1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Copyright (c) 2006, 2008 8 * Hans Petter Selasky <hselasky@FreeBSD.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 /*- 27 * Ralink Technology RT2500USB chipset driver 28 * http://www.ralinktech.com/ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/endian.h> 44 #include <sys/kdb.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <sys/rman.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR ural_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_uralreg.h> 79 #include <dev/usb/wlan/if_uralvar.h> 80 81 #ifdef USB_DEBUG 82 static int ural_debug = 0; 83 84 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); 85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0, 86 "Debug level"); 87 #endif 88 89 #define URAL_RSSI(rssi) \ 90 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ 91 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) 92 93 /* various supported device vendors/products */ 94 static const STRUCT_USB_HOST_ID ural_devs[] = { 95 #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 96 URAL_DEV(ASUS, WL167G), 97 URAL_DEV(ASUS, RT2570), 98 URAL_DEV(BELKIN, F5D7050), 99 URAL_DEV(BELKIN, F5D7051), 100 URAL_DEV(CISCOLINKSYS, HU200TS), 101 URAL_DEV(CISCOLINKSYS, WUSB54G), 102 URAL_DEV(CISCOLINKSYS, WUSB54GP), 103 URAL_DEV(CONCEPTRONIC2, C54RU), 104 URAL_DEV(DLINK, DWLG122), 105 URAL_DEV(GIGABYTE, GN54G), 106 URAL_DEV(GIGABYTE, GNWBKG), 107 URAL_DEV(GUILLEMOT, HWGUSB254), 108 URAL_DEV(MELCO, KG54), 109 URAL_DEV(MELCO, KG54AI), 110 URAL_DEV(MELCO, KG54YB), 111 URAL_DEV(MELCO, NINWIFI), 112 URAL_DEV(MSI, RT2570), 113 URAL_DEV(MSI, RT2570_2), 114 URAL_DEV(MSI, RT2570_3), 115 URAL_DEV(NOVATECH, NV902), 116 URAL_DEV(RALINK, RT2570), 117 URAL_DEV(RALINK, RT2570_2), 118 URAL_DEV(RALINK, RT2570_3), 119 URAL_DEV(SIEMENS2, WL54G), 120 URAL_DEV(SMC, 2862WG), 121 URAL_DEV(SPHAIRON, UB801R), 122 URAL_DEV(SURECOM, RT2570), 123 URAL_DEV(VTECH, RT2570), 124 URAL_DEV(ZINWELL, RT2570), 125 #undef URAL_DEV 126 }; 127 128 static usb_callback_t ural_bulk_read_callback; 129 static usb_callback_t ural_bulk_write_callback; 130 131 static usb_error_t ural_do_request(struct ural_softc *sc, 132 struct usb_device_request *req, void *data); 133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, 135 int, const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void ural_vap_delete(struct ieee80211vap *); 138 static void ural_tx_free(struct ural_tx_data *, int); 139 static void ural_setup_tx_list(struct ural_softc *); 140 static void ural_unsetup_tx_list(struct ural_softc *); 141 static int ural_newstate(struct ieee80211vap *, 142 enum ieee80211_state, int); 143 static void ural_setup_tx_desc(struct ural_softc *, 144 struct ural_tx_desc *, uint32_t, int, int); 145 static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 146 struct ieee80211_node *); 147 static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 148 struct ieee80211_node *); 149 static int ural_tx_data(struct ural_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 static void ural_start(struct ifnet *); 152 static int ural_ioctl(struct ifnet *, u_long, caddr_t); 153 static void ural_set_testmode(struct ural_softc *); 154 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 155 int); 156 static uint16_t ural_read(struct ural_softc *, uint16_t); 157 static void ural_read_multi(struct ural_softc *, uint16_t, void *, 158 int); 159 static void ural_write(struct ural_softc *, uint16_t, uint16_t); 160 static void ural_write_multi(struct ural_softc *, uint16_t, void *, 161 int) __unused; 162 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 163 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 164 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 165 static void ural_scan_start(struct ieee80211com *); 166 static void ural_scan_end(struct ieee80211com *); 167 static void ural_set_channel(struct ieee80211com *); 168 static void ural_set_chan(struct ural_softc *, 169 struct ieee80211_channel *); 170 static void ural_disable_rf_tune(struct ural_softc *); 171 static void ural_enable_tsf_sync(struct ural_softc *); 172 static void ural_enable_tsf(struct ural_softc *); 173 static void ural_update_slot(struct ifnet *); 174 static void ural_set_txpreamble(struct ural_softc *); 175 static void ural_set_basicrates(struct ural_softc *, 176 const struct ieee80211_channel *); 177 static void ural_set_bssid(struct ural_softc *, const uint8_t *); 178 static void ural_set_macaddr(struct ural_softc *, uint8_t *); 179 static void ural_update_promisc(struct ifnet *); 180 static void ural_setpromisc(struct ural_softc *); 181 static const char *ural_get_rf(int); 182 static void ural_read_eeprom(struct ural_softc *); 183 static int ural_bbp_init(struct ural_softc *); 184 static void ural_set_txantenna(struct ural_softc *, int); 185 static void ural_set_rxantenna(struct ural_softc *, int); 186 static void ural_init_locked(struct ural_softc *); 187 static void ural_init(void *); 188 static void ural_stop(struct ural_softc *); 189 static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, 190 const struct ieee80211_bpf_params *); 191 static void ural_ratectl_start(struct ural_softc *, 192 struct ieee80211_node *); 193 static void ural_ratectl_timeout(void *); 194 static void ural_ratectl_task(void *, int); 195 static int ural_pause(struct ural_softc *sc, int timeout); 196 197 /* 198 * Default values for MAC registers; values taken from the reference driver. 199 */ 200 static const struct { 201 uint16_t reg; 202 uint16_t val; 203 } ural_def_mac[] = { 204 { RAL_TXRX_CSR5, 0x8c8d }, 205 { RAL_TXRX_CSR6, 0x8b8a }, 206 { RAL_TXRX_CSR7, 0x8687 }, 207 { RAL_TXRX_CSR8, 0x0085 }, 208 { RAL_MAC_CSR13, 0x1111 }, 209 { RAL_MAC_CSR14, 0x1e11 }, 210 { RAL_TXRX_CSR21, 0xe78f }, 211 { RAL_MAC_CSR9, 0xff1d }, 212 { RAL_MAC_CSR11, 0x0002 }, 213 { RAL_MAC_CSR22, 0x0053 }, 214 { RAL_MAC_CSR15, 0x0000 }, 215 { RAL_MAC_CSR8, RAL_FRAME_SIZE }, 216 { RAL_TXRX_CSR19, 0x0000 }, 217 { RAL_TXRX_CSR18, 0x005a }, 218 { RAL_PHY_CSR2, 0x0000 }, 219 { RAL_TXRX_CSR0, 0x1ec0 }, 220 { RAL_PHY_CSR4, 0x000f } 221 }; 222 223 /* 224 * Default values for BBP registers; values taken from the reference driver. 225 */ 226 static const struct { 227 uint8_t reg; 228 uint8_t val; 229 } ural_def_bbp[] = { 230 { 3, 0x02 }, 231 { 4, 0x19 }, 232 { 14, 0x1c }, 233 { 15, 0x30 }, 234 { 16, 0xac }, 235 { 17, 0x48 }, 236 { 18, 0x18 }, 237 { 19, 0xff }, 238 { 20, 0x1e }, 239 { 21, 0x08 }, 240 { 22, 0x08 }, 241 { 23, 0x08 }, 242 { 24, 0x80 }, 243 { 25, 0x50 }, 244 { 26, 0x08 }, 245 { 27, 0x23 }, 246 { 30, 0x10 }, 247 { 31, 0x2b }, 248 { 32, 0xb9 }, 249 { 34, 0x12 }, 250 { 35, 0x50 }, 251 { 39, 0xc4 }, 252 { 40, 0x02 }, 253 { 41, 0x60 }, 254 { 53, 0x10 }, 255 { 54, 0x18 }, 256 { 56, 0x08 }, 257 { 57, 0x10 }, 258 { 58, 0x08 }, 259 { 61, 0x60 }, 260 { 62, 0x10 }, 261 { 75, 0xff } 262 }; 263 264 /* 265 * Default values for RF register R2 indexed by channel numbers. 266 */ 267 static const uint32_t ural_rf2522_r2[] = { 268 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 269 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 270 }; 271 272 static const uint32_t ural_rf2523_r2[] = { 273 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 274 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 275 }; 276 277 static const uint32_t ural_rf2524_r2[] = { 278 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 279 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 280 }; 281 282 static const uint32_t ural_rf2525_r2[] = { 283 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 284 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 285 }; 286 287 static const uint32_t ural_rf2525_hi_r2[] = { 288 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 289 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 290 }; 291 292 static const uint32_t ural_rf2525e_r2[] = { 293 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 294 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 295 }; 296 297 static const uint32_t ural_rf2526_hi_r2[] = { 298 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 299 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 300 }; 301 302 static const uint32_t ural_rf2526_r2[] = { 303 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 304 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 305 }; 306 307 /* 308 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 309 * values taken from the reference driver. 