xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision f1951fd745b894fe6586c298874af98544a5e272)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/mbuf.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kdb.h>
47 
48 #include <machine/bus.h>
49 #include <machine/resource.h>
50 #include <sys/rman.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 #endif
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #include <net80211/ieee80211_radiotap.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <dev/usb/usb.h>
75 #include <dev/usb/usbdi.h>
76 #include "usbdevs.h"
77 
78 #define	USB_DEBUG_VAR ural_debug
79 #include <dev/usb/usb_debug.h>
80 
81 #include <dev/usb/wlan/if_uralreg.h>
82 #include <dev/usb/wlan/if_uralvar.h>
83 
84 #ifdef USB_DEBUG
85 static int ural_debug = 0;
86 
87 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
88 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
89     "Debug level");
90 #endif
91 
92 #define URAL_RSSI(rssi)					\
93 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
94 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
95 
96 /* various supported device vendors/products */
97 static const STRUCT_USB_HOST_ID ural_devs[] = {
98 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
99 	URAL_DEV(ASUS, WL167G),
100 	URAL_DEV(ASUS, RT2570),
101 	URAL_DEV(BELKIN, F5D7050),
102 	URAL_DEV(BELKIN, F5D7051),
103 	URAL_DEV(CISCOLINKSYS, HU200TS),
104 	URAL_DEV(CISCOLINKSYS, WUSB54G),
105 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
106 	URAL_DEV(CONCEPTRONIC2, C54RU),
107 	URAL_DEV(DLINK, DWLG122),
108 	URAL_DEV(GIGABYTE, GN54G),
109 	URAL_DEV(GIGABYTE, GNWBKG),
110 	URAL_DEV(GUILLEMOT, HWGUSB254),
111 	URAL_DEV(MELCO, KG54),
112 	URAL_DEV(MELCO, KG54AI),
113 	URAL_DEV(MELCO, KG54YB),
114 	URAL_DEV(MELCO, NINWIFI),
115 	URAL_DEV(MSI, RT2570),
116 	URAL_DEV(MSI, RT2570_2),
117 	URAL_DEV(MSI, RT2570_3),
118 	URAL_DEV(NOVATECH, NV902),
119 	URAL_DEV(RALINK, RT2570),
120 	URAL_DEV(RALINK, RT2570_2),
121 	URAL_DEV(RALINK, RT2570_3),
122 	URAL_DEV(SIEMENS2, WL54G),
123 	URAL_DEV(SMC, 2862WG),
124 	URAL_DEV(SPHAIRON, UB801R),
125 	URAL_DEV(SURECOM, RT2570),
126 	URAL_DEV(VTECH, RT2570),
127 	URAL_DEV(ZINWELL, RT2570),
128 #undef URAL_DEV
129 };
130 
131 static usb_callback_t ural_bulk_read_callback;
132 static usb_callback_t ural_bulk_write_callback;
133 
134 static usb_error_t	ural_do_request(struct ural_softc *sc,
135 			    struct usb_device_request *req, void *data);
136 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
137 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
138 			    int, const uint8_t [IEEE80211_ADDR_LEN],
139 			    const uint8_t [IEEE80211_ADDR_LEN]);
140 static void		ural_vap_delete(struct ieee80211vap *);
141 static void		ural_tx_free(struct ural_tx_data *, int);
142 static void		ural_setup_tx_list(struct ural_softc *);
143 static void		ural_unsetup_tx_list(struct ural_softc *);
144 static int		ural_newstate(struct ieee80211vap *,
145 			    enum ieee80211_state, int);
146 static void		ural_setup_tx_desc(struct ural_softc *,
147 			    struct ural_tx_desc *, uint32_t, int, int);
148 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
149 			    struct ieee80211_node *);
150 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
151 			    struct ieee80211_node *);
152 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
153 			    struct ieee80211_node *);
154 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
155 static void		ural_start(struct ural_softc *);
156 static void		ural_parent(struct ieee80211com *);
157 static void		ural_set_testmode(struct ural_softc *);
158 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
159 			    int);
160 static uint16_t		ural_read(struct ural_softc *, uint16_t);
161 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
162 			    int);
163 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
164 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
165 			    int) __unused;
166 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
167 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
168 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
169 static void		ural_scan_start(struct ieee80211com *);
170 static void		ural_scan_end(struct ieee80211com *);
171 static void		ural_getradiocaps(struct ieee80211com *, int, int *,
172 			    struct ieee80211_channel[]);
173 static void		ural_set_channel(struct ieee80211com *);
174 static void		ural_set_chan(struct ural_softc *,
175 			    struct ieee80211_channel *);
176 static void		ural_disable_rf_tune(struct ural_softc *);
177 static void		ural_enable_tsf_sync(struct ural_softc *);
178 static void 		ural_enable_tsf(struct ural_softc *);
179 static void		ural_update_slot(struct ural_softc *);
180 static void		ural_set_txpreamble(struct ural_softc *);
181 static void		ural_set_basicrates(struct ural_softc *,
182 			    const struct ieee80211_channel *);
183 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
184 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
185 static void		ural_update_promisc(struct ieee80211com *);
186 static void		ural_setpromisc(struct ural_softc *);
187 static const char	*ural_get_rf(int);
188 static void		ural_read_eeprom(struct ural_softc *);
189 static int		ural_bbp_init(struct ural_softc *);
190 static void		ural_set_txantenna(struct ural_softc *, int);
191 static void		ural_set_rxantenna(struct ural_softc *, int);
192 static void		ural_init(struct ural_softc *);
193 static void		ural_stop(struct ural_softc *);
194 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
195 			    const struct ieee80211_bpf_params *);
196 static void		ural_ratectl_start(struct ural_softc *,
197 			    struct ieee80211_node *);
198 static void		ural_ratectl_timeout(void *);
199 static void		ural_ratectl_task(void *, int);
200 static int		ural_pause(struct ural_softc *sc, int timeout);
201 
202 /*
203  * Default values for MAC registers; values taken from the reference driver.
204  */
205 static const struct {
206 	uint16_t	reg;
207 	uint16_t	val;
208 } ural_def_mac[] = {
209 	{ RAL_TXRX_CSR5,  0x8c8d },
210 	{ RAL_TXRX_CSR6,  0x8b8a },
211 	{ RAL_TXRX_CSR7,  0x8687 },
212 	{ RAL_TXRX_CSR8,  0x0085 },
213 	{ RAL_MAC_CSR13,  0x1111 },
214 	{ RAL_MAC_CSR14,  0x1e11 },
215 	{ RAL_TXRX_CSR21, 0xe78f },
216 	{ RAL_MAC_CSR9,   0xff1d },
217 	{ RAL_MAC_CSR11,  0x0002 },
218 	{ RAL_MAC_CSR22,  0x0053 },
219 	{ RAL_MAC_CSR15,  0x0000 },
220 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
221 	{ RAL_TXRX_CSR19, 0x0000 },
222 	{ RAL_TXRX_CSR18, 0x005a },
223 	{ RAL_PHY_CSR2,   0x0000 },
224 	{ RAL_TXRX_CSR0,  0x1ec0 },
225 	{ RAL_PHY_CSR4,   0x000f }
226 };
227 
228 /*
229  * Default values for BBP registers; values taken from the reference driver.
230  */
231 static const struct {
232 	uint8_t	reg;
233 	uint8_t	val;
234 } ural_def_bbp[] = {
235 	{  3, 0x02 },
236 	{  4, 0x19 },
237 	{ 14, 0x1c },
238 	{ 15, 0x30 },
239 	{ 16, 0xac },
240 	{ 17, 0x48 },
241 	{ 18, 0x18 },
242 	{ 19, 0xff },
243 	{ 20, 0x1e },
244 	{ 21, 0x08 },
245 	{ 22, 0x08 },
246 	{ 23, 0x08 },
247 	{ 24, 0x80 },
248 	{ 25, 0x50 },
249 	{ 26, 0x08 },
250 	{ 27, 0x23 },
251 	{ 30, 0x10 },
252 	{ 31, 0x2b },
253 	{ 32, 0xb9 },
254 	{ 34, 0x12 },
255 	{ 35, 0x50 },
256 	{ 39, 0xc4 },
257 	{ 40, 0x02 },
258 	{ 41, 0x60 },
259 	{ 53, 0x10 },
260 	{ 54, 0x18 },
261 	{ 56, 0x08 },
262 	{ 57, 0x10 },
263 	{ 58, 0x08 },
264 	{ 61, 0x60 },
265 	{ 62, 0x10 },
266 	{ 75, 0xff }
267 };
268 
269 /*
270  * Default values for RF register R2 indexed by channel numbers.
