1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "opt_wlan.h" 20 21 #include <sys/param.h> 22 #include <sys/systm.h> 23 #include <sys/kernel.h> 24 #include <sys/endian.h> 25 #include <sys/firmware.h> 26 #include <sys/linker.h> 27 #include <sys/mbuf.h> 28 #include <sys/malloc.h> 29 #include <sys/module.h> 30 #include <sys/socket.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 34 #include <net/if.h> 35 #include <net/if_var.h> 36 #include <net/if_arp.h> 37 #include <net/ethernet.h> 38 #include <net/if_dl.h> 39 #include <net/if_media.h> 40 #include <net/if_types.h> 41 42 #include <sys/bus.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_phy.h> 46 #include <net80211/ieee80211_radiotap.h> 47 #include <net80211/ieee80211_regdomain.h> 48 49 #include <net/bpf.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include "usbdevs.h" 54 55 #include <dev/usb/wlan/if_upgtvar.h> 56 57 /* 58 * Driver for the USB PrismGT devices. 59 * 60 * For now just USB 2.0 devices with the GW3887 chipset are supported. 61 * The driver has been written based on the firmware version 2.13.1.0_LM87. 62 * 63 * TODO's: 64 * - MONITOR mode test. 65 * - Add HOSTAP mode. 66 * - Add IBSS mode. 67 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 68 * 69 * Parts of this driver has been influenced by reading the p54u driver 70 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 71 * Sebastien Bourdeauducq <lekernel@prism54.org>. 72 */ 73 74 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 75 "USB PrismGT GW3887 driver parameters"); 76 77 #ifdef UPGT_DEBUG 78 int upgt_debug = 0; 79 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug, 80 0, "control debugging printfs"); 81 enum { 82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 90 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 91 UPGT_DEBUG_ANY = 0xffffffff 92 }; 93 #define DPRINTF(sc, m, fmt, ...) do { \ 94 if (sc->sc_debug & (m)) \ 95 printf(fmt, __VA_ARGS__); \ 96 } while (0) 97 #else 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 (void) sc; \ 100 } while (0) 101 #endif 102 103 /* 104 * Prototypes. 105 */ 106 static device_probe_t upgt_match; 107 static device_attach_t upgt_attach; 108 static device_detach_t upgt_detach; 109 static int upgt_alloc_tx(struct upgt_softc *); 110 static int upgt_alloc_rx(struct upgt_softc *); 111 static int upgt_device_reset(struct upgt_softc *); 112 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 113 static int upgt_fw_verify(struct upgt_softc *); 114 static int upgt_mem_init(struct upgt_softc *); 115 static int upgt_fw_load(struct upgt_softc *); 116 static int upgt_fw_copy(const uint8_t *, char *, int); 117 static uint32_t upgt_crc32_le(const void *, size_t); 118 static struct mbuf * 119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 120 static struct mbuf * 121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 122 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 123 static int upgt_eeprom_read(struct upgt_softc *); 124 static int upgt_eeprom_parse(struct upgt_softc *); 125 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 126 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 127 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 129 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 130 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 131 static void upgt_init(struct upgt_softc *); 132 static void upgt_parent(struct ieee80211com *); 133 static int upgt_transmit(struct ieee80211com *, struct mbuf *); 134 static void upgt_start(struct upgt_softc *); 135 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static void upgt_scan_start(struct ieee80211com *); 138 static void upgt_scan_end(struct ieee80211com *); 139 static void upgt_set_channel(struct ieee80211com *); 140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void upgt_vap_delete(struct ieee80211vap *); 145 static void upgt_update_mcast(struct ieee80211com *); 146 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 147 static void upgt_set_multi(void *); 148 static void upgt_stop(struct upgt_softc *); 149 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 150 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 151 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 152 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 153 static void upgt_set_led(struct upgt_softc *, int); 154 static void upgt_set_led_blink(void *); 155 static void upgt_get_stats(struct upgt_softc *); 156 static void upgt_mem_free(struct upgt_softc *, uint32_t); 157 static uint32_t upgt_mem_alloc(struct upgt_softc *); 158 static void upgt_free_tx(struct upgt_softc *); 159 static void upgt_free_rx(struct upgt_softc *); 160 static void upgt_watchdog(void *); 161 static void upgt_abort_xfers(struct upgt_softc *); 162 static void upgt_abort_xfers_locked(struct upgt_softc *); 163 static void upgt_sysctl_node(struct upgt_softc *); 164 static struct upgt_data * 165 upgt_getbuf(struct upgt_softc *); 166 static struct upgt_data * 167 upgt_gettxbuf(struct upgt_softc *); 168 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 169 struct ieee80211_node *, struct upgt_data *); 170 171 static const char *upgt_fwname = "upgt-gw3887"; 172 173 static const STRUCT_USB_HOST_ID upgt_devs[] = { 174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 175 /* version 2 devices */ 176 UPGT_DEV(ACCTON, PRISM_GT), 177 UPGT_DEV(BELKIN, F5D7050), 178 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 179 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 180 UPGT_DEV(DELL, PRISM_GT_1), 181 UPGT_DEV(DELL, PRISM_GT_2), 182 UPGT_DEV(FSC, E5400), 183 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 185 UPGT_DEV(NETGEAR, WG111V1_2), 186 UPGT_DEV(INTERSIL, PRISM_GT), 187 UPGT_DEV(SMC, 2862WG), 188 UPGT_DEV(USR, USR5422), 189 UPGT_DEV(WISTRONNEWEB, UR045G), 190 UPGT_DEV(XYRATEX, PRISM_GT_1), 191 UPGT_DEV(XYRATEX, PRISM_GT_2), 192 UPGT_DEV(ZCOM, XG703A), 193 UPGT_DEV(ZCOM, XM142) 194 }; 195 196 static usb_callback_t upgt_bulk_rx_callback; 197 static usb_callback_t upgt_bulk_tx_callback; 198 199 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 200 [UPGT_BULK_TX] = { 201 .type = UE_BULK, 202 .endpoint = UE_ADDR_ANY, 203 .direction = UE_DIR_OUT, 204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 205 .flags = { 206 .force_short_xfer = 1, 207 .pipe_bof = 1 208 }, 209 .callback = upgt_bulk_tx_callback, 210 .timeout = UPGT_USB_TIMEOUT, /* ms */ 211 }, 212 [UPGT_BULK_RX] = { 213 .type = UE_BULK, 214 .endpoint = UE_ADDR_ANY, 215 .direction = UE_DIR_IN, 216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 217 .flags = { 218 .pipe_bof = 1, 219 .short_xfer_ok = 1 220 }, 221 .callback = upgt_bulk_rx_callback, 222 }, 223 }; 224 225 static int 226 upgt_match(device_t dev) 227 { 228 struct usb_attach_arg *uaa = device_get_ivars(dev); 229 230 if (uaa->usb_mode != USB_MODE_HOST) 231 return (ENXIO); 232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 233 return (ENXIO); 234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 235 return (ENXIO); 236 237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 238 } 239 240 static int 241 upgt_attach(device_t dev) 242 { 243 struct upgt_softc *sc = device_get_softc(dev); 244 struct ieee80211com *ic = &sc->sc_ic; 245 struct usb_attach_arg *uaa = device_get_ivars(dev); 246 uint8_t bands[IEEE80211_MODE_BYTES]; 247 uint8_t iface_index = UPGT_IFACE_INDEX; 248 int error; 249 250 sc->sc_dev = dev; 251 sc->sc_udev = uaa->device; 252 #ifdef UPGT_DEBUG 253 sc->sc_debug = upgt_debug; 254 #endif 255 device_set_usb_desc(dev); 256 257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 258 MTX_DEF); 259 callout_init(&sc->sc_led_ch, 0); 260 callout_init(&sc->sc_watchdog_ch, 0); 261 mbufq_init(&sc->sc_snd, ifqmaxlen); 262 263 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 264 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 265 if (error) { 266 device_printf(dev, "could not allocate USB transfers, " 267 "err=%s\n", usbd_errstr(error)); 268 goto fail1; 269 } 270 271 