1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Copyright (c) 2006, 2008 8 * Hans Petter Selasky <hselasky@FreeBSD.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 /*- 27 * Ralink Technology RT2500USB chipset driver 28 * http://www.ralinktech.com/ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/endian.h> 44 #include <sys/kdb.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <sys/rman.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR ural_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_uralreg.h> 79 #include <dev/usb/wlan/if_uralvar.h> 80 81 #ifdef USB_DEBUG 82 static int ural_debug = 0; 83 84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); 85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0, 86 "Debug level"); 87 #endif 88 89 #define URAL_RSSI(rssi) \ 90 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ 91 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) 92 93 /* various supported device vendors/products */ 94 static const struct usb_device_id ural_devs[] = { 95 #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 96 URAL_DEV(ASUS, WL167G), 97 URAL_DEV(ASUS, RT2570), 98 URAL_DEV(BELKIN, F5D7050), 99 URAL_DEV(BELKIN, F5D7051), 100 URAL_DEV(CISCOLINKSYS, HU200TS), 101 URAL_DEV(CISCOLINKSYS, WUSB54G), 102 URAL_DEV(CISCOLINKSYS, WUSB54GP), 103 URAL_DEV(CONCEPTRONIC2, C54RU), 104 URAL_DEV(DLINK, DWLG122), 105 URAL_DEV(GIGABYTE, GN54G), 106 URAL_DEV(GIGABYTE, GNWBKG), 107 URAL_DEV(GUILLEMOT, HWGUSB254), 108 URAL_DEV(MELCO, KG54), 109 URAL_DEV(MELCO, KG54AI), 110 URAL_DEV(MELCO, KG54YB), 111 URAL_DEV(MELCO, NINWIFI), 112 URAL_DEV(MSI, RT2570), 113 URAL_DEV(MSI, RT2570_2), 114 URAL_DEV(MSI, RT2570_3), 115 URAL_DEV(NOVATECH, NV902), 116 URAL_DEV(RALINK, RT2570), 117 URAL_DEV(RALINK, RT2570_2), 118 URAL_DEV(RALINK, RT2570_3), 119 URAL_DEV(SIEMENS2, WL54G), 120 URAL_DEV(SMC, 2862WG), 121 URAL_DEV(SPHAIRON, UB801R), 122 URAL_DEV(SURECOM, RT2570), 123 URAL_DEV(VTECH, RT2570), 124 URAL_DEV(ZINWELL, RT2570), 125 #undef URAL_DEV 126 }; 127 128 static usb_callback_t ural_bulk_read_callback; 129 static usb_callback_t ural_bulk_write_callback; 130 131 static usb_error_t ural_do_request(struct ural_softc *sc, 132 struct usb_device_request *req, void *data); 133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *, 134 const char name[IFNAMSIZ], int unit, int opmode, 135 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 136 const uint8_t mac[IEEE80211_ADDR_LEN]); 137 static void ural_vap_delete(struct ieee80211vap *); 138 static void ural_tx_free(struct ural_tx_data *, int); 139 static void ural_setup_tx_list(struct ural_softc *); 140 static void ural_unsetup_tx_list(struct ural_softc *); 141 static int ural_newstate(struct ieee80211vap *, 142 enum ieee80211_state, int); 143 static void ural_setup_tx_desc(struct ural_softc *, 144 struct ural_tx_desc *, uint32_t, int, int); 145 static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 146 struct ieee80211_node *); 147 static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 148 struct ieee80211_node *); 149 static int ural_tx_data(struct ural_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 static void ural_start(struct ifnet *); 152 static int ural_ioctl(struct ifnet *, u_long, caddr_t); 153 static void ural_set_testmode(struct ural_softc *); 154 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 155 int); 156 static uint16_t ural_read(struct ural_softc *, uint16_t); 157 static void ural_read_multi(struct ural_softc *, uint16_t, void *, 158 int); 159 static void ural_write(struct ural_softc *, uint16_t, uint16_t); 160 static void ural_write_multi(struct ural_softc *, uint16_t, void *, 161 int) __unused; 162 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 163 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 164 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 165 static void ural_scan_start(struct ieee80211com *); 166 static void ural_scan_end(struct ieee80211com *); 167 static void ural_set_channel(struct ieee80211com *); 168 static void ural_set_chan(struct ural_softc *, 169 struct ieee80211_channel *); 170 static void ural_disable_rf_tune(struct ural_softc *); 171 static void ural_enable_tsf_sync(struct ural_softc *); 172 static void ural_enable_tsf(struct ural_softc *); 173 static void ural_update_slot(struct ifnet *); 174 static void ural_set_txpreamble(struct ural_softc *); 175 static void ural_set_basicrates(struct ural_softc *, 176 const struct ieee80211_channel *); 177 static void ural_set_bssid(struct ural_softc *, const uint8_t *); 178 static void ural_set_macaddr(struct ural_softc *, uint8_t *); 179 static void ural_update_promisc(struct ifnet *); 180 static void ural_setpromisc(struct ural_softc *); 181 static const char *ural_get_rf(int); 182 static void ural_read_eeprom(struct ural_softc *); 183 static int ural_bbp_init(struct ural_softc *); 184 static void ural_set_txantenna(struct ural_softc *, int); 185 static void ural_set_rxantenna(struct ural_softc *, int); 186 static void ural_init_locked(struct ural_softc *); 187 static void ural_init(void *); 188 static void ural_stop(struct ural_softc *); 189 static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, 190 const struct ieee80211_bpf_params *); 191 static void ural_ratectl_start(struct ural_softc *, 192 struct ieee80211_node *); 193 static void ural_ratectl_timeout(void *); 194 static void ural_ratectl_task(void *, int); 195 static int ural_pause(struct ural_softc *sc, int timeout); 196 197 /* 198 * Default values for MAC registers; values taken from the reference driver. 199 */ 200 static const struct { 201 uint16_t reg; 202 uint16_t val; 203 } ural_def_mac[] = { 204 { RAL_TXRX_CSR5, 0x8c8d }, 205 { RAL_TXRX_CSR6, 0x8b8a }, 206 { RAL_TXRX_CSR7, 0x8687 }, 207 { RAL_TXRX_CSR8, 0x0085 }, 208 { RAL_MAC_CSR13, 0x1111 }, 209 { RAL_MAC_CSR14, 0x1e11 }, 210 { RAL_TXRX_CSR21, 0xe78f }, 211 { RAL_MAC_CSR9, 0xff1d }, 212 { RAL_MAC_CSR11, 0x0002 }, 213 { RAL_MAC_CSR22, 0x0053 }, 214 { RAL_MAC_CSR15, 0x0000 }, 215 { RAL_MAC_CSR8, RAL_FRAME_SIZE }, 216 { RAL_TXRX_CSR19, 0x0000 }, 217 { RAL_TXRX_CSR18, 0x005a }, 218 { RAL_PHY_CSR2, 0x0000 }, 219 { RAL_TXRX_CSR0, 0x1ec0 }, 220 { RAL_PHY_CSR4, 0x000f } 221 }; 222 223 /* 224 * Default values for BBP registers; values taken from the reference driver. 225 */ 226 static const struct { 227 uint8_t reg; 228 uint8_t val; 229 } ural_def_bbp[] = { 230 { 3, 0x02 }, 231 { 4, 0x19 }, 232 { 14, 0x1c }, 233 { 15, 0x30 }, 234 { 16, 0xac }, 235 { 17, 0x48 }, 236 { 18, 0x18 }, 237 { 19, 0xff }, 238 { 20, 0x1e }, 239 { 21, 0x08 }, 240 { 22, 0x08 }, 241 { 23, 0x08 }, 242 { 24, 0x80 }, 243 { 25, 0x50 }, 244 { 26, 0x08 }, 245 { 27, 0x23 }, 246 { 30, 0x10 }, 247 { 31, 0x2b }, 248 { 32, 0xb9 }, 249 { 34, 0x12 }, 250 { 35, 0x50 }, 251 { 39, 0xc4 }, 252 { 40, 0x02 }, 253 { 41, 0x60 }, 254 { 53, 0x10 }, 255 { 54, 0x18 }, 256 { 56, 0x08 }, 257 { 57, 0x10 }, 258 { 58, 0x08 }, 259 { 61, 0x60 }, 260 { 62, 0x10 }, 261 { 75, 0xff } 262 }; 263 264 /* 265 * Default values for RF register R2 indexed by channel numbers. 266 */ 267 static const uint32_t ural_rf2522_r2[] = { 268 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 269 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 270 }; 271 272 static const uint32_t ural_rf2523_r2[] = { 273 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 274 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 275 }; 276 277 static const uint32_t ural_rf2524_r2[] = { 278 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 279 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 280 }; 281 282 static const uint32_t ural_rf2525_r2[] = { 283 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 284 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 285 }; 286 287 static const uint32_t ural_rf2525_hi_r2[] = { 288 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 289 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 290 }; 291 292 static const uint32_t ural_rf2525e_r2[] = { 293 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 294 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 295 }; 296 297 static const uint32_t ural_rf2526_hi_r2[] = { 298 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 299 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 300 }; 301 302 static const uint32_t ural_rf2526_r2[] = { 303 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 304 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 305 }; 306 307 /* 308 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 309 * values taken from the reference driver. 