271  */
272 static const uint32_t ural_rf2522_r2[] = {
273 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
274 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
275 };
276 
277 static const uint32_t ural_rf2523_r2[] = {
278 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
279 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
280 };
281 
282 static const uint32_t ural_rf2524_r2[] = {
283 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
284 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
285 };
286 
287 static const uint32_t ural_rf2525_r2[] = {
288 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
289 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
290 };
291 
292 static const uint32_t ural_rf2525_hi_r2[] = {
293 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
294 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
295 };
296 
297 static const uint32_t ural_rf2525e_r2[] = {
298 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
299 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
300 };
301 
302 static const uint32_t ural_rf2526_hi_r2[] = {
303 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
304 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
305 };
306 
307 static const uint32_t ural_rf2526_r2[] = {
308 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
309 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
310 };
311 
312 /*
313  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
314  * values taken from the reference driver.
315  */
316 static const struct {
317 	uint8_t		chan;
318 	uint32_t	r1;
319 	uint32_t	r2;
320 	uint32_t	r4;
321 } ural_rf5222[] = {
322 	{   1, 0x08808, 0x0044d, 0x00282 },
323 	{   2, 0x08808, 0x0044e, 0x00282 },
324 	{   3, 0x08808, 0x0044f, 0x00282 },
325 	{   4, 0x08808, 0x00460, 0x00282 },
326 	{   5, 0x08808, 0x00461, 0x00282 },
327 	{   6, 0x08808, 0x00462, 0x00282 },
328 	{   7, 0x08808, 0x00463, 0x00282 },
329 	{   8, 0x08808, 0x00464, 0x00282 },
330 	{   9, 0x08808, 0x00465, 0x00282 },
331 	{  10, 0x08808, 0x00466, 0x00282 },
332 	{  11, 0x08808, 0x00467, 0x00282 },
333 	{  12, 0x08808, 0x00468, 0x00282 },
334 	{  13, 0x08808, 0x00469, 0x00282 },
335 	{  14, 0x08808, 0x0046b, 0x00286 },
336 
337 	{  36, 0x08804, 0x06225, 0x00287 },
338 	{  40, 0x08804, 0x06226, 0x00287 },
339 	{  44, 0x08804, 0x06227, 0x00287 },
340 	{  48, 0x08804, 0x06228, 0x00287 },
341 	{  52, 0x08804, 0x06229, 0x00287 },
342 	{  56, 0x08804, 0x0622a, 0x00287 },
343 	{  60, 0x08804, 0x0622b, 0x00287 },
344 	{  64, 0x08804, 0x0622c, 0x00287 },
345 
346 	{ 100, 0x08804, 0x02200, 0x00283 },
347 	{ 104, 0x08804, 0x02201, 0x00283 },
348 	{ 108, 0x08804, 0x02202, 0x00283 },
349 	{ 112, 0x08804, 0x02203, 0x00283 },
350 	{ 116, 0x08804, 0x02204, 0x00283 },
351 	{ 120, 0x08804, 0x02205, 0x00283 },
352 	{ 124, 0x08804, 0x02206, 0x00283 },
353 	{ 128, 0x08804, 0x02207, 0x00283 },
354 	{ 132, 0x08804, 0x02208, 0x00283 },
355 	{ 136, 0x08804, 0x02209, 0x00283 },
356 	{ 140, 0x08804, 0x0220a, 0x00283 },
357 
358 	{ 149, 0x08808, 0x02429, 0x00281 },
359 	{ 153, 0x08808, 0x0242b, 0x00281 },
360 	{ 157, 0x08808, 0x0242d, 0x00281 },
361 	{ 161, 0x08808, 0x0242f, 0x00281 }
362 };
363 
364 static const uint8_t ural_chan_2ghz[] =
365 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
366 
367 static const uint8_t ural_chan_5ghz[] =
368 	{ 36, 40, 44, 48, 52, 56, 60, 64,
369 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
370 	  149, 153, 157, 161 };
371 
372 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
373 	[URAL_BULK_WR] = {
374 		.type = UE_BULK,
375 		.endpoint = UE_ADDR_ANY,
376 		.direction = UE_DIR_OUT,
377 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
378 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
379 		.callback = ural_bulk_write_callback,
380 		.timeout = 5000,	/* ms */
381 	},
382 	[URAL_BULK_RD] = {
383 		.type = UE_BULK,
384 		.endpoint = UE_ADDR_ANY,
385 		.direction = UE_DIR_IN,
386 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
387 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
388 		.callback = ural_bulk_read_callback,
389 	},
390 };
391 
392 static device_probe_t ural_match;
393 static device_attach_t ural_attach;
394 static device_detach_t ural_detach;
395 
396 static device_method_t ural_methods[] = {
397 	/* Device interface */
398 	DEVMETHOD(device_probe,		ural_match),
399 	DEVMETHOD(device_attach,	ural_attach),
400 	DEVMETHOD(device_detach,	ural_detach),
401 	DEVMETHOD_END
402 };
403 
404 static driver_t ural_driver = {
405 	.name = "ural",
406 	.methods = ural_methods,
407 	.size = sizeof(struct ural_softc),
408 };
409 
410 static devclass_t ural_devclass;
411 
412 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
413 MODULE_DEPEND(ural, usb, 1, 1, 1);
414 MODULE_DEPEND(ural, wlan, 1, 1, 1);
415 MODULE_VERSION(ural, 1);
416 USB_PNP_HOST_INFO(ural_devs);
417 
418 static int
419 ural_match(device_t self)
420 {
421 	struct usb_attach_arg *uaa = device_get_ivars(self);
422 
423 	if (uaa->usb_mode != USB_MODE_HOST)
424 		return (ENXIO);
425 	if (uaa->info.bConfigIndex != 0)
426 		return (ENXIO);
427 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
428 		return (ENXIO);
429 
430 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
431 }
432 
433 static int
434 ural_attach(device_t self)
435 {
436 	struct usb_attach_arg *uaa = device_get_ivars(self);
437 	struct ural_softc *sc = device_get_softc(self);
438 	struct ieee80211com *ic = &sc->sc_ic;
439 	uint8_t iface_index;
440 	int error;
441 
442 	device_set_usb_desc(self);
443 	sc->sc_udev = uaa->device;
444 	sc->sc_dev = self;
445 
446 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
447 	    MTX_NETWORK_LOCK, MTX_DEF);
448 	mbufq_init(&sc->sc_snd, ifqmaxlen);
449 
450 	iface_index = RAL_IFACE_INDEX;
451 	error = usbd_transfer_setup(uaa->device,
452 	    &iface_index, sc->sc_xfer, ural_config,
453 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
454 	if (error) {
455 		device_printf(self, "could not allocate USB transfers, "
456 		    "err=%s\n", usbd_errstr(error));
457 		goto detach;
458 	}
459 
460 	RAL_LOCK(sc);
461 	/* retrieve RT2570 rev. no */
462 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
463 
464 	/* retrieve MAC address and various other things from EEPROM */
465 	ural_read_eeprom(sc);
466 	RAL_UNLOCK(sc);
467 
468 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
469 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
470 
471 	ic->ic_softc = sc;
472 	ic->ic_name = device_get_nameunit(self);
473 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
474 
475 	/* set device capabilities */
476 	ic->ic_caps =
477 	      IEEE80211_C_STA		/* station mode supported */
478 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
479 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
480 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
481 	    | IEEE80211_C_TXPMGT	/* tx power management */
482 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
483 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
484 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
485 	    | IEEE80211_C_WPA		/* 802.11i */
486 	    ;
487 
488 	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
489 	    ic->ic_channels);
490 
491 	ieee80211_ifattach(ic);
492 	ic->ic_update_promisc = ural_update_promisc;
493 	ic->ic_raw_xmit = ural_raw_xmit;
494 	ic->ic_scan_start = ural_scan_start;
495 	ic->ic_scan_end = ural_scan_end;
496 	ic->ic_getradiocaps = ural_getradiocaps;
497 	ic->ic_set_channel = ural_set_channel;
498 	ic->ic_parent = ural_parent;
499 	ic->ic_transmit = ural_transmit;
500 	ic->ic_vap_create = ural_vap_create;
501 	ic->ic_vap_delete = ural_vap_delete;
502 
503 	ieee80211_radiotap_attach(ic,
504 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
505 		RAL_TX_RADIOTAP_PRESENT,
506 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
507 		RAL_RX_RADIOTAP_PRESENT);
508 
509 	if (bootverbose)
510 		ieee80211_announce(ic);
511 
512 	return (0);
513 
514 detach:
515 	ural_detach(self);
516 	return (ENXIO);			/* failure */
517 }
518 
519 static int
520 ural_detach(device_t self)
521 {
522 	struct ural_softc *sc = device_get_softc(self);
523 	struct ieee80211com *ic = &sc->sc_ic;
524 
525 	/* prevent further ioctls */
526 	RAL_LOCK(sc);
527 	sc->sc_detached = 1;
528 	RAL_UNLOCK(sc);
529 
530 	/* stop all USB transfers */
531 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
532 
