error == 0) 861 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); 862 return (error); 863 } 864 865 static int 866 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 867 { 868 struct zyd_pair pair; 869 870 pair.reg = htole16(reg); 871 pair.val = htole16(val); 872 873 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); 874 } 875 876 static int 877 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 878 { 879 struct zyd_pair pair[2]; 880 881 pair[0].reg = htole16(ZYD_REG32_HI(reg)); 882 pair[0].val = htole16(val >> 16); 883 pair[1].reg = htole16(ZYD_REG32_LO(reg)); 884 pair[1].val = htole16(val & 0xffff); 885 886 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); 887 } 888 889 static int 890 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 891 { 892 struct zyd_rf *rf = &sc->sc_rf; 893 struct zyd_rfwrite_cmd req; 894 uint16_t cr203; 895 int error, i; 896 897 zyd_read16_m(sc, ZYD_CR203, &cr203); 898 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 899 900 req.code = htole16(2); 901 req.width = htole16(rf->width); 902 for (i = 0; i < rf->width; i++) { 903 req.bit[i] = htole16(cr203); 904 if (val & (1 << (rf->width - 1 - i))) 905 req.bit[i] |= htole16(ZYD_RF_DATA); 906 } 907 error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); 908 fail: 909 return (error); 910 } 911 912 static int 913 zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) 914 { 915 int error; 916 917 zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); 918 zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); 919 zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); 920 fail: 921 return (error); 922 } 923 924 static int 925 zyd_lock_phy(struct zyd_softc *sc) 926 { 927 int error; 928 uint32_t tmp; 929 930 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 931 tmp &= ~ZYD_UNLOCK_PHY_REGS; 932 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 933 fail: 934 return (error); 935 } 936 937 static int 938 zyd_unlock_phy(struct zyd_softc *sc) 939 { 940 int error; 941 uint32_t tmp; 942 943 zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); 944 tmp |= ZYD_UNLOCK_PHY_REGS; 945 zyd_write32_m(sc, ZYD_MAC_MISC, tmp); 946 fail: 947 return (error); 948 } 949 950 /* 951 * RFMD RF methods. 952 */ 953 static int 954 zyd_rfmd_init(struct zyd_rf *rf) 955 { 956 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 957 struct zyd_softc *sc = rf->rf_sc; 958 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 959 static const uint32_t rfini[] = ZYD_RFMD_RF; 960 int i, error; 961 962 /* init RF-dependent PHY registers */ 963 for (i = 0; i < N(phyini); i++) { 964 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 965 } 966 967 /* init RFMD radio */ 968 for (i = 0; i < N(rfini); i++) { 969 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 970 return (error); 971 } 972 fail: 973 return (error); 974 #undef N 975 } 976 977 static int 978 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 979 { 980 int error; 981 struct zyd_softc *sc = rf->rf_sc; 982 983 zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); 984 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); 985 fail: 986 return (error); 987 } 988 989 static int 990 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 991 { 992 int error; 993 struct zyd_softc *sc = rf->rf_sc; 994 static const struct { 995 uint32_t r1, r2; 996 } rfprog[] = ZYD_RFMD_CHANTABLE; 997 998 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 999 if (error != 0) 1000 goto fail; 1001 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1002 if (error != 0) 1003 goto fail; 1004 1005 fail: 1006 return (error); 1007 } 1008 1009 /* 1010 * AL2230 RF methods. 1011 */ 1012 static int 1013 zyd_al2230_init(struct zyd_rf *rf) 1014 { 1015 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1016 struct zyd_softc *sc = rf->rf_sc; 1017 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 1018 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1019 static const struct zyd_phy_pair phypll[] = { 1020 { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, 1021 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } 1022 }; 1023 static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; 1024 static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; 1025 static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; 1026 int i, error; 1027 1028 /* init RF-dependent PHY registers */ 1029 for (i = 0; i < N(phyini); i++) 1030 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1031 1032 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1033 for (i = 0; i < N(phy2230s); i++) 1034 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1035 } 1036 1037 /* init AL2230 radio */ 1038 for (i = 0; i < N(rfini1); i++) { 1039 error = zyd_rfwrite(sc, rfini1[i]); 1040 if (error != 0) 1041 goto fail; 1042 } 1043 1044 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1045 error = zyd_rfwrite(sc, 0x000824); 1046 else 1047 error = zyd_rfwrite(sc, 0x0005a4); 1048 if (error != 0) 1049 goto fail; 1050 1051 for (i = 0; i < N(rfini2); i++) { 1052 error = zyd_rfwrite(sc, rfini2[i]); 1053 if (error != 0) 1054 goto fail; 1055 } 1056 1057 for (i = 0; i < N(phypll); i++) 1058 zyd_write16_m(sc, phypll[i].reg, phypll[i].val); 1059 1060 for (i = 0; i < N(rfini3); i++) { 1061 error = zyd_rfwrite(sc, rfini3[i]); 1062 if (error != 0) 1063 goto fail; 1064 } 1065 fail: 1066 return (error); 1067 #undef N 1068 } 1069 1070 static int 1071 zyd_al2230_fini(struct zyd_rf *rf) 1072 { 1073 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1074 int error, i; 1075 struct zyd_softc *sc = rf->rf_sc; 1076 static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; 1077 1078 for (i = 0; i < N(phy); i++) 1079 zyd_write16_m(sc, phy[i].reg, phy[i].val); 1080 1081 if (sc->sc_newphy != 0) 1082 zyd_write16_m(sc, ZYD_CR9, 0xe1); 1083 1084 zyd_write16_m(sc, ZYD_CR203, 0x6); 1085 fail: 1086 return (error); 1087 #undef N 1088 } 1089 1090 static int 1091 zyd_al2230_init_b(struct zyd_rf *rf) 1092 { 1093 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1094 struct zyd_softc *sc = rf->rf_sc; 1095 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1096 static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; 1097 static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; 1098 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 1099 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1100 static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; 1101 static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; 1102 static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; 1103 static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; 1104 int i, error; 1105 1106 for (i = 0; i < N(phy1); i++) 1107 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1108 1109 /* init RF-dependent PHY registers */ 1110 for (i = 0; i < N(phyini); i++) 1111 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1112 1113 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { 1114 for (i = 0; i < N(phy2230s); i++) 1115 zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); 1116 } 1117 1118 for (i = 0; i < 3; i++) { 1119 error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); 1120 if (error != 0) 1121 return (error); 1122 } 1123 1124 for (i = 0; i < N(rfini_part1); i++) { 1125 error = zyd_rfwrite_cr(sc, rfini_part1[i]); 1126 if (error != 0) 1127 return (error); 1128 } 1129 1130 if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) 1131 error = zyd_rfwrite(sc, 0x241000); 1132 else 1133 error = zyd_rfwrite(sc, 0x25a000); 1134 if (error != 0) 1135 goto fail; 1136 1137 for (i = 0; i < N(rfini_part2); i++) { 1138 error = zyd_rfwrite_cr(sc, rfini_part2[i]); 