1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Copyright (c) 2006, 2008 8 * Hans Petter Selasky <hselasky@FreeBSD.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 /*- 27 * Ralink Technology RT2500USB chipset driver 28 * http://www.ralinktech.com/ 29 */ 30 31 #include "opt_wlan.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/mbuf.h> 39 #include <sys/kernel.h> 40 #include <sys/socket.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/module.h> 44 #include <sys/bus.h> 45 #include <sys/endian.h> 46 #include <sys/kdb.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include "usbdevs.h" 73 74 #define USB_DEBUG_VAR ural_debug 75 #include <dev/usb/usb_debug.h> 76 77 #include <dev/usb/wlan/if_uralreg.h> 78 #include <dev/usb/wlan/if_uralvar.h> 79 80 #ifdef USB_DEBUG 81 static int ural_debug = 0; 82 83 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 84 "USB ural"); 85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0, 86 "Debug level"); 87 #endif 88 89 #define URAL_RSSI(rssi) \ 90 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ 91 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) 92 93 /* various supported device vendors/products */ 94 static const STRUCT_USB_HOST_ID ural_devs[] = { 95 #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 96 URAL_DEV(ASUS, WL167G), 97 URAL_DEV(ASUS, RT2570), 98 URAL_DEV(BELKIN, F5D7050), 99 URAL_DEV(BELKIN, F5D7051), 100 URAL_DEV(CISCOLINKSYS, HU200TS), 101 URAL_DEV(CISCOLINKSYS, WUSB54G), 102 URAL_DEV(CISCOLINKSYS, WUSB54GP), 103 URAL_DEV(CONCEPTRONIC2, C54RU), 104 URAL_DEV(DLINK, DWLG122), 105 URAL_DEV(GIGABYTE, GN54G), 106 URAL_DEV(GIGABYTE, GNWBKG), 107 URAL_DEV(GUILLEMOT, HWGUSB254), 108 URAL_DEV(MELCO, KG54), 109 URAL_DEV(MELCO, KG54AI), 110 URAL_DEV(MELCO, KG54YB), 111 URAL_DEV(MELCO, NINWIFI), 112 URAL_DEV(MSI, RT2570), 113 URAL_DEV(MSI, RT2570_2), 114 URAL_DEV(MSI, RT2570_3), 115 URAL_DEV(NOVATECH, NV902), 116 URAL_DEV(RALINK, RT2570), 117 URAL_DEV(RALINK, RT2570_2), 118 URAL_DEV(RALINK, RT2570_3), 119 URAL_DEV(SIEMENS2, WL54G), 120 URAL_DEV(SMC, 2862WG), 121 URAL_DEV(SPHAIRON, UB801R), 122 URAL_DEV(SURECOM, RT2570), 123 URAL_DEV(VTECH, RT2570), 124 URAL_DEV(ZINWELL, RT2570), 125 #undef URAL_DEV 126 }; 127 128 static usb_callback_t ural_bulk_read_callback; 129 static usb_callback_t ural_bulk_write_callback; 130 131 static usb_error_t ural_do_request(struct ural_softc *sc, 132 struct usb_device_request *req, void *data); 133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, 135 int, const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void ural_vap_delete(struct ieee80211vap *); 138 static void ural_tx_free(struct ural_tx_data *, int); 139 static void ural_setup_tx_list(struct ural_softc *); 140 static void ural_unsetup_tx_list(struct ural_softc *); 141 static int ural_newstate(struct ieee80211vap *, 142 enum ieee80211_state, int); 143 static void ural_setup_tx_desc(struct ural_softc *, 144 struct ural_tx_desc *, uint32_t, int, int); 145 static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 146 struct ieee80211_node *); 147 static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 148 struct ieee80211_node *); 149 static int ural_tx_data(struct ural_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 static int ural_transmit(struct ieee80211com *, struct mbuf *); 152 static void ural_start(struct ural_softc *); 153 static void ural_parent(struct ieee80211com *); 154 static void ural_set_testmode(struct ural_softc *); 155 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 156 int); 157 static uint16_t ural_read(struct ural_softc *, uint16_t); 158 static void ural_read_multi(struct ural_softc *, uint16_t, void *, 159 int); 160 static void ural_write(struct ural_softc *, uint16_t, uint16_t); 161 static void ural_write_multi(struct ural_softc *, uint16_t, void *, 162 int) __unused; 163 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 164 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 165 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 166 static void ural_scan_start(struct ieee80211com *); 167 static void ural_scan_end(struct ieee80211com *); 168 static void ural_getradiocaps(struct ieee80211com *, int, int *, 169 struct ieee80211_channel[]); 170 static void ural_set_channel(struct ieee80211com *); 171 static void ural_set_chan(struct ural_softc *, 172 struct ieee80211_channel *); 173 static void ural_disable_rf_tune(struct ural_softc *); 174 static void ural_enable_tsf_sync(struct ural_softc *); 175 static void ural_enable_tsf(struct ural_softc *); 176 static void ural_update_slot(struct ural_softc *); 177 static void ural_set_txpreamble(struct ural_softc *); 178 static void ural_set_basicrates(struct ural_softc *, 179 const struct ieee80211_channel *); 180 static void ural_set_bssid(struct ural_softc *, const uint8_t *); 181 static void ural_set_macaddr(struct ural_softc *, const uint8_t *); 182 static void ural_update_promisc(struct ieee80211com *); 183 static void ural_setpromisc(struct ural_softc *); 184 static const char *ural_get_rf(int); 185 static void ural_read_eeprom(struct ural_softc *); 186 static int ural_bbp_init(struct ural_softc *); 187 static void ural_set_txantenna(struct ural_softc *, int); 188 static void ural_set_rxantenna(struct ural_softc *, int); 189 static void ural_init(struct ural_softc *); 190 static void ural_stop(struct ural_softc *); 191 static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, 192 const struct ieee80211_bpf_params *); 193 static void ural_ratectl_start(struct ural_softc *, 194 struct ieee80211_node *); 195 static void ural_ratectl_timeout(void *); 196 static void ural_ratectl_task(void *, int); 197 static int ural_pause(struct ural_softc *sc, int timeout); 198 199 /* 200 * Default values for MAC registers; values taken from the reference driver. 201 */ 202 static const struct { 203 uint16_t reg; 204 uint16_t val; 205 } ural_def_mac[] = { 206 { RAL_TXRX_CSR5, 0x8c8d }, 207 { RAL_TXRX_CSR6, 0x8b8a }, 208 { RAL_TXRX_CSR7, 0x8687 }, 209 { RAL_TXRX_CSR8, 0x0085 }, 210 { RAL_MAC_CSR13, 0x1111 }, 211 { RAL_MAC_CSR14, 0x1e11 }, 212 { RAL_TXRX_CSR21, 0xe78f }, 213 { RAL_MAC_CSR9, 0xff1d }, 214 { RAL_MAC_CSR11, 0x0002 }, 215 { RAL_MAC_CSR22, 0x0053 }, 216 { RAL_MAC_CSR15, 0x0000 }, 217 { RAL_MAC_CSR8, RAL_FRAME_SIZE }, 218 { RAL_TXRX_CSR19, 0x0000 }, 219 { RAL_TXRX_CSR18, 0x005a }, 220 { RAL_PHY_CSR2, 0x0000 }, 221 { RAL_TXRX_CSR0, 0x1ec0 }, 222 { RAL_PHY_CSR4, 0x000f } 223 }; 224 225 /* 226 * Default values for BBP registers; values taken from the reference driver. 227 */ 228 static const struct { 229 uint8_t reg; 230 uint8_t val; 231 } ural_def_bbp[] = { 232 { 3, 0x02 }, 233 { 4, 0x19 }, 234 { 14, 0x1c }, 235 { 15, 0x30 }, 236 { 16, 0xac }, 237 { 17, 0x48 }, 238 { 18, 0x18 }, 239 { 19, 0xff }, 240 { 20, 0x1e }, 241 { 21, 0x08 }, 242 { 22, 0x08 }, 243 { 23, 0x08 }, 244 { 24, 0x80 }, 245 { 25, 0x50 }, 246 { 26, 0x08 }, 247 { 27, 0x23 }, 248 { 30, 0x10 }, 249 { 31, 0x2b }, 250 { 32, 0xb9 }, 251 { 34, 0x12 }, 252 { 35, 0x50 }, 253 { 39, 0xc4 }, 254 { 40, 0x02 }, 255 { 41, 0x60 }, 256 { 53, 0x10 }, 257 { 54, 0x18 }, 258 { 56, 0x08 }, 259 { 57, 0x10 }, 260 { 58, 0x08 }, 261 { 61, 0x60 }, 262 { 62, 0x10 }, 263 { 75, 0xff } 264 }; 265 266 /* 267 * Default values for RF register R2 indexed by channel numbers. 