xref: /freebsd/sys/dev/usb/wlan/if_ural.c (revision 1670a1c2a47d10ecccd001970b859caf93cd3b6e)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Copyright (c) 2006, 2008
8  *	Hans Petter Selasky <hselasky@FreeBSD.org>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 /*-
27  * Ralink Technology RT2500USB chipset driver
28  * http://www.ralinktech.com/
29  */
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/module.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kdb.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <sys/rman.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 
58 #ifdef INET
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_ratectl.h>
70 
71 #include <dev/usb/usb.h>
72 #include <dev/usb/usbdi.h>
73 #include "usbdevs.h"
74 
75 #define	USB_DEBUG_VAR ural_debug
76 #include <dev/usb/usb_debug.h>
77 
78 #include <dev/usb/wlan/if_uralreg.h>
79 #include <dev/usb/wlan/if_uralvar.h>
80 
81 #ifdef USB_DEBUG
82 static int ural_debug = 0;
83 
84 SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85 SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86     "Debug level");
87 #endif
88 
89 #define URAL_RSSI(rssi)					\
90 	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
91 	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92 
93 /* various supported device vendors/products */
94 static const struct usb_device_id ural_devs[] = {
95 #define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
96 	URAL_DEV(ASUS, WL167G),
97 	URAL_DEV(ASUS, RT2570),
98 	URAL_DEV(BELKIN, F5D7050),
99 	URAL_DEV(BELKIN, F5D7051),
100 	URAL_DEV(CISCOLINKSYS, HU200TS),
101 	URAL_DEV(CISCOLINKSYS, WUSB54G),
102 	URAL_DEV(CISCOLINKSYS, WUSB54GP),
103 	URAL_DEV(CONCEPTRONIC2, C54RU),
104 	URAL_DEV(DLINK, DWLG122),
105 	URAL_DEV(GIGABYTE, GN54G),
106 	URAL_DEV(GIGABYTE, GNWBKG),
107 	URAL_DEV(GUILLEMOT, HWGUSB254),
108 	URAL_DEV(MELCO, KG54),
109 	URAL_DEV(MELCO, KG54AI),
110 	URAL_DEV(MELCO, KG54YB),
111 	URAL_DEV(MELCO, NINWIFI),
112 	URAL_DEV(MSI, RT2570),
113 	URAL_DEV(MSI, RT2570_2),
114 	URAL_DEV(MSI, RT2570_3),
115 	URAL_DEV(NOVATECH, NV902),
116 	URAL_DEV(RALINK, RT2570),
117 	URAL_DEV(RALINK, RT2570_2),
118 	URAL_DEV(RALINK, RT2570_3),
119 	URAL_DEV(SIEMENS2, WL54G),
120 	URAL_DEV(SMC, 2862WG),
121 	URAL_DEV(SPHAIRON, UB801R),
122 	URAL_DEV(SURECOM, RT2570),
123 	URAL_DEV(VTECH, RT2570),
124 	URAL_DEV(ZINWELL, RT2570),
125 #undef URAL_DEV
126 };
127 
128 static usb_callback_t ural_bulk_read_callback;
129 static usb_callback_t ural_bulk_write_callback;
130 
131 static usb_error_t	ural_do_request(struct ural_softc *sc,
132 			    struct usb_device_request *req, void *data);
133 static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
134 			    const char name[IFNAMSIZ], int unit, int opmode,
135 			    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
136 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
137 static void		ural_vap_delete(struct ieee80211vap *);
138 static void		ural_tx_free(struct ural_tx_data *, int);
139 static void		ural_setup_tx_list(struct ural_softc *);
140 static void		ural_unsetup_tx_list(struct ural_softc *);
141 static int		ural_newstate(struct ieee80211vap *,
142 			    enum ieee80211_state, int);
143 static void		ural_setup_tx_desc(struct ural_softc *,
144 			    struct ural_tx_desc *, uint32_t, int, int);
145 static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
146 			    struct ieee80211_node *);
147 static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
148 			    struct ieee80211_node *);
149 static int		ural_tx_data(struct ural_softc *, struct mbuf *,
150 			    struct ieee80211_node *);
151 static void		ural_start(struct ifnet *);
152 static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
153 static void		ural_set_testmode(struct ural_softc *);
154 static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
155 			    int);
156 static uint16_t		ural_read(struct ural_softc *, uint16_t);
157 static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
158 			    int);
159 static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
160 static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
161 			    int) __unused;
162 static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
163 static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
164 static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
165 static void		ural_scan_start(struct ieee80211com *);
166 static void		ural_scan_end(struct ieee80211com *);
167 static void		ural_set_channel(struct ieee80211com *);
168 static void		ural_set_chan(struct ural_softc *,
169 			    struct ieee80211_channel *);
170 static void		ural_disable_rf_tune(struct ural_softc *);
171 static void		ural_enable_tsf_sync(struct ural_softc *);
172 static void 		ural_enable_tsf(struct ural_softc *);
173 static void		ural_update_slot(struct ifnet *);
174 static void		ural_set_txpreamble(struct ural_softc *);
175 static void		ural_set_basicrates(struct ural_softc *,
176 			    const struct ieee80211_channel *);
177 static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
178 static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
179 static void		ural_update_promisc(struct ifnet *);
180 static void		ural_setpromisc(struct ural_softc *);
181 static const char	*ural_get_rf(int);
182 static void		ural_read_eeprom(struct ural_softc *);
183 static int		ural_bbp_init(struct ural_softc *);
184 static void		ural_set_txantenna(struct ural_softc *, int);
185 static void		ural_set_rxantenna(struct ural_softc *, int);
186 static void		ural_init_locked(struct ural_softc *);
187 static void		ural_init(void *);
188 static void		ural_stop(struct ural_softc *);
189 static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
190 			    const struct ieee80211_bpf_params *);
191 static void		ural_ratectl_start(struct ural_softc *,
192 			    struct ieee80211_node *);
193 static void		ural_ratectl_timeout(void *);
194 static void		ural_ratectl_task(void *, int);
195 static int		ural_pause(struct ural_softc *sc, int timeout);
196 
197 /*
198  * Default values for MAC registers; values taken from the reference driver.
199  */
200 static const struct {
201 	uint16_t	reg;
202 	uint16_t	val;
203 } ural_def_mac[] = {
204 	{ RAL_TXRX_CSR5,  0x8c8d },
205 	{ RAL_TXRX_CSR6,  0x8b8a },
206 	{ RAL_TXRX_CSR7,  0x8687 },
207 	{ RAL_TXRX_CSR8,  0x0085 },
208 	{ RAL_MAC_CSR13,  0x1111 },
209 	{ RAL_MAC_CSR14,  0x1e11 },
210 	{ RAL_TXRX_CSR21, 0xe78f },
211 	{ RAL_MAC_CSR9,   0xff1d },
212 	{ RAL_MAC_CSR11,  0x0002 },
213 	{ RAL_MAC_CSR22,  0x0053 },
214 	{ RAL_MAC_CSR15,  0x0000 },
215 	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
216 	{ RAL_TXRX_CSR19, 0x0000 },
217 	{ RAL_TXRX_CSR18, 0x005a },
218 	{ RAL_PHY_CSR2,   0x0000 },
219 	{ RAL_TXRX_CSR0,  0x1ec0 },
220 	{ RAL_PHY_CSR4,   0x000f }
221 };
222 
223 /*
224  * Default values for BBP registers; values taken from the reference driver.
225  */
226 static const struct {
227 	uint8_t	reg;
228 	uint8_t	val;
229 } ural_def_bbp[] = {
230 	{  3, 0x02 },
231 	{  4, 0x19 },
232 	{ 14, 0x1c },
233 	{ 15, 0x30 },
234 	{ 16, 0xac },
235 	{ 17, 0x48 },
236 	{ 18, 0x18 },
237 	{ 19, 0xff },
238 	{ 20, 0x1e },
239 	{ 21, 0x08 },
240 	{ 22, 0x08 },
241 	{ 23, 0x08 },
242 	{ 24, 0x80 },
243 	{ 25, 0x50 },
244 	{ 26, 0x08 },
245 	{ 27, 0x23 },
246 	{ 30, 0x10 },
247 	{ 31, 0x2b },
248 	{ 32, 0xb9 },
249 	{ 34, 0x12 },
250 	{ 35, 0x50 },
251 	{ 39, 0xc4 },
252 	{ 40, 0x02 },
253 	{ 41, 0x60 },
254 	{ 53, 0x10 },
255 	{ 54, 0x18 },
256 	{ 56, 0x08 },
257 	{ 57, 0x10 },
258 	{ 58, 0x08 },
259 	{ 61, 0x60 },
260 	{ 62, 0x10 },
261 	{ 75, 0xff }
262 };
263 
264 /*
265  * Default values for RF register R2 indexed by channel numbers.
