1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Copyright (c) 2006, 2008 8 * Hans Petter Selasky <hselasky@FreeBSD.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 /*- 27 * Ralink Technology RT2500USB chipset driver 28 * http://www.ralinktech.com/ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/module.h> 42 #include <sys/bus.h> 43 #include <sys/endian.h> 44 #include <sys/kdb.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <sys/rman.h> 49 50 #include <net/bpf.h> 51 #include <net/if.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR ural_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_uralreg.h> 79 #include <dev/usb/wlan/if_uralvar.h> 80 81 #ifdef USB_DEBUG 82 static int ural_debug = 0; 83 84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); 85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0, 86 "Debug level"); 87 #endif 88 89 #define URAL_RSSI(rssi) \ 90 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ 91 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) 92 93 /* various supported device vendors/products */ 94 static const struct usb_device_id ural_devs[] = { 95 #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 96 URAL_DEV(ASUS, WL167G), 97 URAL_DEV(ASUS, RT2570), 98 URAL_DEV(BELKIN, F5D7050), 99 URAL_DEV(BELKIN, F5D7051), 100 URAL_DEV(CISCOLINKSYS, HU200TS), 101 URAL_DEV(CISCOLINKSYS, WUSB54G), 102 URAL_DEV(CISCOLINKSYS, WUSB54GP), 103 URAL_DEV(CONCEPTRONIC2, C54RU), 104 URAL_DEV(DLINK, DWLG122), 105 URAL_DEV(GIGABYTE, GN54G), 106 URAL_DEV(GIGABYTE, GNWBKG), 107 URAL_DEV(GUILLEMOT, HWGUSB254), 108 URAL_DEV(MELCO, KG54), 109 URAL_DEV(MELCO, KG54AI), 110 URAL_DEV(MELCO, KG54YB), 111 URAL_DEV(MELCO, NINWIFI), 112 URAL_DEV(MSI, RT2570), 113 URAL_DEV(MSI, RT2570_2), 114 URAL_DEV(MSI, RT2570_3), 115 URAL_DEV(NOVATECH, NV902), 116 URAL_DEV(RALINK, RT2570), 117 URAL_DEV(RALINK, RT2570_2), 118 URAL_DEV(RALINK, RT2570_3), 119 URAL_DEV(SIEMENS2, WL54G), 120 URAL_DEV(SMC, 2862WG), 121 URAL_DEV(SPHAIRON, UB801R), 122 URAL_DEV(SURECOM, RT2570), 123 URAL_DEV(VTECH, RT2570), 124 URAL_DEV(ZINWELL, RT2570), 125 #undef URAL_DEV 126 }; 127 128 static usb_callback_t ural_bulk_read_callback; 129 static usb_callback_t ural_bulk_write_callback; 130 131 static usb_error_t ural_do_request(struct ural_softc *sc, 132 struct usb_device_request *req, void *data); 133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *, 134 const char name[IFNAMSIZ], int unit, int opmode, 135 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 136 const uint8_t mac[IEEE80211_ADDR_LEN]); 137 static void ural_vap_delete(struct ieee80211vap *); 138 static void ural_tx_free(struct ural_tx_data *, int); 139 static void ural_setup_tx_list(struct ural_softc *); 140 static void ural_unsetup_tx_list(struct ural_softc *); 141 static int ural_newstate(struct ieee80211vap *, 142 enum ieee80211_state, int); 143 static void ural_setup_tx_desc(struct ural_softc *, 144 struct ural_tx_desc *, uint32_t, int, int); 145 static int ural_tx_bcn(struct ural_softc *, struct mbuf *, 146 struct ieee80211_node *); 147 static int ural_tx_mgt(struct ural_softc *, struct mbuf *, 148 struct ieee80211_node *); 149 static int ural_tx_data(struct ural_softc *, struct mbuf *, 150 struct ieee80211_node *); 151 static void ural_start(struct ifnet *); 152 static int ural_ioctl(struct ifnet *, u_long, caddr_t); 153 static void ural_set_testmode(struct ural_softc *); 154 static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, 155 int); 156 static uint16_t ural_read(struct ural_softc *, uint16_t); 157 static void ural_read_multi(struct ural_softc *, uint16_t, void *, 158 int); 159 static void ural_write(struct ural_softc *, uint16_t, uint16_t); 160 static void ural_write_multi(struct ural_softc *, uint16_t, void *, 161 int) __unused; 162 static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); 163 static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); 164 static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); 165 static void ural_scan_start(struct ieee80211com *); 166 static void ural_scan_end(struct ieee80211com *); 167 static void ural_set_channel(struct ieee80211com *); 168 static void ural_set_chan(struct ural_softc *, 169 struct ieee80211_channel *); 170 static void ural_disable_rf_tune(struct ural_softc *); 171 static void ural_enable_tsf_sync(struct ural_softc *); 172 static void ural_enable_tsf(struct ural_softc *); 173 static void ural_update_slot(struct ifnet *); 174 static void ural_set_txpreamble(struct ural_softc *); 175 static void ural_set_basicrates(struct ural_softc *, 176 const struct ieee80211_channel *); 177 static void ural_set_bssid(struct ural_softc *, const uint8_t *); 178 static void ural_set_macaddr(struct ural_softc *, uint8_t *); 179 static void ural_update_promisc(struct ifnet *); 180 static void ural_setpromisc(struct ural_softc *); 181 static const char *ural_get_rf(int); 182 static void ural_read_eeprom(struct ural_softc *); 183 static int ural_bbp_init(struct ural_softc *); 184 static void ural_set_txantenna(struct ural_softc *, int); 185 static void ural_set_rxantenna(struct ural_softc *, int); 186 static void ural_init_locked(struct ural_softc *); 187 static void ural_init(void *); 188 static void ural_stop(struct ural_softc *); 189 static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, 190 const struct ieee80211_bpf_params *); 191 static void ural_ratectl_start(struct ural_softc *, 192 struct ieee80211_node *); 193 static void ural_ratectl_timeout(void *); 194 static void ural_ratectl_task(void *, int); 195 static int ural_pause(struct ural_softc *sc, int timeout); 196 197 /* 198 * Default values for MAC registers; values taken from the reference driver. 199 */ 200 static const struct { 201 uint16_t reg; 202 uint16_t val; 203 } ural_def_mac[] = { 204 { RAL_TXRX_CSR5, 0x8c8d }, 205 { RAL_TXRX_CSR6, 0x8b8a }, 206 { RAL_TXRX_CSR7, 0x8687 }, 207 { RAL_TXRX_CSR8, 0x0085 }, 208 { RAL_MAC_CSR13, 0x1111 }, 209 { RAL_MAC_CSR14, 0x1e11 }, 210 { RAL_TXRX_CSR21, 0xe78f }, 211 { RAL_MAC_CSR9, 0xff1d }, 212 { RAL_MAC_CSR11, 0x0002 }, 213 { RAL_MAC_CSR22, 0x0053 }, 214 { RAL_MAC_CSR15, 0x0000 }, 215 { RAL_MAC_CSR8, RAL_FRAME_SIZE }, 216 { RAL_TXRX_CSR19, 0x0000 }, 217 { RAL_TXRX_CSR18, 0x005a }, 218 { RAL_PHY_CSR2, 0x0000 }, 219 { RAL_TXRX_CSR0, 0x1ec0 }, 220 { RAL_PHY_CSR4, 0x000f } 221 }; 222 223 /* 224 * Default values for BBP registers; values taken from the reference driver. 225 */ 226 static const struct { 227 uint8_t reg; 228 uint8_t val; 229 } ural_def_bbp[] = { 230 { 3, 0x02 }, 231 { 4, 0x19 }, 232 { 14, 0x1c }, 233 { 15, 0x30 }, 234 { 16, 0xac }, 235 { 17, 0x48 }, 236 { 18, 0x18 }, 237 { 19, 0xff }, 238 { 20, 0x1e }, 239 { 21, 0x08 }, 240 { 22, 0x08 }, 241 { 23, 0x08 }, 242 { 24, 0x80 }, 243 { 25, 0x50 }, 244 { 26, 0x08 }, 245 { 27, 0x23 }, 246 { 30, 0x10 }, 247 { 31, 0x2b }, 248 { 32, 0xb9 }, 249 { 34, 0x12 }, 250 { 35, 0x50 }, 251 { 39, 0xc4 }, 252 { 40, 0x02 }, 253 { 41, 0x60 }, 254 { 53, 0x10 }, 255 { 54, 0x18 }, 256 { 56, 0x08 }, 257 { 57, 0x10 }, 258 { 58, 0x08 }, 259 { 61, 0x60 }, 260 { 62, 0x10 }, 261 { 75, 0xff } 262 }; 263 264 /* 265 * Default values for RF register R2 indexed by channel numbers. 