1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Copyright (c) 2006, 2008 8 * Hans Petter Selasky <hselasky@FreeBSD.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 /*- 27 * Ralink Technology RT2500USB chipset driver 28 * http://www.ralinktech.com/ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/endian.h> 44 #include <sys/kdb.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <sys/rman.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_var.h> 53 #include <net/if_arp.h> 54 #include <net/ethernet.h> 55 #include <net/if_dl.h> 56 #include <net/if_media.h> 57 #include <net/if_types.h> 58 59 #ifdef INET 60 #include <netinet/in.h> 61 #include <netinet/in_systm.h> 62 #include <netinet/in_var.h> 63 #include <netinet/if_ether.h> 64 #include <netinet/ip.h> 65 #endif 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_regdomain.h> 69 #include <net80211/ieee80211_radiotap.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/usb/usb.h> 73 #include <dev/usb/usbdi.h> 74 #include "usbdevs.h" 75 76 #define USB_DEBUG_VAR ural_debug 77 #include <dev/usb/usb_debug.h> 78 79 #include <dev/usb/wlan/if_uralreg.h> 80 #include <dev/usb/wlan/if_uralvar.h> 81 82 #ifdef USB_DEBUG 83 static int ural_debug = 0; 84 85 static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); 86 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0, 87 "Debug level"); 88 #endif 89 90 #define URAL_RSSI(rssi) \ 91 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ 92 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) 93 94 /* various supported device vendors/products */ 95 static const STRUCT_USB_HOST_ID ural_devs[] = { 96 #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 97 URAL_DEV(ASUS, WL167G), 98 URAL_DEV(ASUS, RT2570), 99 URAL_DEV(BELKIN, F5D7050), 100 URAL_DEV(BELKIN, F5D7051), 101 URAL_DEV(CISCOLINKSYS, HU200TS), 102 URAL_DEV(CISCOLINKSYS, WUSB54G), 103 URAL_DEV(CISCOLINKSYS, WUSB54GP), 104 URAL_DEV(CONCEPTRONIC2, C54RU), 105 URAL_DEV(DLINK, DWLG122), 106 URAL_DEV(GIGABYTE, GN54G), 107 URAL_DEV(GIGABYTE, GNWBKG), 108 URAL_DEV(GUILLEMOT, HWGUSB254), 109 URAL_DEV(MELCO, KG54), 110 URAL_DEV(MELCO, KG54AI), 111 URAL_DEV(MELCO, KG54YB), 112 URAL_DEV(MELCO, NINWIFI), 113 URAL_DEV(MSI, RT2570), 114 URAL_DEV(MSI, RT2570_2), 115 URAL_DEV(MSI, RT2570_3), 116 URAL_DEV(NOVATECH, NV902), 117 URAL_DEV(RALINK, RT2570), 118 URAL_DEV(RALINK, RT2570_2), 119 URAL_DEV(RALINK, RT2570_3), 120 URAL_DEV(SIEMENS2, WL54G), 121 URAL_DEV(SMC, 2862WG), 122 URAL_DEV(SPHAIRON, UB801R), 123 URAL_DEV(SURECOM, RT2570), 124 URAL_DEV(VTECH, RT2570), 125 URAL_DEV(ZINWELL, RT2570), 126 #undef URAL_DEV 127 }; 128 129 static usb_callback_t ural_bulk_read_callback; 130 static usb_callback_t ural_bulk_write_callback; 131 132 static usb_error_t ural_do_request(struct ural_softc *sc, 133 struct usb_device_request *req, void *data); 134 static struct ieee80211vap *ural_vap_create(struct ieee80211com *, 135 const char [IFNAMSIZ], int, enum ieee80211_opmode, 136 int, const uint8_t [IEEE80211_ADDR_LEN], 137 const uint8_t [IEEE80211_ADDR_LEN]); 138 static void ural_vap_delete(struct ieee80211vap *); 139 static void ural_tx_free(struct ural_tx_data *, int); 140 static void ural_setup_tx_list(struct ural_softc *); 141 static void ural_unsetup_tx_list(struct ural_softc *); 142 static int ural_newstate(struct ieee80211vap *, 143 enum ieee80211_state, int); 144 static void ural_setup_tx_desc(struct ural_softc *, 145 struct ural_tx_desc *, uint32_t, int, int); 146 static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 147 struct ieee80211_node *); 148 static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 149 struct ieee80211_node *); 150 static int ural_tx_data(struct ural_softc *, struct mbuf *, 151 struct ieee80211_node *); 152 static void ural_start(struct ifnet *); 153 static int ural_ioctl(struct ifnet *, u_long, caddr_t); 154 static void ural_set_testmode(struct ural_softc *); 155 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 156 int); 157 static uint16_t ural_read(struct ural_softc *, uint16_t); 158 static void ural_read_multi(struct ural_softc *, uint16_t, void *, 159 int); 160 static void ural_write(struct ural_softc *, uint16_t, uint16_t); 161 static void ural_write_multi(struct ural_softc *, uint16_t, void *, 162 int) __unused; 163 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 164 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 165 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 166 static void ural_scan_start(struct ieee80211com *); 167 static void ural_scan_end(struct ieee80211com *); 168 static void ural_set_channel(struct ieee80211com *); 169 static void ural_set_chan(struct ural_softc *, 170 struct ieee80211_channel *); 171 static void ural_disable_rf_tune(struct ural_softc *); 172 static void ural_enable_tsf_sync(struct ural_softc *); 173 static void ural_enable_tsf(struct ural_softc *); 174 static void ural_update_slot(struct ifnet *); 175 static void ural_set_txpreamble(struct ural_softc *); 176 static void ural_set_basicrates(struct ural_softc *, 177 const struct ieee80211_channel *); 178 static void ural_set_bssid(struct ural_softc *, const uint8_t *); 179 static void ural_set_macaddr(struct ural_softc *, uint8_t *); 180 static void ural_update_promisc(struct ifnet *); 181 static void ural_setpromisc(struct ural_softc *); 182 static const char *ural_get_rf(int); 183 static void ural_read_eeprom(struct ural_softc *); 184 static int ural_bbp_init(struct ural_softc *); 185 static void ural_set_txantenna(struct ural_softc *, int); 186 static void ural_set_rxantenna(struct ural_softc *, int); 187 static void ural_init_locked(struct ural_softc *); 188 static void ural_init(void *); 189 static void ural_stop(struct ural_softc *); 190 static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, 191 const struct ieee80211_bpf_params *); 192 static void ural_ratectl_start(struct ural_softc *, 193 struct ieee80211_node *); 194 static void ural_ratectl_timeout(void *); 195 static void ural_ratectl_task(void *, int); 196 static int ural_pause(struct ural_softc *sc, int timeout); 197 198 /* 199 * Default values for MAC registers; values taken from the reference driver. 200 */ 201 static const struct { 202 uint16_t reg; 203 uint16_t val; 204 } ural_def_mac[] = { 205 { RAL_TXRX_CSR5, 0x8c8d }, 206 { RAL_TXRX_CSR6, 0x8b8a }, 207 { RAL_TXRX_CSR7, 0x8687 }, 208 { RAL_TXRX_CSR8, 0x0085 }, 209 { RAL_MAC_CSR13, 0x1111 }, 210 { RAL_MAC_CSR14, 0x1e11 }, 211 { RAL_TXRX_CSR21, 0xe78f }, 212 { RAL_MAC_CSR9, 0xff1d }, 213 { RAL_MAC_CSR11, 0x0002 }, 214 { RAL_MAC_CSR22, 0x0053 }, 215 { RAL_MAC_CSR15, 0x0000 }, 216 { RAL_MAC_CSR8, RAL_FRAME_SIZE }, 217 { RAL_TXRX_CSR19, 0x0000 }, 218 { RAL_TXRX_CSR18, 0x005a }, 219 { RAL_PHY_CSR2, 0x0000 }, 220 { RAL_TXRX_CSR0, 0x1ec0 }, 221 { RAL_PHY_CSR4, 0x000f } 222 }; 223 224 /* 225 * Default values for BBP registers; values taken from the reference driver. 226 */ 227 static const struct { 228 uint8_t reg; 229 uint8_t val; 230 } ural_def_bbp[] = { 231 { 3, 0x02 }, 232 { 4, 0x19 }, 233 { 14, 0x1c }, 234 { 15, 0x30 }, 235 { 16, 0xac }, 236 { 17, 0x48 }, 237 { 18, 0x18 }, 238 { 19, 0xff }, 239 { 20, 0x1e }, 240 { 21, 0x08 }, 241 { 22, 0x08 }, 242 { 23, 0x08 }, 243 { 24, 0x80 }, 244 { 25, 0x50 }, 245 { 26, 0x08 }, 246 { 27, 0x23 }, 247 { 30, 0x10 }, 248 { 31, 0x2b }, 249 { 32, 0xb9 }, 250 { 34, 0x12 }, 251 { 35, 0x50 }, 252 { 39, 0xc4 }, 253 { 40, 0x02 }, 254 { 41, 0x60 }, 255 { 53, 0x10 }, 256 { 54, 0x18 }, 257 { 56, 0x08 }, 258 { 57, 0x10 }, 259 { 58, 0x08 }, 260 { 61, 0x60 }, 261 { 62, 0x10 }, 262 { 75, 0xff } 263 }; 264 265 /* 266 * Default values for RF register R2 indexed by channel numbers. 