xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_amrr.h>
70 
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include "usbdevs.h"
74 
75 #define	USB_DEBUG_VAR ural_debug
76 #include <dev/usb/usb_debug.h>
77 
78 #include <dev/usb/wlan/if_uralreg.h>
79 #include <dev/usb/wlan/if_uralvar.h>
80 
81 #if USB_DEBUG
82 static int ural_debug = 0;
83 
84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86     "Debug level");
87 #endif
88 
89 #define URAL_RSSI(rssi)					\
90 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
91 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92 
93 /* various supported device vendors/products */
94 static const struct usb_device_id ural_devs[] = {
95 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
96 	URAL_DEV(ASUS, WL167G),
97 	URAL_DEV(ASUS, RT2570),
98 	URAL_DEV(BELKIN, F5D7050),
99 	URAL_DEV(BELKIN, F5D7051),
100 	URAL_DEV(CISCOLINKSYS, HU200TS),
101 	URAL_DEV(CISCOLINKSYS, WUSB54G),
102 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
103 	URAL_DEV(CONCEPTRONIC2, C54RU),
104 	URAL_DEV(DLINK, DWLG122),
105 	URAL_DEV(GIGABYTE, GN54G),
106 	URAL_DEV(GIGABYTE, GNWBKG),
107 	URAL_DEV(GUILLEMOT, HWGUSB254),
108 	URAL_DEV(MELCO, KG54),
109 	URAL_DEV(MELCO, KG54AI),
110 	URAL_DEV(MELCO, KG54YB),
111 	URAL_DEV(MELCO, NINWIFI),
112 	URAL_DEV(MSI, RT2570),
113 	URAL_DEV(MSI, RT2570_2),
114 	URAL_DEV(MSI, RT2570_3),
115 	URAL_DEV(NOVATECH, NV902),
116 	URAL_DEV(RALINK, RT2570),
117 	URAL_DEV(RALINK, RT2570_2),
118 	URAL_DEV(RALINK, RT2570_3),
119 	URAL_DEV(SIEMENS2, WL54G),
120 	URAL_DEV(SMC, 2862WG),
121 	URAL_DEV(SPHAIRON, UB801R),
122 	URAL_DEV(SURECOM, RT2570),
123 	URAL_DEV(VTECH, RT2570),
124 	URAL_DEV(ZINWELL, RT2570),
125 #undef URAL_DEV
126 };
127 
128 static usb_callback_t ural_bulk_read_callback;
129 static usb_callback_t ural_bulk_write_callback;
130 
131 static usb_error_t	ural_do_request(struct ural_softc *sc,
132 			    struct usb_device_request *req, void *data);
133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
134 			    const char name[IFNAMSIZ], int unit, int opmode,
135 			    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
136 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
137 static void		ural_vap_delete(struct ieee80211vap *);
138 static void		ural_tx_free(struct ural_tx_data *, int);
139 static void		ural_setup_tx_list(struct ural_softc *);
140 static void		ural_unsetup_tx_list(struct ural_softc *);
141 static int		ural_newstate(struct ieee80211vap *,
142 			    enum ieee80211_state, int);
143 static void		ural_setup_tx_desc(struct ural_softc *,
144 			    struct ural_tx_desc *, uint32_t, int, int);
145 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
146 			    struct ieee80211_node *);
147 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
148 			    struct ieee80211_node *);
149 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
150 			    struct ieee80211_node *);
151 static void		ural_start(struct ifnet *);
152 static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
153 static void		ural_set_testmode(struct ural_softc *);
154 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
155 			    int);
156 static uint16_t		ural_read(struct ural_softc *, uint16_t);
157 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
158 			    int);
159 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
160 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
161 			    int) __unused;
162 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
163 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
164 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
165 static struct ieee80211_node *ural_node_alloc(struct ieee80211vap *,
166 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
167 static void		ural_newassoc(struct ieee80211_node *, int);
168 static void		ural_scan_start(struct ieee80211com *);
169 static void		ural_scan_end(struct ieee80211com *);
170 static void		ural_set_channel(struct ieee80211com *);
171 static void		ural_set_chan(struct ural_softc *,
172 			    struct ieee80211_channel *);
173 static void		ural_disable_rf_tune(struct ural_softc *);
174 static void		ural_enable_tsf_sync(struct ural_softc *);
175 static void 		ural_enable_tsf(struct ural_softc *);
176 static void		ural_update_slot(struct ifnet *);
177 static void		ural_set_txpreamble(struct ural_softc *);
178 static void		ural_set_basicrates(struct ural_softc *,
179 			    const struct ieee80211_channel *);
180 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
181 static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
182 static void		ural_update_promisc(struct ifnet *);
183 static void		ural_setpromisc(struct ural_softc *);
184 static const char	*ural_get_rf(int);
185 static void		ural_read_eeprom(struct ural_softc *);
186 static int		ural_bbp_init(struct ural_softc *);
187 static void		ural_set_txantenna(struct ural_softc *, int);
188 static void		ural_set_rxantenna(struct ural_softc *, int);
189 static void		ural_init_locked(struct ural_softc *);
190 static void		ural_init(void *);
191 static void		ural_stop(struct ural_softc *);
192 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
193 			    const struct ieee80211_bpf_params *);
194 static void		ural_amrr_start(struct ural_softc *,
195 			    struct ieee80211_node *);
196 static void		ural_amrr_timeout(void *);
197 static void		ural_amrr_task(void *, int);
198 static int		ural_pause(struct ural_softc *sc, int timeout);
199 
200 /*
201  * Default values for MAC registers; values taken from the reference driver.
202  */
203 static const struct {
204 	uint16_t	reg;
205 	uint16_t	val;
206 } ural_def_mac[] = {
207 	{ RAL_TXRX_CSR5,  0x8c8d },
208 	{ RAL_TXRX_CSR6,  0x8b8a },
209 	{ RAL_TXRX_CSR7,  0x8687 },
210 	{ RAL_TXRX_CSR8,  0x0085 },
211 	{ RAL_MAC_CSR13,  0x1111 },
212 	{ RAL_MAC_CSR14,  0x1e11 },
213 	{ RAL_TXRX_CSR21, 0xe78f },
214 	{ RAL_MAC_CSR9,   0xff1d },
215 	{ RAL_MAC_CSR11,  0x0002 },
216 	{ RAL_MAC_CSR22,  0x0053 },
217 	{ RAL_MAC_CSR15,  0x0000 },
218 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
219 	{ RAL_TXRX_CSR19, 0x0000 },
220 	{ RAL_TXRX_CSR18, 0x005a },
221 	{ RAL_PHY_CSR2,   0x0000 },
222 	{ RAL_TXRX_CSR0,  0x1ec0 },
223 	{ RAL_PHY_CSR4,   0x000f }
224 };
225 
226 /*
227  * Default values for BBP registers; values taken from the reference driver.
228  */
229 static const struct {
230 	uint8_t	reg;
231 	uint8_t	val;
232 } ural_def_bbp[] = {
233 	{  3, 0x02 },
234 	{  4, 0x19 },
235 	{ 14, 0x1c },
236 	{ 15, 0x30 },
237 	{ 16, 0xac },
238 	{ 17, 0x48 },
239 	{ 18, 0x18 },
240 	{ 19, 0xff },
241 	{ 20, 0x1e },
242 	{ 21, 0x08 },
243 	{ 22, 0x08 },
244 	{ 23, 0x08 },
245 	{ 24, 0x80 },
246 	{ 25, 0x50 },
247 	{ 26, 0x08 },
248 	{ 27, 0x23 },
249 	{ 30, 0x10 },
250 	{ 31, 0x2b },
251 	{ 32, 0xb9 },
252 	{ 34, 0x12 },
253 	{ 35, 0x50 },
254 	{ 39, 0xc4 },
255 	{ 40, 0x02 },
256 	{ 41, 0x60 },
257 	{ 53, 0x10 },
258 	{ 54, 0x18 },
259 	{ 56, 0x08 },
260 	{ 57, 0x10 },
261 	{ 58, 0x08 },
262 	{ 61, 0x60 },
263 	{ 62, 0x10 },
264 	{ 75, 0xff }
265 };
266 
267 /*
268  * Default values for RF register R2 indexed by channel numbers.
269  */
270 static const uint32_t ural_rf2522_r2[] = {
271 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
272 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
273 };
274 
275 static const uint32_t ural_rf2523_r2[] = {
276 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
277 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
278 };
279 
280 static const uint32_t ural_rf2524_r2[] = {
281 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
282 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
283 };
284 
285 static const uint32_t ural_rf2525_r2[] = {
286 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
287 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
288 };
289 
290 static const uint32_t ural_rf2525_hi_r2[] = {
291 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
292 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
293 };
294 
295 static const uint32_t ural_rf2525e_r2[] = {
296 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
297 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
298 };
299 
300 static const uint32_t ural_rf2526_hi_r2[] = {
301 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
302 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
303 };
304 
305 static const uint32_t ural_rf2526_r2[] = {
306 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
307 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
308 };
309 
310 /*
311  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
312  * values taken from the reference driver.