310 */ 311 static const struct { 312 uint8_t chan; 313 uint32_t r1; 314 uint32_t r2; 315 uint32_t r4; 316 } ural_rf5222[] = { 317 { 1, 0x08808, 0x0044d, 0x00282 }, 318 { 2, 0x08808, 0x0044e, 0x00282 }, 319 { 3, 0x08808, 0x0044f, 0x00282 }, 320 { 4, 0x08808, 0x00460, 0x00282 }, 321 { 5, 0x08808, 0x00461, 0x00282 }, 322 { 6, 0x08808, 0x00462, 0x00282 }, 323 { 7, 0x08808, 0x00463, 0x00282 }, 324 { 8, 0x08808, 0x00464, 0x00282 }, 325 { 9, 0x08808, 0x00465, 0x00282 }, 326 { 10, 0x08808, 0x00466, 0x00282 }, 327 { 11, 0x08808, 0x00467, 0x00282 }, 328 { 12, 0x08808, 0x00468, 0x00282 }, 329 { 13, 0x08808, 0x00469, 0x00282 }, 330 { 14, 0x08808, 0x0046b, 0x00286 }, 331 332 { 36, 0x08804, 0x06225, 0x00287 }, 333 { 40, 0x08804, 0x06226, 0x00287 }, 334 { 44, 0x08804, 0x06227, 0x00287 }, 335 { 48, 0x08804, 0x06228, 0x00287 }, 336 { 52, 0x08804, 0x06229, 0x00287 }, 337 { 56, 0x08804, 0x0622a, 0x00287 }, 338 { 60, 0x08804, 0x0622b, 0x00287 }, 339 { 64, 0x08804, 0x0622c, 0x00287 }, 340 341 { 100, 0x08804, 0x02200, 0x00283 }, 342 { 104, 0x08804, 0x02201, 0x00283 }, 343 { 108, 0x08804, 0x02202, 0x00283 }, 344 { 112, 0x08804, 0x02203, 0x00283 }, 345 { 116, 0x08804, 0x02204, 0x00283 }, 346 { 120, 0x08804, 0x02205, 0x00283 }, 347 { 124, 0x08804, 0x02206, 0x00283 }, 348 { 128, 0x08804, 0x02207, 0x00283 }, 349 { 132, 0x08804, 0x02208, 0x00283 }, 350 { 136, 0x08804, 0x02209, 0x00283 }, 351 { 140, 0x08804, 0x0220a, 0x00283 }, 352 353 { 149, 0x08808, 0x02429, 0x00281 }, 354 { 153, 0x08808, 0x0242b, 0x00281 }, 355 { 157, 0x08808, 0x0242d, 0x00281 }, 356 { 161, 0x08808, 0x0242f, 0x00281 } 357 }; 358 359 static const struct usb_config ural_config[URAL_N_TRANSFER] = { 360 [URAL_BULK_WR] = { 361 .type = UE_BULK, 362 .endpoint = UE_ADDR_ANY, 363 .direction = UE_DIR_OUT, 364 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), 365 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 366 .callback = ural_bulk_write_callback, 367 .timeout = 5000, /* ms */ 368 }, 369 [URAL_BULK_RD] = { 370 .type = UE_BULK, 371 .endpoint = UE_ADDR_ANY, 372 .direction = UE_DIR_IN, 373 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), 374 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 375 .callback = ural_bulk_read_callback, 376 }, 377 }; 378 379 static device_probe_t ural_match; 380 static device_attach_t ural_attach; 381 static device_detach_t ural_detach; 382 383 static device_method_t ural_methods[] = { 384 /* Device interface */ 385 DEVMETHOD(device_probe, ural_match), 386 DEVMETHOD(device_attach, ural_attach), 387 DEVMETHOD(device_detach, ural_detach), 388 389 { 0, 0 } 390 }; 391 392 static driver_t ural_driver = { 393 .name = "ural", 394 .methods = ural_methods, 395 .size = sizeof(struct ural_softc), 396 }; 397 398 static devclass_t ural_devclass; 399 400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); 401 MODULE_DEPEND(ural, usb, 1, 1, 1); 402 MODULE_DEPEND(ural, wlan, 1, 1, 1); 403 MODULE_VERSION(ural, 1); 404 405 static int 406 ural_match(device_t self) 407 { 408 struct usb_attach_arg *uaa = device_get_ivars(self); 409 410 if (uaa->usb_mode != USB_MODE_HOST) 411 return (ENXIO); 412 if (uaa->info.bConfigIndex != 0) 413 return (ENXIO); 414 if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) 415 return (ENXIO); 416 417 return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); 418 } 419 420 static int 421 ural_attach(device_t self) 422 { 423 struct usb_attach_arg *uaa = device_get_ivars(self); 424 struct ural_softc *sc = device_get_softc(self); 425 struct ifnet *ifp; 426 struct ieee80211com *ic; 427 uint8_t iface_index, bands; 428 int error; 429 430 device_set_usb_desc(self); 431 sc->sc_udev = uaa->device; 432 sc->sc_dev = self; 433 434 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 435 MTX_NETWORK_LOCK, MTX_DEF); 436 437 iface_index = RAL_IFACE_INDEX; 438 error = usbd_transfer_setup(uaa->device, 439 &iface_index, sc->sc_xfer, ural_config, 440 URAL_N_TRANSFER, sc, &sc->sc_mtx); 441 if (error) { 442 device_printf(self, "could not allocate USB transfers, " 443 "err=%s\n", usbd_errstr(error)); 444 goto detach; 445 } 446 447 RAL_LOCK(sc); 448 /* retrieve RT2570 rev. no */ 449 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 450 451 /* retrieve MAC address and various other things from EEPROM */ 452 ural_read_eeprom(sc); 453 RAL_UNLOCK(sc); 454 455 device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 456 sc->asic_rev, ural_get_rf(sc->rf_rev)); 457 458 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 459 if (ifp == NULL) { 460 device_printf(sc->sc_dev, "can not if_alloc()\n"); 461 goto detach; 462 } 463 ic = ifp->if_l2com; 464 465 ifp->if_softc = sc; 466 if_initname(ifp, "ural", device_get_unit(sc->sc_dev)); 467 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 468 ifp->if_init = ural_init; 469 ifp->if_ioctl = ural_ioctl; 470 ifp->if_start = ural_start; 471 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 472 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 473 IFQ_SET_READY(&ifp->if_snd); 474 475 ic->ic_ifp = ifp; 476 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 477 478 /* set device capabilities */ 479 ic->ic_caps = 480 IEEE80211_C_STA /* station mode supported */ 481 | IEEE80211_C_IBSS /* IBSS mode supported */ 482 | IEEE80211_C_MONITOR /* monitor mode supported */ 483 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 484 | IEEE80211_C_TXPMGT /* tx power management */ 485 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 486 | IEEE80211_C_SHSLOT /* short slot time supported */ 487 | IEEE80211_C_BGSCAN /* bg scanning supported */ 488 | IEEE80211_C_WPA /* 802.11i */ 489 ; 490 491 bands = 0; 492 setbit(&bands, IEEE80211_MODE_11B); 493 setbit(&bands, IEEE80211_MODE_11G); 494 if (sc->rf_rev == RAL_RF_5222) 495 setbit(&bands, IEEE80211_MODE_11A); 496 ieee80211_init_channels(ic, NULL, &bands); 497 498 ieee80211_ifattach(ic, sc->sc_bssid); 499 ic->ic_update_promisc = ural_update_promisc; 500 ic->ic_raw_xmit = ural_raw_xmit; 501 ic->ic_scan_start = ural_scan_start; 502 ic->ic_scan_end = ural_scan_end; 503 ic->ic_set_channel = ural_set_channel; 504 505 ic->ic_vap_create = ural_vap_create; 506 ic->ic_vap_delete = ural_vap_delete; 507 508 ieee80211_radiotap_attach(ic, 509 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 510 RAL_TX_RADIOTAP_PRESENT, 511 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 512 RAL_RX_RADIOTAP_PRESENT); 513 514 if (bootverbose) 515 ieee80211_announce(ic); 516 517 return (0); 518 519 detach: 520 ural_detach(self); 521 return (ENXIO); /* failure */ 522 } 523 524 static int 525 ural_detach(device_t self) 526 { 527 struct ural_softc *sc = device_get_softc(self); 528 struct ifnet *ifp = sc->sc_ifp; 529 struct ieee80211com *ic; 530 531 /* stop all USB transfers */ 532 usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); 533 534 /* free TX list, if any */ 535 RAL_LOCK(sc); 536 ural_unsetup_tx_list(sc); 537 RAL_UNLOCK(sc); 538 539 if (ifp) { 540 ic = ifp->if_l2com; 541 ieee80211_ifdetach(ic); 542 if_free(ifp); 543 } 544 mtx_destroy(&sc->sc_mtx); 545 546 return (0); 547 } 548 549 static usb_error_t 550 ural_do_request(struct ural_softc *sc, 551 struct usb_device_request *req, void *data) 552 { 553 usb_error_t err; 554 int ntries = 10; 555 556 while (ntries--) { 557 