xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 
2 /*-
3  * Copyright (c) 2005, 2006
4  *	Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Copyright (c) 2006, 2008
7  *	Hans Petter Selasky <hselasky@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 /*-
24  * Ralink Technology RT2500USB chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include "opt_wlan.h"
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/lock.h>
34 #include <sys/mutex.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/kdb.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #ifdef INET
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/if_ether.h>
59 #include <netinet/ip.h>
60 #endif
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define	USB_DEBUG_VAR ural_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_uralreg.h>
75 #include <dev/usb/wlan/if_uralvar.h>
76 
77 #ifdef USB_DEBUG
78 static int ural_debug = 0;
79 
80 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
81     "USB ural");
82 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
83     "Debug level");
84 #endif
85 
86 #define URAL_RSSI(rssi)					\
87 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
88 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
89 
90 /* various supported device vendors/products */
91 static const STRUCT_USB_HOST_ID ural_devs[] = {
92 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
93 	URAL_DEV(ASUS, WL167G),
94 	URAL_DEV(ASUS, RT2570),
95 	URAL_DEV(BELKIN, F5D7050),
96 	URAL_DEV(BELKIN, F5D7051),
97 	URAL_DEV(CISCOLINKSYS, HU200TS),
98 	URAL_DEV(CISCOLINKSYS, WUSB54G),
99 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
100 	URAL_DEV(CONCEPTRONIC2, C54RU),
101 	URAL_DEV(DLINK, DWLG122),
102 	URAL_DEV(GIGABYTE, GN54G),
103 	URAL_DEV(GIGABYTE, GNWBKG),
104 	URAL_DEV(GUILLEMOT, HWGUSB254),
105 	URAL_DEV(MELCO, KG54),
106 	URAL_DEV(MELCO, KG54AI),
107 	URAL_DEV(MELCO, KG54YB),
108 	URAL_DEV(MELCO, NINWIFI),
109 	URAL_DEV(MSI, RT2570),
110 	URAL_DEV(MSI, RT2570_2),
111 	URAL_DEV(MSI, RT2570_3),
112 	URAL_DEV(NOVATECH, NV902),
113 	URAL_DEV(RALINK, RT2570),
114 	URAL_DEV(RALINK, RT2570_2),
115 	URAL_DEV(RALINK, RT2570_3),
116 	URAL_DEV(SIEMENS2, WL54G),
117 	URAL_DEV(SMC, 2862WG),
118 	URAL_DEV(SPHAIRON, UB801R),
119 	URAL_DEV(SURECOM, RT2570),
120 	URAL_DEV(VTECH, RT2570),
121 	URAL_DEV(ZINWELL, RT2570),
122 #undef URAL_DEV
123 };
124 
125 static usb_callback_t ural_bulk_read_callback;
126 static usb_callback_t ural_bulk_write_callback;
127 
128 static usb_error_t	ural_do_request(struct ural_softc *sc,
129 			    struct usb_device_request *req, void *data);
130 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
131 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
132 			    int, const uint8_t [IEEE80211_ADDR_LEN],
133 			    const uint8_t [IEEE80211_ADDR_LEN]);
134 static void		ural_vap_delete(struct ieee80211vap *);
135 static void		ural_tx_free(struct ural_tx_data *, int);
136 static void		ural_setup_tx_list(struct ural_softc *);
137 static void		ural_unsetup_tx_list(struct ural_softc *);
138 static int		ural_newstate(struct ieee80211vap *,
139 			    enum ieee80211_state, int);
140 static void		ural_setup_tx_desc(struct ural_softc *,
141 			    struct ural_tx_desc *, uint32_t, int, int);
142 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
143 			    struct ieee80211_node *);
144 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
145 			    struct ieee80211_node *);
146 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
147 			    struct ieee80211_node *);
148 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
149 static void		ural_start(struct ural_softc *);
150 static void		ural_parent(struct ieee80211com *);
151 static void		ural_set_testmode(struct ural_softc *);
152 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
153 			    int);
154 static uint16_t		ural_read(struct ural_softc *, uint16_t);
155 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
156 			    int);
157 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
158 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
159 			    int) __unused;
160 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
161 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
162 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
163 static void		ural_scan_start(struct ieee80211com *);
164 static void		ural_scan_end(struct ieee80211com *);
165 static void		ural_getradiocaps(struct ieee80211com *, int, int *,
166 			    struct ieee80211_channel[]);
167 static void		ural_set_channel(struct ieee80211com *);
168 static void		ural_set_chan(struct ural_softc *,
169 			    struct ieee80211_channel *);
170 static void		ural_disable_rf_tune(struct ural_softc *);
171 static void		ural_enable_tsf_sync(struct ural_softc *);
172 static void 		ural_enable_tsf(struct ural_softc *);
173 static void		ural_update_slot(struct ural_softc *);
174 static void		ural_set_txpreamble(struct ural_softc *);
175 static void		ural_set_basicrates(struct ural_softc *,
176 			    const struct ieee80211_channel *);
177 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
178 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
179 static void		ural_update_promisc(struct ieee80211com *);
180 static void		ural_setpromisc(struct ural_softc *);
181 static const char	*ural_get_rf(int);
182 static void		ural_read_eeprom(struct ural_softc *);
183 static int		ural_bbp_init(struct ural_softc *);
184 static void		ural_set_txantenna(struct ural_softc *, int);
185 static void		ural_set_rxantenna(struct ural_softc *, int);
186 static void		ural_init(struct ural_softc *);
187 static void		ural_stop(struct ural_softc *);
188 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
189 			    const struct ieee80211_bpf_params *);
190 static void		ural_ratectl_start(struct ural_softc *,
191 			    struct ieee80211_node *);
192 static void		ural_ratectl_timeout(void *);
193 static void		ural_ratectl_task(void *, int);
194 static int		ural_pause(struct ural_softc *sc, int timeout);
195 
196 /*
197  * Default values for MAC registers; values taken from the reference driver.
198  */
199 static const struct {
200 	uint16_t	reg;
201 	uint16_t	val;
202 } ural_def_mac[] = {
203 	{ RAL_TXRX_CSR5,  0x8c8d },
204 	{ RAL_TXRX_CSR6,  0x8b8a },
205 	{ RAL_TXRX_CSR7,  0x8687 },
206 	{ RAL_TXRX_CSR8,  0x0085 },
207 	{ RAL_MAC_CSR13,  0x1111 },
208 	{ RAL_MAC_CSR14,  0x1e11 },
209 	{ RAL_TXRX_CSR21, 0xe78f },
210 	{ RAL_MAC_CSR9,   0xff1d },
211 	{ RAL_MAC_CSR11,  0x0002 },
212 	{ RAL_MAC_CSR22,  0x0053 },
213 	{ RAL_MAC_CSR15,  0x0000 },
214 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
215 	{ RAL_TXRX_CSR19, 0x0000 },
216 	{ RAL_TXRX_CSR18, 0x005a },
217 	{ RAL_PHY_CSR2,   0x0000 },
218 	{ RAL_TXRX_CSR0,  0x1ec0 },
219 	{ RAL_PHY_CSR4,   0x000f }
220 };
221 
222 /*
223  * Default values for BBP registers; values taken from the reference driver.
224  */
225 static const struct {
226 	uint8_t	reg;
227 	uint8_t	val;
228 } ural_def_bbp[] = {
229 	{  3, 0x02 },
230 	{  4, 0x19 },
231 	{ 14, 0x1c },
232 	{ 15, 0x30 },
233 	{ 16, 0xac },
234 	{ 17, 0x48 },
235 	{ 18, 0x18 },
236 	{ 19, 0xff },
237 	{ 20, 0x1e },
238 	{ 21, 0x08 },
239 	{ 22, 0x08 },
240 	{ 23, 0x08 },
241 	{ 24, 0x80 },
242 	{ 25, 0x50 },
243 	{ 26, 0x08 },
244 	{ 27, 0x23 },
245 	{ 30, 0x10 },
246 	{ 31, 0x2b },
247 	{ 32, 0xb9 },
248 	{ 34, 0x12 },
249 	{ 35, 0x50 },
250 	{ 39, 0xc4 },
251 	{ 40, 0x02 },
252 	{ 41, 0x60 },
253 	{ 53, 0x10 },
254 	{ 54, 0x18 },
255 	{ 56, 0x08 },
256 	{ 57, 0x10 },
257 	{ 58, 0x08 },
258 	{ 61, 0x60 },
259 	{ 62, 0x10 },
260 	{ 75, 0xff }
261 };
262 
263 /*
264  * Default values for RF register R2 indexed by channel numbers.