267 */ 268 static const uint32_t ural_rf2522_r2[] = { 269 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 270 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 271 }; 272 273 static const uint32_t ural_rf2523_r2[] = { 274 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 275 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 276 }; 277 278 static const uint32_t ural_rf2524_r2[] = { 279 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 280 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 281 }; 282 283 static const uint32_t ural_rf2525_r2[] = { 284 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 285 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 286 }; 287 288 static const uint32_t ural_rf2525_hi_r2[] = { 289 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 290 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 291 }; 292 293 static const uint32_t ural_rf2525e_r2[] = { 294 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 295 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 296 }; 297 298 static const uint32_t ural_rf2526_hi_r2[] = { 299 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 300 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 301 }; 302 303 static const uint32_t ural_rf2526_r2[] = { 304 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 305 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 306 }; 307 308 /* 309 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 310 * values taken from the reference driver. 311 */ 312 static const struct { 313 uint8_t chan; 314 uint32_t r1; 315 uint32_t r2; 316 uint32_t r4; 317 } ural_rf5222[] = { 318 { 1, 0x08808, 0x0044d, 0x00282 }, 319 { 2, 0x08808, 0x0044e, 0x00282 }, 320 { 3, 0x08808, 0x0044f, 0x00282 }, 321 { 4, 0x08808, 0x00460, 0x00282 }, 322 { 5, 0x08808, 0x00461, 0x00282 }, 323 { 6, 0x08808, 0x00462, 0x00282 }, 324 { 7, 0x08808, 0x00463, 0x00282 }, 325 { 8, 0x08808, 0x00464, 0x00282 }, 326 { 9, 0x08808, 0x00465, 0x00282 }, 327 { 10, 0x08808, 0x00466, 0x00282 }, 328 { 11, 0x08808, 0x00467, 0x00282 }, 329 { 12, 0x08808, 0x00468, 0x00282 }, 330 { 13, 0x08808, 0x00469, 0x00282 }, 331 { 14, 0x08808, 0x0046b, 0x00286 }, 332 333 { 36, 0x08804, 0x06225, 0x00287 }, 334 { 40, 0x08804, 0x06226, 0x00287 }, 335 { 44, 0x08804, 0x06227, 0x00287 }, 336 { 48, 0x08804, 0x06228, 0x00287 }, 337 { 52, 0x08804, 0x06229, 0x00287 }, 338 { 56, 0x08804, 0x0622a, 0x00287 }, 339 { 60, 0x08804, 0x0622b, 0x00287 }, 340 { 64, 0x08804, 0x0622c, 0x00287 }, 341 342 { 100, 0x08804, 0x02200, 0x00283 }, 343 { 104, 0x08804, 0x02201, 0x00283 }, 344 { 108, 0x08804, 0x02202, 0x00283 }, 345 { 112, 0x08804, 0x02203, 0x00283 }, 346 { 116, 0x08804, 0x02204, 0x00283 }, 347 { 120, 0x08804, 0x02205, 0x00283 }, 348 { 124, 0x08804, 0x02206, 0x00283 }, 349 { 128, 0x08804, 0x02207, 0x00283 }, 350 { 132, 0x08804, 0x02208, 0x00283 }, 351 { 136, 0x08804, 0x02209, 0x00283 }, 352 { 140, 0x08804, 0x0220a, 0x00283 }, 353 354 { 149, 0x08808, 0x02429, 0x00281 }, 355 { 153, 0x08808, 0x0242b, 0x00281 }, 356 { 157, 0x08808, 0x0242d, 0x00281 }, 357 { 161, 0x08808, 0x0242f, 0x00281 } 358 }; 359 360 static const struct usb_config ural_config[URAL_N_TRANSFER] = { 361 [URAL_BULK_WR] = { 362 .type = UE_BULK, 363 .endpoint = UE_ADDR_ANY, 364 .direction = UE_DIR_OUT, 365 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), 366 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 367 .callback = ural_bulk_write_callback, 368 .timeout = 5000, /* ms */ 369 }, 370 [URAL_BULK_RD] = { 371 .type = UE_BULK, 372 .endpoint = UE_ADDR_ANY, 373 .direction = UE_DIR_IN, 374 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), 375 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 376 .callback = ural_bulk_read_callback, 377 }, 378 }; 379 380 static device_probe_t ural_match; 381 static device_attach_t ural_attach; 382 static device_detach_t ural_detach; 383 384 static device_method_t ural_methods[] = { 385 /* Device interface */ 386 DEVMETHOD(device_probe, ural_match), 387 DEVMETHOD(device_attach, ural_attach), 388 DEVMETHOD(device_detach, ural_detach), 389 DEVMETHOD_END 390 }; 391 392 static driver_t ural_driver = { 393 .name = "ural", 394 .methods = ural_methods, 395 .size = sizeof(struct ural_softc), 396 }; 397 398 static devclass_t ural_devclass; 399 400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); 401 MODULE_DEPEND(ural, usb, 1, 1, 1); 402 MODULE_DEPEND(ural, wlan, 1, 1, 1); 403 MODULE_VERSION(ural, 1); 404 405 static int 406 ural_match(device_t self) 407 { 408 struct usb_attach_arg *uaa = device_get_ivars(self); 409 410 if (uaa->usb_mode != USB_MODE_HOST) 411 return (ENXIO); 412 if (uaa->info.bConfigIndex != 0) 413 return (ENXIO); 414 if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) 415 return (ENXIO); 416 417 return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); 418 } 419 420 static int 421 ural_attach(device_t self) 422 { 423 struct usb_attach_arg *uaa = device_get_ivars(self); 424 struct ural_softc *sc = device_get_softc(self); 425 struct ifnet *ifp; 426 struct ieee80211com *ic; 427 uint8_t iface_index, bands; 428 int error; 429 430 device_set_usb_desc(self); 431 sc->sc_udev = uaa->device; 432 sc->sc_dev = self; 433 434 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 435 MTX_NETWORK_LOCK, MTX_DEF); 436 437 iface_index = RAL_IFACE_INDEX; 438 error = usbd_transfer_setup(uaa->device, 439 &iface_index, sc->sc_xfer, ural_config, 440 URAL_N_TRANSFER, sc, &sc->sc_mtx); 441 if (error) { 442 device_printf(self, "could not allocate USB transfers, " 443 "err=%s\n", usbd_errstr(error)); 444 goto detach; 445 } 446 447 RAL_LOCK(sc); 448 /* retrieve RT2570 rev. no */ 449 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 450 451 /* retrieve MAC address and various other things from EEPROM */ 452 ural_read_eeprom(sc); 453 RAL_UNLOCK(sc); 454 455 device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 456 sc->asic_rev, ural_get_rf(sc->rf_rev)); 457 458 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 459 if (ifp == NULL) { 460 device_printf(sc->sc_dev, "can not if_alloc()\n"); 461 goto detach; 462 } 463 ic = ifp->if_l2com; 464 465 ifp->if_softc = sc; 466 if_initname(ifp, "ural", device_get_unit(sc->sc_dev)); 467 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 468 ifp->if_init = ural_init; 469 ifp->if_ioctl = ural_ioctl; 470 ifp->if_start = ural_start; 471 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 472 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 473 IFQ_SET_READY(&ifp->if_snd); 474 475 ic->ic_ifp = ifp; 476 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 477 478 /* set device capabilities */ 479 ic->ic_caps = 480 IEEE80211_C_STA /* station mode supported */ 481 | IEEE80211_C_IBSS /* IBSS mode supported */ 482 | IEEE80211_C_MONITOR /* monitor mode supported */ 483 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 484 | IEEE80211_C_TXPMGT /* tx power management */ 485 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 486 | IEEE80211_C_SHSLOT /* short slot time supported */ 487 | IEEE80211_C_BGSCAN /* bg scanning supported */ 488 | IEEE80211_C_WPA /* 802.11i */ 489 ; 490 491 bands = 0; 492 setbit(&bands, IEEE80211_MODE_11B); 493 setbit(&bands, IEEE80211_MODE_11G); 494 if (sc->rf_rev == RAL_RF_5222) 495 setbit(&bands, IEEE80211_MODE_11A); 496 ieee80211_init_channels(ic, NULL, &bands); 497 498 ieee80211_ifattach(ic, sc->sc_bssid); 499 ic->ic_update_promisc = ural_update_promisc; 500 ic->ic_raw_xmit = ural_raw_xmit; 501 ic->ic_scan_start = ural_scan_start; 502 ic->ic_scan_end = ural_scan_end; 503 ic->ic_set_channel = ural_set_channel; 504 505 ic->ic_vap_create = ural_vap_create; 506 ic->ic_vap_delete = ural_vap_delete; 507 508 ieee80211_radiotap_attach(ic, 509 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 510 RAL_TX_RADIOTAP_PRESENT, 511 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 512 RAL_RX_RADIOTAP_PRESENT); 513 514 if (bootverbose) 515 ieee80211_announce(ic); 516 517 return (0); 518 519 detach: 520 ural_detach(self); 521 return (ENXIO); /* failure */ 522 } 523 524 static int 525 ural_detach(device_t self) 526 { 527 struct ural_softc *sc = device_get_softc(self); 528 struct ifnet *ifp = sc->sc_ifp; 529 struct ieee80211com *ic; 530 531 /* prevent further ioctls */ 532 RAL_LOCK(sc); 533 sc->sc_detached = 1; 534 RAL_UNLOCK(sc); 535 536 /* stop all USB transfers */ 537 usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); 538 539 /* free TX list, if any */ 540 RAL_LOCK(sc); 541 