310 */ 311 static const struct { 312 uint8_t chan; 313 uint32_t r1; 314 uint32_t r2; 315 uint32_t r4; 316 } ural_rf5222[] = { 317 { 1, 0x08808, 0x0044d, 0x00282 }, 318 { 2, 0x08808, 0x0044e, 0x00282 }, 319 { 3, 0x08808, 0x0044f, 0x00282 }, 320 { 4, 0x08808, 0x00460, 0x00282 }, 321 { 5, 0x08808, 0x00461, 0x00282 }, 322 { 6, 0x08808, 0x00462, 0x00282 }, 323 { 7, 0x08808, 0x00463, 0x00282 }, 324 { 8, 0x08808, 0x00464, 0x00282 }, 325 { 9, 0x08808, 0x00465, 0x00282 }, 326 { 10, 0x08808, 0x00466, 0x00282 }, 327 { 11, 0x08808, 0x00467, 0x00282 }, 328 { 12, 0x08808, 0x00468, 0x00282 }, 329 { 13, 0x08808, 0x00469, 0x00282 }, 330 { 14, 0x08808, 0x0046b, 0x00286 }, 331 332 { 36, 0x08804, 0x06225, 0x00287 }, 333 { 40, 0x08804, 0x06226, 0x00287 }, 334 { 44, 0x08804, 0x06227, 0x00287 }, 335 { 48, 0x08804, 0x06228, 0x00287 }, 336 { 52, 0x08804, 0x06229, 0x00287 }, 337 { 56, 0x08804, 0x0622a, 0x00287 }, 338 { 60, 0x08804, 0x0622b, 0x00287 }, 339 { 64, 0x08804, 0x0622c, 0x00287 }, 340 341 { 100, 0x08804, 0x02200, 0x00283 }, 342 { 104, 0x08804, 0x02201, 0x00283 }, 343 { 108, 0x08804, 0x02202, 0x00283 }, 344 { 112, 0x08804, 0x02203, 0x00283 }, 345 { 116, 0x08804, 0x02204, 0x00283 }, 346 { 120, 0x08804, 0x02205, 0x00283 }, 347 { 124, 0x08804, 0x02206, 0x00283 }, 348 { 128, 0x08804, 0x02207, 0x00283 }, 349 { 132, 0x08804, 0x02208, 0x00283 }, 350 { 136, 0x08804, 0x02209, 0x00283 }, 351 { 140, 0x08804, 0x0220a, 0x00283 }, 352 353 { 149, 0x08808, 0x02429, 0x00281 }, 354 { 153, 0x08808, 0x0242b, 0x00281 }, 355 { 157, 0x08808, 0x0242d, 0x00281 }, 356 { 161, 0x08808, 0x0242f, 0x00281 } 357 }; 358 359 static const struct usb_config ural_config[URAL_N_TRANSFER] = { 360 [URAL_BULK_WR] = { 361 .type = UE_BULK, 362 .endpoint = UE_ADDR_ANY, 363 .direction = UE_DIR_OUT, 364 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), 365 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 366 .callback = ural_bulk_write_callback, 367 .timeout = 5000, /* ms */ 368 }, 369 [URAL_BULK_RD] = { 370 .type = UE_BULK, 371 .endpoint = UE_ADDR_ANY, 372 .direction = UE_DIR_IN, 373 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), 374 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 375 .callback = ural_bulk_read_callback, 376 }, 377 }; 378 379 static device_probe_t ural_match; 380 static device_attach_t ural_attach; 381 static device_detach_t ural_detach; 382 383 static device_method_t ural_methods[] = { 384 /* Device interface */ 385 DEVMETHOD(device_probe, ural_match), 386 DEVMETHOD(device_attach, ural_attach), 387 DEVMETHOD(device_detach, ural_detach), 388 DEVMETHOD_END 389 }; 390 391 static driver_t ural_driver = { 392 .name = "ural", 393 .methods = ural_methods, 394 .size = sizeof(struct ural_softc), 395 }; 396 397 static devclass_t ural_devclass; 398 399 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); 400 MODULE_DEPEND(ural, usb, 1, 1, 1); 401 MODULE_DEPEND(ural, wlan, 1, 1, 1); 402 MODULE_VERSION(ural, 1); 403 404 static int 405 ural_match(device_t self) 406 { 407 struct usb_attach_arg *uaa = device_get_ivars(self); 408 409 if (uaa->usb_mode != USB_MODE_HOST) 410 return (ENXIO); 411 if (uaa->info.bConfigIndex != 0) 412 return (ENXIO); 413 if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) 414 return (ENXIO); 415 416 return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); 417 } 418 419 static int 420 ural_attach(device_t self) 421 { 422 struct usb_attach_arg *uaa = device_get_ivars(self); 423 struct ural_softc *sc = device_get_softc(self); 424 struct ifnet *ifp; 425 struct ieee80211com *ic; 426 uint8_t iface_index, bands; 427 int error; 428 429 device_set_usb_desc(self); 430 sc->sc_udev = uaa->device; 431 sc->sc_dev = self; 432 433 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 434 MTX_NETWORK_LOCK, MTX_DEF); 435 436 iface_index = RAL_IFACE_INDEX; 437 error = usbd_transfer_setup(uaa->device, 438 &iface_index, sc->sc_xfer, ural_config, 439 URAL_N_TRANSFER, sc, &sc->sc_mtx); 440 if (error) { 441 device_printf(self, "could not allocate USB transfers, " 442 "err=%s\n", usbd_errstr(error)); 443 goto detach; 444 } 445 446 RAL_LOCK(sc); 447 /* retrieve RT2570 rev. no */ 448 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 449 450 /* retrieve MAC address and various other things from EEPROM */ 451 ural_read_eeprom(sc); 452 RAL_UNLOCK(sc); 453 454 device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 455 sc->asic_rev, ural_get_rf(sc->rf_rev)); 456 457 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 458 if (ifp == NULL) { 459 device_printf(sc->sc_dev, "can not if_alloc()\n"); 460 goto detach; 461 } 462 ic = ifp->if_l2com; 463 464 ifp->if_softc = sc; 465 if_initname(ifp, "ural", device_get_unit(sc->sc_dev)); 466 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 467 ifp->if_init = ural_init; 468 ifp->if_ioctl = ural_ioctl; 469 ifp->if_start = ural_start; 470 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 471 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 472 IFQ_SET_READY(&ifp->if_snd); 473 474 ic->ic_ifp = ifp; 475 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 476 477 /* set device capabilities */ 478 ic->ic_caps = 479 IEEE80211_C_STA /* station mode supported */ 480 | IEEE80211_C_IBSS /* IBSS mode supported */ 481 | IEEE80211_C_MONITOR /* monitor mode supported */ 482 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 483 | IEEE80211_C_TXPMGT /* tx power management */ 484 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 485 | IEEE80211_C_SHSLOT /* short slot time supported */ 486 | IEEE80211_C_BGSCAN /* bg scanning supported */ 487 | IEEE80211_C_WPA /* 802.11i */ 488 ; 489 490 bands = 0; 491 setbit(&bands, IEEE80211_MODE_11B); 492 setbit(&bands, IEEE80211_MODE_11G); 493 if (sc->rf_rev == RAL_RF_5222) 494 setbit(&bands, IEEE80211_MODE_11A); 495 ieee80211_init_channels(ic, NULL, &bands); 496 497 ieee80211_ifattach(ic, sc->sc_bssid); 498 ic->ic_update_promisc = ural_update_promisc; 499 ic->ic_raw_xmit = ural_raw_xmit; 500 ic->ic_scan_start = ural_scan_start; 501 ic->ic_scan_end = ural_scan_end; 502 ic->ic_set_channel = ural_set_channel; 503 504 ic->ic_vap_create = ural_vap_create; 505 ic->ic_vap_delete = ural_vap_delete; 506 507 ieee80211_radiotap_attach(ic, 508 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 509 RAL_TX_RADIOTAP_PRESENT, 510 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 511 RAL_RX_RADIOTAP_PRESENT); 512 513 if (bootverbose) 514 ieee80211_announce(ic); 515 516 return (0); 517 518 detach: 519 ural_detach(self); 520 return (ENXIO); /* failure */ 521 } 522 523 static int 524 ural_detach(device_t self) 525 { 526 struct ural_softc *sc = device_get_softc(self); 527 struct ifnet *ifp = sc->sc_ifp; 528 struct ieee80211com *ic; 529 530 /* prevent further ioctls */ 531 RAL_LOCK(sc); 532 sc->sc_detached = 1; 533 RAL_UNLOCK(sc); 534 535 /* stop all USB transfers */ 536 usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); 537 538 /* free TX list, if any */ 539 RAL_LOCK(sc); 540 ural_unsetup_tx_list(sc); 541 RAL_UNLOCK(sc); 542 543 if (ifp) { 544 ic = ifp->if_l2com; 545 ieee80211_ifdetach(ic); 546 if_free(ifp); 547 } 548 mtx_destroy(&sc->sc_mtx); 549 550 return (0); 551 } 552 553 static usb_error_t 554 ural_do_request(struct ural_softc *sc, 555 struct usb_device_request *req, void *data) 556 { 557 usb_error_t err; 558 int ntries = 10; 559 560 while (ntries--) { 561 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 562 req, data, 0, NULL, 250 /* ms */); 563 if (err == 0) 564 break; 