xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision 5f0216bd883edee71bf81051e3c20505e4820903)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75 
76 #define	USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78 
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81 
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84 
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
87     "Debug level");
88 #endif
89 
90 #define URAL_RSSI(rssi)					\
91 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
92 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93 
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97 	URAL_DEV(ASUS, WL167G),
98 	URAL_DEV(ASUS, RT2570),
99 	URAL_DEV(BELKIN, F5D7050),
100 	URAL_DEV(BELKIN, F5D7051),
101 	URAL_DEV(CISCOLINKSYS, HU200TS),
102 	URAL_DEV(CISCOLINKSYS, WUSB54G),
103 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
104 	URAL_DEV(CONCEPTRONIC2, C54RU),
105 	URAL_DEV(DLINK, DWLG122),
106 	URAL_DEV(GIGABYTE, GN54G),
107 	URAL_DEV(GIGABYTE, GNWBKG),
108 	URAL_DEV(GUILLEMOT, HWGUSB254),
109 	URAL_DEV(MELCO, KG54),
110 	URAL_DEV(MELCO, KG54AI),
111 	URAL_DEV(MELCO, KG54YB),
112 	URAL_DEV(MELCO, NINWIFI),
113 	URAL_DEV(MSI, RT2570),
114 	URAL_DEV(MSI, RT2570_2),
115 	URAL_DEV(MSI, RT2570_3),
116 	URAL_DEV(NOVATECH, NV902),
117 	URAL_DEV(RALINK, RT2570),
118 	URAL_DEV(RALINK, RT2570_2),
119 	URAL_DEV(RALINK, RT2570_3),
120 	URAL_DEV(SIEMENS2, WL54G),
121 	URAL_DEV(SMC, 2862WG),
122 	URAL_DEV(SPHAIRON, UB801R),
123 	URAL_DEV(SURECOM, RT2570),
124 	URAL_DEV(VTECH, RT2570),
125 	URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128 
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131 
132 static usb_error_t	ural_do_request(struct ural_softc *sc,
133 			    struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
136 			    int, const uint8_t [IEEE80211_ADDR_LEN],
137 			    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void		ural_vap_delete(struct ieee80211vap *);
139 static void		ural_tx_free(struct ural_tx_data *, int);
140 static void		ural_setup_tx_list(struct ural_softc *);
141 static void		ural_unsetup_tx_list(struct ural_softc *);
142 static int		ural_newstate(struct ieee80211vap *,
143 			    enum ieee80211_state, int);
144 static void		ural_setup_tx_desc(struct ural_softc *,
145 			    struct ural_tx_desc *, uint32_t, int, int);
146 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
147 			    struct ieee80211_node *);
148 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
149 			    struct ieee80211_node *);
150 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
151 			    struct ieee80211_node *);
152 static void		ural_start(struct ifnet *);
153 static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
154 static void		ural_set_testmode(struct ural_softc *);
155 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
156 			    int);
157 static uint16_t		ural_read(struct ural_softc *, uint16_t);
158 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
159 			    int);
160 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
161 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
162 			    int) __unused;
163 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
164 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
165 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
166 static void		ural_scan_start(struct ieee80211com *);
167 static void		ural_scan_end(struct ieee80211com *);
168 static void		ural_set_channel(struct ieee80211com *);
169 static void		ural_set_chan(struct ural_softc *,
170 			    struct ieee80211_channel *);
171 static void		ural_disable_rf_tune(struct ural_softc *);
172 static void		ural_enable_tsf_sync(struct ural_softc *);
173 static void 		ural_enable_tsf(struct ural_softc *);
174 static void		ural_update_slot(struct ifnet *);
175 static void		ural_set_txpreamble(struct ural_softc *);
176 static void		ural_set_basicrates(struct ural_softc *,
177 			    const struct ieee80211_channel *);
178 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
179 static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
180 static void		ural_update_promisc(struct ieee80211com *);
181 static void		ural_setpromisc(struct ural_softc *);
182 static const char	*ural_get_rf(int);
183 static void		ural_read_eeprom(struct ural_softc *);
184 static int		ural_bbp_init(struct ural_softc *);
185 static void		ural_set_txantenna(struct ural_softc *, int);
186 static void		ural_set_rxantenna(struct ural_softc *, int);
187 static void		ural_init_locked(struct ural_softc *);
188 static void		ural_init(void *);
189 static void		ural_stop(struct ural_softc *);
190 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191 			    const struct ieee80211_bpf_params *);
192 static void		ural_ratectl_start(struct ural_softc *,
193 			    struct ieee80211_node *);
194 static void		ural_ratectl_timeout(void *);
195 static void		ural_ratectl_task(void *, int);
196 static int		ural_pause(struct ural_softc *sc, int timeout);
197 
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202 	uint16_t	reg;
203 	uint16_t	val;
204 } ural_def_mac[] = {
205 	{ RAL_TXRX_CSR5,  0x8c8d },
206 	{ RAL_TXRX_CSR6,  0x8b8a },
207 	{ RAL_TXRX_CSR7,  0x8687 },
208 	{ RAL_TXRX_CSR8,  0x0085 },
209 	{ RAL_MAC_CSR13,  0x1111 },
210 	{ RAL_MAC_CSR14,  0x1e11 },
211 	{ RAL_TXRX_CSR21, 0xe78f },
212 	{ RAL_MAC_CSR9,   0xff1d },
213 	{ RAL_MAC_CSR11,  0x0002 },
214 	{ RAL_MAC_CSR22,  0x0053 },
215 	{ RAL_MAC_CSR15,  0x0000 },
216 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217 	{ RAL_TXRX_CSR19, 0x0000 },
218 	{ RAL_TXRX_CSR18, 0x005a },
219 	{ RAL_PHY_CSR2,   0x0000 },
220 	{ RAL_TXRX_CSR0,  0x1ec0 },
221 	{ RAL_PHY_CSR4,   0x000f }
222 };
223 
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228 	uint8_t	reg;
229 	uint8_t	val;
230 } ural_def_bbp[] = {
231 	{  3, 0x02 },
232 	{  4, 0x19 },
233 	{ 14, 0x1c },
234 	{ 15, 0x30 },
235 	{ 16, 0xac },
236 	{ 17, 0x48 },
237 	{ 18, 0x18 },
238 	{ 19, 0xff },
239 	{ 20, 0x1e },
240 	{ 21, 0x08 },
241 	{ 22, 0x08 },
242 	{ 23, 0x08 },
243 	{ 24, 0x80 },
244 	{ 25, 0x50 },
245 	{ 26, 0x08 },
246 	{ 27, 0x23 },
247 	{ 30, 0x10 },
248 	{ 31, 0x2b },
249 	{ 32, 0xb9 },
250 	{ 34, 0x12 },
251 	{ 35, 0x50 },
252 	{ 39, 0xc4 },
253 	{ 40, 0x02 },
254 	{ 41, 0x60 },
255 	{ 53, 0x10 },
256 	{ 54, 0x18 },
257 	{ 56, 0x08 },
258 	{ 57, 0x10 },
259 	{ 58, 0x08 },
260 	{ 61, 0x60 },
261 	{ 62, 0x10 },
262 	{ 75, 0xff }
263 };
264 
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272 
273 static const uint32_t ural_rf2523_r2[] = {
274 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277 
278 static const uint32_t ural_rf2524_r2[] = {
279 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282 
283 static const uint32_t ural_rf2525_r2[] = {
284 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287 
288 static const uint32_t ural_rf2525_hi_r2[] = {
289 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292 
293 static const uint32_t ural_rf2525e_r2[] = {
294 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297 
298 static const uint32_t ural_rf2526_hi_r2[] = {
299 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302 
303 static const uint32_t ural_rf2526_r2[] = {
304 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307 
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313 	uint8_t		chan;
314 	uint32_t	r1;
315 	uint32_t	r2;
316 	uint32_t	r4;
317 } ural_rf5222[] = {
318 	{   1, 0x08808, 0x0044d, 0x00282 },
319 	{   2, 0x08808, 0x0044e, 0x00282 },
320 	{   3, 0x08808, 0x0044f, 0x00282 },
321 	{   4, 0x08808, 0x00460, 0x00282 },
322 	{   5, 0x08808, 0x00461, 0x00282 },
323 	{   6, 0x08808, 0x00462, 0x00282 },
324 	{   7, 0x08808, 0x00463, 0x00282 },
325 	{   8, 0x08808, 0x00464, 0x00282 },
326 	{   9, 0x08808, 0x00465, 0x00282 },
327 	{  10, 0x08808, 0x00466, 0x00282 },
328 	{  11, 0x08808, 0x00467, 0x00282 },
329 	{  12, 0x08808, 0x00468, 0x00282 },
330 	{  13, 0x08808, 0x00469, 0x00282 },
331 	{  14, 0x08808, 0x0046b, 0x00286 },
332 
333 	{  36, 0x08804, 0x06225, 0x00287 },
334 	{  40, 0x08804, 0x06226, 0x00287 },
335 	{  44, 0x08804, 0x06227, 0x00287 },
336 	{  48, 0x08804, 0x06228, 0x00287 },
337 	{  52, 0x08804, 0x06229, 0x00287 },
338 	{  56, 0x08804, 0x0622a, 0x00287 },