265  */
266 static const uint32_t ural_rf2522_r2[] = {
267 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
268 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
269 };
270 
271 static const uint32_t ural_rf2523_r2[] = {
272 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275 
276 static const uint32_t ural_rf2524_r2[] = {
277 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
278 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
279 };
280 
281 static const uint32_t ural_rf2525_r2[] = {
282 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
283 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
284 };
285 
286 static const uint32_t ural_rf2525_hi_r2[] = {
287 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
288 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
289 };
290 
291 static const uint32_t ural_rf2525e_r2[] = {
292 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
293 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
294 };
295 
296 static const uint32_t ural_rf2526_hi_r2[] = {
297 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
298 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
299 };
300 
301 static const uint32_t ural_rf2526_r2[] = {
302 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
303 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
304 };
305 
306 /*
307  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
308  * values taken from the reference driver.
309  */
310 static const struct {
311 	uint8_t		chan;
312 	uint32_t	r1;
313 	uint32_t	r2;
314 	uint32_t	r4;
315 } ural_rf5222[] = {
316 	{   1, 0x08808, 0x0044d, 0x00282 },
317 	{   2, 0x08808, 0x0044e, 0x00282 },
318 	{   3, 0x08808, 0x0044f, 0x00282 },
319 	{   4, 0x08808, 0x00460, 0x00282 },
320 	{   5, 0x08808, 0x00461, 0x00282 },
321 	{   6, 0x08808, 0x00462, 0x00282 },
322 	{   7, 0x08808, 0x00463, 0x00282 },
323 	{   8, 0x08808, 0x00464, 0x00282 },
324 	{   9, 0x08808, 0x00465, 0x00282 },
325 	{  10, 0x08808, 0x00466, 0x00282 },
326 	{  11, 0x08808, 0x00467, 0x00282 },
327 	{  12, 0x08808, 0x00468, 0x00282 },
328 	{  13, 0x08808, 0x00469, 0x00282 },
329 	{  14, 0x08808, 0x0046b, 0x00286 },
330 
331 	{  36, 0x08804, 0x06225, 0x00287 },
332 	{  40, 0x08804, 0x06226, 0x00287 },
333 	{  44, 0x08804, 0x06227, 0x00287 },
334 	{  48, 0x08804, 0x06228, 0x00287 },
335 	{  52, 0x08804, 0x06229, 0x00287 },
336 	{  56, 0x08804, 0x0622a, 0x00287 },
337 	{  60, 0x08804, 0x0622b, 0x00287 },
338 	{  64, 0x08804, 0x0622c, 0x00287 },
339 
340 	{ 100, 0x08804, 0x02200, 0x00283 },
341 	{ 104, 0x08804, 0x02201, 0x00283 },
342 	{ 108, 0x08804, 0x02202, 0x00283 },
343 	{ 112, 0x08804, 0x02203, 0x00283 },
344 	{ 116, 0x08804, 0x02204, 0x00283 },
345 	{ 120, 0x08804, 0x02205, 0x00283 },
346 	{ 124, 0x08804, 0x02206, 0x00283 },
347 	{ 128, 0x08804, 0x02207, 0x00283 },
348 	{ 132, 0x08804, 0x02208, 0x00283 },
349 	{ 136, 0x08804, 0x02209, 0x00283 },
350 	{ 140, 0x08804, 0x0220a, 0x00283 },
351 
352 	{ 149, 0x08808, 0x02429, 0x00281 },
353 	{ 153, 0x08808, 0x0242b, 0x00281 },
354 	{ 157, 0x08808, 0x0242d, 0x00281 },
355 	{ 161, 0x08808, 0x0242f, 0x00281 }
356 };
357 
358 static const uint8_t ural_chan_5ghz[] =
359 	{ 36, 40, 44, 48, 52, 56, 60, 64,
360 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
361 	  149, 153, 157, 161 };
362 
363 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
364 	[URAL_BULK_WR] = {
365 		.type = UE_BULK,
366 		.endpoint = UE_ADDR_ANY,
367 		.direction = UE_DIR_OUT,
368 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
369 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
370 		.callback = ural_bulk_write_callback,
371 		.timeout = 5000,	/* ms */
372 	},
373 	[URAL_BULK_RD] = {
374 		.type = UE_BULK,
375 		.endpoint = UE_ADDR_ANY,
376 		.direction = UE_DIR_IN,
377 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
378 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
379 		.callback = ural_bulk_read_callback,
380 	},
381 };
382 
383 static device_probe_t ural_match;
384 static device_attach_t ural_attach;
385 static device_detach_t ural_detach;
386 
387 static device_method_t ural_methods[] = {
388 	/* Device interface */
389 	DEVMETHOD(device_probe,		ural_match),
390 	DEVMETHOD(device_attach,	ural_attach),
391 	DEVMETHOD(device_detach,	ural_detach),
392 	DEVMETHOD_END
393 };
394 
395 static driver_t ural_driver = {
396 	.name = "ural",
397 	.methods = ural_methods,
398 	.size = sizeof(struct ural_softc),
399 };
400 
401 DRIVER_MODULE(ural, uhub, ural_driver, NULL, NULL);
402 MODULE_DEPEND(ural, usb, 1, 1, 1);
403 MODULE_DEPEND(ural, wlan, 1, 1, 1);
404 MODULE_VERSION(ural, 1);
405 USB_PNP_HOST_INFO(ural_devs);
406 
407 static int
408 ural_match(device_t self)
409 {
410 	struct usb_attach_arg *uaa = device_get_ivars(self);
411 
412 	if (uaa->usb_mode != USB_MODE_HOST)
413 		return (ENXIO);
414 	if (uaa->info.bConfigIndex != 0)
415 		return (ENXIO);
416 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
417 		return (ENXIO);
418 
419 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
420 }
421 
422 static int
423 ural_attach(device_t self)
424 {
425 	struct usb_attach_arg *uaa = device_get_ivars(self);
426 	struct ural_softc *sc = device_get_softc(self);
427 	struct ieee80211com *ic = &sc->sc_ic;
428 	uint8_t iface_index;
429 	int error;
430 
431 	device_set_usb_desc(self);
432 	sc->sc_udev = uaa->device;
433 	sc->sc_dev = self;
434 
435 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
436 	    MTX_NETWORK_LOCK, MTX_DEF);
437 	mbufq_init(&sc->sc_snd, ifqmaxlen);
438 
439 	iface_index = RAL_IFACE_INDEX;
440 	error = usbd_transfer_setup(uaa->device,
441 	    &iface_index, sc->sc_xfer, ural_config,
442 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
443 	if (error) {
444 		device_printf(self, "could not allocate USB transfers, "
445 		    "err=%s\n", usbd_errstr(error));
446 		goto detach;
447 	}
448 
449 	RAL_LOCK(sc);
450 	/* retrieve RT2570 rev. no */
451 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
452 
453 	/* retrieve MAC address and various other things from EEPROM */
454 	ural_read_eeprom(sc);
455 	RAL_UNLOCK(sc);
456 
457 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
458 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
459 
460 	ic->ic_softc = sc;
461 	ic->ic_name = device_get_nameunit(self);
462 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
463 
464 	/* set device capabilities */
465 	ic->ic_caps =
466 	      IEEE80211_C_STA		/* station mode supported */
467 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
468 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
469 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
470 	    | IEEE80211_C_TXPMGT	/* tx power management */
471 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
472 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
473 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
474 	    | IEEE80211_C_WPA		/* 802.11i */
475 	    ;
476 
477 	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
478 	    ic->ic_channels);
479 
480 	ieee80211_ifattach(ic);
481 	ic->ic_update_promisc = ural_update_promisc;
482 	ic->ic_raw_xmit = ural_raw_xmit;
483 	ic->ic_scan_start = ural_scan_start;
484 	ic->ic_scan_end = ural_scan_end;
485 	ic->ic_getradiocaps = ural_getradiocaps;
486 	ic->ic_set_channel = ural_set_channel;
487 	ic->ic_parent = ural_parent;
488 	ic->ic_transmit = ural_transmit;
489 	ic->ic_vap_create = ural_vap_create;
490 	ic->ic_vap_delete = ural_vap_delete;
491 
492 	ieee80211_radiotap_attach(ic,
493 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
494 		RAL_TX_RADIOTAP_PRESENT,
495 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
496 		RAL_RX_RADIOTAP_PRESENT);
497 
498 	if (bootverbose)
499 		ieee80211_announce(ic);
500 
501 	return (0);
502 
503 detach:
504 	ural_detach(self);
505 	return (ENXIO);			/* failure */
506 }
507 
508 static int
509 ural_detach(device_t self)
510 {
511 	struct ural_softc *sc = device_get_softc(self);
512 	struct ieee80211com *ic = &sc->sc_ic;
513 
514 	/* prevent further ioctls */
515 	RAL_LOCK(sc);
516 	sc->sc_detached = 1;
517 	RAL_UNLOCK(sc);
518 
519 	/* stop all USB transfers */
520 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
521 
522 	/* free TX list, if any */
523 	RAL_LOCK(sc);
524 	ural_unsetup_tx_list(sc);
525 	RAL_UNLOCK(sc);
526 
527 	if (ic->ic_softc == sc)