1139 if (error != 0) 1140 return (error); 1141 } 1142 1143 for (i = 0; i < N(phy2); i++) 1144 zyd_write16_m(sc, phy2[i].reg, phy2[i].val); 1145 1146 for (i = 0; i < N(rfini_part3); i++) { 1147 error = zyd_rfwrite_cr(sc, rfini_part3[i]); 1148 if (error != 0) 1149 return (error); 1150 } 1151 1152 for (i = 0; i < N(phy3); i++) 1153 zyd_write16_m(sc, phy3[i].reg, phy3[i].val); 1154 1155 error = zyd_al2230_fini(rf); 1156 fail: 1157 return (error); 1158 #undef N 1159 } 1160 1161 static int 1162 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1163 { 1164 struct zyd_softc *sc = rf->rf_sc; 1165 int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; 1166 1167 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1168 zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); 1169 fail: 1170 return (error); 1171 } 1172 1173 static int 1174 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1175 { 1176 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1177 int error, i; 1178 struct zyd_softc *sc = rf->rf_sc; 1179 static const struct zyd_phy_pair phy1[] = { 1180 { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, 1181 }; 1182 static const struct { 1183 uint32_t r1, r2, r3; 1184 } rfprog[] = ZYD_AL2230_CHANTABLE; 1185 1186 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1187 if (error != 0) 1188 goto fail; 1189 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1190 if (error != 0) 1191 goto fail; 1192 error = zyd_rfwrite(sc, rfprog[chan - 1].r3); 1193 if (error != 0) 1194 goto fail; 1195 1196 for (i = 0; i < N(phy1); i++) 1197 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1198 fail: 1199 return (error); 1200 #undef N 1201 } 1202 1203 static int 1204 zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) 1205 { 1206 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1207 int error, i; 1208 struct zyd_softc *sc = rf->rf_sc; 1209 static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; 1210 static const struct { 1211 uint32_t r1, r2, r3; 1212 } rfprog[] = ZYD_AL2230_CHANTABLE_B; 1213 1214 for (i = 0; i < N(phy1); i++) 1215 zyd_write16_m(sc, phy1[i].reg, phy1[i].val); 1216 1217 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); 1218 if (error != 0) 1219 goto fail; 1220 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); 1221 if (error != 0) 1222 goto fail; 1223 error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); 1224 if (error != 0) 1225 goto fail; 1226 error = zyd_al2230_fini(rf); 1227 fail: 1228 return (error); 1229 #undef N 1230 } 1231 1232 #define ZYD_AL2230_PHY_BANDEDGE6 \ 1233 { \ 1234 { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ 1235 { ZYD_CR47, 0x1e } \ 1236 } 1237 1238 static int 1239 zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) 1240 { 1241 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1242 int error = 0, i; 1243 struct zyd_softc *sc = rf->rf_sc; 1244 struct ifnet *ifp = sc->sc_ifp; 1245 struct ieee80211com *ic = ifp->if_l2com; 1246 struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; 1247 int chan = ieee80211_chan2ieee(ic, c); 1248 1249 if (chan == 1 || chan == 11) 1250 r[0].val = 0x12; 1251 1252 for (i = 0; i < N(r); i++) 1253 zyd_write16_m(sc, r[i].reg, r[i].val); 1254 fail: 1255 return (error); 1256 #undef N 1257 } 1258 1259 /* 1260 * AL7230B RF methods. 1261 */ 1262 static int 1263 zyd_al7230B_init(struct zyd_rf *rf) 1264 { 1265 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1266 struct zyd_softc *sc = rf->rf_sc; 1267 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1268 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1269 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1270 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1271 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1272 int i, error; 1273 1274 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1275 1276 /* init RF-dependent PHY registers, part one */ 1277 for (i = 0; i < N(phyini_1); i++) 1278 zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); 1279 1280 /* init AL7230B radio, part one */ 1281 for (i = 0; i < N(rfini_1); i++) { 1282 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1283 return (error); 1284 } 1285 /* init RF-dependent PHY registers, part two */ 1286 for (i = 0; i < N(phyini_2); i++) 1287 zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); 1288 1289 /* init AL7230B radio, part two */ 1290 for (i = 0; i < N(rfini_2); i++) { 1291 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1292 return (error); 1293 } 1294 /* init RF-dependent PHY registers, part three */ 1295 for (i = 0; i < N(phyini_3); i++) 1296 zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); 1297 fail: 1298 return (error); 1299 #undef N 1300 } 1301 1302 static int 1303 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1304 { 1305 int error; 1306 struct zyd_softc *sc = rf->rf_sc; 1307 1308 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1309 zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1310 fail: 1311 return (error); 1312 } 1313 1314 static int 1315 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1316 { 1317 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1318 struct zyd_softc *sc = rf->rf_sc; 1319 static const struct { 1320 uint32_t r1, r2; 1321 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1322 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1323 int i, error; 1324 1325 zyd_write16_m(sc, ZYD_CR240, 0x57); 1326 zyd_write16_m(sc, ZYD_CR251, 0x2f); 1327 1328 for (i = 0; i < N(rfsc); i++) { 1329 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1330 return (error); 1331 } 1332 1333 zyd_write16_m(sc, ZYD_CR128, 0x14); 1334 zyd_write16_m(sc, ZYD_CR129, 0x12); 1335 zyd_write16_m(sc, ZYD_CR130, 0x10); 1336 zyd_write16_m(sc, ZYD_CR38, 0x38); 1337 zyd_write16_m(sc, ZYD_CR136, 0xdf); 1338 1339 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1340 if (error != 0) 1341 goto fail; 1342 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1343 if (error != 0) 1344 goto fail; 1345 error = zyd_rfwrite(sc, 0x3c9000); 1346 if (error != 0) 1347 goto fail; 1348 1349 zyd_write16_m(sc, ZYD_CR251, 0x3f); 1350 zyd_write16_m(sc, ZYD_CR203, 0x06); 1351 zyd_write16_m(sc, ZYD_CR240, 0x08); 1352 fail: 1353 return (error); 1354 #undef N 1355 } 1356 1357 /* 1358 * AL2210 RF methods. 1359 */ 1360 static int 1361 zyd_al2210_init(struct zyd_rf *rf) 1362 { 1363 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1364 struct zyd_softc *sc = rf->rf_sc; 1365 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1366 static const uint32_t rfini[] = ZYD_AL2210_RF; 1367 uint32_t tmp; 1368 int i, error; 1369 1370 zyd_write32_m(sc, ZYD_CR18, 2); 1371 1372 /* init RF-dependent PHY registers */ 1373 for (i = 0; i < N(phyini); i++) 1374 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1375 1376 /* init AL2210 radio */ 1377 for (i = 0; i < N(rfini); i++) { 1378 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1379 return (error); 1380 } 1381 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1382 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1383 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1384 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1385 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1386 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1387 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1388 zyd_write32_m(sc, ZYD_CR18, 3); 1389 fail: 1390 return (error); 1391 #undef N 1392 } 1393 1394 static int 1395 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1396 { 1397 /* vendor driver does nothing for this RF chip */ 1398 1399 return (0); 1400 } 1401 1402 static int 1403 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1404 { 1405 int error; 1406 struct zyd_softc *sc = rf->rf_sc; 1407 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1408 uint32_t tmp; 1409 1410 zyd_write32_m(sc, ZYD_CR18, 2); 1411 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1412 zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); 1413 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1414 zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); 1415 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); 1416 zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); 1417 zyd_write16_m(sc, ZYD_CR47, 0x1e); 1418 1419 /* actually set the channel */ 1420 error = zyd_rfwrite(sc, rfprog[chan - 1]); 1421 if (error != 0) 1422 goto fail; 1423 1424 zyd_write32_m(sc, ZYD_CR18, 3); 1425 fail: 1426 return (error); 1427 } 1428 1429 /* 1430 * GCT RF methods. 