565 566 DPRINTFN(1, "Control request failed, %s (retrying)\n", 567 usbd_errstr(err)); 568 if (ural_pause(sc, hz / 100)) 569 break; 570 } 571 return (err); 572 } 573 574 static struct ieee80211vap * 575 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 576 enum ieee80211_opmode opmode, int flags, 577 const uint8_t bssid[IEEE80211_ADDR_LEN], 578 const uint8_t mac[IEEE80211_ADDR_LEN]) 579 { 580 struct ural_softc *sc = ic->ic_ifp->if_softc; 581 struct ural_vap *uvp; 582 struct ieee80211vap *vap; 583 584 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 585 return NULL; 586 uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap), 587 M_80211_VAP, M_NOWAIT | M_ZERO); 588 if (uvp == NULL) 589 return NULL; 590 vap = &uvp->vap; 591 /* enable s/w bmiss handling for sta mode */ 592 ieee80211_vap_setup(ic, vap, name, unit, opmode, 593 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 594 595 /* override state transition machine */ 596 uvp->newstate = vap->iv_newstate; 597 vap->iv_newstate = ural_newstate; 598 599 usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); 600 TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); 601 ieee80211_ratectl_init(vap); 602 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 603 604 /* complete setup */ 605 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 606 ic->ic_opmode = opmode; 607 return vap; 608 } 609 610 static void 611 ural_vap_delete(struct ieee80211vap *vap) 612 { 613 struct ural_vap *uvp = URAL_VAP(vap); 614 struct ieee80211com *ic = vap->iv_ic; 615 616 usb_callout_drain(&uvp->ratectl_ch); 617 ieee80211_draintask(ic, &uvp->ratectl_task); 618 ieee80211_ratectl_deinit(vap); 619 ieee80211_vap_detach(vap); 620 free(uvp, M_80211_VAP); 621 } 622 623 static void 624 ural_tx_free(struct ural_tx_data *data, int txerr) 625 { 626 struct ural_softc *sc = data->sc; 627 628 if (data->m != NULL) { 629 if (data->m->m_flags & M_TXCB) 630 ieee80211_process_callback(data->ni, data->m, 631 txerr ? ETIMEDOUT : 0); 632 m_freem(data->m); 633 data->m = NULL; 634 635 ieee80211_free_node(data->ni); 636 data->ni = NULL; 637 } 638 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 639 sc->tx_nfree++; 640 } 641 642 static void 643 ural_setup_tx_list(struct ural_softc *sc) 644 { 645 struct ural_tx_data *data; 646 int i; 647 648 sc->tx_nfree = 0; 649 STAILQ_INIT(&sc->tx_q); 650 STAILQ_INIT(&sc->tx_free); 651 652 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 653 data = &sc->tx_data[i]; 654 655 data->sc = sc; 656 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 657 sc->tx_nfree++; 658 } 659 } 660 661 static void 662 ural_unsetup_tx_list(struct ural_softc *sc) 663 { 664 struct ural_tx_data *data; 665 int i; 666 667 /* make sure any subsequent use of the queues will fail */ 668 sc->tx_nfree = 0; 669 STAILQ_INIT(&sc->tx_q); 670 STAILQ_INIT(&sc->tx_free); 671 672 /* free up all node references and mbufs */ 673 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 674 data = &sc->tx_data[i]; 675 676 if (data->m != NULL) { 677 m_freem(data->m); 678 data->m = NULL; 679 } 680 if (data->ni != NULL) { 681 ieee80211_free_node(data->ni); 682 data->ni = NULL; 683 } 684 } 685 } 686 687 static int 688 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 689 { 690 struct ural_vap *uvp = URAL_VAP(vap); 691 struct ieee80211com *ic = vap->iv_ic; 692 struct ural_softc *sc = ic->ic_ifp->if_softc; 693 const struct ieee80211_txparam *tp; 694 struct ieee80211_node *ni; 695 struct mbuf *m; 696 697 DPRINTF("%s -> %s\n", 698 ieee80211_state_name[vap->iv_state], 699 ieee80211_state_name[nstate]); 700 701 IEEE80211_UNLOCK(ic); 702 RAL_LOCK(sc); 703 usb_callout_stop(&uvp->ratectl_ch); 704 705 switch (nstate) { 706 case IEEE80211_S_INIT: 707 if (vap->iv_state == IEEE80211_S_RUN) { 708 /* abort TSF synchronization */ 709 ural_write(sc, RAL_TXRX_CSR19, 0); 710 711 /* force tx led to stop blinking */ 712 ural_write(sc, RAL_MAC_CSR20, 0); 713 } 714 break; 715 716 case IEEE80211_S_RUN: 717 ni = ieee80211_ref_node(vap->iv_bss); 718 719 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 720 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 721 RAL_UNLOCK(sc); 722 IEEE80211_LOCK(ic); 723 ieee80211_free_node(ni); 724 return (-1); 725 } 726 ural_update_slot(ic->ic_ifp); 727 ural_set_txpreamble(sc); 728 ural_set_basicrates(sc, ic->ic_bsschan); 729 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 730 ural_set_bssid(sc, sc->sc_bssid); 731 } 732 733 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 734 vap->iv_opmode == IEEE80211_M_IBSS) { 735 m = ieee80211_beacon_alloc(ni, &uvp->bo); 736 if (m == NULL) { 737 device_printf(sc->sc_dev, 738 "could not allocate beacon\n"); 739 RAL_UNLOCK(sc); 740 IEEE80211_LOCK(ic); 741 ieee80211_free_node(ni); 742 return (-1); 743 } 744 ieee80211_ref_node(ni); 745 if (ural_tx_bcn(sc, m, ni) != 0) { 746 device_printf(sc->sc_dev, 747 "could not send beacon\n"); 748 RAL_UNLOCK(sc); 749 IEEE80211_LOCK(ic); 750 ieee80211_free_node(ni); 751 return (-1); 752 } 753 } 754 755 /* make tx led blink on tx (controlled by ASIC) */ 756 ural_write(sc, RAL_MAC_CSR20, 1); 757 758 if (vap->iv_opmode != IEEE80211_M_MONITOR) 759 ural_enable_tsf_sync(sc); 760 else 761 ural_enable_tsf(sc); 762 763 /* enable automatic rate adaptation */ 764 /* XXX should use ic_bsschan but not valid until after newstate call below */ 765 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 766 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 767 ural_ratectl_start(sc, ni); 768 ieee80211_free_node(ni); 769 break; 770 771 default: 772 break; 773 } 774 RAL_UNLOCK(sc); 775 IEEE80211_LOCK(ic); 776 return (uvp->newstate(vap, nstate, arg)); 777 } 778 779 780 static void 781 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 782 { 783 struct ural_softc *sc = usbd_xfer_softc(xfer); 784 struct ifnet *ifp = sc->sc_ifp; 785 struct ieee80211vap *vap; 786 struct ural_tx_data *data; 787 struct mbuf *m; 788 struct usb_page_cache *pc; 789 int len; 790 791 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 792 793 switch (USB_GET_STATE(xfer)) { 794 case USB_ST_TRANSFERRED: 795 DPRINTFN(11, "transfer complete, %d bytes\n", len); 796 797 /* free resources */ 798 data = usbd_xfer_get_priv(xfer); 799 ural_tx_free(data, 0); 800 usbd_xfer_set_priv(xfer, NULL); 801 802 ifp->if_opackets++; 803 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 804 805 /* FALLTHROUGH */ 806 case USB_ST_SETUP: 807 tr_setup: 808 data = STAILQ_FIRST(&sc->tx_q); 809 if (data) { 810 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 811 m = data->m; 812 813 if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { 814 DPRINTFN(0, "data overflow, %u bytes\n", 815 m->m_pkthdr.len); 816 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); 817 } 818 pc = usbd_xfer_get_frame(xfer, 0); 819 usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); 820 usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, 821 m->m_pkthdr.len); 822 823 vap = data->ni->ni_vap; 824 if (ieee80211_radiotap_active_vap(vap)) { 825 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 826 827 tap->wt_flags = 0; 828 tap->wt_rate = data->rate; 829 tap->wt_antenna = sc->tx_ant; 830 831 ieee80211_radiotap_tx(vap, m); 832 } 833 834 /* xfer length needs to be a multiple of two! */ 835 len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; 836 if ((len % 64) == 0) 837 len += 2; 838 839 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 840 m->m_pkthdr.len, len); 841 842 usbd_xfer_set_frame_len(xfer, 0, len); 843 usbd_xfer_set_priv(xfer, data); 844 845 usbd_transfer_submit(xfer); 846 } 847 RAL_UNLOCK(sc); 848 ural_start(ifp); 849 RAL_LOCK(sc); 850 break; 851 852 default: /* Error */ 853 DPRINTFN(11, "transfer error, %s\n", 854 usbd_errstr(error)); 855 856 ifp->if_oerrors++; 857 data = usbd_xfer_get_priv(xfer); 858 if (data != NULL) { 859 ural_tx_free(data, error); 860 usbd_xfer_set_priv(xfer, NULL); 861 } 862 863 if (error == USB_ERR_STALLED) { 864 /* try to clear stall