ural_unsetup_tx_list(sc); 542 RAL_UNLOCK(sc); 543 544 if (ifp) { 545 ic = ifp->if_l2com; 546 ieee80211_ifdetach(ic); 547 if_free(ifp); 548 } 549 mtx_destroy(&sc->sc_mtx); 550 551 return (0); 552 } 553 554 static usb_error_t 555 ural_do_request(struct ural_softc *sc, 556 struct usb_device_request *req, void *data) 557 { 558 usb_error_t err; 559 int ntries = 10; 560 561 while (ntries--) { 562 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 563 req, data, 0, NULL, 250 /* ms */); 564 if (err == 0) 565 break; 566 567 DPRINTFN(1, "Control request failed, %s (retrying)\n", 568 usbd_errstr(err)); 569 if (ural_pause(sc, hz / 100)) 570 break; 571 } 572 return (err); 573 } 574 575 static struct ieee80211vap * 576 ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 577 enum ieee80211_opmode opmode, int flags, 578 const uint8_t bssid[IEEE80211_ADDR_LEN], 579 const uint8_t mac[IEEE80211_ADDR_LEN]) 580 { 581 struct ural_softc *sc = ic->ic_ifp->if_softc; 582 struct ural_vap *uvp; 583 struct ieee80211vap *vap; 584 585 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 586 return NULL; 587 uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap), 588 M_80211_VAP, M_NOWAIT | M_ZERO); 589 if (uvp == NULL) 590 return NULL; 591 vap = &uvp->vap; 592 /* enable s/w bmiss handling for sta mode */ 593 594 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 595 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) { 596 /* out of memory */ 597 free(uvp, M_80211_VAP); 598 return (NULL); 599 } 600 601 /* override state transition machine */ 602 uvp->newstate = vap->iv_newstate; 603 vap->iv_newstate = ural_newstate; 604 605 usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); 606 TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); 607 ieee80211_ratectl_init(vap); 608 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 609 610 /* complete setup */ 611 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 612 ic->ic_opmode = opmode; 613 return vap; 614 } 615 616 static void 617 ural_vap_delete(struct ieee80211vap *vap) 618 { 619 struct ural_vap *uvp = URAL_VAP(vap); 620 struct ieee80211com *ic = vap->iv_ic; 621 622 usb_callout_drain(&uvp->ratectl_ch); 623 ieee80211_draintask(ic, &uvp->ratectl_task); 624 ieee80211_ratectl_deinit(vap); 625 ieee80211_vap_detach(vap); 626 free(uvp, M_80211_VAP); 627 } 628 629 static void 630 ural_tx_free(struct ural_tx_data *data, int txerr) 631 { 632 struct ural_softc *sc = data->sc; 633 634 if (data->m != NULL) { 635 if (data->m->m_flags & M_TXCB) 636 ieee80211_process_callback(data->ni, data->m, 637 txerr ? ETIMEDOUT : 0); 638 m_freem(data->m); 639 data->m = NULL; 640 641 ieee80211_free_node(data->ni); 642 data->ni = NULL; 643 } 644 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 645 sc->tx_nfree++; 646 } 647 648 static void 649 ural_setup_tx_list(struct ural_softc *sc) 650 { 651 struct ural_tx_data *data; 652 int i; 653 654 sc->tx_nfree = 0; 655 STAILQ_INIT(&sc->tx_q); 656 STAILQ_INIT(&sc->tx_free); 657 658 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 659 data = &sc->tx_data[i]; 660 661 data->sc = sc; 662 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 663 sc->tx_nfree++; 664 } 665 } 666 667 static void 668 ural_unsetup_tx_list(struct ural_softc *sc) 669 { 670 struct ural_tx_data *data; 671 int i; 672 673 /* make sure any subsequent use of the queues will fail */ 674 sc->tx_nfree = 0; 675 STAILQ_INIT(&sc->tx_q); 676 STAILQ_INIT(&sc->tx_free); 677 678 /* free up all node references and mbufs */ 679 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 680 data = &sc->tx_data[i]; 681 682 if (data->m != NULL) { 683 m_freem(data->m); 684 data->m = NULL; 685 } 686 if (data->ni != NULL) { 687 ieee80211_free_node(data->ni); 688 data->ni = NULL; 689 } 690 } 691 } 692 693 static int 694 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 695 { 696 struct ural_vap *uvp = URAL_VAP(vap); 697 struct ieee80211com *ic = vap->iv_ic; 698 struct ural_softc *sc = ic->ic_ifp->if_softc; 699 const struct ieee80211_txparam *tp; 700 struct ieee80211_node *ni; 701 struct mbuf *m; 702 703 DPRINTF("%s -> %s\n", 704 ieee80211_state_name[vap->iv_state], 705 ieee80211_state_name[nstate]); 706 707 IEEE80211_UNLOCK(ic); 708 RAL_LOCK(sc); 709 usb_callout_stop(&uvp->ratectl_ch); 710 711 switch (nstate) { 712 case IEEE80211_S_INIT: 713 if (vap->iv_state == IEEE80211_S_RUN) { 714 /* abort TSF synchronization */ 715 ural_write(sc, RAL_TXRX_CSR19, 0); 716 717 /* force tx led to stop blinking */ 718 ural_write(sc, RAL_MAC_CSR20, 0); 719 } 720 break; 721 722 case IEEE80211_S_RUN: 723 ni = ieee80211_ref_node(vap->iv_bss); 724 725 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 726 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 727 RAL_UNLOCK(sc); 728 IEEE80211_LOCK(ic); 729 ieee80211_free_node(ni); 730 return (-1); 731 } 732 ural_update_slot(ic->ic_ifp); 733 ural_set_txpreamble(sc); 734 ural_set_basicrates(sc, ic->ic_bsschan); 735 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 736 ural_set_bssid(sc, sc->sc_bssid); 737 } 738 739 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 740 vap->iv_opmode == IEEE80211_M_IBSS) { 741 m = ieee80211_beacon_alloc(ni, &uvp->bo); 742 if (m == NULL) { 743 device_printf(sc->sc_dev, 744 "could not allocate beacon\n"); 745 RAL_UNLOCK(sc); 746 IEEE80211_LOCK(ic); 747 ieee80211_free_node(ni); 748 return (-1); 749 } 750 ieee80211_ref_node(ni); 751 if (ural_tx_bcn(sc, m, ni) != 0) { 752 device_printf(sc->sc_dev, 753 "could not send beacon\n"); 754 RAL_UNLOCK(sc); 755 IEEE80211_LOCK(ic); 756 ieee80211_free_node(ni); 757 return (-1); 758 } 759 } 760 761 /* make tx led blink on tx (controlled by ASIC) */ 762 ural_write(sc, RAL_MAC_CSR20, 1); 763 764 if (vap->iv_opmode != IEEE80211_M_MONITOR) 765 ural_enable_tsf_sync(sc); 766 else 767 ural_enable_tsf(sc); 768 769 /* enable automatic rate adaptation */ 770 /* XXX should use ic_bsschan but not valid until after newstate call below */ 771 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 772 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 773 ural_ratectl_start(sc, ni); 774 ieee80211_free_node(ni); 775 break; 776 777 default: 778 break; 779 } 780 RAL_UNLOCK(sc); 781 IEEE80211_LOCK(ic); 782 return (uvp->newstate(vap, nstate, arg)); 783 } 784 785 786 static void 787 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 788 { 789 struct ural_softc *sc = usbd_xfer_softc(xfer); 790 struct ifnet *ifp = sc->sc_ifp; 791 struct ieee80211vap *vap; 792 struct ural_tx_data *data; 793 struct mbuf *m; 794 struct usb_page_cache *pc; 795 int len; 796 797 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 798 799 switch (USB_GET_STATE(xfer)) { 800 case USB_ST_TRANSFERRED: 801 DPRINTFN(11, "transfer complete, %d bytes\n", len); 802 803 /* free resources */ 804 data = usbd_xfer_get_priv(xfer); 805 ural_tx_free(data, 0); 806 usbd_xfer_set_priv(xfer, NULL); 807 808 ifp->if_opackets++; 809 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 810 811 /* FALLTHROUGH */ 812 case USB_ST_SETUP: 813 tr_setup: 814 data = STAILQ_FIRST(&sc->tx_q); 815 if (data) { 816 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 817 m = data->m; 818 819 if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { 820 DPRINTFN(0, "data overflow, %u bytes\n", 821 m->m_pkthdr.len); 822 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); 823 } 824 pc = usbd_xfer_get_frame(xfer, 0); 825 usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); 826 usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, 827 m->m_pkthdr.len); 828 829 vap = data->ni->ni_vap; 830 if (ieee80211_radiotap_active_vap(vap)) { 831 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 832 833 tap->wt_flags = 0; 834 tap->wt_rate = data->rate; 835 tap->wt_antenna = sc->tx_ant; 836 837 ieee80211_radiotap_tx(vap, m); 838 } 839 840 /* xfer length needs to be a multiple of two! */ 841 len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; 842 if ((len % 64) == 0) 843 len += 2; 844 845 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 846 m->m_pkthdr.len, len); 847 848 