268 */ 269 static const uint32_t ural_rf2522_r2[] = { 270 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 271 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 272 }; 273 274 static const uint32_t ural_rf2523_r2[] = { 275 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 276 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 277 }; 278 279 static const uint32_t ural_rf2524_r2[] = { 280 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 281 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 282 }; 283 284 static const uint32_t ural_rf2525_r2[] = { 285 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 286 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 287 }; 288 289 static const uint32_t ural_rf2525_hi_r2[] = { 290 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 291 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 292 }; 293 294 static const uint32_t ural_rf2525e_r2[] = { 295 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 296 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 297 }; 298 299 static const uint32_t ural_rf2526_hi_r2[] = { 300 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 301 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 302 }; 303 304 static const uint32_t ural_rf2526_r2[] = { 305 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 306 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 307 }; 308 309 /* 310 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 311 * values taken from the reference driver. 312 */ 313 static const struct { 314 uint8_t chan; 315 uint32_t r1; 316 uint32_t r2; 317 uint32_t r4; 318 } ural_rf5222[] = { 319 { 1, 0x08808, 0x0044d, 0x00282 }, 320 { 2, 0x08808, 0x0044e, 0x00282 }, 321 { 3, 0x08808, 0x0044f, 0x00282 }, 322 { 4, 0x08808, 0x00460, 0x00282 }, 323 { 5, 0x08808, 0x00461, 0x00282 }, 324 { 6, 0x08808, 0x00462, 0x00282 }, 325 { 7, 0x08808, 0x00463, 0x00282 }, 326 { 8, 0x08808, 0x00464, 0x00282 }, 327 { 9, 0x08808, 0x00465, 0x00282 }, 328 { 10, 0x08808, 0x00466, 0x00282 }, 329 { 11, 0x08808, 0x00467, 0x00282 }, 330 { 12, 0x08808, 0x00468, 0x00282 }, 331 { 13, 0x08808, 0x00469, 0x00282 }, 332 { 14, 0x08808, 0x0046b, 0x00286 }, 333 334 { 36, 0x08804, 0x06225, 0x00287 }, 335 { 40, 0x08804, 0x06226, 0x00287 }, 336 { 44, 0x08804, 0x06227, 0x00287 }, 337 { 48, 0x08804, 0x06228, 0x00287 }, 338 { 52, 0x08804, 0x06229, 0x00287 }, 339 { 56, 0x08804, 0x0622a, 0x00287 }, 340 { 60, 0x08804, 0x0622b, 0x00287 }, 341 { 64, 0x08804, 0x0622c, 0x00287 }, 342 343 { 100, 0x08804, 0x02200, 0x00283 }, 344 { 104, 0x08804, 0x02201, 0x00283 }, 345 { 108, 0x08804, 0x02202, 0x00283 }, 346 { 112, 0x08804, 0x02203, 0x00283 }, 347 { 116, 0x08804, 0x02204, 0x00283 }, 348 { 120, 0x08804, 0x02205, 0x00283 }, 349 { 124, 0x08804, 0x02206, 0x00283 }, 350 { 128, 0x08804, 0x02207, 0x00283 }, 351 { 132, 0x08804, 0x02208, 0x00283 }, 352 { 136, 0x08804, 0x02209, 0x00283 }, 353 { 140, 0x08804, 0x0220a, 0x00283 }, 354 355 { 149, 0x08808, 0x02429, 0x00281 }, 356 { 153, 0x08808, 0x0242b, 0x00281 }, 357 { 157, 0x08808, 0x0242d, 0x00281 }, 358 { 161, 0x08808, 0x0242f, 0x00281 } 359 }; 360 361 static const uint8_t ural_chan_5ghz[] = 362 { 36, 40, 44, 48, 52, 56, 60, 64, 363 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 364 149, 153, 157, 161 }; 365 366 static const struct usb_config ural_config[URAL_N_TRANSFER] = { 367 [URAL_BULK_WR] = { 368 .type = UE_BULK, 369 .endpoint = UE_ADDR_ANY, 370 .direction = UE_DIR_OUT, 371 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), 372 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 373 .callback = ural_bulk_write_callback, 374 .timeout = 5000, /* ms */ 375 }, 376 [URAL_BULK_RD] = { 377 .type = UE_BULK, 378 .endpoint = UE_ADDR_ANY, 379 .direction = UE_DIR_IN, 380 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), 381 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 382 .callback = ural_bulk_read_callback, 383 }, 384 }; 385 386 static device_probe_t ural_match; 387 static device_attach_t ural_attach; 388 static device_detach_t ural_detach; 389 390 static device_method_t ural_methods[] = { 391 /* Device interface */ 392 DEVMETHOD(device_probe, ural_match), 393 DEVMETHOD(device_attach, ural_attach), 394 DEVMETHOD(device_detach, ural_detach), 395 DEVMETHOD_END 396 }; 397 398 static driver_t ural_driver = { 399 .name = "ural", 400 .methods = ural_methods, 401 .size = sizeof(struct ural_softc), 402 }; 403 404 static devclass_t ural_devclass; 405 406 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); 407 MODULE_DEPEND(ural, usb, 1, 1, 1); 408 MODULE_DEPEND(ural, wlan, 1, 1, 1); 409 MODULE_VERSION(ural, 1); 410 USB_PNP_HOST_INFO(ural_devs); 411 412 static int 413 ural_match(device_t self) 414 { 415 struct usb_attach_arg *uaa = device_get_ivars(self); 416 417 if (uaa->usb_mode != USB_MODE_HOST) 418 return (ENXIO); 419 if (uaa->info.bConfigIndex != 0) 420 return (ENXIO); 421 if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) 422 return (ENXIO); 423 424 return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); 425 } 426 427 static int 428 ural_attach(device_t self) 429 { 430 struct usb_attach_arg *uaa = device_get_ivars(self); 431 struct ural_softc *sc = device_get_softc(self); 432 struct ieee80211com *ic = &sc->sc_ic; 433 uint8_t iface_index; 434 int error; 435 436 device_set_usb_desc(self); 437 sc->sc_udev = uaa->device; 438 sc->sc_dev = self; 439 440 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 441 MTX_NETWORK_LOCK, MTX_DEF); 442 mbufq_init(&sc->sc_snd, ifqmaxlen); 443 444 iface_index = RAL_IFACE_INDEX; 445 error = usbd_transfer_setup(uaa->device, 446 &iface_index, sc->sc_xfer, ural_config, 447 URAL_N_TRANSFER, sc, &sc->sc_mtx); 448 if (error) { 449 device_printf(self, "could not allocate USB transfers, " 450 "err=%s\n", usbd_errstr(error)); 451 goto detach; 452 } 453 454 RAL_LOCK(sc); 455 /* retrieve RT2570 rev. no */ 456 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 457 458 /* retrieve MAC address and various other things from EEPROM */ 459 ural_read_eeprom(sc); 460 RAL_UNLOCK(sc); 461 462 device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 463 sc->asic_rev, ural_get_rf(sc->rf_rev)); 464 465 ic->ic_softc = sc; 466 ic->ic_name = device_get_nameunit(self); 467 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 468 469 /* set device capabilities */ 470 ic->ic_caps = 471 IEEE80211_C_STA /* station mode supported */ 472 | IEEE80211_C_IBSS /* IBSS mode supported */ 473 | IEEE80211_C_MONITOR /* monitor mode supported */ 474 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 475 | IEEE80211_C_TXPMGT /* tx power management */ 476 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 477 | IEEE80211_C_SHSLOT /* short slot time supported */ 478 | IEEE80211_C_BGSCAN /* bg scanning supported */ 479 | IEEE80211_C_WPA /* 802.11i */ 480 ; 481 482 ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 483 ic->ic_channels); 484 485 ieee80211_ifattach(ic); 486 ic->ic_update_promisc = ural_update_promisc; 487 ic->ic_raw_xmit = ural_raw_xmit; 488 ic->ic_scan_start = ural_scan_start; 489 ic->ic_scan_end = ural_scan_end; 490 ic->ic_getradiocaps = ural_getradiocaps; 491 ic->ic_set_channel = ural_set_channel; 492 ic->ic_parent = ural_parent; 493 ic->ic_transmit = ural_transmit; 494 ic->ic_vap_create = ural_vap_create; 495 ic->ic_vap_delete = ural_vap_delete; 496 497 ieee80211_radiotap_attach(ic, 498 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 499 RAL_TX_RADIOTAP_PRESENT, 500 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 501 RAL_RX_RADIOTAP_PRESENT); 502 503 if (bootverbose) 504 ieee80211_announce(ic); 505 506 return (0); 507 508 detach: 509 ural_detach(self); 510 return (ENXIO); /* failure */ 511 } 512 513 static int 514 ural_detach(device_t self) 515 { 516 struct ural_softc *sc = device_get_softc(self); 517 struct ieee80211com *ic = &sc->sc_ic; 518 519 /* prevent further ioctls */ 520 RAL_LOCK(sc); 521 sc->sc_detached = 1; 522 RAL_UNLOCK(sc); 523 524 /* stop all USB transfers */ 525 usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); 526 527 /* free TX list, if any */ 528 RAL_LOCK(sc); 529 