339 	{  60, 0x08804, 0x0622b, 0x00287 },
340 	{  64, 0x08804, 0x0622c, 0x00287 },
341 
342 	{ 100, 0x08804, 0x02200, 0x00283 },
343 	{ 104, 0x08804, 0x02201, 0x00283 },
344 	{ 108, 0x08804, 0x02202, 0x00283 },
345 	{ 112, 0x08804, 0x02203, 0x00283 },
346 	{ 116, 0x08804, 0x02204, 0x00283 },
347 	{ 120, 0x08804, 0x02205, 0x00283 },
348 	{ 124, 0x08804, 0x02206, 0x00283 },
349 	{ 128, 0x08804, 0x02207, 0x00283 },
350 	{ 132, 0x08804, 0x02208, 0x00283 },
351 	{ 136, 0x08804, 0x02209, 0x00283 },
352 	{ 140, 0x08804, 0x0220a, 0x00283 },
353 
354 	{ 149, 0x08808, 0x02429, 0x00281 },
355 	{ 153, 0x08808, 0x0242b, 0x00281 },
356 	{ 157, 0x08808, 0x0242d, 0x00281 },
357 	{ 161, 0x08808, 0x0242f, 0x00281 }
358 };
359 
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361 	[URAL_BULK_WR] = {
362 		.type = UE_BULK,
363 		.endpoint = UE_ADDR_ANY,
364 		.direction = UE_DIR_OUT,
365 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367 		.callback = ural_bulk_write_callback,
368 		.timeout = 5000,	/* ms */
369 	},
370 	[URAL_BULK_RD] = {
371 		.type = UE_BULK,
372 		.endpoint = UE_ADDR_ANY,
373 		.direction = UE_DIR_IN,
374 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376 		.callback = ural_bulk_read_callback,
377 	},
378 };
379 
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383 
384 static device_method_t ural_methods[] = {
385 	/* Device interface */
386 	DEVMETHOD(device_probe,		ural_match),
387 	DEVMETHOD(device_attach,	ural_attach),
388 	DEVMETHOD(device_detach,	ural_detach),
389 	DEVMETHOD_END
390 };
391 
392 static driver_t ural_driver = {
393 	.name = "ural",
394 	.methods = ural_methods,
395 	.size = sizeof(struct ural_softc),
396 };
397 
398 static devclass_t ural_devclass;
399 
400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 MODULE_VERSION(ural, 1);
404 
405 static int
406 ural_match(device_t self)
407 {
408 	struct usb_attach_arg *uaa = device_get_ivars(self);
409 
410 	if (uaa->usb_mode != USB_MODE_HOST)
411 		return (ENXIO);
412 	if (uaa->info.bConfigIndex != 0)
413 		return (ENXIO);
414 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
415 		return (ENXIO);
416 
417 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
418 }
419 
420 static int
421 ural_attach(device_t self)
422 {
423 	struct usb_attach_arg *uaa = device_get_ivars(self);
424 	struct ural_softc *sc = device_get_softc(self);
425 	struct ifnet *ifp;
426 	struct ieee80211com *ic;
427 	uint8_t iface_index, bands;
428 	int error;
429 
430 	device_set_usb_desc(self);
431 	sc->sc_udev = uaa->device;
432 	sc->sc_dev = self;
433 
434 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435 	    MTX_NETWORK_LOCK, MTX_DEF);
436 
437 	iface_index = RAL_IFACE_INDEX;
438 	error = usbd_transfer_setup(uaa->device,
439 	    &iface_index, sc->sc_xfer, ural_config,
440 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
441 	if (error) {
442 		device_printf(self, "could not allocate USB transfers, "
443 		    "err=%s\n", usbd_errstr(error));
444 		goto detach;
445 	}
446 
447 	RAL_LOCK(sc);
448 	/* retrieve RT2570 rev. no */
449 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
450 
451 	/* retrieve MAC address and various other things from EEPROM */
452 	ural_read_eeprom(sc);
453 	RAL_UNLOCK(sc);
454 
455 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
456 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
457 
458 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
459 	if (ifp == NULL) {
460 		device_printf(sc->sc_dev, "can not if_alloc()\n");
461 		goto detach;
462 	}
463 	ic = ifp->if_l2com;
464 
465 	ifp->if_softc = sc;
466 	if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
467 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
468 	ifp->if_init = ural_init;
469 	ifp->if_ioctl = ural_ioctl;
470 	ifp->if_start = ural_start;
471 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
472 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
473 	IFQ_SET_READY(&ifp->if_snd);
474 
475 	ic->ic_ifp = ifp;
476 	ic->ic_softc = sc;
477 	ic->ic_name = device_get_nameunit(self);
478 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
479 
480 	/* set device capabilities */
481 	ic->ic_caps =
482 	      IEEE80211_C_STA		/* station mode supported */
483 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
484 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
485 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
486 	    | IEEE80211_C_TXPMGT	/* tx power management */
487 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
488 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
489 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
490 	    | IEEE80211_C_WPA		/* 802.11i */
491 	    ;
492 
493 	bands = 0;
494 	setbit(&bands, IEEE80211_MODE_11B);
495 	setbit(&bands, IEEE80211_MODE_11G);
496 	if (sc->rf_rev == RAL_RF_5222)
497 		setbit(&bands, IEEE80211_MODE_11A);
498 	ieee80211_init_channels(ic, NULL, &bands);
499 
500 	ieee80211_ifattach(ic, sc->sc_bssid);
501 	ic->ic_update_promisc = ural_update_promisc;
502 	ic->ic_raw_xmit = ural_raw_xmit;
503 	ic->ic_scan_start = ural_scan_start;
504 	ic->ic_scan_end = ural_scan_end;
505 	ic->ic_set_channel = ural_set_channel;
506 
507 	ic->ic_vap_create = ural_vap_create;
508 	ic->ic_vap_delete = ural_vap_delete;
509 
510 	ieee80211_radiotap_attach(ic,
511 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
512 		RAL_TX_RADIOTAP_PRESENT,
513 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
514 		RAL_RX_RADIOTAP_PRESENT);
515 
516 	if (bootverbose)
517 		ieee80211_announce(ic);
518 
519 	return (0);
520 
521 detach:
522 	ural_detach(self);
523 	return (ENXIO);			/* failure */
524 }
525 
526 static int
527 ural_detach(device_t self)
528 {
529 	struct ural_softc *sc = device_get_softc(self);
530 	struct ifnet *ifp = sc->sc_ifp;
531 	struct ieee80211com *ic;
532 
533 	/* prevent further ioctls */
534 	RAL_LOCK(sc);
535 	sc->sc_detached = 1;
536 	RAL_UNLOCK(sc);
537 
538 	/* stop all USB transfers */
539 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
540 
541 	/* free TX list, if any */
542 	RAL_LOCK(sc);
543 	ural_unsetup_tx_list(sc);
544 	RAL_UNLOCK(sc);
545 
546 	if (ifp) {
547 		ic = ifp->if_l2com;
548 		ieee80211_ifdetach(ic);
549 		if_free(ifp);
550 	}
551 	mtx_destroy(&sc->sc_mtx);
552 
553 	return (0);
554 }
555 
556 static usb_error_t
557 ural_do_request(struct ural_softc *sc,
558     struct usb_device_request *req, void *data)
559 {
560 	usb_error_t err;
561 	int ntries = 10;
562 
563 	while (ntries--) {
564 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
565 		    req, data, 0, NULL, 250 /* ms */);
566 		if (err == 0)
567 			break;
568 
569 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
570 		    usbd_errstr(err));
571 		if (ural_pause(sc, hz / 100))
572 			break;
573 	}
574 	return (err);
575 }
576 
577 static struct ieee80211vap *
578 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
579     enum ieee80211_opmode opmode, int flags,
580     const uint8_t bssid[IEEE80211_ADDR_LEN],
581     const uint8_t mac[IEEE80211_ADDR_LEN])
582 {
583 	struct ural_softc *sc = ic->ic_ifp->if_softc;
584 	struct ural_vap *uvp;
585 	struct ieee80211vap *vap;
586 
587 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
588 		return NULL;
589 	uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
590 	    M_80211_VAP, M_NOWAIT | M_ZERO);
591 	if (uvp == NULL)
592 		return NULL;
593 	vap = &uvp->vap;
594 	/* enable s/w bmiss handling for sta mode */
595 
596 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
597 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
598 		/* out of memory */
599 		free(uvp, M_80211_VAP);
600 		return (NULL);
601 	}
602 
603 	/* override state transition machine */
604 	uvp->newstate = vap->iv_newstate;
605 	vap->iv_newstate = ural_newstate;
606 
607 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
608 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
609 	ieee80211_ratectl_init(vap);
610 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
611 
612 	/* complete setup */
613 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
614 	ic->ic_opmode = opmode;
615 	return vap;
616 }
617 
618 static void
619 ural_vap_delete(struct ieee80211vap *vap)
620 {
621 	struct ural_vap *uvp = URAL_VAP(vap);
