xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision 5ca34122ecdd5abc62bdae39663fec9ac8523d87)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/usb/usb.h>
73 #include <dev/usb/usbdi.h>
74 #include "usbdevs.h"
75 
76 #define	USB_DEBUG_VAR ural_debug
77 #include <dev/usb/usb_debug.h>
78 
79 #include <dev/usb/wlan/if_uralreg.h>
80 #include <dev/usb/wlan/if_uralvar.h>
81 
82 #ifdef USB_DEBUG
83 static int ural_debug = 0;
84 
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
87     "Debug level");
88 #endif
89 
90 #define URAL_RSSI(rssi)					\
91 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
92 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
93 
94 /* various supported device vendors/products */
95 static const STRUCT_USB_HOST_ID ural_devs[] = {
96 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
97 	URAL_DEV(ASUS, WL167G),
98 	URAL_DEV(ASUS, RT2570),
99 	URAL_DEV(BELKIN, F5D7050),
100 	URAL_DEV(BELKIN, F5D7051),
101 	URAL_DEV(CISCOLINKSYS, HU200TS),
102 	URAL_DEV(CISCOLINKSYS, WUSB54G),
103 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
104 	URAL_DEV(CONCEPTRONIC2, C54RU),
105 	URAL_DEV(DLINK, DWLG122),
106 	URAL_DEV(GIGABYTE, GN54G),
107 	URAL_DEV(GIGABYTE, GNWBKG),
108 	URAL_DEV(GUILLEMOT, HWGUSB254),
109 	URAL_DEV(MELCO, KG54),
110 	URAL_DEV(MELCO, KG54AI),
111 	URAL_DEV(MELCO, KG54YB),
112 	URAL_DEV(MELCO, NINWIFI),
113 	URAL_DEV(MSI, RT2570),
114 	URAL_DEV(MSI, RT2570_2),
115 	URAL_DEV(MSI, RT2570_3),
116 	URAL_DEV(NOVATECH, NV902),
117 	URAL_DEV(RALINK, RT2570),
118 	URAL_DEV(RALINK, RT2570_2),
119 	URAL_DEV(RALINK, RT2570_3),
120 	URAL_DEV(SIEMENS2, WL54G),
121 	URAL_DEV(SMC, 2862WG),
122 	URAL_DEV(SPHAIRON, UB801R),
123 	URAL_DEV(SURECOM, RT2570),
124 	URAL_DEV(VTECH, RT2570),
125 	URAL_DEV(ZINWELL, RT2570),
126 #undef URAL_DEV
127 };
128 
129 static usb_callback_t ural_bulk_read_callback;
130 static usb_callback_t ural_bulk_write_callback;
131 
132 static usb_error_t	ural_do_request(struct ural_softc *sc,
133 			    struct usb_device_request *req, void *data);
134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
135 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
136 			    int, const uint8_t [IEEE80211_ADDR_LEN],
137 			    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void		ural_vap_delete(struct ieee80211vap *);
139 static void		ural_tx_free(struct ural_tx_data *, int);
140 static void		ural_setup_tx_list(struct ural_softc *);
141 static void		ural_unsetup_tx_list(struct ural_softc *);
142 static int		ural_newstate(struct ieee80211vap *,
143 			    enum ieee80211_state, int);
144 static void		ural_setup_tx_desc(struct ural_softc *,
145 			    struct ural_tx_desc *, uint32_t, int, int);
146 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
147 			    struct ieee80211_node *);
148 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
149 			    struct ieee80211_node *);
150 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
151 			    struct ieee80211_node *);
152 static int		ural_transmit(struct ieee80211com *, struct mbuf *);
153 static void		ural_start(struct ural_softc *);
154 static void		ural_parent(struct ieee80211com *);
155 static void		ural_set_testmode(struct ural_softc *);
156 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
157 			    int);
158 static uint16_t		ural_read(struct ural_softc *, uint16_t);
159 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
160 			    int);
161 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
162 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
163 			    int) __unused;
164 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
165 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
166 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
167 static void		ural_scan_start(struct ieee80211com *);
168 static void		ural_scan_end(struct ieee80211com *);
169 static void		ural_set_channel(struct ieee80211com *);
170 static void		ural_set_chan(struct ural_softc *,
171 			    struct ieee80211_channel *);
172 static void		ural_disable_rf_tune(struct ural_softc *);
173 static void		ural_enable_tsf_sync(struct ural_softc *);
174 static void 		ural_enable_tsf(struct ural_softc *);
175 static void		ural_update_slot(struct ural_softc *);
176 static void		ural_set_txpreamble(struct ural_softc *);
177 static void		ural_set_basicrates(struct ural_softc *,
178 			    const struct ieee80211_channel *);
179 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
180 static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
181 static void		ural_update_promisc(struct ieee80211com *);
182 static void		ural_setpromisc(struct ural_softc *);
183 static const char	*ural_get_rf(int);
184 static void		ural_read_eeprom(struct ural_softc *);
185 static int		ural_bbp_init(struct ural_softc *);
186 static void		ural_set_txantenna(struct ural_softc *, int);
187 static void		ural_set_rxantenna(struct ural_softc *, int);
188 static void		ural_init(struct ural_softc *);
189 static void		ural_stop(struct ural_softc *);
190 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191 			    const struct ieee80211_bpf_params *);
192 static void		ural_ratectl_start(struct ural_softc *,
193 			    struct ieee80211_node *);
194 static void		ural_ratectl_timeout(void *);
195 static void		ural_ratectl_task(void *, int);
196 static int		ural_pause(struct ural_softc *sc, int timeout);
197 
198 /*
199  * Default values for MAC registers; values taken from the reference driver.
200  */
201 static const struct {
202 	uint16_t	reg;
203 	uint16_t	val;
204 } ural_def_mac[] = {
205 	{ RAL_TXRX_CSR5,  0x8c8d },
206 	{ RAL_TXRX_CSR6,  0x8b8a },
207 	{ RAL_TXRX_CSR7,  0x8687 },
208 	{ RAL_TXRX_CSR8,  0x0085 },
209 	{ RAL_MAC_CSR13,  0x1111 },
210 	{ RAL_MAC_CSR14,  0x1e11 },
211 	{ RAL_TXRX_CSR21, 0xe78f },
212 	{ RAL_MAC_CSR9,   0xff1d },
213 	{ RAL_MAC_CSR11,  0x0002 },
214 	{ RAL_MAC_CSR22,  0x0053 },
215 	{ RAL_MAC_CSR15,  0x0000 },
216 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217 	{ RAL_TXRX_CSR19, 0x0000 },
218 	{ RAL_TXRX_CSR18, 0x005a },
219 	{ RAL_PHY_CSR2,   0x0000 },
220 	{ RAL_TXRX_CSR0,  0x1ec0 },
221 	{ RAL_PHY_CSR4,   0x000f }
222 };
223 
224 /*
225  * Default values for BBP registers; values taken from the reference driver.
226  */
227 static const struct {
228 	uint8_t	reg;
229 	uint8_t	val;
230 } ural_def_bbp[] = {
231 	{  3, 0x02 },
232 	{  4, 0x19 },
233 	{ 14, 0x1c },
234 	{ 15, 0x30 },
235 	{ 16, 0xac },
236 	{ 17, 0x48 },
237 	{ 18, 0x18 },
238 	{ 19, 0xff },
239 	{ 20, 0x1e },
240 	{ 21, 0x08 },
241 	{ 22, 0x08 },
242 	{ 23, 0x08 },
243 	{ 24, 0x80 },
244 	{ 25, 0x50 },
245 	{ 26, 0x08 },
246 	{ 27, 0x23 },
247 	{ 30, 0x10 },
248 	{ 31, 0x2b },
249 	{ 32, 0xb9 },
250 	{ 34, 0x12 },
251 	{ 35, 0x50 },
252 	{ 39, 0xc4 },
253 	{ 40, 0x02 },
254 	{ 41, 0x60 },
255 	{ 53, 0x10 },
256 	{ 54, 0x18 },
257 	{ 56, 0x08 },
258 	{ 57, 0x10 },
259 	{ 58, 0x08 },
260 	{ 61, 0x60 },
261 	{ 62, 0x10 },
262 	{ 75, 0xff }
263 };
264 
265 /*
266  * Default values for RF register R2 indexed by channel numbers.