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 272 sc->sc_xfer[UPGT_BULK_RX], 0); 273 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 274 sc->sc_xfer[UPGT_BULK_TX], 0); 275 276 /* Setup TX and RX buffers */ 277 error = upgt_alloc_tx(sc); 278 if (error) 279 goto fail2; 280 error = upgt_alloc_rx(sc); 281 if (error) 282 goto fail3; 283 284 /* Initialize the device. */ 285 error = upgt_device_reset(sc); 286 if (error) 287 goto fail4; 288 /* Verify the firmware. */ 289 error = upgt_fw_verify(sc); 290 if (error) 291 goto fail4; 292 /* Calculate device memory space. */ 293 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 294 device_printf(dev, 295 "could not find memory space addresses on FW\n"); 296 error = EIO; 297 goto fail4; 298 } 299 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 300 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 301 302 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 303 sc->sc_memaddr_frame_start); 304 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 305 sc->sc_memaddr_frame_end); 306 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 307 sc->sc_memaddr_rx_start); 308 309 upgt_mem_init(sc); 310 311 /* Load the firmware. */ 312 error = upgt_fw_load(sc); 313 if (error) 314 goto fail4; 315 316 /* Read the whole EEPROM content and parse it. */ 317 error = upgt_eeprom_read(sc); 318 if (error) 319 goto fail4; 320 error = upgt_eeprom_parse(sc); 321 if (error) 322 goto fail4; 323 324 /* all works related with the device have done here. */ 325 upgt_abort_xfers(sc); 326 327 ic->ic_softc = sc; 328 ic->ic_name = device_get_nameunit(dev); 329 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 330 ic->ic_opmode = IEEE80211_M_STA; 331 /* set device capabilities */ 332 ic->ic_caps = 333 IEEE80211_C_STA /* station mode */ 334 | IEEE80211_C_MONITOR /* monitor mode */ 335 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 336 | IEEE80211_C_SHSLOT /* short slot time supported */ 337 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 338 | IEEE80211_C_WPA /* 802.11i */ 339 ; 340 341 memset(bands, 0, sizeof(bands)); 342 setbit(bands, IEEE80211_MODE_11B); 343 setbit(bands, IEEE80211_MODE_11G); 344 ieee80211_init_channels(ic, NULL, bands); 345 346 ieee80211_ifattach(ic); 347 ic->ic_raw_xmit = upgt_raw_xmit; 348 ic->ic_scan_start = upgt_scan_start; 349 ic->ic_scan_end = upgt_scan_end; 350 ic->ic_set_channel = upgt_set_channel; 351 ic->ic_vap_create = upgt_vap_create; 352 ic->ic_vap_delete = upgt_vap_delete; 353 ic->ic_update_mcast = upgt_update_mcast; 354 ic->ic_transmit = upgt_transmit; 355 ic->ic_parent = upgt_parent; 356 357 ieee80211_radiotap_attach(ic, 358 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 359 UPGT_TX_RADIOTAP_PRESENT, 360 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 361 UPGT_RX_RADIOTAP_PRESENT); 362 363 upgt_sysctl_node(sc); 364 365 if (bootverbose) 366 ieee80211_announce(ic); 367 368 return (0); 369 370 fail4: upgt_free_rx(sc); 371 fail3: upgt_free_tx(sc); 372 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 373 fail1: mtx_destroy(&sc->sc_mtx); 374 375 return (error); 376 } 377 378 static void 379 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 380 { 381 382 if (data->m) { 383 /* XXX status? */ 384 ieee80211_tx_complete(data->ni, data->m, 0); 385 data->m = NULL; 386 data->ni = NULL; 387 } 388 } 389 390 static void 391 upgt_get_stats(struct upgt_softc *sc) 392 { 393 struct upgt_data *data_cmd; 394 struct upgt_lmac_mem *mem; 395 struct upgt_lmac_stats *stats; 396 397 data_cmd = upgt_getbuf(sc); 398 if (data_cmd == NULL) { 399 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 400 return; 401 } 402 403 /* 404 * Transmit the URB containing the CMD data. 405 */ 406 memset(data_cmd->buf, 0, MCLBYTES); 407 408 mem = (struct upgt_lmac_mem *)data_cmd->buf; 409 mem->addr = htole32(sc->sc_memaddr_frame_start + 410 UPGT_MEMSIZE_FRAME_HEAD); 411 412 stats = (struct upgt_lmac_stats *)(mem + 1); 413 414 stats->header1.flags = 0; 415 stats->header1.type = UPGT_H1_TYPE_CTRL; 416 stats->header1.len = htole16( 417 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 418 419 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 420 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 421 stats->header2.flags = 0; 422 423 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 424 425 mem->chksum = upgt_chksum_le((uint32_t *)stats, 426 data_cmd->buflen - sizeof(*mem)); 427 428 upgt_bulk_tx(sc, data_cmd); 429 } 430 431 static void 432 upgt_parent(struct ieee80211com *ic) 433 { 434 struct upgt_softc *sc = ic->ic_softc; 435 int startall = 0; 436 437 UPGT_LOCK(sc); 438 if (sc->sc_flags & UPGT_FLAG_DETACHED) { 439 UPGT_UNLOCK(sc); 440 return; 441 } 442 if (ic->ic_nrunning > 0) { 443 if (sc->sc_flags & UPGT_FLAG_INITDONE) { 444 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0) 445 upgt_set_multi(sc); 446 } else { 447 upgt_init(sc); 448 startall = 1; 449 } 450 } else if (sc->sc_flags & UPGT_FLAG_INITDONE) 451 upgt_stop(sc); 452 UPGT_UNLOCK(sc); 453 if (startall) 454 ieee80211_start_all(ic); 455 } 456 457 static void 458 upgt_stop(struct upgt_softc *sc) 459 { 460 461 UPGT_ASSERT_LOCKED(sc); 462 463 if (sc->sc_flags & UPGT_FLAG_INITDONE) 464 upgt_set_macfilter(sc, IEEE80211_S_INIT); 465 upgt_abort_xfers_locked(sc); 466 /* device down */ 467 sc->sc_tx_timer = 0; 468 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 469 } 470 471 static void 472 upgt_set_led(struct upgt_softc *sc, int action) 473 { 474 struct upgt_data *data_cmd; 475 struct upgt_lmac_mem *mem; 476 struct upgt_lmac_led *led; 477 478 data_cmd = upgt_getbuf(sc); 479 if (data_cmd == NULL) { 480 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 481 return; 482 } 483 484 /* 485 * Transmit the URB containing the CMD data. 486 */ 487 memset(data_cmd->buf, 0, MCLBYTES); 488 489 mem = (struct upgt_lmac_mem *)data_cmd->buf; 490 mem->addr = htole32(sc->sc_memaddr_frame_start + 491 UPGT_MEMSIZE_FRAME_HEAD); 492 493 led = (struct upgt_lmac_led *)(mem + 1); 494 495 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 496 led->header1.type = UPGT_H1_TYPE_CTRL; 497 led->header1.len = htole16( 498 sizeof(struct upgt_lmac_led) - 499 sizeof(struct upgt_lmac_header)); 500 501 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 502 led->header2.type = htole16(UPGT_H2_TYPE_LED); 503 led->header2.flags = 0; 504 505 switch (action) { 506 case UPGT_LED_OFF: 507 led->mode = htole16(UPGT_LED_MODE_SET); 508 led->action_fix = 0; 509 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 510 led->action_tmp_dur = 0; 511 break; 512 case UPGT_LED_ON: 513 led->mode = htole16(UPGT_LED_MODE_SET); 514 led->action_fix = 0; 515 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 516 led->action_tmp_dur = 0; 517 break; 518 case UPGT_LED_BLINK: 519 if (sc->sc_state != IEEE80211_S_RUN) { 520 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 521 return; 522 } 523 if (sc->sc_led_blink) { 524 /* previous blink was not finished */ 525 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 526 return; 527 } 528 led->mode = htole16(UPGT_LED_MODE_SET); 529 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 530 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 531 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 532 /* lock blink */ 533 sc->sc_led_blink = 1; 534 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 535 break; 536 default: 537 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 538 return; 539 } 540 541 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 542 543 mem->chksum = upgt_chksum_le((uint32_t *)led, 544 data_cmd->buflen - sizeof(*mem)); 545 546 upgt_bulk_tx(sc, data_cmd); 547 } 548 549 static void 550 upgt_set_led_blink(void *arg) 551 { 552 struct upgt_softc *sc = arg; 553 554 /* blink finished, we are ready for a next one */ 555 sc->sc_led_blink = 0; 556 } 557 558 static void 559 upgt_init(struct upgt_softc *sc) 560 { 561 562 UPGT_ASSERT_LOCKED(sc); 563 564 if (sc->sc_flags & UPGT_FLAG_INITDONE) 565 upgt_stop(sc); 566 567 