622 	struct ieee80211com *ic = vap->iv_ic;
623 
624 	usb_callout_drain(&uvp->ratectl_ch);
625 	ieee80211_draintask(ic, &uvp->ratectl_task);
626 	ieee80211_ratectl_deinit(vap);
627 	ieee80211_vap_detach(vap);
628 	free(uvp, M_80211_VAP);
629 }
630 
631 static void
632 ural_tx_free(struct ural_tx_data *data, int txerr)
633 {
634 	struct ural_softc *sc = data->sc;
635 
636 	if (data->m != NULL) {
637 		if (data->m->m_flags & M_TXCB)
638 			ieee80211_process_callback(data->ni, data->m,
639 			    txerr ? ETIMEDOUT : 0);
640 		m_freem(data->m);
641 		data->m = NULL;
642 
643 		ieee80211_free_node(data->ni);
644 		data->ni = NULL;
645 	}
646 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
647 	sc->tx_nfree++;
648 }
649 
650 static void
651 ural_setup_tx_list(struct ural_softc *sc)
652 {
653 	struct ural_tx_data *data;
654 	int i;
655 
656 	sc->tx_nfree = 0;
657 	STAILQ_INIT(&sc->tx_q);
658 	STAILQ_INIT(&sc->tx_free);
659 
660 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
661 		data = &sc->tx_data[i];
662 
663 		data->sc = sc;
664 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
665 		sc->tx_nfree++;
666 	}
667 }
668 
669 static void
670 ural_unsetup_tx_list(struct ural_softc *sc)
671 {
672 	struct ural_tx_data *data;
673 	int i;
674 
675 	/* make sure any subsequent use of the queues will fail */
676 	sc->tx_nfree = 0;
677 	STAILQ_INIT(&sc->tx_q);
678 	STAILQ_INIT(&sc->tx_free);
679 
680 	/* free up all node references and mbufs */
681 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
682 		data = &sc->tx_data[i];
683 
684 		if (data->m != NULL) {
685 			m_freem(data->m);
686 			data->m = NULL;
687 		}
688 		if (data->ni != NULL) {
689 			ieee80211_free_node(data->ni);
690 			data->ni = NULL;
691 		}
692 	}
693 }
694 
695 static int
696 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
697 {
698 	struct ural_vap *uvp = URAL_VAP(vap);
699 	struct ieee80211com *ic = vap->iv_ic;
700 	struct ural_softc *sc = ic->ic_ifp->if_softc;
701 	const struct ieee80211_txparam *tp;
702 	struct ieee80211_node *ni;
703 	struct mbuf *m;
704 
705 	DPRINTF("%s -> %s\n",
706 		ieee80211_state_name[vap->iv_state],
707 		ieee80211_state_name[nstate]);
708 
709 	IEEE80211_UNLOCK(ic);
710 	RAL_LOCK(sc);
711 	usb_callout_stop(&uvp->ratectl_ch);
712 
713 	switch (nstate) {
714 	case IEEE80211_S_INIT:
715 		if (vap->iv_state == IEEE80211_S_RUN) {
716 			/* abort TSF synchronization */
717 			ural_write(sc, RAL_TXRX_CSR19, 0);
718 
719 			/* force tx led to stop blinking */
720 			ural_write(sc, RAL_MAC_CSR20, 0);
721 		}
722 		break;
723 
724 	case IEEE80211_S_RUN:
725 		ni = ieee80211_ref_node(vap->iv_bss);
726 
727 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
728 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
729 				RAL_UNLOCK(sc);
730 				IEEE80211_LOCK(ic);
731 				ieee80211_free_node(ni);
732 				return (-1);
733 			}
734 			ural_update_slot(ic->ic_ifp);
735 			ural_set_txpreamble(sc);
736 			ural_set_basicrates(sc, ic->ic_bsschan);
737 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
738 			ural_set_bssid(sc, sc->sc_bssid);
739 		}
740 
741 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
742 		    vap->iv_opmode == IEEE80211_M_IBSS) {
743 			m = ieee80211_beacon_alloc(ni, &uvp->bo);
744 			if (m == NULL) {
745 				device_printf(sc->sc_dev,
746 				    "could not allocate beacon\n");
747 				RAL_UNLOCK(sc);
748 				IEEE80211_LOCK(ic);
749 				ieee80211_free_node(ni);
750 				return (-1);
751 			}
752 			ieee80211_ref_node(ni);
753 			if (ural_tx_bcn(sc, m, ni) != 0) {
754 				device_printf(sc->sc_dev,
755 				    "could not send beacon\n");
756 				RAL_UNLOCK(sc);
757 				IEEE80211_LOCK(ic);
758 				ieee80211_free_node(ni);
759 				return (-1);
760 			}
761 		}
762 
763 		/* make tx led blink on tx (controlled by ASIC) */
764 		ural_write(sc, RAL_MAC_CSR20, 1);
765 
766 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
767 			ural_enable_tsf_sync(sc);
768 		else
769 			ural_enable_tsf(sc);
770 
771 		/* enable automatic rate adaptation */
772 		/* XXX should use ic_bsschan but not valid until after newstate call below */
773 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
774 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
775 			ural_ratectl_start(sc, ni);
776 		ieee80211_free_node(ni);
777 		break;
778 
779 	default:
780 		break;
781 	}
782 	RAL_UNLOCK(sc);
783 	IEEE80211_LOCK(ic);
784 	return (uvp->newstate(vap, nstate, arg));
785 }
786 
787 
788 static void
789 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
790 {
791 	struct ural_softc *sc = usbd_xfer_softc(xfer);
792 	struct ifnet *ifp = sc->sc_ifp;
793 	struct ieee80211vap *vap;
794 	struct ural_tx_data *data;
795 	struct mbuf *m;
796 	struct usb_page_cache *pc;
797 	int len;
798 
799 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
800 
801 	switch (USB_GET_STATE(xfer)) {
802 	case USB_ST_TRANSFERRED:
803 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
804 
805 		/* free resources */
806 		data = usbd_xfer_get_priv(xfer);
807 		ural_tx_free(data, 0);
808 		usbd_xfer_set_priv(xfer, NULL);
809 
810 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
811 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
812 
813 		/* FALLTHROUGH */
814 	case USB_ST_SETUP:
815 tr_setup:
816 		data = STAILQ_FIRST(&sc->tx_q);
817 		if (data) {
818 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
819 			m = data->m;
820 
821 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
822 				DPRINTFN(0, "data overflow, %u bytes\n",
823 				    m->m_pkthdr.len);
824 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
825 			}
826 			pc = usbd_xfer_get_frame(xfer, 0);
827 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
828 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
829 			    m->m_pkthdr.len);
830 
831 			vap = data->ni->ni_vap;
832 			if (ieee80211_radiotap_active_vap(vap)) {
833 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
834 
835 				tap->wt_flags = 0;
836 				tap->wt_rate = data->rate;
837 				tap->wt_antenna = sc->tx_ant;
838 
839 				ieee80211_radiotap_tx(vap, m);
840 			}
841 
842 			/* xfer length needs to be a multiple of two! */
843 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
844 			if ((len % 64) == 0)
845 				len += 2;
846 
847 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
848 			    m->m_pkthdr.len, len);
849 
850 			usbd_xfer_set_frame_len(xfer, 0, len);
851 			usbd_xfer_set_priv(xfer, data);
852 
853 			usbd_transfer_submit(xfer);
854 		}
855 		RAL_UNLOCK(sc);
856 		ural_start(ifp);
857 		RAL_LOCK(sc);
858 		break;
859 
860 	default:			/* Error */
861 		DPRINTFN(11, "transfer error, %s\n",
862 		    usbd_errstr(error));
863 
864 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
865 		data = usbd_xfer_get_priv(xfer);
866 		if (data != NULL) {
867 			ural_tx_free(data, error);
868 			usbd_xfer_set_priv(xfer, NULL);
869 		}
870 
871 		if (error == USB_ERR_STALLED) {
872 			/* try to clear stall first */
873 			usbd_xfer_set_stall(xfer);
874 			goto tr_setup;
875 		}
876 		if (error == USB_ERR_TIMEOUT)
877 			device_printf(sc->sc_dev, "device timeout\n");
878 		break;
879 	}
880 }
881 
882 static void
883 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
884 {
885 	struct ural_softc *sc = usbd_xfer_softc(xfer);
886 	struct ifnet *ifp = sc->sc_ifp;
887 	struct ieee80211com *ic = ifp->if_l2com;
888 	struct ieee80211_node *ni;
889 	struct mbuf *m = NULL;
890 	struct usb_page_cache *pc;
891 	uint32_t flags;
892 	int8_t rssi = 0, nf = 0;
893 	int len;
894 
895 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
896 
897 	switch (USB_GET_STATE(xfer)) {
898 	case USB_ST_TRANSFERRED:
899 
900 		DPRINTFN(15, "rx done, actlen=%d\n", len);
901 
902 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
903 			DPRINTF("%s: xfer too short %d\n",
904 			    device_get_nameunit(sc->sc_dev), len);
905 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
906 			goto tr_setup;
907 		}
908 
909 		len -= RAL_RX_DESC_SIZE;
910 		/* rx descriptor is located at the end */
911 		pc = usbd_xfer_get_frame(xfer, 0);
912 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
913 
914 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
915 		nf = RAL_NOISE_FLOOR;