528 		ieee80211_ifdetach(ic);
529 	mbufq_drain(&sc->sc_snd);
530 	mtx_destroy(&sc->sc_mtx);
531 
532 	return (0);
533 }
534 
535 static usb_error_t
536 ural_do_request(struct ural_softc *sc,
537     struct usb_device_request *req, void *data)
538 {
539 	usb_error_t err;
540 	int ntries = 10;
541 
542 	while (ntries--) {
543 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
544 		    req, data, 0, NULL, 250 /* ms */);
545 		if (err == 0)
546 			break;
547 
548 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
549 		    usbd_errstr(err));
550 		if (ural_pause(sc, hz / 100))
551 			break;
552 	}
553 	return (err);
554 }
555 
556 static struct ieee80211vap *
557 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
558     enum ieee80211_opmode opmode, int flags,
559     const uint8_t bssid[IEEE80211_ADDR_LEN],
560     const uint8_t mac[IEEE80211_ADDR_LEN])
561 {
562 	struct ural_softc *sc = ic->ic_softc;
563 	struct ural_vap *uvp;
564 	struct ieee80211vap *vap;
565 
566 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
567 		return NULL;
568 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
569 	vap = &uvp->vap;
570 	/* enable s/w bmiss handling for sta mode */
571 
572 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
573 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
574 		/* out of memory */
575 		free(uvp, M_80211_VAP);
576 		return (NULL);
577 	}
578 
579 	/* override state transition machine */
580 	uvp->newstate = vap->iv_newstate;
581 	vap->iv_newstate = ural_newstate;
582 
583 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
584 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
585 	ieee80211_ratectl_init(vap);
586 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
587 
588 	/* complete setup */
589 	ieee80211_vap_attach(vap, ieee80211_media_change,
590 	    ieee80211_media_status, mac);
591 	ic->ic_opmode = opmode;
592 	return vap;
593 }
594 
595 static void
596 ural_vap_delete(struct ieee80211vap *vap)
597 {
598 	struct ural_vap *uvp = URAL_VAP(vap);
599 	struct ieee80211com *ic = vap->iv_ic;
600 
601 	usb_callout_drain(&uvp->ratectl_ch);
602 	ieee80211_draintask(ic, &uvp->ratectl_task);
603 	ieee80211_ratectl_deinit(vap);
604 	ieee80211_vap_detach(vap);
605 	free(uvp, M_80211_VAP);
606 }
607 
608 static void
609 ural_tx_free(struct ural_tx_data *data, int txerr)
610 {
611 	struct ural_softc *sc = data->sc;
612 
613 	if (data->m != NULL) {
614 		ieee80211_tx_complete(data->ni, data->m, txerr);
615 		data->m = NULL;
616 		data->ni = NULL;
617 	}
618 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
619 	sc->tx_nfree++;
620 }
621 
622 static void
623 ural_setup_tx_list(struct ural_softc *sc)
624 {
625 	struct ural_tx_data *data;
626 	int i;
627 
628 	sc->tx_nfree = 0;
629 	STAILQ_INIT(&sc->tx_q);
630 	STAILQ_INIT(&sc->tx_free);
631 
632 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
633 		data = &sc->tx_data[i];
634 
635 		data->sc = sc;
636 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
637 		sc->tx_nfree++;
638 	}
639 }
640 
641 static void
642 ural_unsetup_tx_list(struct ural_softc *sc)
643 {
644 	struct ural_tx_data *data;
645 	int i;
646 
647 	/* make sure any subsequent use of the queues will fail */
648 	sc->tx_nfree = 0;
649 	STAILQ_INIT(&sc->tx_q);
650 	STAILQ_INIT(&sc->tx_free);
651 
652 	/* free up all node references and mbufs */
653 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
654 		data = &sc->tx_data[i];
655 
656 		if (data->m != NULL) {
657 			m_freem(data->m);
658 			data->m = NULL;
659 		}
660 		if (data->ni != NULL) {
661 			ieee80211_free_node(data->ni);
662 			data->ni = NULL;
663 		}
664 	}
665 }
666 
667 static int
668 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
669 {
670 	struct ural_vap *uvp = URAL_VAP(vap);
671 	struct ieee80211com *ic = vap->iv_ic;
672 	struct ural_softc *sc = ic->ic_softc;
673 	const struct ieee80211_txparam *tp;
674 	struct ieee80211_node *ni;
675 	struct mbuf *m;
676 
677 	DPRINTF("%s -> %s\n",
678 		ieee80211_state_name[vap->iv_state],
679 		ieee80211_state_name[nstate]);
680 
681 	IEEE80211_UNLOCK(ic);
682 	RAL_LOCK(sc);
683 	usb_callout_stop(&uvp->ratectl_ch);
684 
685 	switch (nstate) {
686 	case IEEE80211_S_INIT:
687 		if (vap->iv_state == IEEE80211_S_RUN) {
688 			/* abort TSF synchronization */
689 			ural_write(sc, RAL_TXRX_CSR19, 0);
690 
691 			/* force tx led to stop blinking */
692 			ural_write(sc, RAL_MAC_CSR20, 0);
693 		}
694 		break;
695 
696 	case IEEE80211_S_RUN:
697 		ni = ieee80211_ref_node(vap->iv_bss);
698 
699 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
700 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
701 				goto fail;
702 
703 			ural_update_slot(sc);
704 			ural_set_txpreamble(sc);
705 			ural_set_basicrates(sc, ic->ic_bsschan);
706 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
707 			ural_set_bssid(sc, sc->sc_bssid);
708 		}
709 
710 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
711 		    vap->iv_opmode == IEEE80211_M_IBSS) {
712 			m = ieee80211_beacon_alloc(ni);
713 			if (m == NULL) {
714 				device_printf(sc->sc_dev,
715 				    "could not allocate beacon\n");
716 				goto fail;
717 			}
718 			ieee80211_ref_node(ni);
719 			if (ural_tx_bcn(sc, m, ni) != 0) {
720 				device_printf(sc->sc_dev,
721 				    "could not send beacon\n");
722 				goto fail;
723 			}
724 		}
725 
726 		/* make tx led blink on tx (controlled by ASIC) */
727 		ural_write(sc, RAL_MAC_CSR20, 1);
728 
729 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
730 			ural_enable_tsf_sync(sc);
731 		else
732 			ural_enable_tsf(sc);
733 
734 		/* enable automatic rate adaptation */
735 		/* XXX should use ic_bsschan but not valid until after newstate call below */
736 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
737 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
738 			ural_ratectl_start(sc, ni);
739 		ieee80211_free_node(ni);
740 		break;
741 
742 	default:
743 		break;
744 	}
745 	RAL_UNLOCK(sc);
746 	IEEE80211_LOCK(ic);
747 	return (uvp->newstate(vap, nstate, arg));
748 
749 fail:
750 	RAL_UNLOCK(sc);
751 	IEEE80211_LOCK(ic);
752 	ieee80211_free_node(ni);
753 	return (-1);
754 }
755 
756 static void
757 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
758 {
759 	struct ural_softc *sc = usbd_xfer_softc(xfer);
760 	struct ieee80211vap *vap;
761 	struct ural_tx_data *data;
762 	struct mbuf *m;
763 	struct usb_page_cache *pc;
764 	int len;
765 
766 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
767 
768 	switch (USB_GET_STATE(xfer)) {
769 	case USB_ST_TRANSFERRED:
770 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
771 
772 		/* free resources */
773 		data = usbd_xfer_get_priv(xfer);
774 		ural_tx_free(data, 0);
775 		usbd_xfer_set_priv(xfer, NULL);
776 
777 		/* FALLTHROUGH */
778 	case USB_ST_SETUP:
779 tr_setup:
780 		data = STAILQ_FIRST(&sc->tx_q);
781 		if (data) {
782 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
783 			m = data->m;
784 
785 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
786 				DPRINTFN(0, "data overflow, %u bytes\n",
787 				    m->m_pkthdr.len);
788 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
789 			}
790 			pc = usbd_xfer_get_frame(xfer, 0);
791 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
792 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
793 			    m->m_pkthdr.len);
794 
795 			vap = data->ni->ni_vap;
796 			if (ieee80211_radiotap_active_vap(vap)) {
797 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
798 
799 				tap->wt_flags = 0;
800 				tap->wt_rate = data->rate;
801 				tap->wt_antenna = sc->tx_ant;
802 
803 				ieee80211_radiotap_tx(vap, m);
804 			}
805 
806 			/* xfer length needs to be a multiple of two! */
807 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
808 			if ((len % 64) == 0)
809 				len += 2;
810 
811 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
812 			    m->m_pkthdr.len, len);
813 
814 			usbd_xfer_set_frame_len(xfer, 0, len);
815 			usbd_xfer_set_priv(xfer, data);
816 
817 			usbd_transfer_submit(xfer);
818 		}
819 		ural_start(sc);
820 		break;
821 
822 	default:			/* Error */
823 		DPRINTFN(11, "transfer error, %s\n",
824 		    usbd_errstr(error));
825 
826 		data = usbd_xfer_get_priv(xfer);
827 		if (data != NULL) {
828 			ural_tx_free(data, error);
829 			usbd_xfer_set_priv(xfer, NULL);
830 		}
831 
832 		if (error == USB_ERR_STALLED) {