266 */ 267 static const uint32_t ural_rf2522_r2[] = { 268 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 269 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e 270 }; 271 272 static const uint32_t ural_rf2523_r2[] = { 273 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 274 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 275 }; 276 277 static const uint32_t ural_rf2524_r2[] = { 278 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 279 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 280 }; 281 282 static const uint32_t ural_rf2525_r2[] = { 283 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 284 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 285 }; 286 287 static const uint32_t ural_rf2525_hi_r2[] = { 288 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 289 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e 290 }; 291 292 static const uint32_t ural_rf2525e_r2[] = { 293 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 294 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b 295 }; 296 297 static const uint32_t ural_rf2526_hi_r2[] = { 298 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 299 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 300 }; 301 302 static const uint32_t ural_rf2526_r2[] = { 303 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 304 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d 305 }; 306 307 /* 308 * For dual-band RF, RF registers R1 and R4 also depend on channel number; 309 * values taken from the reference driver. 310 */ 311 static const struct { 312 uint8_t chan; 313 uint32_t r1; 314 uint32_t r2; 315 uint32_t r4; 316 } ural_rf5222[] = { 317 { 1, 0x08808, 0x0044d, 0x00282 }, 318 { 2, 0x08808, 0x0044e, 0x00282 }, 319 { 3, 0x08808, 0x0044f, 0x00282 }, 320 { 4, 0x08808, 0x00460, 0x00282 }, 321 { 5, 0x08808, 0x00461, 0x00282 }, 322 { 6, 0x08808, 0x00462, 0x00282 }, 323 { 7, 0x08808, 0x00463, 0x00282 }, 324 { 8, 0x08808, 0x00464, 0x00282 }, 325 { 9, 0x08808, 0x00465, 0x00282 }, 326 { 10, 0x08808, 0x00466, 0x00282 }, 327 { 11, 0x08808, 0x00467, 0x00282 }, 328 { 12, 0x08808, 0x00468, 0x00282 }, 329 { 13, 0x08808, 0x00469, 0x00282 }, 330 { 14, 0x08808, 0x0046b, 0x00286 }, 331 332 { 36, 0x08804, 0x06225, 0x00287 }, 333 { 40, 0x08804, 0x06226, 0x00287 }, 334 { 44, 0x08804, 0x06227, 0x00287 }, 335 { 48, 0x08804, 0x06228, 0x00287 }, 336 { 52, 0x08804, 0x06229, 0x00287 }, 337 { 56, 0x08804, 0x0622a, 0x00287 }, 338 { 60, 0x08804, 0x0622b, 0x00287 }, 339 { 64, 0x08804, 0x0622c, 0x00287 }, 340 341 { 100, 0x08804, 0x02200, 0x00283 }, 342 { 104, 0x08804, 0x02201, 0x00283 }, 343 { 108, 0x08804, 0x02202, 0x00283 }, 344 { 112, 0x08804, 0x02203, 0x00283 }, 345 { 116, 0x08804, 0x02204, 0x00283 }, 346 { 120, 0x08804, 0x02205, 0x00283 }, 347 { 124, 0x08804, 0x02206, 0x00283 }, 348 { 128, 0x08804, 0x02207, 0x00283 }, 349 { 132, 0x08804, 0x02208, 0x00283 }, 350 { 136, 0x08804, 0x02209, 0x00283 }, 351 { 140, 0x08804, 0x0220a, 0x00283 }, 352 353 { 149, 0x08808, 0x02429, 0x00281 }, 354 { 153, 0x08808, 0x0242b, 0x00281 }, 355 { 157, 0x08808, 0x0242d, 0x00281 }, 356 { 161, 0x08808, 0x0242f, 0x00281 } 357 }; 358 359 static const struct usb_config ural_config[URAL_N_TRANSFER] = { 360 [URAL_BULK_WR] = { 361 .type = UE_BULK, 362 .endpoint = UE_ADDR_ANY, 363 .direction = UE_DIR_OUT, 364 .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), 365 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 366 .callback = ural_bulk_write_callback, 367 .timeout = 5000, /* ms */ 368 }, 369 [URAL_BULK_RD] = { 370 .type = UE_BULK, 371 .endpoint = UE_ADDR_ANY, 372 .direction = UE_DIR_IN, 373 .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), 374 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 375 .callback = ural_bulk_read_callback, 376 }, 377 }; 378 379 static device_probe_t ural_match; 380 static device_attach_t ural_attach; 381 static device_detach_t ural_detach; 382 383 static device_method_t ural_methods[] = { 384 /* Device interface */ 385 DEVMETHOD(device_probe, ural_match), 386 DEVMETHOD(device_attach, ural_attach), 387 DEVMETHOD(device_detach, ural_detach), 388 389 { 0, 0 } 390 }; 391 392 static driver_t ural_driver = { 393 .name = "ural", 394 .methods = ural_methods, 395 .size = sizeof(struct ural_softc), 396 }; 397 398 static devclass_t ural_devclass; 399 400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); 401 MODULE_DEPEND(ural, usb, 1, 1, 1); 402 MODULE_DEPEND(ural, wlan, 1, 1, 1); 403 404 static int 405 ural_match(device_t self) 406 { 407 struct usb_attach_arg *uaa = device_get_ivars(self); 408 409 if (uaa->usb_mode != USB_MODE_HOST) 410 return (ENXIO); 411 if (uaa->info.bConfigIndex != 0) 412 return (ENXIO); 413 if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) 414 return (ENXIO); 415 416 return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); 417 } 418 419 static int 420 ural_attach(device_t self) 421 { 422 struct usb_attach_arg *uaa = device_get_ivars(self); 423 struct ural_softc *sc = device_get_softc(self); 424 struct ifnet *ifp; 425 struct ieee80211com *ic; 426 uint8_t iface_index, bands; 427 int error; 428 429 device_set_usb_desc(self); 430 sc->sc_udev = uaa->device; 431 sc->sc_dev = self; 432 433 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 434 MTX_NETWORK_LOCK, MTX_DEF); 435 436 iface_index = RAL_IFACE_INDEX; 437 error = usbd_transfer_setup(uaa->device, 438 &iface_index, sc->sc_xfer, ural_config, 439 URAL_N_TRANSFER, sc, &sc->sc_mtx); 440 if (error) { 441 device_printf(self, "could not allocate USB transfers, " 442 "err=%s\n", usbd_errstr(error)); 443 goto detach; 444 } 445 446 RAL_LOCK(sc); 447 /* retrieve RT2570 rev. no */ 448 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); 449 450 /* retrieve MAC address and various other things from EEPROM */ 451 ural_read_eeprom(sc); 452 RAL_UNLOCK(sc); 453 454 device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", 455 sc->asic_rev, ural_get_rf(sc->rf_rev)); 456 457 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 458 if (ifp == NULL) { 459 device_printf(sc->sc_dev, "can not if_alloc()\n"); 460 goto detach; 461 } 462 ic = ifp->if_l2com; 463 464 ifp->if_softc = sc; 465 if_initname(ifp, "ural", device_get_unit(sc->sc_dev)); 466 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 467 ifp->if_init = ural_init; 468 ifp->if_ioctl = ural_ioctl; 469 ifp->if_start = ural_start; 470 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 471 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 472 IFQ_SET_READY(&ifp->if_snd); 473 474 ic->ic_ifp = ifp; 475 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 476 477 /* set device capabilities */ 478 ic->ic_caps = 479 IEEE80211_C_STA /* station mode supported */ 480 | IEEE80211_C_IBSS /* IBSS mode supported */ 481 | IEEE80211_C_MONITOR /* monitor mode supported */ 482 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 483 | IEEE80211_C_TXPMGT /* tx power management */ 484 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 485 | IEEE80211_C_SHSLOT /* short slot time supported */ 486 | IEEE80211_C_BGSCAN /* bg scanning supported */ 487 | IEEE80211_C_WPA /* 802.11i */ 488 ; 489 490 bands = 0; 491 setbit(&bands, IEEE80211_MODE_11B); 492 setbit(&bands, IEEE80211_MODE_11G); 493 if (sc->rf_rev == RAL_RF_5222) 494 setbit(&bands, IEEE80211_MODE_11A); 495 ieee80211_init_channels(ic, NULL, &bands); 496 497 ieee80211_ifattach(ic, sc->sc_bssid); 498 ic->ic_update_promisc = ural_update_promisc; 499 ic->ic_raw_xmit = ural_raw_xmit; 500 ic->ic_scan_start = ural_scan_start; 501 ic->ic_scan_end = ural_scan_end; 502 ic->ic_set_channel = ural_set_channel; 503 504 ic->ic_vap_create = ural_vap_create; 505 ic->ic_vap_delete = ural_vap_delete; 506 507 ieee80211_radiotap_attach(ic, 508 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 509 RAL_TX_RADIOTAP_PRESENT, 510 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 511 RAL_RX_RADIOTAP_PRESENT); 512 513 if (bootverbose) 514 ieee80211_announce(ic); 515 516 return (0); 517 518 detach: 519 ural_detach(self); 520 return (ENXIO); /* failure */ 521 } 522 523 static int 524 ural_detach(device_t self) 525 { 526 struct ural_softc *sc = device_get_softc(self); 527 struct ifnet *ifp = sc->sc_ifp; 528 struct ieee80211com *ic; 529 530 /* stop all USB transfers */ 531 usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); 532 533 /* free TX list, if any */ 534 RAL_LOCK(sc); 535 ural_unsetup_tx_list(sc); 536 RAL_UNLOCK(sc); 537 538 if (ifp) { 539 ic = ifp->if_l2com; 540 ieee80211_ifdetach(ic); 541 if_free(ifp); 542 } 543 mtx_destroy(&sc->sc_mtx); 544 545 return (0); 546 } 547 548 static usb_error_t 549 ural_do_request(struct ural_softc *sc, 550 struct usb_device_request *req, void *data) 551 { 552 usb_error_t err; 553 int ntries = 10; 554 555 while (ntries--) { 556 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 557 req, data, 0, NULL, 250 /* ms */); 558 if (err == 0) 559 break; 560 561 DPRINTFN(1, "Control request failed, %s (retrying)\n", 562 usbd_errstr(err)); 563 if (ural_pause(sc, hz / 100)) 564 break; 565 } 566 return (err); 567 } 568 569 static struct ieee80211vap * 570 ural_vap_create(struct ieee80211com *ic, 571 const char name[IFNAMSIZ], int unit, int opmode, int flags, 572 const uint8_t bssid[IEEE80211_ADDR_LEN], 573 const uint8_t mac[IEEE80211_ADDR_LEN]) 574 { 575 struct ural_softc *sc = ic->ic_ifp->if_softc; 576 struct ural_vap *uvp; 577 struct ieee80211vap *vap; 578 579 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 580 return NULL; 581 uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap), 582 M_80211_VAP, M_NOWAIT | M_ZERO); 583 if (uvp == NULL) 584 return NULL; 585 vap = &uvp->vap; 586 /* enable s/w bmiss handling for sta mode */ 587 ieee80211_vap_setup(ic, vap, name, unit, opmode, 588 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 589 590 /* override state transition machine */ 591 uvp->newstate = vap->iv_newstate; 592 vap->iv_newstate = ural_newstate; 593 594 usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); 595 TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); 596 ieee80211_ratectl_init(vap); 597 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 598 599 /* complete setup */ 600 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 601 ic->ic_opmode = opmode; 602 return vap; 603 } 604 605 static void 606 ural_vap_delete(struct ieee80211vap *vap) 607 { 608 struct ural_vap *uvp = URAL_VAP(vap); 609 struct ieee80211com *ic = vap->iv_ic; 610 611 usb_callout_drain(&uvp->ratectl_ch); 612 ieee80211_draintask(ic, &uvp->ratectl_task); 613 ieee80211_ratectl_deinit(vap); 614 ieee80211_vap_detach(vap); 615 free(uvp, M_80211_VAP); 616 } 617 618 static void 619 ural_tx_free(struct ural_tx_data *data, int txerr) 620 { 621 struct ural_softc *sc = data->sc; 622 623 if (data->m != NULL) { 624 if (data->m->m_flags & M_TXCB) 625 ieee80211_process_callback(data->ni, data->m, 626 txerr ? ETIMEDOUT : 0); 627 m_freem(data->m); 628 data->m = NULL; 629 630 ieee80211_free_node(data->ni); 631 data->ni = NULL; 632 } 633 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 634 sc->tx_nfree++; 635 } 636 637 static void 638 ural_setup_tx_list(struct ural_softc *sc) 639 { 640 struct ural_tx_data *data; 641 int i; 642 643 sc->tx_nfree = 0; 644 STAILQ_INIT(&sc->tx_q); 645 STAILQ_INIT(&sc->tx_free); 646 647 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 648 data = &sc->tx_data[i]; 649 650 data->sc = sc; 651 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 652 sc->tx_nfree++; 653 } 654 } 655 656 static void 657 ural_unsetup_tx_list(struct ural_softc *sc) 658 { 659 struct ural_tx_data *data; 660 int i; 661 662 /* make sure any subsequent use of the queues will fail */ 663 sc->tx_nfree = 0; 664 STAILQ_INIT(&sc->tx_q); 665 STAILQ_INIT(&sc->tx_free); 666 667 /* free up all node references and mbufs */ 668 for (i = 0; i < RAL_TX_LIST_COUNT; i++) { 669 data = &sc->tx_data[i]; 670 671 if (data->m != NULL) { 672 m_freem(data->m); 673 data->m = NULL; 674 } 675 if (data->ni != NULL) { 676 ieee80211_free_node(data->ni); 677 data->ni = NULL; 678 } 679 } 680 } 681 682 static int 683 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 684 { 685 struct ural_vap *uvp = URAL_VAP(vap); 686 struct ieee80211com *ic = vap->iv_ic; 687 struct ural_softc *sc = ic->ic_ifp->if_softc; 688 const struct ieee80211_txparam *tp; 689 struct ieee80211_node *ni; 690 struct mbuf *m; 691 692 DPRINTF("%s -> %s\n", 693 ieee80211_state_name[vap->iv_state], 694 ieee80211_state_name[nstate]); 695 696 IEEE80211_UNLOCK(ic); 697 RAL_LOCK(sc); 698 usb_callout_stop(&uvp->ratectl_ch); 699 700 switch (nstate) { 701 case IEEE80211_S_INIT: 702 if (vap->iv_state == IEEE80211_S_RUN) { 703 /* abort TSF synchronization */ 704 ural_write(sc, RAL_TXRX_CSR19, 0); 705 706 /* force tx led to stop blinking */ 707 ural_write(sc, RAL_MAC_CSR20, 0); 708 } 709 break; 710 711 case IEEE80211_S_RUN: 712 ni = vap->iv_bss; 713 714 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 715 ural_update_slot(ic->ic_ifp); 716 ural_set_txpreamble(sc); 717 ural_set_basicrates(sc, ic->ic_bsschan); 718 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 719 ural_set_bssid(sc, sc->sc_bssid); 720 } 721 722 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 723 vap->iv_opmode == IEEE80211_M_IBSS) { 724 m = ieee80211_beacon_alloc(ni, &uvp->bo); 725 if (m == NULL) { 726 device_printf(sc->sc_dev, 727 "could not allocate beacon\n"); 728 RAL_UNLOCK(sc); 729 IEEE80211_LOCK(ic); 730 return (-1); 731 } 732 ieee80211_ref_node(ni); 733 if (ural_tx_bcn(sc, m, ni) != 0) { 734 device_printf(sc->sc_dev, 735 "could not send beacon\n"); 736 RAL_UNLOCK(sc); 737 IEEE80211_LOCK(ic); 738 return (-1); 739 } 740 } 741 742 /* make tx led blink on tx (controlled by ASIC) */ 743 ural_write(sc, RAL_MAC_CSR20, 1); 744 745 if (vap->iv_opmode != IEEE80211_M_MONITOR) 746 ural_enable_tsf_sync(sc); 747 else 748 ural_enable_tsf(sc); 749 750 /* enable automatic rate adaptation */ 751 /* XXX should use ic_bsschan but not valid until after newstate call below */ 752 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 753 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 754 ural_ratectl_start(sc, ni); 755 756 break; 757 758 default: 759 break; 760 } 761 RAL_UNLOCK(sc); 762 IEEE80211_LOCK(ic); 763 return (uvp->newstate(vap, nstate, arg)); 764 } 765 766 767 static void 768 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 769 { 770 struct ural_softc *sc = usbd_xfer_softc(xfer); 771 struct ifnet *ifp = sc->sc_ifp; 772 struct ieee80211vap *vap; 773 struct ural_tx_data *data; 774 struct mbuf *m; 775 struct usb_page_cache *pc; 776 int len; 777 778 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 779 780 switch (USB_GET_STATE(xfer)) { 781 case USB_ST_TRANSFERRED: 782 DPRINTFN(11, "transfer complete, %d bytes\n", len); 783 784 /* free resources */ 785 data = usbd_xfer_get_priv(xfer); 786 ural_tx_free(data, 0); 787 usbd_xfer_set_priv(xfer, NULL); 788 789 ifp->if_opackets++; 790 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 791 792 /* FALLTHROUGH */ 793 case USB_ST_SETUP: 794 tr_setup: 795 data = STAILQ_FIRST(&sc->tx_q); 796 if (data) { 797 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 798 m = data->m; 799 800 if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { 801 DPRINTFN(0, "data overflow, %u bytes\n", 802 m->m_pkthdr.len); 803 m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); 804 } 805 pc = usbd_xfer_get_frame(xfer, 0); 806 usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); 807 usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, 808 m->m_pkthdr.len); 809 810 vap = data->ni->ni_vap; 811 if (ieee80211_radiotap_active_vap(vap)) { 812 struct ural_tx_radiotap_header *tap = &sc->sc_txtap; 813 814 tap->wt_flags = 0; 815 tap->wt_rate = data->rate; 816 tap->wt_antenna = sc->tx_ant; 817 818 ieee80211_radiotap_tx(vap, m); 819 } 820 821 /* xfer length needs to be a multiple of two! */ 822 len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; 823 if ((len % 64) == 0) 824 len += 2; 825 826 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 827 m->m_pkthdr.len, len); 828 829 usbd_xfer_set_frame_len(xfer, 0, len); 830 usbd_xfer_set_priv(xfer, data); 831 832 usbd_transfer_submit(xfer); 833 } 834 RAL_UNLOCK(sc); 835 ural_start(ifp); 836 RAL_LOCK(sc); 837 break; 838 839 default: /* Error */ 840 DPRINTFN(11, "transfer error, %s\n", 841 usbd_errstr(error)); 842 843 ifp->if_oerrors++; 844 data = usbd_xfer_get_priv(xfer); 845 if (data != NULL) { 846 ural_tx_free(data, error); 847 usbd_xfer_set_priv(xfer, NULL); 848 } 849 850 if (error == USB_ERR_STALLED) { 851 /* try to clear stall