267  */
268 static const uint32_t ural_rf2522_r2[] = {
269 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271 };
272 
273 static const uint32_t ural_rf2523_r2[] = {
274 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277 
278 static const uint32_t ural_rf2524_r2[] = {
279 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281 };
282 
283 static const uint32_t ural_rf2525_r2[] = {
284 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286 };
287 
288 static const uint32_t ural_rf2525_hi_r2[] = {
289 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291 };
292 
293 static const uint32_t ural_rf2525e_r2[] = {
294 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296 };
297 
298 static const uint32_t ural_rf2526_hi_r2[] = {
299 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301 };
302 
303 static const uint32_t ural_rf2526_r2[] = {
304 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306 };
307 
308 /*
309  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310  * values taken from the reference driver.
311  */
312 static const struct {
313 	uint8_t		chan;
314 	uint32_t	r1;
315 	uint32_t	r2;
316 	uint32_t	r4;
317 } ural_rf5222[] = {
318 	{   1, 0x08808, 0x0044d, 0x00282 },
319 	{   2, 0x08808, 0x0044e, 0x00282 },
320 	{   3, 0x08808, 0x0044f, 0x00282 },
321 	{   4, 0x08808, 0x00460, 0x00282 },
322 	{   5, 0x08808, 0x00461, 0x00282 },
323 	{   6, 0x08808, 0x00462, 0x00282 },
324 	{   7, 0x08808, 0x00463, 0x00282 },
325 	{   8, 0x08808, 0x00464, 0x00282 },
326 	{   9, 0x08808, 0x00465, 0x00282 },
327 	{  10, 0x08808, 0x00466, 0x00282 },
328 	{  11, 0x08808, 0x00467, 0x00282 },
329 	{  12, 0x08808, 0x00468, 0x00282 },
330 	{  13, 0x08808, 0x00469, 0x00282 },
331 	{  14, 0x08808, 0x0046b, 0x00286 },
332 
333 	{  36, 0x08804, 0x06225, 0x00287 },
334 	{  40, 0x08804, 0x06226, 0x00287 },
335 	{  44, 0x08804, 0x06227, 0x00287 },
336 	{  48, 0x08804, 0x06228, 0x00287 },
337 	{  52, 0x08804, 0x06229, 0x00287 },
338 	{  56, 0x08804, 0x0622a, 0x00287 },
339 	{  60, 0x08804, 0x0622b, 0x00287 },
340 	{  64, 0x08804, 0x0622c, 0x00287 },
341 
342 	{ 100, 0x08804, 0x02200, 0x00283 },
343 	{ 104, 0x08804, 0x02201, 0x00283 },
344 	{ 108, 0x08804, 0x02202, 0x00283 },
345 	{ 112, 0x08804, 0x02203, 0x00283 },
346 	{ 116, 0x08804, 0x02204, 0x00283 },
347 	{ 120, 0x08804, 0x02205, 0x00283 },
348 	{ 124, 0x08804, 0x02206, 0x00283 },
349 	{ 128, 0x08804, 0x02207, 0x00283 },
350 	{ 132, 0x08804, 0x02208, 0x00283 },
351 	{ 136, 0x08804, 0x02209, 0x00283 },
352 	{ 140, 0x08804, 0x0220a, 0x00283 },
353 
354 	{ 149, 0x08808, 0x02429, 0x00281 },
355 	{ 153, 0x08808, 0x0242b, 0x00281 },
356 	{ 157, 0x08808, 0x0242d, 0x00281 },
357 	{ 161, 0x08808, 0x0242f, 0x00281 }
358 };
359 
360 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361 	[URAL_BULK_WR] = {
362 		.type = UE_BULK,
363 		.endpoint = UE_ADDR_ANY,
364 		.direction = UE_DIR_OUT,
365 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367 		.callback = ural_bulk_write_callback,
368 		.timeout = 5000,	/* ms */
369 	},
370 	[URAL_BULK_RD] = {
371 		.type = UE_BULK,
372 		.endpoint = UE_ADDR_ANY,
373 		.direction = UE_DIR_IN,
374 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376 		.callback = ural_bulk_read_callback,
377 	},
378 };
379 
380 static device_probe_t ural_match;
381 static device_attach_t ural_attach;
382 static device_detach_t ural_detach;
383 
384 static device_method_t ural_methods[] = {
385 	/* Device interface */
386 	DEVMETHOD(device_probe,		ural_match),
387 	DEVMETHOD(device_attach,	ural_attach),
388 	DEVMETHOD(device_detach,	ural_detach),
389 	DEVMETHOD_END
390 };
391 
392 static driver_t ural_driver = {
393 	.name = "ural",
394 	.methods = ural_methods,
395 	.size = sizeof(struct ural_softc),
396 };
397 
398 static devclass_t ural_devclass;
399 
400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 MODULE_VERSION(ural, 1);
404 
405 static int
406 ural_match(device_t self)
407 {
408 	struct usb_attach_arg *uaa = device_get_ivars(self);
409 
410 	if (uaa->usb_mode != USB_MODE_HOST)
411 		return (ENXIO);
412 	if (uaa->info.bConfigIndex != 0)
413 		return (ENXIO);
414 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
415 		return (ENXIO);
416 
417 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
418 }
419 
420 static int
421 ural_attach(device_t self)
422 {
423 	struct usb_attach_arg *uaa = device_get_ivars(self);
424 	struct ural_softc *sc = device_get_softc(self);
425 	struct ieee80211com *ic = &sc->sc_ic;
426 	uint8_t iface_index, bands;
427 	int error;
428 
429 	device_set_usb_desc(self);
430 	sc->sc_udev = uaa->device;
431 	sc->sc_dev = self;
432 
433 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
434 	    MTX_NETWORK_LOCK, MTX_DEF);
435 	mbufq_init(&sc->sc_snd, ifqmaxlen);
436 
437 	iface_index = RAL_IFACE_INDEX;
438 	error = usbd_transfer_setup(uaa->device,
439 	    &iface_index, sc->sc_xfer, ural_config,
440 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
441 	if (error) {
442 		device_printf(self, "could not allocate USB transfers, "
443 		    "err=%s\n", usbd_errstr(error));
444 		goto detach;
445 	}
446 
447 	RAL_LOCK(sc);
448 	/* retrieve RT2570 rev. no */
449 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
450 
451 	/* retrieve MAC address and various other things from EEPROM */
452 	ural_read_eeprom(sc);
453 	RAL_UNLOCK(sc);
454 
455 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
456 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
457 
458 	ic->ic_softc = sc;
459 	ic->ic_name = device_get_nameunit(self);
460 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
461 
462 	/* set device capabilities */
463 	ic->ic_caps =
464 	      IEEE80211_C_STA		/* station mode supported */
465 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
466 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
467 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
468 	    | IEEE80211_C_TXPMGT	/* tx power management */
469 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
471 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
472 	    | IEEE80211_C_WPA		/* 802.11i */
473 	    ;
474 
475 	bands = 0;
476 	setbit(&bands, IEEE80211_MODE_11B);
477 	setbit(&bands, IEEE80211_MODE_11G);
478 	if (sc->rf_rev == RAL_RF_5222)
479 		setbit(&bands, IEEE80211_MODE_11A);
480 	ieee80211_init_channels(ic, NULL, &bands);
481 
482 	ieee80211_ifattach(ic);
483 	ic->ic_update_promisc = ural_update_promisc;
484 	ic->ic_raw_xmit = ural_raw_xmit;
485 	ic->ic_scan_start = ural_scan_start;
486 	ic->ic_scan_end = ural_scan_end;
487 	ic->ic_set_channel = ural_set_channel;
488 	ic->ic_parent = ural_parent;
489 	ic->ic_transmit = ural_transmit;
490 	ic->ic_vap_create = ural_vap_create;
491 	ic->ic_vap_delete = ural_vap_delete;
492 
493 	ieee80211_radiotap_attach(ic,
494 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
495 		RAL_TX_RADIOTAP_PRESENT,
496 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
497 		RAL_RX_RADIOTAP_PRESENT);
498 
499 	if (bootverbose)
500 		ieee80211_announce(ic);
501 
502 	return (0);
503 
504 detach:
505 	ural_detach(self);
506 	return (ENXIO);			/* failure */
507 }
508 
509 static int
510 ural_detach(device_t self)
511 {
512 	struct ural_softc *sc = device_get_softc(self);
513 	struct ieee80211com *ic = &sc->sc_ic;
514 
515 	/* prevent further ioctls */
516 	RAL_LOCK(sc);
517 	sc->sc_detached = 1;
518 	RAL_UNLOCK(sc);
519 
520 	/* stop all USB transfers */
521 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
522 
523 	/* free TX list, if any */
524 	RAL_LOCK(sc);
525 	ural_unsetup_tx_list(sc);
526 	RAL_UNLOCK(sc);
527 
528 	if (ic->ic_softc == sc)
529 		ieee80211_ifdetach(ic);
530 	mbufq_drain(&sc->sc_snd);
531 	mtx_destroy(&sc->sc_mtx);
532 
533 	return (0);
534 }
535 
536 static usb_error_t
537 ural_do_request(struct ural_softc *sc,
538     struct usb_device_request *req, void *data)
539 {
540 	usb_error_t err;
541 	int ntries = 10;
542 
543 	while (ntries--) {
544 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
545 		    req, data, 0, NULL, 250 /* ms */);
546 		if (err == 0)
547 			break;
548 
549 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
550 		    usbd_errstr(err));
551 		if (ural_pause(sc, hz / 100))
552 			break;
553 	}
554 	return (err);
555 }
556 
557 static struct ieee80211vap *