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 558 req, data, 0, NULL, 250 /* ms */); 559 if (err == 0) 560 break; 561 562 DPRINTFN(1, "Control request failed, %s (retrying)\n", 563 usbd_errstr(err)); 564 if (ural_pause(sc, hz / 100)) 565 break; 566 } 567 return (err); 568 } 569 570 static struct ieee80211vap * 571 ural_vap_create(struct ieee80211com *ic, 572 const char name[IFNAMSIZ], int unit, int opmode, int flags, 573 const uint8_t bssid[IEEE80211_ADDR_LEN], 574 const uint8_t mac[IEEE80211_ADDR_LEN]) 575 { 576 struct ural_softc *sc = ic->ic_ifp->if_softc; 577 struct ural_vap *uvp; 578 struct ieee80211vap *vap; 579 580 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 581 return NULL; 582 uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap), 583 M_80211_VAP, M_NOWAIT | M_ZERO); 584 if (uvp == NULL) 585 return NULL; 586 vap = &uvp->vap; 587 /* enable s/w bmiss handling for sta mode */ 588 ieee80211_vap_setup(ic, vap, name, unit, opmode, 589 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 590 591 /* override state transition machine */ 592 uvp->newstate = vap->iv_newstate; 593 vap->iv_newstate = ural_newstate; 594 595 usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); 596 TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); 597 ieee80211_ratectl_init(vap); 598 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 599 600 /* complete setup */ 601 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 602 ic->ic_opmode = opmode; 603 return vap; 604 } 605 606 static void 607 ural_vap_delete(struct ieee80211vap *vap) 608 { 609 struct ural_vap *uvp = URAL_VAP(vap); 610 struct ieee80211com *ic = vap->iv_ic; 611 612 usb_callout_drain(&uvp->ratectl_ch); 613 ieee80211_draintask(ic, &uvp->ratectl_task); 614 ieee80211_ratectl_deinit(vap); 615 ieee80211_vap_detach(vap); 616 free(uvp, M_80211_VAP); 617 } 618 619 static void 620 ural_tx_free(struct ural_tx_data *data, int txerr) 621 { 622 struct ural_softc *sc = data->sc; 623 624 if (data->m != NULL) { 625 if (data->m->m_flags & M_TXCB) 626 ieee80211_process_callback(data->ni, data->m, 627 txerr ? ETIMEDOUT : 0); 628 m_freem(data->m); 629 data->m = NULL; 630 631 ieee80211_free_node(data->ni); 632 data->ni = NULL; 633 } 634 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 635 sc->tx_nfree++; 636 } 637 638 static void 639 ural_setup_tx_list(struct ural_softc *sc) 640 { 641 struct ural_tx_data *data; 642 int i; 643 644 sc->tx_nfree = 0; 645 STAILQ_INIT(&sc->tx_q); 646 STAILQ_INIT(&sc->tx_free); 647 648 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 649 data = &sc->tx_data[i]; 650 651 data->sc = sc; 652 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 653 sc->tx_nfree++; 654 } 655 } 656 657 static void 658 ural_unsetup_tx_list(struct ural_softc *sc) 659 { 660 struct ural_tx_data *data; 661 int i; 662 663 /* make sure any subsequent use of the queues will fail */ 664 sc->tx_nfree = 0; 665 STAILQ_INIT(&sc->tx_q); 666 STAILQ_INIT(&sc->tx_free); 667 668 /* free up all node references and mbufs */ 669 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 670 data = &sc->tx_data[i]; 671 672 if (data->m != NULL) { 673 m_freem(data->m); 674 data->m = NULL; 675 } 676 if (data->ni != NULL) { 677 ieee80211_free_node(data->ni); 678 data->ni = NULL; 679 } 680 } 681 } 682 683 static int 684 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 685 { 686 struct ural_vap *uvp = URAL_VAP(vap); 687 struct ieee80211com *ic = vap->iv_ic; 688 struct ural_softc *sc = ic->ic_ifp->if_softc; 689 const struct ieee80211_txparam *tp; 690 struct ieee80211_node *ni; 691 struct mbuf *m; 692 693 DPRINTF("%s -> %s\n", 694 ieee80211_state_name[vap->iv_state], 695 ieee80211_state_name[nstate]); 696 697 IEEE80211_UNLOCK(ic); 698 RAL_LOCK(sc); 699 usb_callout_stop(&uvp->ratectl_ch); 700 701 switch (nstate) { 702 case IEEE80211_S_INIT: 703 if (vap->iv_state == IEEE80211_S_RUN) { 704 /* abort TSF synchronization */ 705 ural_write(sc, RAL_TXRX_CSR19, 0); 706 707 /* force tx led to stop blinking */ 708 ural_write(sc, RAL_MAC_CSR20, 0); 709 } 710 break; 711 712 case IEEE80211_S_RUN: 713 ni = ieee80211_ref_node(vap->iv_bss); 714 715 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 716 ural_update_slot(ic->ic_ifp); 717 ural_set_txpreamble(sc); 718 ural_set_basicrates(sc, ic->ic_bsschan); 719 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 720 ural_set_bssid(sc, sc->sc_bssid); 721 } 722 723 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 724 vap->iv_opmode == IEEE80211_M_IBSS) { 725 m = ieee80211_beacon_alloc(ni, &uvp->bo); 726 if (m == NULL) { 727 device_printf(sc->sc_dev, 728 "could not allocate beacon\n"); 729 RAL_UNLOCK(sc); 730 IEEE80211_LOCK(ic); 731 ieee80211_free_node(ni); 732 return (-1); 733 } 734 ieee80211_ref_node(ni); 735 if (ural_tx_bcn(sc, m, ni) != 0) { 736 device_printf(sc->sc_dev, 737 "could not send beacon\n"); 738 RAL_UNLOCK(sc); 739 IEEE80211_LOCK(ic); 740 ieee80211_free_node(ni); 741 return (-1); 742 } 743 } 744 745 /* make tx led blink on tx (controlled by ASIC) */ 746 ural_write(sc, RAL_MAC_CSR20, 1); 747 748 if (vap->iv_opmode != IEEE80211_M_MONITOR) 749 ural_enable_tsf_sync(sc); 750 else 751 ural_enable_tsf(sc); 752 753 /* enable automatic rate adaptation */ 754 /* XXX should use ic_bsschan but not valid until after newstate call below */ 755 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 756 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 757 ural_ratectl_start(sc, ni); 758 ieee80211_free_node(ni); 759 break; 760 761 default: 762 break; 763 } 764 RAL_UNLOCK(sc); 765 IEEE80211_LOCK(ic); 766 return (uvp->newstate(vap, nstate, arg)); 767 } 768 769 770 static void 771 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 772 { 773 struct ural_softc *sc = usbd_xfer_softc(xfer); 774 struct ifnet *ifp = sc->sc_ifp; 775 struct ieee80211vap *vap; 776 struct ural_tx_data *data; 777 struct mbuf *m; 778 struct usb_page_cache *pc; 779 int len; 780 781 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 782 783 switch (USB_GET_STATE(xfer)) { 784 case USB_ST_TRANSFERRED: 785 DPRINTFN(11, "transfer complete, %d bytes\n", len); 786 787 /* free resources */ 788 data = usbd_xfer_get_priv(xfer); 789 ural_tx_free(data, 0); 790 usbd_xfer_set_priv(xfer, NULL); 791 792 ifp->if_opackets++; 793 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 794 795 /* FALLTHROUGH */ 796 case USB_ST_SETUP: 797 tr_setup: 798 data = STAILQ_FIRST(&sc->tx_q); 799 if (data) { 800 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 801 m = data->m; 802 803 if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { 804 DPRINTFN(0, "data overflow, %u bytes\n", 805 m->m_pkthdr.len); 806 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); 807 } 808 pc = usbd_xfer_get_frame(xfer, 0); 809 usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); 810 usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, 811 m->m_pkthdr.len); 812 813 vap = data->ni->ni_vap; 814 if (ieee80211_radiotap_active_vap(vap)) { 815 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 816 817 tap->wt_flags = 0; 818 tap->wt_rate = data->rate; 819 tap->wt_antenna = sc->tx_ant; 820 821 ieee80211_radiotap_tx(vap, m); 822 } 823 824 /* xfer length needs to be a multiple of two! */ 825 len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; 826 if ((len % 64) == 0) 827 len += 2; 828 829 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 830 m->m_pkthdr.len, len); 831 832 usbd_xfer_set_frame_len(xfer, 0, len); 833 usbd_xfer_set_priv(xfer, data); 834 835 usbd_transfer_submit(xfer); 836 } 837 RAL_UNLOCK(sc); 838 ural_start(ifp); 839 RAL_LOCK(sc); 840 break; 841 842 default: /* Error */ 843 DPRINTFN(11, "transfer error, %s\n", 844 usbd_errstr(error)); 845 846 ifp->if_oerrors++; 847 data = usbd_xfer_get_priv(xfer); 848 if (data != NULL) { 849 ural_tx_free(data, error); 850 usbd_xfer_set_priv(xfer, NULL); 851 } 852 853 if (error == USB_ERR_STALLED) { 854 /* try to