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 568 569 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 570 571 sc->sc_flags |= UPGT_FLAG_INITDONE; 572 573 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 574 } 575 576 static int 577 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 578 { 579 struct ieee80211com *ic = &sc->sc_ic; 580 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 581 struct ieee80211_node *ni; 582 struct upgt_data *data_cmd; 583 struct upgt_lmac_mem *mem; 584 struct upgt_lmac_filter *filter; 585 586 UPGT_ASSERT_LOCKED(sc); 587 588 data_cmd = upgt_getbuf(sc); 589 if (data_cmd == NULL) { 590 device_printf(sc->sc_dev, "out of TX buffers.\n"); 591 return (ENOBUFS); 592 } 593 594 /* 595 * Transmit the URB containing the CMD data. 596 */ 597 memset(data_cmd->buf, 0, MCLBYTES); 598 599 mem = (struct upgt_lmac_mem *)data_cmd->buf; 600 mem->addr = htole32(sc->sc_memaddr_frame_start + 601 UPGT_MEMSIZE_FRAME_HEAD); 602 603 filter = (struct upgt_lmac_filter *)(mem + 1); 604 605 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 606 filter->header1.type = UPGT_H1_TYPE_CTRL; 607 filter->header1.len = htole16( 608 sizeof(struct upgt_lmac_filter) - 609 sizeof(struct upgt_lmac_header)); 610 611 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 612 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 613 filter->header2.flags = 0; 614 615 switch (state) { 616 case IEEE80211_S_INIT: 617 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 618 __func__); 619 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 620 break; 621 case IEEE80211_S_SCAN: 622 DPRINTF(sc, UPGT_DEBUG_STATE, 623 "set MAC filter to SCAN (bssid %s)\n", 624 ether_sprintf(ieee80211broadcastaddr)); 625 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 626 IEEE80211_ADDR_COPY(filter->dst, 627 vap ? vap->iv_myaddr : ic->ic_macaddr); 628 IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr); 629 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 630 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 631 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 632 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 633 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 634 break; 635 case IEEE80211_S_RUN: 636 ni = ieee80211_ref_node(vap->iv_bss); 637 /* XXX monitor mode isn't tested yet. */ 638 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 639 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 640 IEEE80211_ADDR_COPY(filter->dst, 641 vap ? vap->iv_myaddr : ic->ic_macaddr); 642 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 643 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 644 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 645 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 646 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 647 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 648 } else { 649 DPRINTF(sc, UPGT_DEBUG_STATE, 650 "set MAC filter to RUN (bssid %s)\n", 651 ether_sprintf(ni->ni_bssid)); 652 filter->type = htole16(UPGT_FILTER_TYPE_STA); 653 IEEE80211_ADDR_COPY(filter->dst, 654 vap ? vap->iv_myaddr : ic->ic_macaddr); 655 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 656 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 657 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 658 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 659 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 660 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 661 } 662 ieee80211_free_node(ni); 663 break; 664 default: 665 device_printf(sc->sc_dev, 666 "MAC filter does not know that state\n"); 667 break; 668 } 669 670 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 671 672 mem->chksum = upgt_chksum_le((uint32_t *)filter, 673 data_cmd->buflen - sizeof(*mem)); 674 675 upgt_bulk_tx(sc, data_cmd); 676 677 return (0); 678 } 679 680 static void 681 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 682 { 683 struct upgt_softc *sc = ic->ic_softc; 684 const struct