first */ 865 usbd_xfer_set_stall(xfer); 866 goto tr_setup; 867 } 868 if (error == USB_ERR_TIMEOUT) 869 device_printf(sc->sc_dev, "device timeout\n"); 870 break; 871 } 872 } 873 874 static void 875 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 876 { 877 struct ural_softc *sc = usbd_xfer_softc(xfer); 878 struct ifnet *ifp = sc->sc_ifp; 879 struct ieee80211com *ic = ifp->if_l2com; 880 struct ieee80211_node *ni; 881 struct mbuf *m = NULL; 882 struct usb_page_cache *pc; 883 uint32_t flags; 884 int8_t rssi = 0, nf = 0; 885 int len; 886 887 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 888 889 switch (USB_GET_STATE(xfer)) { 890 case USB_ST_TRANSFERRED: 891 892 DPRINTFN(15, "rx done, actlen=%d\n", len); 893 894 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 895 DPRINTF("%s: xfer too short %d\n", 896 device_get_nameunit(sc->sc_dev), len); 897 ifp->if_ierrors++; 898 goto tr_setup; 899 } 900 901 len -= RAL_RX_DESC_SIZE; 902 /* rx descriptor is located at the end */ 903 pc = usbd_xfer_get_frame(xfer, 0); 904 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); 905 906 rssi = URAL_RSSI(sc->sc_rx_desc.rssi); 907 nf = RAL_NOISE_FLOOR; 908 flags = le32toh(sc->sc_rx_desc.flags); 909 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 910 /* 911 * This should not happen since we did not 912 * request to receive those frames when we 913 * filled RAL_TXRX_CSR2: 914 */ 915 DPRINTFN(5, "PHY or CRC error\n"); 916 ifp->if_ierrors++; 917 goto tr_setup; 918 } 919 920 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 921 if (m == NULL) { 922 DPRINTF("could not allocate mbuf\n"); 923 ifp->if_ierrors++; 924 goto tr_setup; 925 } 926 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); 927 928 /* finalize mbuf */ 929 m->m_pkthdr.rcvif = ifp; 930 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 931 932 if (ieee80211_radiotap_active(ic)) { 933 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 934 935 /* XXX set once */ 936 tap->wr_flags = 0; 937 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 938 (flags & RAL_RX_OFDM) ? 939 IEEE80211_T_OFDM : IEEE80211_T_CCK); 940 tap->wr_antenna = sc->rx_ant; 941 tap->wr_antsignal = nf + rssi; 942 tap->wr_antnoise = nf; 943 } 944 /* Strip trailing 802.11 MAC FCS. */ 945 m_adj(m, -IEEE80211_CRC_LEN); 946 947 /* FALLTHROUGH */ 948 case USB_ST_SETUP: 949 tr_setup: 950 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 951 usbd_transfer_submit(xfer); 952 953 /* 954 * At the end of a USB callback it is always safe to unlock 955 * the private mutex of a device! That is why we do the 956 * "ieee80211_input" here, and not some lines up! 957 */ 958 RAL_UNLOCK(sc); 959 if (m) { 960 ni = ieee80211_find_rxnode(ic, 961 mtod(m, struct ieee80211_frame_min *)); 962 if (ni != NULL) { 963 (void) ieee80211_input(ni, m, rssi, nf); 964 ieee80211_free_node(ni); 965 } else 966 (void) ieee80211_input_all(ic, m, rssi, nf); 967 } 968 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 969 !IFQ_IS_EMPTY(&ifp->if_snd)) 970 ural_start(ifp); 971 RAL_LOCK(sc); 972 return; 973 974 default: /* Error */ 975 if (error != USB_ERR_CANCELLED) { 976 /* try to clear stall first */ 977 usbd_xfer_set_stall(xfer); 978 goto tr_setup; 979 } 980 return; 981 } 982 } 983 984 static uint8_t 985 ural_plcp_signal(int rate) 986 { 987 switch (rate) { 988 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 989 case 12: return 0xb; 990 case 18: return 0xf; 991 case 24: return 0xa; 992 case 36: return 0xe; 993 case 48: return 0x9; 994 case 72: return 0xd; 995 case 96: return 0x8; 996 case 108: return 0xc; 997 998 /* CCK rates (NB: not IEEE std, device-specific) */ 999 case 2: return 0x0; 1000 case 4: return 0x1; 1001 case 11: return 0x2; 1002 case 22: return 0x3; 1003 } 1004 return 0xff; /* XXX unsupported/unknown rate */ 1005 } 1006 1007 static void 1008 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1009 uint32_t flags, int len, int rate) 1010 { 1011 struct ifnet *ifp = sc->sc_ifp; 1012 struct ieee80211com *ic = ifp->if_l2com; 1013 uint16_t plcp_length; 1014 int remainder; 1015 1016 desc->flags = htole32(flags); 1017 desc->flags |= htole32(RAL_TX_NEWSEQ); 1018 desc->flags |= htole32(len << 16); 1019 1020 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1021 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1022 1023 /* setup PLCP fields */ 1024 desc->plcp_signal = ural_plcp_signal(rate); 1025 desc->plcp_service = 4; 1026 1027 len += IEEE80211_CRC_LEN; 1028 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1029 desc->flags |= htole32(RAL_TX_OFDM); 1030 1031 plcp_length = len & 0xfff; 1032 desc->plcp_length_hi = plcp_length >> 6; 1033 desc->plcp_length_lo = plcp_length & 0x3f; 1034 } else { 1035 plcp_length = (16 * len + rate - 1) / rate; 1036 if (rate == 22) { 1037 remainder = (16 * len) % 22; 1038 if (remainder != 0 && remainder < 7) 1039 desc->plcp_service |= RAL_PLCP_LENGEXT; 1040 } 1041 desc->plcp_length_hi = plcp_length >> 8; 1042 desc->plcp_length_lo = plcp_length & 0xff; 1043 1044 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1045 desc->plcp_signal |= 0x08; 1046 } 1047 1048 desc->iv = 0; 1049 desc->eiv = 0; 1050 } 1051 1052 #define RAL_TX_TIMEOUT 5000 1053 1054 static int 1055 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1056 { 1057 struct ieee80211vap *vap = ni->ni_vap; 1058 struct ieee80211com *ic = ni->ni_ic; 1059 struct ifnet *ifp = sc->sc_ifp; 1060 const struct ieee80211_txparam *tp; 1061 struct ural_tx_data *data; 1062 1063 if (sc->tx_nfree == 0) { 1064 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1065 m_freem(m0); 1066 ieee80211_free_node(ni); 1067 return (EIO); 1068 } 1069 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 1070 m_freem(m0); 1071 ieee80211_free_node(ni); 1072 return (ENXIO); 1073 } 1074 data = STAILQ_FIRST(&sc->tx_free); 1075 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1076 sc->tx_nfree--; 1077 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 1078 1079 data->m = m0; 1080 data->ni = ni; 1081 data->rate = tp->mgmtrate; 1082 1083 ural_setup_tx_desc(sc, &data->desc, 1084 RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, 1085 tp->mgmtrate); 1086 1087 DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", 1088 m0->m_pkthdr.len, tp->mgmtrate); 1089 1090 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1091 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1092 1093 return (0); 1094 } 1095 1096 static int 1097 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1098 { 1099 struct ieee80211vap *vap = ni->ni_vap; 1100 struct ieee80211com *ic = ni->ni_ic; 1101 const struct ieee80211_txparam *tp; 1102 struct ural_tx_data *data; 1103 struct ieee80211_frame *wh; 1104 struct ieee80211_key *k; 1105 uint32_t flags; 1106 uint16_t dur; 1107 1108 RAL_LOCK_ASSERT(sc, MA_OWNED); 1109 1110 data = STAILQ_FIRST(&sc->tx_free); 1111 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1112 sc->tx_nfree--; 1113 1114 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1115 1116 wh = mtod(m0, struct ieee80211_frame *); 1117 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1118 k = ieee80211_crypto_encap(ni, m0); 1119 if (k == NULL) { 1120 m_freem(m0); 1121 return ENOBUFS; 1122 } 1123 wh = mtod(m0, struct ieee80211_frame *); 1124 } 1125 1126 data->m = m0; 1127 data->ni = ni; 1128 data->rate = tp->mgmtrate; 1129 1130 flags = 0; 1131 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1132 flags |= RAL_TX_ACK; 1133 1134 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1135 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1136 *(uint16_t *)wh->i_dur = htole16(dur); 1137 1138 /* tell hardware to add timestamp for probe responses */ 1139 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1140 IEEE80211_FC0_TYPE_MGT && 1141 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1142 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1143 flags |= RAL_TX_TIMESTAMP; 1144 } 1145 1146 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); 