916 		flags = le32toh(sc->sc_rx_desc.flags);
917 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
918 			/*
919 		         * This should not happen since we did not
920 		         * request to receive those frames when we
921 		         * filled RAL_TXRX_CSR2:
922 		         */
923 			DPRINTFN(5, "PHY or CRC error\n");
924 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
925 			goto tr_setup;
926 		}
927 
928 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
929 		if (m == NULL) {
930 			DPRINTF("could not allocate mbuf\n");
931 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
932 			goto tr_setup;
933 		}
934 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
935 
936 		/* finalize mbuf */
937 		m->m_pkthdr.rcvif = ifp;
938 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
939 
940 		if (ieee80211_radiotap_active(ic)) {
941 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
942 
943 			/* XXX set once */
944 			tap->wr_flags = 0;
945 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
946 			    (flags & RAL_RX_OFDM) ?
947 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
948 			tap->wr_antenna = sc->rx_ant;
949 			tap->wr_antsignal = nf + rssi;
950 			tap->wr_antnoise = nf;
951 		}
952 		/* Strip trailing 802.11 MAC FCS. */
953 		m_adj(m, -IEEE80211_CRC_LEN);
954 
955 		/* FALLTHROUGH */
956 	case USB_ST_SETUP:
957 tr_setup:
958 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
959 		usbd_transfer_submit(xfer);
960 
961 		/*
962 		 * At the end of a USB callback it is always safe to unlock
963 		 * the private mutex of a device! That is why we do the
964 		 * "ieee80211_input" here, and not some lines up!
965 		 */
966 		RAL_UNLOCK(sc);
967 		if (m) {
968 			ni = ieee80211_find_rxnode(ic,
969 			    mtod(m, struct ieee80211_frame_min *));
970 			if (ni != NULL) {
971 				(void) ieee80211_input(ni, m, rssi, nf);
972 				ieee80211_free_node(ni);
973 			} else
974 				(void) ieee80211_input_all(ic, m, rssi, nf);
975 		}
976 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
977 		    !IFQ_IS_EMPTY(&ifp->if_snd))
978 			ural_start(ifp);
979 		RAL_LOCK(sc);
980 		return;
981 
982 	default:			/* Error */
983 		if (error != USB_ERR_CANCELLED) {
984 			/* try to clear stall first */
985 			usbd_xfer_set_stall(xfer);
986 			goto tr_setup;
987 		}
988 		return;
989 	}
990 }
991 
992 static uint8_t
993 ural_plcp_signal(int rate)
994 {
995 	switch (rate) {
996 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
997 	case 12:	return 0xb;
998 	case 18:	return 0xf;
999 	case 24:	return 0xa;
1000 	case 36:	return 0xe;
1001 	case 48:	return 0x9;
1002 	case 72:	return 0xd;
1003 	case 96:	return 0x8;
1004 	case 108:	return 0xc;
1005 
1006 	/* CCK rates (NB: not IEEE std, device-specific) */
1007 	case 2:		return 0x0;
1008 	case 4:		return 0x1;
1009 	case 11:	return 0x2;
1010 	case 22:	return 0x3;
1011 	}
1012 	return 0xff;		/* XXX unsupported/unknown rate */
1013 }
1014 
1015 static void
1016 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1017     uint32_t flags, int len, int rate)
1018 {
1019 	struct ifnet *ifp = sc->sc_ifp;
1020 	struct ieee80211com *ic = ifp->if_l2com;
1021 	uint16_t plcp_length;
1022 	int remainder;
1023 
1024 	desc->flags = htole32(flags);
1025 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1026 	desc->flags |= htole32(len << 16);
1027 
1028 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1029 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1030 
1031 	/* setup PLCP fields */
1032 	desc->plcp_signal  = ural_plcp_signal(rate);
1033 	desc->plcp_service = 4;
1034 
1035 	len += IEEE80211_CRC_LEN;
1036 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1037 		desc->flags |= htole32(RAL_TX_OFDM);
1038 
1039 		plcp_length = len & 0xfff;
1040 		desc->plcp_length_hi = plcp_length >> 6;
1041 		desc->plcp_length_lo = plcp_length & 0x3f;
1042 	} else {
1043 		if (rate == 0)
1044 			rate = 2;	/* avoid division by zero */
1045 		plcp_length = (16 * len + rate - 1) / rate;
1046 		if (rate == 22) {
1047 			remainder = (16 * len) % 22;
1048 			if (remainder != 0 && remainder < 7)
1049 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1050 		}
1051 		desc->plcp_length_hi = plcp_length >> 8;
1052 		desc->plcp_length_lo = plcp_length & 0xff;
1053 
1054 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1055 			desc->plcp_signal |= 0x08;
1056 	}
1057 
1058 	desc->iv = 0;
1059 	desc->eiv = 0;
1060 }
1061 
1062 #define RAL_TX_TIMEOUT	5000
1063 
1064 static int
1065 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1066 {
1067 	struct ieee80211vap *vap = ni->ni_vap;
1068 	struct ieee80211com *ic = ni->ni_ic;
1069 	struct ifnet *ifp = sc->sc_ifp;
1070 	const struct ieee80211_txparam *tp;
1071 	struct ural_tx_data *data;
1072 
1073 	if (sc->tx_nfree == 0) {
1074 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1075 		m_freem(m0);
1076 		ieee80211_free_node(ni);
1077 		return (EIO);
1078 	}
1079 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1080 		m_freem(m0);
1081 		ieee80211_free_node(ni);
1082 		return (ENXIO);
1083 	}
1084 	data = STAILQ_FIRST(&sc->tx_free);
1085 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1086 	sc->tx_nfree--;
1087 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1088 
1089 	data->m = m0;
1090 	data->ni = ni;
1091 	data->rate = tp->mgmtrate;
1092 
1093 	ural_setup_tx_desc(sc, &data->desc,
1094 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1095 	    tp->mgmtrate);
1096 
1097 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1098 	    m0->m_pkthdr.len, tp->mgmtrate);
1099 
1100 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1101 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1102 
1103 	return (0);
1104 }
1105 
1106 static int
1107 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1108 {
1109 	struct ieee80211vap *vap = ni->ni_vap;
1110 	struct ieee80211com *ic = ni->ni_ic;
1111 	const struct ieee80211_txparam *tp;
1112 	struct ural_tx_data *data;
1113 	struct ieee80211_frame *wh;
1114 	struct ieee80211_key *k;
1115 	uint32_t flags;
1116 	uint16_t dur;
1117 
1118 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1119 
1120 	data = STAILQ_FIRST(&sc->tx_free);
1121 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1122 	sc->tx_nfree--;
1123 
1124 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1125 
1126 	wh = mtod(m0, struct ieee80211_frame *);
1127 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1128 		k = ieee80211_crypto_encap(ni, m0);
1129 		if (k == NULL) {
1130 			m_freem(m0);
1131 			return ENOBUFS;
1132 		}
1133 		wh = mtod(m0, struct ieee80211_frame *);
1134 	}
1135 
1136 	data->m = m0;
1137 	data->ni = ni;
1138 	data->rate = tp->mgmtrate;
1139 
1140 	flags = 0;
1141 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1142 		flags |= RAL_TX_ACK;
1143 
1144 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1145 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1146 		USETW(wh->i_dur, dur);
1147 
1148 		/* tell hardware to add timestamp for probe responses */
1149 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1150 		    IEEE80211_FC0_TYPE_MGT &&
1151 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1152 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1153 			flags |= RAL_TX_TIMESTAMP;
1154 	}
1155 
1156 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1157 
1158 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1159 	    m0->m_pkthdr.len, tp->mgmtrate);
1160 
1161 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1162 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 ural_sendprot(struct ural_softc *sc,
1169     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1170 {
1171 	struct ieee80211com *ic = ni->ni_ic;
1172 	const struct ieee80211_frame *wh;
1173 	struct ural_tx_data *data;
1174 	struct mbuf *mprot;
1175 	int protrate, ackrate, pktlen, flags, isshort;
1176 	uint16_t dur;
1177 
1178 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1179 	    ("protection %d", prot));
1180 
1181 	wh = mtod(m, const struct ieee80211_frame *);
1182 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1183 
1184 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1185 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1186 