first */ 852 usbd_xfer_set_stall(xfer); 853 goto tr_setup; 854 } 855 if (error == USB_ERR_TIMEOUT) 856 device_printf(sc->sc_dev, "device timeout\n"); 857 break; 858 } 859 } 860 861 static void 862 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 863 { 864 struct ural_softc *sc = usbd_xfer_softc(xfer); 865 struct ifnet *ifp = sc->sc_ifp; 866 struct ieee80211com *ic = ifp->if_l2com; 867 struct ieee80211_node *ni; 868 struct mbuf *m = NULL; 869 struct usb_page_cache *pc; 870 uint32_t flags; 871 int8_t rssi = 0, nf = 0; 872 int len; 873 874 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 875 876 switch (USB_GET_STATE(xfer)) { 877 case USB_ST_TRANSFERRED: 878 879 DPRINTFN(15, "rx done, actlen=%d\n", len); 880 881 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 882 DPRINTF("%s: xfer too short %d\n", 883 device_get_nameunit(sc->sc_dev), len); 884 ifp->if_ierrors++; 885 goto tr_setup; 886 } 887 888 len -= RAL_RX_DESC_SIZE; 889 /* rx descriptor is located at the end */ 890 pc = usbd_xfer_get_frame(xfer, 0); 891 usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); 892 893 rssi = URAL_RSSI(sc->sc_rx_desc.rssi); 894 nf = RAL_NOISE_FLOOR; 895 flags = le32toh(sc->sc_rx_desc.flags); 896 if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { 897 /* 898 * This should not happen since we did not 899 * request to receive those frames when we 900 * filled RAL_TXRX_CSR2: 901 */ 902 DPRINTFN(5, "PHY or CRC error\n"); 903 ifp->if_ierrors++; 904 goto tr_setup; 905 } 906 907 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 908 if (m == NULL) { 909 DPRINTF("could not allocate mbuf\n"); 910 ifp->if_ierrors++; 911 goto tr_setup; 912 } 913 usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); 914 915 /* finalize mbuf */ 916 m->m_pkthdr.rcvif = ifp; 917 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 918 919 if (ieee80211_radiotap_active(ic)) { 920 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; 921 922 /* XXX set once */ 923 tap->wr_flags = 0; 924 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 925 (flags & RAL_RX_OFDM) ? 926 IEEE80211_T_OFDM : IEEE80211_T_CCK); 927 tap->wr_antenna = sc->rx_ant; 928 tap->wr_antsignal = nf + rssi; 929 tap->wr_antnoise = nf; 930 } 931 /* Strip trailing 802.11 MAC FCS. */ 932 m_adj(m, -IEEE80211_CRC_LEN); 933 934 /* FALLTHROUGH */ 935 case USB_ST_SETUP: 936 tr_setup: 937 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 938 usbd_transfer_submit(xfer); 939 940 /* 941 * At the end of a USB callback it is always safe to unlock 942 * the private mutex of a device! That is why we do the 943 * "ieee80211_input" here, and not some lines up! 944 */ 945 RAL_UNLOCK(sc); 946 if (m) { 947 ni = ieee80211_find_rxnode(ic, 948 mtod(m, struct ieee80211_frame_min *)); 949 if (ni != NULL) { 950 (void) ieee80211_input(ni, m, rssi, nf); 951 ieee80211_free_node(ni); 952 } else 953 (void) ieee80211_input_all(ic, m, rssi, nf); 954 } 955 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 956 !IFQ_IS_EMPTY(&ifp->if_snd)) 957 ural_start(ifp); 958 RAL_LOCK(sc); 959 return; 960 961 default: /* Error */ 962 if (error != USB_ERR_CANCELLED) { 963 /* try to clear stall first */ 964 usbd_xfer_set_stall(xfer); 965 goto tr_setup; 966 } 967 return; 968 } 969 } 970 971 static uint8_t 972 ural_plcp_signal(int rate) 973 { 974 switch (rate) { 975 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 976 case 12: return 0xb; 977 case 18: return 0xf; 978 case 24: return 0xa; 979 case 36: return 0xe; 980 case 48: return 0x9; 981 case 72: return 0xd; 982 case 96: return 0x8; 983 case 108: return 0xc; 984 985 /* CCK rates (NB: not IEEE std, device-specific) */ 986 case 2: return 0x0; 987 case 4: return 0x1; 988 case 11: return 0x2; 989 case 22: return 0x3; 990 } 991 return 0xff; /* XXX unsupported/unknown rate */ 992 } 993 994 static void 995 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, 996 uint32_t flags, int len, int rate) 997 { 998 struct ifnet *ifp = sc->sc_ifp; 999 struct ieee80211com *ic = ifp->if_l2com; 1000 uint16_t plcp_length; 1001 int remainder; 1002 1003 desc->flags = htole32(flags); 1004 desc->flags |= htole32(RAL_TX_NEWSEQ); 1005 desc->flags |= htole32(len << 16); 1006 1007 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); 1008 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); 1009 1010 /* setup PLCP fields */ 1011 desc->plcp_signal = ural_plcp_signal(rate); 1012 desc->plcp_service = 4; 1013 1014 len += IEEE80211_CRC_LEN; 1015 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1016 desc->flags |= htole32(RAL_TX_OFDM); 1017 1018 plcp_length = len & 0xfff; 1019 desc->plcp_length_hi = plcp_length >> 6; 1020 desc->plcp_length_lo = plcp_length & 0x3f; 1021 } else { 1022 plcp_length = (16 * len + rate - 1) / rate; 1023 if (rate == 22) { 1024 remainder = (16 * len) % 22; 1025 if (remainder != 0 && remainder < 7) 1026 desc->plcp_service |= RAL_PLCP_LENGEXT; 1027 } 1028 desc->plcp_length_hi = plcp_length >> 8; 1029 desc->plcp_length_lo = plcp_length & 0xff; 1030 1031 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1032 desc->plcp_signal |= 0x08; 1033 } 1034 1035 desc->iv = 0; 1036 desc->eiv = 0; 1037 } 1038 1039 #define RAL_TX_TIMEOUT 5000 1040 1041 static int 1042 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1043 { 1044 struct ieee80211vap *vap = ni->ni_vap; 1045 struct ieee80211com *ic = ni->ni_ic; 1046 struct ifnet *ifp = sc->sc_ifp; 1047 const struct ieee80211_txparam *tp; 1048 struct ural_tx_data *data; 1049 1050 if (sc->tx_nfree == 0) { 1051 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1052 m_freem(m0); 1053 ieee80211_free_node(ni); 1054 return EIO; 1055 } 1056 data = STAILQ_FIRST(&sc->tx_free); 1057 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1058 sc->tx_nfree--; 1059 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 1060 1061 data->m = m0; 1062 data->ni = ni; 1063 data->rate = tp->mgmtrate; 1064 1065 ural_setup_tx_desc(sc, &data->desc, 1066 RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, 1067 tp->mgmtrate); 1068 1069 DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", 1070 m0->m_pkthdr.len, tp->mgmtrate); 1071 1072 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1073 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1074 1075 return (0); 1076 } 1077 1078 static int 1079 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1080 { 1081 struct ieee80211vap *vap = ni->ni_vap; 1082 struct ieee80211com *ic = ni->ni_ic; 1083 const struct ieee80211_txparam *tp; 1084 struct ural_tx_data *data; 1085 struct ieee80211_frame *wh; 1086 struct ieee80211_key *k; 1087 uint32_t flags; 1088 uint16_t dur; 1089 1090 RAL_LOCK_ASSERT(sc, MA_OWNED); 1091 1092 data = STAILQ_FIRST(&sc->tx_free); 1093 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1094 sc->tx_nfree--; 1095 1096 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1097 1098 wh = mtod(m0, struct ieee80211_frame *); 1099 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1100 k = ieee80211_crypto_encap(ni, m0); 1101 if (k == NULL) { 1102 m_freem(m0); 1103 return ENOBUFS; 1104 } 1105 wh = mtod(m0, struct ieee80211_frame *); 1106 } 1107 1108 data->m = m0; 1109 data->ni = ni; 1110 data->rate = tp->mgmtrate; 1111 1112 flags = 0; 1113 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1114 flags |= RAL_TX_ACK; 1115 1116 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1117 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1118 *(uint16_t *)wh->i_dur = htole16(dur); 1119 1120 /* tell hardware to add timestamp for probe responses */ 1121 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1122 IEEE80211_FC0_TYPE_MGT && 1123 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1124 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1125 flags |= RAL_TX_TIMESTAMP; 1126 } 1127 1128 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); 1129 1130 DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", 1131 m0->m_pkthdr.len, tp->mgmtrate); 