833 			/* try to clear stall first */
834 			usbd_xfer_set_stall(xfer);
835 			goto tr_setup;
836 		}
837 		if (error == USB_ERR_TIMEOUT)
838 			device_printf(sc->sc_dev, "device timeout\n");
839 		break;
840 	}
841 }
842 
843 static void
844 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
845 {
846 	struct ural_softc *sc = usbd_xfer_softc(xfer);
847 	struct ieee80211com *ic = &sc->sc_ic;
848 	struct ieee80211_node *ni;
849 	struct mbuf *m = NULL;
850 	struct usb_page_cache *pc;
851 	uint32_t flags;
852 	int8_t rssi = 0, nf = 0;
853 	int len;
854 
855 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
856 
857 	switch (USB_GET_STATE(xfer)) {
858 	case USB_ST_TRANSFERRED:
859 
860 		DPRINTFN(15, "rx done, actlen=%d\n", len);
861 
862 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
863 			DPRINTF("%s: xfer too short %d\n",
864 			    device_get_nameunit(sc->sc_dev), len);
865 			counter_u64_add(ic->ic_ierrors, 1);
866 			goto tr_setup;
867 		}
868 
869 		len -= RAL_RX_DESC_SIZE;
870 		/* rx descriptor is located at the end */
871 		pc = usbd_xfer_get_frame(xfer, 0);
872 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
873 
874 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
875 		nf = RAL_NOISE_FLOOR;
876 		flags = le32toh(sc->sc_rx_desc.flags);
877 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
878 			/*
879 		         * This should not happen since we did not
880 		         * request to receive those frames when we
881 		         * filled RAL_TXRX_CSR2:
882 		         */
883 			DPRINTFN(5, "PHY or CRC error\n");
884 			counter_u64_add(ic->ic_ierrors, 1);
885 			goto tr_setup;
886 		}
887 
888 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
889 		if (m == NULL) {
890 			DPRINTF("could not allocate mbuf\n");
891 			counter_u64_add(ic->ic_ierrors, 1);
892 			goto tr_setup;
893 		}
894 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
895 
896 		/* finalize mbuf */
897 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
898 
899 		if (ieee80211_radiotap_active(ic)) {
900 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
901 
902 			/* XXX set once */
903 			tap->wr_flags = 0;
904 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
905 			    (flags & RAL_RX_OFDM) ?
906 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
907 			tap->wr_antenna = sc->rx_ant;
908 			tap->wr_antsignal = nf + rssi;
909 			tap->wr_antnoise = nf;
910 		}
911 		/* Strip trailing 802.11 MAC FCS. */
912 		m_adj(m, -IEEE80211_CRC_LEN);
913 
914 		/* FALLTHROUGH */
915 	case USB_ST_SETUP:
916 tr_setup:
917 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
918 		usbd_transfer_submit(xfer);
919 
920 		/*
921 		 * At the end of a USB callback it is always safe to unlock
922 		 * the private mutex of a device! That is why we do the
923 		 * "ieee80211_input" here, and not some lines up!
924 		 */
925 		RAL_UNLOCK(sc);
926 		if (m) {
927 			ni = ieee80211_find_rxnode(ic,
928 			    mtod(m, struct ieee80211_frame_min *));
929 			if (ni != NULL) {
930 				(void) ieee80211_input(ni, m, rssi, nf);
931 				ieee80211_free_node(ni);
932 			} else
933 				(void) ieee80211_input_all(ic, m, rssi, nf);
934 		}
935 		RAL_LOCK(sc);
936 		ural_start(sc);
937 		return;
938 
939 	default:			/* Error */
940 		if (error != USB_ERR_CANCELLED) {
941 			/* try to clear stall first */
942 			usbd_xfer_set_stall(xfer);
943 			goto tr_setup;
944 		}
945 		return;
946 	}
947 }
948 
949 static uint8_t
950 ural_plcp_signal(int rate)
951 {
952 	switch (rate) {
953 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
954 	case 12:	return 0xb;
955 	case 18:	return 0xf;
956 	case 24:	return 0xa;
957 	case 36:	return 0xe;
958 	case 48:	return 0x9;
959 	case 72:	return 0xd;
960 	case 96:	return 0x8;
961 	case 108:	return 0xc;
962 
963 	/* CCK rates (NB: not IEEE std, device-specific) */
964 	case 2:		return 0x0;
965 	case 4:		return 0x1;
966 	case 11:	return 0x2;
967 	case 22:	return 0x3;
968 	}
969 	return 0xff;		/* XXX unsupported/unknown rate */
970 }
971 
972 static void
973 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
974     uint32_t flags, int len, int rate)
975 {
976 	struct ieee80211com *ic = &sc->sc_ic;
977 	uint16_t plcp_length;
978 	int remainder;
979 
980 	desc->flags = htole32(flags);
981 	desc->flags |= htole32(RAL_TX_NEWSEQ);
982 	desc->flags |= htole32(len << 16);
983 
984 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
985 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
986 
987 	/* setup PLCP fields */
988 	desc->plcp_signal  = ural_plcp_signal(rate);
989 	desc->plcp_service = 4;
990 
991 	len += IEEE80211_CRC_LEN;
992 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
993 		desc->flags |= htole32(RAL_TX_OFDM);
994 
995 		plcp_length = len & 0xfff;
996 		desc->plcp_length_hi = plcp_length >> 6;
997 		desc->plcp_length_lo = plcp_length & 0x3f;
998 	} else {
999 		if (rate == 0)
1000 			rate = 2;	/* avoid division by zero */
1001 		plcp_length = howmany(16 * len, rate);
1002 		if (rate == 22) {
1003 			remainder = (16 * len) % 22;
1004 			if (remainder != 0 && remainder < 7)
1005 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1006 		}
1007 		desc->plcp_length_hi = plcp_length >> 8;
1008 		desc->plcp_length_lo = plcp_length & 0xff;
1009 
1010 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1011 			desc->plcp_signal |= 0x08;
1012 	}
1013 
1014 	desc->iv = 0;
1015 	desc->eiv = 0;
1016 }
1017 
1018 #define RAL_TX_TIMEOUT	5000
1019 
1020 static int
1021 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1022 {
1023 	struct ieee80211vap *vap = ni->ni_vap;
1024 	struct ieee80211com *ic = ni->ni_ic;
1025 	const struct ieee80211_txparam *tp;
1026 	struct ural_tx_data *data;
1027 
1028 	if (sc->tx_nfree == 0) {
1029 		m_freem(m0);
1030 		ieee80211_free_node(ni);
1031 		return (EIO);
1032 	}
1033 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1034 		m_freem(m0);
1035 		ieee80211_free_node(ni);
1036 		return (ENXIO);
1037 	}
1038 	data = STAILQ_FIRST(&sc->tx_free);
1039 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1040 	sc->tx_nfree--;
1041 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1042 
1043 	data->m = m0;
1044 	data->ni = ni;
1045 	data->rate = tp->mgmtrate;
1046 
1047 	ural_setup_tx_desc(sc, &data->desc,
1048 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1049 	    tp->mgmtrate);
1050 
1051 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1052 	    m0->m_pkthdr.len, tp->mgmtrate);
1053 
1054 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1055 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1056 
1057 	return (0);
1058 }
1059 
1060 static int
1061 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1062 {
1063 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1064 	struct ieee80211com *ic = ni->ni_ic;
1065 	struct ural_tx_data *data;
1066 	struct ieee80211_frame *wh;
1067 	struct ieee80211_key *k;
1068 	uint32_t flags;
1069 	uint16_t dur;
1070 
1071 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1072 
1073 	data = STAILQ_FIRST(&sc->tx_free);
1074 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1075 	sc->tx_nfree--;
1076 
1077 	wh = mtod(m0, struct ieee80211_frame *);
1078 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1079 		k = ieee80211_crypto_encap(ni, m0);
1080 		if (k == NULL) {
1081 			m_freem(m0);
1082 			return ENOBUFS;
1083 		}
1084 		wh = mtod(m0, struct ieee80211_frame *);
1085 	}
1086 
1087 	data->m = m0;
1088 	data->ni = ni;
1089 	data->rate = tp->mgmtrate;
1090 
1091 	flags = 0;
1092 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1093 		flags |= RAL_TX_ACK;
1094 
1095 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1096 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1097 		USETW(wh->i_dur, dur);
1098 
1099 		/* tell hardware to add timestamp for probe responses */
1100 		if (IEEE80211_IS_MGMT_PROBE_RESP(wh))
1101 			flags |= RAL_TX_TIMESTAMP;
1102 	}
1103 
1104 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1105 
1106 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1107 	    m0->m_pkthdr.len, tp->mgmtrate);
1108 
1109 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1110 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 ural_sendprot(struct ural_softc *sc,
1117     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1118 {
1119 	struct ieee80211com *ic = ni->ni_ic;