clear stall first */ 855 usbd_xfer_set_stall(xfer); 856 goto tr_setup; 857 } 858 if (error == USB_ERR_TIMEOUT) 859 device_printf(sc->sc_dev, "device timeout\n"); 860 break; 861 } 862 } 863 864 static void 865 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 866 { 867 struct ural_softc *sc = usbd_xfer_softc(xfer); 868 struct ifnet *ifp = sc->sc_ifp; 869 struct ieee80211com *ic = ifp->if_l2com; 870 struct ieee80211_node *ni; 871 struct mbuf *m = NULL; 872 struct usb_page_cache *pc; 873 uint32_t flags; 874 int8_t rssi = 0, nf = 0; 875 int len; 876 877 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 878 879 switch (USB_GET_STATE(xfer)) { 880 case USB_ST_TRANSFERRED: 881 882 DPRINTFN(15, "rx done, actlen=%d\n", len); 883 884 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 885 DPRINTF("%s: xfer too short %d\n", 886 device_get_nameunit(sc->sc_dev), len); 887 ifp->if_ierrors++; 888 goto tr_setup; 889 } 890 891 len -= RAL_RX_DESC_SIZE; 892 /* rx descriptor is located at the end */ 893 pc = usbd_xfer_get_frame(xfer, 0); 894 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); 895 896 rssi = URAL_RSSI(sc->sc_rx_desc.rssi); 897 nf = RAL_NOISE_FLOOR; 898 flags = le32toh(sc->sc_rx_desc.flags); 899 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 900 /* 901 * This should not happen since we did not 902 * request to receive those frames when we 903 * filled RAL_TXRX_CSR2: 904 */ 905 DPRINTFN(5, "PHY or CRC error\n"); 906 ifp->if_ierrors++; 907 goto tr_setup; 908 } 909 910 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 911 if (m == NULL) { 912 DPRINTF("could not allocate mbuf\n"); 913 ifp->if_ierrors++; 914 goto tr_setup; 915 } 916 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); 917 918 /* finalize mbuf */ 919 m->m_pkthdr.rcvif = ifp; 920 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 921 922 if (ieee80211_radiotap_active(ic)) { 923 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 924 925 /* XXX set once */ 926 tap->wr_flags = 0; 927 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 928 (flags & RAL_RX_OFDM) ? 929 IEEE80211_T_OFDM : IEEE80211_T_CCK); 930 tap->wr_antenna = sc->rx_ant; 931 tap->wr_antsignal = nf + rssi; 932 tap->wr_antnoise = nf; 933 } 934 /* Strip trailing 802.11 MAC FCS. */ 935 m_adj(m, -IEEE80211_CRC_LEN); 936 937 /* FALLTHROUGH */ 938 case USB_ST_SETUP: 939 tr_setup: 940 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 941 usbd_transfer_submit(xfer); 942 943 /* 944 * At the end of a USB callback it is always safe to unlock 945 * the private mutex of a device! That is why we do the 946 * "ieee80211_input" here, and not some lines up! 947 */ 948 RAL_UNLOCK(sc); 949 if (m) { 950 ni = ieee80211_find_rxnode(ic, 951 mtod(m, struct ieee80211_frame_min *)); 952 if (ni != NULL) { 953 (void) ieee80211_input(ni, m, rssi, nf); 954 ieee80211_free_node(ni); 955 } else 956 (void) ieee80211_input_all(ic, m, rssi, nf); 957 } 958 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 959 !IFQ_IS_EMPTY(&ifp->if_snd)) 960 ural_start(ifp); 961 RAL_LOCK(sc); 962 return; 963 964 default: /* Error */ 965 if (error != USB_ERR_CANCELLED) { 966 /* try to clear stall first */ 967 usbd_xfer_set_stall(xfer); 968 goto tr_setup; 969 } 970 return; 971 } 972 } 973 974 static uint8_t 975 ural_plcp_signal(int rate) 976 { 977 switch (rate) { 978 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 979 case 12: return 0xb; 980 case 18: return 0xf; 981 case 24: return 0xa; 982 case 36: return 0xe; 983 case 48: return 0x9; 984 case 72: return 0xd; 985 case 96: return 0x8; 986 case 108: return 0xc; 987 988 /* CCK rates (NB: not IEEE std, device-specific) */ 989 case 2: return 0x0; 990 case 4: return 0x1; 991 case 11: return 0x2; 992 case 22: return 0x3; 993 } 994 return 0xff; /* XXX unsupported/unknown rate */ 995 } 996 997 static void 998 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 999 uint32_t flags, int len, int rate) 1000 { 1001 struct ifnet *ifp = sc->sc_ifp; 1002 struct ieee80211com *ic = ifp->if_l2com; 1003 uint16_t plcp_length; 1004 int remainder; 1005 1006 desc->flags = htole32(flags); 1007 desc->flags |= htole32(RAL_TX_NEWSEQ); 1008 desc->flags |= htole32(len << 16); 1009 1010 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1011 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1012 1013 /* setup PLCP fields */ 1014 desc->plcp_signal = ural_plcp_signal(rate); 1015 desc->plcp_service = 4; 1016 1017 len += IEEE80211_CRC_LEN; 1018 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1019 desc->flags |= htole32(RAL_TX_OFDM); 1020 1021 plcp_length = len & 0xfff; 1022 desc->plcp_length_hi = plcp_length >> 6; 1023 desc->plcp_length_lo = plcp_length & 0x3f; 1024 } else { 1025 plcp_length = (16 * len + rate - 1) / rate; 1026 if (rate == 22) { 1027 remainder = (16 * len) % 22; 1028 if (remainder != 0 && remainder < 7) 1029 desc->plcp_service |= RAL_PLCP_LENGEXT; 1030 } 1031 desc->plcp_length_hi = plcp_length >> 8; 1032 desc->plcp_length_lo = plcp_length & 0xff; 1033 1034 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1035 desc->plcp_signal |= 0x08; 1036 } 1037 1038 desc->iv = 0; 1039 desc->eiv = 0; 1040 } 1041 1042 #define RAL_TX_TIMEOUT 5000 1043 1044 static int 1045 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1046 { 1047 struct ieee80211vap *vap = ni->ni_vap; 1048 struct ieee80211com *ic = ni->ni_ic; 1049 struct ifnet *ifp = sc->sc_ifp; 1050 const struct ieee80211_txparam *tp; 1051 struct ural_tx_data *data; 1052 1053 if (sc->tx_nfree == 0) { 1054 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1055 m_freem(m0); 1056 ieee80211_free_node(ni); 1057 return EIO; 1058 } 1059 data = STAILQ_FIRST(&sc->tx_free); 1060 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1061 sc->tx_nfree--; 1062 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 1063 1064 data->m = m0; 1065 data->ni = ni; 1066 data->rate = tp->mgmtrate; 1067 1068 ural_setup_tx_desc(sc, &data->desc, 1069 RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, 1070 tp->mgmtrate); 1071 1072 DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", 1073 m0->m_pkthdr.len, tp->mgmtrate); 1074 1075 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1076 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1077 1078 return (0); 1079 } 1080 1081 static int 1082 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1083 { 1084 struct ieee80211vap *vap = ni->ni_vap; 1085 struct ieee80211com *ic = ni->ni_ic; 1086 const struct ieee80211_txparam *tp; 1087 struct ural_tx_data *data; 1088 struct ieee80211_frame *wh; 1089 struct ieee80211_key *k; 1090 uint32_t flags; 1091 uint16_t dur; 1092 1093 RAL_LOCK_ASSERT(sc, MA_OWNED); 1094 1095 data = STAILQ_FIRST(&sc->tx_free); 1096 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1097 sc->tx_nfree--; 1098 1099 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1100 1101 wh = mtod(m0, struct ieee80211_frame *); 1102 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1103 k = ieee80211_crypto_encap(ni, m0); 1104 if (k == NULL) { 1105 m_freem(m0); 1106 return ENOBUFS; 1107 } 1108 wh = mtod(m0, struct ieee80211_frame *); 1109 } 1110 1111 data->m = m0; 1112 data->ni = ni; 1113 data->rate = tp->mgmtrate; 1114 1115 flags = 0; 1116 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1117 flags |= RAL_TX_ACK; 1118 1119 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1120 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1121 *(uint16_t *)wh->i_dur = htole16(dur); 1122 1123 /* tell hardware to add timestamp for probe responses */ 1124 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1125 IEEE80211_FC0_TYPE_MGT && 1126 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1127 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1128 flags |= RAL_TX_TIMESTAMP; 1129 } 1130 1131 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); 1132 1133 DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", 1134 