usbd_xfer_set_frame_len(xfer, 0, len); 849 usbd_xfer_set_priv(xfer, data); 850 851 usbd_transfer_submit(xfer); 852 } 853 RAL_UNLOCK(sc); 854 ural_start(ifp); 855 RAL_LOCK(sc); 856 break; 857 858 default: /* Error */ 859 DPRINTFN(11, "transfer error, %s\n", 860 usbd_errstr(error)); 861 862 ifp->if_oerrors++; 863 data = usbd_xfer_get_priv(xfer); 864 if (data != NULL) { 865 ural_tx_free(data, error); 866 usbd_xfer_set_priv(xfer, NULL); 867 } 868 869 if (error == USB_ERR_STALLED) { 870 /* try to clear stall first */ 871 usbd_xfer_set_stall(xfer); 872 goto tr_setup; 873 } 874 if (error == USB_ERR_TIMEOUT) 875 device_printf(sc->sc_dev, "device timeout\n"); 876 break; 877 } 878 } 879 880 static void 881 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 882 { 883 struct ural_softc *sc = usbd_xfer_softc(xfer); 884 struct ifnet *ifp = sc->sc_ifp; 885 struct ieee80211com *ic = ifp->if_l2com; 886 struct ieee80211_node *ni; 887 struct mbuf *m = NULL; 888 struct usb_page_cache *pc; 889 uint32_t flags; 890 int8_t rssi = 0, nf = 0; 891 int len; 892 893 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 894 895 switch (USB_GET_STATE(xfer)) { 896 case USB_ST_TRANSFERRED: 897 898 DPRINTFN(15, "rx done, actlen=%d\n", len); 899 900 if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 901 DPRINTF("%s: xfer too short %d\n", 902 device_get_nameunit(sc->sc_dev), len); 903 ifp->if_ierrors++; 904 goto tr_setup; 905 } 906 907 len -= RAL_RX_DESC_SIZE; 908 /* rx descriptor is located at the end */ 909 pc = usbd_xfer_get_frame(xfer, 0); 910 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); 911 912 rssi = URAL_RSSI(sc->sc_rx_desc.rssi); 913 nf = RAL_NOISE_FLOOR; 914 flags = le32toh(sc->sc_rx_desc.flags); 915 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 916 /* 917 * This should not happen since we did not 918 * request to receive those frames when we 919 * filled RAL_TXRX_CSR2: 920 */ 921 DPRINTFN(5, "PHY or CRC error\n"); 922 ifp->if_ierrors++; 923 goto tr_setup; 924 } 925 926 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 927 if (m == NULL) { 928 DPRINTF("could not allocate mbuf\n"); 929 ifp->if_ierrors++; 930 goto tr_setup; 931 } 932 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); 933 934 /* finalize mbuf */ 935 m->m_pkthdr.rcvif = ifp; 936 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 937 938 if (ieee80211_radiotap_active(ic)) { 939 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 940 941 /* XXX set once */ 942 tap->wr_flags = 0; 943 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 944 (flags & RAL_RX_OFDM) ? 945 IEEE80211_T_OFDM : IEEE80211_T_CCK); 946 tap->wr_antenna = sc->rx_ant; 947 tap->wr_antsignal = nf + rssi; 948 tap->wr_antnoise = nf; 949 } 950 /* Strip trailing 802.11 MAC FCS. */ 951 m_adj(m, -IEEE80211_CRC_LEN); 952 953 /* FALLTHROUGH */ 954 case USB_ST_SETUP: 955 tr_setup: 956 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 957 usbd_transfer_submit(xfer); 958 959 /* 960 * At the end of a USB callback it is always safe to unlock 961 * the private mutex of a device! That is why we do the 962 * "ieee80211_input" here, and not some lines up! 963 */ 964 RAL_UNLOCK(sc); 965 if (m) { 966 ni = ieee80211_find_rxnode(ic, 967 mtod(m, struct ieee80211_frame_min *)); 968 if (ni != NULL) { 969 (void) ieee80211_input(ni, m, rssi, nf); 970 ieee80211_free_node(ni); 971 } else 972 (void) ieee80211_input_all(ic, m, rssi, nf); 973 } 974 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 975 !IFQ_IS_EMPTY(&ifp->if_snd)) 976 ural_start(ifp); 977 RAL_LOCK(sc); 978 return; 979 980 default: /* Error */ 981 if (error != USB_ERR_CANCELLED) { 982 /* try to clear stall first */ 983 usbd_xfer_set_stall(xfer); 984 goto tr_setup; 985 } 986 return; 987 } 988 } 989 990 static uint8_t 991 ural_plcp_signal(int rate) 992 { 993 switch (rate) { 994 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 995 case 12: return 0xb; 996 case 18: return 0xf; 997 case 24: return 0xa; 998 case 36: return 0xe; 999 case 48: return 0x9; 1000 case 72: return 0xd; 1001 case 96: return 0x8; 1002 case 108: return 0xc; 1003 1004 /* CCK rates (NB: not IEEE std, device-specific) */ 1005 case 2: return 0x0; 1006 case 4: return 0x1; 1007 case 11: return 0x2; 1008 case 22: return 0x3; 1009 } 1010 return 0xff; /* XXX unsupported/unknown rate */ 1011 } 1012 1013 static void 1014 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 1015 uint32_t flags, int len, int rate) 1016 { 1017 struct ifnet *ifp = sc->sc_ifp; 1018 struct ieee80211com *ic = ifp->if_l2com; 1019 uint16_t plcp_length; 1020 int remainder; 1021 1022 desc->flags = htole32(flags); 1023 desc->flags |= htole32(RAL_TX_NEWSEQ); 1024 desc->flags |= htole32(len << 16); 1025 1026 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1027 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1028 1029 /* setup PLCP fields */ 1030 desc->plcp_signal = ural_plcp_signal(rate); 1031 desc->plcp_service = 4; 1032 1033 len += IEEE80211_CRC_LEN; 1034 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1035 desc->flags |= htole32(RAL_TX_OFDM); 1036 1037 plcp_length = len & 0xfff; 1038 desc->plcp_length_hi = plcp_length >> 6; 1039 desc->plcp_length_lo = plcp_length & 0x3f; 1040 } else { 1041 plcp_length = (16 * len + rate - 1) / rate; 1042 if (rate == 22) { 1043 remainder = (16 * len) % 22; 1044 if (remainder != 0 && remainder < 7) 1045 desc->plcp_service |= RAL_PLCP_LENGEXT; 1046 } 1047 desc->plcp_length_hi = plcp_length >> 8; 1048 desc->plcp_length_lo = plcp_length & 0xff; 1049 1050 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1051 desc->plcp_signal |= 0x08; 1052 } 1053 1054 desc->iv = 0; 1055 desc->eiv = 0; 1056 } 1057 1058 #define RAL_TX_TIMEOUT 5000 1059 1060 static int 1061 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1062 { 1063 struct ieee80211vap *vap = ni->ni_vap; 1064 struct ieee80211com *ic = ni->ni_ic; 1065 struct ifnet *ifp = sc->sc_ifp; 1066 const struct ieee80211_txparam *tp; 1067 struct ural_tx_data *data; 1068 1069 if (sc->tx_nfree == 0) { 1070 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1071 m_freem(m0); 1072 ieee80211_free_node(ni); 1073 return (EIO); 1074 } 1075 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 1076 m_freem(m0); 1077 ieee80211_free_node(ni); 1078 return (ENXIO); 1079 } 1080 data = STAILQ_FIRST(&sc->tx_free); 1081 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1082 sc->tx_nfree--; 1083 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 1084 1085 data->m = m0; 1086 data->ni = ni; 1087 data->rate = tp->mgmtrate; 1088 1089 ural_setup_tx_desc(sc, &data->desc, 1090 RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, 1091 tp->mgmtrate); 1092 1093 DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", 1094 m0->m_pkthdr.len, tp->mgmtrate); 1095 1096 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1097 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1098 1099 return (0); 1100 } 1101 1102 static int 1103 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1104 { 1105 struct ieee80211vap *vap = ni->ni_vap; 1106 struct ieee80211com *ic = ni->ni_ic; 1107 const struct ieee80211_txparam *tp; 1108 struct ural_tx_data *data; 1109 struct ieee80211_frame *wh; 1110 struct ieee80211_key *k; 1111 uint32_t flags; 1112 uint16_t dur; 1113 1114 RAL_LOCK_ASSERT(sc, MA_OWNED); 1115 1116 data = STAILQ_FIRST(&sc->tx_free); 1117 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1118 sc->tx_nfree--; 1119 1120 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1121 1122 wh = mtod(m0, struct ieee80211_frame *); 1123 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1124 k = ieee80211_crypto_encap(ni, m0); 1125 if (k == NULL) { 1126 m_freem(m0); 1127 return ENOBUFS; 1128 } 1129 wh = mtod(m0, struct ieee80211_frame *); 1130 } 1131 1132 data->m = m0; 1133 data->ni = ni; 1134 data->rate = tp->mgmtrate; 1135 1136 flags = 0; 1137 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1138 flags |= RAL_TX_ACK; 1139 1140 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1141 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1142 