1431 */ 1432 static int 1433 zyd_gct_init(struct zyd_rf *rf) 1434 { 1435 #define ZYD_GCT_INTR_REG 0x85c1 1436 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1437 struct zyd_softc *sc = rf->rf_sc; 1438 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1439 static const uint32_t rfini[] = ZYD_GCT_RF; 1440 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1441 int i, idx = -1, error; 1442 uint16_t data; 1443 1444 /* init RF-dependent PHY registers */ 1445 for (i = 0; i < N(phyini); i++) 1446 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1447 1448 /* init cgt radio */ 1449 for (i = 0; i < N(rfini); i++) { 1450 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1451 return (error); 1452 } 1453 1454 error = zyd_gct_mode(rf); 1455 if (error != 0) 1456 return (error); 1457 1458 for (i = 0; i < (int)(N(vco) - 1); i++) { 1459 error = zyd_gct_set_channel_synth(rf, 1, 0); 1460 if (error != 0) 1461 goto fail; 1462 error = zyd_gct_write(rf, vco[i][0]); 1463 if (error != 0) 1464 goto fail; 1465 zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); 1466 zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); 1467 if ((data & 0xf) == 0) { 1468 idx = i; 1469 break; 1470 } 1471 } 1472 if (idx == -1) { 1473 error = zyd_gct_set_channel_synth(rf, 1, 1); 1474 if (error != 0) 1475 goto fail; 1476 error = zyd_gct_write(rf, 0x6662); 1477 if (error != 0) 1478 goto fail; 1479 } 1480 1481 rf->idx = idx; 1482 zyd_write16_m(sc, ZYD_CR203, 0x6); 1483 fail: 1484 return (error); 1485 #undef N 1486 #undef ZYD_GCT_INTR_REG 1487 } 1488 1489 static int 1490 zyd_gct_mode(struct zyd_rf *rf) 1491 { 1492 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1493 struct zyd_softc *sc = rf->rf_sc; 1494 static const uint32_t mode[] = { 1495 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 1496 }; 1497 int i, error; 1498 1499 for (i = 0; i < N(mode); i++) { 1500 if ((error = zyd_rfwrite(sc, mode[i])) != 0) 1501 break; 1502 } 1503 return (error); 1504 #undef N 1505 } 1506 1507 static int 1508 zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) 1509 { 1510 int error, idx = chan - 1; 1511 struct zyd_softc *sc = rf->rf_sc; 1512 static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; 1513 static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; 1514 static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; 1515 1516 error = zyd_rfwrite(sc, 1517 (acal == 1) ? acal_synth[idx] : std_synth[idx]); 1518 if (error != 0) 1519 return (error); 1520 return zyd_rfwrite(sc, div_synth[idx]); 1521 } 1522 1523 static int 1524 zyd_gct_write(struct zyd_rf *rf, uint16_t value) 1525 { 1526 struct zyd_softc *sc = rf->rf_sc; 1527 1528 return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); 1529 } 1530 1531 static int 1532 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1533 { 1534 int error; 1535 struct zyd_softc *sc = rf->rf_sc; 1536 1537 error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); 1538 if (error != 0) 1539 return (error); 1540 1541 zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); 1542 zyd_write16_m(sc, ZYD_CR251, 1543 on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); 1544 fail: 1545 return (error); 1546 } 1547 1548 static int 1549 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1550 { 1551 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1552 int error, i; 1553 struct zyd_softc *sc = rf->rf_sc; 1554 static const struct zyd_phy_pair cmd[] = { 1555 { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, 1556 { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, 1557 }; 1558 static const uint16_t vco[11][7] = ZYD_GCT_VCO; 1559 1560 error = zyd_gct_set_channel_synth(rf, chan, 0); 1561 if (error != 0) 1562 goto fail; 1563 error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : 1564 vco[rf->idx][((chan - 1) / 2)]); 1565 if (error != 0) 1566 goto fail; 1567 error = zyd_gct_mode(rf); 1568 if (error != 0) 1569 return (error); 1570 for (i = 0; i < N(cmd); i++) 1571 zyd_write16_m(sc, cmd[i].reg, cmd[i].val); 1572 error = zyd_gct_txgain(rf, chan); 1573 if (error != 0) 1574 return (error); 1575 zyd_write16_m(sc, ZYD_CR203, 0x6); 1576 fail: 1577 return (error); 1578 #undef N 1579 } 1580 1581 static int 1582 zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) 1583 { 1584 #define N(a) (sizeof(a) / sizeof((a)[0])) 1585 struct zyd_softc *sc = rf->rf_sc; 1586 static uint32_t txgain[] = ZYD_GCT_TXGAIN; 1587 uint8_t idx = sc->sc_pwrint[chan - 1]; 1588 1589 if (idx >= N(txgain)) { 1590 device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", 1591 chan, idx); 1592 return 0; 1593 } 1594 1595 return zyd_rfwrite(sc, 0x700000 | txgain[idx]); 1596 #undef N 1597 } 1598 1599 /* 1600 * Maxim2 RF methods. 1601 */ 1602 static int 1603 zyd_maxim2_init(struct zyd_rf *rf) 1604 { 1605 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1606 struct zyd_softc *sc = rf->rf_sc; 1607 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1608 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1609 uint16_t tmp; 1610 int i, error; 1611 1612 /* init RF-dependent PHY registers */ 1613 for (i = 0; i < N(phyini); i++) 1614 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1615 1616 zyd_read16_m(sc, ZYD_CR203, &tmp); 1617 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1618 1619 /* init maxim2 radio */ 1620 for (i = 0; i < N(rfini); i++) { 1621 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1622 return (error); 1623 } 1624 zyd_read16_m(sc, ZYD_CR203, &tmp); 1625 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1626 fail: 1627 return (error); 1628 #undef N 1629 } 1630 1631 static int 1632 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1633 { 1634 1635 /* vendor driver does nothing for this RF chip */ 1636 return (0); 1637 } 1638 1639 static int 1640 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1641 { 1642 #define N(a) ((int)(sizeof(a) / sizeof((a)[0]))) 1643 struct zyd_softc *sc = rf->rf_sc; 1644 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1645 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1646 static const struct { 1647 uint32_t r1, r2; 1648 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1649 uint16_t tmp; 1650 int i, error; 1651 1652 /* 1653 * Do the same as we do when initializing it, except for the channel 1654 * values coming from the two channel tables. 