313  */
314 static const struct {
315 	uint8_t		chan;
316 	uint32_t	r1;
317 	uint32_t	r2;
318 	uint32_t	r4;
319 } ural_rf5222[] = {
320 	{   1, 0x08808, 0x0044d, 0x00282 },
321 	{   2, 0x08808, 0x0044e, 0x00282 },
322 	{   3, 0x08808, 0x0044f, 0x00282 },
323 	{   4, 0x08808, 0x00460, 0x00282 },
324 	{   5, 0x08808, 0x00461, 0x00282 },
325 	{   6, 0x08808, 0x00462, 0x00282 },
326 	{   7, 0x08808, 0x00463, 0x00282 },
327 	{   8, 0x08808, 0x00464, 0x00282 },
328 	{   9, 0x08808, 0x00465, 0x00282 },
329 	{  10, 0x08808, 0x00466, 0x00282 },
330 	{  11, 0x08808, 0x00467, 0x00282 },
331 	{  12, 0x08808, 0x00468, 0x00282 },
332 	{  13, 0x08808, 0x00469, 0x00282 },
333 	{  14, 0x08808, 0x0046b, 0x00286 },
334 
335 	{  36, 0x08804, 0x06225, 0x00287 },
336 	{  40, 0x08804, 0x06226, 0x00287 },
337 	{  44, 0x08804, 0x06227, 0x00287 },
338 	{  48, 0x08804, 0x06228, 0x00287 },
339 	{  52, 0x08804, 0x06229, 0x00287 },
340 	{  56, 0x08804, 0x0622a, 0x00287 },
341 	{  60, 0x08804, 0x0622b, 0x00287 },
342 	{  64, 0x08804, 0x0622c, 0x00287 },
343 
344 	{ 100, 0x08804, 0x02200, 0x00283 },
345 	{ 104, 0x08804, 0x02201, 0x00283 },
346 	{ 108, 0x08804, 0x02202, 0x00283 },
347 	{ 112, 0x08804, 0x02203, 0x00283 },
348 	{ 116, 0x08804, 0x02204, 0x00283 },
349 	{ 120, 0x08804, 0x02205, 0x00283 },
350 	{ 124, 0x08804, 0x02206, 0x00283 },
351 	{ 128, 0x08804, 0x02207, 0x00283 },
352 	{ 132, 0x08804, 0x02208, 0x00283 },
353 	{ 136, 0x08804, 0x02209, 0x00283 },
354 	{ 140, 0x08804, 0x0220a, 0x00283 },
355 
356 	{ 149, 0x08808, 0x02429, 0x00281 },
357 	{ 153, 0x08808, 0x0242b, 0x00281 },
358 	{ 157, 0x08808, 0x0242d, 0x00281 },
359 	{ 161, 0x08808, 0x0242f, 0x00281 }
360 };
361 
362 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
363 	[URAL_BULK_WR] = {
364 		.type = UE_BULK,
365 		.endpoint = UE_ADDR_ANY,
366 		.direction = UE_DIR_OUT,
367 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
368 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
369 		.callback = ural_bulk_write_callback,
370 		.timeout = 5000,	/* ms */
371 	},
372 	[URAL_BULK_RD] = {
373 		.type = UE_BULK,
374 		.endpoint = UE_ADDR_ANY,
375 		.direction = UE_DIR_IN,
376 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
377 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
378 		.callback = ural_bulk_read_callback,
379 	},
380 };
381 
382 static device_probe_t ural_match;
383 static device_attach_t ural_attach;
384 static device_detach_t ural_detach;
385 
386 static device_method_t ural_methods[] = {
387 	/* Device interface */
388 	DEVMETHOD(device_probe,		ural_match),
389 	DEVMETHOD(device_attach,	ural_attach),
390 	DEVMETHOD(device_detach,	ural_detach),
391 
392 	{ 0, 0 }
393 };
394 
395 static driver_t ural_driver = {
396 	.name = "ural",
397 	.methods = ural_methods,
398 	.size = sizeof(struct ural_softc),
399 };
400 
401 static devclass_t ural_devclass;
402 
403 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
404 MODULE_DEPEND(ural, usb, 1, 1, 1);
405 MODULE_DEPEND(ural, wlan, 1, 1, 1);
406 MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
407 
408 static int
409 ural_match(device_t self)
410 {
411 	struct usb_attach_arg *uaa = device_get_ivars(self);
412 
413 	if (uaa->usb_mode != USB_MODE_HOST)
414 		return (ENXIO);
415 	if (uaa->info.bConfigIndex != 0)
416 		return (ENXIO);
417 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
418 		return (ENXIO);
419 
420 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
421 }
422 
423 static int
424 ural_attach(device_t self)
425 {
426 	struct usb_attach_arg *uaa = device_get_ivars(self);
427 	struct ural_softc *sc = device_get_softc(self);
428 	struct ifnet *ifp;
429 	struct ieee80211com *ic;
430 	uint8_t iface_index, bands;
431 	int error;
432 
433 	device_set_usb_desc(self);
434 	sc->sc_udev = uaa->device;
435 	sc->sc_dev = self;
436 
437 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
438 	    MTX_NETWORK_LOCK, MTX_DEF);
439 
440 	iface_index = RAL_IFACE_INDEX;
441 	error = usbd_transfer_setup(uaa->device,
442 	    &iface_index, sc->sc_xfer, ural_config,
443 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
444 	if (error) {
445 		device_printf(self, "could not allocate USB transfers, "
446 		    "err=%s\n", usbd_errstr(error));
447 		goto detach;
448 	}
449 
450 	RAL_LOCK(sc);
451 	/* retrieve RT2570 rev. no */
452 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
453 
454 	/* retrieve MAC address and various other things from EEPROM */
455 	ural_read_eeprom(sc);
456 	RAL_UNLOCK(sc);
457 
458 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
459 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
460 
461 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
462 	if (ifp == NULL) {
463 		device_printf(sc->sc_dev, "can not if_alloc()\n");
464 		goto detach;
465 	}
466 	ic = ifp->if_l2com;
467 
468 	ifp->if_softc = sc;
469 	if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
470 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
471 	ifp->if_init = ural_init;
472 	ifp->if_ioctl = ural_ioctl;
473 	ifp->if_start = ural_start;
474 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
475 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
476 	IFQ_SET_READY(&ifp->if_snd);
477 
478 	ic->ic_ifp = ifp;
479 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
480 
481 	/* set device capabilities */
482 	ic->ic_caps =
483 	      IEEE80211_C_STA		/* station mode supported */
484 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
485 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
486 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
487 	    | IEEE80211_C_TXPMGT	/* tx power management */
488 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
489 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
490 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
491 	    | IEEE80211_C_WPA		/* 802.11i */
492 	    ;
493 
494 	bands = 0;
495 	setbit(&bands, IEEE80211_MODE_11B);
496 	setbit(&bands, IEEE80211_MODE_11G);
497 	if (sc->rf_rev == RAL_RF_5222)
498 		setbit(&bands, IEEE80211_MODE_11A);
499 	ieee80211_init_channels(ic, NULL, &bands);
500 
501 	ieee80211_ifattach(ic, sc->sc_bssid);
502 	ic->ic_update_promisc = ural_update_promisc;
503 	ic->ic_newassoc = ural_newassoc;
504 	ic->ic_raw_xmit = ural_raw_xmit;
505 	ic->ic_node_alloc = ural_node_alloc;
506 	ic->ic_scan_start = ural_scan_start;
507 	ic->ic_scan_end = ural_scan_end;
508 	ic->ic_set_channel = ural_set_channel;
509 
510 	ic->ic_vap_create = ural_vap_create;
511 	ic->ic_vap_delete = ural_vap_delete;
512 
513 	ieee80211_radiotap_attach(ic,
514 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
515 		RAL_TX_RADIOTAP_PRESENT,
516 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
517 		RAL_RX_RADIOTAP_PRESENT);
518 
519 	if (bootverbose)
520 		ieee80211_announce(ic);
521 
522 	return (0);
523 
524 detach:
525 	ural_detach(self);
526 	return (ENXIO);			/* failure */
527 }
528 
529 static int
530 ural_detach(device_t self)
531 {
532 	struct ural_softc *sc = device_get_softc(self);
533 	struct ifnet *ifp = sc->sc_ifp;
534 	struct ieee80211com *ic;
535 
536 	/* stop all USB transfers */
537 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
538 
539 	/* free TX list, if any */
540 	RAL_LOCK(sc);
541 	ural_unsetup_tx_list(sc);
542 	RAL_UNLOCK(sc);
543 
544 	if (ifp) {
545 		ic = ifp->if_l2com;
546 		ieee80211_ifdetach(ic);
547 		if_free(ifp);
548 	}
549 	mtx_destroy(&sc->sc_mtx);
550 
551 	return (0);
552 }
553 
554 static usb_error_t
555 ural_do_request(struct ural_softc *sc,
556     struct usb_device_request *req, void *data)
557 {
558 	usb_error_t err;
559 	int ntries = 10;
560 
561 	while (ntries--) {
562 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
563 		    req, data, 0, NULL, 250 /* ms */);
564 		if (err == 0)
565 			break;
566 
567 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
568 		    usbd_errstr(err));
569 		if (ural_pause(sc, hz / 100))
570 			break;
571 	}
572 	return (err);
573 }
574 
575 static struct ieee80211vap *
576 ural_vap_create(struct ieee80211com *ic,
577 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
578 	const uint8_t bssid[IEEE80211_ADDR_LEN],
579 	const uint8_t mac[IEEE80211_ADDR_LEN])
580 {
581 	struct ural_softc *sc = ic->ic_ifp->if_softc;
582 	struct ural_vap *uvp;
583 	struct ieee80211vap *vap;
584 
585 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
586 		return NULL;
587 	uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