266  */
267 static const uint32_t ural_rf2522_r2[] = {
268 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
269 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
270 };
271 
272 static const uint32_t ural_rf2523_r2[] = {
273 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
274 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
275 };
276 
277 static const uint32_t ural_rf2524_r2[] = {
278 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
279 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
280 };
281 
282 static const uint32_t ural_rf2525_r2[] = {
283 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
284 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
285 };
286 
287 static const uint32_t ural_rf2525_hi_r2[] = {
288 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
289 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
290 };
291 
292 static const uint32_t ural_rf2525e_r2[] = {
293 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
294 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
295 };
296 
297 static const uint32_t ural_rf2526_hi_r2[] = {
298 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
299 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
300 };
301 
302 static const uint32_t ural_rf2526_r2[] = {
303 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
304 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
305 };
306 
307 /*
308  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
309  * values taken from the reference driver.
310  */
311 static const struct {
312 	uint8_t		chan;
313 	uint32_t	r1;
314 	uint32_t	r2;
315 	uint32_t	r4;
316 } ural_rf5222[] = {
317 	{   1, 0x08808, 0x0044d, 0x00282 },
318 	{   2, 0x08808, 0x0044e, 0x00282 },
319 	{   3, 0x08808, 0x0044f, 0x00282 },
320 	{   4, 0x08808, 0x00460, 0x00282 },
321 	{   5, 0x08808, 0x00461, 0x00282 },
322 	{   6, 0x08808, 0x00462, 0x00282 },
323 	{   7, 0x08808, 0x00463, 0x00282 },
324 	{   8, 0x08808, 0x00464, 0x00282 },
325 	{   9, 0x08808, 0x00465, 0x00282 },
326 	{  10, 0x08808, 0x00466, 0x00282 },
327 	{  11, 0x08808, 0x00467, 0x00282 },
328 	{  12, 0x08808, 0x00468, 0x00282 },
329 	{  13, 0x08808, 0x00469, 0x00282 },
330 	{  14, 0x08808, 0x0046b, 0x00286 },
331 
332 	{  36, 0x08804, 0x06225, 0x00287 },
333 	{  40, 0x08804, 0x06226, 0x00287 },
334 	{  44, 0x08804, 0x06227, 0x00287 },
335 	{  48, 0x08804, 0x06228, 0x00287 },
336 	{  52, 0x08804, 0x06229, 0x00287 },
337 	{  56, 0x08804, 0x0622a, 0x00287 },
338 	{  60, 0x08804, 0x0622b, 0x00287 },
339 	{  64, 0x08804, 0x0622c, 0x00287 },
340 
341 	{ 100, 0x08804, 0x02200, 0x00283 },
342 	{ 104, 0x08804, 0x02201, 0x00283 },
343 	{ 108, 0x08804, 0x02202, 0x00283 },
344 	{ 112, 0x08804, 0x02203, 0x00283 },
345 	{ 116, 0x08804, 0x02204, 0x00283 },
346 	{ 120, 0x08804, 0x02205, 0x00283 },
347 	{ 124, 0x08804, 0x02206, 0x00283 },
348 	{ 128, 0x08804, 0x02207, 0x00283 },
349 	{ 132, 0x08804, 0x02208, 0x00283 },
350 	{ 136, 0x08804, 0x02209, 0x00283 },
351 	{ 140, 0x08804, 0x0220a, 0x00283 },
352 
353 	{ 149, 0x08808, 0x02429, 0x00281 },
354 	{ 153, 0x08808, 0x0242b, 0x00281 },
355 	{ 157, 0x08808, 0x0242d, 0x00281 },
356 	{ 161, 0x08808, 0x0242f, 0x00281 }
357 };
358 
359 static const struct usb_config ural_config[URAL_N_TRANSFER] = {
360 	[URAL_BULK_WR] = {
361 		.type = UE_BULK,
362 		.endpoint = UE_ADDR_ANY,
363 		.direction = UE_DIR_OUT,
364 		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
365 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
366 		.callback = ural_bulk_write_callback,
367 		.timeout = 5000,	/* ms */
368 	},
369 	[URAL_BULK_RD] = {
370 		.type = UE_BULK,
371 		.endpoint = UE_ADDR_ANY,
372 		.direction = UE_DIR_IN,
373 		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
374 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
375 		.callback = ural_bulk_read_callback,
376 	},
377 };
378 
379 static device_probe_t ural_match;
380 static device_attach_t ural_attach;
381 static device_detach_t ural_detach;
382 
383 static device_method_t ural_methods[] = {
384 	/* Device interface */
385 	DEVMETHOD(device_probe,		ural_match),
386 	DEVMETHOD(device_attach,	ural_attach),
387 	DEVMETHOD(device_detach,	ural_detach),
388 
389 	{ 0, 0 }
390 };
391 
392 static driver_t ural_driver = {
393 	.name = "ural",
394 	.methods = ural_methods,
395 	.size = sizeof(struct ural_softc),
396 };
397 
398 static devclass_t ural_devclass;
399 
400 DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
401 MODULE_DEPEND(ural, usb, 1, 1, 1);
402 MODULE_DEPEND(ural, wlan, 1, 1, 1);
403 
404 static int
405 ural_match(device_t self)
406 {
407 	struct usb_attach_arg *uaa = device_get_ivars(self);
408 
409 	if (uaa->usb_mode != USB_MODE_HOST)
410 		return (ENXIO);
411 	if (uaa->info.bConfigIndex != 0)
412 		return (ENXIO);
413 	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
414 		return (ENXIO);
415 
416 	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
417 }
418 
419 static int
420 ural_attach(device_t self)
421 {
422 	struct usb_attach_arg *uaa = device_get_ivars(self);
423 	struct ural_softc *sc = device_get_softc(self);
424 	struct ifnet *ifp;
425 	struct ieee80211com *ic;
426 	uint8_t iface_index, bands;
427 	int error;
428 
429 	device_set_usb_desc(self);
430 	sc->sc_udev = uaa->device;
431 	sc->sc_dev = self;
432 
433 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
434 	    MTX_NETWORK_LOCK, MTX_DEF);
435 
436 	iface_index = RAL_IFACE_INDEX;
437 	error = usbd_transfer_setup(uaa->device,
438 	    &iface_index, sc->sc_xfer, ural_config,
439 	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
440 	if (error) {
441 		device_printf(self, "could not allocate USB transfers, "
442 		    "err=%s\n", usbd_errstr(error));
443 		goto detach;
444 	}
445 
446 	RAL_LOCK(sc);
447 	/* retrieve RT2570 rev. no */
448 	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
449 
450 	/* retrieve MAC address and various other things from EEPROM */
451 	ural_read_eeprom(sc);
452 	RAL_UNLOCK(sc);
453 
454 	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
455 	    sc->asic_rev, ural_get_rf(sc->rf_rev));
456 
457 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
458 	if (ifp == NULL) {
459 		device_printf(sc->sc_dev, "can not if_alloc()\n");
460 		goto detach;
461 	}
462 	ic = ifp->if_l2com;
463 
464 	ifp->if_softc = sc;
465 	if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
466 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
467 	ifp->if_init = ural_init;
468 	ifp->if_ioctl = ural_ioctl;
469 	ifp->if_start = ural_start;
470 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
471 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
472 	IFQ_SET_READY(&ifp->if_snd);
473 
474 	ic->ic_ifp = ifp;
475 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
476 
477 	/* set device capabilities */
478 	ic->ic_caps =
479 	      IEEE80211_C_STA		/* station mode supported */
480 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
481 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
482 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
483 	    | IEEE80211_C_TXPMGT	/* tx power management */
484 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
485 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
486 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
487 	    | IEEE80211_C_WPA		/* 802.11i */
488 	    ;
489 
490 	bands = 0;
491 	setbit(&bands, IEEE80211_MODE_11B);
492 	setbit(&bands, IEEE80211_MODE_11G);
493 	if (sc->rf_rev == RAL_RF_5222)
494 		setbit(&bands, IEEE80211_MODE_11A);
495 	ieee80211_init_channels(ic, NULL, &bands);
496 
497 	ieee80211_ifattach(ic, sc->sc_bssid);
498 	ic->ic_update_promisc = ural_update_promisc;
499 	ic->ic_raw_xmit = ural_raw_xmit;
500 	ic->ic_scan_start = ural_scan_start;
501 	ic->ic_scan_end = ural_scan_end;
502 	ic->ic_set_channel = ural_set_channel;
503 
504 	ic->ic_vap_create = ural_vap_create;
505 	ic->ic_vap_delete = ural_vap_delete;
506 
507 	ieee80211_radiotap_attach(ic,
508 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
509 		RAL_TX_RADIOTAP_PRESENT,
510 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
511 		RAL_RX_RADIOTAP_PRESENT);
512 
513 	if (bootverbose)
514 		ieee80211_announce(ic);
515 
516 	return (0);
517 
518 detach:
519 	ural_detach(self);
520 	return (ENXIO);			/* failure */
521 }
522 
523 static int
524 ural_detach(device_t self)
525 {
526 	struct ural_softc *sc = device_get_softc(self);
527 	struct ifnet *ifp = sc->sc_ifp;
528 	struct ieee80211com *ic;
529 
530 	/* stop all USB transfers */
531 	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
532 