558 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
559     enum ieee80211_opmode opmode, int flags,
560     const uint8_t bssid[IEEE80211_ADDR_LEN],
561     const uint8_t mac[IEEE80211_ADDR_LEN])
562 {
563 	struct ural_softc *sc = ic->ic_softc;
564 	struct ural_vap *uvp;
565 	struct ieee80211vap *vap;
566 
567 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
568 		return NULL;
569 	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
570 	vap = &uvp->vap;
571 	/* enable s/w bmiss handling for sta mode */
572 
573 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
574 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
575 		/* out of memory */
576 		free(uvp, M_80211_VAP);
577 		return (NULL);
578 	}
579 
580 	/* override state transition machine */
581 	uvp->newstate = vap->iv_newstate;
582 	vap->iv_newstate = ural_newstate;
583 
584 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
585 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
586 	ieee80211_ratectl_init(vap);
587 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
588 
589 	/* complete setup */
590 	ieee80211_vap_attach(vap, ieee80211_media_change,
591 	    ieee80211_media_status, mac);
592 	ic->ic_opmode = opmode;
593 	return vap;
594 }
595 
596 static void
597 ural_vap_delete(struct ieee80211vap *vap)
598 {
599 	struct ural_vap *uvp = URAL_VAP(vap);
600 	struct ieee80211com *ic = vap->iv_ic;
601 
602 	usb_callout_drain(&uvp->ratectl_ch);
603 	ieee80211_draintask(ic, &uvp->ratectl_task);
604 	ieee80211_ratectl_deinit(vap);
605 	ieee80211_vap_detach(vap);
606 	free(uvp, M_80211_VAP);
607 }
608 
609 static void
610 ural_tx_free(struct ural_tx_data *data, int txerr)
611 {
612 	struct ural_softc *sc = data->sc;
613 
614 	if (data->m != NULL) {
615 		ieee80211_tx_complete(data->ni, data->m, txerr);
616 		data->m = NULL;
617 		data->ni = NULL;
618 	}
619 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
620 	sc->tx_nfree++;
621 }
622 
623 static void
624 ural_setup_tx_list(struct ural_softc *sc)
625 {
626 	struct ural_tx_data *data;
627 	int i;
628 
629 	sc->tx_nfree = 0;
630 	STAILQ_INIT(&sc->tx_q);
631 	STAILQ_INIT(&sc->tx_free);
632 
633 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
634 		data = &sc->tx_data[i];
635 
636 		data->sc = sc;
637 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
638 		sc->tx_nfree++;
639 	}
640 }
641 
642 static void
643 ural_unsetup_tx_list(struct ural_softc *sc)
644 {
645 	struct ural_tx_data *data;
646 	int i;
647 
648 	/* make sure any subsequent use of the queues will fail */
649 	sc->tx_nfree = 0;
650 	STAILQ_INIT(&sc->tx_q);
651 	STAILQ_INIT(&sc->tx_free);
652 
653 	/* free up all node references and mbufs */
654 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
655 		data = &sc->tx_data[i];
656 
657 		if (data->m != NULL) {
658 			m_freem(data->m);
659 			data->m = NULL;
660 		}
661 		if (data->ni != NULL) {
662 			ieee80211_free_node(data->ni);
663 			data->ni = NULL;
664 		}
665 	}
666 }
667 
668 static int
669 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
670 {
671 	struct ural_vap *uvp = URAL_VAP(vap);
672 	struct ieee80211com *ic = vap->iv_ic;
673 	struct ural_softc *sc = ic->ic_softc;
674 	const struct ieee80211_txparam *tp;
675 	struct ieee80211_node *ni;
676 	struct mbuf *m;
677 
678 	DPRINTF("%s -> %s\n",
679 		ieee80211_state_name[vap->iv_state],
680 		ieee80211_state_name[nstate]);
681 
682 	IEEE80211_UNLOCK(ic);
683 	RAL_LOCK(sc);
684 	usb_callout_stop(&uvp->ratectl_ch);
685 
686 	switch (nstate) {
687 	case IEEE80211_S_INIT:
688 		if (vap->iv_state == IEEE80211_S_RUN) {
689 			/* abort TSF synchronization */
690 			ural_write(sc, RAL_TXRX_CSR19, 0);
691 
692 			/* force tx led to stop blinking */
693 			ural_write(sc, RAL_MAC_CSR20, 0);
694 		}
695 		break;
696 
697 	case IEEE80211_S_RUN:
698 		ni = ieee80211_ref_node(vap->iv_bss);
699 
700 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
701 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
702 				RAL_UNLOCK(sc);
703 				IEEE80211_LOCK(ic);
704 				ieee80211_free_node(ni);
705 				return (-1);
706 			}
707 			ural_update_slot(sc);
708 			ural_set_txpreamble(sc);
709 			ural_set_basicrates(sc, ic->ic_bsschan);
710 			IEEE80211_ADDR_COPY(ic->ic_macaddr, ni->ni_bssid);
711 			ural_set_bssid(sc, ic->ic_macaddr);
712 		}
713 
714 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
715 		    vap->iv_opmode == IEEE80211_M_IBSS) {
716 			m = ieee80211_beacon_alloc(ni, &uvp->bo);
717 			if (m == NULL) {
718 				device_printf(sc->sc_dev,
719 				    "could not allocate beacon\n");
720 				RAL_UNLOCK(sc);
721 				IEEE80211_LOCK(ic);
722 				ieee80211_free_node(ni);
723 				return (-1);
724 			}
725 			ieee80211_ref_node(ni);
726 			if (ural_tx_bcn(sc, m, ni) != 0) {
727 				device_printf(sc->sc_dev,
728 				    "could not send beacon\n");
729 				RAL_UNLOCK(sc);
730 				IEEE80211_LOCK(ic);
731 				ieee80211_free_node(ni);
732 				return (-1);
733 			}
734 		}
735 
736 		/* make tx led blink on tx (controlled by ASIC) */
737 		ural_write(sc, RAL_MAC_CSR20, 1);
738 
739 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
740 			ural_enable_tsf_sync(sc);
741 		else
742 			ural_enable_tsf(sc);
743 
744 		/* enable automatic rate adaptation */
745 		/* XXX should use ic_bsschan but not valid until after newstate call below */
746 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
747 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
748 			ural_ratectl_start(sc, ni);
749 		ieee80211_free_node(ni);
750 		break;
751 
752 	default:
753 		break;
754 	}
755 	RAL_UNLOCK(sc);
756 	IEEE80211_LOCK(ic);
757 	return (uvp->newstate(vap, nstate, arg));
758 }
759 
760 
761 static void
762 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
763 {
764 	struct ural_softc *sc = usbd_xfer_softc(xfer);
765 	struct ieee80211vap *vap;
766 	struct ural_tx_data *data;
767 	struct mbuf *m;
768 	struct usb_page_cache *pc;
769 	int len;
770 
771 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
772 
773 	switch (USB_GET_STATE(xfer)) {
774 	case USB_ST_TRANSFERRED:
775 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
776 
777 		/* free resources */
778 		data = usbd_xfer_get_priv(xfer);
779 		ural_tx_free(data, 0);
780 		usbd_xfer_set_priv(xfer, NULL);
781 
782 		/* FALLTHROUGH */
783 	case USB_ST_SETUP:
784 tr_setup:
785 		data = STAILQ_FIRST(&sc->tx_q);
786 		if (data) {
787 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
788 			m = data->m;
789 
790 			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
791 				DPRINTFN(0, "data overflow, %u bytes\n",
792 				    m->m_pkthdr.len);
793 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
794 			}
795 			pc = usbd_xfer_get_frame(xfer, 0);
796 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
797 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
798 			    m->m_pkthdr.len);
799 
800 			vap = data->ni->ni_vap;
801 			if (ieee80211_radiotap_active_vap(vap)) {
802 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
803 
804 				tap->wt_flags = 0;
805 				tap->wt_rate = data->rate;
806 				tap->wt_antenna = sc->tx_ant;
807 
808 				ieee80211_radiotap_tx(vap, m);
809 			}
810 
811 			/* xfer length needs to be a multiple of two! */
812 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
813 			if ((len % 64) == 0)
814 				len += 2;
815 
816 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
817 			    m->m_pkthdr.len, len);
818 
819 			usbd_xfer_set_frame_len(xfer, 0, len);
820 			usbd_xfer_set_priv(xfer, data);
821 
822 			usbd_transfer_submit(xfer);
823 		}
824 		ural_start(sc);
825 		break;
826 
827 	default:			/* Error */
828 		DPRINTFN(11, "transfer error, %s\n",
829 		    usbd_errstr(error));
830 
831 		data = usbd_xfer_get_priv(xfer);
832 		if (data != NULL) {
833 			ural_tx_free(data, error);
834 			usbd_xfer_set_priv(xfer, NULL);
835 		}
836 
837 		if (error == USB_ERR_STALLED) {
838 			/* try to clear stall first */
839 			usbd_xfer_set_stall(xfer);
840 			goto tr_setup;
841 		}
842 		if (error == USB_ERR_TIMEOUT)
843 			device_printf(sc->sc_dev, "device timeout\n");
844 		break;
845 	}
846 }
847 
848 static void
849 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
850 {
851 	struct ural_softc *sc = usbd_xfer_softc(xfer);