1147 1148 DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", 1149 m0->m_pkthdr.len, tp->mgmtrate); 1150 1151 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1152 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1153 1154 return 0; 1155 } 1156 1157 static int 1158 ural_sendprot(struct ural_softc *sc, 1159 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1160 { 1161 struct ieee80211com *ic = ni->ni_ic; 1162 const struct ieee80211_frame *wh; 1163 struct ural_tx_data *data; 1164 struct mbuf *mprot; 1165 int protrate, ackrate, pktlen, flags, isshort; 1166 uint16_t dur; 1167 1168 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1169 ("protection %d", prot)); 1170 1171 wh = mtod(m, const struct ieee80211_frame *); 1172 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1173 1174 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1175 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1176 1177 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1178 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1179 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1180 flags = RAL_TX_RETRY(7); 1181 if (prot == IEEE80211_PROT_RTSCTS) { 1182 /* NB: CTS is the same size as an ACK */ 1183 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1184 flags |= RAL_TX_ACK; 1185 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1186 } else { 1187 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1188 } 1189 if (mprot == NULL) { 1190 /* XXX stat + msg */ 1191 return ENOBUFS; 1192 } 1193 data = STAILQ_FIRST(&sc->tx_free); 1194 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1195 sc->tx_nfree--; 1196 1197 data->m = mprot; 1198 data->ni = ieee80211_ref_node(ni); 1199 data->rate = protrate; 1200 ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); 1201 1202 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1203 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1204 1205 return 0; 1206 } 1207 1208 static int 1209 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1210 const struct ieee80211_bpf_params *params) 1211 { 1212 struct ieee80211com *ic = ni->ni_ic; 1213 struct ural_tx_data *data; 1214 uint32_t flags; 1215 int error; 1216 int rate; 1217 1218 RAL_LOCK_ASSERT(sc, MA_OWNED); 1219 KASSERT(params != NULL, ("no raw xmit params")); 1220 1221 rate = params->ibp_rate0; 1222 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1223 m_freem(m0); 1224 return EINVAL; 1225 } 1226 flags = 0; 1227 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1228 flags |= RAL_TX_ACK; 1229 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1230 error = ural_sendprot(sc, m0, ni, 1231 params->ibp_flags & IEEE80211_BPF_RTS ? 1232 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1233 rate); 1234 if (error || sc->tx_nfree == 0) { 1235 m_freem(m0); 1236 return ENOBUFS; 1237 } 1238 flags |= RAL_TX_IFS_SIFS; 1239 } 1240 1241 data = STAILQ_FIRST(&sc->tx_free); 1242 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1243 sc->tx_nfree--; 1244 1245 data->m = m0; 1246 data->ni = ni; 1247 data->rate = rate; 1248 1249 /* XXX need to setup descriptor ourself */ 1250 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1251 1252 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1253 m0->m_pkthdr.len, rate); 1254 1255 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1256 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1257 1258 return 0; 1259 } 1260 1261 static int 1262 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1263 { 1264 struct ieee80211vap *vap = ni->ni_vap; 1265 struct ieee80211com *ic = ni->ni_ic; 1266 struct ural_tx_data *data; 1267 struct ieee80211_frame *wh; 1268 const struct ieee80211_txparam *tp; 1269 struct ieee80211_key *k; 1270 uint32_t flags = 0; 1271 uint16_t dur; 1272 int error, rate; 1273 1274 RAL_LOCK_ASSERT(sc, MA_OWNED); 1275 1276 wh = mtod(m0, struct ieee80211_frame *); 1277 1278 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1279 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1280 rate = tp->mcastrate; 1281 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1282 rate = tp->ucastrate; 1283 else 1284 rate = ni->ni_txrate; 1285 1286 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1287 k = ieee80211_crypto_encap(ni, m0); 1288 if (k == NULL) { 1289 m_freem(m0); 1290 return ENOBUFS; 1291 } 1292 /* packet header may have moved, reset our local pointer */ 1293 wh = mtod(m0, struct ieee80211_frame *); 1294 } 1295 1296 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1297 int prot = IEEE80211_PROT_NONE; 1298 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1299 prot = IEEE80211_PROT_RTSCTS; 1300 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1301 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1302 prot = ic->ic_protmode; 1303 if (prot != IEEE80211_PROT_NONE) { 1304 error = ural_sendprot(sc, m0, ni, prot, rate); 1305 if (error || sc->tx_nfree == 0) { 1306 m_freem(m0); 1307 return ENOBUFS; 1308 } 1309 flags |= RAL_TX_IFS_SIFS; 1310 } 1311 } 1312 1313 data = STAILQ_FIRST(&sc->tx_free); 1314 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1315 sc->tx_nfree--; 1316 1317 data->m = m0; 1318 data->ni = ni; 1319 data->rate = rate; 1320 1321 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1322 flags |= RAL_TX_ACK; 1323 flags |= RAL_TX_RETRY(7); 1324 1325 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1326 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1327 *(uint16_t *)wh->i_dur = htole16(dur); 1328 } 1329 1330 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1331 1332 DPRINTFN(10, "sending data frame len=%u rate=%u\n", 1333 m0->m_pkthdr.len, rate); 1334 1335 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1336 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1337 1338 return 0; 1339 } 1340 1341 static void 1342 ural_start(struct ifnet *ifp) 1343 { 1344 struct ural_softc *sc = ifp->if_softc; 1345 struct ieee80211_node *ni; 1346 struct mbuf *m; 1347 1348 RAL_LOCK(sc); 1349 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1350 RAL_UNLOCK(sc); 1351 return; 1352 } 1353 for (;;) { 1354 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1355 if (m == NULL) 1356 break; 1357 if (sc->tx_nfree < RAL_TX_MINFREE) { 1358 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1359 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1360 break; 1361 } 1362 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1363 if (ural_tx_data(sc, m, ni) != 0) { 1364 ieee80211_free_node(ni); 1365 ifp->if_oerrors++; 1366 break; 1367 } 1368 } 1369 RAL_UNLOCK(sc); 1370 } 1371 1372 static int 1373 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1374 { 1375 struct ural_softc *sc = ifp->if_softc; 1376 struct ieee80211com *ic = ifp->if_l2com; 1377 struct ifreq *ifr = (struct ifreq *) data; 1378 int error; 1379 int startall = 0; 1380 1381 RAL_LOCK(sc); 1382 error = sc->sc_detached ? ENXIO : 0; 1383 RAL_UNLOCK(sc); 1384 if (error) 1385 return (error); 1386 1387 switch (cmd) { 1388 case SIOCSIFFLAGS: 1389 RAL_LOCK(sc); 1390 if (ifp->if_flags & IFF_UP) { 1391 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1392 ural_init_locked(sc); 1393 startall = 1; 1394 } else 1395 ural_setpromisc(sc); 1396 } else { 1397 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1398 ural_stop(sc); 1399 } 1400 RAL_UNLOCK(sc); 1401 if (startall) 1402 ieee80211_start_all(ic); 1403 break; 1404 case SIOCGIFMEDIA: 1405 case SIOCSIFMEDIA: 1406 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1407 break; 1408 default: 1409 error = ether_ioctl(ifp, cmd, data); 1410 break; 1411 } 1412 return error; 1413 } 1414 1415 static void 1416 ural_set_testmode(struct ural_softc *sc) 1417 { 1418 struct usb_device_request req; 1419 usb_error_t error; 1420 1421 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1422 req.bRequest = RAL_VENDOR_REQUEST; 1423 USETW(req.wValue, 4); 1424 USETW(req.wIndex, 1); 1425 USETW(req.wLength, 0); 1426 1427 error = ural_do_request(sc, &req, NULL); 1428 