533 	/* free TX list, if any */
534 	RAL_LOCK(sc);
535 	ural_unsetup_tx_list(sc);
536 	RAL_UNLOCK(sc);
537 
538 	if (ifp) {
539 		ic = ifp->if_l2com;
540 		ieee80211_ifdetach(ic);
541 		if_free(ifp);
542 	}
543 	mtx_destroy(&sc->sc_mtx);
544 
545 	return (0);
546 }
547 
548 static usb_error_t
549 ural_do_request(struct ural_softc *sc,
550     struct usb_device_request *req, void *data)
551 {
552 	usb_error_t err;
553 	int ntries = 10;
554 
555 	while (ntries--) {
556 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
557 		    req, data, 0, NULL, 250 /* ms */);
558 		if (err == 0)
559 			break;
560 
561 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
562 		    usbd_errstr(err));
563 		if (ural_pause(sc, hz / 100))
564 			break;
565 	}
566 	return (err);
567 }
568 
569 static struct ieee80211vap *
570 ural_vap_create(struct ieee80211com *ic,
571 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
572 	const uint8_t bssid[IEEE80211_ADDR_LEN],
573 	const uint8_t mac[IEEE80211_ADDR_LEN])
574 {
575 	struct ural_softc *sc = ic->ic_ifp->if_softc;
576 	struct ural_vap *uvp;
577 	struct ieee80211vap *vap;
578 
579 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
580 		return NULL;
581 	uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
582 	    M_80211_VAP, M_NOWAIT | M_ZERO);
583 	if (uvp == NULL)
584 		return NULL;
585 	vap = &uvp->vap;
586 	/* enable s/w bmiss handling for sta mode */
587 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
588 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
589 
590 	/* override state transition machine */
591 	uvp->newstate = vap->iv_newstate;
592 	vap->iv_newstate = ural_newstate;
593 
594 	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
595 	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
596 	ieee80211_ratectl_init(vap);
597 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
598 
599 	/* complete setup */
600 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
601 	ic->ic_opmode = opmode;
602 	return vap;
603 }
604 
605 static void
606 ural_vap_delete(struct ieee80211vap *vap)
607 {
608 	struct ural_vap *uvp = URAL_VAP(vap);
609 	struct ieee80211com *ic = vap->iv_ic;
610 
611 	usb_callout_drain(&uvp->ratectl_ch);
612 	ieee80211_draintask(ic, &uvp->ratectl_task);
613 	ieee80211_ratectl_deinit(vap);
614 	ieee80211_vap_detach(vap);
615 	free(uvp, M_80211_VAP);
616 }
617 
618 static void
619 ural_tx_free(struct ural_tx_data *data, int txerr)
620 {
621 	struct ural_softc *sc = data->sc;
622 
623 	if (data->m != NULL) {
624 		if (data->m->m_flags & M_TXCB)
625 			ieee80211_process_callback(data->ni, data->m,
626 			    txerr ? ETIMEDOUT : 0);
627 		m_freem(data->m);
628 		data->m = NULL;
629 
630 		ieee80211_free_node(data->ni);
631 		data->ni = NULL;
632 	}
633 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
634 	sc->tx_nfree++;
635 }
636 
637 static void
638 ural_setup_tx_list(struct ural_softc *sc)
639 {
640 	struct ural_tx_data *data;
641 	int i;
642 
643 	sc->tx_nfree = 0;
644 	STAILQ_INIT(&sc->tx_q);
645 	STAILQ_INIT(&sc->tx_free);
646 
647 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
648 		data = &sc->tx_data[i];
649 
650 		data->sc = sc;
651 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
652 		sc->tx_nfree++;
653 	}
654 }
655 
656 static void
657 ural_unsetup_tx_list(struct ural_softc *sc)
658 {
659 	struct ural_tx_data *data;
660 	int i;
661 
662 	/* make sure any subsequent use of the queues will fail */
663 	sc->tx_nfree = 0;
664 	STAILQ_INIT(&sc->tx_q);
665 	STAILQ_INIT(&sc->tx_free);
666 
667 	/* free up all node references and mbufs */
668 	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
669 		data = &sc->tx_data[i];
670 
671 		if (data->m != NULL) {
672 			m_freem(data->m);
673 			data->m = NULL;
674 		}
675 		if (data->ni != NULL) {
676 			ieee80211_free_node(data->ni);
677 			data->ni = NULL;
678 		}
679 	}
680 }
681 
682 static int
683 ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
684 {
685 	struct ural_vap *uvp = URAL_VAP(vap);
686 	struct ieee80211com *ic = vap->iv_ic;
687 	struct ural_softc *sc = ic->ic_ifp->if_softc;
688 	const struct ieee80211_txparam *tp;
689 	struct ieee80211_node *ni;
690 	struct mbuf *m;
691 
692 	DPRINTF("%s -> %s\n",
693 		ieee80211_state_name[vap->iv_state],
694 		ieee80211_state_name[nstate]);
695 
696 	IEEE80211_UNLOCK(ic);
697 	RAL_LOCK(sc);
698 	usb_callout_stop(&uvp->ratectl_ch);
699 
700 	switch (nstate) {
701 	case IEEE80211_S_INIT:
702 		if (vap->iv_state == IEEE80211_S_RUN) {
703 			/* abort TSF synchronization */
704 			ural_write(sc, RAL_TXRX_CSR19, 0);
705 
706 			/* force tx led to stop blinking */
707 			ural_write(sc, RAL_MAC_CSR20, 0);
708 		}
709 		break;
710 
711 	case IEEE80211_S_RUN:
712 		ni = vap->iv_bss;
713 
714 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
715 			ural_update_slot(ic->ic_ifp);
716 			ural_set_txpreamble(sc);
717 			ural_set_basicrates(sc, ic->ic_bsschan);
718 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
719 			ural_set_bssid(sc, sc->sc_bssid);
720 		}
721 
722 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
723 		    vap->iv_opmode == IEEE80211_M_IBSS) {
724 			m = ieee80211_beacon_alloc(ni, &uvp->bo);
725 			if (m == NULL) {
726 				device_printf(sc->sc_dev,
727 				    "could not allocate beacon\n");
728 				RAL_UNLOCK(sc);
729 				IEEE80211_LOCK(ic);
730 				return (-1);
731 			}
732 			ieee80211_ref_node(ni);
733 			if (ural_tx_bcn(sc, m, ni) != 0) {
734 				device_printf(sc->sc_dev,
735 				    "could not send beacon\n");
736 				RAL_UNLOCK(sc);
737 				IEEE80211_LOCK(ic);
738 				return (-1);
739 			}
740 		}
741 
742 		/* make tx led blink on tx (controlled by ASIC) */
743 		ural_write(sc, RAL_MAC_CSR20, 1);
744 
745 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
746 			ural_enable_tsf_sync(sc);
747 		else
748 			ural_enable_tsf(sc);
749 
750 		/* enable automatic rate adaptation */
751 		/* XXX should use ic_bsschan but not valid until after newstate call below */
752 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
753 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
754 			ural_ratectl_start(sc, ni);
755 
756 		break;
757 
758 	default:
759 		break;
760 	}
761 	RAL_UNLOCK(sc);
762 	IEEE80211_LOCK(ic);
763 	return (uvp->newstate(vap, nstate, arg));
764 }
765 
766 
767 static void
768 ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
769 {
770 	struct ural_softc *sc = usbd_xfer_softc(xfer);
771 	struct ifnet *ifp = sc->sc_ifp;
772 	struct ieee80211vap *vap;
773 	struct ural_tx_data *data;
774 	struct mbuf *m;
775 	struct usb_page_cache *pc;
776 	int len;
777 
778 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
779 
780 	switch (USB_GET_STATE(xfer)) {
781 	case USB_ST_TRANSFERRED:
782 		DPRINTFN(11, "transfer complete, %d bytes\n", len);
783 
784 		/* free resources */
785 		data = usbd_xfer_get_priv(xfer);
786 		ural_tx_free(data, 0);
787 		usbd_xfer_set_priv(xfer, NULL);
788 
789 		ifp->if_opackets++;
790 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
791 
792 		/* FALLTHROUGH */
793 	case USB_ST_SETUP:
794 tr_setup:
795 		data = STAILQ_FIRST(&sc->tx_q);
796 		if (data) {
797 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
798 			m = data->m;
799 
800 			if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
801 				DPRINTFN(0, "data overflow, %u bytes\n",
802 				    m->m_pkthdr.len);
803 				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
804 			}
805 			pc = usbd_xfer_get_frame(xfer, 0);
806 			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
807 			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
808 			    m->m_pkthdr.len);
809 
810 			vap = data->ni->ni_vap;
811 			if (ieee80211_radiotap_active_vap(vap)) {
812 				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
813 
814 				tap->wt_flags = 0;
815 				tap->wt_rate = data->rate;
816 				tap->wt_antenna = sc->tx_ant;
817 
818 				ieee80211_radiotap_tx(vap, m);
819 			}
820 
821 			/* xfer length needs to be a multiple of two! */
822 			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
823 			if ((len % 64) == 0)
824 				len += 2;
825 
826 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
827 			    m->m_pkthdr.len, len);
828 
829 			usbd_xfer_set_frame_len(xfer, 0, len);
830 			usbd_xfer_set_priv(xfer, data);
831 
832 			usbd_transfer_submit(xfer);
833 		}
834 		RAL_UNLOCK(sc);
835 		ural_start(ifp);
836 		RAL_LOCK(sc);
837 		break;
838 
839 	default:			/* Error */
840 		DPRINTFN(11, "transfer error, %s\n",
841 		    usbd_errstr(error));
842 
843 		ifp->if_oerrors++;
844 		data = usbd_xfer_get_priv(xfer);