USETW(wh->i_dur, dur); 1143 1144 /* tell hardware to add timestamp for probe responses */ 1145 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1146 IEEE80211_FC0_TYPE_MGT && 1147 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1148 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1149 flags |= RAL_TX_TIMESTAMP; 1150 } 1151 1152 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); 1153 1154 DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", 1155 m0->m_pkthdr.len, tp->mgmtrate); 1156 1157 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1158 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1159 1160 return 0; 1161 } 1162 1163 static int 1164 ural_sendprot(struct ural_softc *sc, 1165 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1166 { 1167 struct ieee80211com *ic = ni->ni_ic; 1168 const struct ieee80211_frame *wh; 1169 struct ural_tx_data *data; 1170 struct mbuf *mprot; 1171 int protrate, ackrate, pktlen, flags, isshort; 1172 uint16_t dur; 1173 1174 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1175 ("protection %d", prot)); 1176 1177 wh = mtod(m, const struct ieee80211_frame *); 1178 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1179 1180 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1181 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1182 1183 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1184 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1185 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1186 flags = RAL_TX_RETRY(7); 1187 if (prot == IEEE80211_PROT_RTSCTS) { 1188 /* NB: CTS is the same size as an ACK */ 1189 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1190 flags |= RAL_TX_ACK; 1191 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1192 } else { 1193 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1194 } 1195 if (mprot == NULL) { 1196 /* XXX stat + msg */ 1197 return ENOBUFS; 1198 } 1199 data = STAILQ_FIRST(&sc->tx_free); 1200 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1201 sc->tx_nfree--; 1202 1203 data->m = mprot; 1204 data->ni = ieee80211_ref_node(ni); 1205 data->rate = protrate; 1206 ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); 1207 1208 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1209 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1210 1211 return 0; 1212 } 1213 1214 static int 1215 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1216 const struct ieee80211_bpf_params *params) 1217 { 1218 struct ieee80211com *ic = ni->ni_ic; 1219 struct ural_tx_data *data; 1220 uint32_t flags; 1221 int error; 1222 int rate; 1223 1224 RAL_LOCK_ASSERT(sc, MA_OWNED); 1225 KASSERT(params != NULL, ("no raw xmit params")); 1226 1227 rate = params->ibp_rate0; 1228 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1229 m_freem(m0); 1230 return EINVAL; 1231 } 1232 flags = 0; 1233 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1234 flags |= RAL_TX_ACK; 1235 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1236 error = ural_sendprot(sc, m0, ni, 1237 params->ibp_flags & IEEE80211_BPF_RTS ? 1238 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1239 rate); 1240 if (error || sc->tx_nfree == 0) { 1241 m_freem(m0); 1242 return ENOBUFS; 1243 } 1244 flags |= RAL_TX_IFS_SIFS; 1245 } 1246 1247 data = STAILQ_FIRST(&sc->tx_free); 1248 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1249 sc->tx_nfree--; 1250 1251 data->m = m0; 1252 data->ni = ni; 1253 data->rate = rate; 1254 1255 /* XXX need to setup descriptor ourself */ 1256 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1257 1258 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1259 m0->m_pkthdr.len, rate); 1260 1261 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1262 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1263 1264 return 0; 1265 } 1266 1267 static int 1268 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1269 { 1270 struct ieee80211vap *vap = ni->ni_vap; 1271 struct ieee80211com *ic = ni->ni_ic; 1272 struct ural_tx_data *data; 1273 struct ieee80211_frame *wh; 1274 const struct ieee80211_txparam *tp; 1275 struct ieee80211_key *k; 1276 uint32_t flags = 0; 1277 uint16_t dur; 1278 int error, rate; 1279 1280 RAL_LOCK_ASSERT(sc, MA_OWNED); 1281 1282 wh = mtod(m0, struct ieee80211_frame *); 1283 1284 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1285 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1286 rate = tp->mcastrate; 1287 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1288 rate = tp->ucastrate; 1289 else 1290 rate = ni->ni_txrate; 1291 1292 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1293 k = ieee80211_crypto_encap(ni, m0); 1294 if (k == NULL) { 1295 m_freem(m0); 1296 return ENOBUFS; 1297 } 1298 /* packet header may have moved, reset our local pointer */ 1299 wh = mtod(m0, struct ieee80211_frame *); 1300 } 1301 1302 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1303 int prot = IEEE80211_PROT_NONE; 1304 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1305 prot = IEEE80211_PROT_RTSCTS; 1306 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1307 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1308 prot = ic->ic_protmode; 1309 if (prot != IEEE80211_PROT_NONE) { 1310 error = ural_sendprot(sc, m0, ni, prot, rate); 1311 if (error || sc->tx_nfree == 0) { 1312 m_freem(m0); 1313 return ENOBUFS; 1314 } 1315 flags |= RAL_TX_IFS_SIFS; 1316 } 1317 } 1318 1319 data = STAILQ_FIRST(&sc->tx_free); 1320 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1321 sc->tx_nfree--; 1322 1323 data->m = m0; 1324 data->ni = ni; 1325 data->rate = rate; 1326 1327 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1328 flags |= RAL_TX_ACK; 1329 flags |= RAL_TX_RETRY(7); 1330 1331 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1332 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1333 USETW(wh->i_dur, dur); 1334 } 1335 1336 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1337 1338 DPRINTFN(10, "sending data frame len=%u rate=%u\n", 1339 m0->m_pkthdr.len, rate); 1340 1341 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1342 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1343 1344 return 0; 1345 } 1346 1347 static void 1348 ural_start(struct ifnet *ifp) 1349 { 1350 struct ural_softc *sc = ifp->if_softc; 1351 struct ieee80211_node *ni; 1352 struct mbuf *m; 1353 1354 RAL_LOCK(sc); 1355 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1356 RAL_UNLOCK(sc); 1357 return; 1358 } 1359 for (;;) { 1360 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1361 if (m == NULL) 1362 break; 1363 if (sc->tx_nfree < RAL_TX_MINFREE) { 1364 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1365 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1366 break; 1367 } 1368 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1369 if (ural_tx_data(sc, m, ni) != 0) { 1370 ieee80211_free_node(ni); 1371 ifp->if_oerrors++; 1372 break; 1373 } 1374 } 1375 RAL_UNLOCK(sc); 1376 } 1377 1378 static int 1379 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1380 { 1381 struct ural_softc *sc = ifp->if_softc; 1382 struct ieee80211com *ic = ifp->if_l2com; 1383 struct ifreq *ifr = (struct ifreq *) data; 1384 int error; 1385 int startall = 0; 1386 1387 RAL_LOCK(sc); 1388 error = sc->sc_detached ? ENXIO : 0; 1389 RAL_UNLOCK(sc); 1390 if (error) 1391 return (error); 1392 1393 switch (cmd) { 1394 case SIOCSIFFLAGS: 1395 RAL_LOCK(sc); 1396 if (ifp->if_flags & IFF_UP) { 1397 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1398 ural_init_locked(sc); 1399 startall = 1; 1400 } else 1401 ural_setpromisc(sc); 1402 } else { 1403 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1404 ural_stop(sc); 1405 } 1406 RAL_UNLOCK(sc); 1407 if (startall) 1408 ieee80211_start_all(ic); 1409 break; 1410 case SIOCGIFMEDIA: 1411 case SIOCSIFMEDIA: 1412 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1413 break; 1414 default: 1415 error = ether_ioctl(ifp, cmd, data); 1416 break; 1417 } 1418 return error; 1419 } 1420 1421 static void 1422 ural_set_testmode(struct ural_softc *sc) 1423 { 1424 struct