if (error != 0) { 1429 device_printf(sc->sc_dev, "could not set test mode: %s\n", 1430 usbd_errstr(error)); 1431 } 1432 } 1433 1434 static void 1435 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1436 { 1437 struct usb_device_request req; 1438 usb_error_t error; 1439 1440 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1441 req.bRequest = RAL_READ_EEPROM; 1442 USETW(req.wValue, 0); 1443 USETW(req.wIndex, addr); 1444 USETW(req.wLength, len); 1445 1446 error = ural_do_request(sc, &req, buf); 1447 if (error != 0) { 1448 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1449 usbd_errstr(error)); 1450 } 1451 } 1452 1453 static uint16_t 1454 ural_read(struct ural_softc *sc, uint16_t reg) 1455 { 1456 struct usb_device_request req; 1457 usb_error_t error; 1458 uint16_t val; 1459 1460 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1461 req.bRequest = RAL_READ_MAC; 1462 USETW(req.wValue, 0); 1463 USETW(req.wIndex, reg); 1464 USETW(req.wLength, sizeof (uint16_t)); 1465 1466 error = ural_do_request(sc, &req, &val); 1467 if (error != 0) { 1468 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1469 usbd_errstr(error)); 1470 return 0; 1471 } 1472 1473 return le16toh(val); 1474 } 1475 1476 static void 1477 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1478 { 1479 struct usb_device_request req; 1480 usb_error_t error; 1481 1482 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1483 req.bRequest = RAL_READ_MULTI_MAC; 1484 USETW(req.wValue, 0); 1485 USETW(req.wIndex, reg); 1486 USETW(req.wLength, len); 1487 1488 error = ural_do_request(sc, &req, buf); 1489 if (error != 0) { 1490 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1491 usbd_errstr(error)); 1492 } 1493 } 1494 1495 static void 1496 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1497 { 1498 struct usb_device_request req; 1499 usb_error_t error; 1500 1501 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1502 req.bRequest = RAL_WRITE_MAC; 1503 USETW(req.wValue, val); 1504 USETW(req.wIndex, reg); 1505 USETW(req.wLength, 0); 1506 1507 error = ural_do_request(sc, &req, NULL); 1508 if (error != 0) { 1509 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1510 usbd_errstr(error)); 1511 } 1512 } 1513 1514 static void 1515 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1516 { 1517 struct usb_device_request req; 1518 usb_error_t error; 1519 1520 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1521 req.bRequest = RAL_WRITE_MULTI_MAC; 1522 USETW(req.wValue, 0); 1523 USETW(req.wIndex, reg); 1524 USETW(req.wLength, len); 1525 1526 error = ural_do_request(sc, &req, buf); 1527 if (error != 0) { 1528 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1529 usbd_errstr(error)); 1530 } 1531 } 1532 1533 static void 1534 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1535 { 1536 uint16_t tmp; 1537 int ntries; 1538 1539 for (ntries = 0; ntries < 100; ntries++) { 1540 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1541 break; 1542 if (ural_pause(sc, hz / 100)) 1543 break; 1544 } 1545 if (ntries == 100) { 1546 device_printf(sc->sc_dev, "could not write to BBP\n"); 1547 return; 1548 } 1549 1550 tmp = reg << 8 | val; 1551 ural_write(sc, RAL_PHY_CSR7, tmp); 1552 } 1553 1554 static uint8_t 1555 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1556 { 1557 uint16_t val; 1558 int ntries; 1559 1560 val = RAL_BBP_WRITE | reg << 8; 1561 ural_write(sc, RAL_PHY_CSR7, val); 1562 1563 for (ntries = 0; ntries < 100; ntries++) { 1564 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1565 break; 1566 if (ural_pause(sc, hz / 100)) 1567 break; 1568 } 1569 if (ntries == 100) { 1570 device_printf(sc->sc_dev, "could not read BBP\n"); 1571 return 0; 1572 } 1573 1574 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1575 } 1576 1577 static void 1578 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1579 { 1580 uint32_t tmp; 1581 int ntries; 1582 1583 for (ntries = 0; ntries < 100; ntries++) { 1584 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1585 break; 1586 if (ural_pause(sc, hz / 100)) 1587 break; 1588 } 1589 if (ntries == 100) { 1590 device_printf(sc->sc_dev, "could not write to RF\n"); 1591 return; 1592 } 1593 1594 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1595 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1596 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1597 1598 /* remember last written value in sc */ 1599 sc->rf_regs[reg] = val; 1600 1601 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); 1602 } 1603 1604 static void 1605 ural_scan_start(struct ieee80211com *ic) 1606 { 1607 struct ifnet *ifp = ic->ic_ifp; 1608 struct ural_softc *sc = ifp->if_softc; 1609 1610 RAL_LOCK(sc); 1611 ural_write(sc, RAL_TXRX_CSR19, 0); 1612 ural_set_bssid(sc, ifp->if_broadcastaddr); 1613 RAL_UNLOCK(sc); 1614 } 1615 1616 static void 1617 ural_scan_end(struct ieee80211com *ic) 1618 { 1619 struct ural_softc *sc = ic->ic_ifp->if_softc; 1620 1621 RAL_LOCK(sc); 1622 ural_enable_tsf_sync(sc); 1623 ural_set_bssid(sc, sc->sc_bssid); 1624 RAL_UNLOCK(sc); 1625 1626 } 1627 1628 static void 1629 ural_set_channel(struct ieee80211com *ic) 1630 { 1631 struct ural_softc *sc = ic->ic_ifp->if_softc; 1632 1633 RAL_LOCK(sc); 1634 ural_set_chan(sc, ic->ic_curchan); 1635 RAL_UNLOCK(sc); 1636 } 1637 1638 static void 1639 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1640 { 1641 struct ifnet *ifp = sc->sc_ifp; 1642 struct ieee80211com *ic = ifp->if_l2com; 1643 uint8_t power, tmp; 1644 int i, chan; 1645 1646 chan = ieee80211_chan2ieee(ic, c); 1647 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1648 return; 1649 1650 if (IEEE80211_IS_CHAN_2GHZ(c)) 1651 power = min(sc->txpow[chan - 1], 31); 1652 else 1653 power = 31; 1654 1655 /* adjust txpower using ifconfig settings */ 1656 power -= (100 - ic->ic_txpowlimit) / 8; 1657 1658 DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); 1659 1660 switch (sc->rf_rev) { 1661 case RAL_RF_2522: 1662 ural_rf_write(sc, RAL_RF1, 0x00814); 1663 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1664 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1665 break; 1666 1667 case RAL_RF_2523: 1668 ural_rf_write(sc, RAL_RF1, 0x08804); 1669 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1670 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1671 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1672 break; 1673 1674 case RAL_RF_2524: 1675 ural_rf_write(sc, RAL_RF1, 0x0c808); 1676 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1677 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1678 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1679 break; 1680 1681 case RAL_RF_2525: 1682 ural_rf_write(sc, RAL_RF1, 0x08808); 1683 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1684 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1685 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1686 1687 ural_rf_write(sc, RAL_RF1, 0x08808); 1688 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1689 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1690 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1691 break; 1692 1693 case RAL_RF_2525E: 1694 ural_rf_write(sc, RAL_RF1, 0x08808); 1695 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1696 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1697 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1698 break; 1699 1700 case RAL_RF_2526: 1701 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1702 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1703 ural_rf_write(sc, RAL_RF1, 0x08804); 1704 1705 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1706 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1707 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1708 break; 1709 1710 /* dual-band RF */ 1711 case RAL_RF_5222: 1712 for (i = 0; ural_rf5222[i].chan != chan; i++); 1713 1714 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1715 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1716 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1717 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1718 break; 1719 } 1720 1721 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1722 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1723 /* set Japan filter bit for channel 14 */ 1724 tmp = ural_bbp_read(sc, 70); 1725 1726 tmp &= ~RAL_JAPAN_FILTER; 1727 if (chan == 14) 1728 tmp |= RAL_JAPAN_FILTER; 1729 1730 ural_bbp_write(sc, 70, tmp); 1731 1732 /* clear CRC errors */ 1733 ural_read(sc, RAL_STA_CSR0); 1734 1735 ural_pause(sc, hz / 100); 1736 ural_disable_rf_tune(sc); 1737 } 1738 1739 /* XXX doesn't belong here */ 1740 /* update basic rate set */ 1741 ural_set_basicrates(sc, c); 1742 1743 /* give the hardware some time to do the switchover */ 1744 ural_pause(sc, hz / 100); 1745 } 1746 1747 /* 1748 * Disable RF auto-tuning. 