845 		if (data != NULL) {
846 			ural_tx_free(data, error);
847 			usbd_xfer_set_priv(xfer, NULL);
848 		}
849 
850 		if (error == USB_ERR_STALLED) {
851 			/* try to clear stall first */
852 			usbd_xfer_set_stall(xfer);
853 			goto tr_setup;
854 		}
855 		if (error == USB_ERR_TIMEOUT)
856 			device_printf(sc->sc_dev, "device timeout\n");
857 		break;
858 	}
859 }
860 
861 static void
862 ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
863 {
864 	struct ural_softc *sc = usbd_xfer_softc(xfer);
865 	struct ifnet *ifp = sc->sc_ifp;
866 	struct ieee80211com *ic = ifp->if_l2com;
867 	struct ieee80211_node *ni;
868 	struct mbuf *m = NULL;
869 	struct usb_page_cache *pc;
870 	uint32_t flags;
871 	int8_t rssi = 0, nf = 0;
872 	int len;
873 
874 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
875 
876 	switch (USB_GET_STATE(xfer)) {
877 	case USB_ST_TRANSFERRED:
878 
879 		DPRINTFN(15, "rx done, actlen=%d\n", len);
880 
881 		if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
882 			DPRINTF("%s: xfer too short %d\n",
883 			    device_get_nameunit(sc->sc_dev), len);
884 			ifp->if_ierrors++;
885 			goto tr_setup;
886 		}
887 
888 		len -= RAL_RX_DESC_SIZE;
889 		/* rx descriptor is located at the end */
890 		pc = usbd_xfer_get_frame(xfer, 0);
891 		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
892 
893 		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
894 		nf = RAL_NOISE_FLOOR;
895 		flags = le32toh(sc->sc_rx_desc.flags);
896 		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
897 			/*
898 		         * This should not happen since we did not
899 		         * request to receive those frames when we
900 		         * filled RAL_TXRX_CSR2:
901 		         */
902 			DPRINTFN(5, "PHY or CRC error\n");
903 			ifp->if_ierrors++;
904 			goto tr_setup;
905 		}
906 
907 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
908 		if (m == NULL) {
909 			DPRINTF("could not allocate mbuf\n");
910 			ifp->if_ierrors++;
911 			goto tr_setup;
912 		}
913 		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
914 
915 		/* finalize mbuf */
916 		m->m_pkthdr.rcvif = ifp;
917 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
918 
919 		if (ieee80211_radiotap_active(ic)) {
920 			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
921 
922 			/* XXX set once */
923 			tap->wr_flags = 0;
924 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
925 			    (flags & RAL_RX_OFDM) ?
926 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
927 			tap->wr_antenna = sc->rx_ant;
928 			tap->wr_antsignal = nf + rssi;
929 			tap->wr_antnoise = nf;
930 		}
931 		/* Strip trailing 802.11 MAC FCS. */
932 		m_adj(m, -IEEE80211_CRC_LEN);
933 
934 		/* FALLTHROUGH */
935 	case USB_ST_SETUP:
936 tr_setup:
937 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
938 		usbd_transfer_submit(xfer);
939 
940 		/*
941 		 * At the end of a USB callback it is always safe to unlock
942 		 * the private mutex of a device! That is why we do the
943 		 * "ieee80211_input" here, and not some lines up!
944 		 */
945 		RAL_UNLOCK(sc);
946 		if (m) {
947 			ni = ieee80211_find_rxnode(ic,
948 			    mtod(m, struct ieee80211_frame_min *));
949 			if (ni != NULL) {
950 				(void) ieee80211_input(ni, m, rssi, nf);
951 				ieee80211_free_node(ni);
952 			} else
953 				(void) ieee80211_input_all(ic, m, rssi, nf);
954 		}
955 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
956 		    !IFQ_IS_EMPTY(&ifp->if_snd))
957 			ural_start(ifp);
958 		RAL_LOCK(sc);
959 		return;
960 
961 	default:			/* Error */
962 		if (error != USB_ERR_CANCELLED) {
963 			/* try to clear stall first */
964 			usbd_xfer_set_stall(xfer);
965 			goto tr_setup;
966 		}
967 		return;
968 	}
969 }
970 
971 static uint8_t
972 ural_plcp_signal(int rate)
973 {
974 	switch (rate) {
975 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
976 	case 12:	return 0xb;
977 	case 18:	return 0xf;
978 	case 24:	return 0xa;
979 	case 36:	return 0xe;
980 	case 48:	return 0x9;
981 	case 72:	return 0xd;
982 	case 96:	return 0x8;
983 	case 108:	return 0xc;
984 
985 	/* CCK rates (NB: not IEEE std, device-specific) */
986 	case 2:		return 0x0;
987 	case 4:		return 0x1;
988 	case 11:	return 0x2;
989 	case 22:	return 0x3;
990 	}
991 	return 0xff;		/* XXX unsupported/unknown rate */
992 }
993 
994 static void
995 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
996     uint32_t flags, int len, int rate)
997 {
998 	struct ifnet *ifp = sc->sc_ifp;
999 	struct ieee80211com *ic = ifp->if_l2com;
1000 	uint16_t plcp_length;
1001 	int remainder;
1002 
1003 	desc->flags = htole32(flags);
1004 	desc->flags |= htole32(RAL_TX_NEWSEQ);
1005 	desc->flags |= htole32(len << 16);
1006 
1007 	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1008 	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1009 
1010 	/* setup PLCP fields */
1011 	desc->plcp_signal  = ural_plcp_signal(rate);
1012 	desc->plcp_service = 4;
1013 
1014 	len += IEEE80211_CRC_LEN;
1015 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1016 		desc->flags |= htole32(RAL_TX_OFDM);
1017 
1018 		plcp_length = len & 0xfff;
1019 		desc->plcp_length_hi = plcp_length >> 6;
1020 		desc->plcp_length_lo = plcp_length & 0x3f;
1021 	} else {
1022 		plcp_length = (16 * len + rate - 1) / rate;
1023 		if (rate == 22) {
1024 			remainder = (16 * len) % 22;
1025 			if (remainder != 0 && remainder < 7)
1026 				desc->plcp_service |= RAL_PLCP_LENGEXT;
1027 		}
1028 		desc->plcp_length_hi = plcp_length >> 8;
1029 		desc->plcp_length_lo = plcp_length & 0xff;
1030 
1031 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1032 			desc->plcp_signal |= 0x08;
1033 	}
1034 
1035 	desc->iv = 0;
1036 	desc->eiv = 0;
1037 }
1038 
1039 #define RAL_TX_TIMEOUT	5000
1040 
1041 static int
1042 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1043 {
1044 	struct ieee80211vap *vap = ni->ni_vap;
1045 	struct ieee80211com *ic = ni->ni_ic;
1046 	struct ifnet *ifp = sc->sc_ifp;
1047 	const struct ieee80211_txparam *tp;
1048 	struct ural_tx_data *data;
1049 
1050 	if (sc->tx_nfree == 0) {
1051 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1052 		m_freem(m0);
1053 		ieee80211_free_node(ni);
1054 		return EIO;
1055 	}
1056 	data = STAILQ_FIRST(&sc->tx_free);
1057 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1058 	sc->tx_nfree--;
1059 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1060 
1061 	data->m = m0;
1062 	data->ni = ni;
1063 	data->rate = tp->mgmtrate;
1064 
1065 	ural_setup_tx_desc(sc, &data->desc,
1066 	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1067 	    tp->mgmtrate);
1068 
1069 	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1070 	    m0->m_pkthdr.len, tp->mgmtrate);
1071 
1072 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1073 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1074 
1075 	return (0);
1076 }
1077 
1078 static int
1079 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1080 {
1081 	struct ieee80211vap *vap = ni->ni_vap;
1082 	struct ieee80211com *ic = ni->ni_ic;
1083 	const struct ieee80211_txparam *tp;
1084 	struct ural_tx_data *data;
1085 	struct ieee80211_frame *wh;
1086 	struct ieee80211_key *k;
1087 	uint32_t flags;
1088 	uint16_t dur;
1089 
1090 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1091 
1092 	data = STAILQ_FIRST(&sc->tx_free);
1093 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1094 	sc->tx_nfree--;
1095 
1096 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1097 
1098 	wh = mtod(m0, struct ieee80211_frame *);
1099 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1100 		k = ieee80211_crypto_encap(ni, m0);
1101 		if (k == NULL) {
1102 			m_freem(m0);
1103 			return ENOBUFS;
1104 		}
1105 		wh = mtod(m0, struct ieee80211_frame *);
1106 	}
1107 
1108 	data->m = m0;
1109 	data->ni = ni;
1110 	data->rate = tp->mgmtrate;
1111 
1112 	flags = 0;
1113 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1114 		flags |= RAL_TX_ACK;
1115 
1116 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1117 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1118 		*(uint16_t *)wh->i_dur = htole16(dur);
1119 
1120 		/* tell hardware to add timestamp for probe responses */
1121 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1122 		    IEEE80211_FC0_TYPE_MGT &&
1123 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1124 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1125 			flags |= RAL_TX_TIMESTAMP;
1126 	}
1127 
1128 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1129 
1130 	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1131 	    m0->m_pkthdr.len, tp->mgmtrate);
1132 