533 	/* free TX list, if any */
534 	RAL_LOCK(sc);
535 	ural_unsetup_tx_list(sc);
536 	RAL_UNLOCK(sc);
537 
538 	if (ic->ic_softc == sc)
539 		ieee80211_ifdetach(ic);
540 	mbufq_drain(&sc->sc_snd);
541 	mtx_destroy(&sc->sc_mtx);
542 
543 	return (0);
544 }
545 
546 static usb_error_t
547 ural_do_request(struct ural_softc *sc,
548     struct usb_device_request *req, void *data)
549 {
550 	usb_error_t err;
551 	int ntries = 10;
552 
553 	while (ntries--) {
554 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
555 		    req, data, 0, NULL, 250 /* ms */);
556 		if (err == 0)
557 			break;
558 
559 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
560 		    usbd_errstr(err));
561 		if (ural_pause(sc, hz / 100))
562 			break;
563 	}
564 	return (err);
565 }
566 
567 static struct ieee80211vap *
568 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
569     enum ieee80211_opmode opmode, int flags,
570     const uint8_t bssid[IEEE80211_ADDR_LEN],
571     const uint8_t mac[IEEE80211_ADDR_LEN])
572 {
573 	struct ural_softc *sc = ic->ic_softc;
574 	struct ural_vap *uvp;
575 	struct ieee80211vap *vap;
576 
577 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
578 		return NULL;
579 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
580 	vap = &uvp->vap;
581 	/* enable s/w bmiss handling for sta mode */
582 
583 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
584 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
585 		/* out of memory */
586 		free(uvp, M_80211_VAP);
587 		return (NULL);
588 	}
589 
590 	/* override state transition machine */
591 	uvp->newstate = vap->iv_newstate;
592 	vap->iv_newstate = ural_newstate;
593 
594 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
595 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
596 	ieee80211_ratectl_init(vap);
597 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
598 
599 	/* complete setup */
600 	ieee80211_vap_attach(vap, ieee80211_media_change,
601 	    ieee80211_media_status, mac);
602 	ic->ic_opmode = opmode;
603 	return vap;
604 }
605 
606 static void
607 ural_vap_delete(struct ieee80211vap *vap)
608 {
609 	struct ural_vap *uvp = URAL_VAP(vap);
610 	struct ieee80211com *ic = vap->iv_ic;
611 
612 	usb_callout_drain(&uvp->ratectl_ch);
613 	ieee80211_draintask(ic, &uvp->ratectl_task);
614 	ieee80211_ratectl_deinit(vap);
615 	ieee80211_vap_detach(vap);
616 	free(uvp, M_80211_VAP);
617 }
618 
619 static void
620 ural_tx_free(struct ural_tx_data *data, int txerr)
621 {
622 	struct ural_softc *sc = data->sc;
623 
624 	if (data->m != NULL) {
625 		ieee80211_tx_complete(data->ni, data->m, txerr);
626 		data->m = NULL;
627 		data->ni = NULL;
628 	}
629 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
630 	sc->tx_nfree++;
631 }
632 
633 static void
634 ural_setup_tx_list(struct ural_softc *sc)
635 {
636 	struct ural_tx_data *data;
637 	int i;
638 
639 	sc->tx_nfree = 0;
640 	STAILQ_INIT(&sc->tx_q);
641 	STAILQ_INIT(&sc->tx_free);
642 
643 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
644 		data = &sc->tx_data[i];
645 
646 		data->sc = sc;
647 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
648 		sc->tx_nfree++;
649 	}
650 }
651 
652 static void
653 ural_unsetup_tx_list(struct ural_softc *sc)
654 {
655 	struct ural_tx_data *data;
656 	int i;
657 
658 	/* make sure any subsequent use of the queues will fail */
659 	sc->tx_nfree = 0;
660 	STAILQ_INIT(&sc->tx_q);
661 	STAILQ_INIT(&sc->tx_free);
662 
663 	/* free up all node references and mbufs */
664 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
665 		data = &sc->tx_data[i];
666 
667 		if (data->m != NULL) {
668 			m_freem(data->m);
669 			data->m = NULL;
670 		}
671 		if (data->ni != NULL) {
672 			ieee80211_free_node(data->ni);
673 			data->ni = NULL;
674 		}
675 	}
676 }
677 
678 static int
679 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
680 {
681 	struct ural_vap *uvp = URAL_VAP(vap);
682 	struct ieee80211com *ic = vap->iv_ic;
683 	struct ural_softc *sc = ic->ic_softc;
684 	const struct ieee80211_txparam *tp;
685 	struct ieee80211_node *ni;
686 	struct mbuf *m;
687 
688 	DPRINTF("%s -> %s\n",
689 		ieee80211_state_name[vap->iv_state],
690 		ieee80211_state_name[nstate]);
691 
692 	IEEE80211_UNLOCK(ic);
693 	RAL_LOCK(sc);
694 	usb_callout_stop(&uvp->ratectl_ch);
695 
696 	switch (nstate) {
697 	case IEEE80211_S_INIT:
698 		if (vap->iv_state == IEEE80211_S_RUN) {
699 			/* abort TSF synchronization */
700 			ural_write(sc, RAL_TXRX_CSR19, 0);
701 
702 			/* force tx led to stop blinking */
703 			ural_write(sc, RAL_MAC_CSR20, 0);
704 		}
705 		break;
706 
707 	case IEEE80211_S_RUN:
708 		ni = ieee80211_ref_node(vap->iv_bss);
709 
710 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
711 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
712 				goto fail;
713 
714 			ural_update_slot(sc);
715 			ural_set_txpreamble(sc);
716 			ural_set_basicrates(sc, ic->ic_bsschan);
717 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
718 			ural_set_bssid(sc, sc->sc_bssid);
719 		}
720 
721 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
722 		    vap->iv_opmode == IEEE80211_M_IBSS) {
723 			m = ieee80211_beacon_alloc(ni);
724 			if (m == NULL) {
725 				device_printf(sc->sc_dev,
726 				    "could not allocate beacon\n");
727 				goto fail;
728 			}
729 			ieee80211_ref_node(ni);
730 			if (ural_tx_bcn(sc, m, ni) != 0) {
731 				device_printf(sc->sc_dev,
732 				    "could not send beacon\n");
733 				goto fail;
734 			}
735 		}
736 
737 		/* make tx led blink on tx (controlled by ASIC) */
738 		ural_write(sc, RAL_MAC_CSR20, 1);
739 
740 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
741 			ural_enable_tsf_sync(sc);
742 		else
743 			ural_enable_tsf(sc);
744 
745 		/* enable automatic rate adaptation */
746 		/* XXX should use ic_bsschan but not valid until after newstate call below */
747 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
748 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
749 			ural_ratectl_start(sc, ni);
750 		ieee80211_free_node(ni);
751 		break;
752 
753 	default:
754 		break;
755 	}
756 	RAL_UNLOCK(sc);
757 	IEEE80211_LOCK(ic);
758 	return (uvp->newstate(vap, nstate, arg));
759 
760 fail:
761 	RAL_UNLOCK(sc);
762 	IEEE80211_LOCK(ic);
763 	ieee80211_free_node(ni);
764 	return (-1);
765 }
766 
767 
768 static void
769 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
770 {
771 	struct ural_softc *sc = usbd_xfer_softc(xfer);
772 	struct ieee80211vap *vap;
773 	struct ural_tx_data *data;
774 	struct mbuf *m;
775 	struct usb_page_cache *pc;
776 	int len;
777 
778 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
779 
780 	switch (USB_GET_STATE(xfer)) {
781 	case USB_ST_TRANSFERRED:
782 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
783 
784 		/* free resources */
785 		data = usbd_xfer_get_priv(xfer);
786 		ural_tx_free(data, 0);
787 		usbd_xfer_set_priv(xfer, NULL);
788 
789 		/* FALLTHROUGH */
790 	case USB_ST_SETUP:
791 tr_setup:
792 		data = STAILQ_FIRST(&sc->tx_q);
793 		if (data) {
794 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
795 			m = data->m;
796 
797 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
798 				DPRINTFN(0, "data overflow, %u bytes\n",
799 				    m->m_pkthdr.len);
800 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
801 			}
802 			pc = usbd_xfer_get_frame(xfer, 0);
803 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
804 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
805 			    m->m_pkthdr.len);
806 
807 			vap = data->ni->ni_vap;
808 			if (ieee80211_radiotap_active_vap(vap)) {
809 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
810 
811 				tap->wt_flags = 0;
812 				tap->wt_rate = data->rate;
813 				tap->wt_antenna = sc->tx_ant;
814 
815 				ieee80211_radiotap_tx(vap, m);
816 			}
817 
818 			/* xfer length needs to be a multiple of two! */
819 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
820 			if ((len % 64) == 0)
821 				len += 2;
822 
823 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
824 			    m->m_pkthdr.len, len);
825 
826 			usbd_xfer_set_frame_len(xfer, 0, len);
827 			usbd_xfer_set_priv(xfer, data);
828 
829 			usbd_transfer_submit(xfer);
830 		}
831 		ural_start(sc);
832 		break;
833 
834 	default:			/* Error */
835 		DPRINTFN(11, "transfer error, %s\n",
836 		    usbd_errstr(error));
837 
838 		data = usbd_xfer_get_priv(xfer);
839 		if (data != NULL) {
840 			ural_tx_free(data, error);