1749 */ 1750 static void 1751 ural_disable_rf_tune(struct ural_softc *sc) 1752 { 1753 uint32_t tmp; 1754 1755 if (sc->rf_rev != RAL_RF_2523) { 1756 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1757 ural_rf_write(sc, RAL_RF1, tmp); 1758 } 1759 1760 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1761 ural_rf_write(sc, RAL_RF3, tmp); 1762 1763 DPRINTFN(2, "disabling RF autotune\n"); 1764 } 1765 1766 /* 1767 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1768 * synchronization. 1769 */ 1770 static void 1771 ural_enable_tsf_sync(struct ural_softc *sc) 1772 { 1773 struct ifnet *ifp = sc->sc_ifp; 1774 struct ieee80211com *ic = ifp->if_l2com; 1775 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1776 uint16_t logcwmin, preload, tmp; 1777 1778 /* first, disable TSF synchronization */ 1779 ural_write(sc, RAL_TXRX_CSR19, 0); 1780 1781 tmp = (16 * vap->iv_bss->ni_intval) << 4; 1782 ural_write(sc, RAL_TXRX_CSR18, tmp); 1783 1784 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1785 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1786 tmp = logcwmin << 12 | preload; 1787 ural_write(sc, RAL_TXRX_CSR20, tmp); 1788 1789 /* finally, enable TSF synchronization */ 1790 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1791 if (ic->ic_opmode == IEEE80211_M_STA) 1792 tmp |= RAL_ENABLE_TSF_SYNC(1); 1793 else 1794 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1795 ural_write(sc, RAL_TXRX_CSR19, tmp); 1796 1797 DPRINTF("enabling TSF synchronization\n"); 1798 } 1799 1800 static void 1801 ural_enable_tsf(struct ural_softc *sc) 1802 { 1803 /* first, disable TSF synchronization */ 1804 ural_write(sc, RAL_TXRX_CSR19, 0); 1805 ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); 1806 } 1807 1808 #define RAL_RXTX_TURNAROUND 5 /* us */ 1809 static void 1810 ural_update_slot(struct ifnet *ifp) 1811 { 1812 struct ural_softc *sc = ifp->if_softc; 1813 struct ieee80211com *ic = ifp->if_l2com; 1814 uint16_t slottime, sifs, eifs; 1815 1816 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1817 1818 /* 1819 * These settings may sound a bit inconsistent but this is what the 1820 * reference driver does. 1821 */ 1822 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1823 sifs = 16 - RAL_RXTX_TURNAROUND; 1824 eifs = 364; 1825 } else { 1826 sifs = 10 - RAL_RXTX_TURNAROUND; 1827 eifs = 64; 1828 } 1829 1830 ural_write(sc, RAL_MAC_CSR10, slottime); 1831 ural_write(sc, RAL_MAC_CSR11, sifs); 1832 ural_write(sc, RAL_MAC_CSR12, eifs); 1833 } 1834 1835 static void 1836 ural_set_txpreamble(struct ural_softc *sc) 1837 { 1838 struct ifnet *ifp = sc->sc_ifp; 1839 struct ieee80211com *ic = ifp->if_l2com; 1840 uint16_t tmp; 1841 1842 tmp = ural_read(sc, RAL_TXRX_CSR10); 1843 1844 tmp &= ~RAL_SHORT_PREAMBLE; 1845 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1846 tmp |= RAL_SHORT_PREAMBLE; 1847 1848 ural_write(sc, RAL_TXRX_CSR10, tmp); 1849 } 1850 1851 static void 1852 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) 1853 { 1854 /* XXX wrong, take from rate set */ 1855 /* update basic rate set */ 1856 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1857 /* 11a basic rates: 6, 12, 24Mbps */ 1858 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1859 } else if (IEEE80211_IS_CHAN_ANYG(c)) { 1860 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1861 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1862 } else { 1863 /* 11b basic rates: 1, 2Mbps */ 1864 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1865 } 1866 } 1867 1868 static void 1869 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1870 { 1871 uint16_t tmp; 1872 1873 tmp = bssid[0] | bssid[1] << 8; 1874 ural_write(sc, RAL_MAC_CSR5, tmp); 1875 1876 tmp = bssid[2] | bssid[3] << 8; 1877 ural_write(sc, RAL_MAC_CSR6, tmp); 1878 1879 tmp = bssid[4] | bssid[5] << 8; 1880 ural_write(sc, RAL_MAC_CSR7, tmp); 1881 1882 DPRINTF("setting BSSID to %6D\n", bssid, ":"); 1883 } 1884 1885 static void 1886 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1887 { 1888 uint16_t tmp; 1889 1890 tmp = addr[0] | addr[1] << 8; 1891 ural_write(sc, RAL_MAC_CSR2, tmp); 1892 1893 tmp = addr[2] | addr[3] << 8; 1894 ural_write(sc, RAL_MAC_CSR3, tmp); 1895 1896 tmp = addr[4] | addr[5] << 8; 1897 ural_write(sc, RAL_MAC_CSR4, tmp); 1898 1899 DPRINTF("setting MAC address to %6D\n", addr, ":"); 1900 } 1901 1902 static void 1903 ural_setpromisc(struct ural_softc *sc) 1904 { 1905 struct ifnet *ifp = sc->sc_ifp; 1906 uint32_t tmp; 1907 1908 tmp = ural_read(sc, RAL_TXRX_CSR2); 1909 1910 tmp &= ~RAL_DROP_NOT_TO_ME; 1911 if (!(ifp->if_flags & IFF_PROMISC)) 1912 tmp |= RAL_DROP_NOT_TO_ME; 1913 1914 ural_write(sc, RAL_TXRX_CSR2, tmp); 1915 1916 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1917 "entering" : "leaving"); 1918 } 1919 1920 static void 1921 ural_update_promisc(struct ifnet *ifp) 1922 { 1923 struct ural_softc *sc = ifp->if_softc; 1924 1925 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1926 return; 1927 1928 RAL_LOCK(sc); 1929 ural_setpromisc(sc); 1930 RAL_UNLOCK(sc); 1931 } 1932 1933 static const char * 1934 ural_get_rf(int rev) 1935 { 1936 switch (rev) { 1937 case RAL_RF_2522: return "RT2522"; 1938 case RAL_RF_2523: return "RT2523"; 1939 case RAL_RF_2524: return "RT2524"; 1940 case RAL_RF_2525: return "RT2525"; 1941 case RAL_RF_2525E: return "RT2525e"; 1942 case RAL_RF_2526: return "RT2526"; 1943 case RAL_RF_5222: return "RT5222"; 1944 default: return "unknown"; 1945 } 1946 } 1947 1948 static void 1949 ural_read_eeprom(struct ural_softc *sc) 1950 { 1951 uint16_t val; 1952 1953 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1954 val = le16toh(val); 1955 sc->rf_rev = (val >> 11) & 0x7; 1956 sc->hw_radio = (val >> 10) & 0x1; 1957 sc->led_mode = (val >> 6) & 0x7; 1958 sc->rx_ant = (val >> 4) & 0x3; 1959 sc->tx_ant = (val >> 2) & 0x3; 1960 sc->nb_ant = val & 0x3; 1961 1962 /* read MAC address */ 1963 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6); 1964 1965 /* read default values for BBP registers */ 1966 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1967 1968 /* read Tx power for all b/g channels */ 1969 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1970 } 1971 1972 static int 1973 ural_bbp_init(struct ural_softc *sc) 1974 { 1975 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 1976 int i, ntries; 1977 1978 /* wait for BBP to be ready */ 1979 for (ntries = 0; ntries < 100; ntries++) { 1980 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1981 break; 1982 if (ural_pause(sc, hz / 100)) 1983 break; 1984 } 1985 if (ntries == 100) { 1986 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1987 return EIO; 1988 } 1989 1990 /* initialize BBP registers to default values */ 1991 for (i = 0; i < N(ural_def_bbp); i++) 1992 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1993 1994 #if 0 1995 /* initialize BBP registers to values stored in EEPROM */ 1996 for (i = 0; i < 16; i++) { 1997 if (sc->bbp_prom[i].reg == 0xff) 1998 continue; 1999 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2000 } 2001 #endif 2002 2003 return 0; 2004 #undef N 2005 } 2006 2007 static void 2008 ural_set_txantenna(struct