588 	    M_80211_VAP, M_NOWAIT | M_ZERO);
589 	if (uvp == NULL)
590 		return NULL;
591 	vap = &uvp->vap;
592 	/* enable s/w bmiss handling for sta mode */
593 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
594 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
595 
596 	/* override state transition machine */
597 	uvp->newstate = vap->iv_newstate;
598 	vap->iv_newstate = ural_newstate;
599 
600 	usb_callout_init_mtx(&uvp->amrr_ch, &sc->sc_mtx, 0);
601 	TASK_INIT(&uvp->amrr_task, 0, ural_amrr_task, uvp);
602 	ieee80211_amrr_init(&uvp->amrr, vap,
603 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
604 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
605 	    1000 /* 1 sec */);
606 
607 	/* complete setup */
608 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
609 	ic->ic_opmode = opmode;
610 	return vap;
611 }
612 
613 static void
614 ural_vap_delete(struct ieee80211vap *vap)
615 {
616 	struct ural_vap *uvp = URAL_VAP(vap);
617 	struct ieee80211com *ic = vap->iv_ic;
618 
619 	usb_callout_drain(&uvp->amrr_ch);
620 	ieee80211_draintask(ic, &uvp->amrr_task);
621 	ieee80211_amrr_cleanup(&uvp->amrr);
622 	ieee80211_vap_detach(vap);
623 	free(uvp, M_80211_VAP);
624 }
625 
626 static void
627 ural_tx_free(struct ural_tx_data *data, int txerr)
628 {
629 	struct ural_softc *sc = data->sc;
630 
631 	if (data->m != NULL) {
632 		if (data->m->m_flags & M_TXCB)
633 			ieee80211_process_callback(data->ni, data->m,
634 			    txerr ? ETIMEDOUT : 0);
635 		m_freem(data->m);
636 		data->m = NULL;
637 
638 		ieee80211_free_node(data->ni);
639 		data->ni = NULL;
640 	}
641 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
642 	sc->tx_nfree++;
643 }
644 
645 static void
646 ural_setup_tx_list(struct ural_softc *sc)
647 {
648 	struct ural_tx_data *data;
649 	int i;
650 
651 	sc->tx_nfree = 0;
652 	STAILQ_INIT(&sc->tx_q);
653 	STAILQ_INIT(&sc->tx_free);
654 
655 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
656 		data = &sc->tx_data[i];
657 
658 		data->sc = sc;
659 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
660 		sc->tx_nfree++;
661 	}
662 }
663 
664 static void
665 ural_unsetup_tx_list(struct ural_softc *sc)
666 {
667 	struct ural_tx_data *data;
668 	int i;
669 
670 	/* make sure any subsequent use of the queues will fail */
671 	sc->tx_nfree = 0;
672 	STAILQ_INIT(&sc->tx_q);
673 	STAILQ_INIT(&sc->tx_free);
674 
675 	/* free up all node references and mbufs */
676 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
677 		data = &sc->tx_data[i];
678 
679 		if (data->m != NULL) {
680 			m_freem(data->m);
681 			data->m = NULL;
682 		}
683 		if (data->ni != NULL) {
684 			ieee80211_free_node(data->ni);
685 			data->ni = NULL;
686 		}
687 	}
688 }
689 
690 static int
691 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
692 {
693 	struct ural_vap *uvp = URAL_VAP(vap);
694 	struct ieee80211com *ic = vap->iv_ic;
695 	struct ural_softc *sc = ic->ic_ifp->if_softc;
696 	const struct ieee80211_txparam *tp;
697 	struct ieee80211_node *ni;
698 	struct mbuf *m;
699 
700 	DPRINTF("%s -> %s\n",
701 		ieee80211_state_name[vap->iv_state],
702 		ieee80211_state_name[nstate]);
703 
704 	IEEE80211_UNLOCK(ic);
705 	RAL_LOCK(sc);
706 	usb_callout_stop(&uvp->amrr_ch);
707 
708 	switch (nstate) {
709 	case IEEE80211_S_INIT:
710 		if (vap->iv_state == IEEE80211_S_RUN) {
711 			/* abort TSF synchronization */
712 			ural_write(sc, RAL_TXRX_CSR19, 0);
713 
714 			/* force tx led to stop blinking */
715 			ural_write(sc, RAL_MAC_CSR20, 0);
716 		}
717 		break;
718 
719 	case IEEE80211_S_RUN:
720 		ni = vap->iv_bss;
721 
722 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
723 			ural_update_slot(ic->ic_ifp);
724 			ural_set_txpreamble(sc);
725 			ural_set_basicrates(sc, ic->ic_bsschan);
726 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
727 			ural_set_bssid(sc, sc->sc_bssid);
728 		}
729 
730 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
731 		    vap->iv_opmode == IEEE80211_M_IBSS) {
732 			m = ieee80211_beacon_alloc(ni, &uvp->bo);
733 			if (m == NULL) {
734 				device_printf(sc->sc_dev,
735 				    "could not allocate beacon\n");
736 				RAL_UNLOCK(sc);
737 				IEEE80211_LOCK(ic);
738 				return (-1);
739 			}
740 			ieee80211_ref_node(ni);
741 			if (ural_tx_bcn(sc, m, ni) != 0) {
742 				device_printf(sc->sc_dev,
743 				    "could not send beacon\n");
744 				RAL_UNLOCK(sc);
745 				IEEE80211_LOCK(ic);
746 				return (-1);
747 			}
748 		}
749 
750 		/* make tx led blink on tx (controlled by ASIC) */
751 		ural_write(sc, RAL_MAC_CSR20, 1);
752 
753 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
754 			ural_enable_tsf_sync(sc);
755 		else
756 			ural_enable_tsf(sc);
757 
758 		/* enable automatic rate adaptation */
759 		/* XXX should use ic_bsschan but not valid until after newstate call below */
760 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
761 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
762 			ural_amrr_start(sc, ni);
763 
764 		break;
765 
766 	default:
767 		break;
768 	}
769 	RAL_UNLOCK(sc);
770 	IEEE80211_LOCK(ic);
771 	return (uvp->newstate(vap, nstate, arg));
772 }
773 
774 
775 static void
776 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
777 {
778 	struct ural_softc *sc = usbd_xfer_softc(xfer);
779 	struct ifnet *ifp = sc->sc_ifp;
780 	struct ieee80211vap *vap;
781 	struct ural_tx_data *data;
782 	struct mbuf *m;
783 	struct usb_page_cache *pc;
784 	int len;
785 
786 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
787 
788 	switch (USB_GET_STATE(xfer)) {
789 	case USB_ST_TRANSFERRED:
790 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
791 
792 		/* free resources */
793 		data = usbd_xfer_get_priv(xfer);
794 		ural_tx_free(data, 0);
795 		usbd_xfer_set_priv(xfer, NULL);
796 
797 		ifp->if_opackets++;
798 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
799 
800 		/* FALLTHROUGH */
801 	case USB_ST_SETUP:
802 tr_setup:
803 		data = STAILQ_FIRST(&sc->tx_q);
804 		if (data) {
805 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
806 			m = data->m;
807 
808 			if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
809 				DPRINTFN(0, "data overflow, %u bytes\n",
810 				    m->m_pkthdr.len);
811 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
812 			}
813 			pc = usbd_xfer_get_frame(xfer, 0);
814 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
815 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
816 			    m->m_pkthdr.len);
817 
818 			vap = data->ni->ni_vap;
819 			if (ieee80211_radiotap_active_vap(vap)) {
820 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
821 
822 				tap->wt_flags = 0;
823 				tap->wt_rate = data->rate;
824 				tap->wt_antenna = sc->tx_ant;
825 
826 				ieee80211_radiotap_tx(vap, m);
827 			}
828 
829 			/* xfer length needs to be a multiple of two! */
830 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
831 			if ((len % 64) == 0)
832 				len += 2;
833 
834 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
835 			    m->m_pkthdr.len, len);
836 
837 			usbd_xfer_set_frame_len(xfer, 0, len);
838 			usbd_xfer_set_priv(xfer, data);
839 
840 			usbd_transfer_submit(xfer);
841 		}
842 		RAL_UNLOCK(sc);
843 		ural_start(ifp);
844 		RAL_LOCK(sc);
845 		break;
846 
847 	default:			/* Error */
848 		DPRINTFN(11, "transfer error, %s\n",
849 		    usbd_errstr(error));
850 
851 		ifp->if_oerrors++;
852 		data = usbd_xfer_get_priv(xfer);
853 		if (data != NULL) {
854 			ural_tx_free(data, error);
855 			usbd_xfer_set_priv(xfer, NULL);
856 		}
857 
858 		if (error == USB_ERR_STALLED) {
859 			/* try to clear stall first */
860 			usbd_xfer_set_stall(xfer);
861 			goto tr_setup;
862 		}
863 		if (error == USB_ERR_TIMEOUT)
864 			device_printf(sc->sc_dev, "device timeout\n");
865 		break;
866 	}
867 }
868 
869 static void
870 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
871 {
872 	struct ural_softc *sc = usbd_xfer_softc(xfer);
873 	struct ifnet *ifp = sc->sc_ifp;
874 	struct ieee80211com *ic = ifp->if_l2com;
875 	struct ieee80211_node *ni;
876 	struct mbuf *m = NULL;
877 	struct usb_page_cache *pc;
878 	uint32_t flags;
879 	int8_t rssi = 0, nf = 0;
880 	int len;
881 
882 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
883 
884 	switch (USB_GET_STATE(xfer)) {
885 	case USB_ST_TRANSFERRED:
886 
887 		DPRINTFN(15, "rx done, actlen=%d\n", len);
888 
889 		if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
890 			DPRINTF("%s: xfer too short %d\n",