1187 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1188 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1189 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1190 	flags = RAL_TX_RETRY(7);
1191 	if (prot == IEEE80211_PROT_RTSCTS) {
1192 		/* NB: CTS is the same size as an ACK */
1193 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1194 		flags |= RAL_TX_ACK;
1195 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1196 	} else {
1197 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1198 	}
1199 	if (mprot == NULL) {
1200 		/* XXX stat + msg */
1201 		return ENOBUFS;
1202 	}
1203 	data = STAILQ_FIRST(&sc->tx_free);
1204 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1205 	sc->tx_nfree--;
1206 
1207 	data->m = mprot;
1208 	data->ni = ieee80211_ref_node(ni);
1209 	data->rate = protrate;
1210 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1211 
1212 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1213 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1214 
1215 	return 0;
1216 }
1217 
1218 static int
1219 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1220     const struct ieee80211_bpf_params *params)
1221 {
1222 	struct ieee80211com *ic = ni->ni_ic;
1223 	struct ural_tx_data *data;
1224 	uint32_t flags;
1225 	int error;
1226 	int rate;
1227 
1228 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1229 	KASSERT(params != NULL, ("no raw xmit params"));
1230 
1231 	rate = params->ibp_rate0;
1232 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1233 		m_freem(m0);
1234 		return EINVAL;
1235 	}
1236 	flags = 0;
1237 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1238 		flags |= RAL_TX_ACK;
1239 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1240 		error = ural_sendprot(sc, m0, ni,
1241 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1242 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1243 		    rate);
1244 		if (error || sc->tx_nfree == 0) {
1245 			m_freem(m0);
1246 			return ENOBUFS;
1247 		}
1248 		flags |= RAL_TX_IFS_SIFS;
1249 	}
1250 
1251 	data = STAILQ_FIRST(&sc->tx_free);
1252 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1253 	sc->tx_nfree--;
1254 
1255 	data->m = m0;
1256 	data->ni = ni;
1257 	data->rate = rate;
1258 
1259 	/* XXX need to setup descriptor ourself */
1260 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1261 
1262 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1263 	    m0->m_pkthdr.len, rate);
1264 
1265 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1266 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1267 
1268 	return 0;
1269 }
1270 
1271 static int
1272 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1273 {
1274 	struct ieee80211vap *vap = ni->ni_vap;
1275 	struct ieee80211com *ic = ni->ni_ic;
1276 	struct ural_tx_data *data;
1277 	struct ieee80211_frame *wh;
1278 	const struct ieee80211_txparam *tp;
1279 	struct ieee80211_key *k;
1280 	uint32_t flags = 0;
1281 	uint16_t dur;
1282 	int error, rate;
1283 
1284 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1285 
1286 	wh = mtod(m0, struct ieee80211_frame *);
1287 
1288 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1289 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1290 		rate = tp->mcastrate;
1291 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1292 		rate = tp->ucastrate;
1293 	else
1294 		rate = ni->ni_txrate;
1295 
1296 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1297 		k = ieee80211_crypto_encap(ni, m0);
1298 		if (k == NULL) {
1299 			m_freem(m0);
1300 			return ENOBUFS;
1301 		}
1302 		/* packet header may have moved, reset our local pointer */
1303 		wh = mtod(m0, struct ieee80211_frame *);
1304 	}
1305 
1306 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1307 		int prot = IEEE80211_PROT_NONE;
1308 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1309 			prot = IEEE80211_PROT_RTSCTS;
1310 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1311 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1312 			prot = ic->ic_protmode;
1313 		if (prot != IEEE80211_PROT_NONE) {
1314 			error = ural_sendprot(sc, m0, ni, prot, rate);
1315 			if (error || sc->tx_nfree == 0) {
1316 				m_freem(m0);
1317 				return ENOBUFS;
1318 			}
1319 			flags |= RAL_TX_IFS_SIFS;
1320 		}
1321 	}
1322 
1323 	data = STAILQ_FIRST(&sc->tx_free);
1324 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1325 	sc->tx_nfree--;
1326 
1327 	data->m = m0;
1328 	data->ni = ni;
1329 	data->rate = rate;
1330 
1331 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1332 		flags |= RAL_TX_ACK;
1333 		flags |= RAL_TX_RETRY(7);
1334 
1335 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1336 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1337 		USETW(wh->i_dur, dur);
1338 	}
1339 
1340 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1341 
1342 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1343 	    m0->m_pkthdr.len, rate);
1344 
1345 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1346 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1347 
1348 	return 0;
1349 }
1350 
1351 static void
1352 ural_start(struct ifnet *ifp)
1353 {
1354 	struct ural_softc *sc = ifp->if_softc;
1355 	struct ieee80211_node *ni;
1356 	struct mbuf *m;
1357 
1358 	RAL_LOCK(sc);
1359 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1360 		RAL_UNLOCK(sc);
1361 		return;
1362 	}
1363 	for (;;) {
1364 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1365 		if (m == NULL)
1366 			break;
1367 		if (sc->tx_nfree < RAL_TX_MINFREE) {
1368 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1369 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1370 			break;
1371 		}
1372 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1373 		if (ural_tx_data(sc, m, ni) != 0) {
1374 			ieee80211_free_node(ni);
1375 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1376 			break;
1377 		}
1378 	}
1379 	RAL_UNLOCK(sc);
1380 }
1381 
1382 static int
1383 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1384 {
1385 	struct ural_softc *sc = ifp->if_softc;
1386 	struct ieee80211com *ic = ifp->if_l2com;
1387 	struct ifreq *ifr = (struct ifreq *) data;
1388 	int error;
1389 	int startall = 0;
1390 
1391 	RAL_LOCK(sc);
1392 	error = sc->sc_detached ? ENXIO : 0;
1393 	RAL_UNLOCK(sc);
1394 	if (error)
1395 		return (error);
1396 
1397 	switch (cmd) {
1398 	case SIOCSIFFLAGS:
1399 		RAL_LOCK(sc);
1400 		if (ifp->if_flags & IFF_UP) {
1401 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1402 				ural_init_locked(sc);
1403 				startall = 1;
1404 			} else
1405 				ural_setpromisc(sc);
1406 		} else {
1407 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1408 				ural_stop(sc);
1409 		}
1410 		RAL_UNLOCK(sc);
1411 		if (startall)
1412 			ieee80211_start_all(ic);
1413 		break;
1414 	case SIOCGIFMEDIA:
1415 	case SIOCSIFMEDIA:
1416 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1417 		break;
1418 	default:
1419 		error = ether_ioctl(ifp, cmd, data);
1420 		break;
1421 	}
1422 	return error;
1423 }
1424 
1425 static void
1426 ural_set_testmode(struct ural_softc *sc)
1427 {
1428 	struct usb_device_request req;
1429 	usb_error_t error;
1430 
1431 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1432 	req.bRequest = RAL_VENDOR_REQUEST;
1433 	USETW(req.wValue, 4);
1434 	USETW(req.wIndex, 1);
1435 	USETW(req.wLength, 0);
1436 
1437 	error = ural_do_request(sc, &req, NULL);
1438 	if (error != 0) {
1439 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1440 		    usbd_errstr(error));
1441 	}
1442 }
1443 
1444 static void
1445 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1446 {
1447 	struct usb_device_request req;
1448 	usb_error_t error;
1449 
1450 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1451 	req.bRequest = RAL_READ_EEPROM;
1452 	USETW(req.wValue, 0);
1453 	USETW(req.wIndex, addr);
1454 	USETW(req.wLength, len);
1455 
1456 	error = ural_do_request(sc, &req, buf);
1457 	if (error != 0) {
1458 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1459 		    usbd_errstr(error));
1460 	}
1461 }
1462 
1463 static uint16_t
1464 ural_read(struct ural_softc *sc, uint16_t reg)
1465 {
1466 	struct usb_device_request req;
1467 	usb_error_t error;
1468 	uint16_t val;
1469 
1470 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1471 	req.bRequest = RAL_READ_MAC;