ural_unsetup_tx_list(sc); 530 RAL_UNLOCK(sc); 531 532 if (ic->ic_softc == sc) 533 ieee80211_ifdetach(ic); 534 mbufq_drain(&sc->sc_snd); 535 mtx_destroy(&sc->sc_mtx); 536 537 return (0); 538 } 539 540 static usb_error_t 541 ural_do_request(struct ural_softc *sc, 542 struct usb_device_request *req, void *data) 543 { 544 usb_error_t err; 545 int ntries = 10; 546 547 while (ntries--) { 548 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 549 req, data, 0, NULL, 250 /* ms */); 550 if (err == 0) 551 break; 552 553 DPRINTFN(1, "Control request failed, %s (retrying)\n", 554 usbd_errstr(err)); 555 if (ural_pause(sc, hz / 100)) 556 break; 557 } 558 return (err); 559 } 560 561 static struct ieee80211vap * 562 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 563 enum ieee80211_opmode opmode, int flags, 564 const uint8_t bssid[IEEE80211_ADDR_LEN], 565 const uint8_t mac[IEEE80211_ADDR_LEN]) 566 { 567 struct ural_softc *sc = ic->ic_softc; 568 struct ural_vap *uvp; 569 struct ieee80211vap *vap; 570 571 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 572 return NULL; 573 uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO); 574 vap = &uvp->vap; 575 /* enable s/w bmiss handling for sta mode */ 576 577 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 578 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 579 /* out of memory */ 580 free(uvp, M_80211_VAP); 581 return (NULL); 582 } 583 584 /* override state transition machine */ 585 uvp->newstate = vap->iv_newstate; 586 vap->iv_newstate = ural_newstate; 587 588 usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); 589 TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); 590 ieee80211_ratectl_init(vap); 591 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 592 593 /* complete setup */ 594 ieee80211_vap_attach(vap, ieee80211_media_change, 595 ieee80211_media_status, mac); 596 ic->ic_opmode = opmode; 597 return vap; 598 } 599 600 static void 601 ural_vap_delete(struct ieee80211vap *vap) 602 { 603 struct ural_vap *uvp = URAL_VAP(vap); 604 struct ieee80211com *ic = vap->iv_ic; 605 606 usb_callout_drain(&uvp->ratectl_ch); 607 ieee80211_draintask(ic, &uvp->ratectl_task); 608 ieee80211_ratectl_deinit(vap); 609 ieee80211_vap_detach(vap); 610 free(uvp, M_80211_VAP); 611 } 612 613 static void 614 ural_tx_free(struct ural_tx_data *data, int txerr) 615 { 616 struct ural_softc *sc = data->sc; 617 618 if (data->m != NULL) { 619 ieee80211_tx_complete(data->ni, data->m, txerr); 620 data->m = NULL; 621 data->ni = NULL; 622 } 623 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 624 sc->tx_nfree++; 625 } 626 627 static void 628 ural_setup_tx_list(struct ural_softc *sc) 629 { 630 struct ural_tx_data *data; 631 int i; 632 633 sc->tx_nfree = 0; 634 STAILQ_INIT(&sc->tx_q); 635 STAILQ_INIT(&sc->tx_free); 636 637 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 638 data = &sc->tx_data[i]; 639 640 data->sc = sc; 641 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 642 sc->tx_nfree++; 643 } 644 } 645 646 static void 647 ural_unsetup_tx_list(struct ural_softc *sc) 648 { 649 struct ural_tx_data *data; 650 int i; 651 652 /* make sure any subsequent use of the queues will fail */ 653 sc->tx_nfree = 0; 654 STAILQ_INIT(&sc->tx_q); 655 STAILQ_INIT(&sc->tx_free); 656 657 /* free up all node references and mbufs */ 658 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 659 data = &sc->tx_data[i]; 660 661 if (data->m != NULL) { 662 m_freem(data->m); 663 data->m = NULL; 664 } 665 if (data->ni != NULL) { 666 ieee80211_free_node(data->ni); 667 data->ni = NULL; 668 } 669 } 670 } 671 672 static int 673 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 674 { 675 struct ural_vap *uvp = URAL_VAP(vap); 676 struct ieee80211com *ic = vap->iv_ic; 677 struct ural_softc *sc = ic->ic_softc; 678 const struct ieee80211_txparam *tp; 679 struct ieee80211_node *ni; 680 struct mbuf *m; 681 682 DPRINTF("%s -> %s\n", 683 ieee80211_state_name[vap->iv_state], 684 ieee80211_state_name[nstate]); 685 686 IEEE80211_UNLOCK(ic); 687 RAL_LOCK(sc); 688 usb_callout_stop(&uvp->ratectl_ch); 689 690 switch (nstate) { 691 case IEEE80211_S_INIT: 692 if (vap->iv_state == IEEE80211_S_RUN) { 693 /* abort TSF synchronization */ 694 ural_write(sc, RAL_TXRX_CSR19, 0); 695 696 /* force tx led to stop blinking */ 697 ural_write(sc, RAL_MAC_CSR20, 0); 698 } 699 break; 700 701 case IEEE80211_S_RUN: 702 ni = ieee80211_ref_node(vap->iv_bss); 703 704 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 705 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 706 goto fail; 707 708 ural_update_slot(sc); 709 ural_set_txpreamble(sc); 710 ural_set_basicrates(sc, ic->ic_bsschan); 711 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 712 ural_set_bssid(sc, sc->sc_bssid); 713 } 714 715 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 716 vap->iv_opmode == IEEE80211_M_IBSS) { 717 m = ieee80211_beacon_alloc(ni); 718 if (m == NULL) { 719 device_printf(sc->sc_dev, 720 "could not allocate beacon\n"); 721 goto fail; 722 } 723 ieee80211_ref_node(ni); 724 if (ural_tx_bcn(sc, m, ni) != 0) { 725 device_printf(sc->sc_dev, 726 "could not send beacon\n"); 727 goto fail; 728 } 729 } 730 731 /* make tx led blink on tx (controlled by ASIC) */ 732 ural_write(sc, RAL_MAC_CSR20, 1); 733 734 if (vap->iv_opmode != IEEE80211_M_MONITOR) 735 ural_enable_tsf_sync(sc); 736 else 737 ural_enable_tsf(sc); 738 739 /* enable automatic rate adaptation */ 740 /* XXX should use ic_bsschan but not valid until after newstate call below */ 741 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 742 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 743 ural_ratectl_start(sc, ni); 744 ieee80211_free_node(ni); 745 break; 746 747 default: 748 break; 749 } 750 RAL_UNLOCK(sc); 751 IEEE80211_LOCK(ic); 752 return (uvp->newstate(vap, nstate, arg)); 753 754 fail: 755 RAL_UNLOCK(sc); 756 IEEE80211_LOCK(ic); 757 ieee80211_free_node(ni); 758 return (-1); 759 } 760 761 static void 762 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 763 { 764 struct ural_softc *sc = usbd_xfer_softc(xfer); 765 struct ieee80211vap *vap; 766 struct ural_tx_data *data; 767 struct mbuf *m; 768 struct usb_page_cache *pc; 769 int len; 770 771 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 772 773 switch (USB_GET_STATE(xfer)) { 774 case USB_ST_TRANSFERRED: 775 DPRINTFN(11, "transfer complete, %d bytes\n", len); 776 777 /* free resources */ 778 data = usbd_xfer_get_priv(xfer); 779 ural_tx_free(data, 0); 780 usbd_xfer_set_priv(xfer, NULL); 781 782 /* FALLTHROUGH */ 783 case USB_ST_SETUP: 784 tr_setup: 785 data = STAILQ_FIRST(&sc->tx_q); 786 if (data) { 787 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 788 m = data->m; 789 790 if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { 791 DPRINTFN(0, "data overflow, %u bytes\n", 792 m->m_pkthdr.len); 793 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); 794 } 795 pc = usbd_xfer_get_frame(xfer, 0); 796 usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); 797 usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, 798 m->m_pkthdr.len); 799 800 vap = data->ni->ni_vap; 801 if (ieee80211_radiotap_active_vap(vap)) { 802 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 803 804 tap->wt_flags = 0; 805 tap->wt_rate = data->rate; 806 tap->wt_antenna = sc->tx_ant; 807 808 ieee80211_radiotap_tx(vap, m); 809 } 810 811 /* xfer length needs to be a multiple of two! */ 812 len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; 813 if ((len % 64) == 0) 814 len += 2; 815 816 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 817 m->m_pkthdr.len, len); 818 819 usbd_xfer_set_frame_len(xfer, 0, len); 820 usbd_xfer_set_priv(xfer, data); 821 822 