usb_device_request req; 1425 usb_error_t error; 1426 1427 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1428 req.bRequest = RAL_VENDOR_REQUEST; 1429 USETW(req.wValue, 4); 1430 USETW(req.wIndex, 1); 1431 USETW(req.wLength, 0); 1432 1433 error = ural_do_request(sc, &req, NULL); 1434 if (error != 0) { 1435 device_printf(sc->sc_dev, "could not set test mode: %s\n", 1436 usbd_errstr(error)); 1437 } 1438 } 1439 1440 static void 1441 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1442 { 1443 struct usb_device_request req; 1444 usb_error_t error; 1445 1446 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1447 req.bRequest = RAL_READ_EEPROM; 1448 USETW(req.wValue, 0); 1449 USETW(req.wIndex, addr); 1450 USETW(req.wLength, len); 1451 1452 error = ural_do_request(sc, &req, buf); 1453 if (error != 0) { 1454 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1455 usbd_errstr(error)); 1456 } 1457 } 1458 1459 static uint16_t 1460 ural_read(struct ural_softc *sc, uint16_t reg) 1461 { 1462 struct usb_device_request req; 1463 usb_error_t error; 1464 uint16_t val; 1465 1466 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1467 req.bRequest = RAL_READ_MAC; 1468 USETW(req.wValue, 0); 1469 USETW(req.wIndex, reg); 1470 USETW(req.wLength, sizeof (uint16_t)); 1471 1472 error = ural_do_request(sc, &req, &val); 1473 if (error != 0) { 1474 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1475 usbd_errstr(error)); 1476 return 0; 1477 } 1478 1479 return le16toh(val); 1480 } 1481 1482 static void 1483 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1484 { 1485 struct usb_device_request req; 1486 usb_error_t error; 1487 1488 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1489 req.bRequest = RAL_READ_MULTI_MAC; 1490 USETW(req.wValue, 0); 1491 USETW(req.wIndex, reg); 1492 USETW(req.wLength, len); 1493 1494 error = ural_do_request(sc, &req, buf); 1495 if (error != 0) { 1496 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1497 usbd_errstr(error)); 1498 } 1499 } 1500 1501 static void 1502 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1503 { 1504 struct usb_device_request req; 1505 usb_error_t error; 1506 1507 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1508 req.bRequest = RAL_WRITE_MAC; 1509 USETW(req.wValue, val); 1510 USETW(req.wIndex, reg); 1511 USETW(req.wLength, 0); 1512 1513 error = ural_do_request(sc, &req, NULL); 1514 if (error != 0) { 1515 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1516 usbd_errstr(error)); 1517 } 1518 } 1519 1520 static void 1521 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1522 { 1523 struct usb_device_request req; 1524 usb_error_t error; 1525 1526 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1527 req.bRequest = RAL_WRITE_MULTI_MAC; 1528 USETW(req.wValue, 0); 1529 USETW(req.wIndex, reg); 1530 USETW(req.wLength, len); 1531 1532 error = ural_do_request(sc, &req, buf); 1533 if (error != 0) { 1534 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1535 usbd_errstr(error)); 1536 } 1537 } 1538 1539 static void 1540 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1541 { 1542 uint16_t tmp; 1543 int ntries; 1544 1545 for (ntries = 0; ntries < 100; ntries++) { 1546 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1547 break; 1548 if (ural_pause(sc, hz / 100)) 1549 break; 1550 } 1551 if (ntries == 100) { 1552 device_printf(sc->sc_dev, "could not write to BBP\n"); 1553 return; 1554 } 1555 1556 tmp = reg << 8 | val; 1557 ural_write(sc, RAL_PHY_CSR7, tmp); 1558 } 1559 1560 static uint8_t 1561 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1562 { 1563 uint16_t val; 1564 int ntries; 1565 1566 val = RAL_BBP_WRITE | reg << 8; 1567 ural_write(sc, RAL_PHY_CSR7, val); 1568 1569 for (ntries = 0; ntries < 100; ntries++) { 1570 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1571 break; 1572 if (ural_pause(sc, hz / 100)) 1573 break; 1574 } 1575 if (ntries == 100) { 1576 device_printf(sc->sc_dev, "could not read BBP\n"); 1577 return 0; 1578 } 1579 1580 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1581 } 1582 1583 static void 1584 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1585 { 1586 uint32_t tmp; 1587 int ntries; 1588 1589 for (ntries = 0; ntries < 100; ntries++) { 1590 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1591 break; 1592 if (ural_pause(sc, hz / 100)) 1593 break; 1594 } 1595 if (ntries == 100) { 1596 device_printf(sc->sc_dev, "could not write to RF\n"); 1597 return; 1598 } 1599 1600 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1601 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1602 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1603 1604 /* remember last written value in sc */ 1605 sc->rf_regs[reg] = val; 1606 1607 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); 1608 } 1609 1610 static void 1611 ural_scan_start(struct ieee80211com *ic) 1612 { 1613 struct ifnet *ifp = ic->ic_ifp; 1614 struct ural_softc *sc = ifp->if_softc; 1615 1616 RAL_LOCK(sc); 1617 ural_write(sc, RAL_TXRX_CSR19, 0); 1618 ural_set_bssid(sc, ifp->if_broadcastaddr); 1619 RAL_UNLOCK(sc); 1620 } 1621 1622 static void 1623 ural_scan_end(struct ieee80211com *ic) 1624 { 1625 struct ural_softc *sc = ic->ic_ifp->if_softc; 1626 1627 RAL_LOCK(sc); 1628 ural_enable_tsf_sync(sc); 1629 ural_set_bssid(sc, sc->sc_bssid); 1630 RAL_UNLOCK(sc); 1631 1632 } 1633 1634 static void 1635 ural_set_channel(struct ieee80211com *ic) 1636 { 1637 struct ural_softc *sc = ic->ic_ifp->if_softc; 1638 1639 RAL_LOCK(sc); 1640 ural_set_chan(sc, ic->ic_curchan); 1641 RAL_UNLOCK(sc); 1642 } 1643 1644 static void 1645 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1646 { 1647 struct ifnet *ifp = sc->sc_ifp; 1648 struct ieee80211com *ic = ifp->if_l2com; 1649 uint8_t power, tmp; 1650 int i, chan; 1651 1652 chan = ieee80211_chan2ieee(ic, c); 1653 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1654 return; 1655 1656 if (IEEE80211_IS_CHAN_2GHZ(c)) 1657 power = min(sc->txpow[chan - 1], 31); 1658 else 1659 power = 31; 1660 1661 /* adjust txpower using ifconfig settings */ 1662 power -= (100 - ic->ic_txpowlimit) / 8; 1663 1664 DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); 1665 1666 switch (sc->rf_rev) { 1667 case RAL_RF_2522: 1668 ural_rf_write(sc, RAL_RF1, 0x00814); 1669 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1670 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1671 break; 1672 1673 case RAL_RF_2523: 1674 ural_rf_write(sc, RAL_RF1, 0x08804); 1675 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1676 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1677 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1678 break; 1679 1680 case RAL_RF_2524: 1681 ural_rf_write(sc, RAL_RF1, 0x0c808); 1682 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1683 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1684 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1685 break; 1686 1687 case RAL_RF_2525: 1688 ural_rf_write(sc, RAL_RF1, 0x08808); 1689 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1690 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1691 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1692 1693 ural_rf_write(sc, RAL_RF1, 0x08808); 1694 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1695 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1696 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1697 break; 1698 1699 case RAL_RF_2525E: 1700 ural_rf_write(sc, RAL_RF1, 0x08808); 1701 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1702 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1703 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1704 break; 1705 1706 case RAL_RF_2526: 1707 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1708 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1709 ural_rf_write(sc, RAL_RF1, 0x08804); 1710 1711 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1712 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1713 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1714 break; 1715 1716 /* dual-band RF */ 1717 case RAL_RF_5222: 1718 for (i = 0; ural_rf5222[i].chan != chan; i++); 1719 1720 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1721 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1722 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1723 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1724 break; 1725 } 1726 1727 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1728 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1729 /* set Japan filter bit for channel 14 */ 1730 tmp = ural_bbp_read(sc, 70); 1731 1732 tmp &= ~RAL_JAPAN_FILTER; 1733 if (chan == 14) 1734 tmp |= RAL_JAPAN_FILTER; 1735 1736 ural_bbp_write(sc, 70, tmp); 1737 1738 /* clear CRC errors */ 1739 ural_read(sc, RAL_STA_CSR0); 1740 1741 ural_pause(sc, hz / 100); 1742 ural_disable_rf_tune(sc); 1743 } 1744 1745 /* XXX doesn't belong here */ 1746 /* update basic rate set */ 1747 ural_set_basicrates(sc, c); 1748 1749 /* give the hardware some time to do the switchover */ 1750 ural_pause(sc, hz / 100); 1751 } 1752 1753 /* 1754 * Disable RF auto-tuning. 