852 	struct ieee80211com *ic = &sc->sc_ic;
853 	struct ieee80211_node *ni;
854 	struct mbuf *m = NULL;
855 	struct usb_page_cache *pc;
856 	uint32_t flags;
857 	int8_t rssi = 0, nf = 0;
858 	int len;
859 
860 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
861 
862 	switch (USB_GET_STATE(xfer)) {
863 	case USB_ST_TRANSFERRED:
864 
865 		DPRINTFN(15, "rx done, actlen=%d\n", len);
866 
867 		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
868 			DPRINTF("%s: xfer too short %d\n",
869 			    device_get_nameunit(sc->sc_dev), len);
870 			counter_u64_add(ic->ic_ierrors, 1);
871 			goto tr_setup;
872 		}
873 
874 		len -= RAL_RX_DESC_SIZE;
875 		/* rx descriptor is located at the end */
876 		pc = usbd_xfer_get_frame(xfer, 0);
877 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
878 
879 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
880 		nf = RAL_NOISE_FLOOR;
881 		flags = le32toh(sc->sc_rx_desc.flags);
882 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
883 			/*
884 		         * This should not happen since we did not
885 		         * request to receive those frames when we
886 		         * filled RAL_TXRX_CSR2:
887 		         */
888 			DPRINTFN(5, "PHY or CRC error\n");
889 			counter_u64_add(ic->ic_ierrors, 1);
890 			goto tr_setup;
891 		}
892 
893 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
894 		if (m == NULL) {
895 			DPRINTF("could not allocate mbuf\n");
896 			counter_u64_add(ic->ic_ierrors, 1);
897 			goto tr_setup;
898 		}
899 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
900 
901 		/* finalize mbuf */
902 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
903 
904 		if (ieee80211_radiotap_active(ic)) {
905 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
906 
907 			/* XXX set once */
908 			tap->wr_flags = 0;
909 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
910 			    (flags & RAL_RX_OFDM) ?
911 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
912 			tap->wr_antenna = sc->rx_ant;
913 			tap->wr_antsignal = nf + rssi;
914 			tap->wr_antnoise = nf;
915 		}
916 		/* Strip trailing 802.11 MAC FCS. */
917 		m_adj(m, -IEEE80211_CRC_LEN);
918 
919 		/* FALLTHROUGH */
920 	case USB_ST_SETUP:
921 tr_setup:
922 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
923 		usbd_transfer_submit(xfer);
924 
925 		/*
926 		 * At the end of a USB callback it is always safe to unlock
927 		 * the private mutex of a device! That is why we do the
928 		 * "ieee80211_input" here, and not some lines up!
929 		 */
930 		RAL_UNLOCK(sc);
931 		if (m) {
932 			ni = ieee80211_find_rxnode(ic,
933 			    mtod(m, struct ieee80211_frame_min *));
934 			if (ni != NULL) {
935 				(void) ieee80211_input(ni, m, rssi, nf);
936 				ieee80211_free_node(ni);
937 			} else
938 				(void) ieee80211_input_all(ic, m, rssi, nf);
939 		}
940 		RAL_LOCK(sc);
941 		ural_start(sc);
942 		return;
943 
944 	default:			/* Error */
945 		if (error != USB_ERR_CANCELLED) {
946 			/* try to clear stall first */
947 			usbd_xfer_set_stall(xfer);
948 			goto tr_setup;
949 		}
950 		return;
951 	}
952 }
953 
954 static uint8_t
955 ural_plcp_signal(int rate)
956 {
957 	switch (rate) {
958 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
959 	case 12:	return 0xb;
960 	case 18:	return 0xf;
961 	case 24:	return 0xa;
962 	case 36:	return 0xe;
963 	case 48:	return 0x9;
964 	case 72:	return 0xd;
965 	case 96:	return 0x8;
966 	case 108:	return 0xc;
967 
968 	/* CCK rates (NB: not IEEE std, device-specific) */
969 	case 2:		return 0x0;
970 	case 4:		return 0x1;
971 	case 11:	return 0x2;
972 	case 22:	return 0x3;
973 	}
974 	return 0xff;		/* XXX unsupported/unknown rate */
975 }
976 
977 static void
978 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
979     uint32_t flags, int len, int rate)
980 {
981 	struct ieee80211com *ic = &sc->sc_ic;
982 	uint16_t plcp_length;
983 	int remainder;
984 
985 	desc->flags = htole32(flags);
986 	desc->flags |= htole32(RAL_TX_NEWSEQ);
987 	desc->flags |= htole32(len << 16);
988 
989 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
990 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
991 
992 	/* setup PLCP fields */
993 	desc->plcp_signal  = ural_plcp_signal(rate);
994 	desc->plcp_service = 4;
995 
996 	len += IEEE80211_CRC_LEN;
997 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
998 		desc->flags |= htole32(RAL_TX_OFDM);
999 
1000 		plcp_length = len & 0xfff;
1001 		desc->plcp_length_hi = plcp_length >> 6;
1002 		desc->plcp_length_lo = plcp_length & 0x3f;
1003 	} else {
1004 		if (rate == 0)
1005 			rate = 2;	/* avoid division by zero */
1006 		plcp_length = (16 * len + rate - 1) / rate;
1007 		if (rate == 22) {
1008 			remainder = (16 * len) % 22;
1009 			if (remainder != 0 && remainder < 7)
1010 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1011 		}
1012 		desc->plcp_length_hi = plcp_length >> 8;
1013 		desc->plcp_length_lo = plcp_length & 0xff;
1014 
1015 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1016 			desc->plcp_signal |= 0x08;
1017 	}
1018 
1019 	desc->iv = 0;
1020 	desc->eiv = 0;
1021 }
1022 
1023 #define RAL_TX_TIMEOUT	5000
1024 
1025 static int
1026 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1027 {
1028 	struct ieee80211vap *vap = ni->ni_vap;
1029 	struct ieee80211com *ic = ni->ni_ic;
1030 	const struct ieee80211_txparam *tp;
1031 	struct ural_tx_data *data;
1032 
1033 	if (sc->tx_nfree == 0) {
1034 		m_freem(m0);
1035 		ieee80211_free_node(ni);
1036 		return (EIO);
1037 	}
1038 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1039 		m_freem(m0);
1040 		ieee80211_free_node(ni);
1041 		return (ENXIO);
1042 	}
1043 	data = STAILQ_FIRST(&sc->tx_free);
1044 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1045 	sc->tx_nfree--;
1046 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1047 
1048 	data->m = m0;
1049 	data->ni = ni;
1050 	data->rate = tp->mgmtrate;
1051 
1052 	ural_setup_tx_desc(sc, &data->desc,
1053 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1054 	    tp->mgmtrate);
1055 
1056 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1057 	    m0->m_pkthdr.len, tp->mgmtrate);
1058 
1059 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1060 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1061 
1062 	return (0);
1063 }
1064 
1065 static int
1066 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1067 {
1068 	struct ieee80211vap *vap = ni->ni_vap;
1069 	struct ieee80211com *ic = ni->ni_ic;
1070 	const struct ieee80211_txparam *tp;
1071 	struct ural_tx_data *data;
1072 	struct ieee80211_frame *wh;
1073 	struct ieee80211_key *k;
1074 	uint32_t flags;
1075 	uint16_t dur;
1076 
1077 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1078 
1079 	data = STAILQ_FIRST(&sc->tx_free);
1080 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1081 	sc->tx_nfree--;
1082 
1083 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1084 
1085 	wh = mtod(m0, struct ieee80211_frame *);
1086 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1087 		k = ieee80211_crypto_encap(ni, m0);
1088 		if (k == NULL) {
1089 			m_freem(m0);
1090 			return ENOBUFS;
1091 		}
1092 		wh = mtod(m0, struct ieee80211_frame *);
1093 	}
1094 
1095 	data->m = m0;
1096 	data->ni = ni;
1097 	data->rate = tp->mgmtrate;
1098 
1099 	flags = 0;
1100 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1101 		flags |= RAL_TX_ACK;
1102 
1103 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1104 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1105 		USETW(wh->i_dur, dur);
1106 
1107 		/* tell hardware to add timestamp for probe responses */
1108 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1109 		    IEEE80211_FC0_TYPE_MGT &&
1110 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1111 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1112 			flags |= RAL_TX_TIMESTAMP;
1113 	}
1114 
1115 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1116 
1117 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1118 	    m0->m_pkthdr.len, tp->mgmtrate);
1119 
1120 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1121 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1122 
1123 	return 0;
1124 }
1125 
1126 static int
1127 ural_sendprot(struct ural_softc *sc,
1128     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1129 {