891 			    device_get_nameunit(sc->sc_dev), len);
892 			ifp->if_ierrors++;
893 			goto tr_setup;
894 		}
895 
896 		len -= RAL_RX_DESC_SIZE;
897 		/* rx descriptor is located at the end */
898 		pc = usbd_xfer_get_frame(xfer, 0);
899 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
900 
901 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
902 		nf = RAL_NOISE_FLOOR;
903 		flags = le32toh(sc->sc_rx_desc.flags);
904 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
905 			/*
906 		         * This should not happen since we did not
907 		         * request to receive those frames when we
908 		         * filled RAL_TXRX_CSR2:
909 		         */
910 			DPRINTFN(5, "PHY or CRC error\n");
911 			ifp->if_ierrors++;
912 			goto tr_setup;
913 		}
914 
915 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
916 		if (m == NULL) {
917 			DPRINTF("could not allocate mbuf\n");
918 			ifp->if_ierrors++;
919 			goto tr_setup;
920 		}
921 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
922 
923 		/* finalize mbuf */
924 		m->m_pkthdr.rcvif = ifp;
925 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
926 
927 		if (ieee80211_radiotap_active(ic)) {
928 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
929 
930 			/* XXX set once */
931 			tap->wr_flags = 0;
932 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
933 			    (flags & RAL_RX_OFDM) ?
934 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
935 			tap->wr_antenna = sc->rx_ant;
936 			tap->wr_antsignal = nf + rssi;
937 			tap->wr_antnoise = nf;
938 		}
939 		/* Strip trailing 802.11 MAC FCS. */
940 		m_adj(m, -IEEE80211_CRC_LEN);
941 
942 		/* FALLTHROUGH */
943 	case USB_ST_SETUP:
944 tr_setup:
945 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
946 		usbd_transfer_submit(xfer);
947 
948 		/*
949 		 * At the end of a USB callback it is always safe to unlock
950 		 * the private mutex of a device! That is why we do the
951 		 * "ieee80211_input" here, and not some lines up!
952 		 */
953 		RAL_UNLOCK(sc);
954 		if (m) {
955 			ni = ieee80211_find_rxnode(ic,
956 			    mtod(m, struct ieee80211_frame_min *));
957 			if (ni != NULL) {
958 				(void) ieee80211_input(ni, m, rssi, nf);
959 				ieee80211_free_node(ni);
960 			} else
961 				(void) ieee80211_input_all(ic, m, rssi, nf);
962 		}
963 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
964 		    !IFQ_IS_EMPTY(&ifp->if_snd))
965 			ural_start(ifp);
966 		RAL_LOCK(sc);
967 		return;
968 
969 	default:			/* Error */
970 		if (error != USB_ERR_CANCELLED) {
971 			/* try to clear stall first */
972 			usbd_xfer_set_stall(xfer);
973 			goto tr_setup;
974 		}
975 		return;
976 	}
977 }
978 
979 static uint8_t
980 ural_plcp_signal(int rate)
981 {
982 	switch (rate) {
983 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
984 	case 12:	return 0xb;
985 	case 18:	return 0xf;
986 	case 24:	return 0xa;
987 	case 36:	return 0xe;
988 	case 48:	return 0x9;
989 	case 72:	return 0xd;
990 	case 96:	return 0x8;
991 	case 108:	return 0xc;
992 
993 	/* CCK rates (NB: not IEEE std, device-specific) */
994 	case 2:		return 0x0;
995 	case 4:		return 0x1;
996 	case 11:	return 0x2;
997 	case 22:	return 0x3;
998 	}
999 	return 0xff;		/* XXX unsupported/unknown rate */
1000 }
1001 
1002 static void
1003 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1004     uint32_t flags, int len, int rate)
1005 {
1006 	struct ifnet *ifp = sc->sc_ifp;
1007 	struct ieee80211com *ic = ifp->if_l2com;
1008 	uint16_t plcp_length;
1009 	int remainder;
1010 
1011 	desc->flags = htole32(flags);
1012 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1013 	desc->flags |= htole32(len << 16);
1014 
1015 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1016 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1017 
1018 	/* setup PLCP fields */
1019 	desc->plcp_signal  = ural_plcp_signal(rate);
1020 	desc->plcp_service = 4;
1021 
1022 	len += IEEE80211_CRC_LEN;
1023 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1024 		desc->flags |= htole32(RAL_TX_OFDM);
1025 
1026 		plcp_length = len & 0xfff;
1027 		desc->plcp_length_hi = plcp_length >> 6;
1028 		desc->plcp_length_lo = plcp_length & 0x3f;
1029 	} else {
1030 		plcp_length = (16 * len + rate - 1) / rate;
1031 		if (rate == 22) {
1032 			remainder = (16 * len) % 22;
1033 			if (remainder != 0 && remainder < 7)
1034 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1035 		}
1036 		desc->plcp_length_hi = plcp_length >> 8;
1037 		desc->plcp_length_lo = plcp_length & 0xff;
1038 
1039 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1040 			desc->plcp_signal |= 0x08;
1041 	}
1042 
1043 	desc->iv = 0;
1044 	desc->eiv = 0;
1045 }
1046 
1047 #define RAL_TX_TIMEOUT	5000
1048 
1049 static int
1050 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1051 {
1052 	struct ieee80211vap *vap = ni->ni_vap;
1053 	struct ieee80211com *ic = ni->ni_ic;
1054 	struct ifnet *ifp = sc->sc_ifp;
1055 	const struct ieee80211_txparam *tp;
1056 	struct ural_tx_data *data;
1057 
1058 	if (sc->tx_nfree == 0) {
1059 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1060 		m_freem(m0);
1061 		ieee80211_free_node(ni);
1062 		return EIO;
1063 	}
1064 	data = STAILQ_FIRST(&sc->tx_free);
1065 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1066 	sc->tx_nfree--;
1067 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1068 
1069 	data->m = m0;
1070 	data->ni = ni;
1071 	data->rate = tp->mgmtrate;
1072 
1073 	ural_setup_tx_desc(sc, &data->desc,
1074 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1075 	    tp->mgmtrate);
1076 
1077 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1078 	    m0->m_pkthdr.len, tp->mgmtrate);
1079 
1080 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1081 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1082 
1083 	return (0);
1084 }
1085 
1086 static int
1087 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1088 {
1089 	struct ieee80211vap *vap = ni->ni_vap;
1090 	struct ieee80211com *ic = ni->ni_ic;
1091 	const struct ieee80211_txparam *tp;
1092 	struct ural_tx_data *data;
1093 	struct ieee80211_frame *wh;
1094 	struct ieee80211_key *k;
1095 	uint32_t flags;
1096 	uint16_t dur;
1097 
1098 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1099 
1100 	data = STAILQ_FIRST(&sc->tx_free);
1101 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1102 	sc->tx_nfree--;
1103 
1104 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1105 
1106 	wh = mtod(m0, struct ieee80211_frame *);
1107 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1108 		k = ieee80211_crypto_encap(ni, m0);
1109 		if (k == NULL) {
1110 			m_freem(m0);
1111 			return ENOBUFS;
1112 		}
1113 		wh = mtod(m0, struct ieee80211_frame *);
1114 	}
1115 
1116 	data->m = m0;
1117 	data->ni = ni;
1118 	data->rate = tp->mgmtrate;
1119 
1120 	flags = 0;
1121 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1122 		flags |= RAL_TX_ACK;
1123 
1124 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1125 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1126 		*(uint16_t *)wh->i_dur = htole16(dur);
1127 
1128 		/* tell hardware to add timestamp for probe responses */
1129 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1130 		    IEEE80211_FC0_TYPE_MGT &&
1131 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1132 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1133 			flags |= RAL_TX_TIMESTAMP;
1134 	}
1135 
1136 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1137 
1138 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1139 	    m0->m_pkthdr.len, tp->mgmtrate);
1140 
1141 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1142 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1143 
1144 	return 0;
1145 }
1146 
1147 static int
1148 ural_sendprot(struct ural_softc *sc,
1149     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1150 {
1151 	struct ieee80211com *ic = ni->ni_ic;
1152 	const struct ieee80211_frame *wh;
1153 	struct ural_tx_data *data;
1154 	struct mbuf *mprot;
1155 	int protrate, ackrate, pktlen, flags, isshort;
1156 	uint16_t dur;
1157 
1158 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1159 	    ("protection %d", prot));
1160 
1161 	wh = mtod(m, const struct ieee80211_frame *);
1162 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1163 
1164 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1165 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1166 