1120 	struct ural_tx_data *data;
1121 	struct mbuf *mprot;
1122 	int protrate, flags;
1123 
1124 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1125 	if (mprot == NULL) {
1126 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1127 		device_printf(sc->sc_dev,
1128 		    "could not allocate mbuf for protection mode %d\n", prot);
1129 		return ENOBUFS;
1130 	}
1131 
1132 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1133 	flags = RAL_TX_RETRY(7);
1134 	if (prot == IEEE80211_PROT_RTSCTS)
1135 		flags |= RAL_TX_ACK;
1136 
1137 	data = STAILQ_FIRST(&sc->tx_free);
1138 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1139 	sc->tx_nfree--;
1140 
1141 	data->m = mprot;
1142 	data->ni = ieee80211_ref_node(ni);
1143 	data->rate = protrate;
1144 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1145 
1146 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1147 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1148 
1149 	return 0;
1150 }
1151 
1152 static int
1153 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1154     const struct ieee80211_bpf_params *params)
1155 {
1156 	struct ieee80211com *ic = ni->ni_ic;
1157 	struct ural_tx_data *data;
1158 	uint32_t flags;
1159 	int error;
1160 	int rate;
1161 
1162 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1163 	KASSERT(params != NULL, ("no raw xmit params"));
1164 
1165 	rate = params->ibp_rate0;
1166 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1167 		m_freem(m0);
1168 		return EINVAL;
1169 	}
1170 	flags = 0;
1171 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1172 		flags |= RAL_TX_ACK;
1173 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1174 		error = ural_sendprot(sc, m0, ni,
1175 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1176 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1177 		    rate);
1178 		if (error || sc->tx_nfree == 0) {
1179 			m_freem(m0);
1180 			return ENOBUFS;
1181 		}
1182 		flags |= RAL_TX_IFS_SIFS;
1183 	}
1184 
1185 	data = STAILQ_FIRST(&sc->tx_free);
1186 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1187 	sc->tx_nfree--;
1188 
1189 	data->m = m0;
1190 	data->ni = ni;
1191 	data->rate = rate;
1192 
1193 	/* XXX need to setup descriptor ourself */
1194 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1195 
1196 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1197 	    m0->m_pkthdr.len, rate);
1198 
1199 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1200 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1201 
1202 	return 0;
1203 }
1204 
1205 static int
1206 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1207 {
1208 	struct ieee80211vap *vap = ni->ni_vap;
1209 	struct ieee80211com *ic = ni->ni_ic;
1210 	struct ural_tx_data *data;
1211 	struct ieee80211_frame *wh;
1212 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1213 	struct ieee80211_key *k;
1214 	uint32_t flags = 0;
1215 	uint16_t dur;
1216 	int error, rate;
1217 
1218 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1219 
1220 	wh = mtod(m0, struct ieee80211_frame *);
1221 
1222 	if (m0->m_flags & M_EAPOL)
1223 		rate = tp->mgmtrate;
1224 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1225 		rate = tp->mcastrate;
1226 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1227 		rate = tp->ucastrate;
1228 	else {
1229 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1230 		rate = ni->ni_txrate;
1231 	}
1232 
1233 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1234 		k = ieee80211_crypto_encap(ni, m0);
1235 		if (k == NULL) {
1236 			m_freem(m0);
1237 			return ENOBUFS;
1238 		}
1239 		/* packet header may have moved, reset our local pointer */
1240 		wh = mtod(m0, struct ieee80211_frame *);
1241 	}
1242 
1243 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1244 		int prot = IEEE80211_PROT_NONE;
1245 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1246 			prot = IEEE80211_PROT_RTSCTS;
1247 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1248 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1249 			prot = ic->ic_protmode;
1250 		if (prot != IEEE80211_PROT_NONE) {
1251 			error = ural_sendprot(sc, m0, ni, prot, rate);
1252 			if (error || sc->tx_nfree == 0) {
1253 				m_freem(m0);
1254 				return ENOBUFS;
1255 			}
1256 			flags |= RAL_TX_IFS_SIFS;
1257 		}
1258 	}
1259 
1260 	data = STAILQ_FIRST(&sc->tx_free);
1261 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1262 	sc->tx_nfree--;
1263 
1264 	data->m = m0;
1265 	data->ni = ni;
1266 	data->rate = rate;
1267 
1268 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1269 		flags |= RAL_TX_ACK;
1270 		flags |= RAL_TX_RETRY(7);
1271 
1272 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1273 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1274 		USETW(wh->i_dur, dur);
1275 	}
1276 
1277 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1278 
1279 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1280 	    m0->m_pkthdr.len, rate);
1281 
1282 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1283 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1284 
1285 	return 0;
1286 }
1287 
1288 static int
1289 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1290 {
1291 	struct ural_softc *sc = ic->ic_softc;
1292 	int error;
1293 
1294 	RAL_LOCK(sc);
1295 	if (!sc->sc_running) {
1296 		RAL_UNLOCK(sc);
1297 		return (ENXIO);
1298 	}
1299 	error = mbufq_enqueue(&sc->sc_snd, m);
1300 	if (error) {
1301 		RAL_UNLOCK(sc);
1302 		return (error);
1303 	}
1304 	ural_start(sc);
1305 	RAL_UNLOCK(sc);
1306 
1307 	return (0);
1308 }
1309 
1310 static void
1311 ural_start(struct ural_softc *sc)
1312 {
1313 	struct ieee80211_node *ni;
1314 	struct mbuf *m;
1315 
1316 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1317 
1318 	if (sc->sc_running == 0)
1319 		return;
1320 
1321 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1322 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1323 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1324 		if (ural_tx_data(sc, m, ni) != 0) {
1325 			if_inc_counter(ni->ni_vap->iv_ifp,
1326 			     IFCOUNTER_OERRORS, 1);
1327 			ieee80211_free_node(ni);
1328 			break;
1329 		}
1330 	}
1331 }
1332 
1333 static void
1334 ural_parent(struct ieee80211com *ic)
1335 {
1336 	struct ural_softc *sc = ic->ic_softc;
1337 	int startall = 0;
1338 
1339 	RAL_LOCK(sc);
1340 	if (sc->sc_detached) {
1341 		RAL_UNLOCK(sc);
1342 		return;
1343 	}
1344 	if (ic->ic_nrunning > 0) {
1345 		if (sc->sc_running == 0) {
1346 			ural_init(sc);
1347 			startall = 1;
1348 		} else
1349 			ural_setpromisc(sc);
1350 	} else if (sc->sc_running)
1351 		ural_stop(sc);
1352 	RAL_UNLOCK(sc);
1353 	if (startall)
1354 		ieee80211_start_all(ic);
1355 }
1356 
1357 static void
1358 ural_set_testmode(struct ural_softc *sc)
1359 {
1360 	struct usb_device_request req;
1361 	usb_error_t error;
1362 
1363 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1364 	req.bRequest = RAL_VENDOR_REQUEST;
1365 	USETW(req.wValue, 4);
1366 	USETW(req.wIndex, 1);
1367 	USETW(req.wLength, 0);
1368 
1369 	error = ural_do_request(sc, &req, NULL);
1370 	if (error != 0) {
1371 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1372 		    usbd_errstr(error));
1373 	}
1374 }
1375 
1376 static void
1377 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1378 {
1379 	struct usb_device_request req;
1380 	usb_error_t error;
1381 
1382 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1383 	req.bRequest = RAL_READ_EEPROM;
1384 	USETW(req.wValue, 0);
1385 	USETW(req.wIndex, addr);
1386 	USETW(req.wLength, len);
1387 
1388 	error = ural_do_request(sc, &req, buf);
1389 	if (error != 0) {
1390 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1391 		    usbd_errstr(error));
1392 	}
1393 }
1394 
1395 static uint16_t
1396 ural_read(struct ural_softc *sc, uint16_t reg)
1397 {
1398 	struct usb_device_request req;
1399 	usb_error_t error;
1400 	uint16_t val;
1401 
1402 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1403 	req.bRequest = RAL_READ_MAC;
1404 	USETW(req.wValue, 0);
1405 	USETW(req.wIndex, reg);
1406 	USETW(req.wLength, sizeof (uint16_t));
1407 
1408 	error = ural_do_request(sc, &req, &val);
1409 	if (error != 0) {
1410 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1411 		    usbd_errstr(error));
1412 		return 0;
1413 	}
1414 
1415 	return le16toh(val);
1416 }
1417 
1418 static void