841 			usbd_xfer_set_priv(xfer, NULL);
842 		}
843 
844 		if (error == USB_ERR_STALLED) {
845 			/* try to clear stall first */
846 			usbd_xfer_set_stall(xfer);
847 			goto tr_setup;
848 		}
849 		if (error == USB_ERR_TIMEOUT)
850 			device_printf(sc->sc_dev, "device timeout\n");
851 		break;
852 	}
853 }
854 
855 static void
856 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
857 {
858 	struct ural_softc *sc = usbd_xfer_softc(xfer);
859 	struct ieee80211com *ic = &sc->sc_ic;
860 	struct ieee80211_node *ni;
861 	struct mbuf *m = NULL;
862 	struct usb_page_cache *pc;
863 	uint32_t flags;
864 	int8_t rssi = 0, nf = 0;
865 	int len;
866 
867 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
868 
869 	switch (USB_GET_STATE(xfer)) {
870 	case USB_ST_TRANSFERRED:
871 
872 		DPRINTFN(15, "rx done, actlen=%d\n", len);
873 
874 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
875 			DPRINTF("%s: xfer too short %d\n",
876 			    device_get_nameunit(sc->sc_dev), len);
877 			counter_u64_add(ic->ic_ierrors, 1);
878 			goto tr_setup;
879 		}
880 
881 		len -= RAL_RX_DESC_SIZE;
882 		/* rx descriptor is located at the end */
883 		pc = usbd_xfer_get_frame(xfer, 0);
884 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
885 
886 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
887 		nf = RAL_NOISE_FLOOR;
888 		flags = le32toh(sc->sc_rx_desc.flags);
889 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
890 			/*
891 		         * This should not happen since we did not
892 		         * request to receive those frames when we
893 		         * filled RAL_TXRX_CSR2:
894 		         */
895 			DPRINTFN(5, "PHY or CRC error\n");
896 			counter_u64_add(ic->ic_ierrors, 1);
897 			goto tr_setup;
898 		}
899 
900 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
901 		if (m == NULL) {
902 			DPRINTF("could not allocate mbuf\n");
903 			counter_u64_add(ic->ic_ierrors, 1);
904 			goto tr_setup;
905 		}
906 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
907 
908 		/* finalize mbuf */
909 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
910 
911 		if (ieee80211_radiotap_active(ic)) {
912 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
913 
914 			/* XXX set once */
915 			tap->wr_flags = 0;
916 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
917 			    (flags & RAL_RX_OFDM) ?
918 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
919 			tap->wr_antenna = sc->rx_ant;
920 			tap->wr_antsignal = nf + rssi;
921 			tap->wr_antnoise = nf;
922 		}
923 		/* Strip trailing 802.11 MAC FCS. */
924 		m_adj(m, -IEEE80211_CRC_LEN);
925 
926 		/* FALLTHROUGH */
927 	case USB_ST_SETUP:
928 tr_setup:
929 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
930 		usbd_transfer_submit(xfer);
931 
932 		/*
933 		 * At the end of a USB callback it is always safe to unlock
934 		 * the private mutex of a device! That is why we do the
935 		 * "ieee80211_input" here, and not some lines up!
936 		 */
937 		RAL_UNLOCK(sc);
938 		if (m) {
939 			ni = ieee80211_find_rxnode(ic,
940 			    mtod(m, struct ieee80211_frame_min *));
941 			if (ni != NULL) {
942 				(void) ieee80211_input(ni, m, rssi, nf);
943 				ieee80211_free_node(ni);
944 			} else
945 				(void) ieee80211_input_all(ic, m, rssi, nf);
946 		}
947 		RAL_LOCK(sc);
948 		ural_start(sc);
949 		return;
950 
951 	default:			/* Error */
952 		if (error != USB_ERR_CANCELLED) {
953 			/* try to clear stall first */
954 			usbd_xfer_set_stall(xfer);
955 			goto tr_setup;
956 		}
957 		return;
958 	}
959 }
960 
961 static uint8_t
962 ural_plcp_signal(int rate)
963 {
964 	switch (rate) {
965 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
966 	case 12:	return 0xb;
967 	case 18:	return 0xf;
968 	case 24:	return 0xa;
969 	case 36:	return 0xe;
970 	case 48:	return 0x9;
971 	case 72:	return 0xd;
972 	case 96:	return 0x8;
973 	case 108:	return 0xc;
974 
975 	/* CCK rates (NB: not IEEE std, device-specific) */
976 	case 2:		return 0x0;
977 	case 4:		return 0x1;
978 	case 11:	return 0x2;
979 	case 22:	return 0x3;
980 	}
981 	return 0xff;		/* XXX unsupported/unknown rate */
982 }
983 
984 static void
985 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
986     uint32_t flags, int len, int rate)
987 {
988 	struct ieee80211com *ic = &sc->sc_ic;
989 	uint16_t plcp_length;
990 	int remainder;
991 
992 	desc->flags = htole32(flags);
993 	desc->flags |= htole32(RAL_TX_NEWSEQ);
994 	desc->flags |= htole32(len << 16);
995 
996 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
997 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
998 
999 	/* setup PLCP fields */
1000 	desc->plcp_signal  = ural_plcp_signal(rate);
1001 	desc->plcp_service = 4;
1002 
1003 	len += IEEE80211_CRC_LEN;
1004 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1005 		desc->flags |= htole32(RAL_TX_OFDM);
1006 
1007 		plcp_length = len & 0xfff;
1008 		desc->plcp_length_hi = plcp_length >> 6;
1009 		desc->plcp_length_lo = plcp_length & 0x3f;
1010 	} else {
1011 		if (rate == 0)
1012 			rate = 2;	/* avoid division by zero */
1013 		plcp_length = howmany(16 * len, rate);
1014 		if (rate == 22) {
1015 			remainder = (16 * len) % 22;
1016 			if (remainder != 0 && remainder < 7)
1017 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1018 		}
1019 		desc->plcp_length_hi = plcp_length >> 8;
1020 		desc->plcp_length_lo = plcp_length & 0xff;
1021 
1022 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1023 			desc->plcp_signal |= 0x08;
1024 	}
1025 
1026 	desc->iv = 0;
1027 	desc->eiv = 0;
1028 }
1029 
1030 #define RAL_TX_TIMEOUT	5000
1031 
1032 static int
1033 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1034 {
1035 	struct ieee80211vap *vap = ni->ni_vap;
1036 	struct ieee80211com *ic = ni->ni_ic;
1037 	const struct ieee80211_txparam *tp;
1038 	struct ural_tx_data *data;
1039 
1040 	if (sc->tx_nfree == 0) {
1041 		m_freem(m0);
1042 		ieee80211_free_node(ni);
1043 		return (EIO);
1044 	}
1045 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1046 		m_freem(m0);
1047 		ieee80211_free_node(ni);
1048 		return (ENXIO);
1049 	}
1050 	data = STAILQ_FIRST(&sc->tx_free);
1051 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1052 	sc->tx_nfree--;
1053 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1054 
1055 	data->m = m0;
1056 	data->ni = ni;
1057 	data->rate = tp->mgmtrate;
1058 
1059 	ural_setup_tx_desc(sc, &data->desc,
1060 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1061 	    tp->mgmtrate);
1062 
1063 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1064 	    m0->m_pkthdr.len, tp->mgmtrate);
1065 
1066 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1067 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1068 
1069 	return (0);
1070 }
1071 
1072 static int
1073 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1074 {
1075 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1076 	struct ieee80211com *ic = ni->ni_ic;
1077 	struct ural_tx_data *data;
1078 	struct ieee80211_frame *wh;
1079 	struct ieee80211_key *k;
1080 	uint32_t flags;
1081 	uint16_t dur;
1082 
1083 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1084 
1085 	data = STAILQ_FIRST(&sc->tx_free);
1086 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1087 	sc->tx_nfree--;
1088 
1089 	wh = mtod(m0, struct ieee80211_frame *);
1090 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1091 		k = ieee80211_crypto_encap(ni, m0);
1092 		if (k == NULL) {
1093 			m_freem(m0);
1094 			return ENOBUFS;
1095 		}
1096 		wh = mtod(m0, struct ieee80211_frame *);
1097 	}
1098 
1099 	data->m = m0;
1100 	data->ni = ni;
1101 	data->rate = tp->mgmtrate;
1102 
1103 	flags = 0;
1104 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1105 		flags |= RAL_TX_ACK;
1106 
1107 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1108 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1109 		USETW(wh->i_dur, dur);
1110 
1111 		/* tell hardware to add timestamp for probe responses */
1112 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1113 		    IEEE80211_FC0_TYPE_MGT &&
1114 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1115 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1116 			flags |= RAL_TX_TIMESTAMP;
1117 	}
1118 
1119 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1120 
1121 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1122 	    m0->m_pkthdr.len, tp->mgmtrate);
1123 
1124 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1125 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1126 