1167 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1168 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1169 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1170 	flags = RAL_TX_RETRY(7);
1171 	if (prot == IEEE80211_PROT_RTSCTS) {
1172 		/* NB: CTS is the same size as an ACK */
1173 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1174 		flags |= RAL_TX_ACK;
1175 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1176 	} else {
1177 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1178 	}
1179 	if (mprot == NULL) {
1180 		/* XXX stat + msg */
1181 		return ENOBUFS;
1182 	}
1183 	data = STAILQ_FIRST(&sc->tx_free);
1184 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1185 	sc->tx_nfree--;
1186 
1187 	data->m = mprot;
1188 	data->ni = ieee80211_ref_node(ni);
1189 	data->rate = protrate;
1190 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1191 
1192 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1193 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1194 
1195 	return 0;
1196 }
1197 
1198 static int
1199 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1200     const struct ieee80211_bpf_params *params)
1201 {
1202 	struct ieee80211com *ic = ni->ni_ic;
1203 	struct ural_tx_data *data;
1204 	uint32_t flags;
1205 	int error;
1206 	int rate;
1207 
1208 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1209 	KASSERT(params != NULL, ("no raw xmit params"));
1210 
1211 	rate = params->ibp_rate0;
1212 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1213 		m_freem(m0);
1214 		return EINVAL;
1215 	}
1216 	flags = 0;
1217 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1218 		flags |= RAL_TX_ACK;
1219 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1220 		error = ural_sendprot(sc, m0, ni,
1221 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1222 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1223 		    rate);
1224 		if (error || sc->tx_nfree == 0) {
1225 			m_freem(m0);
1226 			return ENOBUFS;
1227 		}
1228 		flags |= RAL_TX_IFS_SIFS;
1229 	}
1230 
1231 	data = STAILQ_FIRST(&sc->tx_free);
1232 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1233 	sc->tx_nfree--;
1234 
1235 	data->m = m0;
1236 	data->ni = ni;
1237 	data->rate = rate;
1238 
1239 	/* XXX need to setup descriptor ourself */
1240 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1241 
1242 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1243 	    m0->m_pkthdr.len, rate);
1244 
1245 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1246 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1247 
1248 	return 0;
1249 }
1250 
1251 static int
1252 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1253 {
1254 	struct ieee80211vap *vap = ni->ni_vap;
1255 	struct ieee80211com *ic = ni->ni_ic;
1256 	struct ural_tx_data *data;
1257 	struct ieee80211_frame *wh;
1258 	const struct ieee80211_txparam *tp;
1259 	struct ieee80211_key *k;
1260 	uint32_t flags = 0;
1261 	uint16_t dur;
1262 	int error, rate;
1263 
1264 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1265 
1266 	wh = mtod(m0, struct ieee80211_frame *);
1267 
1268 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1269 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1270 		rate = tp->mcastrate;
1271 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1272 		rate = tp->ucastrate;
1273 	else
1274 		rate = ni->ni_txrate;
1275 
1276 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1277 		k = ieee80211_crypto_encap(ni, m0);
1278 		if (k == NULL) {
1279 			m_freem(m0);
1280 			return ENOBUFS;
1281 		}
1282 		/* packet header may have moved, reset our local pointer */
1283 		wh = mtod(m0, struct ieee80211_frame *);
1284 	}
1285 
1286 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1287 		int prot = IEEE80211_PROT_NONE;
1288 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1289 			prot = IEEE80211_PROT_RTSCTS;
1290 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1291 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1292 			prot = ic->ic_protmode;
1293 		if (prot != IEEE80211_PROT_NONE) {
1294 			error = ural_sendprot(sc, m0, ni, prot, rate);
1295 			if (error || sc->tx_nfree == 0) {
1296 				m_freem(m0);
1297 				return ENOBUFS;
1298 			}
1299 			flags |= RAL_TX_IFS_SIFS;
1300 		}
1301 	}
1302 
1303 	data = STAILQ_FIRST(&sc->tx_free);
1304 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1305 	sc->tx_nfree--;
1306 
1307 	data->m = m0;
1308 	data->ni = ni;
1309 	data->rate = rate;
1310 
1311 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1312 		flags |= RAL_TX_ACK;
1313 		flags |= RAL_TX_RETRY(7);
1314 
1315 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1316 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1317 		*(uint16_t *)wh->i_dur = htole16(dur);
1318 	}
1319 
1320 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1321 
1322 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1323 	    m0->m_pkthdr.len, rate);
1324 
1325 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1326 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1327 
1328 	return 0;
1329 }
1330 
1331 static void
1332 ural_start(struct ifnet *ifp)
1333 {
1334 	struct ural_softc *sc = ifp->if_softc;
1335 	struct ieee80211_node *ni;
1336 	struct mbuf *m;
1337 
1338 	RAL_LOCK(sc);
1339 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1340 		RAL_UNLOCK(sc);
1341 		return;
1342 	}
1343 	for (;;) {
1344 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1345 		if (m == NULL)
1346 			break;
1347 		if (sc->tx_nfree < RAL_TX_MINFREE) {
1348 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1349 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1350 			break;
1351 		}
1352 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1353 		if (ural_tx_data(sc, m, ni) != 0) {
1354 			ieee80211_free_node(ni);
1355 			ifp->if_oerrors++;
1356 			break;
1357 		}
1358 	}
1359 	RAL_UNLOCK(sc);
1360 }
1361 
1362 static int
1363 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1364 {
1365 	struct ural_softc *sc = ifp->if_softc;
1366 	struct ieee80211com *ic = ifp->if_l2com;
1367 	struct ifreq *ifr = (struct ifreq *) data;
1368 	int error = 0, startall = 0;
1369 
1370 	switch (cmd) {
1371 	case SIOCSIFFLAGS:
1372 		RAL_LOCK(sc);
1373 		if (ifp->if_flags & IFF_UP) {
1374 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1375 				ural_init_locked(sc);
1376 				startall = 1;
1377 			} else
1378 				ural_setpromisc(sc);
1379 		} else {
1380 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1381 				ural_stop(sc);
1382 		}
1383 		RAL_UNLOCK(sc);
1384 		if (startall)
1385 			ieee80211_start_all(ic);
1386 		break;
1387 	case SIOCGIFMEDIA:
1388 	case SIOCSIFMEDIA:
1389 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1390 		break;
1391 	default:
1392 		error = ether_ioctl(ifp, cmd, data);
1393 		break;
1394 	}
1395 	return error;
1396 }
1397 
1398 static void
1399 ural_set_testmode(struct ural_softc *sc)
1400 {
1401 	struct usb_device_request req;
1402 	usb_error_t error;
1403 
1404 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1405 	req.bRequest = RAL_VENDOR_REQUEST;
1406 	USETW(req.wValue, 4);
1407 	USETW(req.wIndex, 1);
1408 	USETW(req.wLength, 0);
1409 
1410 	error = ural_do_request(sc, &req, NULL);
1411 	if (error != 0) {
1412 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1413 		    usbd_errstr(error));
1414 	}
1415 }
1416 
1417 static void
1418 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1419 {
1420 	struct usb_device_request req;
1421 	usb_error_t error;
1422 
1423 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1424 	req.bRequest = RAL_READ_EEPROM;
1425 	USETW(req.wValue, 0);
1426 	USETW(req.wIndex, addr);
1427 	USETW(req.wLength, len);
1428 
1429 	error = ural_do_request(sc, &req, buf);
1430 	if (error != 0) {
1431 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1432 		    usbd_errstr(error));
1433 	}
1434 }
1435 
1436 static uint16_t
1437 ural_read(struct ural_softc *sc, uint16_t reg)
1438 {
1439 	struct usb_device_request req;
1440 	usb_error_t error;
1441 	uint16_t val;
1442 
1443 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1444 	req.bRequest = RAL_READ_MAC;
1445 	USETW(req.wValue, 0);
1446 	USETW(req.wIndex, reg);
1447 	USETW(req.wLength, sizeof (uint16_t));
1448 
1449 	error = ural_do_request(sc, &req, &val);
1450 	if (error != 0) {
1451 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1452 		    usbd_errstr(error));
1453 		return 0;
1454 	}
1455 
1456 	return le16toh(val);