m0->m_pkthdr.len, tp->mgmtrate); 1135 1136 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1137 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1138 1139 return 0; 1140 } 1141 1142 static int 1143 ural_sendprot(struct ural_softc *sc, 1144 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1145 { 1146 struct ieee80211com *ic = ni->ni_ic; 1147 const struct ieee80211_frame *wh; 1148 struct ural_tx_data *data; 1149 struct mbuf *mprot; 1150 int protrate, ackrate, pktlen, flags, isshort; 1151 uint16_t dur; 1152 1153 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1154 ("protection %d", prot)); 1155 1156 wh = mtod(m, const struct ieee80211_frame *); 1157 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1158 1159 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1160 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1161 1162 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1163 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1164 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1165 flags = RAL_TX_RETRY(7); 1166 if (prot == IEEE80211_PROT_RTSCTS) { 1167 /* NB: CTS is the same size as an ACK */ 1168 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1169 flags |= RAL_TX_ACK; 1170 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1171 } else { 1172 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1173 } 1174 if (mprot == NULL) { 1175 /* XXX stat + msg */ 1176 return ENOBUFS; 1177 } 1178 data = STAILQ_FIRST(&sc->tx_free); 1179 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1180 sc->tx_nfree--; 1181 1182 data->m = mprot; 1183 data->ni = ieee80211_ref_node(ni); 1184 data->rate = protrate; 1185 ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); 1186 1187 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1188 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1189 1190 return 0; 1191 } 1192 1193 static int 1194 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1195 const struct ieee80211_bpf_params *params) 1196 { 1197 struct ieee80211com *ic = ni->ni_ic; 1198 struct ural_tx_data *data; 1199 uint32_t flags; 1200 int error; 1201 int rate; 1202 1203 RAL_LOCK_ASSERT(sc, MA_OWNED); 1204 KASSERT(params != NULL, ("no raw xmit params")); 1205 1206 rate = params->ibp_rate0; 1207 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1208 m_freem(m0); 1209 return EINVAL; 1210 } 1211 flags = 0; 1212 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1213 flags |= RAL_TX_ACK; 1214 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1215 error = ural_sendprot(sc, m0, ni, 1216 params->ibp_flags & IEEE80211_BPF_RTS ? 1217 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1218 rate); 1219 if (error || sc->tx_nfree == 0) { 1220 m_freem(m0); 1221 return ENOBUFS; 1222 } 1223 flags |= RAL_TX_IFS_SIFS; 1224 } 1225 1226 data = STAILQ_FIRST(&sc->tx_free); 1227 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1228 sc->tx_nfree--; 1229 1230 data->m = m0; 1231 data->ni = ni; 1232 data->rate = rate; 1233 1234 /* XXX need to setup descriptor ourself */ 1235 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1236 1237 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1238 m0->m_pkthdr.len, rate); 1239 1240 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1241 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1242 1243 return 0; 1244 } 1245 1246 static int 1247 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1248 { 1249 struct ieee80211vap *vap = ni->ni_vap; 1250 struct ieee80211com *ic = ni->ni_ic; 1251 struct ural_tx_data *data; 1252 struct ieee80211_frame *wh; 1253 const struct ieee80211_txparam *tp; 1254 struct ieee80211_key *k; 1255 uint32_t flags = 0; 1256 uint16_t dur; 1257 int error, rate; 1258 1259 RAL_LOCK_ASSERT(sc, MA_OWNED); 1260 1261 wh = mtod(m0, struct ieee80211_frame *); 1262 1263 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1264 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1265 rate = tp->mcastrate; 1266 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1267 rate = tp->ucastrate; 1268 else 1269 rate = ni->ni_txrate; 1270 1271 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1272 k = ieee80211_crypto_encap(ni, m0); 1273 if (k == NULL) { 1274 m_freem(m0); 1275 return ENOBUFS; 1276 } 1277 /* packet header may have moved, reset our local pointer */ 1278 wh = mtod(m0, struct ieee80211_frame *); 1279 } 1280 1281 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1282 int prot = IEEE80211_PROT_NONE; 1283 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1284 prot = IEEE80211_PROT_RTSCTS; 1285 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1286 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1287 prot = ic->ic_protmode; 1288 if (prot != IEEE80211_PROT_NONE) { 1289 error = ural_sendprot(sc, m0, ni, prot, rate); 1290 if (error || sc->tx_nfree == 0) { 1291 m_freem(m0); 1292 return ENOBUFS; 1293 } 1294 flags |= RAL_TX_IFS_SIFS; 1295 } 1296 } 1297 1298 data = STAILQ_FIRST(&sc->tx_free); 1299 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1300 sc->tx_nfree--; 1301 1302 data->m = m0; 1303 data->ni = ni; 1304 data->rate = rate; 1305 1306 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1307 flags |= RAL_TX_ACK; 1308 flags |= RAL_TX_RETRY(7); 1309 1310 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1311 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1312 *(uint16_t *)wh->i_dur = htole16(dur); 1313 } 1314 1315 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1316 1317 DPRINTFN(10, "sending data frame len=%u rate=%u\n", 1318 m0->m_pkthdr.len, rate); 1319 1320 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1321 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1322 1323 return 0; 1324 } 1325 1326 static void 1327 ural_start(struct ifnet *ifp) 1328 { 1329 struct ural_softc *sc = ifp->if_softc; 1330 struct ieee80211_node *ni; 1331 struct mbuf *m; 1332 1333 RAL_LOCK(sc); 1334 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1335 RAL_UNLOCK(sc); 1336 return; 1337 } 1338 for (;;) { 1339 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1340 if (m == NULL) 1341 break; 1342 if (sc->tx_nfree < RAL_TX_MINFREE) { 1343 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1344 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1345 break; 1346 } 1347 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1348 if (ural_tx_data(sc, m, ni) != 0) { 1349 ieee80211_free_node(ni); 1350 ifp->if_oerrors++; 1351 break; 1352 } 1353 } 1354 RAL_UNLOCK(sc); 1355 } 1356 1357 static int 1358 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1359 { 1360 struct ural_softc *sc = ifp->if_softc; 1361 struct ieee80211com *ic = ifp->if_l2com; 1362 struct ifreq *ifr = (struct ifreq *) data; 1363 int error = 0, startall = 0; 1364 1365 switch (cmd) { 1366 case SIOCSIFFLAGS: 1367 RAL_LOCK(sc); 1368 if (ifp->if_flags & IFF_UP) { 1369 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1370 ural_init_locked(sc); 1371 startall = 1; 1372 } else 1373 ural_setpromisc(sc); 1374 } else { 1375 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1376 ural_stop(sc); 1377 } 1378 RAL_UNLOCK(sc); 1379 if (startall) 1380 ieee80211_start_all(ic); 1381 break; 1382 case SIOCGIFMEDIA: 1383 case SIOCSIFMEDIA: 1384 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1385 break; 1386 default: 1387 error = ether_ioctl(ifp, cmd, data); 1388 break; 1389 } 1390 return error; 1391 } 1392 1393 static void 1394 ural_set_testmode(struct ural_softc *sc) 1395 { 1396 struct usb_device_request req; 1397 usb_error_t error; 1398 1399 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1400 req.bRequest = RAL_VENDOR_REQUEST; 1401 USETW(req.wValue, 4); 1402 USETW(req.wIndex, 1); 1403 USETW(req.wLength, 0); 1404 1405 error = ural_do_request(sc, &req, NULL); 1406 if (error != 0) { 1407 device_printf(sc->sc_dev, "could not set test mode: %s\n", 1408 usbd_errstr(error)); 1409 } 1410 } 1411 1412 static void 1413 