1127 	return 0;
1128 }
1129 
1130 static int
1131 ural_sendprot(struct ural_softc *sc,
1132     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1133 {
1134 	struct ieee80211com *ic = ni->ni_ic;
1135 	struct ural_tx_data *data;
1136 	struct mbuf *mprot;
1137 	int protrate, flags;
1138 
1139 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1140 	if (mprot == NULL) {
1141 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1142 		device_printf(sc->sc_dev,
1143 		    "could not allocate mbuf for protection mode %d\n", prot);
1144 		return ENOBUFS;
1145 	}
1146 
1147 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1148 	flags = RAL_TX_RETRY(7);
1149 	if (prot == IEEE80211_PROT_RTSCTS)
1150 		flags |= RAL_TX_ACK;
1151 
1152 	data = STAILQ_FIRST(&sc->tx_free);
1153 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1154 	sc->tx_nfree--;
1155 
1156 	data->m = mprot;
1157 	data->ni = ieee80211_ref_node(ni);
1158 	data->rate = protrate;
1159 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1160 
1161 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1162 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1169     const struct ieee80211_bpf_params *params)
1170 {
1171 	struct ieee80211com *ic = ni->ni_ic;
1172 	struct ural_tx_data *data;
1173 	uint32_t flags;
1174 	int error;
1175 	int rate;
1176 
1177 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1178 	KASSERT(params != NULL, ("no raw xmit params"));
1179 
1180 	rate = params->ibp_rate0;
1181 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1182 		m_freem(m0);
1183 		return EINVAL;
1184 	}
1185 	flags = 0;
1186 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1187 		flags |= RAL_TX_ACK;
1188 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1189 		error = ural_sendprot(sc, m0, ni,
1190 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1191 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1192 		    rate);
1193 		if (error || sc->tx_nfree == 0) {
1194 			m_freem(m0);
1195 			return ENOBUFS;
1196 		}
1197 		flags |= RAL_TX_IFS_SIFS;
1198 	}
1199 
1200 	data = STAILQ_FIRST(&sc->tx_free);
1201 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1202 	sc->tx_nfree--;
1203 
1204 	data->m = m0;
1205 	data->ni = ni;
1206 	data->rate = rate;
1207 
1208 	/* XXX need to setup descriptor ourself */
1209 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1210 
1211 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1212 	    m0->m_pkthdr.len, rate);
1213 
1214 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1215 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1216 
1217 	return 0;
1218 }
1219 
1220 static int
1221 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1222 {
1223 	struct ieee80211vap *vap = ni->ni_vap;
1224 	struct ieee80211com *ic = ni->ni_ic;
1225 	struct ural_tx_data *data;
1226 	struct ieee80211_frame *wh;
1227 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1228 	struct ieee80211_key *k;
1229 	uint32_t flags = 0;
1230 	uint16_t dur;
1231 	int error, rate;
1232 
1233 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1234 
1235 	wh = mtod(m0, struct ieee80211_frame *);
1236 
1237 	if (m0->m_flags & M_EAPOL)
1238 		rate = tp->mgmtrate;
1239 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1240 		rate = tp->mcastrate;
1241 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1242 		rate = tp->ucastrate;
1243 	else {
1244 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1245 		rate = ni->ni_txrate;
1246 	}
1247 
1248 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1249 		k = ieee80211_crypto_encap(ni, m0);
1250 		if (k == NULL) {
1251 			m_freem(m0);
1252 			return ENOBUFS;
1253 		}
1254 		/* packet header may have moved, reset our local pointer */
1255 		wh = mtod(m0, struct ieee80211_frame *);
1256 	}
1257 
1258 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1259 		int prot = IEEE80211_PROT_NONE;
1260 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1261 			prot = IEEE80211_PROT_RTSCTS;
1262 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1263 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1264 			prot = ic->ic_protmode;
1265 		if (prot != IEEE80211_PROT_NONE) {
1266 			error = ural_sendprot(sc, m0, ni, prot, rate);
1267 			if (error || sc->tx_nfree == 0) {
1268 				m_freem(m0);
1269 				return ENOBUFS;
1270 			}
1271 			flags |= RAL_TX_IFS_SIFS;
1272 		}
1273 	}
1274 
1275 	data = STAILQ_FIRST(&sc->tx_free);
1276 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1277 	sc->tx_nfree--;
1278 
1279 	data->m = m0;
1280 	data->ni = ni;
1281 	data->rate = rate;
1282 
1283 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1284 		flags |= RAL_TX_ACK;
1285 		flags |= RAL_TX_RETRY(7);
1286 
1287 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1288 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1289 		USETW(wh->i_dur, dur);
1290 	}
1291 
1292 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1293 
1294 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1295 	    m0->m_pkthdr.len, rate);
1296 
1297 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1298 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1299 
1300 	return 0;
1301 }
1302 
1303 static int
1304 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1305 {
1306 	struct ural_softc *sc = ic->ic_softc;
1307 	int error;
1308 
1309 	RAL_LOCK(sc);
1310 	if (!sc->sc_running) {
1311 		RAL_UNLOCK(sc);
1312 		return (ENXIO);
1313 	}
1314 	error = mbufq_enqueue(&sc->sc_snd, m);
1315 	if (error) {
1316 		RAL_UNLOCK(sc);
1317 		return (error);
1318 	}
1319 	ural_start(sc);
1320 	RAL_UNLOCK(sc);
1321 
1322 	return (0);
1323 }
1324 
1325 static void
1326 ural_start(struct ural_softc *sc)
1327 {
1328 	struct ieee80211_node *ni;
1329 	struct mbuf *m;
1330 
1331 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1332 
1333 	if (sc->sc_running == 0)
1334 		return;
1335 
1336 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1337 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1338 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1339 		if (ural_tx_data(sc, m, ni) != 0) {
1340 			if_inc_counter(ni->ni_vap->iv_ifp,
1341 			     IFCOUNTER_OERRORS, 1);
1342 			ieee80211_free_node(ni);
1343 			break;
1344 		}
1345 	}
1346 }
1347 
1348 static void
1349 ural_parent(struct ieee80211com *ic)
1350 {
1351 	struct ural_softc *sc = ic->ic_softc;
1352 	int startall = 0;
1353 
1354 	RAL_LOCK(sc);
1355 	if (sc->sc_detached) {
1356 		RAL_UNLOCK(sc);
1357 		return;
1358 	}
1359 	if (ic->ic_nrunning > 0) {
1360 		if (sc->sc_running == 0) {
1361 			ural_init(sc);
1362 			startall = 1;
1363 		} else
1364 			ural_setpromisc(sc);
1365 	} else if (sc->sc_running)
1366 		ural_stop(sc);
1367 	RAL_UNLOCK(sc);
1368 	if (startall)
1369 		ieee80211_start_all(ic);
1370 }
1371 
1372 static void
1373 ural_set_testmode(struct ural_softc *sc)
1374 {
1375 	struct usb_device_request req;
1376 	usb_error_t error;
1377 
1378 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1379 	req.bRequest = RAL_VENDOR_REQUEST;
1380 	USETW(req.wValue, 4);
1381 	USETW(req.wIndex, 1);
1382 	USETW(req.wLength, 0);
1383 
1384 	error = ural_do_request(sc, &req, NULL);
1385 	if (error != 0) {
1386 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1387 		    usbd_errstr(error));
1388 	}
1389 }
1390 
1391 static void
1392 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1393 {
1394 	struct usb_device_request req;
1395 	usb_error_t error;
1396 
1397 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1398 	req.bRequest = RAL_READ_EEPROM;
1399 	USETW(req.wValue, 0);
1400 	USETW(req.wIndex, addr);
1401 	USETW(req.wLength, len);
1402 
1403 	error = ural_do_request(sc, &req, buf);
1404 	if (error != 0) {
1405 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1406 		    usbd_errstr(error));
1407 	}
1408 }
1409 
1410 static uint16_t
1411 ural_read(struct ural_softc *sc, uint16_t reg)
1412 {
1413 	struct usb_device_request req;
1414 	usb_error_t error;
1415 	uint16_t val;
1416 
1417 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1418 	req.bRequest = RAL_READ_MAC;
1419 	USETW(req.wValue, 0);
1420 	USETW(req.wIndex, reg);
1421 	USETW(req.wLength, sizeof (uint16_t));
1422 
1423 	error = ural_do_request(sc, &req, &val);
1424 	if (error != 0) {
1425 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1426 		    usbd_errstr(error));
1427 		return 0;
1428 	}
1429 
1430 	return le16toh(val);
1431 }
1432 