1419 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1420 {
1421 	struct usb_device_request req;
1422 	usb_error_t error;
1423 
1424 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1425 	req.bRequest = RAL_READ_MULTI_MAC;
1426 	USETW(req.wValue, 0);
1427 	USETW(req.wIndex, reg);
1428 	USETW(req.wLength, len);
1429 
1430 	error = ural_do_request(sc, &req, buf);
1431 	if (error != 0) {
1432 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1433 		    usbd_errstr(error));
1434 	}
1435 }
1436 
1437 static void
1438 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1439 {
1440 	struct usb_device_request req;
1441 	usb_error_t error;
1442 
1443 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1444 	req.bRequest = RAL_WRITE_MAC;
1445 	USETW(req.wValue, val);
1446 	USETW(req.wIndex, reg);
1447 	USETW(req.wLength, 0);
1448 
1449 	error = ural_do_request(sc, &req, NULL);
1450 	if (error != 0) {
1451 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1452 		    usbd_errstr(error));
1453 	}
1454 }
1455 
1456 static void
1457 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1458 {
1459 	struct usb_device_request req;
1460 	usb_error_t error;
1461 
1462 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1463 	req.bRequest = RAL_WRITE_MULTI_MAC;
1464 	USETW(req.wValue, 0);
1465 	USETW(req.wIndex, reg);
1466 	USETW(req.wLength, len);
1467 
1468 	error = ural_do_request(sc, &req, buf);
1469 	if (error != 0) {
1470 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1471 		    usbd_errstr(error));
1472 	}
1473 }
1474 
1475 static void
1476 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1477 {
1478 	uint16_t tmp;
1479 	int ntries;
1480 
1481 	for (ntries = 0; ntries < 100; ntries++) {
1482 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1483 			break;
1484 		if (ural_pause(sc, hz / 100))
1485 			break;
1486 	}
1487 	if (ntries == 100) {
1488 		device_printf(sc->sc_dev, "could not write to BBP\n");
1489 		return;
1490 	}
1491 
1492 	tmp = reg << 8 | val;
1493 	ural_write(sc, RAL_PHY_CSR7, tmp);
1494 }
1495 
1496 static uint8_t
1497 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1498 {
1499 	uint16_t val;
1500 	int ntries;
1501 
1502 	val = RAL_BBP_WRITE | reg << 8;
1503 	ural_write(sc, RAL_PHY_CSR7, val);
1504 
1505 	for (ntries = 0; ntries < 100; ntries++) {
1506 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1507 			break;
1508 		if (ural_pause(sc, hz / 100))
1509 			break;
1510 	}
1511 	if (ntries == 100) {
1512 		device_printf(sc->sc_dev, "could not read BBP\n");
1513 		return 0;
1514 	}
1515 
1516 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1517 }
1518 
1519 static void
1520 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1521 {
1522 	uint32_t tmp;
1523 	int ntries;
1524 
1525 	for (ntries = 0; ntries < 100; ntries++) {
1526 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1527 			break;
1528 		if (ural_pause(sc, hz / 100))
1529 			break;
1530 	}
1531 	if (ntries == 100) {
1532 		device_printf(sc->sc_dev, "could not write to RF\n");
1533 		return;
1534 	}
1535 
1536 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1537 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1538 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1539 
1540 	/* remember last written value in sc */
1541 	sc->rf_regs[reg] = val;
1542 
1543 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1544 }
1545 
1546 static void
1547 ural_scan_start(struct ieee80211com *ic)
1548 {
1549 	struct ural_softc *sc = ic->ic_softc;
1550 
1551 	RAL_LOCK(sc);
1552 	ural_write(sc, RAL_TXRX_CSR19, 0);
1553 	ural_set_bssid(sc, ieee80211broadcastaddr);
1554 	RAL_UNLOCK(sc);
1555 }
1556 
1557 static void
1558 ural_scan_end(struct ieee80211com *ic)
1559 {
1560 	struct ural_softc *sc = ic->ic_softc;
1561 
1562 	RAL_LOCK(sc);
1563 	ural_enable_tsf_sync(sc);
1564 	ural_set_bssid(sc, sc->sc_bssid);
1565 	RAL_UNLOCK(sc);
1566 
1567 }
1568 
1569 static void
1570 ural_getradiocaps(struct ieee80211com *ic,
1571     int maxchans, int *nchans, struct ieee80211_channel chans[])
1572 {
1573 	struct ural_softc *sc = ic->ic_softc;
1574 	uint8_t bands[IEEE80211_MODE_BYTES];
1575 
1576 	memset(bands, 0, sizeof(bands));
1577 	setbit(bands, IEEE80211_MODE_11B);
1578 	setbit(bands, IEEE80211_MODE_11G);
1579 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1580 
1581 	if (sc->rf_rev == RAL_RF_5222) {
1582 		setbit(bands, IEEE80211_MODE_11A);
1583 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1584 		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1585 	}
1586 }
1587 
1588 static void
1589 ural_set_channel(struct ieee80211com *ic)
1590 {
1591 	struct ural_softc *sc = ic->ic_softc;
1592 
1593 	RAL_LOCK(sc);
1594 	ural_set_chan(sc, ic->ic_curchan);
1595 	RAL_UNLOCK(sc);
1596 }
1597 
1598 static void
1599 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1600 {
1601 	struct ieee80211com *ic = &sc->sc_ic;
1602 	uint8_t power, tmp;
1603 	int i, chan;
1604 
1605 	chan = ieee80211_chan2ieee(ic, c);
1606 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1607 		return;
1608 
1609 	if (IEEE80211_IS_CHAN_2GHZ(c))
1610 		power = min(sc->txpow[chan - 1], 31);
1611 	else
1612 		power = 31;
1613 
1614 	/* adjust txpower using ifconfig settings */
1615 	power -= (100 - ic->ic_txpowlimit) / 8;
1616 
1617 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1618 
1619 	switch (sc->rf_rev) {
1620 	case RAL_RF_2522:
1621 		ural_rf_write(sc, RAL_RF1, 0x00814);
1622 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1623 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1624 		break;
1625 
1626 	case RAL_RF_2523:
1627 		ural_rf_write(sc, RAL_RF1, 0x08804);
1628 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1629 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1630 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1631 		break;
1632 
1633 	case RAL_RF_2524:
1634 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1635 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1636 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1637 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1638 		break;
1639 
1640 	case RAL_RF_2525:
1641 		ural_rf_write(sc, RAL_RF1, 0x08808);
1642 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1643 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1644 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1645 
1646 		ural_rf_write(sc, RAL_RF1, 0x08808);
1647 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1648 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1649 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1650 		break;
1651 
1652 	case RAL_RF_2525E:
1653 		ural_rf_write(sc, RAL_RF1, 0x08808);
1654 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1655 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1656 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1657 		break;
1658 
1659 	case RAL_RF_2526:
1660 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1661 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1662 		ural_rf_write(sc, RAL_RF1, 0x08804);
1663 
1664 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1665 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1666 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1667 		break;
1668 
1669 	/* dual-band RF */
1670 	case RAL_RF_5222:
1671 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1672 
1673 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1674 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1675 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1676 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1677 		break;
1678 	}
1679 
1680 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1681 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1682 		/* set Japan filter bit for channel 14 */
1683 		tmp = ural_bbp_read(sc, 70);
1684 
1685 		tmp &= ~RAL_JAPAN_FILTER;
1686 		if (chan == 14)
1687 			tmp |= RAL_JAPAN_FILTER;
1688 
1689 		ural_bbp_write(sc, 70, tmp);
1690 
1691 		/* clear CRC errors */
1692 		ural_read(sc, RAL_STA_CSR0);
1693 
1694 		ural_pause(sc, hz / 100);
1695 		ural_disable_rf_tune(sc);
1696 	}
1697 
1698 	/* XXX doesn't belong here */
1699 	/* update basic rate set */
1700 	ural_set_basicrates(sc, c);
1701 
1702 	/* give the hardware some time to do the switchover */
1703 	ural_pause(sc, hz / 100);
1704 }
1705 
1706 /*
1707  * Disable RF auto-tuning.