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1414 { 1415 struct usb_device_request req; 1416 usb_error_t error; 1417 1418 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1419 req.bRequest = RAL_READ_EEPROM; 1420 USETW(req.wValue, 0); 1421 USETW(req.wIndex, addr); 1422 USETW(req.wLength, len); 1423 1424 error = ural_do_request(sc, &req, buf); 1425 if (error != 0) { 1426 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1427 usbd_errstr(error)); 1428 } 1429 } 1430 1431 static uint16_t 1432 ural_read(struct ural_softc *sc, uint16_t reg) 1433 { 1434 struct usb_device_request req; 1435 usb_error_t error; 1436 uint16_t val; 1437 1438 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1439 req.bRequest = RAL_READ_MAC; 1440 USETW(req.wValue, 0); 1441 USETW(req.wIndex, reg); 1442 USETW(req.wLength, sizeof (uint16_t)); 1443 1444 error = ural_do_request(sc, &req, &val); 1445 if (error != 0) { 1446 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1447 usbd_errstr(error)); 1448 return 0; 1449 } 1450 1451 return le16toh(val); 1452 } 1453 1454 static void 1455 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1456 { 1457 struct usb_device_request req; 1458 usb_error_t error; 1459 1460 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1461 req.bRequest = RAL_READ_MULTI_MAC; 1462 USETW(req.wValue, 0); 1463 USETW(req.wIndex, reg); 1464 USETW(req.wLength, len); 1465 1466 error = ural_do_request(sc, &req, buf); 1467 if (error != 0) { 1468 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1469 usbd_errstr(error)); 1470 } 1471 } 1472 1473 static void 1474 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1475 { 1476 struct usb_device_request req; 1477 usb_error_t error; 1478 1479 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1480 req.bRequest = RAL_WRITE_MAC; 1481 USETW(req.wValue, val); 1482 USETW(req.wIndex, reg); 1483 USETW(req.wLength, 0); 1484 1485 error = ural_do_request(sc, &req, NULL); 1486 if (error != 0) { 1487 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1488 usbd_errstr(error)); 1489 } 1490 } 1491 1492 static void 1493 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1494 { 1495 struct usb_device_request req; 1496 usb_error_t error; 1497 1498 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1499 req.bRequest = RAL_WRITE_MULTI_MAC; 1500 USETW(req.wValue, 0); 1501 USETW(req.wIndex, reg); 1502 USETW(req.wLength, len); 1503 1504 error = ural_do_request(sc, &req, buf); 1505 if (error != 0) { 1506 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1507 usbd_errstr(error)); 1508 } 1509 } 1510 1511 static void 1512 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1513 { 1514 uint16_t tmp; 1515 int ntries; 1516 1517 for (ntries = 0; ntries < 100; ntries++) { 1518 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1519 break; 1520 if (ural_pause(sc, hz / 100)) 1521 break; 1522 } 1523 if (ntries == 100) { 1524 device_printf(sc->sc_dev, "could not write to BBP\n"); 1525 return; 1526 } 1527 1528 tmp = reg << 8 | val; 1529 ural_write(sc, RAL_PHY_CSR7, tmp); 1530 } 1531 1532 static uint8_t 1533 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1534 { 1535 uint16_t val; 1536 int ntries; 1537 1538 val = RAL_BBP_WRITE | reg << 8; 1539 ural_write(sc, RAL_PHY_CSR7, val); 1540 1541 for (ntries = 0; ntries < 100; ntries++) { 1542 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1543 break; 1544 if (ural_pause(sc, hz / 100)) 1545 break; 1546 } 1547 if (ntries == 100) { 1548 device_printf(sc->sc_dev, "could not read BBP\n"); 1549 return 0; 1550 } 1551 1552 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1553 } 1554 1555 static void 1556 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1557 { 1558 uint32_t tmp; 1559 int ntries; 1560 1561 for (ntries = 0; ntries < 100; ntries++) { 1562 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1563 break; 1564 if (ural_pause(sc, hz / 100)) 1565 break; 1566 } 1567 if (ntries == 100) { 1568 device_printf(sc->sc_dev, "could not write to RF\n"); 1569 return; 1570 } 1571 1572 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1573 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1574 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1575 1576 /* remember last written value in sc */ 1577 sc->rf_regs[reg] = val; 1578 1579 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); 1580 } 1581 1582 static void 1583 ural_scan_start(struct ieee80211com *ic) 1584 { 1585 struct ifnet *ifp = ic->ic_ifp; 1586 struct ural_softc *sc = ifp->if_softc; 1587 1588 RAL_LOCK(sc); 1589 ural_write(sc, RAL_TXRX_CSR19, 0); 1590 ural_set_bssid(sc, ifp->if_broadcastaddr); 1591 RAL_UNLOCK(sc); 1592 } 1593 1594 static void 1595 ural_scan_end(struct ieee80211com *ic) 1596 { 1597 struct ural_softc *sc = ic->ic_ifp->if_softc; 1598 1599 RAL_LOCK(sc); 1600 ural_enable_tsf_sync(sc); 1601 ural_set_bssid(sc, sc->sc_bssid); 1602 RAL_UNLOCK(sc); 1603 1604 } 1605 1606 static void 1607 ural_set_channel(struct ieee80211com *ic) 1608 { 1609 struct ural_softc *sc = ic->ic_ifp->if_softc; 1610 1611 RAL_LOCK(sc); 1612 ural_set_chan(sc, ic->ic_curchan); 1613 RAL_UNLOCK(sc); 1614 } 1615 1616 static void 1617 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1618 { 1619 struct ifnet *ifp = sc->sc_ifp; 1620 struct ieee80211com *ic = ifp->if_l2com; 1621 uint8_t power, tmp; 1622 int i, chan; 1623 1624 chan = ieee80211_chan2ieee(ic, c); 1625 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1626 return; 1627 1628 if (IEEE80211_IS_CHAN_2GHZ(c)) 1629 power = min(sc->txpow[chan - 1], 31); 1630 else 1631 power = 31; 1632 1633 /* adjust txpower using ifconfig settings */ 1634 power -= (100 - ic->ic_txpowlimit) / 8; 1635 1636 DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); 1637 1638 switch (sc->rf_rev) { 1639 case RAL_RF_2522: 1640 ural_rf_write(sc, RAL_RF1, 0x00814); 1641 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1642 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1643 break; 1644 1645 case RAL_RF_2523: 1646 ural_rf_write(sc, RAL_RF1, 0x08804); 1647 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1648 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1649 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1650 break; 1651 1652 case RAL_RF_2524: 1653 ural_rf_write(sc, RAL_RF1, 0x0c808); 1654 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1655 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1656 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1657 break; 1658 1659 case RAL_RF_2525: 1660 ural_rf_write(sc, RAL_RF1, 0x08808); 1661 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1662 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1663 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1664 1665 ural_rf_write(sc, RAL_RF1, 0x08808); 1666 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1667 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1668 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1669 break; 1670 1671 case RAL_RF_2525E: 1672 ural_rf_write(sc, RAL_RF1, 0x08808); 1673 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1674 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1675 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1676 break; 1677 1678 case RAL_RF_2526: 1679 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1680 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1681 ural_rf_write(sc, RAL_RF1, 0x08804); 1682 1683 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1684 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1685 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1686 break; 1687 1688 /* dual-band RF */ 1689 case RAL_RF_5222: 1690 for (i = 0; ural_rf5222[i].chan != chan; i++); 1691 1692 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1693 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1694 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1695 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1696 break; 1697 } 1698 1699 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1700 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1701 /* set Japan filter bit for channel 14 */ 1702 tmp = ural_bbp_read(sc, 70); 1703 1704 tmp &= ~RAL_JAPAN_FILTER; 1705 if (chan == 14) 1706 tmp |= RAL_JAPAN_FILTER; 1707 1708 ural_bbp_write(sc, 70, tmp); 1709 1710 /* clear CRC errors */ 1711 ural_read(sc, RAL_STA_CSR0); 1712 1713 ural_pause(sc, hz / 100); 1714 ural_disable_rf_tune(sc); 1715 } 1716 1717 /* XXX doesn't belong here */ 1718 /* update basic rate set */ 1719 ural_set_basicrates(sc, c); 1720 1721 /* give the hardware some time to do the switchover */ 1722 ural_pause(sc, hz / 100); 1723 } 1724 1725 /* 1726 * Disable RF auto-tuning. 