1755 */ 1756 static void 1757 ural_disable_rf_tune(struct ural_softc *sc) 1758 { 1759 uint32_t tmp; 1760 1761 if (sc->rf_rev != RAL_RF_2523) { 1762 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1763 ural_rf_write(sc, RAL_RF1, tmp); 1764 } 1765 1766 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1767 ural_rf_write(sc, RAL_RF3, tmp); 1768 1769 DPRINTFN(2, "disabling RF autotune\n"); 1770 } 1771 1772 /* 1773 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1774 * synchronization. 1775 */ 1776 static void 1777 ural_enable_tsf_sync(struct ural_softc *sc) 1778 { 1779 struct ifnet *ifp = sc->sc_ifp; 1780 struct ieee80211com *ic = ifp->if_l2com; 1781 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1782 uint16_t logcwmin, preload, tmp; 1783 1784 /* first, disable TSF synchronization */ 1785 ural_write(sc, RAL_TXRX_CSR19, 0); 1786 1787 tmp = (16 * vap->iv_bss->ni_intval) << 4; 1788 ural_write(sc, RAL_TXRX_CSR18, tmp); 1789 1790 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1791 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1792 tmp = logcwmin << 12 | preload; 1793 ural_write(sc, RAL_TXRX_CSR20, tmp); 1794 1795 /* finally, enable TSF synchronization */ 1796 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1797 if (ic->ic_opmode == IEEE80211_M_STA) 1798 tmp |= RAL_ENABLE_TSF_SYNC(1); 1799 else 1800 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1801 ural_write(sc, RAL_TXRX_CSR19, tmp); 1802 1803 DPRINTF("enabling TSF synchronization\n"); 1804 } 1805 1806 static void 1807 ural_enable_tsf(struct ural_softc *sc) 1808 { 1809 /* first, disable TSF synchronization */ 1810 ural_write(sc, RAL_TXRX_CSR19, 0); 1811 ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); 1812 } 1813 1814 #define RAL_RXTX_TURNAROUND 5 /* us */ 1815 static void 1816 ural_update_slot(struct ifnet *ifp) 1817 { 1818 struct ural_softc *sc = ifp->if_softc; 1819 struct ieee80211com *ic = ifp->if_l2com; 1820 uint16_t slottime, sifs, eifs; 1821 1822 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1823 1824 /* 1825 * These settings may sound a bit inconsistent but this is what the 1826 * reference driver does. 1827 */ 1828 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1829 sifs = 16 - RAL_RXTX_TURNAROUND; 1830 eifs = 364; 1831 } else { 1832 sifs = 10 - RAL_RXTX_TURNAROUND; 1833 eifs = 64; 1834 } 1835 1836 ural_write(sc, RAL_MAC_CSR10, slottime); 1837 ural_write(sc, RAL_MAC_CSR11, sifs); 1838 ural_write(sc, RAL_MAC_CSR12, eifs); 1839 } 1840 1841 static void 1842 ural_set_txpreamble(struct ural_softc *sc) 1843 { 1844 struct ifnet *ifp = sc->sc_ifp; 1845 struct ieee80211com *ic = ifp->if_l2com; 1846 uint16_t tmp; 1847 1848 tmp = ural_read(sc, RAL_TXRX_CSR10); 1849 1850 tmp &= ~RAL_SHORT_PREAMBLE; 1851 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1852 tmp |= RAL_SHORT_PREAMBLE; 1853 1854 ural_write(sc, RAL_TXRX_CSR10, tmp); 1855 } 1856 1857 static void 1858 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) 1859 { 1860 /* XXX wrong, take from rate set */ 1861 /* update basic rate set */ 1862 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1863 /* 11a basic rates: 6, 12, 24Mbps */ 1864 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1865 } else if (IEEE80211_IS_CHAN_ANYG(c)) { 1866 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1867 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1868 } else { 1869 /* 11b basic rates: 1, 2Mbps */ 1870 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1871 } 1872 } 1873 1874 static void 1875 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1876 { 1877 uint16_t tmp; 1878 1879 tmp = bssid[0] | bssid[1] << 8; 1880 ural_write(sc, RAL_MAC_CSR5, tmp); 1881 1882 tmp = bssid[2] | bssid[3] << 8; 1883 ural_write(sc, RAL_MAC_CSR6, tmp); 1884 1885 tmp = bssid[4] | bssid[5] << 8; 1886 ural_write(sc, RAL_MAC_CSR7, tmp); 1887 1888 DPRINTF("setting BSSID to %6D\n", bssid, ":"); 1889 } 1890 1891 static void 1892 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1893 { 1894 uint16_t tmp; 1895 1896 tmp = addr[0] | addr[1] << 8; 1897 ural_write(sc, RAL_MAC_CSR2, tmp); 1898 1899 tmp = addr[2] | addr[3] << 8; 1900 ural_write(sc, RAL_MAC_CSR3, tmp); 1901 1902 tmp = addr[4] | addr[5] << 8; 1903 ural_write(sc, RAL_MAC_CSR4, tmp); 1904 1905 DPRINTF("setting MAC address to %6D\n", addr, ":"); 1906 } 1907 1908 static void 1909 ural_setpromisc(struct ural_softc *sc) 1910 { 1911 struct ifnet *ifp = sc->sc_ifp; 1912 uint32_t tmp; 1913 1914 tmp = ural_read(sc, RAL_TXRX_CSR2); 1915 1916 tmp &= ~RAL_DROP_NOT_TO_ME; 1917 if (!(ifp->if_flags & IFF_PROMISC)) 1918 tmp |= RAL_DROP_NOT_TO_ME; 1919 1920 ural_write(sc, RAL_TXRX_CSR2, tmp); 1921 1922 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1923 "entering" : "leaving"); 1924 } 1925 1926 static void 1927 ural_update_promisc(struct ifnet *ifp) 1928 { 1929 struct ural_softc *sc = ifp->if_softc; 1930 1931 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1932 return; 1933 1934 RAL_LOCK(sc); 1935 ural_setpromisc(sc); 1936 RAL_UNLOCK(sc); 1937 } 1938 1939 static const char * 1940 ural_get_rf(int rev) 1941 { 1942 switch (rev) { 1943 case RAL_RF_2522: return "RT2522"; 1944 case RAL_RF_2523: return "RT2523"; 1945 case RAL_RF_2524: return "RT2524"; 1946 case RAL_RF_2525: return "RT2525"; 1947 case RAL_RF_2525E: return "RT2525e"; 1948 case RAL_RF_2526: return "RT2526"; 1949 case RAL_RF_5222: return "RT5222"; 1950 default: return "unknown"; 1951 } 1952 } 1953 1954 static void 1955 ural_read_eeprom(struct ural_softc *sc) 1956 { 1957 uint16_t val; 1958 1959 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1960 val = le16toh(val); 1961 sc->rf_rev = (val >> 11) & 0x7; 1962 sc->hw_radio = (val >> 10) & 0x1; 1963 sc->led_mode = (val >> 6) & 0x7; 1964 sc->rx_ant = (val >> 4) & 0x3; 1965 sc->tx_ant = (val >> 2) & 0x3; 1966 sc->nb_ant = val & 0x3; 1967 1968 /* read MAC address */ 1969 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6); 1970 1971 /* read default values for BBP registers */ 1972 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1973 1974 /* read Tx power for all b/g channels */ 1975 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1976 } 1977 1978 static int 1979 ural_bbp_init(struct ural_softc *sc) 1980 { 1981 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 1982 int i, ntries; 1983 1984 /* wait for BBP to be ready */ 1985 for (ntries = 0; ntries < 100; ntries++) { 1986 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1987 break; 1988 if (ural_pause(sc, hz / 100)) 1989 break; 1990 } 1991 if (ntries == 100) { 1992 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1993 return EIO; 1994 } 1995 1996 /* initialize BBP registers to default values */ 1997 for (i = 0; i < N(ural_def_bbp); i++) 1998 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1999 2000 #if 0 2001 /* initialize BBP registers to values stored in EEPROM */ 2002 for (i = 0; i < 16; i++) { 2003 if (sc->bbp_prom[i].reg == 0xff) 2004 continue; 2005 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2006 } 2007 #endif 