1130 	struct ieee80211com *ic = ni->ni_ic;
1131 	const struct ieee80211_frame *wh;
1132 	struct ural_tx_data *data;
1133 	struct mbuf *mprot;
1134 	int protrate, ackrate, pktlen, flags, isshort;
1135 	uint16_t dur;
1136 
1137 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1138 	    ("protection %d", prot));
1139 
1140 	wh = mtod(m, const struct ieee80211_frame *);
1141 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1142 
1143 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1144 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1145 
1146 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1147 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1148 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1149 	flags = RAL_TX_RETRY(7);
1150 	if (prot == IEEE80211_PROT_RTSCTS) {
1151 		/* NB: CTS is the same size as an ACK */
1152 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1153 		flags |= RAL_TX_ACK;
1154 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1155 	} else {
1156 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1157 	}
1158 	if (mprot == NULL) {
1159 		/* XXX stat + msg */
1160 		return ENOBUFS;
1161 	}
1162 	data = STAILQ_FIRST(&sc->tx_free);
1163 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1164 	sc->tx_nfree--;
1165 
1166 	data->m = mprot;
1167 	data->ni = ieee80211_ref_node(ni);
1168 	data->rate = protrate;
1169 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1170 
1171 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1172 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1173 
1174 	return 0;
1175 }
1176 
1177 static int
1178 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1179     const struct ieee80211_bpf_params *params)
1180 {
1181 	struct ieee80211com *ic = ni->ni_ic;
1182 	struct ural_tx_data *data;
1183 	uint32_t flags;
1184 	int error;
1185 	int rate;
1186 
1187 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1188 	KASSERT(params != NULL, ("no raw xmit params"));
1189 
1190 	rate = params->ibp_rate0;
1191 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1192 		m_freem(m0);
1193 		return EINVAL;
1194 	}
1195 	flags = 0;
1196 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1197 		flags |= RAL_TX_ACK;
1198 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1199 		error = ural_sendprot(sc, m0, ni,
1200 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1201 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1202 		    rate);
1203 		if (error || sc->tx_nfree == 0) {
1204 			m_freem(m0);
1205 			return ENOBUFS;
1206 		}
1207 		flags |= RAL_TX_IFS_SIFS;
1208 	}
1209 
1210 	data = STAILQ_FIRST(&sc->tx_free);
1211 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1212 	sc->tx_nfree--;
1213 
1214 	data->m = m0;
1215 	data->ni = ni;
1216 	data->rate = rate;
1217 
1218 	/* XXX need to setup descriptor ourself */
1219 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1220 
1221 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1222 	    m0->m_pkthdr.len, rate);
1223 
1224 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1225 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1226 
1227 	return 0;
1228 }
1229 
1230 static int
1231 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1232 {
1233 	struct ieee80211vap *vap = ni->ni_vap;
1234 	struct ieee80211com *ic = ni->ni_ic;
1235 	struct ural_tx_data *data;
1236 	struct ieee80211_frame *wh;
1237 	const struct ieee80211_txparam *tp;
1238 	struct ieee80211_key *k;
1239 	uint32_t flags = 0;
1240 	uint16_t dur;
1241 	int error, rate;
1242 
1243 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1244 
1245 	wh = mtod(m0, struct ieee80211_frame *);
1246 
1247 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1248 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1249 		rate = tp->mcastrate;
1250 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1251 		rate = tp->ucastrate;
1252 	else
1253 		rate = ni->ni_txrate;
1254 
1255 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1256 		k = ieee80211_crypto_encap(ni, m0);
1257 		if (k == NULL) {
1258 			m_freem(m0);
1259 			return ENOBUFS;
1260 		}
1261 		/* packet header may have moved, reset our local pointer */
1262 		wh = mtod(m0, struct ieee80211_frame *);
1263 	}
1264 
1265 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1266 		int prot = IEEE80211_PROT_NONE;
1267 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1268 			prot = IEEE80211_PROT_RTSCTS;
1269 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1270 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1271 			prot = ic->ic_protmode;
1272 		if (prot != IEEE80211_PROT_NONE) {
1273 			error = ural_sendprot(sc, m0, ni, prot, rate);
1274 			if (error || sc->tx_nfree == 0) {
1275 				m_freem(m0);
1276 				return ENOBUFS;
1277 			}
1278 			flags |= RAL_TX_IFS_SIFS;
1279 		}
1280 	}
1281 
1282 	data = STAILQ_FIRST(&sc->tx_free);
1283 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1284 	sc->tx_nfree--;
1285 
1286 	data->m = m0;
1287 	data->ni = ni;
1288 	data->rate = rate;
1289 
1290 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1291 		flags |= RAL_TX_ACK;
1292 		flags |= RAL_TX_RETRY(7);
1293 
1294 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1295 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1296 		USETW(wh->i_dur, dur);
1297 	}
1298 
1299 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1300 
1301 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1302 	    m0->m_pkthdr.len, rate);
1303 
1304 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1305 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1306 
1307 	return 0;
1308 }
1309 
1310 static int
1311 ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1312 {
1313 	struct ural_softc *sc = ic->ic_softc;
1314 	int error;
1315 
1316 	RAL_LOCK(sc);
1317 	if (!sc->sc_running) {
1318 		RAL_UNLOCK(sc);
1319 		return (ENXIO);
1320 	}
1321 	error = mbufq_enqueue(&sc->sc_snd, m);
1322 	if (error) {
1323 		RAL_UNLOCK(sc);
1324 		return (error);
1325 	}
1326 	ural_start(sc);
1327 	RAL_UNLOCK(sc);
1328 
1329 	return (0);
1330 }
1331 
1332 static void
1333 ural_start(struct ural_softc *sc)
1334 {
1335 	struct ieee80211_node *ni;
1336 	struct mbuf *m;
1337 
1338 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1339 
1340 	if (sc->sc_running == 0)
1341 		return;
1342 
1343 	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1344 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1345 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1346 		if (ural_tx_data(sc, m, ni) != 0) {
1347 			if_inc_counter(ni->ni_vap->iv_ifp,
1348 			     IFCOUNTER_OERRORS, 1);
1349 			ieee80211_free_node(ni);
1350 			break;
1351 		}
1352 	}
1353 }
1354 
1355 static void
1356 ural_parent(struct ieee80211com *ic)
1357 {
1358 	struct ural_softc *sc = ic->ic_softc;
1359 	int startall = 0;
1360 
1361 	RAL_LOCK(sc);
1362 	if (sc->sc_detached) {
1363 		RAL_UNLOCK(sc);
1364 		return;
1365 	}
1366 	if (ic->ic_nrunning > 0) {
1367 		if (sc->sc_running == 0) {
1368 			ural_init(sc);
1369 			startall = 1;
1370 		} else
1371 			ural_setpromisc(sc);
1372 	} else if (sc->sc_running)
1373 		ural_stop(sc);
1374 	RAL_UNLOCK(sc);
1375 	if (startall)
1376 		ieee80211_start_all(ic);
1377 }
1378 
1379 static void
1380 ural_set_testmode(struct ural_softc *sc)
1381 {
1382 	struct usb_device_request req;
1383 	usb_error_t error;
1384 
1385 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1386 	req.bRequest = RAL_VENDOR_REQUEST;
1387 	USETW(req.wValue, 4);
1388 	USETW(req.wIndex, 1);
1389 	USETW(req.wLength, 0);
1390 
1391 	error = ural_do_request(sc, &req, NULL);
1392 	if (error != 0) {
1393 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1394 		    usbd_errstr(error));
1395 	}
1396 }
1397 
1398 static void
1399 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1400 {
1401 	struct usb_device_request req;
1402 	usb_error_t error;
1403 
1404 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1405 	req.bRequest = RAL_READ_EEPROM;
1406 	USETW(req.wValue, 0);
1407 	USETW(req.wIndex, addr);
1408 	USETW(req.wLength, len);
1409 
1410 	error = ural_do_request(sc, &req, buf);
1411 	if (error != 0) {
1412 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1413 		    usbd_errstr(error));
1414 	}
1415 }
1416 
1417 static uint16_t