1727 */ 1728 static void 1729 ural_disable_rf_tune(struct ural_softc *sc) 1730 { 1731 uint32_t tmp; 1732 1733 if (sc->rf_rev != RAL_RF_2523) { 1734 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1735 ural_rf_write(sc, RAL_RF1, tmp); 1736 } 1737 1738 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1739 ural_rf_write(sc, RAL_RF3, tmp); 1740 1741 DPRINTFN(2, "disabling RF autotune\n"); 1742 } 1743 1744 /* 1745 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1746 * synchronization. 1747 */ 1748 static void 1749 ural_enable_tsf_sync(struct ural_softc *sc) 1750 { 1751 struct ifnet *ifp = sc->sc_ifp; 1752 struct ieee80211com *ic = ifp->if_l2com; 1753 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1754 uint16_t logcwmin, preload, tmp; 1755 1756 /* first, disable TSF synchronization */ 1757 ural_write(sc, RAL_TXRX_CSR19, 0); 1758 1759 tmp = (16 * vap->iv_bss->ni_intval) << 4; 1760 ural_write(sc, RAL_TXRX_CSR18, tmp); 1761 1762 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1763 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1764 tmp = logcwmin << 12 | preload; 1765 ural_write(sc, RAL_TXRX_CSR20, tmp); 1766 1767 /* finally, enable TSF synchronization */ 1768 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1769 if (ic->ic_opmode == IEEE80211_M_STA) 1770 tmp |= RAL_ENABLE_TSF_SYNC(1); 1771 else 1772 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1773 ural_write(sc, RAL_TXRX_CSR19, tmp); 1774 1775 DPRINTF("enabling TSF synchronization\n"); 1776 } 1777 1778 static void 1779 ural_enable_tsf(struct ural_softc *sc) 1780 { 1781 /* first, disable TSF synchronization */ 1782 ural_write(sc, RAL_TXRX_CSR19, 0); 1783 ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); 1784 } 1785 1786 #define RAL_RXTX_TURNAROUND 5 /* us */ 1787 static void 1788 ural_update_slot(struct ifnet *ifp) 1789 { 1790 struct ural_softc *sc = ifp->if_softc; 1791 struct ieee80211com *ic = ifp->if_l2com; 1792 uint16_t slottime, sifs, eifs; 1793 1794 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1795 1796 /* 1797 * These settings may sound a bit inconsistent but this is what the 1798 * reference driver does. 1799 */ 1800 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1801 sifs = 16 - RAL_RXTX_TURNAROUND; 1802 eifs = 364; 1803 } else { 1804 sifs = 10 - RAL_RXTX_TURNAROUND; 1805 eifs = 64; 1806 } 1807 1808 ural_write(sc, RAL_MAC_CSR10, slottime); 1809 ural_write(sc, RAL_MAC_CSR11, sifs); 1810 ural_write(sc, RAL_MAC_CSR12, eifs); 1811 } 1812 1813 static void 1814 ural_set_txpreamble(struct ural_softc *sc) 1815 { 1816 struct ifnet *ifp = sc->sc_ifp; 1817 struct ieee80211com *ic = ifp->if_l2com; 1818 uint16_t tmp; 1819 1820 tmp = ural_read(sc, RAL_TXRX_CSR10); 1821 1822 tmp &= ~RAL_SHORT_PREAMBLE; 1823 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1824 tmp |= RAL_SHORT_PREAMBLE; 1825 1826 ural_write(sc, RAL_TXRX_CSR10, tmp); 1827 } 1828 1829 static void 1830 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) 1831 { 1832 /* XXX wrong, take from rate set */ 1833 /* update basic rate set */ 1834 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1835 /* 11a basic rates: 6, 12, 24Mbps */ 1836 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1837 } else if (IEEE80211_IS_CHAN_ANYG(c)) { 1838 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1839 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1840 } else { 1841 /* 11b basic rates: 1, 2Mbps */ 1842 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1843 } 1844 } 1845 1846 static void 1847 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1848 { 1849 uint16_t tmp; 1850 1851 tmp = bssid[0] | bssid[1] << 8; 1852 ural_write(sc, RAL_MAC_CSR5, tmp); 1853 1854 tmp = bssid[2] | bssid[3] << 8; 1855 ural_write(sc, RAL_MAC_CSR6, tmp); 1856 1857 tmp = bssid[4] | bssid[5] << 8; 1858 ural_write(sc, RAL_MAC_CSR7, tmp); 1859 1860 DPRINTF("setting BSSID to %6D\n", bssid, ":"); 1861 } 1862 1863 static void 1864 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1865 { 1866 uint16_t tmp; 1867 1868 tmp = addr[0] | addr[1] << 8; 1869 ural_write(sc, RAL_MAC_CSR2, tmp); 1870 1871 tmp = addr[2] | addr[3] << 8; 1872 ural_write(sc, RAL_MAC_CSR3, tmp); 1873 1874 tmp = addr[4] | addr[5] << 8; 1875 ural_write(sc, RAL_MAC_CSR4, tmp); 1876 1877 DPRINTF("setting MAC address to %6D\n", addr, ":"); 1878 } 1879 1880 static void 1881 ural_setpromisc(struct ural_softc *sc) 1882 { 1883 struct ifnet *ifp = sc->sc_ifp; 1884 uint32_t tmp; 1885 1886 tmp = ural_read(sc, RAL_TXRX_CSR2); 1887 1888 tmp &= ~RAL_DROP_NOT_TO_ME; 1889 if (!(ifp->if_flags & IFF_PROMISC)) 1890 tmp |= RAL_DROP_NOT_TO_ME; 1891 1892 ural_write(sc, RAL_TXRX_CSR2, tmp); 1893 1894 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1895 "entering" : "leaving"); 1896 } 1897 1898 static void 1899 ural_update_promisc(struct ifnet *ifp) 1900 { 1901 struct ural_softc *sc = ifp->if_softc; 1902 1903 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1904 return; 1905 1906 RAL_LOCK(sc); 1907 ural_setpromisc(sc); 1908 RAL_UNLOCK(sc); 1909 } 1910 1911 static const char * 1912 ural_get_rf(int rev) 1913 { 1914 switch (rev) { 1915 case RAL_RF_2522: return "RT2522"; 1916 case RAL_RF_2523: return "RT2523"; 1917 case RAL_RF_2524: return "RT2524"; 1918 case RAL_RF_2525: return "RT2525"; 1919 case RAL_RF_2525E: return "RT2525e"; 1920 case RAL_RF_2526: return "RT2526"; 1921 case RAL_RF_5222: return "RT5222"; 1922 default: return "unknown"; 1923 } 1924 } 1925 1926 static void 1927 ural_read_eeprom(struct ural_softc *sc) 1928 { 1929 uint16_t val; 1930 1931 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1932 val = le16toh(val); 1933 sc->rf_rev = (val >> 11) & 0x7; 1934 sc->hw_radio = (val >> 10) & 0x1; 1935 sc->led_mode = (val >> 6) & 0x7; 1936 sc->rx_ant = (val >> 4) & 0x3; 1937 sc->tx_ant = (val >> 2) & 0x3; 1938 sc->nb_ant = val & 0x3; 1939 1940 /* read MAC address */ 1941 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6); 1942 1943 /* read default values for BBP registers */ 1944 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1945 1946 /* read Tx power for all b/g channels */ 1947 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1948 } 1949 1950 static int 1951 ural_bbp_init(struct ural_softc *sc) 1952 { 1953 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1954 int i, ntries; 1955 1956 /* wait for BBP to be ready */ 1957 for (ntries = 0; ntries < 100; ntries++) { 1958 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1959 break; 1960 if (ural_pause(sc, hz / 100)) 1961 break; 1962 } 1963 if (ntries == 100) { 1964 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1965 return EIO; 1966 } 1967 1968 /* initialize BBP registers to default values */ 1969 for (i = 0; i < N(ural_def_bbp); i++) 1970 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1971 1972 #if 0 1973 /* initialize BBP registers to values stored in EEPROM */ 1974 for (i = 0; i < 16; i++) { 1975 if (sc->bbp_prom[i].reg == 0xff) 1976 continue; 1977 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1978 } 1979 #endif 1980 1981 return 0; 1982 #undef N 1983 } 1984 1985 static void 1986 ural_set_txantenna(struct ural_softc *sc, int antenna) 1987 { 1988 uint16_t tmp; 