1472 	USETW(req.wValue, 0);
1473 	USETW(req.wIndex, reg);
1474 	USETW(req.wLength, sizeof (uint16_t));
1475 
1476 	error = ural_do_request(sc, &req, &val);
1477 	if (error != 0) {
1478 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1479 		    usbd_errstr(error));
1480 		return 0;
1481 	}
1482 
1483 	return le16toh(val);
1484 }
1485 
1486 static void
1487 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1488 {
1489 	struct usb_device_request req;
1490 	usb_error_t error;
1491 
1492 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1493 	req.bRequest = RAL_READ_MULTI_MAC;
1494 	USETW(req.wValue, 0);
1495 	USETW(req.wIndex, reg);
1496 	USETW(req.wLength, len);
1497 
1498 	error = ural_do_request(sc, &req, buf);
1499 	if (error != 0) {
1500 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1501 		    usbd_errstr(error));
1502 	}
1503 }
1504 
1505 static void
1506 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1507 {
1508 	struct usb_device_request req;
1509 	usb_error_t error;
1510 
1511 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1512 	req.bRequest = RAL_WRITE_MAC;
1513 	USETW(req.wValue, val);
1514 	USETW(req.wIndex, reg);
1515 	USETW(req.wLength, 0);
1516 
1517 	error = ural_do_request(sc, &req, NULL);
1518 	if (error != 0) {
1519 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1520 		    usbd_errstr(error));
1521 	}
1522 }
1523 
1524 static void
1525 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1526 {
1527 	struct usb_device_request req;
1528 	usb_error_t error;
1529 
1530 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1531 	req.bRequest = RAL_WRITE_MULTI_MAC;
1532 	USETW(req.wValue, 0);
1533 	USETW(req.wIndex, reg);
1534 	USETW(req.wLength, len);
1535 
1536 	error = ural_do_request(sc, &req, buf);
1537 	if (error != 0) {
1538 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1539 		    usbd_errstr(error));
1540 	}
1541 }
1542 
1543 static void
1544 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1545 {
1546 	uint16_t tmp;
1547 	int ntries;
1548 
1549 	for (ntries = 0; ntries < 100; ntries++) {
1550 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1551 			break;
1552 		if (ural_pause(sc, hz / 100))
1553 			break;
1554 	}
1555 	if (ntries == 100) {
1556 		device_printf(sc->sc_dev, "could not write to BBP\n");
1557 		return;
1558 	}
1559 
1560 	tmp = reg << 8 | val;
1561 	ural_write(sc, RAL_PHY_CSR7, tmp);
1562 }
1563 
1564 static uint8_t
1565 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1566 {
1567 	uint16_t val;
1568 	int ntries;
1569 
1570 	val = RAL_BBP_WRITE | reg << 8;
1571 	ural_write(sc, RAL_PHY_CSR7, val);
1572 
1573 	for (ntries = 0; ntries < 100; ntries++) {
1574 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1575 			break;
1576 		if (ural_pause(sc, hz / 100))
1577 			break;
1578 	}
1579 	if (ntries == 100) {
1580 		device_printf(sc->sc_dev, "could not read BBP\n");
1581 		return 0;
1582 	}
1583 
1584 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1585 }
1586 
1587 static void
1588 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1589 {
1590 	uint32_t tmp;
1591 	int ntries;
1592 
1593 	for (ntries = 0; ntries < 100; ntries++) {
1594 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1595 			break;
1596 		if (ural_pause(sc, hz / 100))
1597 			break;
1598 	}
1599 	if (ntries == 100) {
1600 		device_printf(sc->sc_dev, "could not write to RF\n");
1601 		return;
1602 	}
1603 
1604 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1605 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1606 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1607 
1608 	/* remember last written value in sc */
1609 	sc->rf_regs[reg] = val;
1610 
1611 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1612 }
1613 
1614 static void
1615 ural_scan_start(struct ieee80211com *ic)
1616 {
1617 	struct ifnet *ifp = ic->ic_ifp;
1618 	struct ural_softc *sc = ifp->if_softc;
1619 
1620 	RAL_LOCK(sc);
1621 	ural_write(sc, RAL_TXRX_CSR19, 0);
1622 	ural_set_bssid(sc, ifp->if_broadcastaddr);
1623 	RAL_UNLOCK(sc);
1624 }
1625 
1626 static void
1627 ural_scan_end(struct ieee80211com *ic)
1628 {
1629 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1630 
1631 	RAL_LOCK(sc);
1632 	ural_enable_tsf_sync(sc);
1633 	ural_set_bssid(sc, sc->sc_bssid);
1634 	RAL_UNLOCK(sc);
1635 
1636 }
1637 
1638 static void
1639 ural_set_channel(struct ieee80211com *ic)
1640 {
1641 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1642 
1643 	RAL_LOCK(sc);
1644 	ural_set_chan(sc, ic->ic_curchan);
1645 	RAL_UNLOCK(sc);
1646 }
1647 
1648 static void
1649 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1650 {
1651 	struct ifnet *ifp = sc->sc_ifp;
1652 	struct ieee80211com *ic = ifp->if_l2com;
1653 	uint8_t power, tmp;
1654 	int i, chan;
1655 
1656 	chan = ieee80211_chan2ieee(ic, c);
1657 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1658 		return;
1659 
1660 	if (IEEE80211_IS_CHAN_2GHZ(c))
1661 		power = min(sc->txpow[chan - 1], 31);
1662 	else
1663 		power = 31;
1664 
1665 	/* adjust txpower using ifconfig settings */
1666 	power -= (100 - ic->ic_txpowlimit) / 8;
1667 
1668 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1669 
1670 	switch (sc->rf_rev) {
1671 	case RAL_RF_2522:
1672 		ural_rf_write(sc, RAL_RF1, 0x00814);
1673 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1674 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1675 		break;
1676 
1677 	case RAL_RF_2523:
1678 		ural_rf_write(sc, RAL_RF1, 0x08804);
1679 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1680 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1681 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1682 		break;
1683 
1684 	case RAL_RF_2524:
1685 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1686 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1687 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1688 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1689 		break;
1690 
1691 	case RAL_RF_2525:
1692 		ural_rf_write(sc, RAL_RF1, 0x08808);
1693 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1694 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1695 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1696 
1697 		ural_rf_write(sc, RAL_RF1, 0x08808);
1698 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1699 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1700 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1701 		break;
1702 
1703 	case RAL_RF_2525E:
1704 		ural_rf_write(sc, RAL_RF1, 0x08808);
1705 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1706 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1707 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1708 		break;
1709 
1710 	case RAL_RF_2526:
1711 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1712 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1713 		ural_rf_write(sc, RAL_RF1, 0x08804);
1714 
1715 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1716 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1717 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1718 		break;
1719 
1720 	/* dual-band RF */
1721 	case RAL_RF_5222:
1722 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1723 
1724 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1725 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1726 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1727 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1728 		break;
1729 	}
1730 
1731 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1732 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1733 		/* set Japan filter bit for channel 14 */
1734 		tmp = ural_bbp_read(sc, 70);
1735 
1736 		tmp &= ~RAL_JAPAN_FILTER;
1737 		if (chan == 14)
1738 			tmp |= RAL_JAPAN_FILTER;
1739 
1740 		ural_bbp_write(sc, 70, tmp);
1741 
1742 		/* clear CRC errors */
1743 		ural_read(sc, RAL_STA_CSR0);
1744 
1745 		ural_pause(sc, hz / 100);
1746 		ural_disable_rf_tune(sc);
1747 	}
1748 
1749 	/* XXX doesn't belong here */
1750 	/* update basic rate set */
1751 	ural_set_basicrates(sc, c);
1752 
1753 	/* give the hardware some time to do the switchover */
1754 	ural_pause(sc, hz / 100);
1755 }
1756 
1757 /*
1758  * Disable RF auto-tuning.