usbd_transfer_submit(xfer); 823 } 824 ural_start(sc); 825 break; 826 827 default: /* Error */ 828 DPRINTFN(11, "transfer error, %s\n", 829 usbd_errstr(error)); 830 831 data = usbd_xfer_get_priv(xfer); 832 if (data != NULL) { 833 ural_tx_free(data, error); 834 usbd_xfer_set_priv(xfer, NULL); 835 } 836 837 if (error == USB_ERR_STALLED) { 838 /* try to clear stall first */ 839 usbd_xfer_set_stall(xfer); 840 goto tr_setup; 841 } 842 if (error == USB_ERR_TIMEOUT) 843 device_printf(sc->sc_dev, "device timeout\n"); 844 break; 845 } 846 } 847 848 static void 849 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 850 { 851 struct ural_softc *sc = usbd_xfer_softc(xfer); 852 struct ieee80211com *ic = &sc->sc_ic; 853 struct ieee80211_node *ni; 854 struct epoch_tracker et; 855 struct mbuf *m = NULL; 856 struct usb_page_cache *pc; 857 uint32_t flags; 858 int8_t rssi = 0, nf = 0; 859 int len; 860 861 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 862 863 switch (USB_GET_STATE(xfer)) { 864 case USB_ST_TRANSFERRED: 865 866 DPRINTFN(15, "rx done, actlen=%d\n", len); 867 868 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 869 DPRINTF("%s: xfer too short %d\n", 870 device_get_nameunit(sc->sc_dev), len); 871 counter_u64_add(ic->ic_ierrors, 1); 872 goto tr_setup; 873 } 874 875 len -= RAL_RX_DESC_SIZE; 876 /* rx descriptor is located at the end */ 877 pc = usbd_xfer_get_frame(xfer, 0); 878 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); 879 880 rssi = URAL_RSSI(sc->sc_rx_desc.rssi); 881 nf = RAL_NOISE_FLOOR; 882 flags = le32toh(sc->sc_rx_desc.flags); 883 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 884 /* 885 * This should not happen since we did not 886 * request to receive those frames when we 887 * filled RAL_TXRX_CSR2: 888 */ 889 DPRINTFN(5, "PHY or CRC error\n"); 890 counter_u64_add(ic->ic_ierrors, 1); 891 goto tr_setup; 892 } 893 894 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 895 if (m == NULL) { 896 DPRINTF("could not allocate mbuf\n"); 897 counter_u64_add(ic->ic_ierrors, 1); 898 goto tr_setup; 899 } 900 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); 901 902 /* finalize mbuf */ 903 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 904 905 if (ieee80211_radiotap_active(ic)) { 906 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 907 908 /* XXX set once */ 909 tap->wr_flags = 0; 910 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 911 (flags & RAL_RX_OFDM) ? 912 IEEE80211_T_OFDM : IEEE80211_T_CCK); 913 tap->wr_antenna = sc->rx_ant; 914 tap->wr_antsignal = nf + rssi; 915 tap->wr_antnoise = nf; 916 } 917 /* Strip trailing 802.11 MAC FCS. */ 918 m_adj(m, -IEEE80211_CRC_LEN); 919 920 /* FALLTHROUGH */ 921 case USB_ST_SETUP: 922 tr_setup: 923 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 924 usbd_transfer_submit(xfer); 925 926 /* 927 * At the end of a USB callback it is always safe to unlock 928 * the private mutex of a device! That is why we do the 929 * "ieee80211_input" here, and not some lines up! 930 */ 931 RAL_UNLOCK(sc); 932 if (m) { 933 ni = ieee80211_find_rxnode(ic, 934 mtod(m, struct ieee80211_frame_min *)); 935 NET_EPOCH_ENTER(et); 936 if (ni != NULL) { 937 (void) ieee80211_input(ni, m, rssi, nf); 938 ieee80211_free_node(ni); 939 } else 940 (void) ieee80211_input_all(ic, m, rssi, nf); 941 NET_EPOCH_EXIT(et); 942 } 943 RAL_LOCK(sc); 944 ural_start(sc); 945 return; 946 947 default: /* Error */ 948 if (error != USB_ERR_CANCELLED) { 949 /* try to clear stall first */ 950 usbd_xfer_set_stall(xfer); 951 goto tr_setup; 952 } 953 return; 954 } 955 } 956 957 static uint8_t 958 ural_plcp_signal(int rate) 959 { 960 switch (rate) { 961 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 962 case 12: return 0xb; 963 case 18: return 0xf; 964 case 24: return 0xa; 965 case 36: return 0xe; 966 case 48: return 0x9; 967 case 72: return 0xd; 968 case 96: return 0x8; 969 case 108: return 0xc; 970 971 /* CCK rates (NB: not IEEE std, device-specific) */ 972 case 2: return 0x0; 973 case 4: return 0x1; 974 case 11: return 0x2; 975 case 22: return 0x3; 976 } 977 return 0xff; /* XXX unsupported/unknown rate */ 978 } 979 980 static void 981 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 982 uint32_t flags, int len, int rate) 983 { 984 struct ieee80211com *ic = &sc->sc_ic; 985 uint16_t plcp_length; 986 int remainder; 987 988 desc->flags = htole32(flags); 989 desc->flags |= htole32(RAL_TX_NEWSEQ); 990 desc->flags |= htole32(len << 16); 991 992 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 993 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 994 995 /* setup PLCP fields */ 996 desc->plcp_signal = ural_plcp_signal(rate); 997 desc->plcp_service = 4; 998 999 len += IEEE80211_CRC_LEN; 1000 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1001 desc->flags |= htole32(RAL_TX_OFDM); 1002 1003 plcp_length = len & 0xfff; 1004 desc->plcp_length_hi = plcp_length >> 6; 1005 desc->plcp_length_lo = plcp_length & 0x3f; 1006 } else { 1007 if (rate == 0) 1008 rate = 2; /* avoid division by zero */ 1009 plcp_length = howmany(16 * len, rate); 1010 if (rate == 22) { 1011 remainder = (16 * len) % 22; 1012 if (remainder != 0 && remainder < 7) 1013 desc->plcp_service |= RAL_PLCP_LENGEXT; 1014 } 1015 desc->plcp_length_hi = plcp_length >> 8; 1016 desc->plcp_length_lo = plcp_length & 0xff; 1017 1018 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1019 desc->plcp_signal |= 0x08; 1020 } 1021 1022 desc->iv = 0; 1023 desc->eiv = 0; 1024 } 1025 1026 #define RAL_TX_TIMEOUT 5000 1027 1028 static int 1029 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1030 { 1031 struct ieee80211vap *vap = ni->ni_vap; 1032 struct ieee80211com *ic = ni->ni_ic; 1033 const struct ieee80211_txparam *tp; 1034 struct ural_tx_data *data; 1035 1036 if (sc->tx_nfree == 0) { 1037 m_freem(m0); 1038 ieee80211_free_node(ni); 1039 return (EIO); 1040 } 1041 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 1042 m_freem(m0); 1043 ieee80211_free_node(ni); 1044 return (ENXIO); 1045 } 1046 data = STAILQ_FIRST(&sc->tx_free); 1047 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1048 sc->tx_nfree--; 1049 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 1050 1051 data->m = m0; 1052 data->ni = ni; 1053 data->rate = tp->mgmtrate; 1054 1055 ural_setup_tx_desc(sc, &data->desc, 1056 RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, 1057 tp->mgmtrate); 1058 1059 DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", 1060 m0->m_pkthdr.len, tp->mgmtrate); 1061 1062 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1063 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1064 1065 return (0); 1066 } 1067 1068 static int 1069 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1070 { 1071 const struct ieee80211_txparam *tp = ni->ni_txparms; 1072 struct ieee80211com *ic = ni->ni_ic; 1073 struct ural_tx_data *data; 1074 struct ieee80211_frame *wh; 1075 struct ieee80211_key *k; 1076 uint32_t flags; 1077 uint16_t dur; 1078 1079 RAL_LOCK_ASSERT(sc, MA_OWNED); 1080 1081 data = STAILQ_FIRST(&sc->tx_free); 1082 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1083 sc->tx_nfree--; 1084 1085 wh = mtod(m0, struct ieee80211_frame *); 1086 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1087 k = ieee80211_crypto_encap(ni, m0); 1088 if (k == NULL) { 1089 m_freem(m0); 1090 return ENOBUFS; 1091 } 1092 wh = mtod(m0, struct ieee80211_frame *); 1093 } 1094 1095 data->m = m0; 1096 data->ni = ni; 1097 data->rate = tp->mgmtrate; 1098 1099 flags = 0; 1100 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1101 flags |= RAL_TX_ACK; 1102 1103 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1104 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1105 USETW(wh->i_dur, dur); 