1655 */ 1656 1657 /* init RF-dependent PHY registers */ 1658 for (i = 0; i < N(phyini); i++) 1659 zyd_write16_m(sc, phyini[i].reg, phyini[i].val); 1660 1661 zyd_read16_m(sc, ZYD_CR203, &tmp); 1662 zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); 1663 1664 /* first two values taken from the chantables */ 1665 error = zyd_rfwrite(sc, rfprog[chan - 1].r1); 1666 if (error != 0) 1667 goto fail; 1668 error = zyd_rfwrite(sc, rfprog[chan - 1].r2); 1669 if (error != 0) 1670 goto fail; 1671 1672 /* init maxim2 radio - skipping the two first values */ 1673 for (i = 2; i < N(rfini); i++) { 1674 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1675 return (error); 1676 } 1677 zyd_read16_m(sc, ZYD_CR203, &tmp); 1678 zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); 1679 fail: 1680 return (error); 1681 #undef N 1682 } 1683 1684 static int 1685 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1686 { 1687 struct zyd_rf *rf = &sc->sc_rf; 1688 1689 rf->rf_sc = sc; 1690 rf->update_pwr = 1; 1691 1692 switch (type) { 1693 case ZYD_RF_RFMD: 1694 rf->init = zyd_rfmd_init; 1695 rf->switch_radio = zyd_rfmd_switch_radio; 1696 rf->set_channel = zyd_rfmd_set_channel; 1697 rf->width = 24; /* 24-bit RF values */ 1698 break; 1699 case ZYD_RF_AL2230: 1700 case ZYD_RF_AL2230S: 1701 if (sc->sc_macrev == ZYD_ZD1211B) { 1702 rf->init = zyd_al2230_init_b; 1703 rf->set_channel = zyd_al2230_set_channel_b; 1704 } else { 1705 rf->init = zyd_al2230_init; 1706 rf->set_channel = zyd_al2230_set_channel; 1707 } 1708 rf->switch_radio = zyd_al2230_switch_radio; 1709 rf->bandedge6 = zyd_al2230_bandedge6; 1710 rf->width = 24; /* 24-bit RF values */ 1711 break; 1712 case ZYD_RF_AL7230B: 1713 rf->init = zyd_al7230B_init; 1714 rf->switch_radio = zyd_al7230B_switch_radio; 1715 rf->set_channel = zyd_al7230B_set_channel; 1716 rf->width = 24; /* 24-bit RF values */ 1717 break; 1718 case ZYD_RF_AL2210: 1719 rf->init = zyd_al2210_init; 1720 rf->switch_radio = zyd_al2210_switch_radio; 1721 rf->set_channel = zyd_al2210_set_channel; 1722 rf->width = 24; /* 24-bit RF values */ 1723 break; 1724 case ZYD_RF_MAXIM_NEW: 1725 case ZYD_RF_GCT: 1726 rf->init = zyd_gct_init; 1727 rf->switch_radio = zyd_gct_switch_radio; 1728 rf->set_channel = zyd_gct_set_channel; 1729 rf->width = 24; /* 24-bit RF values */ 1730 rf->update_pwr = 0; 1731 break; 1732 case ZYD_RF_MAXIM_NEW2: 1733 rf->init = zyd_maxim2_init; 1734 rf->switch_radio = zyd_maxim2_switch_radio; 1735 rf->set_channel = zyd_maxim2_set_channel; 1736 rf->width = 18; /* 18-bit RF values */ 1737 break; 1738 default: 1739 device_printf(sc->sc_dev, 1740 "sorry, radio \"%s\" is not supported yet\n", 1741 zyd_rf_name(type)); 1742 return (EINVAL); 1743 } 1744 return (0); 1745 } 1746 1747 static const char * 1748 zyd_rf_name(uint8_t type) 1749 { 1750 static const char * const zyd_rfs[] = { 1751 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1752 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1753 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1754 "PHILIPS" 1755 }; 1756 1757 return zyd_rfs[(type > 15) ? 0 : type]; 1758 } 1759 1760 static int 1761 zyd_hw_init(struct zyd_softc *sc) 1762 { 1763 int error; 1764 const struct zyd_phy_pair *phyp; 1765 struct zyd_rf *rf = &sc->sc_rf; 1766 uint16_t val; 1767 1768 /* specify that the plug and play is finished */ 1769 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1770 zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); 1771 DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", 1772 sc->sc_fwbase); 1773 1774 /* retrieve firmware revision number */ 1775 zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); 1776 zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); 1777 zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1778 /* set mandatory rates - XXX assumes 802.11b/g */ 1779 zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); 1780 1781 /* disable interrupts */ 1782 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 1783 1784 if ((error = zyd_read_pod(sc)) != 0) { 1785 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1786 goto fail; 1787 } 1788 1789 /* PHY init (resetting) */ 1790 error = zyd_lock_phy(sc); 1791 if (error != 0) 1792 goto fail; 1793 phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1794 for (; phyp->reg != 0; phyp++) 1795 zyd_write16_m(sc, phyp->reg, phyp->val); 1796 if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { 1797 zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); 1798 zyd_write32_m(sc, ZYD_CR157, val >> 8); 1799 } 1800 error = zyd_unlock_phy(sc); 1801 if (error != 0) 1802 goto fail; 1803 1804 /* HMAC init */ 1805 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1806 zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1807 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); 1808 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); 1809 zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); 1810 zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); 1811 zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); 1812 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1813 zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1814 zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1815 zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1816 zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1817 zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1818 zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1819 zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); 1820 zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1821 zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); 1822 zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1823 zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); 1824 zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); 1825 1826 if (sc->sc_macrev == ZYD_ZD1211) { 1827 zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); 1828 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1829 } else { 1830 zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1831 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1832 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1833 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1834 zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1835 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1836 zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); 1837 zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); 1838 zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); 1839 } 1840 1841 /* init beacon interval to 100ms */ 1842 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1843 goto fail; 1844 1845 if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { 1846 device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", 1847 sc->sc_rfrev); 1848 goto fail; 1849 } 1850 1851 /* RF chip init */ 1852 error = zyd_lock_phy(sc); 1853 if (error != 0) 1854 goto fail; 1855 error = (*rf->init)(rf); 1856 if (error != 0) { 1857 device_printf(sc->sc_dev, 1858 "radio initialization failed, error %d\n", error); 1859 goto fail; 1860 } 1861 error = zyd_unlock_phy(sc); 1862 if (error != 0) 1863 goto fail; 1864 1865 if ((error = zyd_read_eeprom(sc)) != 0) { 1866 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1867 goto fail; 1868 } 1869 1870 fail: return (error); 1871 } 1872 1873 static int 1874 zyd_read_pod(struct zyd_softc *sc) 1875 { 1876 int error; 1877 uint32_t tmp; 1878 1879 zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); 1880 sc->sc_rfrev = tmp & 0x0f; 1881 sc->sc_ledtype = (tmp >> 4) & 0x01; 1882 sc->sc_al2230s = (tmp >> 7) & 0x01; 1883 sc->sc_cckgain = (tmp >> 8) & 0x01; 1884 sc->sc_fix_cr157 = (tmp >> 13) & 0x01; 1885 sc->sc_parev = (tmp >> 16) & 0x0f; 1886 sc->sc_bandedge6 = (tmp >> 21) & 0x01; 1887 sc->sc_newphy = (tmp >> 31) & 0x01; 1888 sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; 1889 fail: 1890 return (error); 1891 } 1892 1893 static int 1894 zyd_read_eeprom(struct zyd_softc *sc) 1895 { 1896 uint16_t val; 1897 int error, i; 1898 1899 /* read Tx power calibration tables */ 1900 for (i = 0; i < 