1759  */
1760 static void
1761 ural_disable_rf_tune(struct ural_softc *sc)
1762 {
1763 	uint32_t tmp;
1764 
1765 	if (sc->rf_rev != RAL_RF_2523) {
1766 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1767 		ural_rf_write(sc, RAL_RF1, tmp);
1768 	}
1769 
1770 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1771 	ural_rf_write(sc, RAL_RF3, tmp);
1772 
1773 	DPRINTFN(2, "disabling RF autotune\n");
1774 }
1775 
1776 /*
1777  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1778  * synchronization.
1779  */
1780 static void
1781 ural_enable_tsf_sync(struct ural_softc *sc)
1782 {
1783 	struct ifnet *ifp = sc->sc_ifp;
1784 	struct ieee80211com *ic = ifp->if_l2com;
1785 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1786 	uint16_t logcwmin, preload, tmp;
1787 
1788 	/* first, disable TSF synchronization */
1789 	ural_write(sc, RAL_TXRX_CSR19, 0);
1790 
1791 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1792 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1793 
1794 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1795 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1796 	tmp = logcwmin << 12 | preload;
1797 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1798 
1799 	/* finally, enable TSF synchronization */
1800 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1801 	if (ic->ic_opmode == IEEE80211_M_STA)
1802 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1803 	else
1804 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1805 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1806 
1807 	DPRINTF("enabling TSF synchronization\n");
1808 }
1809 
1810 static void
1811 ural_enable_tsf(struct ural_softc *sc)
1812 {
1813 	/* first, disable TSF synchronization */
1814 	ural_write(sc, RAL_TXRX_CSR19, 0);
1815 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1816 }
1817 
1818 #define RAL_RXTX_TURNAROUND	5	/* us */
1819 static void
1820 ural_update_slot(struct ifnet *ifp)
1821 {
1822 	struct ural_softc *sc = ifp->if_softc;
1823 	struct ieee80211com *ic = ifp->if_l2com;
1824 	uint16_t slottime, sifs, eifs;
1825 
1826 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1827 
1828 	/*
1829 	 * These settings may sound a bit inconsistent but this is what the
1830 	 * reference driver does.
1831 	 */
1832 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1833 		sifs = 16 - RAL_RXTX_TURNAROUND;
1834 		eifs = 364;
1835 	} else {
1836 		sifs = 10 - RAL_RXTX_TURNAROUND;
1837 		eifs = 64;
1838 	}
1839 
1840 	ural_write(sc, RAL_MAC_CSR10, slottime);
1841 	ural_write(sc, RAL_MAC_CSR11, sifs);
1842 	ural_write(sc, RAL_MAC_CSR12, eifs);
1843 }
1844 
1845 static void
1846 ural_set_txpreamble(struct ural_softc *sc)
1847 {
1848 	struct ifnet *ifp = sc->sc_ifp;
1849 	struct ieee80211com *ic = ifp->if_l2com;
1850 	uint16_t tmp;
1851 
1852 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1853 
1854 	tmp &= ~RAL_SHORT_PREAMBLE;
1855 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1856 		tmp |= RAL_SHORT_PREAMBLE;
1857 
1858 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1859 }
1860 
1861 static void
1862 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1863 {
1864 	/* XXX wrong, take from rate set */
1865 	/* update basic rate set */
1866 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1867 		/* 11a basic rates: 6, 12, 24Mbps */
1868 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1869 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1870 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1871 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1872 	} else {
1873 		/* 11b basic rates: 1, 2Mbps */
1874 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1875 	}
1876 }
1877 
1878 static void
1879 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1880 {
1881 	uint16_t tmp;
1882 
1883 	tmp = bssid[0] | bssid[1] << 8;
1884 	ural_write(sc, RAL_MAC_CSR5, tmp);
1885 
1886 	tmp = bssid[2] | bssid[3] << 8;
1887 	ural_write(sc, RAL_MAC_CSR6, tmp);
1888 
1889 	tmp = bssid[4] | bssid[5] << 8;
1890 	ural_write(sc, RAL_MAC_CSR7, tmp);
1891 
1892 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1893 }
1894 
1895 static void
1896 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1897 {
1898 	uint16_t tmp;
1899 
1900 	tmp = addr[0] | addr[1] << 8;
1901 	ural_write(sc, RAL_MAC_CSR2, tmp);
1902 
1903 	tmp = addr[2] | addr[3] << 8;
1904 	ural_write(sc, RAL_MAC_CSR3, tmp);
1905 
1906 	tmp = addr[4] | addr[5] << 8;
1907 	ural_write(sc, RAL_MAC_CSR4, tmp);
1908 
1909 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1910 }
1911 
1912 static void
1913 ural_setpromisc(struct ural_softc *sc)
1914 {
1915 	struct ifnet *ifp = sc->sc_ifp;
1916 	uint32_t tmp;
1917 
1918 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1919 
1920 	tmp &= ~RAL_DROP_NOT_TO_ME;
1921 	if (!(ifp->if_flags & IFF_PROMISC))
1922 		tmp |= RAL_DROP_NOT_TO_ME;
1923 
1924 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1925 
1926 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1927 	    "entering" : "leaving");
1928 }
1929 
1930 static void
1931 ural_update_promisc(struct ieee80211com *ic)
1932 {
1933 	struct ural_softc *sc = ic->ic_softc;
1934 
1935 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1936 		return;
1937 
1938 	RAL_LOCK(sc);
1939 	ural_setpromisc(sc);
1940 	RAL_UNLOCK(sc);
1941 }
1942 
1943 static const char *
1944 ural_get_rf(int rev)
1945 {
1946 	switch (rev) {
1947 	case RAL_RF_2522:	return "RT2522";
1948 	case RAL_RF_2523:	return "RT2523";
1949 	case RAL_RF_2524:	return "RT2524";
1950 	case RAL_RF_2525:	return "RT2525";
1951 	case RAL_RF_2525E:	return "RT2525e";
1952 	case RAL_RF_2526:	return "RT2526";
1953 	case RAL_RF_5222:	return "RT5222";
1954 	default:		return "unknown";
1955 	}
1956 }
1957 
1958 static void
1959 ural_read_eeprom(struct ural_softc *sc)
1960 {
1961 	uint16_t val;
1962 
1963 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1964 	val = le16toh(val);
1965 	sc->rf_rev =   (val >> 11) & 0x7;
1966 	sc->hw_radio = (val >> 10) & 0x1;
1967 	sc->led_mode = (val >> 6)  & 0x7;
1968 	sc->rx_ant =   (val >> 4)  & 0x3;
1969 	sc->tx_ant =   (val >> 2)  & 0x3;
1970 	sc->nb_ant =   val & 0x3;
1971 
1972 	/* read MAC address */
1973 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1974 
1975 	/* read default values for BBP registers */
1976 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1977 
1978 	/* read Tx power for all b/g channels */
1979 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1980 }
1981 
1982 static int
1983 ural_bbp_init(struct ural_softc *sc)
1984 {
1985 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
1986 	int i, ntries;
1987 
1988 	/* wait for BBP to be ready */
1989 	for (ntries = 0; ntries < 100; ntries++) {
1990 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1991 			break;
1992 		if (ural_pause(sc, hz / 100))
1993 			break;
1994 	}
1995 	if (ntries == 100) {
1996 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1997 		return EIO;
1998 	}
1999 
2000 	/* initialize BBP registers to default values */
2001 	for (i = 0; i < N(ural_def_bbp); i++)
2002 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2003 
2004 #if 0
2005 	/* initialize BBP registers to values stored in EEPROM */
2006 	for (i = 0; i < 16; i++) {
2007 		if (sc->bbp_prom[i].reg == 0xff)
2008 			continue;
2009 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2010 	}
2011 #endif
2012 
2013 	return 0;
2014 #undef N
2015 }
2016 
2017 static void
2018 ural_set_txantenna(struct ural_softc *sc, int antenna)
2019 {
2020 	uint16_t tmp;
2021 	uint8_t tx;
2022 
2023 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2024 	if (antenna == 1)
2025 		tx |= RAL_BBP_ANTA;
2026 	else if (antenna == 2)
2027 		tx |= RAL_BBP_ANTB;
2028 	else
2029 		tx |= RAL_BBP_DIVERSITY;
2030 
2031 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2032 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2033 	    sc->rf_rev == RAL_RF_5222)
2034 		tx |= RAL_BBP_FLIPIQ;