1418 ural_read(struct ural_softc *sc, uint16_t reg)
1419 {
1420 	struct usb_device_request req;
1421 	usb_error_t error;
1422 	uint16_t val;
1423 
1424 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1425 	req.bRequest = RAL_READ_MAC;
1426 	USETW(req.wValue, 0);
1427 	USETW(req.wIndex, reg);
1428 	USETW(req.wLength, sizeof (uint16_t));
1429 
1430 	error = ural_do_request(sc, &req, &val);
1431 	if (error != 0) {
1432 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1433 		    usbd_errstr(error));
1434 		return 0;
1435 	}
1436 
1437 	return le16toh(val);
1438 }
1439 
1440 static void
1441 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1442 {
1443 	struct usb_device_request req;
1444 	usb_error_t error;
1445 
1446 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1447 	req.bRequest = RAL_READ_MULTI_MAC;
1448 	USETW(req.wValue, 0);
1449 	USETW(req.wIndex, reg);
1450 	USETW(req.wLength, len);
1451 
1452 	error = ural_do_request(sc, &req, buf);
1453 	if (error != 0) {
1454 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1455 		    usbd_errstr(error));
1456 	}
1457 }
1458 
1459 static void
1460 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1461 {
1462 	struct usb_device_request req;
1463 	usb_error_t error;
1464 
1465 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1466 	req.bRequest = RAL_WRITE_MAC;
1467 	USETW(req.wValue, val);
1468 	USETW(req.wIndex, reg);
1469 	USETW(req.wLength, 0);
1470 
1471 	error = ural_do_request(sc, &req, NULL);
1472 	if (error != 0) {
1473 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1474 		    usbd_errstr(error));
1475 	}
1476 }
1477 
1478 static void
1479 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1480 {
1481 	struct usb_device_request req;
1482 	usb_error_t error;
1483 
1484 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1485 	req.bRequest = RAL_WRITE_MULTI_MAC;
1486 	USETW(req.wValue, 0);
1487 	USETW(req.wIndex, reg);
1488 	USETW(req.wLength, len);
1489 
1490 	error = ural_do_request(sc, &req, buf);
1491 	if (error != 0) {
1492 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1493 		    usbd_errstr(error));
1494 	}
1495 }
1496 
1497 static void
1498 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1499 {
1500 	uint16_t tmp;
1501 	int ntries;
1502 
1503 	for (ntries = 0; ntries < 100; ntries++) {
1504 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1505 			break;
1506 		if (ural_pause(sc, hz / 100))
1507 			break;
1508 	}
1509 	if (ntries == 100) {
1510 		device_printf(sc->sc_dev, "could not write to BBP\n");
1511 		return;
1512 	}
1513 
1514 	tmp = reg << 8 | val;
1515 	ural_write(sc, RAL_PHY_CSR7, tmp);
1516 }
1517 
1518 static uint8_t
1519 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1520 {
1521 	uint16_t val;
1522 	int ntries;
1523 
1524 	val = RAL_BBP_WRITE | reg << 8;
1525 	ural_write(sc, RAL_PHY_CSR7, val);
1526 
1527 	for (ntries = 0; ntries < 100; ntries++) {
1528 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1529 			break;
1530 		if (ural_pause(sc, hz / 100))
1531 			break;
1532 	}
1533 	if (ntries == 100) {
1534 		device_printf(sc->sc_dev, "could not read BBP\n");
1535 		return 0;
1536 	}
1537 
1538 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1539 }
1540 
1541 static void
1542 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1543 {
1544 	uint32_t tmp;
1545 	int ntries;
1546 
1547 	for (ntries = 0; ntries < 100; ntries++) {
1548 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1549 			break;
1550 		if (ural_pause(sc, hz / 100))
1551 			break;
1552 	}
1553 	if (ntries == 100) {
1554 		device_printf(sc->sc_dev, "could not write to RF\n");
1555 		return;
1556 	}
1557 
1558 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1559 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1560 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1561 
1562 	/* remember last written value in sc */
1563 	sc->rf_regs[reg] = val;
1564 
1565 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1566 }
1567 
1568 static void
1569 ural_scan_start(struct ieee80211com *ic)
1570 {
1571 	struct ural_softc *sc = ic->ic_softc;
1572 
1573 	RAL_LOCK(sc);
1574 	ural_write(sc, RAL_TXRX_CSR19, 0);
1575 	ural_set_bssid(sc, ieee80211broadcastaddr);
1576 	RAL_UNLOCK(sc);
1577 }
1578 
1579 static void
1580 ural_scan_end(struct ieee80211com *ic)
1581 {
1582 	struct ural_softc *sc = ic->ic_softc;
1583 
1584 	RAL_LOCK(sc);
1585 	ural_enable_tsf_sync(sc);
1586 	ural_set_bssid(sc, ic->ic_macaddr);
1587 	RAL_UNLOCK(sc);
1588 
1589 }
1590 
1591 static void
1592 ural_set_channel(struct ieee80211com *ic)
1593 {
1594 	struct ural_softc *sc = ic->ic_softc;
1595 
1596 	RAL_LOCK(sc);
1597 	ural_set_chan(sc, ic->ic_curchan);
1598 	RAL_UNLOCK(sc);
1599 }
1600 
1601 static void
1602 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 	uint8_t power, tmp;
1606 	int i, chan;
1607 
1608 	chan = ieee80211_chan2ieee(ic, c);
1609 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1610 		return;
1611 
1612 	if (IEEE80211_IS_CHAN_2GHZ(c))
1613 		power = min(sc->txpow[chan - 1], 31);
1614 	else
1615 		power = 31;
1616 
1617 	/* adjust txpower using ifconfig settings */
1618 	power -= (100 - ic->ic_txpowlimit) / 8;
1619 
1620 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1621 
1622 	switch (sc->rf_rev) {
1623 	case RAL_RF_2522:
1624 		ural_rf_write(sc, RAL_RF1, 0x00814);
1625 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1626 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1627 		break;
1628 
1629 	case RAL_RF_2523:
1630 		ural_rf_write(sc, RAL_RF1, 0x08804);
1631 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1632 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1633 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1634 		break;
1635 
1636 	case RAL_RF_2524:
1637 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1638 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1639 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1640 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1641 		break;
1642 
1643 	case RAL_RF_2525:
1644 		ural_rf_write(sc, RAL_RF1, 0x08808);
1645 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1646 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1647 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1648 
1649 		ural_rf_write(sc, RAL_RF1, 0x08808);
1650 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1651 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1652 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1653 		break;
1654 
1655 	case RAL_RF_2525E:
1656 		ural_rf_write(sc, RAL_RF1, 0x08808);
1657 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1658 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1659 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1660 		break;
1661 
1662 	case RAL_RF_2526:
1663 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1664 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1665 		ural_rf_write(sc, RAL_RF1, 0x08804);
1666 
1667 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1668 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1669 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1670 		break;
1671 
1672 	/* dual-band RF */
1673 	case RAL_RF_5222:
1674 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1675 
1676 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1677 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1678 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1679 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1680 		break;
1681 	}
1682 
1683 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1684 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1685 		/* set Japan filter bit for channel 14 */
1686 		tmp = ural_bbp_read(sc, 70);
1687 
1688 		tmp &= ~RAL_JAPAN_FILTER;
1689 		if (chan == 14)
1690 			tmp |= RAL_JAPAN_FILTER;
1691 
1692 		ural_bbp_write(sc, 70, tmp);
1693 
1694 		/* clear CRC errors */
1695 		ural_read(sc, RAL_STA_CSR0);
1696 
1697 		ural_pause(sc, hz / 100);
1698 		ural_disable_rf_tune(sc);
1699 	}
1700 
1701 	/* XXX doesn't belong here */
1702 	/* update basic rate set */
1703 	ural_set_basicrates(sc, c);
1704 
1705 	/* give the hardware some time to do the switchover */
1706 	ural_pause(sc, hz / 100);
1707 }
1708 
1709 /*
1710  * Disable RF auto-tuning.