7; i++) { 1901 zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1902 sc->sc_pwrcal[i * 2] = val >> 8; 1903 sc->sc_pwrcal[i * 2 + 1] = val & 0xff; 1904 zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); 1905 sc->sc_pwrint[i * 2] = val >> 8; 1906 sc->sc_pwrint[i * 2 + 1] = val & 0xff; 1907 zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); 1908 sc->sc_ofdm36_cal[i * 2] = val >> 8; 1909 sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; 1910 zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); 1911 sc->sc_ofdm48_cal[i * 2] = val >> 8; 1912 sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; 1913 zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); 1914 sc->sc_ofdm54_cal[i * 2] = val >> 8; 1915 sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; 1916 } 1917 fail: 1918 return (error); 1919 } 1920 1921 static int 1922 zyd_get_macaddr(struct zyd_softc *sc) 1923 { 1924 struct usb_device_request req; 1925 usb_error_t error; 1926 1927 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1928 req.bRequest = ZYD_READFWDATAREQ; 1929 USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); 1930 USETW(req.wIndex, 0); 1931 USETW(req.wLength, IEEE80211_ADDR_LEN); 1932 1933 error = zyd_do_request(sc, &req, sc->sc_bssid); 1934 if (error != 0) { 1935 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1936 usbd_errstr(error)); 1937 } 1938 1939 return (error); 1940 } 1941 1942 static int 1943 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1944 { 1945 int error; 1946 uint32_t tmp; 1947 1948 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1949 zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); 1950 tmp = addr[5] << 8 | addr[4]; 1951 zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); 1952 fail: 1953 return (error); 1954 } 1955 1956 static int 1957 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1958 { 1959 int error; 1960 uint32_t tmp; 1961 1962 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1963 zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); 1964 tmp = addr[5] << 8 | addr[4]; 1965 zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); 1966 fail: 1967 return (error); 1968 } 1969 1970 static int 1971 zyd_switch_radio(struct zyd_softc *sc, int on) 1972 { 1973 struct zyd_rf *rf = &sc->sc_rf; 1974 int error; 1975 1976 error = zyd_lock_phy(sc); 1977 if (error != 0) 1978 goto fail; 1979 error = (*rf->switch_radio)(rf, on); 1980 if (error != 0) 1981 goto fail; 1982 error = zyd_unlock_phy(sc); 1983 fail: 1984 return (error); 1985 } 1986 1987 static int 1988 zyd_set_led(struct zyd_softc *sc, int which, int on) 1989 { 1990 int error; 1991 uint32_t tmp; 1992 1993 zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1994 tmp &= ~which; 1995 if (on) 1996 tmp |= which; 1997 zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1998 fail: 1999 return (error); 2000 } 2001 2002 static void 2003 zyd_set_multi(struct zyd_softc *sc) 2004 { 2005 int error; 2006 struct ifnet *ifp = sc->sc_ifp; 2007 struct ieee80211com *ic = ifp->if_l2com; 2008 struct ifmultiaddr *ifma; 2009 uint32_t low, high; 2010 uint8_t v; 2011 2012 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2013 return; 2014 2015 low = 0x00000000; 2016 high = 0x80000000; 2017 2018 if (ic->ic_opmode == IEEE80211_M_MONITOR || 2019 (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) { 2020 low = 0xffffffff; 2021 high = 0xffffffff; 2022 } else { 2023 if_maddr_rlock(ifp); 2024 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2025 if (ifma->ifma_addr->sa_family != AF_LINK) 2026 continue; 2027 v = ((uint8_t *)LLADDR((struct sockaddr_dl *) 2028 ifma->ifma_addr))[5] >> 2; 2029 if (v < 32) 2030 low |= 1 << v; 2031 else 2032 high |= 1 << (v - 32); 2033 } 2034 if_maddr_runlock(ifp); 2035 } 2036 2037 /* reprogram multicast global hash table */ 2038 zyd_write32_m(sc, ZYD_MAC_GHTBL, low); 2039 zyd_write32_m(sc, ZYD_MAC_GHTBH, high); 2040 fail: 2041 if (error != 0) 2042 device_printf(sc->sc_dev, 2043 "could not set multicast hash table\n"); 2044 } 2045 2046 static void 2047 zyd_update_mcast(struct ifnet *ifp) 2048 { 2049 struct zyd_softc *sc = ifp->if_softc; 2050 2051 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2052 return; 2053 2054 ZYD_LOCK(sc); 2055 zyd_set_multi(sc); 2056 ZYD_UNLOCK(sc); 2057 } 2058 2059 static int 2060 zyd_set_rxfilter(struct zyd_softc *sc) 2061 { 2062 struct ifnet *ifp = sc->sc_ifp; 2063 struct ieee80211com *ic = ifp->if_l2com; 2064 uint32_t rxfilter; 2065 2066 switch (ic->ic_opmode) { 2067 case IEEE80211_M_STA: 2068 rxfilter = ZYD_FILTER_BSS; 2069 break; 2070 case IEEE80211_M_IBSS: 2071 case IEEE80211_M_HOSTAP: 2072 rxfilter = ZYD_FILTER_HOSTAP; 2073 break; 2074 case IEEE80211_M_MONITOR: 2075 rxfilter = ZYD_FILTER_MONITOR; 2076 break; 2077 default: 2078 /* should not get there */ 2079 return (EINVAL); 2080 } 2081 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 2082 } 2083 2084 static void 2085 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 2086 { 2087 int error; 2088 struct ifnet *ifp = sc->sc_ifp; 2089 struct ieee80211com *ic = ifp->if_l2com; 2090 struct zyd_rf *rf = &sc->sc_rf; 2091 uint32_t tmp; 2092 int chan; 2093 2094 chan = ieee80211_chan2ieee(ic, c); 2095 if (chan == 0 || chan == IEEE80211_CHAN_ANY) { 2096 /* XXX should NEVER happen */ 2097 device_printf(sc->sc_dev, 2098 "%s: invalid channel %x\n", __func__, chan); 2099 return; 2100 } 2101 2102 error = zyd_lock_phy(sc); 2103 if (error != 0) 2104 goto fail; 2105 2106 error = (*rf->set_channel)(rf, chan); 2107 if (error != 0) 2108 goto fail; 2109 2110 if (rf->update_pwr) { 2111 /* update Tx power */ 2112 zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); 2113 2114 if (sc->sc_macrev == ZYD_ZD1211B) { 2115 zyd_write16_m(sc, ZYD_CR67, 2116 sc->sc_ofdm36_cal[chan - 1]); 2117 zyd_write16_m(sc, ZYD_CR66, 2118 sc->sc_ofdm48_cal[chan - 1]); 2119 zyd_write16_m(sc, ZYD_CR65, 2120 sc->sc_ofdm54_cal[chan - 1]); 2121 zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); 2122 zyd_write16_m(sc, ZYD_CR69, 0x28); 2123 zyd_write16_m(sc, ZYD_CR69, 0x2a); 2124 } 2125 } 2126 if (sc->sc_cckgain) { 2127 /* set CCK baseband gain from EEPROM */ 2128 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 2129 zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); 2130 } 2131 if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { 2132 error = (*rf->bandedge6)(rf, c); 2133 if (error != 0) 2134 goto fail; 2135 } 2136 zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); 2137 2138 error = zyd_unlock_phy(sc); 2139 if (error != 0) 2140 goto fail; 2141 2142 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 2143 htole16(c->ic_freq); 2144 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 2145 htole16(c->ic_flags); 2146 fail: 2147 return; 2148 } 2149 2150 static int 2151 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 2152 { 2153 int error; 2154 uint32_t val; 2155 2156 zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); 2157 sc->sc_atim_wnd = val; 2158 zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); 2159 sc->sc_pre_tbtt = val; 2160 sc->sc_bcn_int = bintval; 2161 2162 if (sc->sc_bcn_int <= 5) 2163 sc->sc_bcn_int = 5; 2164 if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) 2165 sc->sc_pre_tbtt = sc->sc_bcn_int - 1; 2166 if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) 2167 sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; 2168 2169 zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); 2170 zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); 2171 zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); 2172 fail: 2173 return (error); 2174 } 2175 2176 static void 2177 zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) 2178 { 2179 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2180 struct ifnet *ifp = sc->sc_ifp; 2181 struct ieee80211com *ic = ifp->if_l2com; 2182 struct zyd_plcphdr plcp; 2183 struct zyd_rx_stat stat; 2184 struct usb_page_cache *pc; 2185 struct mbuf *m; 2186 int rlen, rssi; 2187 2188 if (len < ZYD_MIN_FRAGSZ) { 2189 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", 2190 device_get_nameunit(sc->sc_dev), len); 2191 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2192 return; 2193 } 2194 pc = usbd_xfer_get_frame(xfer, 0); 2195 usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); 2196 usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); 2197 2198 if (stat.flags & ZYD_RX_ERROR) { 2199 DPRINTF(sc, ZYD_DEBUG_RECV, 2200 "%s: RX status indicated error (%x)\n", 2201 device_get_nameunit(sc->sc_dev), stat.flags); 2202 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2203 return; 2204 } 2205 2206 /* compute actual frame length */ 2207 rlen = len - sizeof(struct zyd_plcphdr) - 2208 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; 2209 2210 /* allocate a mbuf to store the frame */ 2211 if (rlen > (int)MCLBYTES) { 2212 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", 2213 device_get_nameunit(sc->sc_dev), rlen); 2214 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2215 return; 2216 } else if (rlen > (int)MHLEN) 2217 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2218 else 2219 m = m_gethdr(M_NOWAIT, MT_DATA); 2220 if (m == NULL) { 2221 DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", 2222 device_get_nameunit(sc->sc_dev)); 2223 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2224 return; 2225 } 2226 m->m_pkthdr.rcvif = ifp; 2227 m->m_pkthdr.len = m->m_len = rlen; 2228 usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); 2229 2230 if (ieee80211_radiotap_active(ic)) { 2231 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 2232 2233 tap->wr_flags = 0; 2234 if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) 2235 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2236 /* XXX toss, no way to express errors */ 2237 if (stat.flags & ZYD_RX_DECRYPTERR) 2238 tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2239 tap->wr_rate = ieee80211_plcp2rate(plcp.signal, 2240 (stat.flags & ZYD_RX_OFDM) ? 2241 IEEE80211_T_OFDM : IEEE80211_T_CCK); 2242 tap->wr_antsignal = stat.rssi + -95; 2243 tap->wr_antnoise = -95; /* XXX */ 2244 } 2245 rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; 2246 2247 sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; 2248 sc->sc_rx_data[sc->sc_rx_count].m = m; 2249 sc->sc_rx_count++; 2250 } 2251 2252 static void 2253 zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 2254 { 2255 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2256 struct ifnet *ifp = sc->sc_ifp; 2257 struct ieee80211com *ic = ifp->if_l2com; 2258 struct ieee80211_node *ni; 2259 struct zyd_rx_desc desc; 2260 struct mbuf *m; 2261 struct usb_page_cache *pc; 2262 uint32_t offset; 2263 uint8_t rssi; 2264 int8_t nf; 2265 int i; 2266 int actlen; 2267 2268 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2269 2270 sc->sc_rx_count = 0; 2271 switch (USB_GET_STATE(xfer)) { 2272 case USB_ST_TRANSFERRED: 2273 pc = usbd_xfer_get_frame(xfer, 0); 2274 usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); 2275 2276 offset = 0; 2277 if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { 2278 DPRINTF(sc, ZYD_DEBUG_RECV, 2279 "%s: received multi-frame transfer\n", __func__); 2280 2281 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2282 uint16_t len16 = UGETW(desc.len[i]); 2283 2284 if (len16 == 0 || len16 > actlen) 2285 break; 2286 2287 zyd_rx_data(xfer, offset, len16); 2288 2289 /* next frame is aligned on a 32-bit boundary */ 2290 len16 = (len16 + 3) & ~3; 2291 offset += len16; 2292 if (len16 > actlen) 2293 break; 2294 actlen -= len16; 2295 } 2296 } else { 2297 DPRINTF(sc, ZYD_DEBUG_RECV, 2298 "%s: received single-frame transfer\n", __func__); 2299 2300 zyd_rx_data(xfer, 0, actlen); 2301 } 2302 /* FALLTHROUGH */ 2303 case USB_ST_SETUP: 2304 tr_setup: 2305 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 2306 usbd_transfer_submit(xfer); 2307 2308 /* 2309 * At the end of a USB callback it is always safe to unlock 2310 * the private mutex of a device! That is why we do the 2311 * "ieee80211_input" here, and not some lines up! 2312 */ 2313 ZYD_UNLOCK(sc); 2314 for (i = 0; i < sc->sc_rx_count; i++) { 2315 rssi = sc->sc_rx_data[i].rssi; 2316 m = sc->sc_rx_data[i].m; 2317 sc->sc_rx_data[i].m = NULL; 2318 2319 nf = -95; /* XXX */ 2320 2321 ni = ieee80211_find_rxnode(ic, 2322 mtod(m, struct ieee80211_frame_min *)); 2323 if (ni != NULL) { 2324 (void)ieee80211_input(ni, m, rssi, nf); 2325 ieee80211_free_node(ni); 2326 } else 2327 (void)ieee80211_input_all(ic, m, rssi, nf); 2328 } 2329 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2330 !IFQ_IS_EMPTY(&ifp->if_snd)) 2331 zyd_start(ifp); 2332 ZYD_LOCK(sc); 2333 break; 2334 2335 default: /* Error */ 2336 DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); 2337 2338 if (error != USB_ERR_CANCELLED) { 2339 /* try to clear stall first */ 2340 usbd_xfer_set_stall(xfer); 2341 goto tr_setup; 2342 } 2343 break; 2344 } 2345 } 2346 2347 static uint8_t 2348 zyd_plcp_signal(struct zyd_softc *sc, int rate) 2349 { 2350 switch (rate) { 2351 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2352 case 12: 2353 return (0xb); 2354 case 18: 2355 return (0xf); 2356 case 24: 2357 return (0xa); 2358 case 36: 2359 return (0xe); 2360 case 48: 2361 return (0x9); 2362 case 72: 2363 return (0xd); 2364 case 96: 2365 return (0x8); 2366 case 108: 2367 return (0xc); 2368 /* CCK rates (NB: not IEEE std, device-specific) */ 2369 case 2: 2370 return (0x0); 2371 case 4: 2372 return (0x1); 2373 case 11: 2374 return (0x2); 2375 case 22: 2376 return (0x3); 2377 } 2378 2379 device_printf(sc->sc_dev, "unsupported rate %d\n", rate); 2380 return (0x0); 2381 } 2382 2383 static void 2384 zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 2385 { 2386 struct zyd_softc *sc = usbd_xfer_softc(xfer); 2387 struct ifnet *ifp = sc->sc_ifp; 2388 struct ieee80211vap *vap; 2389 struct zyd_tx_data *data; 2390 struct mbuf *m; 2391 struct usb_page_cache *pc; 2392 int actlen; 2393 2394 usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); 2395 2396 switch (USB_GET_STATE(xfer)) { 2397 case USB_ST_TRANSFERRED: 2398 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", 2399 actlen); 2400 2401 /* free resources */ 2402 data = usbd_xfer_get_priv(xfer); 2403 zyd_tx_free(data, 0); 2404 usbd_xfer_set_priv(xfer, NULL); 2405 2406 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2407 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2408 2409 /* FALLTHROUGH */ 2410 case USB_ST_SETUP: 2411 tr_setup: 2412 data = STAILQ_FIRST(&sc->tx_q); 2413 if (data) { 2414 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 2415 m = data->m; 2416 2417 if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { 2418 DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", 2419 m->m_pkthdr.len); 2420 m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; 2421 } 2422 pc = usbd_xfer_get_frame(xfer, 0); 2423 usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); 2424 usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, 2425 m->m_pkthdr.len); 2426 2427 vap = data->ni->ni_vap; 2428 if (ieee80211_radiotap_active_vap(vap)) { 2429 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2430 2431 tap->wt_flags = 0; 2432 tap->wt_rate = data->rate; 2433 2434 ieee80211_radiotap_tx(vap, m); 2435 } 2436 2437 usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); 