1708  */
1709 static void
1710 ural_disable_rf_tune(struct ural_softc *sc)
1711 {
1712 	uint32_t tmp;
1713 
1714 	if (sc->rf_rev != RAL_RF_2523) {
1715 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1716 		ural_rf_write(sc, RAL_RF1, tmp);
1717 	}
1718 
1719 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1720 	ural_rf_write(sc, RAL_RF3, tmp);
1721 
1722 	DPRINTFN(2, "disabling RF autotune\n");
1723 }
1724 
1725 /*
1726  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1727  * synchronization.
1728  */
1729 static void
1730 ural_enable_tsf_sync(struct ural_softc *sc)
1731 {
1732 	struct ieee80211com *ic = &sc->sc_ic;
1733 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734 	uint16_t logcwmin, preload, tmp;
1735 
1736 	/* first, disable TSF synchronization */
1737 	ural_write(sc, RAL_TXRX_CSR19, 0);
1738 
1739 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1740 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1741 
1742 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1743 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1744 	tmp = logcwmin << 12 | preload;
1745 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1746 
1747 	/* finally, enable TSF synchronization */
1748 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1749 	if (ic->ic_opmode == IEEE80211_M_STA)
1750 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1751 	else
1752 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1753 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1754 
1755 	DPRINTF("enabling TSF synchronization\n");
1756 }
1757 
1758 static void
1759 ural_enable_tsf(struct ural_softc *sc)
1760 {
1761 	/* first, disable TSF synchronization */
1762 	ural_write(sc, RAL_TXRX_CSR19, 0);
1763 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1764 }
1765 
1766 #define RAL_RXTX_TURNAROUND	5	/* us */
1767 static void
1768 ural_update_slot(struct ural_softc *sc)
1769 {
1770 	struct ieee80211com *ic = &sc->sc_ic;
1771 	uint16_t slottime, sifs, eifs;
1772 
1773 	slottime = IEEE80211_GET_SLOTTIME(ic);
1774 
1775 	/*
1776 	 * These settings may sound a bit inconsistent but this is what the
1777 	 * reference driver does.
1778 	 */
1779 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1780 		sifs = 16 - RAL_RXTX_TURNAROUND;
1781 		eifs = 364;
1782 	} else {
1783 		sifs = 10 - RAL_RXTX_TURNAROUND;
1784 		eifs = 64;
1785 	}
1786 
1787 	ural_write(sc, RAL_MAC_CSR10, slottime);
1788 	ural_write(sc, RAL_MAC_CSR11, sifs);
1789 	ural_write(sc, RAL_MAC_CSR12, eifs);
1790 }
1791 
1792 static void
1793 ural_set_txpreamble(struct ural_softc *sc)
1794 {
1795 	struct ieee80211com *ic = &sc->sc_ic;
1796 	uint16_t tmp;
1797 
1798 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1799 
1800 	tmp &= ~RAL_SHORT_PREAMBLE;
1801 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1802 		tmp |= RAL_SHORT_PREAMBLE;
1803 
1804 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1805 }
1806 
1807 static void
1808 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1809 {
1810 	/* XXX wrong, take from rate set */
1811 	/* update basic rate set */
1812 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1813 		/* 11a basic rates: 6, 12, 24Mbps */
1814 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1815 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1816 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1817 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1818 	} else {
1819 		/* 11b basic rates: 1, 2Mbps */
1820 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1821 	}
1822 }
1823 
1824 static void
1825 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1826 {
1827 	uint16_t tmp;
1828 
1829 	tmp = bssid[0] | bssid[1] << 8;
1830 	ural_write(sc, RAL_MAC_CSR5, tmp);
1831 
1832 	tmp = bssid[2] | bssid[3] << 8;
1833 	ural_write(sc, RAL_MAC_CSR6, tmp);
1834 
1835 	tmp = bssid[4] | bssid[5] << 8;
1836 	ural_write(sc, RAL_MAC_CSR7, tmp);
1837 
1838 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1839 }
1840 
1841 static void
1842 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1843 {
1844 	uint16_t tmp;
1845 
1846 	tmp = addr[0] | addr[1] << 8;
1847 	ural_write(sc, RAL_MAC_CSR2, tmp);
1848 
1849 	tmp = addr[2] | addr[3] << 8;
1850 	ural_write(sc, RAL_MAC_CSR3, tmp);
1851 
1852 	tmp = addr[4] | addr[5] << 8;
1853 	ural_write(sc, RAL_MAC_CSR4, tmp);
1854 
1855 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1856 }
1857 
1858 static void
1859 ural_setpromisc(struct ural_softc *sc)
1860 {
1861 	uint32_t tmp;
1862 
1863 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1864 
1865 	tmp &= ~RAL_DROP_NOT_TO_ME;
1866 	if (sc->sc_ic.ic_promisc == 0)
1867 		tmp |= RAL_DROP_NOT_TO_ME;
1868 
1869 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1870 
1871 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1872 	    "entering" : "leaving");
1873 }
1874 
1875 static void
1876 ural_update_promisc(struct ieee80211com *ic)
1877 {
1878 	struct ural_softc *sc = ic->ic_softc;
1879 
1880 	RAL_LOCK(sc);
1881 	if (sc->sc_running)
1882 		ural_setpromisc(sc);
1883 	RAL_UNLOCK(sc);
1884 }
1885 
1886 static const char *
1887 ural_get_rf(int rev)
1888 {
1889 	switch (rev) {
1890 	case RAL_RF_2522:	return "RT2522";
1891 	case RAL_RF_2523:	return "RT2523";
1892 	case RAL_RF_2524:	return "RT2524";
1893 	case RAL_RF_2525:	return "RT2525";
1894 	case RAL_RF_2525E:	return "RT2525e";
1895 	case RAL_RF_2526:	return "RT2526";
1896 	case RAL_RF_5222:	return "RT5222";
1897 	default:		return "unknown";
1898 	}
1899 }
1900 
1901 static void
1902 ural_read_eeprom(struct ural_softc *sc)
1903 {
1904 	struct ieee80211com *ic = &sc->sc_ic;
1905 	uint16_t val;
1906 
1907 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1908 	val = le16toh(val);
1909 	sc->rf_rev =   (val >> 11) & 0x7;
1910 	sc->hw_radio = (val >> 10) & 0x1;
1911 	sc->led_mode = (val >> 6)  & 0x7;
1912 	sc->rx_ant =   (val >> 4)  & 0x3;
1913 	sc->tx_ant =   (val >> 2)  & 0x3;
1914 	sc->nb_ant =   val & 0x3;
1915 
1916 	/* read MAC address */
1917 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1918 
1919 	/* read default values for BBP registers */
1920 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1921 
1922 	/* read Tx power for all b/g channels */
1923 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1924 }
1925 
1926 static int
1927 ural_bbp_init(struct ural_softc *sc)
1928 {
1929 	int i, ntries;
1930 
1931 	/* wait for BBP to be ready */
1932 	for (ntries = 0; ntries < 100; ntries++) {
1933 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1934 			break;
1935 		if (ural_pause(sc, hz / 100))
1936 			break;
1937 	}
1938 	if (ntries == 100) {
1939 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1940 		return EIO;
1941 	}
1942 
1943 	/* initialize BBP registers to default values */
1944 	for (i = 0; i < nitems(ural_def_bbp); i++)
1945 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1946 
1947 #if 0
1948 	/* initialize BBP registers to values stored in EEPROM */
1949 	for (i = 0; i < 16; i++) {
1950 		if (sc->bbp_prom[i].reg == 0xff)
1951 			continue;
1952 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1953 	}
1954 #endif
1955 
1956 	return 0;
1957 }
1958 
1959 static void
1960 ural_set_txantenna(struct ural_softc *sc, int antenna)
1961 {
1962 	uint16_t tmp;
1963 	uint8_t tx;
1964 