1711  */
1712 static void
1713 ural_disable_rf_tune(struct ural_softc *sc)
1714 {
1715 	uint32_t tmp;
1716 
1717 	if (sc->rf_rev != RAL_RF_2523) {
1718 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1719 		ural_rf_write(sc, RAL_RF1, tmp);
1720 	}
1721 
1722 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1723 	ural_rf_write(sc, RAL_RF3, tmp);
1724 
1725 	DPRINTFN(2, "disabling RF autotune\n");
1726 }
1727 
1728 /*
1729  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1730  * synchronization.
1731  */
1732 static void
1733 ural_enable_tsf_sync(struct ural_softc *sc)
1734 {
1735 	struct ieee80211com *ic = &sc->sc_ic;
1736 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1737 	uint16_t logcwmin, preload, tmp;
1738 
1739 	/* first, disable TSF synchronization */
1740 	ural_write(sc, RAL_TXRX_CSR19, 0);
1741 
1742 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1743 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1744 
1745 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1746 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1747 	tmp = logcwmin << 12 | preload;
1748 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1749 
1750 	/* finally, enable TSF synchronization */
1751 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1752 	if (ic->ic_opmode == IEEE80211_M_STA)
1753 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1754 	else
1755 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1756 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1757 
1758 	DPRINTF("enabling TSF synchronization\n");
1759 }
1760 
1761 static void
1762 ural_enable_tsf(struct ural_softc *sc)
1763 {
1764 	/* first, disable TSF synchronization */
1765 	ural_write(sc, RAL_TXRX_CSR19, 0);
1766 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1767 }
1768 
1769 #define RAL_RXTX_TURNAROUND	5	/* us */
1770 static void
1771 ural_update_slot(struct ural_softc *sc)
1772 {
1773 	struct ieee80211com *ic = &sc->sc_ic;
1774 	uint16_t slottime, sifs, eifs;
1775 
1776 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1777 
1778 	/*
1779 	 * These settings may sound a bit inconsistent but this is what the
1780 	 * reference driver does.
1781 	 */
1782 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1783 		sifs = 16 - RAL_RXTX_TURNAROUND;
1784 		eifs = 364;
1785 	} else {
1786 		sifs = 10 - RAL_RXTX_TURNAROUND;
1787 		eifs = 64;
1788 	}
1789 
1790 	ural_write(sc, RAL_MAC_CSR10, slottime);
1791 	ural_write(sc, RAL_MAC_CSR11, sifs);
1792 	ural_write(sc, RAL_MAC_CSR12, eifs);
1793 }
1794 
1795 static void
1796 ural_set_txpreamble(struct ural_softc *sc)
1797 {
1798 	struct ieee80211com *ic = &sc->sc_ic;
1799 	uint16_t tmp;
1800 
1801 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1802 
1803 	tmp &= ~RAL_SHORT_PREAMBLE;
1804 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1805 		tmp |= RAL_SHORT_PREAMBLE;
1806 
1807 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1808 }
1809 
1810 static void
1811 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1812 {
1813 	/* XXX wrong, take from rate set */
1814 	/* update basic rate set */
1815 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1816 		/* 11a basic rates: 6, 12, 24Mbps */
1817 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1818 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1819 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1820 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1821 	} else {
1822 		/* 11b basic rates: 1, 2Mbps */
1823 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1824 	}
1825 }
1826 
1827 static void
1828 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1829 {
1830 	uint16_t tmp;
1831 
1832 	tmp = bssid[0] | bssid[1] << 8;
1833 	ural_write(sc, RAL_MAC_CSR5, tmp);
1834 
1835 	tmp = bssid[2] | bssid[3] << 8;
1836 	ural_write(sc, RAL_MAC_CSR6, tmp);
1837 
1838 	tmp = bssid[4] | bssid[5] << 8;
1839 	ural_write(sc, RAL_MAC_CSR7, tmp);
1840 
1841 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1842 }
1843 
1844 static void
1845 ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1846 {
1847 	uint16_t tmp;
1848 
1849 	tmp = addr[0] | addr[1] << 8;
1850 	ural_write(sc, RAL_MAC_CSR2, tmp);
1851 
1852 	tmp = addr[2] | addr[3] << 8;
1853 	ural_write(sc, RAL_MAC_CSR3, tmp);
1854 
1855 	tmp = addr[4] | addr[5] << 8;
1856 	ural_write(sc, RAL_MAC_CSR4, tmp);
1857 
1858 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1859 }
1860 
1861 static void
1862 ural_setpromisc(struct ural_softc *sc)
1863 {
1864 	uint32_t tmp;
1865 
1866 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1867 
1868 	tmp &= ~RAL_DROP_NOT_TO_ME;
1869 	if (sc->sc_ic.ic_promisc == 0)
1870 		tmp |= RAL_DROP_NOT_TO_ME;
1871 
1872 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1873 
1874 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1875 	    "entering" : "leaving");
1876 }
1877 
1878 static void
1879 ural_update_promisc(struct ieee80211com *ic)
1880 {
1881 	struct ural_softc *sc = ic->ic_softc;
1882 
1883 	RAL_LOCK(sc);
1884 	if (sc->sc_running)
1885 		ural_setpromisc(sc);
1886 	RAL_UNLOCK(sc);
1887 }
1888 
1889 static const char *
1890 ural_get_rf(int rev)
1891 {
1892 	switch (rev) {
1893 	case RAL_RF_2522:	return "RT2522";
1894 	case RAL_RF_2523:	return "RT2523";
1895 	case RAL_RF_2524:	return "RT2524";
1896 	case RAL_RF_2525:	return "RT2525";
1897 	case RAL_RF_2525E:	return "RT2525e";
1898 	case RAL_RF_2526:	return "RT2526";
1899 	case RAL_RF_5222:	return "RT5222";
1900 	default:		return "unknown";
1901 	}
1902 }
1903 
1904 static void
1905 ural_read_eeprom(struct ural_softc *sc)
1906 {
1907 	struct ieee80211com *ic = &sc->sc_ic;
1908 	uint16_t val;
1909 
1910 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1911 	val = le16toh(val);
1912 	sc->rf_rev =   (val >> 11) & 0x7;
1913 	sc->hw_radio = (val >> 10) & 0x1;
1914 	sc->led_mode = (val >> 6)  & 0x7;
1915 	sc->rx_ant =   (val >> 4)  & 0x3;
1916 	sc->tx_ant =   (val >> 2)  & 0x3;
1917 	sc->nb_ant =   val & 0x3;
1918 
1919 	/* read MAC address */
1920 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1921 
1922 	/* read default values for BBP registers */
1923 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1924 
1925 	/* read Tx power for all b/g channels */
1926 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1927 }
1928 
1929 static int
1930 ural_bbp_init(struct ural_softc *sc)
1931 {
1932 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
1933 	int i, ntries;
1934 
1935 	/* wait for BBP to be ready */
1936 	for (ntries = 0; ntries < 100; ntries++) {
1937 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1938 			break;
1939 		if (ural_pause(sc, hz / 100))
1940 			break;
1941 	}
1942 	if (ntries == 100) {
1943 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1944 		return EIO;
1945 	}
1946 
1947 	/* initialize BBP registers to default values */
1948 	for (i = 0; i < N(ural_def_bbp); i++)
1949 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1950 
1951 #if 0
1952 	/* initialize BBP registers to values stored in EEPROM */
1953 	for (i = 0; i < 16; i++) {
1954 		if (sc->bbp_prom[i].reg == 0xff)
1955 			continue;
1956 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1957 	}
1958 #endif
1959 
1960 	return 0;
1961 #undef N
1962 }
1963 
1964 static void
1965 ural_set_txantenna(struct ural_softc *sc, int antenna)
1966 {
1967 	uint16_t tmp;
1968 	uint8_t tx;
1969 
1970 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1971 	if (antenna == 1)