1457 }
1458 
1459 static void
1460 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1461 {
1462 	struct usb_device_request req;
1463 	usb_error_t error;
1464 
1465 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1466 	req.bRequest = RAL_READ_MULTI_MAC;
1467 	USETW(req.wValue, 0);
1468 	USETW(req.wIndex, reg);
1469 	USETW(req.wLength, len);
1470 
1471 	error = ural_do_request(sc, &req, buf);
1472 	if (error != 0) {
1473 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1474 		    usbd_errstr(error));
1475 	}
1476 }
1477 
1478 static void
1479 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1480 {
1481 	struct usb_device_request req;
1482 	usb_error_t error;
1483 
1484 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1485 	req.bRequest = RAL_WRITE_MAC;
1486 	USETW(req.wValue, val);
1487 	USETW(req.wIndex, reg);
1488 	USETW(req.wLength, 0);
1489 
1490 	error = ural_do_request(sc, &req, NULL);
1491 	if (error != 0) {
1492 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1493 		    usbd_errstr(error));
1494 	}
1495 }
1496 
1497 static void
1498 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1499 {
1500 	struct usb_device_request req;
1501 	usb_error_t error;
1502 
1503 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1504 	req.bRequest = RAL_WRITE_MULTI_MAC;
1505 	USETW(req.wValue, 0);
1506 	USETW(req.wIndex, reg);
1507 	USETW(req.wLength, len);
1508 
1509 	error = ural_do_request(sc, &req, buf);
1510 	if (error != 0) {
1511 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1512 		    usbd_errstr(error));
1513 	}
1514 }
1515 
1516 static void
1517 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1518 {
1519 	uint16_t tmp;
1520 	int ntries;
1521 
1522 	for (ntries = 0; ntries < 100; ntries++) {
1523 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1524 			break;
1525 		if (ural_pause(sc, hz / 100))
1526 			break;
1527 	}
1528 	if (ntries == 100) {
1529 		device_printf(sc->sc_dev, "could not write to BBP\n");
1530 		return;
1531 	}
1532 
1533 	tmp = reg << 8 | val;
1534 	ural_write(sc, RAL_PHY_CSR7, tmp);
1535 }
1536 
1537 static uint8_t
1538 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1539 {
1540 	uint16_t val;
1541 	int ntries;
1542 
1543 	val = RAL_BBP_WRITE | reg << 8;
1544 	ural_write(sc, RAL_PHY_CSR7, val);
1545 
1546 	for (ntries = 0; ntries < 100; ntries++) {
1547 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1548 			break;
1549 		if (ural_pause(sc, hz / 100))
1550 			break;
1551 	}
1552 	if (ntries == 100) {
1553 		device_printf(sc->sc_dev, "could not read BBP\n");
1554 		return 0;
1555 	}
1556 
1557 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1558 }
1559 
1560 static void
1561 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1562 {
1563 	uint32_t tmp;
1564 	int ntries;
1565 
1566 	for (ntries = 0; ntries < 100; ntries++) {
1567 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1568 			break;
1569 		if (ural_pause(sc, hz / 100))
1570 			break;
1571 	}
1572 	if (ntries == 100) {
1573 		device_printf(sc->sc_dev, "could not write to RF\n");
1574 		return;
1575 	}
1576 
1577 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1578 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1579 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1580 
1581 	/* remember last written value in sc */
1582 	sc->rf_regs[reg] = val;
1583 
1584 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1585 }
1586 
1587 /* ARGUSED */
1588 static struct ieee80211_node *
1589 ural_node_alloc(struct ieee80211vap *vap __unused,
1590 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1591 {
1592 	struct ural_node *un;
1593 
1594 	un = malloc(sizeof(struct ural_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1595 	return un != NULL ? &un->ni : NULL;
1596 }
1597 
1598 static void
1599 ural_newassoc(struct ieee80211_node *ni, int isnew)
1600 {
1601 	struct ieee80211vap *vap = ni->ni_vap;
1602 
1603 	ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
1604 }
1605 
1606 static void
1607 ural_scan_start(struct ieee80211com *ic)
1608 {
1609 	struct ifnet *ifp = ic->ic_ifp;
1610 	struct ural_softc *sc = ifp->if_softc;
1611 
1612 	RAL_LOCK(sc);
1613 	ural_write(sc, RAL_TXRX_CSR19, 0);
1614 	ural_set_bssid(sc, ifp->if_broadcastaddr);
1615 	RAL_UNLOCK(sc);
1616 }
1617 
1618 static void
1619 ural_scan_end(struct ieee80211com *ic)
1620 {
1621 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1622 
1623 	RAL_LOCK(sc);
1624 	ural_enable_tsf_sync(sc);
1625 	ural_set_bssid(sc, sc->sc_bssid);
1626 	RAL_UNLOCK(sc);
1627 
1628 }
1629 
1630 static void
1631 ural_set_channel(struct ieee80211com *ic)
1632 {
1633 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1634 
1635 	RAL_LOCK(sc);
1636 	ural_set_chan(sc, ic->ic_curchan);
1637 	RAL_UNLOCK(sc);
1638 }
1639 
1640 static void
1641 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1642 {
1643 	struct ifnet *ifp = sc->sc_ifp;
1644 	struct ieee80211com *ic = ifp->if_l2com;
1645 	uint8_t power, tmp;
1646 	int i, chan;
1647 
1648 	chan = ieee80211_chan2ieee(ic, c);
1649 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1650 		return;
1651 
1652 	if (IEEE80211_IS_CHAN_2GHZ(c))
1653 		power = min(sc->txpow[chan - 1], 31);
1654 	else
1655 		power = 31;
1656 
1657 	/* adjust txpower using ifconfig settings */
1658 	power -= (100 - ic->ic_txpowlimit) / 8;
1659 
1660 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1661 
1662 	switch (sc->rf_rev) {
1663 	case RAL_RF_2522:
1664 		ural_rf_write(sc, RAL_RF1, 0x00814);
1665 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1666 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1667 		break;
1668 
1669 	case RAL_RF_2523:
1670 		ural_rf_write(sc, RAL_RF1, 0x08804);
1671 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1672 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1673 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1674 		break;
1675 
1676 	case RAL_RF_2524:
1677 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1678 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1679 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1680 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1681 		break;
1682 
1683 	case RAL_RF_2525:
1684 		ural_rf_write(sc, RAL_RF1, 0x08808);
1685 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1686 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1687 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1688 
1689 		ural_rf_write(sc, RAL_RF1, 0x08808);
1690 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1691 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1692 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1693 		break;
1694 
1695 	case RAL_RF_2525E:
1696 		ural_rf_write(sc, RAL_RF1, 0x08808);
1697 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1698 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1699 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1700 		break;
1701 
1702 	case RAL_RF_2526:
1703 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1704 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1705 		ural_rf_write(sc, RAL_RF1, 0x08804);
1706 
1707 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1708 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1709 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1710 		break;
1711 
1712 	/* dual-band RF */
1713 	case RAL_RF_5222:
1714 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1715 
1716 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1717 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1718 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1719 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1720 		break;
1721 	}
1722 
1723 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1724 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1725 		/* set Japan filter bit for channel 14 */
1726 		tmp = ural_bbp_read(sc, 70);
1727 
1728 		tmp &= ~RAL_JAPAN_FILTER;
1729 		if (chan == 14)
1730 			tmp |= RAL_JAPAN_FILTER;
1731 
1732 		ural_bbp_write(sc, 70, tmp);
1733 
1734 		/* clear CRC errors */
1735 		ural_read(sc, RAL_STA_CSR0);
1736 
1737 		ural_pause(sc, hz / 100);
1738 		ural_disable_rf_tune(sc);
1739 	}
1740 
1741 	/* XXX doesn't belong here */
1742 	/* update basic rate set */
1743 	ural_set_basicrates(sc, c);
1744 
1745 	/* give the hardware some time to do the switchover */
1746 	ural_pause(sc, hz / 100);
1747 }
1748 
1749 /*
1750  * Disable RF auto-tuning.