1133 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1134 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1135 
1136 	return 0;
1137 }
1138 
1139 static int
1140 ural_sendprot(struct ural_softc *sc,
1141     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1142 {
1143 	struct ieee80211com *ic = ni->ni_ic;
1144 	const struct ieee80211_frame *wh;
1145 	struct ural_tx_data *data;
1146 	struct mbuf *mprot;
1147 	int protrate, ackrate, pktlen, flags, isshort;
1148 	uint16_t dur;
1149 
1150 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1151 	    ("protection %d", prot));
1152 
1153 	wh = mtod(m, const struct ieee80211_frame *);
1154 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1155 
1156 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1157 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1158 
1159 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1160 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1161 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1162 	flags = RAL_TX_RETRY(7);
1163 	if (prot == IEEE80211_PROT_RTSCTS) {
1164 		/* NB: CTS is the same size as an ACK */
1165 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1166 		flags |= RAL_TX_ACK;
1167 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1168 	} else {
1169 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1170 	}
1171 	if (mprot == NULL) {
1172 		/* XXX stat + msg */
1173 		return ENOBUFS;
1174 	}
1175 	data = STAILQ_FIRST(&sc->tx_free);
1176 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1177 	sc->tx_nfree--;
1178 
1179 	data->m = mprot;
1180 	data->ni = ieee80211_ref_node(ni);
1181 	data->rate = protrate;
1182 	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1183 
1184 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1185 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1186 
1187 	return 0;
1188 }
1189 
1190 static int
1191 ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1192     const struct ieee80211_bpf_params *params)
1193 {
1194 	struct ieee80211com *ic = ni->ni_ic;
1195 	struct ural_tx_data *data;
1196 	uint32_t flags;
1197 	int error;
1198 	int rate;
1199 
1200 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1201 	KASSERT(params != NULL, ("no raw xmit params"));
1202 
1203 	rate = params->ibp_rate0;
1204 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1205 		m_freem(m0);
1206 		return EINVAL;
1207 	}
1208 	flags = 0;
1209 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1210 		flags |= RAL_TX_ACK;
1211 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1212 		error = ural_sendprot(sc, m0, ni,
1213 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1214 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1215 		    rate);
1216 		if (error || sc->tx_nfree == 0) {
1217 			m_freem(m0);
1218 			return ENOBUFS;
1219 		}
1220 		flags |= RAL_TX_IFS_SIFS;
1221 	}
1222 
1223 	data = STAILQ_FIRST(&sc->tx_free);
1224 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1225 	sc->tx_nfree--;
1226 
1227 	data->m = m0;
1228 	data->ni = ni;
1229 	data->rate = rate;
1230 
1231 	/* XXX need to setup descriptor ourself */
1232 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1233 
1234 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1235 	    m0->m_pkthdr.len, rate);
1236 
1237 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1238 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1239 
1240 	return 0;
1241 }
1242 
1243 static int
1244 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1245 {
1246 	struct ieee80211vap *vap = ni->ni_vap;
1247 	struct ieee80211com *ic = ni->ni_ic;
1248 	struct ural_tx_data *data;
1249 	struct ieee80211_frame *wh;
1250 	const struct ieee80211_txparam *tp;
1251 	struct ieee80211_key *k;
1252 	uint32_t flags = 0;
1253 	uint16_t dur;
1254 	int error, rate;
1255 
1256 	RAL_LOCK_ASSERT(sc, MA_OWNED);
1257 
1258 	wh = mtod(m0, struct ieee80211_frame *);
1259 
1260 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1261 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1262 		rate = tp->mcastrate;
1263 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1264 		rate = tp->ucastrate;
1265 	else
1266 		rate = ni->ni_txrate;
1267 
1268 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1269 		k = ieee80211_crypto_encap(ni, m0);
1270 		if (k == NULL) {
1271 			m_freem(m0);
1272 			return ENOBUFS;
1273 		}
1274 		/* packet header may have moved, reset our local pointer */
1275 		wh = mtod(m0, struct ieee80211_frame *);
1276 	}
1277 
1278 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1279 		int prot = IEEE80211_PROT_NONE;
1280 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1281 			prot = IEEE80211_PROT_RTSCTS;
1282 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1283 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1284 			prot = ic->ic_protmode;
1285 		if (prot != IEEE80211_PROT_NONE) {
1286 			error = ural_sendprot(sc, m0, ni, prot, rate);
1287 			if (error || sc->tx_nfree == 0) {
1288 				m_freem(m0);
1289 				return ENOBUFS;
1290 			}
1291 			flags |= RAL_TX_IFS_SIFS;
1292 		}
1293 	}
1294 
1295 	data = STAILQ_FIRST(&sc->tx_free);
1296 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1297 	sc->tx_nfree--;
1298 
1299 	data->m = m0;
1300 	data->ni = ni;
1301 	data->rate = rate;
1302 
1303 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1304 		flags |= RAL_TX_ACK;
1305 		flags |= RAL_TX_RETRY(7);
1306 
1307 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1308 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1309 		*(uint16_t *)wh->i_dur = htole16(dur);
1310 	}
1311 
1312 	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1313 
1314 	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1315 	    m0->m_pkthdr.len, rate);
1316 
1317 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1318 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1319 
1320 	return 0;
1321 }
1322 
1323 static void
1324 ural_start(struct ifnet *ifp)
1325 {
1326 	struct ural_softc *sc = ifp->if_softc;
1327 	struct ieee80211_node *ni;
1328 	struct mbuf *m;
1329 
1330 	RAL_LOCK(sc);
1331 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1332 		RAL_UNLOCK(sc);
1333 		return;
1334 	}
1335 	for (;;) {
1336 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1337 		if (m == NULL)
1338 			break;
1339 		if (sc->tx_nfree < RAL_TX_MINFREE) {
1340 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1341 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1342 			break;
1343 		}
1344 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1345 		if (ural_tx_data(sc, m, ni) != 0) {
1346 			ieee80211_free_node(ni);
1347 			ifp->if_oerrors++;
1348 			break;
1349 		}
1350 	}
1351 	RAL_UNLOCK(sc);
1352 }
1353 
1354 static int
1355 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1356 {
1357 	struct ural_softc *sc = ifp->if_softc;
1358 	struct ieee80211com *ic = ifp->if_l2com;
1359 	struct ifreq *ifr = (struct ifreq *) data;
1360 	int error = 0, startall = 0;
1361 
1362 	switch (cmd) {
1363 	case SIOCSIFFLAGS:
1364 		RAL_LOCK(sc);
1365 		if (ifp->if_flags & IFF_UP) {
1366 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1367 				ural_init_locked(sc);
1368 				startall = 1;
1369 			} else
1370 				ural_setpromisc(sc);
1371 		} else {
1372 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1373 				ural_stop(sc);
1374 		}
1375 		RAL_UNLOCK(sc);
1376 		if (startall)
1377 			ieee80211_start_all(ic);
1378 		break;
1379 	case SIOCGIFMEDIA:
1380 	case SIOCSIFMEDIA:
1381 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1382 		break;
1383 	default:
1384 		error = ether_ioctl(ifp, cmd, data);
1385 		break;
1386 	}
1387 	return error;
1388 }
1389 
1390 static void
1391 ural_set_testmode(struct ural_softc *sc)
1392 {
1393 	struct usb_device_request req;
1394 	usb_error_t error;
1395 
1396 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1397 	req.bRequest = RAL_VENDOR_REQUEST;
1398 	USETW(req.wValue, 4);
1399 	USETW(req.wIndex, 1);
1400 	USETW(req.wLength, 0);
1401 
1402 	error = ural_do_request(sc, &req, NULL);
1403 	if (error != 0) {
1404 		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1405 		    usbd_errstr(error));
1406 	}
1407 }
1408 
1409 static void
1410 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1411 {
1412 	struct usb_device_request req;
1413 	usb_error_t error;
1414 
1415 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1416 	req.bRequest = RAL_READ_EEPROM;
1417 	USETW(req.wValue, 0);
1418 	USETW(req.wIndex, addr);
1419 	USETW(req.wLength, len);
1420 
1421 	error = ural_do_request(sc, &req, buf);
1422 	if (error != 0) {