2438 usbd_xfer_set_priv(xfer, data); 2439 usbd_transfer_submit(xfer); 2440 } 2441 ZYD_UNLOCK(sc); 2442 zyd_start(ifp); 2443 ZYD_LOCK(sc); 2444 break; 2445 2446 default: /* Error */ 2447 DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", 2448 usbd_errstr(error)); 2449 2450 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2451 data = usbd_xfer_get_priv(xfer); 2452 usbd_xfer_set_priv(xfer, NULL); 2453 if (data != NULL) 2454 zyd_tx_free(data, error); 2455 2456 if (error != USB_ERR_CANCELLED) { 2457 if (error == USB_ERR_TIMEOUT) 2458 device_printf(sc->sc_dev, "device timeout\n"); 2459 2460 /* 2461 * Try to clear stall first, also if other 2462 * errors occur, hence clearing stall 2463 * introduces a 50 ms delay: 2464 */ 2465 usbd_xfer_set_stall(xfer); 2466 goto tr_setup; 2467 } 2468 break; 2469 } 2470 } 2471 2472 static int 2473 zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 2474 { 2475 struct ieee80211vap *vap = ni->ni_vap; 2476 struct ieee80211com *ic = ni->ni_ic; 2477 struct zyd_tx_desc *desc; 2478 struct zyd_tx_data *data; 2479 struct ieee80211_frame *wh; 2480 const struct ieee80211_txparam *tp; 2481 struct ieee80211_key *k; 2482 int rate, totlen; 2483 static const uint8_t ratediv[] = ZYD_TX_RATEDIV; 2484 uint8_t phy; 2485 uint16_t pktlen; 2486 uint32_t bits; 2487 2488 wh = mtod(m0, struct ieee80211_frame *); 2489 data = STAILQ_FIRST(&sc->tx_free); 2490 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 2491 sc->tx_nfree--; 2492 2493 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || 2494 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 2495 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2496 rate = tp->mgmtrate; 2497 } else { 2498 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2499 /* for data frames */ 2500 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2501 rate = tp->mcastrate; 2502 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2503 rate = tp->ucastrate; 2504 else { 2505 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2506 rate = ni->ni_txrate; 2507 } 2508 } 2509 2510 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2511 k = ieee80211_crypto_encap(ni, m0); 2512 if (k == NULL) { 2513 m_freem(m0); 2514 return (ENOBUFS); 2515 } 2516 /* packet header may have moved, reset our local pointer */ 2517 wh = mtod(m0, struct ieee80211_frame *); 2518 } 2519 2520 data->ni = ni; 2521 data->m = m0; 2522 data->rate = rate; 2523 2524 /* fill Tx descriptor */ 2525 desc = &data->desc; 2526 phy = zyd_plcp_signal(sc, rate); 2527 desc->phy = phy; 2528 if (ZYD_RATE_IS_OFDM(rate)) { 2529 desc->phy |= ZYD_TX_PHY_OFDM; 2530 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 2531 desc->phy |= ZYD_TX_PHY_5GHZ; 2532 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2533 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2534 2535 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; 2536 desc->len = htole16(totlen); 2537 2538 desc->flags = ZYD_TX_FLAG_BACKOFF; 2539 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2540 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2541 if (totlen > vap->iv_rtsthreshold) { 2542 desc->flags |= ZYD_TX_FLAG_RTS; 2543 } else if (ZYD_RATE_IS_OFDM(rate) && 2544 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2545 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2546 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2547 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2548 desc->flags |= ZYD_TX_FLAG_RTS; 2549 } 2550 } else 2551 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2552 if ((wh->i_fc[0] & 2553 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2554 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2555 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2556 2557 /* actual transmit length (XXX why +10?) */ 2558 pktlen = ZYD_TX_DESC_SIZE + 10; 2559 if (sc->sc_macrev == ZYD_ZD1211) 2560 pktlen += totlen; 2561 desc->pktlen = htole16(pktlen); 2562 2563 bits = (rate == 11) ? (totlen * 16) + 10 : 2564 ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); 2565 desc->plcp_length = htole16(bits / ratediv[phy]); 2566 desc->plcp_service = 0; 2567 if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) 2568 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2569 desc->nextlen = 0; 2570 2571 if (ieee80211_radiotap_active_vap(vap)) { 2572 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2573 2574 tap->wt_flags = 0; 2575 tap->wt_rate = rate; 2576 2577 ieee80211_radiotap_tx(vap, m0); 2578 } 2579 2580 DPRINTF(sc, ZYD_DEBUG_XMIT, 2581 "%s: sending data frame len=%zu rate=%u\n", 2582 device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, 2583 rate); 2584 2585 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 2586 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); 2587 2588 return (0); 2589 } 2590 2591 static void 2592 zyd_start(struct ifnet *ifp) 2593 { 2594 struct zyd_softc *sc = ifp->if_softc; 2595 struct ieee80211_node *ni; 2596 struct mbuf *m; 2597 2598 ZYD_LOCK(sc); 2599 for (;;) { 2600 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2601 if (m == NULL) 2602 break; 2603 if (sc->tx_nfree == 0) { 2604 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2605 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2606 break; 2607 } 2608 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 2609 if (zyd_tx_start(sc, m, ni) != 0) { 2610 ieee80211_free_node(ni); 2611 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2612 break; 2613 } 2614 } 2615 ZYD_UNLOCK(sc); 2616 } 2617 2618 static int 2619 zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2620 const struct ieee80211_bpf_params *params) 2621 { 2622 struct ieee80211com *ic = ni->ni_ic; 2623 struct ifnet *ifp = ic->ic_ifp; 2624 struct zyd_softc *sc = ifp->if_softc; 2625 2626 ZYD_LOCK(sc); 2627 /* prevent management frames from being sent if we're not ready */ 2628 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2629 ZYD_UNLOCK(sc); 2630 m_freem(m); 2631 ieee80211_free_node(ni); 2632 return (ENETDOWN); 2633 } 2634 if (sc->tx_nfree == 0) { 2635 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2636 ZYD_UNLOCK(sc); 2637 m_freem(m); 2638 ieee80211_free_node(ni); 2639 return (ENOBUFS); /* XXX */ 2640 } 2641 2642 /* 2643 * Legacy path; interpret frame contents to decide 2644 * precisely how to send the frame. 2645 * XXX raw path 2646 */ 2647 if (zyd_tx_start(sc, m, ni) != 0) { 2648 ZYD_UNLOCK(sc); 2649 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2650 ieee80211_free_node(ni); 2651 return (EIO); 2652 } 2653 ZYD_UNLOCK(sc); 2654 return (0); 2655 } 2656 2657 static int 2658 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2659 { 2660 struct zyd_softc *sc = ifp->if_softc; 2661 struct ieee80211com *ic = ifp->if_l2com; 2662 struct ifreq *ifr = (struct ifreq *) data; 2663 int error; 2664 int startall = 0; 2665 2666 ZYD_LOCK(sc); 2667 error = (sc->sc_flags & ZYD_FLAG_DETACHED) ? ENXIO : 0; 2668 ZYD_UNLOCK(sc); 2669 if (error) 2670 return (error); 2671 2672 switch (cmd) { 2673 case SIOCSIFFLAGS: 2674 ZYD_LOCK(sc); 2675 if (ifp->if_flags & IFF_UP) { 2676 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2677 zyd_init_locked(sc); 2678 startall = 1; 2679 } else 2680 zyd_set_multi(sc); 2681 } else { 2682 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2683 zyd_stop(sc); 2684 } 2685 ZYD_UNLOCK(sc); 2686 if (startall) 2687 ieee80211_start_all(ic); 2688 break; 2689 case SIOCGIFMEDIA: 2690 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2691 break; 2692 case SIOCGIFADDR: 2693 error = ether_ioctl(ifp, cmd, data); 2694 break; 2695 default: 2696 error = EINVAL; 2697 break; 2698 } 2699 return (error); 2700 } 2701 2702 static void 2703 zyd_init_locked(struct zyd_softc *sc) 2704 { 2705 struct ifnet *ifp = sc->sc_ifp; 2706 struct ieee80211com *ic = ifp->if_l2com; 2707 struct usb_config_descriptor *cd; 2708 int error; 2709 uint32_t val; 2710 2711 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2712 2713 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { 2714 error = zyd_loadfirmware(sc); 2715 if (error != 0) { 2716 device_printf(sc->sc_dev, 2717 "could not load firmware (error=%d)\n", error); 2718 goto fail; 2719 } 2720 2721 /* reset device */ 2722 cd = usbd_get_config_descriptor(sc->sc_udev); 2723 error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, 2724 cd->bConfigurationValue); 2725 if (error) 2726 device_printf(sc->sc_dev, "reset failed, continuing\n"); 2727 2728 error = zyd_hw_init(sc); 2729 if (error) { 2730 device_printf(sc->sc_dev, 2731 "hardware initialization failed\n"); 2732 goto fail; 2733 } 2734 2735 device_printf(sc->sc_dev, 2736 "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " 2737 "BE%x NP%x Gain%x F%x\n", 2738 (sc->sc_macrev == ZYD_ZD1211) ? "": "B", 2739 sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, 2740 zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, 2741 sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, 2742 sc->sc_cckgain, sc->sc_fix_cr157); 2743 2744 /* read regulatory domain (currently unused) */ 2745 zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); 2746 sc->sc_regdomain = val >> 16; 2747 DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", 2748 sc->sc_regdomain); 2749 2750 /* we'll do software WEP decryption for now */ 2751 DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", 2752 __func__); 2753 zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2754 2755 sc->sc_flags |= ZYD_FLAG_INITONCE; 2756 } 2757 2758 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2759 zyd_stop(sc); 2760 2761 DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", 2762 IF_LLADDR(ifp), ":"); 2763 error = zyd_set_macaddr(sc, IF_LLADDR(ifp)); 2764 if (error != 0) 2765 return; 2766 2767 /* set basic rates */ 2768 if (ic->ic_curmode == IEEE80211_MODE_11B) 2769 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); 2770 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2771 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); 2772 else /* assumes 802.11b/g */ 2773 zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); 2774 2775 /* promiscuous mode */ 2776 zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); 2777 /* multicast setup */ 2778 zyd_set_multi(sc); 2779 /* set RX filter */ 2780 error = zyd_set_rxfilter(sc); 2781 if (error != 0) 2782 goto fail; 2783 2784 /* switch radio transmitter ON */ 2785 error = zyd_switch_radio(sc, 1); 2786 if (error != 0) 2787 goto fail; 2788 /* set default BSS channel */ 2789 zyd_set_chan(sc, ic->ic_curchan); 2790 2791 /* 2792 * Allocate Tx and Rx xfer queues. 2793 */ 2794 zyd_setup_tx_list(sc); 2795 2796 /* enable interrupts */ 2797 zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2798 2799 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2800 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2801 usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); 2802 usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); 2803 usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); 2804 2805 return; 2806 2807 fail: zyd_stop(sc); 2808 return; 2809 } 2810 2811 static void 2812 zyd_init(void *priv) 2813 { 2814 struct zyd_softc *sc = priv; 2815 struct ifnet *ifp = sc->sc_ifp; 2816 struct ieee80211com *ic = ifp->if_l2com; 2817 2818 ZYD_LOCK(sc); 2819 zyd_init_locked(sc); 2820 ZYD_UNLOCK(sc); 2821 2822 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2823 ieee80211_start_all(ic); /* start all vap's */ 2824 } 2825 2826 static void 2827 zyd_stop(struct zyd_softc *sc) 2828 { 2829 struct ifnet *ifp = sc->sc_ifp; 2830 int error; 2831 2832 ZYD_LOCK_ASSERT(sc, MA_OWNED); 2833 2834 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2835 2836 /* 2837 * Drain all the transfers, if not already drained: 2838 */ 2839 ZYD_UNLOCK(sc); 2840 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); 2841 usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); 2842 ZYD_LOCK(sc); 2843 2844 zyd_unsetup_tx_list(sc); 2845 2846 /* Stop now if the device was never set up */ 2847 if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) 2848 return; 2849 2850 /* switch radio transmitter OFF */ 2851 error = zyd_switch_radio(sc, 0); 2852 if (error != 0) 2853 goto fail; 2854 /* disable Rx */ 2855 zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); 2856 /* disable interrupts */ 2857 zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); 2858 2859 fail: 2860 return; 2861 } 2862 2863 static int 2864 zyd_loadfirmware(struct zyd_softc *sc) 2865 { 2866 struct usb_device_request req; 2867 size_t size; 2868 u_char *fw; 2869 uint8_t stat; 2870 uint16_t addr; 2871 2872 if (sc->sc_flags & ZYD_FLAG_FWLOADED) 2873 return (0); 2874 2875 if (sc->sc_macrev == ZYD_ZD1211) { 2876 fw = (u_char *)zd1211_firmware; 2877 size = sizeof(zd1211_firmware); 2878 } else { 2879 fw = (u_char *)zd1211b_firmware; 2880 size = sizeof(zd1211b_firmware); 2881 } 2882 2883 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2884 req.bRequest = ZYD_DOWNLOADREQ; 2885 USETW(req.wIndex, 0); 2886 2887 addr = ZYD_FIRMWARE_START_ADDR; 2888 while (size > 0) { 2889 /* 2890 * When the transfer size is 4096 bytes, it is not 2891 * likely to be able to transfer it. 2892 * The cause is port or machine or chip? 2893 */ 2894 const int mlen = min(size, 64); 2895 2896 DPRINTF(sc, ZYD_DEBUG_FW, 2897 "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); 2898 2899 USETW(req.wValue, addr); 2900 USETW(req.wLength, mlen); 2901 if (zyd_do_request(sc, &req, fw) != 0) 2902 return (EIO); 2903 2904 addr += mlen / 2; 2905 fw += mlen; 2906 size -= mlen; 2907 } 2908 2909 /* check whether the upload succeeded */ 2910 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2911 req.bRequest = ZYD_DOWNLOADSTS; 2912 USETW(req.wValue, 0); 2913 USETW(req.wIndex, 0); 2914 USETW(req.wLength, sizeof(stat)); 2915 if (zyd_do_request(sc, &req, &stat) != 0) 2916 return (EIO); 2917 2918 sc->sc_flags |= ZYD_FLAG_FWLOADED; 2919 2920 return (stat & 0x80) ? (EIO) : (0); 2921 } 2922 2923 static void 2924 zyd_scan_start(struct ieee80211com *ic) 2925 { 2926 struct ifnet *ifp = ic->ic_ifp; 2927 struct zyd_softc *sc = ifp->if_softc; 2928 2929 ZYD_LOCK(sc); 2930 /* want broadcast address while scanning */ 2931 zyd_set_bssid(sc, ifp->if_broadcastaddr); 2932 ZYD_UNLOCK(sc); 2933 } 2934 2935 static void 2936 zyd_scan_end(struct ieee80211com *ic) 2937 { 2938 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2939 2940 ZYD_LOCK(sc); 2941 /* restore previous bssid */ 2942 zyd_set_bssid(sc, sc->sc_bssid); 2943 ZYD_UNLOCK(sc); 2944 } 2945 2946 static void 2947 zyd_set_channel(struct ieee80211com *ic) 2948 { 2949 struct zyd_softc *sc = ic->ic_ifp->if_softc; 2950 2951 ZYD_LOCK(sc); 2952 zyd_set_chan(sc, ic->ic_curchan); 2953 ZYD_UNLOCK(sc); 2954 } 2955 2956 static device_method_t zyd_methods[] = { 2957 /* Device interface */ 2958 DEVMETHOD(device_probe, zyd_match), 2959 DEVMETHOD(device_attach, zyd_attach), 2960 DEVMETHOD(device_detach, zyd_detach), 2961 DEVMETHOD_END 2962 }; 2963 2964 static driver_t zyd_driver = { 2965 .name = "zyd", 2966 .methods = zyd_methods, 2967 .size = sizeof(struct zyd_softc) 2968 }; 2969 2970 static devclass_t zyd_devclass; 2971 2972 DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); 2973 MODULE_DEPEND(zyd, usb, 1, 1, 1); 2974 MODULE_DEPEND(zyd, wlan, 1, 1, 1); 2975 MODULE_VERSION(zyd, 1); 2976