1132 1133 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1134 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1135 1136 return 0; 1137 } 1138 1139 static int 1140 ural_sendprot(struct ural_softc *sc, 1141 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1142 { 1143 struct ieee80211com *ic = ni->ni_ic; 1144 const struct ieee80211_frame *wh; 1145 struct ural_tx_data *data; 1146 struct mbuf *mprot; 1147 int protrate, ackrate, pktlen, flags, isshort; 1148 uint16_t dur; 1149 1150 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1151 ("protection %d", prot)); 1152 1153 wh = mtod(m, const struct ieee80211_frame *); 1154 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1155 1156 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1157 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1158 1159 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1160 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1161 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1162 flags = RAL_TX_RETRY(7); 1163 if (prot == IEEE80211_PROT_RTSCTS) { 1164 /* NB: CTS is the same size as an ACK */ 1165 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1166 flags |= RAL_TX_ACK; 1167 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1168 } else { 1169 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1170 } 1171 if (mprot == NULL) { 1172 /* XXX stat + msg */ 1173 return ENOBUFS; 1174 } 1175 data = STAILQ_FIRST(&sc->tx_free); 1176 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1177 sc->tx_nfree--; 1178 1179 data->m = mprot; 1180 data->ni = ieee80211_ref_node(ni); 1181 data->rate = protrate; 1182 ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); 1183 1184 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1185 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1186 1187 return 0; 1188 } 1189 1190 static int 1191 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1192 const struct ieee80211_bpf_params *params) 1193 { 1194 struct ieee80211com *ic = ni->ni_ic; 1195 struct ural_tx_data *data; 1196 uint32_t flags; 1197 int error; 1198 int rate; 1199 1200 RAL_LOCK_ASSERT(sc, MA_OWNED); 1201 KASSERT(params != NULL, ("no raw xmit params")); 1202 1203 rate = params->ibp_rate0; 1204 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1205 m_freem(m0); 1206 return EINVAL; 1207 } 1208 flags = 0; 1209 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1210 flags |= RAL_TX_ACK; 1211 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1212 error = ural_sendprot(sc, m0, ni, 1213 params->ibp_flags & IEEE80211_BPF_RTS ? 1214 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1215 rate); 1216 if (error || sc->tx_nfree == 0) { 1217 m_freem(m0); 1218 return ENOBUFS; 1219 } 1220 flags |= RAL_TX_IFS_SIFS; 1221 } 1222 1223 data = STAILQ_FIRST(&sc->tx_free); 1224 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1225 sc->tx_nfree--; 1226 1227 data->m = m0; 1228 data->ni = ni; 1229 data->rate = rate; 1230 1231 /* XXX need to setup descriptor ourself */ 1232 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1233 1234 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1235 m0->m_pkthdr.len, rate); 1236 1237 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1238 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1239 1240 return 0; 1241 } 1242 1243 static int 1244 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1245 { 1246 struct ieee80211vap *vap = ni->ni_vap; 1247 struct ieee80211com *ic = ni->ni_ic; 1248 struct ural_tx_data *data; 1249 struct ieee80211_frame *wh; 1250 const struct ieee80211_txparam *tp; 1251 struct ieee80211_key *k; 1252 uint32_t flags = 0; 1253 uint16_t dur; 1254 int error, rate; 1255 1256 RAL_LOCK_ASSERT(sc, MA_OWNED); 1257 1258 wh = mtod(m0, struct ieee80211_frame *); 1259 1260 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1261 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1262 rate = tp->mcastrate; 1263 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1264 rate = tp->ucastrate; 1265 else 1266 rate = ni->ni_txrate; 1267 1268 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1269 k = ieee80211_crypto_encap(ni, m0); 1270 if (k == NULL) { 1271 m_freem(m0); 1272 return ENOBUFS; 1273 } 1274 /* packet header may have moved, reset our local pointer */ 1275 wh = mtod(m0, struct ieee80211_frame *); 1276 } 1277 1278 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1279 int prot = IEEE80211_PROT_NONE; 1280 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1281 prot = IEEE80211_PROT_RTSCTS; 1282 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1283 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1284 prot = ic->ic_protmode; 1285 if (prot != IEEE80211_PROT_NONE) { 1286 error = ural_sendprot(sc, m0, ni, prot, rate); 1287 if (error || sc->tx_nfree == 0) { 1288 m_freem(m0); 1289 return ENOBUFS; 1290 } 1291 flags |= RAL_TX_IFS_SIFS; 1292 } 1293 } 1294 1295 data = STAILQ_FIRST(&sc->tx_free); 1296 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1297 sc->tx_nfree--; 1298 1299 data->m = m0; 1300 data->ni = ni; 1301 data->rate = rate; 1302 1303 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1304 flags |= RAL_TX_ACK; 1305 flags |= RAL_TX_RETRY(7); 1306 1307 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1308 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1309 *(uint16_t *)wh->i_dur = htole16(dur); 1310 } 1311 1312 ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); 1313 1314 DPRINTFN(10, "sending data frame len=%u rate=%u\n", 1315 m0->m_pkthdr.len, rate); 1316 1317 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1318 usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); 1319 1320 return 0; 1321 } 1322 1323 static void 1324 ural_start(struct ifnet *ifp) 1325 { 1326 struct ural_softc *sc = ifp->if_softc; 1327 struct ieee80211_node *ni; 1328 struct mbuf *m; 1329 1330 RAL_LOCK(sc); 1331 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1332 RAL_UNLOCK(sc); 1333 return; 1334 } 1335 for (;;) { 1336 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1337 if (m == NULL) 1338 break; 1339 if (sc->tx_nfree < RAL_TX_MINFREE) { 1340 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1341 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1342 break; 1343 } 1344 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1345 if (ural_tx_data(sc, m, ni) != 0) { 1346 ieee80211_free_node(ni); 1347 ifp->if_oerrors++; 1348 break; 1349 } 1350 } 1351 RAL_UNLOCK(sc); 1352 } 1353 1354 static int 1355 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1356 { 1357 struct ural_softc *sc = ifp->if_softc; 1358 struct ieee80211com *ic = ifp->if_l2com; 1359 struct ifreq *ifr = (struct ifreq *) data; 1360 int error = 0, startall = 0; 1361 1362 switch (cmd) { 1363 case SIOCSIFFLAGS: 1364 RAL_LOCK(sc); 1365 if (ifp->if_flags & IFF_UP) { 1366 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1367 ural_init_locked(sc); 1368 startall = 1; 1369 } else 1370 ural_setpromisc(sc); 1371 } else { 1372 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1373 ural_stop(sc); 1374 } 1375 RAL_UNLOCK(sc); 1376 if (startall) 1377 ieee80211_start_all(ic); 1378 break; 1379 case SIOCGIFMEDIA: 1380 case SIOCSIFMEDIA: 1381 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1382 break; 1383 default: 1384 error = ether_ioctl(ifp, cmd, data); 1385 break; 1386 } 1387 return error; 1388 } 1389 1390 static void 1391 ural_set_testmode(struct ural_softc *sc) 1392 { 1393 struct usb_device_request req; 1394 usb_error_t error; 1395 1396 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1397 req.bRequest = RAL_VENDOR_REQUEST; 1398 USETW(req.wValue, 4); 1399 USETW(req.wIndex, 1); 1400 USETW(req.wLength, 0); 1401 1402 error = ural_do_request(sc, &req, NULL); 1403 if (error != 0) { 1404 device_printf(sc->sc_dev, "could not set test mode: %s\n", 1405 usbd_errstr(error)); 1406 } 1407 } 1408 1409 static void 1410 