1423 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1424 		    usbd_errstr(error));
1425 	}
1426 }
1427 
1428 static uint16_t
1429 ural_read(struct ural_softc *sc, uint16_t reg)
1430 {
1431 	struct usb_device_request req;
1432 	usb_error_t error;
1433 	uint16_t val;
1434 
1435 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1436 	req.bRequest = RAL_READ_MAC;
1437 	USETW(req.wValue, 0);
1438 	USETW(req.wIndex, reg);
1439 	USETW(req.wLength, sizeof (uint16_t));
1440 
1441 	error = ural_do_request(sc, &req, &val);
1442 	if (error != 0) {
1443 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1444 		    usbd_errstr(error));
1445 		return 0;
1446 	}
1447 
1448 	return le16toh(val);
1449 }
1450 
1451 static void
1452 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1453 {
1454 	struct usb_device_request req;
1455 	usb_error_t error;
1456 
1457 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1458 	req.bRequest = RAL_READ_MULTI_MAC;
1459 	USETW(req.wValue, 0);
1460 	USETW(req.wIndex, reg);
1461 	USETW(req.wLength, len);
1462 
1463 	error = ural_do_request(sc, &req, buf);
1464 	if (error != 0) {
1465 		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1466 		    usbd_errstr(error));
1467 	}
1468 }
1469 
1470 static void
1471 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1472 {
1473 	struct usb_device_request req;
1474 	usb_error_t error;
1475 
1476 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1477 	req.bRequest = RAL_WRITE_MAC;
1478 	USETW(req.wValue, val);
1479 	USETW(req.wIndex, reg);
1480 	USETW(req.wLength, 0);
1481 
1482 	error = ural_do_request(sc, &req, NULL);
1483 	if (error != 0) {
1484 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1485 		    usbd_errstr(error));
1486 	}
1487 }
1488 
1489 static void
1490 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1491 {
1492 	struct usb_device_request req;
1493 	usb_error_t error;
1494 
1495 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1496 	req.bRequest = RAL_WRITE_MULTI_MAC;
1497 	USETW(req.wValue, 0);
1498 	USETW(req.wIndex, reg);
1499 	USETW(req.wLength, len);
1500 
1501 	error = ural_do_request(sc, &req, buf);
1502 	if (error != 0) {
1503 		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1504 		    usbd_errstr(error));
1505 	}
1506 }
1507 
1508 static void
1509 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1510 {
1511 	uint16_t tmp;
1512 	int ntries;
1513 
1514 	for (ntries = 0; ntries < 100; ntries++) {
1515 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1516 			break;
1517 		if (ural_pause(sc, hz / 100))
1518 			break;
1519 	}
1520 	if (ntries == 100) {
1521 		device_printf(sc->sc_dev, "could not write to BBP\n");
1522 		return;
1523 	}
1524 
1525 	tmp = reg << 8 | val;
1526 	ural_write(sc, RAL_PHY_CSR7, tmp);
1527 }
1528 
1529 static uint8_t
1530 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1531 {
1532 	uint16_t val;
1533 	int ntries;
1534 
1535 	val = RAL_BBP_WRITE | reg << 8;
1536 	ural_write(sc, RAL_PHY_CSR7, val);
1537 
1538 	for (ntries = 0; ntries < 100; ntries++) {
1539 		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1540 			break;
1541 		if (ural_pause(sc, hz / 100))
1542 			break;
1543 	}
1544 	if (ntries == 100) {
1545 		device_printf(sc->sc_dev, "could not read BBP\n");
1546 		return 0;
1547 	}
1548 
1549 	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1550 }
1551 
1552 static void
1553 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1554 {
1555 	uint32_t tmp;
1556 	int ntries;
1557 
1558 	for (ntries = 0; ntries < 100; ntries++) {
1559 		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1560 			break;
1561 		if (ural_pause(sc, hz / 100))
1562 			break;
1563 	}
1564 	if (ntries == 100) {
1565 		device_printf(sc->sc_dev, "could not write to RF\n");
1566 		return;
1567 	}
1568 
1569 	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1570 	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1571 	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1572 
1573 	/* remember last written value in sc */
1574 	sc->rf_regs[reg] = val;
1575 
1576 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1577 }
1578 
1579 static void
1580 ural_scan_start(struct ieee80211com *ic)
1581 {
1582 	struct ifnet *ifp = ic->ic_ifp;
1583 	struct ural_softc *sc = ifp->if_softc;
1584 
1585 	RAL_LOCK(sc);
1586 	ural_write(sc, RAL_TXRX_CSR19, 0);
1587 	ural_set_bssid(sc, ifp->if_broadcastaddr);
1588 	RAL_UNLOCK(sc);
1589 }
1590 
1591 static void
1592 ural_scan_end(struct ieee80211com *ic)
1593 {
1594 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1595 
1596 	RAL_LOCK(sc);
1597 	ural_enable_tsf_sync(sc);
1598 	ural_set_bssid(sc, sc->sc_bssid);
1599 	RAL_UNLOCK(sc);
1600 
1601 }
1602 
1603 static void
1604 ural_set_channel(struct ieee80211com *ic)
1605 {
1606 	struct ural_softc *sc = ic->ic_ifp->if_softc;
1607 
1608 	RAL_LOCK(sc);
1609 	ural_set_chan(sc, ic->ic_curchan);
1610 	RAL_UNLOCK(sc);
1611 }
1612 
1613 static void
1614 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1615 {
1616 	struct ifnet *ifp = sc->sc_ifp;
1617 	struct ieee80211com *ic = ifp->if_l2com;
1618 	uint8_t power, tmp;
1619 	int i, chan;
1620 
1621 	chan = ieee80211_chan2ieee(ic, c);
1622 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1623 		return;
1624 
1625 	if (IEEE80211_IS_CHAN_2GHZ(c))
1626 		power = min(sc->txpow[chan - 1], 31);
1627 	else
1628 		power = 31;
1629 
1630 	/* adjust txpower using ifconfig settings */
1631 	power -= (100 - ic->ic_txpowlimit) / 8;
1632 
1633 	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1634 
1635 	switch (sc->rf_rev) {
1636 	case RAL_RF_2522:
1637 		ural_rf_write(sc, RAL_RF1, 0x00814);
1638 		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1639 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1640 		break;
1641 
1642 	case RAL_RF_2523:
1643 		ural_rf_write(sc, RAL_RF1, 0x08804);
1644 		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1645 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1646 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1647 		break;
1648 
1649 	case RAL_RF_2524:
1650 		ural_rf_write(sc, RAL_RF1, 0x0c808);
1651 		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1652 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1653 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1654 		break;
1655 
1656 	case RAL_RF_2525:
1657 		ural_rf_write(sc, RAL_RF1, 0x08808);
1658 		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1659 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1660 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1661 
1662 		ural_rf_write(sc, RAL_RF1, 0x08808);
1663 		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1664 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1665 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1666 		break;
1667 
1668 	case RAL_RF_2525E:
1669 		ural_rf_write(sc, RAL_RF1, 0x08808);
1670 		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1671 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1672 		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1673 		break;
1674 
1675 	case RAL_RF_2526:
1676 		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1677 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1678 		ural_rf_write(sc, RAL_RF1, 0x08804);
1679 
1680 		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1681 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1682 		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1683 		break;
1684 
1685 	/* dual-band RF */
1686 	case RAL_RF_5222:
1687 		for (i = 0; ural_rf5222[i].chan != chan; i++);
1688 
1689 		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1690 		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1691 		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1692 		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1693 		break;
1694 	}
1695 
1696 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1697 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1698 		/* set Japan filter bit for channel 14 */
1699 		tmp = ural_bbp_read(sc, 70);
1700 
1701 		tmp &= ~RAL_JAPAN_FILTER;
1702 		if (chan == 14)
1703 			tmp |= RAL_JAPAN_FILTER;
1704 
1705 		ural_bbp_write(sc, 70, tmp);
1706 
1707 		/* clear CRC errors */
1708 		ural_read(sc, RAL_STA_CSR0);
1709 
1710 		ural_pause(sc, hz / 100);
1711 		ural_disable_rf_tune(sc);
1712 	}
1713 
1714 	/* XXX doesn't belong here */
1715 	/* update basic rate set */
1716 	ural_set_basicrates(sc, c);
1717 
1718 	/* give the hardware some time to do the switchover */
1719 	ural_pause(sc, hz / 100);
1720 }
1721 
1722 /*
1723  * Disable RF auto-tuning.