1433 static void
1434 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1435 {
1436 	struct usb_device_request req;
1437 	usb_error_t error;
1438 
1439 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1440 	req.bRequest = RAL_READ_MULTI_MAC;
1441 	USETW(req.wValue, 0);
1442 	USETW(req.wIndex, reg);
1443 	USETW(req.wLength, len);
1444 
1445 	error = ural_do_request(sc, &req, buf);
1446 	if (error != 0) {
1447 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1448 		    usbd_errstr(error));
1449 	}
1450 }
1451 
1452 static void
1453 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1454 {
1455 	struct usb_device_request req;
1456 	usb_error_t error;
1457 
1458 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1459 	req.bRequest = RAL_WRITE_MAC;
1460 	USETW(req.wValue, val);
1461 	USETW(req.wIndex, reg);
1462 	USETW(req.wLength, 0);
1463 
1464 	error = ural_do_request(sc, &req, NULL);
1465 	if (error != 0) {
1466 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1467 		    usbd_errstr(error));
1468 	}
1469 }
1470 
1471 static void
1472 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1473 {
1474 	struct usb_device_request req;
1475 	usb_error_t error;
1476 
1477 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1478 	req.bRequest = RAL_WRITE_MULTI_MAC;
1479 	USETW(req.wValue, 0);
1480 	USETW(req.wIndex, reg);
1481 	USETW(req.wLength, len);
1482 
1483 	error = ural_do_request(sc, &req, buf);
1484 	if (error != 0) {
1485 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1486 		    usbd_errstr(error));
1487 	}
1488 }
1489 
1490 static void
1491 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1492 {
1493 	uint16_t tmp;
1494 	int ntries;
1495 
1496 	for (ntries = 0; ntries < 100; ntries++) {
1497 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1498 			break;
1499 		if (ural_pause(sc, hz / 100))
1500 			break;
1501 	}
1502 	if (ntries == 100) {
1503 		device_printf(sc->sc_dev, "could not write to BBP\n");
1504 		return;
1505 	}
1506 
1507 	tmp = reg << 8 | val;
1508 	ural_write(sc, RAL_PHY_CSR7, tmp);
1509 }
1510 
1511 static uint8_t
1512 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1513 {
1514 	uint16_t val;
1515 	int ntries;
1516 
1517 	val = RAL_BBP_WRITE | reg << 8;
1518 	ural_write(sc, RAL_PHY_CSR7, val);
1519 
1520 	for (ntries = 0; ntries < 100; ntries++) {
1521 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1522 			break;
1523 		if (ural_pause(sc, hz / 100))
1524 			break;
1525 	}
1526 	if (ntries == 100) {
1527 		device_printf(sc->sc_dev, "could not read BBP\n");
1528 		return 0;
1529 	}
1530 
1531 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1532 }
1533 
1534 static void
1535 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1536 {
1537 	uint32_t tmp;
1538 	int ntries;
1539 
1540 	for (ntries = 0; ntries < 100; ntries++) {
1541 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1542 			break;
1543 		if (ural_pause(sc, hz / 100))
1544 			break;
1545 	}
1546 	if (ntries == 100) {
1547 		device_printf(sc->sc_dev, "could not write to RF\n");
1548 		return;
1549 	}
1550 
1551 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1552 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1553 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1554 
1555 	/* remember last written value in sc */
1556 	sc->rf_regs[reg] = val;
1557 
1558 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1559 }
1560 
1561 static void
1562 ural_scan_start(struct ieee80211com *ic)
1563 {
1564 	struct ural_softc *sc = ic->ic_softc;
1565 
1566 	RAL_LOCK(sc);
1567 	ural_write(sc, RAL_TXRX_CSR19, 0);
1568 	ural_set_bssid(sc, ieee80211broadcastaddr);
1569 	RAL_UNLOCK(sc);
1570 }
1571 
1572 static void
1573 ural_scan_end(struct ieee80211com *ic)
1574 {
1575 	struct ural_softc *sc = ic->ic_softc;
1576 
1577 	RAL_LOCK(sc);
1578 	ural_enable_tsf_sync(sc);
1579 	ural_set_bssid(sc, sc->sc_bssid);
1580 	RAL_UNLOCK(sc);
1581 
1582 }
1583 
1584 static void
1585 ural_getradiocaps(struct ieee80211com *ic,
1586     int maxchans, int *nchans, struct ieee80211_channel chans[])
1587 {
1588 	struct ural_softc *sc = ic->ic_softc;
1589 	uint8_t bands[IEEE80211_MODE_BYTES];
1590 
1591 	memset(bands, 0, sizeof(bands));
1592 	setbit(bands, IEEE80211_MODE_11B);
1593 	setbit(bands, IEEE80211_MODE_11G);
1594 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1595 	    ural_chan_2ghz, nitems(ural_chan_2ghz), bands, 0);
1596 
1597 	if (sc->rf_rev == RAL_RF_5222) {
1598 		setbit(bands, IEEE80211_MODE_11A);
1599 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1600 		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1601 	}
1602 }
1603 
1604 static void
1605 ural_set_channel(struct ieee80211com *ic)
1606 {
1607 	struct ural_softc *sc = ic->ic_softc;
1608 
1609 	RAL_LOCK(sc);
1610 	ural_set_chan(sc, ic->ic_curchan);
1611 	RAL_UNLOCK(sc);
1612 }
1613 
1614 static void
1615 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1616 {
1617 	struct ieee80211com *ic = &sc->sc_ic;
1618 	uint8_t power, tmp;
1619 	int i, chan;
1620 
1621 	chan = ieee80211_chan2ieee(ic, c);
1622 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1623 		return;
1624 
1625 	if (IEEE80211_IS_CHAN_2GHZ(c))
1626 		power = min(sc->txpow[chan - 1], 31);
1627 	else
1628 		power = 31;
1629 
1630 	/* adjust txpower using ifconfig settings */
1631 	power -= (100 - ic->ic_txpowlimit) / 8;
1632 
1633 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1634 
1635 	switch (sc->rf_rev) {
1636 	case RAL_RF_2522:
1637 		ural_rf_write(sc, RAL_RF1, 0x00814);
1638 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1639 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1640 		break;
1641 
1642 	case RAL_RF_2523:
1643 		ural_rf_write(sc, RAL_RF1, 0x08804);
1644 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1645 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1646 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1647 		break;
1648 
1649 	case RAL_RF_2524:
1650 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1651 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1652 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1653 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1654 		break;
1655 
1656 	case RAL_RF_2525:
1657 		ural_rf_write(sc, RAL_RF1, 0x08808);
1658 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1659 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1660 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1661 
1662 		ural_rf_write(sc, RAL_RF1, 0x08808);
1663 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1664 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1665 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1666 		break;
1667 
1668 	case RAL_RF_2525E:
1669 		ural_rf_write(sc, RAL_RF1, 0x08808);
1670 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1671 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1672 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1673 		break;
1674 
1675 	case RAL_RF_2526:
1676 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1677 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1678 		ural_rf_write(sc, RAL_RF1, 0x08804);
1679 
1680 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1681 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1682 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1683 		break;
1684 
1685 	/* dual-band RF */
1686 	case RAL_RF_5222:
1687 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1688 
1689 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1690 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1691 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1692 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1693 		break;
1694 	}
1695 
1696 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1697 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1698 		/* set Japan filter bit for channel 14 */
1699 		tmp = ural_bbp_read(sc, 70);
1700 
1701 		tmp &= ~RAL_JAPAN_FILTER;
1702 		if (chan == 14)
1703 			tmp |= RAL_JAPAN_FILTER;
1704 
1705 		ural_bbp_write(sc, 70, tmp);
1706 
1707 		/* clear CRC errors */
1708 		ural_read(sc, RAL_STA_CSR0);
1709 
1710 		ural_pause(sc, hz / 100);
1711 		ural_disable_rf_tune(sc);
1712 	}
1713 
1714 	/* XXX doesn't belong here */
1715 	/* update basic rate set */
1716 	ural_set_basicrates(sc, c);
1717 
1718 	/* give the hardware some time to do the switchover */
1719 	ural_pause(sc, hz / 100);
1720 }
1721 
1722 /*
1723  * Disable RF auto-tuning.