1106 1107 /* tell hardware to add timestamp for probe responses */ 1108 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1109 IEEE80211_FC0_TYPE_MGT && 1110 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1111 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1112 flags |= RAL_TX_TIMESTAMP; 1113 } 1114 1115 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); 1116 1117 DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", 1118 m0->m_pkthdr.len, tp->mgmtrate); 1119 1120 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1121 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1122 1123 return 0; 1124 } 1125 1126 static int 1127 ural_sendprot(struct ural_softc *sc, 1128 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1129 { 1130 struct ieee80211com *ic = ni->ni_ic; 1131 struct ural_tx_data *data; 1132 struct mbuf *mprot; 1133 int protrate, flags; 1134 1135 mprot = ieee80211_alloc_prot(ni, m, rate, prot); 1136 if (mprot == NULL) { 1137 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 1138 device_printf(sc->sc_dev, 1139 "could not allocate mbuf for protection mode %d\n", prot); 1140 return ENOBUFS; 1141 } 1142 1143 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1144 flags = RAL_TX_RETRY(7); 1145 if (prot == IEEE80211_PROT_RTSCTS) 1146 flags |= RAL_TX_ACK; 1147 1148 data = STAILQ_FIRST(&sc->tx_free); 1149 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1150 sc->tx_nfree--; 1151 1152 data->m = mprot; 1153 data->ni = ieee80211_ref_node(ni); 1154 data->rate = protrate; 1155 ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); 1156 1157 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1158 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1159 1160 return 0; 1161 } 1162 1163 static int 1164 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1165 const struct ieee80211_bpf_params *params) 1166 { 1167 struct ieee80211com *ic = ni->ni_ic; 1168 struct ural_tx_data *data; 1169 uint32_t flags; 1170 int error; 1171 int rate; 1172 1173 RAL_LOCK_ASSERT(sc, MA_OWNED); 1174 KASSERT(params != NULL, ("no raw xmit params")); 1175 1176 rate = params->ibp_rate0; 1177 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1178 m_freem(m0); 1179 return EINVAL; 1180 } 1181 flags = 0; 1182 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1183 flags |= RAL_TX_ACK; 1184 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1185 error = ural_sendprot(sc, m0, ni, 1186 params->ibp_flags & IEEE80211_BPF_RTS ? 1187 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1188 rate); 1189 if (error || sc->tx_nfree == 0) { 1190 m_freem(m0); 1191 return ENOBUFS; 1192 } 1193 flags |= RAL_TX_IFS_SIFS; 1194 } 1195 1196 data = STAILQ_FIRST(&sc->tx_free); 1197 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1198 sc->tx_nfree--; 1199 1200 data->m = m0; 1201 data->ni = ni; 1202 data->rate = rate; 1203 1204 /* XXX need to setup descriptor ourself */ 1205 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1206 1207 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1208 m0->m_pkthdr.len, rate); 1209 1210 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1211 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1212 1213 return 0; 1214 } 1215 1216 static int 1217 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1218 { 1219 struct ieee80211vap *vap = ni->ni_vap; 1220 struct ieee80211com *ic = ni->ni_ic; 1221 struct ural_tx_data *data; 1222 struct ieee80211_frame *wh; 1223 const struct ieee80211_txparam *tp = ni->ni_txparms; 1224 struct ieee80211_key *k; 1225 uint32_t flags = 0; 1226 uint16_t dur; 1227 int error, rate; 1228 1229 RAL_LOCK_ASSERT(sc, MA_OWNED); 1230 1231 wh = mtod(m0, struct ieee80211_frame *); 1232 1233 if (m0->m_flags & M_EAPOL) 1234 rate = tp->mgmtrate; 1235 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1236 rate = tp->mcastrate; 1237 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1238 rate = tp->ucastrate; 1239 else { 1240 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1241 rate = ni->ni_txrate; 1242 } 1243 1244 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1245 k = ieee80211_crypto_encap(ni, m0); 1246 if (k == NULL) { 1247 m_freem(m0); 1248 return ENOBUFS; 1249 } 1250 /* packet header may have moved, reset our local pointer */ 1251 wh = mtod(m0, struct ieee80211_frame *); 1252 } 1253 1254 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1255 int prot = IEEE80211_PROT_NONE; 1256 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1257 prot = IEEE80211_PROT_RTSCTS; 1258 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1259 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1260 prot = ic->ic_protmode; 1261 if (prot != IEEE80211_PROT_NONE) { 1262 error = ural_sendprot(sc, m0, ni, prot, rate); 1263 if (error || sc->tx_nfree == 0) { 1264 m_freem(m0); 1265 return ENOBUFS; 1266 } 1267 flags |= RAL_TX_IFS_SIFS; 1268 } 1269 } 1270 1271 data = STAILQ_FIRST(&sc->tx_free); 1272 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1273 sc->tx_nfree--; 1274 1275 data->m = m0; 1276 data->ni = ni; 1277 data->rate = rate; 1278 1279 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1280 flags |= RAL_TX_ACK; 1281 flags |= RAL_TX_RETRY(7); 1282 1283 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1284 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1285 USETW(wh->i_dur, dur); 1286 } 1287 1288 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1289 1290 DPRINTFN(10, "sending data frame len=%u rate=%u\n", 1291 m0->m_pkthdr.len, rate); 1292 1293 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1294 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1295 1296 return 0; 1297 } 1298 1299 static int 1300 ural_transmit(struct ieee80211com *ic, struct mbuf *m) 1301 { 1302 struct ural_softc *sc = ic->ic_softc; 1303 int error; 1304 1305 RAL_LOCK(sc); 1306 if (!sc->sc_running) { 1307 RAL_UNLOCK(sc); 1308 return (ENXIO); 1309 } 1310 error = mbufq_enqueue(&sc->sc_snd, m); 1311 if (error) { 1312 RAL_UNLOCK(sc); 1313 return (error); 1314 } 1315 ural_start(sc); 1316 RAL_UNLOCK(sc); 1317 1318 return (0); 1319 } 1320 1321 static void 1322 ural_start(struct ural_softc *sc) 1323 { 1324 struct ieee80211_node *ni; 1325 struct mbuf *m; 1326 1327 RAL_LOCK_ASSERT(sc, MA_OWNED); 1328 1329 if (sc->sc_running == 0) 1330 return; 1331 1332 while (sc->tx_nfree >= RAL_TX_MINFREE && 1333 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1334 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1335 if (ural_tx_data(sc, m, ni) != 0) { 1336 if_inc_counter(ni->ni_vap->iv_ifp, 1337 IFCOUNTER_OERRORS, 1); 1338 ieee80211_free_node(ni); 1339 break; 1340 } 1341 } 1342 } 1343 1344 static void 1345 ural_parent(struct ieee80211com *ic) 1346 { 1347 struct ural_softc *sc = ic->ic_softc; 1348 int startall = 0; 1349 1350 RAL_LOCK(sc); 1351 if (sc->sc_detached) { 1352 RAL_UNLOCK(sc); 1353 return; 1354 } 1355 if (ic->ic_nrunning > 0) { 1356 if (sc->sc_running == 0) { 1357 ural_init(sc); 1358 startall = 1; 1359 } else 1360 ural_setpromisc(sc); 1361 } else if (sc->sc_running) 1362 ural_stop(sc); 1363 RAL_UNLOCK(sc); 1364 if (startall) 1365 ieee80211_start_all(ic); 1366 } 1367 1368 static void 1369 ural_set_testmode(struct ural_softc *sc) 1370 { 1371 struct usb_device_request req; 1372 usb_error_t error; 1373 1374 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1375 req.bRequest = RAL_VENDOR_REQUEST; 1376 USETW(req.wValue, 4); 1377 USETW(req.wIndex, 1); 1378 USETW(req.wLength, 0); 1379 1380 error = ural_do_request(sc, &req, NULL); 1381 if (error != 0) { 1382 device_printf(sc->sc_dev, "could not set test mode: %s\n", 1383 usbd_errstr(error)); 1384 } 1385 } 1386 1387 static void 1388 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1389 { 1390 struct usb_device_request req; 1391 usb_error_t error; 1392 1393 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1394 req.bRequest = RAL_READ_EEPROM; 1395 USETW(req.wValue, 0); 1396 USETW(req.wIndex, addr); 1397 USETW(req.wLength, len); 1398 1399 error = ural_do_request(sc, &req, buf); 1400 if (error != 0) { 1401 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1402 usbd_errstr(error)); 1403 } 1404 } 1405 1406 static uint16_t 1407 ural_read(struct ural_softc *sc, uint16_t reg) 1408 { 1409 struct usb_device_request req; 1410 usb_error_t error; 1411 uint16_t val; 1412 1413 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1414 req.bRequest = RAL_READ_MAC; 1415 USETW(req.wValue, 0); 1416 USETW(req.wIndex, reg); 1417 USETW(req.wLength, sizeof (uint16_t)); 1418 1419 error = ural_do_request(sc, &req, &val); 1420 if (error != 0) { 1421 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1422 usbd_errstr(error)); 1423 return 0; 1424 } 1425 1426 return le16toh(val); 1427 } 1428 1429 static void 1430 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1431 { 1432 struct usb_device_request req; 1433 usb_error_t error; 1434 1435 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1436 req.bRequest = RAL_READ_MULTI_MAC; 1437 USETW(req.wValue, 0); 1438 USETW(req.wIndex, reg); 1439 USETW(req.wLength, len); 1440 1441 error = ural_do_request(sc, &req, buf); 1442 if (error != 0) { 1443 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1444 usbd_errstr(error)); 1445 } 1446 } 1447 1448 static void 1449 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1450 { 1451 struct usb_device_request req; 1452 usb_error_t error; 1453 1454 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1455 req.bRequest = RAL_WRITE_MAC; 1456 USETW(req.wValue, val); 1457 USETW(req.wIndex, reg); 1458 USETW(req.wLength, 0); 1459 1460 error = ural_do_request(sc, &req, NULL); 1461 if (error != 0) { 1462 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1463 usbd_errstr(error)); 1464 } 1465 } 1466 1467 static void 1468 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1469 { 1470 struct usb_device_request req; 1471 usb_error_t error; 1472 1473 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1474 req.bRequest = RAL_WRITE_MULTI_MAC; 1475 USETW(req.wValue, 0); 1476 USETW(req.wIndex, reg); 1477 USETW(req.wLength, len); 1478 1479 error = ural_do_request(sc, &req, buf); 1480 if (error != 0) { 1481 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1482 usbd_errstr(error)); 1483 } 1484 } 1485 1486 static void 1487 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1488 { 1489 uint16_t tmp; 1490 int ntries; 1491 1492 for (ntries = 0; ntries < 100; ntries++) { 1493 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1494 break; 1495 if (ural_pause(sc, hz / 100)) 1496 break; 1497 } 1498 if (ntries == 100) { 1499 device_printf(sc->sc_dev, "could not write to BBP\n"); 1500 return; 1501 } 1502 1503 tmp = reg << 8 | val; 1504 ural_write(sc, RAL_PHY_CSR7, tmp); 1505 } 1506 1507 static uint8_t 1508 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1509 { 1510 uint16_t val; 1511 int ntries; 1512 1513 val = RAL_BBP_WRITE | reg << 8; 1514 ural_write(sc, RAL_PHY_CSR7, val); 1515 1516 for (ntries = 0; ntries < 100; ntries++) { 1517 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1518 break; 1519 if (ural_pause(sc, hz / 100)) 1520 break; 1521 } 1522 if (ntries == 100) { 1523 device_printf(sc->sc_dev, "could not read BBP\n"); 1524 return 0; 1525 } 1526 1527 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1528 } 1529 1530 static void 1531 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1532 { 1533 uint32_t tmp; 1534 int ntries; 1535 1536 for (ntries = 0; ntries < 100; ntries++) { 1537 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1538 break; 1539 if (ural_pause(sc, hz / 100)) 1540 break; 1541 } 1542 if (ntries == 100) { 1543 device_printf(sc->sc_dev, "could not write to RF\n"); 1544 return; 1545 } 1546 1547 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1548 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1549 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1550 1551 /* remember last written value in sc */ 1552 sc->rf_regs[reg] = val; 1553 1554 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); 1555 } 1556 1557 static void 1558 ural_scan_start(struct ieee80211com *ic) 1559 { 1560 struct ural_softc *sc = ic->ic_softc; 1561 1562 RAL_LOCK(sc); 1563 ural_write(sc, RAL_TXRX_CSR19, 0); 1564 ural_set_bssid(sc, ieee80211broadcastaddr); 1565 RAL_UNLOCK(sc); 1566 } 1567 1568 static void 1569 ural_scan_end(struct ieee80211com *ic) 1570 { 1571 struct ural_softc *sc = ic->ic_softc; 1572 1573 RAL_LOCK(sc); 1574 ural_enable_tsf_sync(sc); 1575 ural_set_bssid(sc, sc->sc_bssid); 1576 RAL_UNLOCK(sc); 1577 1578 } 1579 1580 static void 1581 ural_getradiocaps(struct ieee80211com *ic, 1582 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1583 { 1584 struct ural_softc *sc = ic->ic_softc; 1585 uint8_t bands[IEEE80211_MODE_BYTES]; 1586 1587 memset(bands, 0, sizeof(bands)); 1588 setbit(bands, IEEE80211_MODE_11B); 1589 setbit(bands, IEEE80211_MODE_11G); 1590 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 1591 1592 if (sc->rf_rev == RAL_RF_5222) { 1593 setbit(bands, IEEE80211_MODE_11A); 1594 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 1595 ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0); 1596 } 1597 } 1598 1599 static void 1600 ural_set_channel(struct ieee80211com *ic) 1601 { 1602 struct ural_softc *sc = ic->ic_softc; 1603 1604 RAL_LOCK(sc); 1605 ural_set_chan(sc, ic->ic_curchan); 1606 RAL_UNLOCK(sc); 1607 } 1608 1609 static void 1610 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1611 { 1612 struct ieee80211com *ic = &sc->sc_ic; 1613 uint8_t power, tmp; 1614 int i, chan; 1615 1616 chan = ieee80211_chan2ieee(ic, c); 1617 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1618 return; 1619 1620 if (IEEE80211_IS_CHAN_2GHZ(c)) 1621 power = min(sc->txpow[chan - 1], 31); 1622 else 1623 power = 31; 1624 1625 /* adjust txpower using ifconfig settings */ 1626 power -= (100 - ic->ic_txpowlimit) / 8; 1627 1628 DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); 1629 1630 switch (sc->rf_rev) { 1631 case RAL_RF_2522: 1632 ural_rf_write(sc, RAL_RF1, 0x00814); 1633 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1634 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1635 break; 1636 1637 case RAL_RF_2523: 1638 ural_rf_write(sc, RAL_RF1, 0x08804); 1639 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1640 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1641 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1642 break; 1643 1644 case RAL_RF_2524: 1645 ural_rf_write(sc, RAL_RF1, 0x0c808); 1646 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1647 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1648 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1649 break; 1650 1651 case RAL_RF_2525: 1652 ural_rf_write(sc, RAL_RF1, 0x08808); 1653 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1654 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1655 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1656 1657 ural_rf_write(sc, RAL_RF1, 0x08808); 1658 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1659 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1660 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1661 break; 1662 1663 case RAL_RF_2525E: 1664 ural_rf_write(sc, RAL_RF1, 0x08808); 1665 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1666 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1667 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1668 break; 1669 1670 case