1724  */
1725 static void
1726 ural_disable_rf_tune(struct ural_softc *sc)
1727 {
1728 	uint32_t tmp;
1729 
1730 	if (sc->rf_rev != RAL_RF_2523) {
1731 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1732 		ural_rf_write(sc, RAL_RF1, tmp);
1733 	}
1734 
1735 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1736 	ural_rf_write(sc, RAL_RF3, tmp);
1737 
1738 	DPRINTFN(2, "disabling RF autotune\n");
1739 }
1740 
1741 /*
1742  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1743  * synchronization.
1744  */
1745 static void
1746 ural_enable_tsf_sync(struct ural_softc *sc)
1747 {
1748 	struct ifnet *ifp = sc->sc_ifp;
1749 	struct ieee80211com *ic = ifp->if_l2com;
1750 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1751 	uint16_t logcwmin, preload, tmp;
1752 
1753 	/* first, disable TSF synchronization */
1754 	ural_write(sc, RAL_TXRX_CSR19, 0);
1755 
1756 	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1757 	ural_write(sc, RAL_TXRX_CSR18, tmp);
1758 
1759 	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1760 	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1761 	tmp = logcwmin << 12 | preload;
1762 	ural_write(sc, RAL_TXRX_CSR20, tmp);
1763 
1764 	/* finally, enable TSF synchronization */
1765 	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1766 	if (ic->ic_opmode == IEEE80211_M_STA)
1767 		tmp |= RAL_ENABLE_TSF_SYNC(1);
1768 	else
1769 		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1770 	ural_write(sc, RAL_TXRX_CSR19, tmp);
1771 
1772 	DPRINTF("enabling TSF synchronization\n");
1773 }
1774 
1775 static void
1776 ural_enable_tsf(struct ural_softc *sc)
1777 {
1778 	/* first, disable TSF synchronization */
1779 	ural_write(sc, RAL_TXRX_CSR19, 0);
1780 	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1781 }
1782 
1783 #define RAL_RXTX_TURNAROUND	5	/* us */
1784 static void
1785 ural_update_slot(struct ifnet *ifp)
1786 {
1787 	struct ural_softc *sc = ifp->if_softc;
1788 	struct ieee80211com *ic = ifp->if_l2com;
1789 	uint16_t slottime, sifs, eifs;
1790 
1791 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1792 
1793 	/*
1794 	 * These settings may sound a bit inconsistent but this is what the
1795 	 * reference driver does.
1796 	 */
1797 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1798 		sifs = 16 - RAL_RXTX_TURNAROUND;
1799 		eifs = 364;
1800 	} else {
1801 		sifs = 10 - RAL_RXTX_TURNAROUND;
1802 		eifs = 64;
1803 	}
1804 
1805 	ural_write(sc, RAL_MAC_CSR10, slottime);
1806 	ural_write(sc, RAL_MAC_CSR11, sifs);
1807 	ural_write(sc, RAL_MAC_CSR12, eifs);
1808 }
1809 
1810 static void
1811 ural_set_txpreamble(struct ural_softc *sc)
1812 {
1813 	struct ifnet *ifp = sc->sc_ifp;
1814 	struct ieee80211com *ic = ifp->if_l2com;
1815 	uint16_t tmp;
1816 
1817 	tmp = ural_read(sc, RAL_TXRX_CSR10);
1818 
1819 	tmp &= ~RAL_SHORT_PREAMBLE;
1820 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1821 		tmp |= RAL_SHORT_PREAMBLE;
1822 
1823 	ural_write(sc, RAL_TXRX_CSR10, tmp);
1824 }
1825 
1826 static void
1827 ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1828 {
1829 	/* XXX wrong, take from rate set */
1830 	/* update basic rate set */
1831 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1832 		/* 11a basic rates: 6, 12, 24Mbps */
1833 		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1834 	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1835 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1836 		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1837 	} else {
1838 		/* 11b basic rates: 1, 2Mbps */
1839 		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1840 	}
1841 }
1842 
1843 static void
1844 ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1845 {
1846 	uint16_t tmp;
1847 
1848 	tmp = bssid[0] | bssid[1] << 8;
1849 	ural_write(sc, RAL_MAC_CSR5, tmp);
1850 
1851 	tmp = bssid[2] | bssid[3] << 8;
1852 	ural_write(sc, RAL_MAC_CSR6, tmp);
1853 
1854 	tmp = bssid[4] | bssid[5] << 8;
1855 	ural_write(sc, RAL_MAC_CSR7, tmp);
1856 
1857 	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1858 }
1859 
1860 static void
1861 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1862 {
1863 	uint16_t tmp;
1864 
1865 	tmp = addr[0] | addr[1] << 8;
1866 	ural_write(sc, RAL_MAC_CSR2, tmp);
1867 
1868 	tmp = addr[2] | addr[3] << 8;
1869 	ural_write(sc, RAL_MAC_CSR3, tmp);
1870 
1871 	tmp = addr[4] | addr[5] << 8;
1872 	ural_write(sc, RAL_MAC_CSR4, tmp);
1873 
1874 	DPRINTF("setting MAC address to %6D\n", addr, ":");
1875 }
1876 
1877 static void
1878 ural_setpromisc(struct ural_softc *sc)
1879 {
1880 	struct ifnet *ifp = sc->sc_ifp;
1881 	uint32_t tmp;
1882 
1883 	tmp = ural_read(sc, RAL_TXRX_CSR2);
1884 
1885 	tmp &= ~RAL_DROP_NOT_TO_ME;
1886 	if (!(ifp->if_flags & IFF_PROMISC))
1887 		tmp |= RAL_DROP_NOT_TO_ME;
1888 
1889 	ural_write(sc, RAL_TXRX_CSR2, tmp);
1890 
1891 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1892 	    "entering" : "leaving");
1893 }
1894 
1895 static void
1896 ural_update_promisc(struct ifnet *ifp)
1897 {
1898 	struct ural_softc *sc = ifp->if_softc;
1899 
1900 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1901 		return;
1902 
1903 	RAL_LOCK(sc);
1904 	ural_setpromisc(sc);
1905 	RAL_UNLOCK(sc);
1906 }
1907 
1908 static const char *
1909 ural_get_rf(int rev)
1910 {
1911 	switch (rev) {
1912 	case RAL_RF_2522:	return "RT2522";
1913 	case RAL_RF_2523:	return "RT2523";
1914 	case RAL_RF_2524:	return "RT2524";
1915 	case RAL_RF_2525:	return "RT2525";
1916 	case RAL_RF_2525E:	return "RT2525e";
1917 	case RAL_RF_2526:	return "RT2526";
1918 	case RAL_RF_5222:	return "RT5222";
1919 	default:		return "unknown";
1920 	}
1921 }
1922 
1923 static void
1924 ural_read_eeprom(struct ural_softc *sc)
1925 {
1926 	uint16_t val;
1927 
1928 	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1929 	val = le16toh(val);
1930 	sc->rf_rev =   (val >> 11) & 0x7;
1931 	sc->hw_radio = (val >> 10) & 0x1;
1932 	sc->led_mode = (val >> 6)  & 0x7;
1933 	sc->rx_ant =   (val >> 4)  & 0x3;
1934 	sc->tx_ant =   (val >> 2)  & 0x3;
1935 	sc->nb_ant =   val & 0x3;
1936 
1937 	/* read MAC address */
1938 	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1939 
1940 	/* read default values for BBP registers */
1941 	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1942 
1943 	/* read Tx power for all b/g channels */
1944 	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1945 }
1946 
1947 static int
1948 ural_bbp_init(struct ural_softc *sc)
1949 {
1950 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1951 	int i, ntries;
1952 
1953 	/* wait for BBP to be ready */
1954 	for (ntries = 0; ntries < 100; ntries++) {
1955 		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1956 			break;
1957 		if (ural_pause(sc, hz / 100))
1958 			break;
1959 	}
1960 	if (ntries == 100) {
1961 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1962 		return EIO;
1963 	}
1964 
1965 	/* initialize BBP registers to default values */
1966 	for (i = 0; i < N(ural_def_bbp); i++)
1967 		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1968 
1969 #if 0
1970 	/* initialize BBP registers to values stored in EEPROM */
1971 	for (i = 0; i < 16; i++) {
1972 		if (sc->bbp_prom[i].reg == 0xff)
1973 			continue;
1974 		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1975 	}
1976 #endif
1977 
1978 	return 0;
1979 #undef N
1980 }
1981 
1982 static void
1983 ural_set_txantenna(struct ural_softc *sc, int antenna)
1984 {
1985 	uint16_t tmp;
1986 	uint8_t tx;
1987 
1988 	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1989 	if (antenna == 1)
1990 		tx |= RAL_BBP_ANTA;
1991 	else if (antenna == 2)
1992 		tx |= RAL_BBP_ANTB;
1993 	else
1994 		tx |= RAL_BBP_DIVERSITY;
1995 
1996 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1997 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1998 	    sc->rf_rev == RAL_RF_5222)