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) 1411 { 1412 struct usb_device_request req; 1413 usb_error_t error; 1414 1415 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1416 req.bRequest = RAL_READ_EEPROM; 1417 USETW(req.wValue, 0); 1418 USETW(req.wIndex, addr); 1419 USETW(req.wLength, len); 1420 1421 error = ural_do_request(sc, &req, buf); 1422 if (error != 0) { 1423 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1424 usbd_errstr(error)); 1425 } 1426 } 1427 1428 static uint16_t 1429 ural_read(struct ural_softc *sc, uint16_t reg) 1430 { 1431 struct usb_device_request req; 1432 usb_error_t error; 1433 uint16_t val; 1434 1435 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1436 req.bRequest = RAL_READ_MAC; 1437 USETW(req.wValue, 0); 1438 USETW(req.wIndex, reg); 1439 USETW(req.wLength, sizeof (uint16_t)); 1440 1441 error = ural_do_request(sc, &req, &val); 1442 if (error != 0) { 1443 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1444 usbd_errstr(error)); 1445 return 0; 1446 } 1447 1448 return le16toh(val); 1449 } 1450 1451 static void 1452 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1453 { 1454 struct usb_device_request req; 1455 usb_error_t error; 1456 1457 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1458 req.bRequest = RAL_READ_MULTI_MAC; 1459 USETW(req.wValue, 0); 1460 USETW(req.wIndex, reg); 1461 USETW(req.wLength, len); 1462 1463 error = ural_do_request(sc, &req, buf); 1464 if (error != 0) { 1465 device_printf(sc->sc_dev, "could not read MAC register: %s\n", 1466 usbd_errstr(error)); 1467 } 1468 } 1469 1470 static void 1471 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) 1472 { 1473 struct usb_device_request req; 1474 usb_error_t error; 1475 1476 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1477 req.bRequest = RAL_WRITE_MAC; 1478 USETW(req.wValue, val); 1479 USETW(req.wIndex, reg); 1480 USETW(req.wLength, 0); 1481 1482 error = ural_do_request(sc, &req, NULL); 1483 if (error != 0) { 1484 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1485 usbd_errstr(error)); 1486 } 1487 } 1488 1489 static void 1490 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) 1491 { 1492 struct usb_device_request req; 1493 usb_error_t error; 1494 1495 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1496 req.bRequest = RAL_WRITE_MULTI_MAC; 1497 USETW(req.wValue, 0); 1498 USETW(req.wIndex, reg); 1499 USETW(req.wLength, len); 1500 1501 error = ural_do_request(sc, &req, buf); 1502 if (error != 0) { 1503 device_printf(sc->sc_dev, "could not write MAC register: %s\n", 1504 usbd_errstr(error)); 1505 } 1506 } 1507 1508 static void 1509 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) 1510 { 1511 uint16_t tmp; 1512 int ntries; 1513 1514 for (ntries = 0; ntries < 100; ntries++) { 1515 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1516 break; 1517 if (ural_pause(sc, hz / 100)) 1518 break; 1519 } 1520 if (ntries == 100) { 1521 device_printf(sc->sc_dev, "could not write to BBP\n"); 1522 return; 1523 } 1524 1525 tmp = reg << 8 | val; 1526 ural_write(sc, RAL_PHY_CSR7, tmp); 1527 } 1528 1529 static uint8_t 1530 ural_bbp_read(struct ural_softc *sc, uint8_t reg) 1531 { 1532 uint16_t val; 1533 int ntries; 1534 1535 val = RAL_BBP_WRITE | reg << 8; 1536 ural_write(sc, RAL_PHY_CSR7, val); 1537 1538 for (ntries = 0; ntries < 100; ntries++) { 1539 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) 1540 break; 1541 if (ural_pause(sc, hz / 100)) 1542 break; 1543 } 1544 if (ntries == 100) { 1545 device_printf(sc->sc_dev, "could not read BBP\n"); 1546 return 0; 1547 } 1548 1549 return ural_read(sc, RAL_PHY_CSR7) & 0xff; 1550 } 1551 1552 static void 1553 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) 1554 { 1555 uint32_t tmp; 1556 int ntries; 1557 1558 for (ntries = 0; ntries < 100; ntries++) { 1559 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) 1560 break; 1561 if (ural_pause(sc, hz / 100)) 1562 break; 1563 } 1564 if (ntries == 100) { 1565 device_printf(sc->sc_dev, "could not write to RF\n"); 1566 return; 1567 } 1568 1569 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); 1570 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); 1571 ural_write(sc, RAL_PHY_CSR10, tmp >> 16); 1572 1573 /* remember last written value in sc */ 1574 sc->rf_regs[reg] = val; 1575 1576 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); 1577 } 1578 1579 static void 1580 ural_scan_start(struct ieee80211com *ic) 1581 { 1582 struct ifnet *ifp = ic->ic_ifp; 1583 struct ural_softc *sc = ifp->if_softc; 1584 1585 RAL_LOCK(sc); 1586 ural_write(sc, RAL_TXRX_CSR19, 0); 1587 ural_set_bssid(sc, ifp->if_broadcastaddr); 1588 RAL_UNLOCK(sc); 1589 } 1590 1591 static void 1592 ural_scan_end(struct ieee80211com *ic) 1593 { 1594 struct ural_softc *sc = ic->ic_ifp->if_softc; 1595 1596 RAL_LOCK(sc); 1597 ural_enable_tsf_sync(sc); 1598 ural_set_bssid(sc, sc->sc_bssid); 1599 RAL_UNLOCK(sc); 1600 1601 } 1602 1603 static void 1604 ural_set_channel(struct ieee80211com *ic) 1605 { 1606 struct ural_softc *sc = ic->ic_ifp->if_softc; 1607 1608 RAL_LOCK(sc); 1609 ural_set_chan(sc, ic->ic_curchan); 1610 RAL_UNLOCK(sc); 1611 } 1612 1613 static void 1614 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) 1615 { 1616 struct ifnet *ifp = sc->sc_ifp; 1617 struct ieee80211com *ic = ifp->if_l2com; 1618 uint8_t power, tmp; 1619 int i, chan; 1620 1621 chan = ieee80211_chan2ieee(ic, c); 1622 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1623 return; 1624 1625 if (IEEE80211_IS_CHAN_2GHZ(c)) 1626 power = min(sc->txpow[chan - 1], 31); 1627 else 1628 power = 31; 1629 1630 /* adjust txpower using ifconfig settings */ 1631 power -= (100 - ic->ic_txpowlimit) / 8; 1632 1633 DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); 1634 1635 switch (sc->rf_rev) { 1636 case RAL_RF_2522: 1637 ural_rf_write(sc, RAL_RF1, 0x00814); 1638 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); 1639 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1640 break; 1641 1642 case RAL_RF_2523: 1643 ural_rf_write(sc, RAL_RF1, 0x08804); 1644 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); 1645 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 1646 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1647 break; 1648 1649 case RAL_RF_2524: 1650 ural_rf_write(sc, RAL_RF1, 0x0c808); 1651 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); 1652 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1653 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1654 break; 1655 1656 case RAL_RF_2525: 1657 ural_rf_write(sc, RAL_RF1, 0x08808); 1658 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); 1659 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1660 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1661 1662 ural_rf_write(sc, RAL_RF1, 0x08808); 1663 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); 1664 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1665 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 1666 break; 1667 1668 case RAL_RF_2525E: 1669 ural_rf_write(sc, RAL_RF1, 0x08808); 1670 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); 1671 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1672 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 1673 break; 1674 1675 case RAL_RF_2526: 1676 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); 1677 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1678 ural_rf_write(sc, RAL_RF1, 0x08804); 1679 1680 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); 1681 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 1682 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 1683 break; 1684 1685 /* dual-band RF */ 1686 case RAL_RF_5222: 1687 for (i = 0; ural_rf5222[i].chan != chan; i++); 1688 1689 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); 1690 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); 1691 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 1692 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); 1693 break; 1694 } 1695 1696 if (ic->ic_opmode != IEEE80211_M_MONITOR && 1697 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1698 /* set Japan filter bit for channel 14 */ 1699 tmp = ural_bbp_read(sc, 70); 1700 1701 tmp &= ~RAL_JAPAN_FILTER; 1702 if (chan == 14) 1703 tmp |= RAL_JAPAN_FILTER; 1704 1705 ural_bbp_write(sc, 70, tmp); 1706 1707 /* clear CRC errors */ 1708 ural_read(sc, RAL_STA_CSR0); 1709 1710 ural_pause(sc, hz / 100); 1711 ural_disable_rf_tune(sc); 1712 } 1713 1714 /* XXX doesn't belong here */ 1715 /* update basic rate set */ 1716 ural_set_basicrates(sc, c); 1717 1718 /* give the hardware some time to do the switchover */ 1719 ural_pause(sc, hz / 100); 1720 } 1721 1722 /* 1723 * Disable RF auto-tuning. 