1724  */
1725 static void
1726 ural_disable_rf_tune(struct ural_softc *sc)
1727 {
1728 	uint32_t tmp;
1729 
1730 	if (sc->rf_rev != RAL_RF_2523) {
1731 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1732 		ural_rf_write(sc, RAL_RF1, tmp);
1733 	}
1734 
1735 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1736 	ural_rf_write(sc, RAL_RF3, tmp);
1737 
1738 	DPRINTFN(2, "disabling RF autotune\n");
1739 }
1740 
1741 /*
1742  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1743  * synchronization.
1744  */
1745 static void
1746 ural_enable_tsf_sync(struct ural_softc *sc)
1747 {
1748 	struct ieee80211com *ic = &sc->sc_ic;
1749 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1750 	uint16_t logcwmin, preload, tmp;
1751 
1752 	/* first, disable TSF synchronization */
1753 	ural_write(sc, RAL_TXRX_CSR19, 0);
1754 
1755 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1756 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1757 
1758 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1759 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1760 	tmp = logcwmin << 12 | preload;
1761 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1762 
1763 	/* finally, enable TSF synchronization */
1764 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1765 	if (ic->ic_opmode == IEEE80211_M_STA)
1766 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1767 	else
1768 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1769 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1770 
1771 	DPRINTF("enabling TSF synchronization\n");
1772 }
1773 
1774 static void
1775 ural_enable_tsf(struct ural_softc *sc)
1776 {
1777 	/* first, disable TSF synchronization */
1778 	ural_write(sc, RAL_TXRX_CSR19, 0);
1779 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1780 }
1781 
1782 #define RAL_RXTX_TURNAROUND	5	/* us */
1783 static void
1784 ural_update_slot(struct ural_softc *sc)
1785 {
1786 	struct ieee80211com *ic = &sc->sc_ic;
1787 	uint16_t slottime, sifs, eifs;
1788 
1789 	slottime = IEEE80211_GET_SLOTTIME(ic);
1790 
1791 	/*
1792 	 * These settings may sound a bit inconsistent but this is what the
1793 	 * reference driver does.
1794 	 */
1795 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1796 		sifs = 16 - RAL_RXTX_TURNAROUND;
1797 		eifs = 364;
1798 	} else {
1799 		sifs = 10 - RAL_RXTX_TURNAROUND;
1800 		eifs = 64;
1801 	}
1802 
1803 	ural_write(sc, RAL_MAC_CSR10, slottime);
1804 	ural_write(sc, RAL_MAC_CSR11, sifs);
1805 	ural_write(sc, RAL_MAC_CSR12, eifs);
1806 }
1807 
1808 static void
1809 ural_set_txpreamble(struct ural_softc *sc)
1810 {
1811 	struct ieee80211com *ic = &sc->sc_ic;
1812 	uint16_t tmp;
1813 
1814 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1815 
1816 	tmp &= ~RAL_SHORT_PREAMBLE;
1817 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1818 		tmp |= RAL_SHORT_PREAMBLE;
1819 
1820 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1821 }
1822 
1823 static void
1824 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1825 {
1826 	/* XXX wrong, take from rate set */
1827 	/* update basic rate set */
1828 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1829 		/* 11a basic rates: 6, 12, 24Mbps */
1830 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1831 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1832 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1833 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1834 	} else {
1835 		/* 11b basic rates: 1, 2Mbps */
1836 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1837 	}
1838 }
1839 
1840 static void
1841 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1842 {
1843 	uint16_t tmp;
1844 
1845 	tmp = bssid[0] | bssid[1] << 8;
1846 	ural_write(sc, RAL_MAC_CSR5, tmp);
1847 
1848 	tmp = bssid[2] | bssid[3] << 8;
1849 	ural_write(sc, RAL_MAC_CSR6, tmp);
1850 
1851 	tmp = bssid[4] | bssid[5] << 8;
1852 	ural_write(sc, RAL_MAC_CSR7, tmp);
1853 
1854 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1855 }
1856 
1857 static void
1858 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1859 {
1860 	uint16_t tmp;
1861 
1862 	tmp = addr[0] | addr[1] << 8;
1863 	ural_write(sc, RAL_MAC_CSR2, tmp);
1864 
1865 	tmp = addr[2] | addr[3] << 8;
1866 	ural_write(sc, RAL_MAC_CSR3, tmp);
1867 
1868 	tmp = addr[4] | addr[5] << 8;
1869 	ural_write(sc, RAL_MAC_CSR4, tmp);
1870 
1871 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1872 }
1873 
1874 static void
1875 ural_setpromisc(struct ural_softc *sc)
1876 {
1877 	uint32_t tmp;
1878 
1879 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1880 
1881 	tmp &= ~RAL_DROP_NOT_TO_ME;
1882 	if (sc->sc_ic.ic_promisc == 0)
1883 		tmp |= RAL_DROP_NOT_TO_ME;
1884 
1885 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1886 
1887 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1888 	    "entering" : "leaving");
1889 }
1890 
1891 static void
1892 ural_update_promisc(struct ieee80211com *ic)
1893 {
1894 	struct ural_softc *sc = ic->ic_softc;
1895 
1896 	RAL_LOCK(sc);
1897 	if (sc->sc_running)
1898 		ural_setpromisc(sc);
1899 	RAL_UNLOCK(sc);
1900 }
1901 
1902 static const char *
1903 ural_get_rf(int rev)
1904 {
1905 	switch (rev) {
1906 	case RAL_RF_2522:	return "RT2522";
1907 	case RAL_RF_2523:	return "RT2523";
1908 	case RAL_RF_2524:	return "RT2524";
1909 	case RAL_RF_2525:	return "RT2525";
1910 	case RAL_RF_2525E:	return "RT2525e";
1911 	case RAL_RF_2526:	return "RT2526";
1912 	case RAL_RF_5222:	return "RT5222";
1913 	default:		return "unknown";
1914 	}
1915 }
1916 
1917 static void
1918 ural_read_eeprom(struct ural_softc *sc)
1919 {
1920 	struct ieee80211com *ic = &sc->sc_ic;
1921 	uint16_t val;
1922 
1923 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1924 	val = le16toh(val);
1925 	sc->rf_rev =   (val >> 11) & 0x7;
1926 	sc->hw_radio = (val >> 10) & 0x1;
1927 	sc->led_mode = (val >> 6)  & 0x7;
1928 	sc->rx_ant =   (val >> 4)  & 0x3;
1929 	sc->tx_ant =   (val >> 2)  & 0x3;
1930 	sc->nb_ant =   val & 0x3;
1931 
1932 	/* read MAC address */
1933 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1934 
1935 	/* read default values for BBP registers */
1936 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1937 
1938 	/* read Tx power for all b/g channels */
1939 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1940 }
1941 
1942 static int
1943 ural_bbp_init(struct ural_softc *sc)
1944 {
1945 	int i, ntries;
1946 
1947 	/* wait for BBP to be ready */
1948 	for (ntries = 0; ntries < 100; ntries++) {
1949 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1950 			break;
1951 		if (ural_pause(sc, hz / 100))
1952 			break;
1953 	}
1954 	if (ntries == 100) {
1955 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1956 		return EIO;
1957 	}
1958 
1959 	/* initialize BBP registers to default values */
1960 	for (i = 0; i < nitems(ural_def_bbp); i++)
1961 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1962 
1963 #if 0
1964 	/* initialize BBP registers to values stored in EEPROM */
1965 	for (i = 0; i < 16; i++) {
1966 		if (sc->bbp_prom[i].reg == 0xff)
1967 			continue;
1968 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1969 	}
1970 #endif
1971 
1972 	return 0;
1973 }
1974 
1975 static void
1976 ural_set_txantenna(struct ural_softc *sc, int antenna)
1977 {
1978 	uint16_t tmp;
1979 	uint8_t tx;
1980 