1751  */
1752 static void
1753 ural_disable_rf_tune(struct ural_softc *sc)
1754 {
1755 	uint32_t tmp;
1756 
1757 	if (sc->rf_rev != RAL_RF_2523) {
1758 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1759 		ural_rf_write(sc, RAL_RF1, tmp);
1760 	}
1761 
1762 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1763 	ural_rf_write(sc, RAL_RF3, tmp);
1764 
1765 	DPRINTFN(2, "disabling RF autotune\n");
1766 }
1767 
1768 /*
1769  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1770  * synchronization.
1771  */
1772 static void
1773 ural_enable_tsf_sync(struct ural_softc *sc)
1774 {
1775 	struct ifnet *ifp = sc->sc_ifp;
1776 	struct ieee80211com *ic = ifp->if_l2com;
1777 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1778 	uint16_t logcwmin, preload, tmp;
1779 
1780 	/* first, disable TSF synchronization */
1781 	ural_write(sc, RAL_TXRX_CSR19, 0);
1782 
1783 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1784 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1785 
1786 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1787 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1788 	tmp = logcwmin << 12 | preload;
1789 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1790 
1791 	/* finally, enable TSF synchronization */
1792 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1793 	if (ic->ic_opmode == IEEE80211_M_STA)
1794 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1795 	else
1796 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1797 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1798 
1799 	DPRINTF("enabling TSF synchronization\n");
1800 }
1801 
1802 static void
1803 ural_enable_tsf(struct ural_softc *sc)
1804 {
1805 	/* first, disable TSF synchronization */
1806 	ural_write(sc, RAL_TXRX_CSR19, 0);
1807 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1808 }
1809 
1810 #define RAL_RXTX_TURNAROUND	5	/* us */
1811 static void
1812 ural_update_slot(struct ifnet *ifp)
1813 {
1814 	struct ural_softc *sc = ifp->if_softc;
1815 	struct ieee80211com *ic = ifp->if_l2com;
1816 	uint16_t slottime, sifs, eifs;
1817 
1818 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1819 
1820 	/*
1821 	 * These settings may sound a bit inconsistent but this is what the
1822 	 * reference driver does.
1823 	 */
1824 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1825 		sifs = 16 - RAL_RXTX_TURNAROUND;
1826 		eifs = 364;
1827 	} else {
1828 		sifs = 10 - RAL_RXTX_TURNAROUND;
1829 		eifs = 64;
1830 	}
1831 
1832 	ural_write(sc, RAL_MAC_CSR10, slottime);
1833 	ural_write(sc, RAL_MAC_CSR11, sifs);
1834 	ural_write(sc, RAL_MAC_CSR12, eifs);
1835 }
1836 
1837 static void
1838 ural_set_txpreamble(struct ural_softc *sc)
1839 {
1840 	struct ifnet *ifp = sc->sc_ifp;
1841 	struct ieee80211com *ic = ifp->if_l2com;
1842 	uint16_t tmp;
1843 
1844 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1845 
1846 	tmp &= ~RAL_SHORT_PREAMBLE;
1847 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1848 		tmp |= RAL_SHORT_PREAMBLE;
1849 
1850 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1851 }
1852 
1853 static void
1854 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1855 {
1856 	/* XXX wrong, take from rate set */
1857 	/* update basic rate set */
1858 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1859 		/* 11a basic rates: 6, 12, 24Mbps */
1860 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1861 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1862 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1863 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1864 	} else {
1865 		/* 11b basic rates: 1, 2Mbps */
1866 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1867 	}
1868 }
1869 
1870 static void
1871 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1872 {
1873 	uint16_t tmp;
1874 
1875 	tmp = bssid[0] | bssid[1] << 8;
1876 	ural_write(sc, RAL_MAC_CSR5, tmp);
1877 
1878 	tmp = bssid[2] | bssid[3] << 8;
1879 	ural_write(sc, RAL_MAC_CSR6, tmp);
1880 
1881 	tmp = bssid[4] | bssid[5] << 8;
1882 	ural_write(sc, RAL_MAC_CSR7, tmp);
1883 
1884 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1885 }
1886 
1887 static void
1888 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1889 {
1890 	uint16_t tmp;
1891 
1892 	tmp = addr[0] | addr[1] << 8;
1893 	ural_write(sc, RAL_MAC_CSR2, tmp);
1894 
1895 	tmp = addr[2] | addr[3] << 8;
1896 	ural_write(sc, RAL_MAC_CSR3, tmp);
1897 
1898 	tmp = addr[4] | addr[5] << 8;
1899 	ural_write(sc, RAL_MAC_CSR4, tmp);
1900 
1901 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1902 }
1903 
1904 static void
1905 ural_setpromisc(struct ural_softc *sc)
1906 {
1907 	struct ifnet *ifp = sc->sc_ifp;
1908 	uint32_t tmp;
1909 
1910 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1911 
1912 	tmp &= ~RAL_DROP_NOT_TO_ME;
1913 	if (!(ifp->if_flags & IFF_PROMISC))
1914 		tmp |= RAL_DROP_NOT_TO_ME;
1915 
1916 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1917 
1918 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1919 	    "entering" : "leaving");
1920 }
1921 
1922 static void
1923 ural_update_promisc(struct ifnet *ifp)
1924 {
1925 	struct ural_softc *sc = ifp->if_softc;
1926 
1927 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1928 		return;
1929 
1930 	RAL_LOCK(sc);
1931 	ural_setpromisc(sc);
1932 	RAL_UNLOCK(sc);
1933 }
1934 
1935 static const char *
1936 ural_get_rf(int rev)
1937 {
1938 	switch (rev) {
1939 	case RAL_RF_2522:	return "RT2522";
1940 	case RAL_RF_2523:	return "RT2523";
1941 	case RAL_RF_2524:	return "RT2524";
1942 	case RAL_RF_2525:	return "RT2525";
1943 	case RAL_RF_2525E:	return "RT2525e";
1944 	case RAL_RF_2526:	return "RT2526";
1945 	case RAL_RF_5222:	return "RT5222";
1946 	default:		return "unknown";
1947 	}
1948 }
1949 
1950 static void
1951 ural_read_eeprom(struct ural_softc *sc)
1952 {
1953 	uint16_t val;
1954 
1955 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1956 	val = le16toh(val);
1957 	sc->rf_rev =   (val >> 11) & 0x7;
1958 	sc->hw_radio = (val >> 10) & 0x1;
1959 	sc->led_mode = (val >> 6)  & 0x7;
1960 	sc->rx_ant =   (val >> 4)  & 0x3;
1961 	sc->tx_ant =   (val >> 2)  & 0x3;
1962 	sc->nb_ant =   val & 0x3;
1963 
1964 	/* read MAC address */
1965 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1966 
1967 	/* read default values for BBP registers */
1968 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1969 
1970 	/* read Tx power for all b/g channels */
1971 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1972 }
1973 
1974 static int
1975 ural_bbp_init(struct ural_softc *sc)
1976 {
1977 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1978 	int i, ntries;
1979 
1980 	/* wait for BBP to be ready */
1981 	for (ntries = 0; ntries < 100; ntries++) {
1982 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1983 			break;
1984 		if (ural_pause(sc, hz / 100))
1985 			break;
1986 	}
1987 	if (ntries == 100) {
1988 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1989 		return EIO;
1990 	}
1991 
1992 	/* initialize BBP registers to default values */
1993 	for (i = 0; i < N(ural_def_bbp); i++)
1994 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1995 
1996 #if 0
1997 	/* initialize BBP registers to values stored in EEPROM */
1998 	for (i = 0; i < 16; i++) {
1999 		if (sc->bbp_prom[i].reg == 0xff)
2000 			continue;
2001 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2002 	}
2003 #endif
2004 
2005 	return 0;
2006 #undef N
2007 }
2008 
2009 static void
2010 ural_set_txantenna(struct ural_softc *sc, int antenna)
2011 {
2012 	uint16_t tmp;
2013 	uint8_t tx;
2014 
2015 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2016 	if (antenna == 1)
2017 		tx |= RAL_BBP_ANTA;
2018 	else if (antenna == 2)
2019 		tx |= RAL_BBP_ANTB;
2020 	else
2021 		tx |= RAL_BBP_DIVERSITY;
2022 
2023 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2024 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2025 	    sc->rf_rev == RAL_RF_5222)