1999 		tx |= RAL_BBP_FLIPIQ;
2000 
2001 	ural_bbp_write(sc, RAL_BBP_TX, tx);
2002 
2003 	/* update values in PHY_CSR5 and PHY_CSR6 */
2004 	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2005 	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2006 
2007 	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2008 	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2009 }
2010 
2011 static void
2012 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2013 {
2014 	uint8_t rx;
2015 
2016 	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2017 	if (antenna == 1)
2018 		rx |= RAL_BBP_ANTA;
2019 	else if (antenna == 2)
2020 		rx |= RAL_BBP_ANTB;
2021 	else
2022 		rx |= RAL_BBP_DIVERSITY;
2023 
2024 	/* need to force no I/Q flip for RF 2525e and 2526 */
2025 	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2026 		rx &= ~RAL_BBP_FLIPIQ;
2027 
2028 	ural_bbp_write(sc, RAL_BBP_RX, rx);
2029 }
2030 
2031 static void
2032 ural_init_locked(struct ural_softc *sc)
2033 {
2034 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2035 	struct ifnet *ifp = sc->sc_ifp;
2036 	struct ieee80211com *ic = ifp->if_l2com;
2037 	uint16_t tmp;
2038 	int i, ntries;
2039 
2040 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2041 
2042 	ural_set_testmode(sc);
2043 	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2044 
2045 	ural_stop(sc);
2046 
2047 	/* initialize MAC registers to default values */
2048 	for (i = 0; i < N(ural_def_mac); i++)
2049 		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2050 
2051 	/* wait for BBP and RF to wake up (this can take a long time!) */
2052 	for (ntries = 0; ntries < 100; ntries++) {
2053 		tmp = ural_read(sc, RAL_MAC_CSR17);
2054 		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2055 		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2056 			break;
2057 		if (ural_pause(sc, hz / 100))
2058 			break;
2059 	}
2060 	if (ntries == 100) {
2061 		device_printf(sc->sc_dev,
2062 		    "timeout waiting for BBP/RF to wakeup\n");
2063 		goto fail;
2064 	}
2065 
2066 	/* we're ready! */
2067 	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2068 
2069 	/* set basic rate set (will be updated later) */
2070 	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2071 
2072 	if (ural_bbp_init(sc) != 0)
2073 		goto fail;
2074 
2075 	ural_set_chan(sc, ic->ic_curchan);
2076 
2077 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2078 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2079 
2080 	ural_set_txantenna(sc, sc->tx_ant);
2081 	ural_set_rxantenna(sc, sc->rx_ant);
2082 
2083 	ural_set_macaddr(sc, IF_LLADDR(ifp));
2084 
2085 	/*
2086 	 * Allocate Tx and Rx xfer queues.
2087 	 */
2088 	ural_setup_tx_list(sc);
2089 
2090 	/* kick Rx */
2091 	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2092 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2093 		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2094 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2095 			tmp |= RAL_DROP_TODS;
2096 		if (!(ifp->if_flags & IFF_PROMISC))
2097 			tmp |= RAL_DROP_NOT_TO_ME;
2098 	}
2099 	ural_write(sc, RAL_TXRX_CSR2, tmp);
2100 
2101 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2102 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2103 	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2104 	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2105 	return;
2106 
2107 fail:	ural_stop(sc);
2108 #undef N
2109 }
2110 
2111 static void
2112 ural_init(void *priv)
2113 {
2114 	struct ural_softc *sc = priv;
2115 	struct ifnet *ifp = sc->sc_ifp;
2116 	struct ieee80211com *ic = ifp->if_l2com;
2117 
2118 	RAL_LOCK(sc);
2119 	ural_init_locked(sc);
2120 	RAL_UNLOCK(sc);
2121 
2122 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2123 		ieee80211_start_all(ic);		/* start all vap's */
2124 }
2125 
2126 static void
2127 ural_stop(struct ural_softc *sc)
2128 {
2129 	struct ifnet *ifp = sc->sc_ifp;
2130 
2131 	RAL_LOCK_ASSERT(sc, MA_OWNED);
2132 
2133 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2134 
2135 	/*
2136 	 * Drain all the transfers, if not already drained:
2137 	 */
2138 	RAL_UNLOCK(sc);
2139 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2140 	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2141 	RAL_LOCK(sc);
2142 
2143 	ural_unsetup_tx_list(sc);
2144 
2145 	/* disable Rx */
2146 	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2147 	/* reset ASIC and BBP (but won't reset MAC registers!) */
2148 	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2149 	/* wait a little */
2150 	ural_pause(sc, hz / 10);
2151 	ural_write(sc, RAL_MAC_CSR1, 0);
2152 	/* wait a little */
2153 	ural_pause(sc, hz / 10);
2154 }
2155 
2156 static int
2157 ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2158 	const struct ieee80211_bpf_params *params)
2159 {
2160 	struct ieee80211com *ic = ni->ni_ic;
2161 	struct ifnet *ifp = ic->ic_ifp;
2162 	struct ural_softc *sc = ifp->if_softc;
2163 
2164 	RAL_LOCK(sc);
2165 	/* prevent management frames from being sent if we're not ready */
2166 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2167 		RAL_UNLOCK(sc);
2168 		m_freem(m);
2169 		ieee80211_free_node(ni);
2170 		return ENETDOWN;
2171 	}
2172 	if (sc->tx_nfree < RAL_TX_MINFREE) {
2173 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2174 		RAL_UNLOCK(sc);
2175 		m_freem(m);
2176 		ieee80211_free_node(ni);
2177 		return EIO;
2178 	}
2179 
2180 	ifp->if_opackets++;
2181 
2182 	if (params == NULL) {
2183 		/*
2184 		 * Legacy path; interpret frame contents to decide
2185 		 * precisely how to send the frame.
2186 		 */
2187 		if (ural_tx_mgt(sc, m, ni) != 0)
2188 			goto bad;
2189 	} else {
2190 		/*
2191 		 * Caller supplied explicit parameters to use in
2192 		 * sending the frame.
2193 		 */
2194 		if (ural_tx_raw(sc, m, ni, params) != 0)
2195 			goto bad;
2196 	}
2197 	RAL_UNLOCK(sc);
2198 	return 0;
2199 bad:
2200 	ifp->if_oerrors++;
2201 	RAL_UNLOCK(sc);
2202 	ieee80211_free_node(ni);
2203 	return EIO;		/* XXX */
2204 }
2205 
2206 static void
2207 ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2208 {
2209 	struct ieee80211vap *vap = ni->ni_vap;
2210 	struct ural_vap *uvp = URAL_VAP(vap);
2211 
2212 	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2213 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2214 
2215 	ieee80211_ratectl_node_init(ni);
2216 
2217 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2218 }
2219 
2220 static void
2221 ural_ratectl_timeout(void *arg)
2222 {
2223 	struct ural_vap *uvp = arg;
2224 	struct ieee80211vap *vap = &uvp->vap;
2225 	struct ieee80211com *ic = vap->iv_ic;
2226 
2227 	ieee80211_runtask(ic, &uvp->ratectl_task);
2228 }
2229 
2230 static void
2231 ural_ratectl_task(void *arg, int pending)
2232 {
2233 	struct ural_vap *uvp = arg;
2234 	struct ieee80211vap *vap = &uvp->vap;
2235 	struct ieee80211com *ic = vap->iv_ic;
2236 	struct ifnet *ifp = ic->ic_ifp;
2237 	struct ural_softc *sc = ifp->if_softc;
2238 	struct ieee80211_node *ni = vap->iv_bss;
2239 	int ok, fail;
2240 	int sum, retrycnt;
2241 
2242 	RAL_LOCK(sc);
2243 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2244 	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2245 
2246 	ok = sc->sta[7] +		/* TX ok w/o retry */
2247 	     sc->sta[8];		/* TX ok w/ retry */
2248 	fail = sc->sta[9];		/* TX retry-fail count */
2249 	sum = ok+fail;
2250 	retrycnt = sc->sta[8] + fail;
2251 
2252 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2253 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2254 
2255 	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2256 
2257 	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2258 	RAL_UNLOCK(sc);
2259 }
2260 
2261 static int
2262 ural_pause(struct ural_softc *sc, int timeout)
2263 {
2264 
2265 	usb_pause_mtx(&sc->sc_mtx, timeout);
2266 	return (0);
2267 }
2268