1981 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1982 	if (antenna == 1)
1983 		tx |= RAL_BBP_ANTA;
1984 	else if (antenna == 2)
1985 		tx |= RAL_BBP_ANTB;
1986 	else
1987 		tx |= RAL_BBP_DIVERSITY;
1988 
1989 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1990 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1991 	    sc->rf_rev == RAL_RF_5222)
1992 		tx |= RAL_BBP_FLIPIQ;
1993 
1994 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1995 
1996 	/* update values in PHY_CSR5 and PHY_CSR6 */
1997 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1998 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1999 
2000 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2001 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2002 }
2003 
2004 static void
2005 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2006 {
2007 	uint8_t rx;
2008 
2009 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2010 	if (antenna == 1)
2011 		rx |= RAL_BBP_ANTA;
2012 	else if (antenna == 2)
2013 		rx |= RAL_BBP_ANTB;
2014 	else
2015 		rx |= RAL_BBP_DIVERSITY;
2016 
2017 	/* need to force no I/Q flip for RF 2525e and 2526 */
2018 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2019 		rx &= ~RAL_BBP_FLIPIQ;
2020 
2021 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2022 }
2023 
2024 static void
2025 ural_init(struct ural_softc *sc)
2026 {
2027 	struct ieee80211com *ic = &sc->sc_ic;
2028 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2029 	uint16_t tmp;
2030 	int i, ntries;
2031 
2032 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2033 
2034 	ural_set_testmode(sc);
2035 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2036 
2037 	ural_stop(sc);
2038 
2039 	/* initialize MAC registers to default values */
2040 	for (i = 0; i < nitems(ural_def_mac); i++)
2041 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2042 
2043 	/* wait for BBP and RF to wake up (this can take a long time!) */
2044 	for (ntries = 0; ntries < 100; ntries++) {
2045 		tmp = ural_read(sc, RAL_MAC_CSR17);
2046 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2047 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2048 			break;
2049 		if (ural_pause(sc, hz / 100))
2050 			break;
2051 	}
2052 	if (ntries == 100) {
2053 		device_printf(sc->sc_dev,
2054 		    "timeout waiting for BBP/RF to wakeup\n");
2055 		goto fail;
2056 	}
2057 
2058 	/* we're ready! */
2059 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2060 
2061 	/* set basic rate set (will be updated later) */
2062 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2063 
2064 	if (ural_bbp_init(sc) != 0)
2065 		goto fail;
2066 
2067 	ural_set_chan(sc, ic->ic_curchan);
2068 
2069 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2070 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2071 
2072 	ural_set_txantenna(sc, sc->tx_ant);
2073 	ural_set_rxantenna(sc, sc->rx_ant);
2074 
2075 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2076 
2077 	/*
2078 	 * Allocate Tx and Rx xfer queues.
2079 	 */
2080 	ural_setup_tx_list(sc);
2081 
2082 	/* kick Rx */
2083 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2084 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2085 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2086 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2087 			tmp |= RAL_DROP_TODS;
2088 		if (ic->ic_promisc == 0)
2089 			tmp |= RAL_DROP_NOT_TO_ME;
2090 	}
2091 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2092 
2093 	sc->sc_running = 1;
2094 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2095 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2096 	return;
2097 
2098 fail:	ural_stop(sc);
2099 }
2100 
2101 static void
2102 ural_stop(struct ural_softc *sc)
2103 {
2104 
2105 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2106 
2107 	sc->sc_running = 0;
2108 
2109 	/*
2110 	 * Drain all the transfers, if not already drained:
2111 	 */
2112 	RAL_UNLOCK(sc);
2113 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2114 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2115 	RAL_LOCK(sc);
2116 
2117 	ural_unsetup_tx_list(sc);
2118 
2119 	/* disable Rx */
2120 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2121 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2122 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2123 	/* wait a little */
2124 	ural_pause(sc, hz / 10);
2125 	ural_write(sc, RAL_MAC_CSR1, 0);
2126 	/* wait a little */
2127 	ural_pause(sc, hz / 10);
2128 }
2129 
2130 static int
2131 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2132 	const struct ieee80211_bpf_params *params)
2133 {
2134 	struct ieee80211com *ic = ni->ni_ic;
2135 	struct ural_softc *sc = ic->ic_softc;
2136 
2137 	RAL_LOCK(sc);
2138 	/* prevent management frames from being sent if we're not ready */
2139 	if (!sc->sc_running) {
2140 		RAL_UNLOCK(sc);
2141 		m_freem(m);
2142 		return ENETDOWN;
2143 	}
2144 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2145 		RAL_UNLOCK(sc);
2146 		m_freem(m);
2147 		return EIO;
2148 	}
2149 
2150 	if (params == NULL) {
2151 		/*
2152 		 * Legacy path; interpret frame contents to decide
2153 		 * precisely how to send the frame.
2154 		 */
2155 		if (ural_tx_mgt(sc, m, ni) != 0)
2156 			goto bad;
2157 	} else {
2158 		/*
2159 		 * Caller supplied explicit parameters to use in
2160 		 * sending the frame.
2161 		 */
2162 		if (ural_tx_raw(sc, m, ni, params) != 0)
2163 			goto bad;
2164 	}
2165 	RAL_UNLOCK(sc);
2166 	return 0;
2167 bad:
2168 	RAL_UNLOCK(sc);
2169 	return EIO;		/* XXX */
2170 }
2171 
2172 static void
2173 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2174 {
2175 	struct ieee80211vap *vap = ni->ni_vap;
2176 	struct ural_vap *uvp = URAL_VAP(vap);
2177 
2178 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2179 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2180 
2181 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2182 }
2183 
2184 static void
2185 ural_ratectl_timeout(void *arg)
2186 {
2187 	struct ural_vap *uvp = arg;
2188 	struct ieee80211vap *vap = &uvp->vap;
2189 	struct ieee80211com *ic = vap->iv_ic;
2190 
2191 	ieee80211_runtask(ic, &uvp->ratectl_task);
2192 }
2193 
2194 static void
2195 ural_ratectl_task(void *arg, int pending)
2196 {
2197 	struct ural_vap *uvp = arg;
2198 	struct ieee80211vap *vap = &uvp->vap;
2199 	struct ural_softc *sc = vap->iv_ic->ic_softc;
2200 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2201 	int fail;
2202 
2203 	RAL_LOCK(sc);
2204 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2205 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2206 
2207 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2208 	txs->nsuccess = sc->sta[7] +	/* TX ok w/o retry */
2209 			sc->sta[8];	/* TX ok w/ retry */
2210 	fail = sc->sta[9];		/* TX retry-fail count */
2211 	txs->nframes = txs->nsuccess + fail;
2212 	/* XXX fail * maxretry */
2213 	txs->nretries = sc->sta[8] + fail;
2214 
2215 	ieee80211_ratectl_tx_update(vap, txs);
2216 
2217 	/* count TX retry-fail as Tx errors */
2218 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2219 
2220 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2221 	RAL_UNLOCK(sc);
2222 }
2223 
2224 static int
2225 ural_pause(struct ural_softc *sc, int timeout)
2226 {
2227 
2228 	usb_pause_mtx(&sc->sc_mtx, timeout);
2229 	return (0);
2230 }
2231