2026 		tx |= RAL_BBP_FLIPIQ;
2027 
2028 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2029 
2030 	/* update values in PHY_CSR5 and PHY_CSR6 */
2031 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2032 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2033 
2034 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2035 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2036 }
2037 
2038 static void
2039 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2040 {
2041 	uint8_t rx;
2042 
2043 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2044 	if (antenna == 1)
2045 		rx |= RAL_BBP_ANTA;
2046 	else if (antenna == 2)
2047 		rx |= RAL_BBP_ANTB;
2048 	else
2049 		rx |= RAL_BBP_DIVERSITY;
2050 
2051 	/* need to force no I/Q flip for RF 2525e and 2526 */
2052 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2053 		rx &= ~RAL_BBP_FLIPIQ;
2054 
2055 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2056 }
2057 
2058 static void
2059 ural_init_locked(struct ural_softc *sc)
2060 {
2061 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2062 	struct ifnet *ifp = sc->sc_ifp;
2063 	struct ieee80211com *ic = ifp->if_l2com;
2064 	uint16_t tmp;
2065 	int i, ntries;
2066 
2067 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2068 
2069 	ural_set_testmode(sc);
2070 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2071 
2072 	ural_stop(sc);
2073 
2074 	/* initialize MAC registers to default values */
2075 	for (i = 0; i < N(ural_def_mac); i++)
2076 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2077 
2078 	/* wait for BBP and RF to wake up (this can take a long time!) */
2079 	for (ntries = 0; ntries < 100; ntries++) {
2080 		tmp = ural_read(sc, RAL_MAC_CSR17);
2081 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2082 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2083 			break;
2084 		if (ural_pause(sc, hz / 100))
2085 			break;
2086 	}
2087 	if (ntries == 100) {
2088 		device_printf(sc->sc_dev,
2089 		    "timeout waiting for BBP/RF to wakeup\n");
2090 		goto fail;
2091 	}
2092 
2093 	/* we're ready! */
2094 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2095 
2096 	/* set basic rate set (will be updated later) */
2097 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2098 
2099 	if (ural_bbp_init(sc) != 0)
2100 		goto fail;
2101 
2102 	ural_set_chan(sc, ic->ic_curchan);
2103 
2104 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2105 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2106 
2107 	ural_set_txantenna(sc, sc->tx_ant);
2108 	ural_set_rxantenna(sc, sc->rx_ant);
2109 
2110 	ural_set_macaddr(sc, IF_LLADDR(ifp));
2111 
2112 	/*
2113 	 * Allocate Tx and Rx xfer queues.
2114 	 */
2115 	ural_setup_tx_list(sc);
2116 
2117 	/* kick Rx */
2118 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2119 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2120 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2121 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2122 			tmp |= RAL_DROP_TODS;
2123 		if (!(ifp->if_flags & IFF_PROMISC))
2124 			tmp |= RAL_DROP_NOT_TO_ME;
2125 	}
2126 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2127 
2128 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2129 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2130 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2131 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2132 	return;
2133 
2134 fail:	ural_stop(sc);
2135 #undef N
2136 }
2137 
2138 static void
2139 ural_init(void *priv)
2140 {
2141 	struct ural_softc *sc = priv;
2142 	struct ifnet *ifp = sc->sc_ifp;
2143 	struct ieee80211com *ic = ifp->if_l2com;
2144 
2145 	RAL_LOCK(sc);
2146 	ural_init_locked(sc);
2147 	RAL_UNLOCK(sc);
2148 
2149 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2150 		ieee80211_start_all(ic);		/* start all vap's */
2151 }
2152 
2153 static void
2154 ural_stop(struct ural_softc *sc)
2155 {
2156 	struct ifnet *ifp = sc->sc_ifp;
2157 
2158 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2159 
2160 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2161 
2162 	/*
2163 	 * Drain all the transfers, if not already drained:
2164 	 */
2165 	RAL_UNLOCK(sc);
2166 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2167 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2168 	RAL_LOCK(sc);
2169 
2170 	ural_unsetup_tx_list(sc);
2171 
2172 	/* disable Rx */
2173 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2174 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2175 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2176 	/* wait a little */
2177 	ural_pause(sc, hz / 10);
2178 	ural_write(sc, RAL_MAC_CSR1, 0);
2179 	/* wait a little */
2180 	ural_pause(sc, hz / 10);
2181 }
2182 
2183 static int
2184 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2185 	const struct ieee80211_bpf_params *params)
2186 {
2187 	struct ieee80211com *ic = ni->ni_ic;
2188 	struct ifnet *ifp = ic->ic_ifp;
2189 	struct ural_softc *sc = ifp->if_softc;
2190 
2191 	RAL_LOCK(sc);
2192 	/* prevent management frames from being sent if we're not ready */
2193 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2194 		RAL_UNLOCK(sc);
2195 		m_freem(m);
2196 		ieee80211_free_node(ni);
2197 		return ENETDOWN;
2198 	}
2199 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2200 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2201 		RAL_UNLOCK(sc);
2202 		m_freem(m);
2203 		ieee80211_free_node(ni);
2204 		return EIO;
2205 	}
2206 
2207 	ifp->if_opackets++;
2208 
2209 	if (params == NULL) {
2210 		/*
2211 		 * Legacy path; interpret frame contents to decide
2212 		 * precisely how to send the frame.
2213 		 */
2214 		if (ural_tx_mgt(sc, m, ni) != 0)
2215 			goto bad;
2216 	} else {
2217 		/*
2218 		 * Caller supplied explicit parameters to use in
2219 		 * sending the frame.
2220 		 */
2221 		if (ural_tx_raw(sc, m, ni, params) != 0)
2222 			goto bad;
2223 	}
2224 	RAL_UNLOCK(sc);
2225 	return 0;
2226 bad:
2227 	ifp->if_oerrors++;
2228 	RAL_UNLOCK(sc);
2229 	ieee80211_free_node(ni);
2230 	return EIO;		/* XXX */
2231 }
2232 
2233 static void
2234 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2235 {
2236 	struct ieee80211vap *vap = ni->ni_vap;
2237 	struct ural_vap *uvp = URAL_VAP(vap);
2238 
2239 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2240 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2241 
2242 	ieee80211_amrr_node_init(&uvp->amrr, &URAL_NODE(ni)->amn, ni);
2243 
2244 	usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2245 }
2246 
2247 static void
2248 ural_amrr_timeout(void *arg)
2249 {
2250 	struct ural_vap *uvp = arg;
2251 	struct ieee80211vap *vap = &uvp->vap;
2252 	struct ieee80211com *ic = vap->iv_ic;
2253 
2254 	ieee80211_runtask(ic, &uvp->amrr_task);
2255 }
2256 
2257 static void
2258 ural_amrr_task(void *arg, int pending)
2259 {
2260 	struct ural_vap *uvp = arg;
2261 	struct ieee80211vap *vap = &uvp->vap;
2262 	struct ieee80211com *ic = vap->iv_ic;
2263 	struct ifnet *ifp = ic->ic_ifp;
2264 	struct ural_softc *sc = ifp->if_softc;
2265 	struct ieee80211_node *ni = vap->iv_bss;
2266 	int ok, fail;
2267 
2268 	RAL_LOCK(sc);
2269 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2270 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2271 
2272 	ok = sc->sta[7] +		/* TX ok w/o retry */
2273 	     sc->sta[8];		/* TX ok w/ retry */
2274 	fail = sc->sta[9];		/* TX retry-fail count */
2275 
2276 	ieee80211_amrr_tx_update(&URAL_NODE(ni)->amn,
2277 	    ok+fail, ok, sc->sta[8] + fail);
2278 	(void) ieee80211_amrr_choose(ni, &URAL_NODE(ni)->amn);
2279 
2280 	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2281 
2282 	usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2283 	RAL_UNLOCK(sc);
2284 }
2285 
2286 static int
2287 ural_pause(struct ural_softc *sc, int timeout)
2288 {
2289 
2290 	usb_pause_mtx(&sc->sc_mtx, timeout);
2291 	return (0);
2292 }
2293