1972 		tx |= RAL_BBP_ANTA;
1973 	else if (antenna == 2)
1974 		tx |= RAL_BBP_ANTB;
1975 	else
1976 		tx |= RAL_BBP_DIVERSITY;
1977 
1978 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1979 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1980 	    sc->rf_rev == RAL_RF_5222)
1981 		tx |= RAL_BBP_FLIPIQ;
1982 
1983 	ural_bbp_write(sc, RAL_BBP_TX, tx);
1984 
1985 	/* update values in PHY_CSR5 and PHY_CSR6 */
1986 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1987 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1988 
1989 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1990 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1991 }
1992 
1993 static void
1994 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1995 {
1996 	uint8_t rx;
1997 
1998 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1999 	if (antenna == 1)
2000 		rx |= RAL_BBP_ANTA;
2001 	else if (antenna == 2)
2002 		rx |= RAL_BBP_ANTB;
2003 	else
2004 		rx |= RAL_BBP_DIVERSITY;
2005 
2006 	/* need to force no I/Q flip for RF 2525e and 2526 */
2007 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2008 		rx &= ~RAL_BBP_FLIPIQ;
2009 
2010 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2011 }
2012 
2013 static void
2014 ural_init(struct ural_softc *sc)
2015 {
2016 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
2017 	struct ieee80211com *ic = &sc->sc_ic;
2018 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2019 	uint16_t tmp;
2020 	int i, ntries;
2021 
2022 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2023 
2024 	ural_set_testmode(sc);
2025 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2026 
2027 	ural_stop(sc);
2028 
2029 	/* initialize MAC registers to default values */
2030 	for (i = 0; i < N(ural_def_mac); i++)
2031 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2032 
2033 	/* wait for BBP and RF to wake up (this can take a long time!) */
2034 	for (ntries = 0; ntries < 100; ntries++) {
2035 		tmp = ural_read(sc, RAL_MAC_CSR17);
2036 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2037 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2038 			break;
2039 		if (ural_pause(sc, hz / 100))
2040 			break;
2041 	}
2042 	if (ntries == 100) {
2043 		device_printf(sc->sc_dev,
2044 		    "timeout waiting for BBP/RF to wakeup\n");
2045 		goto fail;
2046 	}
2047 
2048 	/* we're ready! */
2049 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2050 
2051 	/* set basic rate set (will be updated later) */
2052 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2053 
2054 	if (ural_bbp_init(sc) != 0)
2055 		goto fail;
2056 
2057 	ural_set_chan(sc, ic->ic_curchan);
2058 
2059 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2060 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2061 
2062 	ural_set_txantenna(sc, sc->tx_ant);
2063 	ural_set_rxantenna(sc, sc->rx_ant);
2064 
2065 	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2066 
2067 	/*
2068 	 * Allocate Tx and Rx xfer queues.
2069 	 */
2070 	ural_setup_tx_list(sc);
2071 
2072 	/* kick Rx */
2073 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2074 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2075 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2076 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2077 			tmp |= RAL_DROP_TODS;
2078 		if (ic->ic_promisc == 0)
2079 			tmp |= RAL_DROP_NOT_TO_ME;
2080 	}
2081 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2082 
2083 	sc->sc_running = 1;
2084 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2085 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2086 	return;
2087 
2088 fail:	ural_stop(sc);
2089 #undef N
2090 }
2091 
2092 static void
2093 ural_stop(struct ural_softc *sc)
2094 {
2095 
2096 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2097 
2098 	sc->sc_running = 0;
2099 
2100 	/*
2101 	 * Drain all the transfers, if not already drained:
2102 	 */
2103 	RAL_UNLOCK(sc);
2104 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2105 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2106 	RAL_LOCK(sc);
2107 
2108 	ural_unsetup_tx_list(sc);
2109 
2110 	/* disable Rx */
2111 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2112 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2113 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2114 	/* wait a little */
2115 	ural_pause(sc, hz / 10);
2116 	ural_write(sc, RAL_MAC_CSR1, 0);
2117 	/* wait a little */
2118 	ural_pause(sc, hz / 10);
2119 }
2120 
2121 static int
2122 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2123 	const struct ieee80211_bpf_params *params)
2124 {
2125 	struct ieee80211com *ic = ni->ni_ic;
2126 	struct ural_softc *sc = ic->ic_softc;
2127 
2128 	RAL_LOCK(sc);
2129 	/* prevent management frames from being sent if we're not ready */
2130 	if (!sc->sc_running) {
2131 		RAL_UNLOCK(sc);
2132 		m_freem(m);
2133 		ieee80211_free_node(ni);
2134 		return ENETDOWN;
2135 	}
2136 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2137 		RAL_UNLOCK(sc);
2138 		m_freem(m);
2139 		ieee80211_free_node(ni);
2140 		return EIO;
2141 	}
2142 
2143 	if (params == NULL) {
2144 		/*
2145 		 * Legacy path; interpret frame contents to decide
2146 		 * precisely how to send the frame.
2147 		 */
2148 		if (ural_tx_mgt(sc, m, ni) != 0)
2149 			goto bad;
2150 	} else {
2151 		/*
2152 		 * Caller supplied explicit parameters to use in
2153 		 * sending the frame.
2154 		 */
2155 		if (ural_tx_raw(sc, m, ni, params) != 0)
2156 			goto bad;
2157 	}
2158 	RAL_UNLOCK(sc);
2159 	return 0;
2160 bad:
2161 	RAL_UNLOCK(sc);
2162 	ieee80211_free_node(ni);
2163 	return EIO;		/* XXX */
2164 }
2165 
2166 static void
2167 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2168 {
2169 	struct ieee80211vap *vap = ni->ni_vap;
2170 	struct ural_vap *uvp = URAL_VAP(vap);
2171 
2172 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2173 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2174 
2175 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2176 }
2177 
2178 static void
2179 ural_ratectl_timeout(void *arg)
2180 {
2181 	struct ural_vap *uvp = arg;
2182 	struct ieee80211vap *vap = &uvp->vap;
2183 	struct ieee80211com *ic = vap->iv_ic;
2184 
2185 	ieee80211_runtask(ic, &uvp->ratectl_task);
2186 }
2187 
2188 static void
2189 ural_ratectl_task(void *arg, int pending)
2190 {
2191 	struct ural_vap *uvp = arg;
2192 	struct ieee80211vap *vap = &uvp->vap;
2193 	struct ieee80211com *ic = vap->iv_ic;
2194 	struct ural_softc *sc = ic->ic_softc;
2195 	struct ieee80211_node *ni;
2196 	int ok, fail;
2197 	int sum, retrycnt;
2198 
2199 	ni = ieee80211_ref_node(vap->iv_bss);
2200 	RAL_LOCK(sc);
2201 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2202 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2203 
2204 	ok = sc->sta[7] +		/* TX ok w/o retry */
2205 	     sc->sta[8];		/* TX ok w/ retry */
2206 	fail = sc->sta[9];		/* TX retry-fail count */
2207 	sum = ok+fail;
2208 	retrycnt = sc->sta[8] + fail;
2209 
2210 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2211 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2212 
2213 	/* count TX retry-fail as Tx errors */
2214 	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2215 
2216 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2217 	RAL_UNLOCK(sc);
2218 	ieee80211_free_node(ni);
2219 }
2220 
2221 static int
2222 ural_pause(struct ural_softc *sc, int timeout)
2223 {
2224 
2225 	usb_pause_mtx(&sc->sc_mtx, timeout);
2226 	return (0);
2227 }
2228