ural_softc *sc, int antenna) 2009 { 2010 uint16_t tmp; 2011 uint8_t tx; 2012 2013 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2014 if (antenna == 1) 2015 tx |= RAL_BBP_ANTA; 2016 else if (antenna == 2) 2017 tx |= RAL_BBP_ANTB; 2018 else 2019 tx |= RAL_BBP_DIVERSITY; 2020 2021 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2022 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2023 sc->rf_rev == RAL_RF_5222) 2024 tx |= RAL_BBP_FLIPIQ; 2025 2026 ural_bbp_write(sc, RAL_BBP_TX, tx); 2027 2028 /* update values in PHY_CSR5 and PHY_CSR6 */ 2029 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2030 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2031 2032 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2033 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2034 } 2035 2036 static void 2037 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2038 { 2039 uint8_t rx; 2040 2041 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2042 if (antenna == 1) 2043 rx |= RAL_BBP_ANTA; 2044 else if (antenna == 2) 2045 rx |= RAL_BBP_ANTB; 2046 else 2047 rx |= RAL_BBP_DIVERSITY; 2048 2049 /* need to force no I/Q flip for RF 2525e and 2526 */ 2050 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2051 rx &= ~RAL_BBP_FLIPIQ; 2052 2053 ural_bbp_write(sc, RAL_BBP_RX, rx); 2054 } 2055 2056 static void 2057 ural_init_locked(struct ural_softc *sc) 2058 { 2059 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 2060 struct ifnet *ifp = sc->sc_ifp; 2061 struct ieee80211com *ic = ifp->if_l2com; 2062 uint16_t tmp; 2063 int i, ntries; 2064 2065 RAL_LOCK_ASSERT(sc, MA_OWNED); 2066 2067 ural_set_testmode(sc); 2068 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2069 2070 ural_stop(sc); 2071 2072 /* initialize MAC registers to default values */ 2073 for (i = 0; i < N(ural_def_mac); i++) 2074 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2075 2076 /* wait for BBP and RF to wake up (this can take a long time!) */ 2077 for (ntries = 0; ntries < 100; ntries++) { 2078 tmp = ural_read(sc, RAL_MAC_CSR17); 2079 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2080 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2081 break; 2082 if (ural_pause(sc, hz / 100)) 2083 break; 2084 } 2085 if (ntries == 100) { 2086 device_printf(sc->sc_dev, 2087 "timeout waiting for BBP/RF to wakeup\n"); 2088 goto fail; 2089 } 2090 2091 /* we're ready! */ 2092 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2093 2094 /* set basic rate set (will be updated later) */ 2095 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2096 2097 if (ural_bbp_init(sc) != 0) 2098 goto fail; 2099 2100 ural_set_chan(sc, ic->ic_curchan); 2101 2102 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2103 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2104 2105 ural_set_txantenna(sc, sc->tx_ant); 2106 ural_set_rxantenna(sc, sc->rx_ant); 2107 2108 ural_set_macaddr(sc, IF_LLADDR(ifp)); 2109 2110 /* 2111 * Allocate Tx and Rx xfer queues. 2112 */ 2113 ural_setup_tx_list(sc); 2114 2115 /* kick Rx */ 2116 tmp = RAL_DROP_PHY | RAL_DROP_CRC; 2117 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2118 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; 2119 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2120 tmp |= RAL_DROP_TODS; 2121 if (!(ifp->if_flags & IFF_PROMISC)) 2122 tmp |= RAL_DROP_NOT_TO_ME; 2123 } 2124 ural_write(sc, RAL_TXRX_CSR2, tmp); 2125 2126 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2127 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2128 usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); 2129 usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); 2130 return; 2131 2132 fail: ural_stop(sc); 2133 #undef N 2134 } 2135 2136 static void 2137 ural_init(void *priv) 2138 { 2139 struct ural_softc *sc = priv; 2140 struct ifnet *ifp = sc->sc_ifp; 2141 struct ieee80211com *ic = ifp->if_l2com; 2142 2143 RAL_LOCK(sc); 2144 ural_init_locked(sc); 2145 RAL_UNLOCK(sc); 2146 2147 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2148 ieee80211_start_all(ic); /* start all vap's */ 2149 } 2150 2151 static void 2152 ural_stop(struct ural_softc *sc) 2153 { 2154 struct ifnet *ifp = sc->sc_ifp; 2155 2156 RAL_LOCK_ASSERT(sc, MA_OWNED); 2157 2158 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2159 2160 /* 2161 * Drain all the transfers, if not already drained: 2162 */ 2163 RAL_UNLOCK(sc); 2164 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); 2165 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); 2166 RAL_LOCK(sc); 2167 2168 ural_unsetup_tx_list(sc); 2169 2170 /* disable Rx */ 2171 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2172 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2173 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2174 /* wait a little */ 2175 ural_pause(sc, hz / 10); 2176 ural_write(sc, RAL_MAC_CSR1, 0); 2177 /* wait a little */ 2178 ural_pause(sc, hz / 10); 2179 } 2180 2181 static int 2182 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2183 const struct ieee80211_bpf_params *params) 2184 { 2185 struct ieee80211com *ic = ni->ni_ic; 2186 struct ifnet *ifp = ic->ic_ifp; 2187 struct ural_softc *sc = ifp->if_softc; 2188 2189 RAL_LOCK(sc); 2190 /* prevent management frames from being sent if we're not ready */ 2191 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2192 RAL_UNLOCK(sc); 2193 m_freem(m); 2194 ieee80211_free_node(ni); 2195 return ENETDOWN; 2196 } 2197 if (sc->tx_nfree < RAL_TX_MINFREE) { 2198 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2199 RAL_UNLOCK(sc); 2200 m_freem(m); 2201 ieee80211_free_node(ni); 2202 return EIO; 2203 } 2204 2205 ifp->if_opackets++; 2206 2207 if (params == NULL) { 2208 /* 2209 * Legacy path; interpret frame contents to decide 2210 * precisely how to send the frame. 2211 */ 2212 if (ural_tx_mgt(sc, m, ni) != 0) 2213 goto bad; 2214 } else { 2215 /* 2216 * Caller supplied explicit parameters to use in 2217 * sending the frame. 2218 */ 2219 if (ural_tx_raw(sc, m, ni, params) != 0) 2220 goto bad; 2221 } 2222 RAL_UNLOCK(sc); 2223 return 0; 2224 bad: 2225 ifp->if_oerrors++; 2226 RAL_UNLOCK(sc); 2227 ieee80211_free_node(ni); 2228 return EIO; /* XXX */ 2229 } 2230 2231 static void 2232 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) 2233 { 2234 struct ieee80211vap *vap = ni->ni_vap; 2235 struct ural_vap *uvp = URAL_VAP(vap); 2236 2237 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2238 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2239 2240 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2241 } 2242 2243 static void 2244 ural_ratectl_timeout(void *arg) 2245 { 2246 struct ural_vap *uvp = arg; 2247 struct ieee80211vap *vap = &uvp->vap; 2248 struct ieee80211com *ic = vap->iv_ic; 2249 2250 ieee80211_runtask(ic, &uvp->ratectl_task); 2251 } 2252 2253 static void 2254 ural_ratectl_task(void *arg, int pending) 2255 { 2256 struct ural_vap *uvp = arg; 2257 struct ieee80211vap *vap = &uvp->vap; 2258 struct ieee80211com *ic = vap->iv_ic; 2259 struct ifnet *ifp = ic->ic_ifp; 2260 struct ural_softc *sc = ifp->if_softc; 2261 struct ieee80211_node *ni; 2262 int ok, fail; 2263 int sum, retrycnt; 2264 2265 ni = ieee80211_ref_node(vap->iv_bss); 2266 RAL_LOCK(sc); 2267 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2268 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2269 2270 ok = sc->sta[7] + /* TX ok w/o retry */ 2271 sc->sta[8]; /* TX ok w/ retry */ 2272 fail = sc->sta[9]; /* TX retry-fail count */ 2273 sum = ok+fail; 2274 retrycnt = sc->sta[8] + fail; 2275 2276 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2277 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2278 2279 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2280 2281 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2282 RAL_UNLOCK(sc); 2283 ieee80211_free_node(ni); 2284 } 2285 2286 static int 2287 ural_pause(struct ural_softc *sc, int timeout) 2288 { 2289 2290 usb_pause_mtx(&sc->sc_mtx, timeout); 2291 return (0); 2292 } 2293