1965 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1966 	if (antenna == 1)
1967 		tx |= RAL_BBP_ANTA;
1968 	else if (antenna == 2)
1969 		tx |= RAL_BBP_ANTB;
1970 	else
1971 		tx |= RAL_BBP_DIVERSITY;
1972 
1973 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1974 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1975 	    sc->rf_rev == RAL_RF_5222)
1976 		tx |= RAL_BBP_FLIPIQ;
1977 
1978 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1979 
1980 	/* update values in PHY_CSR5 and PHY_CSR6 */
1981 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1982 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1983 
1984 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1985 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1986 }
1987 
1988 static void
1989 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1990 {
1991 	uint8_t rx;
1992 
1993 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1994 	if (antenna == 1)
1995 		rx |= RAL_BBP_ANTA;
1996 	else if (antenna == 2)
1997 		rx |= RAL_BBP_ANTB;
1998 	else
1999 		rx |= RAL_BBP_DIVERSITY;
2000 
2001 	/* need to force no I/Q flip for RF 2525e and 2526 */
2002 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2003 		rx &= ~RAL_BBP_FLIPIQ;
2004 
2005 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2006 }
2007 
2008 static void
2009 ural_init(struct ural_softc *sc)
2010 {
2011 	struct ieee80211com *ic = &sc->sc_ic;
2012 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2013 	uint16_t tmp;
2014 	int i, ntries;
2015 
2016 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2017 
2018 	ural_set_testmode(sc);
2019 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2020 
2021 	ural_stop(sc);
2022 
2023 	/* initialize MAC registers to default values */
2024 	for (i = 0; i < nitems(ural_def_mac); i++)
2025 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2026 
2027 	/* wait for BBP and RF to wake up (this can take a long time!) */
2028 	for (ntries = 0; ntries < 100; ntries++) {
2029 		tmp = ural_read(sc, RAL_MAC_CSR17);
2030 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2031 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2032 			break;
2033 		if (ural_pause(sc, hz / 100))
2034 			break;
2035 	}
2036 	if (ntries == 100) {
2037 		device_printf(sc->sc_dev,
2038 		    "timeout waiting for BBP/RF to wakeup\n");
2039 		goto fail;
2040 	}
2041 
2042 	/* we're ready! */
2043 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2044 
2045 	/* set basic rate set (will be updated later) */
2046 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2047 
2048 	if (ural_bbp_init(sc) != 0)
2049 		goto fail;
2050 
2051 	ural_set_chan(sc, ic->ic_curchan);
2052 
2053 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2054 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2055 
2056 	ural_set_txantenna(sc, sc->tx_ant);
2057 	ural_set_rxantenna(sc, sc->rx_ant);
2058 
2059 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2060 
2061 	/*
2062 	 * Allocate Tx and Rx xfer queues.
2063 	 */
2064 	ural_setup_tx_list(sc);
2065 
2066 	/* kick Rx */
2067 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2068 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2069 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2070 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2071 			tmp |= RAL_DROP_TODS;
2072 		if (ic->ic_promisc == 0)
2073 			tmp |= RAL_DROP_NOT_TO_ME;
2074 	}
2075 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2076 
2077 	sc->sc_running = 1;
2078 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2079 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2080 	return;
2081 
2082 fail:	ural_stop(sc);
2083 }
2084 
2085 static void
2086 ural_stop(struct ural_softc *sc)
2087 {
2088 
2089 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2090 
2091 	sc->sc_running = 0;
2092 
2093 	/*
2094 	 * Drain all the transfers, if not already drained:
2095 	 */
2096 	RAL_UNLOCK(sc);
2097 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2098 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2099 	RAL_LOCK(sc);
2100 
2101 	ural_unsetup_tx_list(sc);
2102 
2103 	/* disable Rx */
2104 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2105 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2106 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2107 	/* wait a little */
2108 	ural_pause(sc, hz / 10);
2109 	ural_write(sc, RAL_MAC_CSR1, 0);
2110 	/* wait a little */
2111 	ural_pause(sc, hz / 10);
2112 }
2113 
2114 static int
2115 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2116 	const struct ieee80211_bpf_params *params)
2117 {
2118 	struct ieee80211com *ic = ni->ni_ic;
2119 	struct ural_softc *sc = ic->ic_softc;
2120 
2121 	RAL_LOCK(sc);
2122 	/* prevent management frames from being sent if we're not ready */
2123 	if (!sc->sc_running) {
2124 		RAL_UNLOCK(sc);
2125 		m_freem(m);
2126 		return ENETDOWN;
2127 	}
2128 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2129 		RAL_UNLOCK(sc);
2130 		m_freem(m);
2131 		return EIO;
2132 	}
2133 
2134 	if (params == NULL) {
2135 		/*
2136 		 * Legacy path; interpret frame contents to decide
2137 		 * precisely how to send the frame.
2138 		 */
2139 		if (ural_tx_mgt(sc, m, ni) != 0)
2140 			goto bad;
2141 	} else {
2142 		/*
2143 		 * Caller supplied explicit parameters to use in
2144 		 * sending the frame.
2145 		 */
2146 		if (ural_tx_raw(sc, m, ni, params) != 0)
2147 			goto bad;
2148 	}
2149 	RAL_UNLOCK(sc);
2150 	return 0;
2151 bad:
2152 	RAL_UNLOCK(sc);
2153 	return EIO;		/* XXX */
2154 }
2155 
2156 static void
2157 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2158 {
2159 	struct ieee80211vap *vap = ni->ni_vap;
2160 	struct ural_vap *uvp = URAL_VAP(vap);
2161 
2162 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2163 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2164 
2165 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2166 }
2167 
2168 static void
2169 ural_ratectl_timeout(void *arg)
2170 {
2171 	struct ural_vap *uvp = arg;
2172 	struct ieee80211vap *vap = &uvp->vap;
2173 	struct ieee80211com *ic = vap->iv_ic;
2174 
2175 	ieee80211_runtask(ic, &uvp->ratectl_task);
2176 }
2177 
2178 static void
2179 ural_ratectl_task(void *arg, int pending)
2180 {
2181 	struct ural_vap *uvp = arg;
2182 	struct ieee80211vap *vap = &uvp->vap;
2183 	struct ural_softc *sc = vap->iv_ic->ic_softc;
2184 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
2185 	int fail;
2186 
2187 	RAL_LOCK(sc);
2188 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2189 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2190 
2191 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
2192 	txs->nsuccess = sc->sta[7] +	/* TX ok w/o retry */
2193 			sc->sta[8];	/* TX ok w/ retry */
2194 	fail = sc->sta[9];		/* TX retry-fail count */
2195 	txs->nframes = txs->nsuccess + fail;
2196 	/* XXX fail * maxretry */
2197 	txs->nretries = sc->sta[8] + fail;
2198 
2199 	ieee80211_ratectl_tx_update(vap, txs);
2200 
2201 	/* count TX retry-fail as Tx errors */
2202 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2203 
2204 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2205 	RAL_UNLOCK(sc);
2206 }
2207 
2208 static int
2209 ural_pause(struct ural_softc *sc, int timeout)
2210 {
2211 
2212 	usb_pause_mtx(&sc->sc_mtx, timeout);
2213 	return (0);
2214 }
2215