2008 2009 return 0; 2010 #undef N 2011 } 2012 2013 static void 2014 ural_set_txantenna(struct ural_softc *sc, int antenna) 2015 { 2016 uint16_t tmp; 2017 uint8_t tx; 2018 2019 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 2020 if (antenna == 1) 2021 tx |= RAL_BBP_ANTA; 2022 else if (antenna == 2) 2023 tx |= RAL_BBP_ANTB; 2024 else 2025 tx |= RAL_BBP_DIVERSITY; 2026 2027 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2028 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 2029 sc->rf_rev == RAL_RF_5222) 2030 tx |= RAL_BBP_FLIPIQ; 2031 2032 ural_bbp_write(sc, RAL_BBP_TX, tx); 2033 2034 /* update values in PHY_CSR5 and PHY_CSR6 */ 2035 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2036 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2037 2038 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2039 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2040 } 2041 2042 static void 2043 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2044 { 2045 uint8_t rx; 2046 2047 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2048 if (antenna == 1) 2049 rx |= RAL_BBP_ANTA; 2050 else if (antenna == 2) 2051 rx |= RAL_BBP_ANTB; 2052 else 2053 rx |= RAL_BBP_DIVERSITY; 2054 2055 /* need to force no I/Q flip for RF 2525e and 2526 */ 2056 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2057 rx &= ~RAL_BBP_FLIPIQ; 2058 2059 ural_bbp_write(sc, RAL_BBP_RX, rx); 2060 } 2061 2062 static void 2063 ural_init_locked(struct ural_softc *sc) 2064 { 2065 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 2066 struct ifnet *ifp = sc->sc_ifp; 2067 struct ieee80211com *ic = ifp->if_l2com; 2068 uint16_t tmp; 2069 int i, ntries; 2070 2071 RAL_LOCK_ASSERT(sc, MA_OWNED); 2072 2073 ural_set_testmode(sc); 2074 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2075 2076 ural_stop(sc); 2077 2078 /* initialize MAC registers to default values */ 2079 for (i = 0; i < N(ural_def_mac); i++) 2080 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2081 2082 /* wait for BBP and RF to wake up (this can take a long time!) */ 2083 for (ntries = 0; ntries < 100; ntries++) { 2084 tmp = ural_read(sc, RAL_MAC_CSR17); 2085 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2086 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2087 break; 2088 if (ural_pause(sc, hz / 100)) 2089 break; 2090 } 2091 if (ntries == 100) { 2092 device_printf(sc->sc_dev, 2093 "timeout waiting for BBP/RF to wakeup\n"); 2094 goto fail; 2095 } 2096 2097 /* we're ready! */ 2098 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2099 2100 /* set basic rate set (will be updated later) */ 2101 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2102 2103 if (ural_bbp_init(sc) != 0) 2104 goto fail; 2105 2106 ural_set_chan(sc, ic->ic_curchan); 2107 2108 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2109 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2110 2111 ural_set_txantenna(sc, sc->tx_ant); 2112 ural_set_rxantenna(sc, sc->rx_ant); 2113 2114 ural_set_macaddr(sc, IF_LLADDR(ifp)); 2115 2116 /* 2117 * Allocate Tx and Rx xfer queues. 2118 */ 2119 ural_setup_tx_list(sc); 2120 2121 /* kick Rx */ 2122 tmp = RAL_DROP_PHY | RAL_DROP_CRC; 2123 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2124 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; 2125 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2126 tmp |= RAL_DROP_TODS; 2127 if (!(ifp->if_flags & IFF_PROMISC)) 2128 tmp |= RAL_DROP_NOT_TO_ME; 2129 } 2130 ural_write(sc, RAL_TXRX_CSR2, tmp); 2131 2132 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2133 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2134 usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); 2135 usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); 2136 return; 2137 2138 fail: ural_stop(sc); 2139 #undef N 2140 } 2141 2142 static void 2143 ural_init(void *priv) 2144 { 2145 struct ural_softc *sc = priv; 2146 struct ifnet *ifp = sc->sc_ifp; 2147 struct ieee80211com *ic = ifp->if_l2com; 2148 2149 RAL_LOCK(sc); 2150 ural_init_locked(sc); 2151 RAL_UNLOCK(sc); 2152 2153 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2154 ieee80211_start_all(ic); /* start all vap's */ 2155 } 2156 2157 static void 2158 ural_stop(struct ural_softc *sc) 2159 { 2160 struct ifnet *ifp = sc->sc_ifp; 2161 2162 RAL_LOCK_ASSERT(sc, MA_OWNED); 2163 2164 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2165 2166 /* 2167 * Drain all the transfers, if not already drained: 2168 */ 2169 RAL_UNLOCK(sc); 2170 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); 2171 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); 2172 RAL_LOCK(sc); 2173 2174 ural_unsetup_tx_list(sc); 2175 2176 /* disable Rx */ 2177 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2178 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2179 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2180 /* wait a little */ 2181 ural_pause(sc, hz / 10); 2182 ural_write(sc, RAL_MAC_CSR1, 0); 2183 /* wait a little */ 2184 ural_pause(sc, hz / 10); 2185 } 2186 2187 static int 2188 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2189 const struct ieee80211_bpf_params *params) 2190 { 2191 struct ieee80211com *ic = ni->ni_ic; 2192 struct ifnet *ifp = ic->ic_ifp; 2193 struct ural_softc *sc = ifp->if_softc; 2194 2195 RAL_LOCK(sc); 2196 /* prevent management frames from being sent if we're not ready */ 2197 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2198 RAL_UNLOCK(sc); 2199 m_freem(m); 2200 ieee80211_free_node(ni); 2201 return ENETDOWN; 2202 } 2203 if (sc->tx_nfree < RAL_TX_MINFREE) { 2204 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2205 RAL_UNLOCK(sc); 2206 m_freem(m); 2207 ieee80211_free_node(ni); 2208 return EIO; 2209 } 2210 2211 ifp->if_opackets++; 2212 2213 if (params == NULL) { 2214 /* 2215 * Legacy path; interpret frame contents to decide 2216 * precisely how to send the frame. 2217 */ 2218 if (ural_tx_mgt(sc, m, ni) != 0) 2219 goto bad; 2220 } else { 2221 /* 2222 * Caller supplied explicit parameters to use in 2223 * sending the frame. 2224 */ 2225 if (ural_tx_raw(sc, m, ni, params) != 0) 2226 goto bad; 2227 } 2228 RAL_UNLOCK(sc); 2229 return 0; 2230 bad: 2231 ifp->if_oerrors++; 2232 RAL_UNLOCK(sc); 2233 ieee80211_free_node(ni); 2234 return EIO; /* XXX */ 2235 } 2236 2237 static void 2238 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) 2239 { 2240 struct ieee80211vap *vap = ni->ni_vap; 2241 struct ural_vap *uvp = URAL_VAP(vap); 2242 2243 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2244 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2245 2246 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2247 } 2248 2249 static void 2250 ural_ratectl_timeout(void *arg) 2251 { 2252 struct ural_vap *uvp = arg; 2253 struct ieee80211vap *vap = &uvp->vap; 2254 struct ieee80211com *ic = vap->iv_ic; 2255 2256 ieee80211_runtask(ic, &uvp->ratectl_task); 2257 } 2258 2259 static void 2260 ural_ratectl_task(void *arg, int pending) 2261 { 2262 struct ural_vap *uvp = arg; 2263 struct ieee80211vap *vap = &uvp->vap; 2264 struct ieee80211com *ic = vap->iv_ic; 2265 struct ifnet *ifp = ic->ic_ifp; 2266 struct ural_softc *sc = ifp->if_softc; 2267 struct ieee80211_node *ni; 2268 int ok, fail; 2269 int sum, retrycnt; 2270 2271 ni = ieee80211_ref_node(vap->iv_bss); 2272 RAL_LOCK(sc); 2273 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2274 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2275 2276 ok = sc->sta[7] + /* TX ok w/o retry */ 2277 sc->sta[8]; /* TX ok w/ retry */ 2278 fail = sc->sta[9]; /* TX retry-fail count */ 2279 sum = ok+fail; 2280 retrycnt = sc->sta[8] + fail; 2281 2282 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2283 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2284 2285 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2286 2287 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2288 RAL_UNLOCK(sc); 2289 ieee80211_free_node(ni); 2290 } 2291 2292 static int 2293 ural_pause(struct ural_softc *sc, int timeout) 2294 { 2295 2296 usb_pause_mtx(&sc->sc_mtx, timeout); 2297 return (0); 2298 } 2299