RAL_RF_2526: 1671 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1672 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1673 ural_rf_write(sc, RAL_RF1, 0x08804); 1674 1675 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1676 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1677 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1678 break; 1679 1680 /* dual-band RF */ 1681 case RAL_RF_5222: 1682 for (i = 0; ural_rf5222[i].chan != chan; i++); 1683 1684 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1685 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1686 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1687 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1688 break; 1689 } 1690 1691 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1692 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1693 /* set Japan filter bit for channel 14 */ 1694 tmp = ural_bbp_read(sc, 70); 1695 1696 tmp &= ~RAL_JAPAN_FILTER; 1697 if (chan == 14) 1698 tmp |= RAL_JAPAN_FILTER; 1699 1700 ural_bbp_write(sc, 70, tmp); 1701 1702 /* clear CRC errors */ 1703 ural_read(sc, RAL_STA_CSR0); 1704 1705 ural_pause(sc, hz / 100); 1706 ural_disable_rf_tune(sc); 1707 } 1708 1709 /* XXX doesn't belong here */ 1710 /* update basic rate set */ 1711 ural_set_basicrates(sc, c); 1712 1713 /* give the hardware some time to do the switchover */ 1714 ural_pause(sc, hz / 100); 1715 } 1716 1717 /* 1718 * Disable RF auto-tuning. 1719 */ 1720 static void 1721 ural_disable_rf_tune(struct ural_softc *sc) 1722 { 1723 uint32_t tmp; 1724 1725 if (sc->rf_rev != RAL_RF_2523) { 1726 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1727 ural_rf_write(sc, RAL_RF1, tmp); 1728 } 1729 1730 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1731 ural_rf_write(sc, RAL_RF3, tmp); 1732 1733 DPRINTFN(2, "disabling RF autotune\n"); 1734 } 1735 1736 /* 1737 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1738 * synchronization. 1739 */ 1740 static void 1741 ural_enable_tsf_sync(struct ural_softc *sc) 1742 { 1743 struct ieee80211com *ic = &sc->sc_ic; 1744 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1745 uint16_t logcwmin, preload, tmp; 1746 1747 /* first, disable TSF synchronization */ 1748 ural_write(sc, RAL_TXRX_CSR19, 0); 1749 1750 tmp = (16 * vap->iv_bss->ni_intval) << 4; 1751 ural_write(sc, RAL_TXRX_CSR18, tmp); 1752 1753 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1754 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1755 tmp = logcwmin << 12 | preload; 1756 ural_write(sc, RAL_TXRX_CSR20, tmp); 1757 1758 /* finally, enable TSF synchronization */ 1759 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1760 if (ic->ic_opmode == IEEE80211_M_STA) 1761 tmp |= RAL_ENABLE_TSF_SYNC(1); 1762 else 1763 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1764 ural_write(sc, RAL_TXRX_CSR19, tmp); 1765 1766 DPRINTF("enabling TSF synchronization\n"); 1767 } 1768 1769 static void 1770 ural_enable_tsf(struct ural_softc *sc) 1771 { 1772 /* first, disable TSF synchronization */ 1773 ural_write(sc, RAL_TXRX_CSR19, 0); 1774 ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); 1775 } 1776 1777 #define RAL_RXTX_TURNAROUND 5 /* us */ 1778 static void 1779 ural_update_slot(struct ural_softc *sc) 1780 { 1781 struct ieee80211com *ic = &sc->sc_ic; 1782 uint16_t slottime, sifs, eifs; 1783 1784 slottime = IEEE80211_GET_SLOTTIME(ic); 1785 1786 /* 1787 * These settings may sound a bit inconsistent but this is what the 1788 * reference driver does. 1789 */ 1790 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1791 sifs = 16 - RAL_RXTX_TURNAROUND; 1792 eifs = 364; 1793 } else { 1794 sifs = 10 - RAL_RXTX_TURNAROUND; 1795 eifs = 64; 1796 } 1797 1798 ural_write(sc, RAL_MAC_CSR10, slottime); 1799 ural_write(sc, RAL_MAC_CSR11, sifs); 1800 ural_write(sc, RAL_MAC_CSR12, eifs); 1801 } 1802 1803 static void 1804 ural_set_txpreamble(struct ural_softc *sc) 1805 { 1806 struct ieee80211com *ic = &sc->sc_ic; 1807 uint16_t tmp; 1808 1809 tmp = ural_read(sc, RAL_TXRX_CSR10); 1810 1811 tmp &= ~RAL_SHORT_PREAMBLE; 1812 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1813 tmp |= RAL_SHORT_PREAMBLE; 1814 1815 ural_write(sc, RAL_TXRX_CSR10, tmp); 1816 } 1817 1818 static void 1819 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) 1820 { 1821 /* XXX wrong, take from rate set */ 1822 /* update basic rate set */ 1823 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1824 /* 11a basic rates: 6, 12, 24Mbps */ 1825 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1826 } else if (IEEE80211_IS_CHAN_ANYG(c)) { 1827 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1828 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1829 } else { 1830 /* 11b basic rates: 1, 2Mbps */ 1831 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1832 } 1833 } 1834 1835 static void 1836 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1837 { 1838 uint16_t tmp; 1839 1840 tmp = bssid[0] | bssid[1] << 8; 1841 ural_write(sc, RAL_MAC_CSR5, tmp); 1842 1843 tmp = bssid[2] | bssid[3] << 8; 1844 ural_write(sc, RAL_MAC_CSR6, tmp); 1845 1846 tmp = bssid[4] | bssid[5] << 8; 1847 ural_write(sc, RAL_MAC_CSR7, tmp); 1848 1849 DPRINTF("setting BSSID to %6D\n", bssid, ":"); 1850 } 1851 1852 static void 1853 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr) 1854 { 1855 uint16_t tmp; 1856 1857 tmp = addr[0] | addr[1] << 8; 1858 ural_write(sc, RAL_MAC_CSR2, tmp); 1859 1860 tmp = addr[2] | addr[3] << 8; 1861 ural_write(sc, RAL_MAC_CSR3, tmp); 1862 1863 tmp = addr[4] | addr[5] << 8; 1864 ural_write(sc, RAL_MAC_CSR4, tmp); 1865 1866 DPRINTF("setting MAC address to %6D\n", addr, ":"); 1867 } 1868 1869 static void 1870 ural_setpromisc(struct ural_softc *sc) 1871 { 1872 uint32_t tmp; 1873 1874 tmp = ural_read(sc, RAL_TXRX_CSR2); 1875 1876 tmp &= ~RAL_DROP_NOT_TO_ME; 1877 if (sc->sc_ic.ic_promisc == 0) 1878 tmp |= RAL_DROP_NOT_TO_ME; 1879 1880 ural_write(sc, RAL_TXRX_CSR2, tmp); 1881 1882 DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ? 1883 "entering" : "leaving"); 1884 } 1885 1886 static void 1887 ural_update_promisc(struct ieee80211com *ic) 1888 { 1889 struct ural_softc *sc = ic->ic_softc; 1890 1891 RAL_LOCK(sc); 1892 if (sc->sc_running) 1893 ural_setpromisc(sc); 1894 RAL_UNLOCK(sc); 1895 } 1896 1897 static const char * 1898 ural_get_rf(int rev) 1899 { 1900 switch (rev) { 1901 case RAL_RF_2522: return "RT2522"; 1902 case RAL_RF_2523: return "RT2523"; 1903 case RAL_RF_2524: return "RT2524"; 1904 case RAL_RF_2525: return "RT2525"; 1905 case RAL_RF_2525E: return "RT2525e"; 1906 case RAL_RF_2526: return "RT2526"; 1907 case RAL_RF_5222: return "RT5222"; 1908 default: return "unknown"; 1909 } 1910 } 1911 1912 static void 1913 ural_read_eeprom(struct ural_softc *sc) 1914 { 1915 struct ieee80211com *ic = &sc->sc_ic; 1916 uint16_t val; 1917 1918 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1919 val = le16toh(val); 1920 sc->rf_rev = (val >> 11) & 0x7; 1921 sc->hw_radio = (val >> 10) & 0x1; 1922 sc->led_mode = (val >> 6) & 0x7; 1923 sc->rx_ant = (val >> 4) & 0x3; 1924 sc->tx_ant = (val >> 2) & 0x3; 1925 sc->nb_ant = val & 0x3; 1926 1927 /* read MAC address */ 1928 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6); 1929 1930 /* read default values for BBP registers */ 1931 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1932 1933 /* read Tx power for all b/g channels */ 1934 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1935 } 1936 1937 static int 1938 ural_bbp_init(struct ural_softc *sc) 1939 { 1940 int i, ntries; 1941 1942 /* wait for BBP to be ready */ 1943 for (ntries = 0; ntries < 100; ntries++) { 1944 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1945 break; 1946 if (ural_pause(sc, hz / 