1989 uint8_t tx; 1990 1991 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 1992 if (antenna == 1) 1993 tx |= RAL_BBP_ANTA; 1994 else if (antenna == 2) 1995 tx |= RAL_BBP_ANTB; 1996 else 1997 tx |= RAL_BBP_DIVERSITY; 1998 1999 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2000 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2001 sc->rf_rev == RAL_RF_5222) 2002 tx |= RAL_BBP_FLIPIQ; 2003 2004 ural_bbp_write(sc, RAL_BBP_TX, tx); 2005 2006 /* update values in PHY_CSR5 and PHY_CSR6 */ 2007 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2008 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2009 2010 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2011 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2012 } 2013 2014 static void 2015 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2016 { 2017 uint8_t rx; 2018 2019 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2020 if (antenna == 1) 2021 rx |= RAL_BBP_ANTA; 2022 else if (antenna == 2) 2023 rx |= RAL_BBP_ANTB; 2024 else 2025 rx |= RAL_BBP_DIVERSITY; 2026 2027 /* need to force no I/Q flip for RF 2525e and 2526 */ 2028 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2029 rx &= ~RAL_BBP_FLIPIQ; 2030 2031 ural_bbp_write(sc, RAL_BBP_RX, rx); 2032 } 2033 2034 static void 2035 ural_init_locked(struct ural_softc *sc) 2036 { 2037 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2038 struct ifnet *ifp = sc->sc_ifp; 2039 struct ieee80211com *ic = ifp->if_l2com; 2040 uint16_t tmp; 2041 int i, ntries; 2042 2043 RAL_LOCK_ASSERT(sc, MA_OWNED); 2044 2045 ural_set_testmode(sc); 2046 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2047 2048 ural_stop(sc); 2049 2050 /* initialize MAC registers to default values */ 2051 for (i = 0; i < N(ural_def_mac); i++) 2052 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2053 2054 /* wait for BBP and RF to wake up (this can take a long time!) */ 2055 for (ntries = 0; ntries < 100; ntries++) { 2056 tmp = ural_read(sc, RAL_MAC_CSR17); 2057 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2058 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2059 break; 2060 if (ural_pause(sc, hz / 100)) 2061 break; 2062 } 2063 if (ntries == 100) { 2064 device_printf(sc->sc_dev, 2065 "timeout waiting for BBP/RF to wakeup\n"); 2066 goto fail; 2067 } 2068 2069 /* we're ready! */ 2070 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2071 2072 /* set basic rate set (will be updated later) */ 2073 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2074 2075 if (ural_bbp_init(sc) != 0) 2076 goto fail; 2077 2078 ural_set_chan(sc, ic->ic_curchan); 2079 2080 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2081 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2082 2083 ural_set_txantenna(sc, sc->tx_ant); 2084 ural_set_rxantenna(sc, sc->rx_ant); 2085 2086 ural_set_macaddr(sc, IF_LLADDR(ifp)); 2087 2088 /* 2089 * Allocate Tx and Rx xfer queues. 2090 */ 2091 ural_setup_tx_list(sc); 2092 2093 /* kick Rx */ 2094 tmp = RAL_DROP_PHY | RAL_DROP_CRC; 2095 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2096 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; 2097 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2098 tmp |= RAL_DROP_TODS; 2099 if (!(ifp->if_flags & IFF_PROMISC)) 2100 tmp |= RAL_DROP_NOT_TO_ME; 2101 } 2102 ural_write(sc, RAL_TXRX_CSR2, tmp); 2103 2104 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2105 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2106 usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); 2107 usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); 2108 return; 2109 2110 fail: ural_stop(sc); 2111 #undef N 2112 } 2113 2114 static void 2115 ural_init(void *priv) 2116 { 2117 struct ural_softc *sc = priv; 2118 struct ifnet *ifp = sc->sc_ifp; 2119 struct ieee80211com *ic = ifp->if_l2com; 2120 2121 RAL_LOCK(sc); 2122 ural_init_locked(sc); 2123 RAL_UNLOCK(sc); 2124 2125 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2126 ieee80211_start_all(ic); /* start all vap's */ 2127 } 2128 2129 static void 2130 ural_stop(struct ural_softc *sc) 2131 { 2132 struct ifnet *ifp = sc->sc_ifp; 2133 2134 RAL_LOCK_ASSERT(sc, MA_OWNED); 2135 2136 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2137 2138 /* 2139 * Drain all the transfers, if not already drained: 2140 */ 2141 RAL_UNLOCK(sc); 2142 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); 2143 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); 2144 RAL_LOCK(sc); 2145 2146 ural_unsetup_tx_list(sc); 2147 2148 /* disable Rx */ 2149 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2150 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2151 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2152 /* wait a little */ 2153 ural_pause(sc, hz / 10); 2154 ural_write(sc, RAL_MAC_CSR1, 0); 2155 /* wait a little */ 2156 ural_pause(sc, hz / 10); 2157 } 2158 2159 static int 2160 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2161 const struct ieee80211_bpf_params *params) 2162 { 2163 struct ieee80211com *ic = ni->ni_ic; 2164 struct ifnet *ifp = ic->ic_ifp; 2165 struct ural_softc *sc = ifp->if_softc; 2166 2167 RAL_LOCK(sc); 2168 /* prevent management frames from being sent if we're not ready */ 2169 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2170 RAL_UNLOCK(sc); 2171 m_freem(m); 2172 ieee80211_free_node(ni); 2173 return ENETDOWN; 2174 } 2175 if (sc->tx_nfree < RAL_TX_MINFREE) { 2176 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2177 RAL_UNLOCK(sc); 2178 m_freem(m); 2179 ieee80211_free_node(ni); 2180 return EIO; 2181 } 2182 2183 ifp->if_opackets++; 2184 2185 if (params == NULL) { 2186 /* 2187 * Legacy path; interpret frame contents to decide 2188 * precisely how to send the frame. 2189 */ 2190 if (ural_tx_mgt(sc, m, ni) != 0) 2191 goto bad; 2192 } else { 2193 /* 2194 * Caller supplied explicit parameters to use in 2195 * sending the frame. 2196 */ 2197 if (ural_tx_raw(sc, m, ni, params) != 0) 2198 goto bad; 2199 } 2200 RAL_UNLOCK(sc); 2201 return 0; 2202 bad: 2203 ifp->if_oerrors++; 2204 RAL_UNLOCK(sc); 2205 ieee80211_free_node(ni); 2206 return EIO; /* XXX */ 2207 } 2208 2209 static void 2210 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) 2211 { 2212 struct ieee80211vap *vap = ni->ni_vap; 2213 struct ural_vap *uvp = URAL_VAP(vap); 2214 2215 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2216 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2217 2218 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2219 } 2220 2221 static void 2222 ural_ratectl_timeout(void *arg) 2223 { 2224 struct ural_vap *uvp = arg; 2225 struct ieee80211vap *vap = &uvp->vap; 2226 struct ieee80211com *ic = vap->iv_ic; 2227 2228 ieee80211_runtask(ic, &uvp->ratectl_task); 2229 } 2230 2231 static void 2232 ural_ratectl_task(void *arg, int pending) 2233 { 2234 struct ural_vap *uvp = arg; 2235 struct ieee80211vap *vap = &uvp->vap; 2236 struct ieee80211com *ic = vap->iv_ic; 2237 struct ifnet *ifp = ic->ic_ifp; 2238 struct ural_softc *sc = ifp->if_softc; 2239 struct ieee80211_node *ni; 2240 int ok, fail; 2241 int sum, retrycnt; 2242 2243 ni = ieee80211_ref_node(vap->iv_bss); 2244 RAL_LOCK(sc); 2245 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2246 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2247 2248 ok = sc->sta[7] + /* TX ok w/o retry */ 2249 sc->sta[8]; /* TX ok w/ retry */ 2250 fail = sc->sta[9]; /* TX retry-fail count */ 2251 sum = ok+fail; 2252 retrycnt = sc->sta[8] + fail; 2253 2254 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2255 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2256 2257 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2258 2259 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2260 RAL_UNLOCK(sc); 2261 ieee80211_free_node(ni); 2262 } 2263 2264 static int 2265 ural_pause(struct ural_softc *sc, int timeout) 2266 { 2267 2268 usb_pause_mtx(&sc->sc_mtx, timeout); 2269 return (0); 2270 } 2271