1724 */ 1725 static void 1726 ural_disable_rf_tune(struct ural_softc *sc) 1727 { 1728 uint32_t tmp; 1729 1730 if (sc->rf_rev != RAL_RF_2523) { 1731 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 1732 ural_rf_write(sc, RAL_RF1, tmp); 1733 } 1734 1735 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 1736 ural_rf_write(sc, RAL_RF3, tmp); 1737 1738 DPRINTFN(2, "disabling RF autotune\n"); 1739 } 1740 1741 /* 1742 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 1743 * synchronization. 1744 */ 1745 static void 1746 ural_enable_tsf_sync(struct ural_softc *sc) 1747 { 1748 struct ifnet *ifp = sc->sc_ifp; 1749 struct ieee80211com *ic = ifp->if_l2com; 1750 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1751 uint16_t logcwmin, preload, tmp; 1752 1753 /* first, disable TSF synchronization */ 1754 ural_write(sc, RAL_TXRX_CSR19, 0); 1755 1756 tmp = (16 * vap->iv_bss->ni_intval) << 4; 1757 ural_write(sc, RAL_TXRX_CSR18, tmp); 1758 1759 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; 1760 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; 1761 tmp = logcwmin << 12 | preload; 1762 ural_write(sc, RAL_TXRX_CSR20, tmp); 1763 1764 /* finally, enable TSF synchronization */ 1765 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; 1766 if (ic->ic_opmode == IEEE80211_M_STA) 1767 tmp |= RAL_ENABLE_TSF_SYNC(1); 1768 else 1769 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; 1770 ural_write(sc, RAL_TXRX_CSR19, tmp); 1771 1772 DPRINTF("enabling TSF synchronization\n"); 1773 } 1774 1775 static void 1776 ural_enable_tsf(struct ural_softc *sc) 1777 { 1778 /* first, disable TSF synchronization */ 1779 ural_write(sc, RAL_TXRX_CSR19, 0); 1780 ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); 1781 } 1782 1783 #define RAL_RXTX_TURNAROUND 5 /* us */ 1784 static void 1785 ural_update_slot(struct ifnet *ifp) 1786 { 1787 struct ural_softc *sc = ifp->if_softc; 1788 struct ieee80211com *ic = ifp->if_l2com; 1789 uint16_t slottime, sifs, eifs; 1790 1791 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1792 1793 /* 1794 * These settings may sound a bit inconsistent but this is what the 1795 * reference driver does. 1796 */ 1797 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1798 sifs = 16 - RAL_RXTX_TURNAROUND; 1799 eifs = 364; 1800 } else { 1801 sifs = 10 - RAL_RXTX_TURNAROUND; 1802 eifs = 64; 1803 } 1804 1805 ural_write(sc, RAL_MAC_CSR10, slottime); 1806 ural_write(sc, RAL_MAC_CSR11, sifs); 1807 ural_write(sc, RAL_MAC_CSR12, eifs); 1808 } 1809 1810 static void 1811 ural_set_txpreamble(struct ural_softc *sc) 1812 { 1813 struct ifnet *ifp = sc->sc_ifp; 1814 struct ieee80211com *ic = ifp->if_l2com; 1815 uint16_t tmp; 1816 1817 tmp = ural_read(sc, RAL_TXRX_CSR10); 1818 1819 tmp &= ~RAL_SHORT_PREAMBLE; 1820 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1821 tmp |= RAL_SHORT_PREAMBLE; 1822 1823 ural_write(sc, RAL_TXRX_CSR10, tmp); 1824 } 1825 1826 static void 1827 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) 1828 { 1829 /* XXX wrong, take from rate set */ 1830 /* update basic rate set */ 1831 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1832 /* 11a basic rates: 6, 12, 24Mbps */ 1833 ural_write(sc, RAL_TXRX_CSR11, 0x150); 1834 } else if (IEEE80211_IS_CHAN_ANYG(c)) { 1835 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 1836 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 1837 } else { 1838 /* 11b basic rates: 1, 2Mbps */ 1839 ural_write(sc, RAL_TXRX_CSR11, 0x3); 1840 } 1841 } 1842 1843 static void 1844 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) 1845 { 1846 uint16_t tmp; 1847 1848 tmp = bssid[0] | bssid[1] << 8; 1849 ural_write(sc, RAL_MAC_CSR5, tmp); 1850 1851 tmp = bssid[2] | bssid[3] << 8; 1852 ural_write(sc, RAL_MAC_CSR6, tmp); 1853 1854 tmp = bssid[4] | bssid[5] << 8; 1855 ural_write(sc, RAL_MAC_CSR7, tmp); 1856 1857 DPRINTF("setting BSSID to %6D\n", bssid, ":"); 1858 } 1859 1860 static void 1861 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr) 1862 { 1863 uint16_t tmp; 1864 1865 tmp = addr[0] | addr[1] << 8; 1866 ural_write(sc, RAL_MAC_CSR2, tmp); 1867 1868 tmp = addr[2] | addr[3] << 8; 1869 ural_write(sc, RAL_MAC_CSR3, tmp); 1870 1871 tmp = addr[4] | addr[5] << 8; 1872 ural_write(sc, RAL_MAC_CSR4, tmp); 1873 1874 DPRINTF("setting MAC address to %6D\n", addr, ":"); 1875 } 1876 1877 static void 1878 ural_setpromisc(struct ural_softc *sc) 1879 { 1880 struct ifnet *ifp = sc->sc_ifp; 1881 uint32_t tmp; 1882 1883 tmp = ural_read(sc, RAL_TXRX_CSR2); 1884 1885 tmp &= ~RAL_DROP_NOT_TO_ME; 1886 if (!(ifp->if_flags & IFF_PROMISC)) 1887 tmp |= RAL_DROP_NOT_TO_ME; 1888 1889 ural_write(sc, RAL_TXRX_CSR2, tmp); 1890 1891 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1892 "entering" : "leaving"); 1893 } 1894 1895 static void 1896 ural_update_promisc(struct ifnet *ifp) 1897 { 1898 struct ural_softc *sc = ifp->if_softc; 1899 1900 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1901 return; 1902 1903 RAL_LOCK(sc); 1904 ural_setpromisc(sc); 1905 RAL_UNLOCK(sc); 1906 } 1907 1908 static const char * 1909 ural_get_rf(int rev) 1910 { 1911 switch (rev) { 1912 case RAL_RF_2522: return "RT2522"; 1913 case RAL_RF_2523: return "RT2523"; 1914 case RAL_RF_2524: return "RT2524"; 1915 case RAL_RF_2525: return "RT2525"; 1916 case RAL_RF_2525E: return "RT2525e"; 1917 case RAL_RF_2526: return "RT2526"; 1918 case RAL_RF_5222: return "RT5222"; 1919 default: return "unknown"; 1920 } 1921 } 1922 1923 static void 1924 ural_read_eeprom(struct ural_softc *sc) 1925 { 1926 uint16_t val; 1927 1928 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); 1929 val = le16toh(val); 1930 sc->rf_rev = (val >> 11) & 0x7; 1931 sc->hw_radio = (val >> 10) & 0x1; 1932 sc->led_mode = (val >> 6) & 0x7; 1933 sc->rx_ant = (val >> 4) & 0x3; 1934 sc->tx_ant = (val >> 2) & 0x3; 1935 sc->nb_ant = val & 0x3; 1936 1937 /* read MAC address */ 1938 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6); 1939 1940 /* read default values for BBP registers */ 1941 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1942 1943 /* read Tx power for all b/g channels */ 1944 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); 1945 } 1946 1947 static int 1948 ural_bbp_init(struct ural_softc *sc) 1949 { 1950 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1951 int i, ntries; 1952 1953 /* wait for BBP to be ready */ 1954 for (ntries = 0; ntries < 100; ntries++) { 1955 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) 1956 break; 1957 if (ural_pause(sc, hz / 100)) 1958 break; 1959 } 1960 if (ntries == 100) { 1961 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1962 return EIO; 1963 } 1964 1965 /* initialize BBP registers to default values */ 1966 for (i = 0; i < N(ural_def_bbp); i++) 1967 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); 1968 1969 #if 0 1970 /* initialize BBP registers to values stored in EEPROM */ 1971 for (i = 0; i < 16; i++) { 1972 if (sc->bbp_prom[i].reg == 0xff) 1973 continue; 1974 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1975 } 1976 #endif 1977 1978 return 0; 1979 #undef N 1980 } 1981 1982 static void 1983 ural_set_txantenna(struct ural_softc *sc, int antenna) 1984 { 1985 