100)) 1947 break; 1948 } 1949 if (ntries == 100) { 1950 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1951 return EIO; 1952 } 1953 1954 /* initialize BBP registers to default values */ 1955 for (i = 0; i < nitems(ural_def_bbp); i++) 1956 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1957 1958 #if 0 1959 /* initialize BBP registers to values stored in EEPROM */ 1960 for (i = 0; i < 16; i++) { 1961 if (sc->bbp_prom[i].reg == 0xff) 1962 continue; 1963 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1964 } 1965 #endif 1966 1967 return 0; 1968 } 1969 1970 static void 1971 ural_set_txantenna(struct ural_softc *sc, int antenna) 1972 { 1973 uint16_t tmp; 1974 uint8_t tx; 1975 1976 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 1977 if (antenna == 1) 1978 tx |= RAL_BBP_ANTA; 1979 else if (antenna == 2) 1980 tx |= RAL_BBP_ANTB; 1981 else 1982 tx |= RAL_BBP_DIVERSITY; 1983 1984 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 1985 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 1986 sc->rf_rev == RAL_RF_5222) 1987 tx |= RAL_BBP_FLIPIQ; 1988 1989 ural_bbp_write(sc, RAL_BBP_TX, tx); 1990 1991 /* update values in PHY_CSR5 and PHY_CSR6 */ 1992 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 1993 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 1994 1995 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 1996 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 1997 } 1998 1999 static void 2000 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2001 { 2002 uint8_t rx; 2003 2004 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2005 if (antenna == 1) 2006 rx |= RAL_BBP_ANTA; 2007 else if (antenna == 2) 2008 rx |= RAL_BBP_ANTB; 2009 else 2010 rx |= RAL_BBP_DIVERSITY; 2011 2012 /* need to force no I/Q flip for RF 2525e and 2526 */ 2013 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2014 rx &= ~RAL_BBP_FLIPIQ; 2015 2016 ural_bbp_write(sc, RAL_BBP_RX, rx); 2017 } 2018 2019 static void 2020 ural_init(struct ural_softc *sc) 2021 { 2022 struct ieee80211com *ic = &sc->sc_ic; 2023 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2024 uint16_t tmp; 2025 int i, ntries; 2026 2027 RAL_LOCK_ASSERT(sc, MA_OWNED); 2028 2029 ural_set_testmode(sc); 2030 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2031 2032 ural_stop(sc); 2033 2034 /* initialize MAC registers to default values */ 2035 for (i = 0; i < nitems(ural_def_mac); i++) 2036 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2037 2038 /* wait for BBP and RF to wake up (this can take a long time!) */ 2039 for (ntries = 0; ntries < 100; ntries++) { 2040 tmp = ural_read(sc, RAL_MAC_CSR17); 2041 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2042 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2043 break; 2044 if (ural_pause(sc, hz / 100)) 2045 break; 2046 } 2047 if (ntries == 100) { 2048 device_printf(sc->sc_dev, 2049 "timeout waiting for BBP/RF to wakeup\n"); 2050 goto fail; 2051 } 2052 2053 /* we're ready! */ 2054 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2055 2056 /* set basic rate set (will be updated later) */ 2057 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2058 2059 if (ural_bbp_init(sc) != 0) 2060 goto fail; 2061 2062 ural_set_chan(sc, ic->ic_curchan); 2063 2064 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2065 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2066 2067 ural_set_txantenna(sc, sc->tx_ant); 2068 ural_set_rxantenna(sc, sc->rx_ant); 2069 2070 ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2071 2072 /* 2073 * Allocate Tx and Rx xfer queues. 2074 */ 2075 ural_setup_tx_list(sc); 2076 2077 /* kick Rx */ 2078 tmp = RAL_DROP_PHY | RAL_DROP_CRC; 2079 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2080 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; 2081 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2082 tmp |= RAL_DROP_TODS; 2083 if (ic->ic_promisc == 0) 2084 tmp |= RAL_DROP_NOT_TO_ME; 2085 } 2086 ural_write(sc, RAL_TXRX_CSR2, tmp); 2087 2088 sc->sc_running = 1; 2089 usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); 2090 usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); 2091 return; 2092 2093 fail: ural_stop(sc); 2094 } 2095 2096 static void 2097 ural_stop(struct ural_softc *sc) 2098 { 2099 2100 RAL_LOCK_ASSERT(sc, MA_OWNED); 2101 2102 sc->sc_running = 0; 2103 2104 /* 2105 * Drain all the transfers, if not already drained: 2106 */ 2107 RAL_UNLOCK(sc); 2108 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); 2109 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); 2110 RAL_LOCK(sc); 2111 2112 ural_unsetup_tx_list(sc); 2113 2114 /* disable Rx */ 2115 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2116 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2117 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2118 /* wait a little */ 2119 ural_pause(sc, hz / 10); 2120 ural_write(sc, RAL_MAC_CSR1, 0); 2121 /* wait a little */ 2122 ural_pause(sc, hz / 10); 2123 } 2124 2125 static int 2126 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2127 const struct ieee80211_bpf_params *params) 2128 { 2129 struct ieee80211com *ic = ni->ni_ic; 2130 struct ural_softc *sc = ic->ic_softc; 2131 2132 RAL_LOCK(sc); 2133 /* prevent management frames from being sent if we're not ready */ 2134 if (!sc->sc_running) { 2135 RAL_UNLOCK(sc); 2136 m_freem(m); 2137 return ENETDOWN; 2138 } 2139 if (sc->tx_nfree < RAL_TX_MINFREE) { 2140 RAL_UNLOCK(sc); 2141 m_freem(m); 2142 return EIO; 2143 } 2144 2145 if (params == NULL) { 2146 /* 2147 * Legacy path; interpret frame contents to decide 2148 * precisely how to send the frame. 2149 */ 2150 if (ural_tx_mgt(sc, m, ni) != 0) 2151 goto bad; 2152 } else { 2153 /* 2154 * Caller supplied explicit parameters to use in 2155 * sending the frame. 2156 */ 2157 if (ural_tx_raw(sc, m, ni, params) != 0) 2158 goto bad; 2159 } 2160 RAL_UNLOCK(sc); 2161 return 0; 2162 bad: 2163 RAL_UNLOCK(sc); 2164 return EIO; /* XXX */ 2165 } 2166 2167 static void 2168 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) 2169 { 2170 struct ieee80211vap *vap = ni->ni_vap; 2171 struct ural_vap *uvp = URAL_VAP(vap); 2172 2173 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2174 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2175 2176 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2177 } 2178 2179 static void 2180 ural_ratectl_timeout(void *arg) 2181 { 2182 struct ural_vap *uvp = arg; 2183 struct ieee80211vap *vap = &uvp->vap; 2184 struct ieee80211com *ic = vap->iv_ic; 2185 2186 ieee80211_runtask(ic, &uvp->ratectl_task); 2187 } 2188 2189 static void 2190 ural_ratectl_task(void *arg, int pending) 2191 { 2192 struct ural_vap *uvp = arg; 2193 struct ieee80211vap *vap = &uvp->vap; 2194 struct ural_softc *sc = vap->iv_ic->ic_softc; 2195 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 2196 int fail; 2197 2198 RAL_LOCK(sc); 2199 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2200 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2201 2202 txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES; 2203 txs->nsuccess = sc->sta[7] + /* TX ok w/o retry */ 2204 sc->sta[8]; /* TX ok w/ retry */ 2205 fail = sc->sta[9]; /* TX retry-fail count */ 2206 txs->nframes = txs->nsuccess + fail; 2207 /* XXX fail * maxretry */ 2208 txs->nretries = sc->sta[8] + fail; 2209 2210 ieee80211_ratectl_tx_update(vap, txs); 2211 2212 /* count TX retry-fail as Tx errors */ 2213 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 2214 2215 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2216 RAL_UNLOCK(sc); 2217 } 2218 2219 static int 2220 ural_pause(struct ural_softc *sc, int timeout) 2221 { 2222 2223 usb_pause_mtx(&sc->sc_mtx, timeout); 2224 return (0); 2225 } 2226