2035 
2036 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2037 
2038 	/* update values in PHY_CSR5 and PHY_CSR6 */
2039 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2040 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2041 
2042 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2043 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2044 }
2045 
2046 static void
2047 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2048 {
2049 	uint8_t rx;
2050 
2051 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2052 	if (antenna == 1)
2053 		rx |= RAL_BBP_ANTA;
2054 	else if (antenna == 2)
2055 		rx |= RAL_BBP_ANTB;
2056 	else
2057 		rx |= RAL_BBP_DIVERSITY;
2058 
2059 	/* need to force no I/Q flip for RF 2525e and 2526 */
2060 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2061 		rx &= ~RAL_BBP_FLIPIQ;
2062 
2063 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2064 }
2065 
2066 static void
2067 ural_init_locked(struct ural_softc *sc)
2068 {
2069 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
2070 	struct ifnet *ifp = sc->sc_ifp;
2071 	struct ieee80211com *ic = ifp->if_l2com;
2072 	uint16_t tmp;
2073 	int i, ntries;
2074 
2075 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2076 
2077 	ural_set_testmode(sc);
2078 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2079 
2080 	ural_stop(sc);
2081 
2082 	/* initialize MAC registers to default values */
2083 	for (i = 0; i < N(ural_def_mac); i++)
2084 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2085 
2086 	/* wait for BBP and RF to wake up (this can take a long time!) */
2087 	for (ntries = 0; ntries < 100; ntries++) {
2088 		tmp = ural_read(sc, RAL_MAC_CSR17);
2089 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2090 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2091 			break;
2092 		if (ural_pause(sc, hz / 100))
2093 			break;
2094 	}
2095 	if (ntries == 100) {
2096 		device_printf(sc->sc_dev,
2097 		    "timeout waiting for BBP/RF to wakeup\n");
2098 		goto fail;
2099 	}
2100 
2101 	/* we're ready! */
2102 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2103 
2104 	/* set basic rate set (will be updated later) */
2105 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2106 
2107 	if (ural_bbp_init(sc) != 0)
2108 		goto fail;
2109 
2110 	ural_set_chan(sc, ic->ic_curchan);
2111 
2112 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2113 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2114 
2115 	ural_set_txantenna(sc, sc->tx_ant);
2116 	ural_set_rxantenna(sc, sc->rx_ant);
2117 
2118 	ural_set_macaddr(sc, IF_LLADDR(ifp));
2119 
2120 	/*
2121 	 * Allocate Tx and Rx xfer queues.
2122 	 */
2123 	ural_setup_tx_list(sc);
2124 
2125 	/* kick Rx */
2126 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2127 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2128 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2129 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2130 			tmp |= RAL_DROP_TODS;
2131 		if (!(ifp->if_flags & IFF_PROMISC))
2132 			tmp |= RAL_DROP_NOT_TO_ME;
2133 	}
2134 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2135 
2136 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2137 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2138 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2139 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2140 	return;
2141 
2142 fail:	ural_stop(sc);
2143 #undef N
2144 }
2145 
2146 static void
2147 ural_init(void *priv)
2148 {
2149 	struct ural_softc *sc = priv;
2150 	struct ifnet *ifp = sc->sc_ifp;
2151 	struct ieee80211com *ic = ifp->if_l2com;
2152 
2153 	RAL_LOCK(sc);
2154 	ural_init_locked(sc);
2155 	RAL_UNLOCK(sc);
2156 
2157 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2158 		ieee80211_start_all(ic);		/* start all vap's */
2159 }
2160 
2161 static void
2162 ural_stop(struct ural_softc *sc)
2163 {
2164 	struct ifnet *ifp = sc->sc_ifp;
2165 
2166 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2167 
2168 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2169 
2170 	/*
2171 	 * Drain all the transfers, if not already drained:
2172 	 */
2173 	RAL_UNLOCK(sc);
2174 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2175 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2176 	RAL_LOCK(sc);
2177 
2178 	ural_unsetup_tx_list(sc);
2179 
2180 	/* disable Rx */
2181 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2182 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2183 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2184 	/* wait a little */
2185 	ural_pause(sc, hz / 10);
2186 	ural_write(sc, RAL_MAC_CSR1, 0);
2187 	/* wait a little */
2188 	ural_pause(sc, hz / 10);
2189 }
2190 
2191 static int
2192 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2193 	const struct ieee80211_bpf_params *params)
2194 {
2195 	struct ieee80211com *ic = ni->ni_ic;
2196 	struct ifnet *ifp = ic->ic_ifp;
2197 	struct ural_softc *sc = ifp->if_softc;
2198 
2199 	RAL_LOCK(sc);
2200 	/* prevent management frames from being sent if we're not ready */
2201 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2202 		RAL_UNLOCK(sc);
2203 		m_freem(m);
2204 		ieee80211_free_node(ni);
2205 		return ENETDOWN;
2206 	}
2207 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2208 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2209 		RAL_UNLOCK(sc);
2210 		m_freem(m);
2211 		ieee80211_free_node(ni);
2212 		return EIO;
2213 	}
2214 
2215 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2216 
2217 	if (params == NULL) {
2218 		/*
2219 		 * Legacy path; interpret frame contents to decide
2220 		 * precisely how to send the frame.
2221 		 */
2222 		if (ural_tx_mgt(sc, m, ni) != 0)
2223 			goto bad;
2224 	} else {
2225 		/*
2226 		 * Caller supplied explicit parameters to use in
2227 		 * sending the frame.
2228 		 */
2229 		if (ural_tx_raw(sc, m, ni, params) != 0)
2230 			goto bad;
2231 	}
2232 	RAL_UNLOCK(sc);
2233 	return 0;
2234 bad:
2235 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2236 	RAL_UNLOCK(sc);
2237 	ieee80211_free_node(ni);
2238 	return EIO;		/* XXX */
2239 }
2240 
2241 static void
2242 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2243 {
2244 	struct ieee80211vap *vap = ni->ni_vap;
2245 	struct ural_vap *uvp = URAL_VAP(vap);
2246 
2247 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2248 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2249 
2250 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2251 }
2252 
2253 static void
2254 ural_ratectl_timeout(void *arg)
2255 {
2256 	struct ural_vap *uvp = arg;
2257 	struct ieee80211vap *vap = &uvp->vap;
2258 	struct ieee80211com *ic = vap->iv_ic;
2259 
2260 	ieee80211_runtask(ic, &uvp->ratectl_task);
2261 }
2262 
2263 static void
2264 ural_ratectl_task(void *arg, int pending)
2265 {
2266 	struct ural_vap *uvp = arg;
2267 	struct ieee80211vap *vap = &uvp->vap;
2268 	struct ieee80211com *ic = vap->iv_ic;
2269 	struct ifnet *ifp = ic->ic_ifp;
2270 	struct ural_softc *sc = ifp->if_softc;
2271 	struct ieee80211_node *ni;
2272 	int ok, fail;
2273 	int sum, retrycnt;
2274 
2275 	ni = ieee80211_ref_node(vap->iv_bss);
2276 	RAL_LOCK(sc);
2277 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2278 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2279 
2280 	ok = sc->sta[7] +		/* TX ok w/o retry */
2281 	     sc->sta[8];		/* TX ok w/ retry */
2282 	fail = sc->sta[9];		/* TX retry-fail count */
2283 	sum = ok+fail;
2284 	retrycnt = sc->sta[8] + fail;
2285 
2286 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2287 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2288 
2289 	if_inc_counter(ifp, IFCOUNTER_OERRORS, fail);	/* count TX retry-fail as Tx errors */
2290 
2291 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2292 	RAL_UNLOCK(sc);
2293 	ieee80211_free_node(ni);
2294 }
2295 
2296 static int
2297 ural_pause(struct ural_softc *sc, int timeout)
2298 {
2299 
2300 	usb_pause_mtx(&sc->sc_mtx, timeout);
2301 	return (0);
2302 }
2303