uint16_t tmp; 1986 uint8_t tx; 1987 1988 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; 1989 if (antenna == 1) 1990 tx |= RAL_BBP_ANTA; 1991 else if (antenna == 2) 1992 tx |= RAL_BBP_ANTB; 1993 else 1994 tx |= RAL_BBP_DIVERSITY; 1995 1996 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 1997 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || 1998 sc->rf_rev == RAL_RF_5222) 1999 tx |= RAL_BBP_FLIPIQ; 2000 2001 ural_bbp_write(sc, RAL_BBP_TX, tx); 2002 2003 /* update values in PHY_CSR5 and PHY_CSR6 */ 2004 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; 2005 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); 2006 2007 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; 2008 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); 2009 } 2010 2011 static void 2012 ural_set_rxantenna(struct ural_softc *sc, int antenna) 2013 { 2014 uint8_t rx; 2015 2016 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; 2017 if (antenna == 1) 2018 rx |= RAL_BBP_ANTA; 2019 else if (antenna == 2) 2020 rx |= RAL_BBP_ANTB; 2021 else 2022 rx |= RAL_BBP_DIVERSITY; 2023 2024 /* need to force no I/Q flip for RF 2525e and 2526 */ 2025 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) 2026 rx &= ~RAL_BBP_FLIPIQ; 2027 2028 ural_bbp_write(sc, RAL_BBP_RX, rx); 2029 } 2030 2031 static void 2032 ural_init_locked(struct ural_softc *sc) 2033 { 2034 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2035 struct ifnet *ifp = sc->sc_ifp; 2036 struct ieee80211com *ic = ifp->if_l2com; 2037 uint16_t tmp; 2038 int i, ntries; 2039 2040 RAL_LOCK_ASSERT(sc, MA_OWNED); 2041 2042 ural_set_testmode(sc); 2043 ural_write(sc, 0x308, 0x00f0); /* XXX magic */ 2044 2045 ural_stop(sc); 2046 2047 /* initialize MAC registers to default values */ 2048 for (i = 0; i < N(ural_def_mac); i++) 2049 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); 2050 2051 /* wait for BBP and RF to wake up (this can take a long time!) */ 2052 for (ntries = 0; ntries < 100; ntries++) { 2053 tmp = ural_read(sc, RAL_MAC_CSR17); 2054 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == 2055 (RAL_BBP_AWAKE | RAL_RF_AWAKE)) 2056 break; 2057 if (ural_pause(sc, hz / 100)) 2058 break; 2059 } 2060 if (ntries == 100) { 2061 device_printf(sc->sc_dev, 2062 "timeout waiting for BBP/RF to wakeup\n"); 2063 goto fail; 2064 } 2065 2066 /* we're ready! */ 2067 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); 2068 2069 /* set basic rate set (will be updated later) */ 2070 ural_write(sc, RAL_TXRX_CSR11, 0x15f); 2071 2072 if (ural_bbp_init(sc) != 0) 2073 goto fail; 2074 2075 ural_set_chan(sc, ic->ic_curchan); 2076 2077 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2078 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2079 2080 ural_set_txantenna(sc, sc->tx_ant); 2081 ural_set_rxantenna(sc, sc->rx_ant); 2082 2083 ural_set_macaddr(sc, IF_LLADDR(ifp)); 2084 2085 /* 2086 * Allocate Tx and Rx xfer queues. 2087 */ 2088 ural_setup_tx_list(sc); 2089 2090 /* kick Rx */ 2091 tmp = RAL_DROP_PHY | RAL_DROP_CRC; 2092 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2093 tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; 2094 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2095 tmp |= RAL_DROP_TODS; 2096 if (!(ifp->if_flags & IFF_PROMISC)) 2097 tmp |= RAL_DROP_NOT_TO_ME; 2098 } 2099 ural_write(sc, RAL_TXRX_CSR2, tmp); 2100 2101 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2102 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2103 usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); 2104 usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); 2105 return; 2106 2107 fail: ural_stop(sc); 2108 #undef N 2109 } 2110 2111 static void 2112 ural_init(void *priv) 2113 { 2114 struct ural_softc *sc = priv; 2115 struct ifnet *ifp = sc->sc_ifp; 2116 struct ieee80211com *ic = ifp->if_l2com; 2117 2118 RAL_LOCK(sc); 2119 ural_init_locked(sc); 2120 RAL_UNLOCK(sc); 2121 2122 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2123 ieee80211_start_all(ic); /* start all vap's */ 2124 } 2125 2126 static void 2127 ural_stop(struct ural_softc *sc) 2128 { 2129 struct ifnet *ifp = sc->sc_ifp; 2130 2131 RAL_LOCK_ASSERT(sc, MA_OWNED); 2132 2133 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2134 2135 /* 2136 * Drain all the transfers, if not already drained: 2137 */ 2138 RAL_UNLOCK(sc); 2139 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); 2140 usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); 2141 RAL_LOCK(sc); 2142 2143 ural_unsetup_tx_list(sc); 2144 2145 /* disable Rx */ 2146 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); 2147 /* reset ASIC and BBP (but won't reset MAC registers!) */ 2148 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); 2149 /* wait a little */ 2150 ural_pause(sc, hz / 10); 2151 ural_write(sc, RAL_MAC_CSR1, 0); 2152 /* wait a little */ 2153 ural_pause(sc, hz / 10); 2154 } 2155 2156 static int 2157 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2158 const struct ieee80211_bpf_params *params) 2159 { 2160 struct ieee80211com *ic = ni->ni_ic; 2161 struct ifnet *ifp = ic->ic_ifp; 2162 struct ural_softc *sc = ifp->if_softc; 2163 2164 RAL_LOCK(sc); 2165 /* prevent management frames from being sent if we're not ready */ 2166 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2167 RAL_UNLOCK(sc); 2168 m_freem(m); 2169 ieee80211_free_node(ni); 2170 return ENETDOWN; 2171 } 2172 if (sc->tx_nfree < RAL_TX_MINFREE) { 2173 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2174 RAL_UNLOCK(sc); 2175 m_freem(m); 2176 ieee80211_free_node(ni); 2177 return EIO; 2178 } 2179 2180 ifp->if_opackets++; 2181 2182 if (params == NULL) { 2183 /* 2184 * Legacy path; interpret frame contents to decide 2185 * precisely how to send the frame. 2186 */ 2187 if (ural_tx_mgt(sc, m, ni) != 0) 2188 goto bad; 2189 } else { 2190 /* 2191 * Caller supplied explicit parameters to use in 2192 * sending the frame. 2193 */ 2194 if (ural_tx_raw(sc, m, ni, params) != 0) 2195 goto bad; 2196 } 2197 RAL_UNLOCK(sc); 2198 return 0; 2199 bad: 2200 ifp->if_oerrors++; 2201 RAL_UNLOCK(sc); 2202 ieee80211_free_node(ni); 2203 return EIO; /* XXX */ 2204 } 2205 2206 static void 2207 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) 2208 { 2209 struct ieee80211vap *vap = ni->ni_vap; 2210 struct ural_vap *uvp = URAL_VAP(vap); 2211 2212 /* clear statistic registers (STA_CSR0 to STA_CSR10) */ 2213 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); 2214 2215 ieee80211_ratectl_node_init(ni); 2216 2217 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2218 } 2219 2220 static void 2221 ural_ratectl_timeout(void *arg) 2222 { 2223 struct ural_vap *uvp = arg; 2224 struct ieee80211vap *vap = &uvp->vap; 2225 struct ieee80211com *ic = vap->iv_ic; 2226 2227 ieee80211_runtask(ic, &uvp->ratectl_task); 2228 } 2229 2230 static void 2231 ural_ratectl_task(void *arg, int pending) 2232 { 2233 struct ural_vap *uvp = arg; 2234 struct ieee80211vap *vap = &uvp->vap; 2235 struct ieee80211com *ic = vap->iv_ic; 2236 struct ifnet *ifp = ic->ic_ifp; 2237 struct ural_softc *sc = ifp->if_softc; 2238 struct ieee80211_node *ni = vap->iv_bss; 2239 int ok, fail; 2240 int sum, retrycnt; 2241 2242 RAL_LOCK(sc); 2243 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2244 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); 2245 2246 ok = sc->sta[7] + /* TX ok w/o retry */ 2247 sc->sta[8]; /* TX ok w/ retry */ 2248 fail = sc->sta[9]; /* TX retry-fail count */ 2249 sum = ok+fail; 2250 retrycnt = sc->sta[8] + fail; 2251 2252 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2253 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2254 2255 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2256 2257 usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); 2258 RAL_UNLOCK(sc); 2259 } 2260 2261 static int 2262 ural_pause(struct ural_softc *sc, int timeout) 2263 { 2264 2265 usb_pause_mtx(&sc->sc_mtx, timeout); 2266 return (0); 2267 } 2268