ieee80211_txparam *tp; 685 686 /* 687 * 0x01 = OFMD6 0x10 = DS1 688 * 0x04 = OFDM9 0x11 = DS2 689 * 0x06 = OFDM12 0x12 = DS5 690 * 0x07 = OFDM18 0x13 = DS11 691 * 0x08 = OFDM24 692 * 0x09 = OFDM36 693 * 0x0a = OFDM48 694 * 0x0b = OFDM54 695 */ 696 const uint8_t rateset_auto_11b[] = 697 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 698 const uint8_t rateset_auto_11g[] = 699 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 700 const uint8_t rateset_fix_11bg[] = 701 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 702 0x08, 0x09, 0x0a, 0x0b }; 703 704 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 705 706 /* XXX */ 707 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 708 /* 709 * Automatic rate control is done by the device. 710 * We just pass the rateset from which the device 711 * will pickup a rate. 712 */ 713 if (ic->ic_curmode == IEEE80211_MODE_11B) 714 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 715 sizeof(sc->sc_cur_rateset)); 716 if (ic->ic_curmode == IEEE80211_MODE_11G || 717 ic->ic_curmode == IEEE80211_MODE_AUTO) 718 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 719 sizeof(sc->sc_cur_rateset)); 720 } else { 721 /* set a fixed rate */ 722 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 723 sizeof(sc->sc_cur_rateset)); 724 } 725 } 726 727 static void 728 upgt_set_multi(void *arg) 729 { 730 731 /* XXX don't know how to set a device. Lack of docs. */ 732 } 733 734 static int 735 upgt_transmit(struct ieee80211com *ic, struct mbuf *m) 736 { 737 struct upgt_softc *sc = ic->ic_softc; 738 int error; 739 740 UPGT_LOCK(sc); 741 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) { 742 UPGT_UNLOCK(sc); 743 return (ENXIO); 744 } 745 error = mbufq_enqueue(&sc->sc_snd, m); 746 if (error) { 747 UPGT_UNLOCK(sc); 748 return (error); 749 } 750 upgt_start(sc); 751 UPGT_UNLOCK(sc); 752 753 return (0); 754 } 755 756 static void 757 upgt_start(struct upgt_softc *sc) 758 { 759 struct upgt_data *data_tx; 760 struct ieee80211_node *ni; 761 struct mbuf *m; 762 763 UPGT_ASSERT_LOCKED(sc); 764 765 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) 766 return; 767 768 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 769 data_tx = upgt_gettxbuf(sc); 770 if (data_tx == NULL) { 771 mbufq_prepend(&sc->sc_snd, m); 772 break; 773 } 774 775 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 776 m->m_pkthdr.rcvif = NULL; 777 778 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 779 if_inc_counter(ni->ni_vap->iv_ifp, 780 IFCOUNTER_OERRORS, 1); 781 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 782 UPGT_STAT_INC(sc, st_tx_inactive); 783 ieee80211_free_node(ni); 784 continue; 785 } 786 sc->sc_tx_timer = 5; 787 } 788 } 789 790 static int 791 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 792 const struct ieee80211_bpf_params *params) 793 { 794 struct ieee80211com *ic = ni->ni_ic; 795 struct upgt_softc *sc = ic->ic_softc; 796 struct upgt_data *data_tx = NULL; 797 798 UPGT_LOCK(sc); 799 /* prevent management frames from being sent if we're not ready */ 800 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) { 801 m_freem(m); 802 UPGT_UNLOCK(sc); 803 return ENETDOWN; 804 } 805 806 data_tx = upgt_gettxbuf(sc); 807 if (data_tx == NULL) { 808 m_freem(m); 809 UPGT_UNLOCK(sc); 810 return (ENOBUFS); 811 } 812 813 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 814 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 815 UPGT_STAT_INC(sc, st_tx_inactive); 816 UPGT_UNLOCK(sc); 817 return (EIO); 818 } 819 UPGT_UNLOCK(sc); 820 821 sc->sc_tx_timer = 5; 822 return (0); 823 } 824 825 static void 826 upgt_watchdog(void *arg) 827 { 828 struct upgt_softc *sc = arg; 829 struct ieee80211com *ic = &sc->sc_ic; 830 831 if (sc->sc_tx_timer > 0) { 832 if (--sc->sc_tx_timer == 0) { 833 device_printf(sc->sc_dev, "watchdog timeout\n"); 834 /* upgt_init(sc); XXX needs a process context ? */ 835 counter_u64_add(ic->ic_oerrors, 1); 836 return; 837 } 838 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 839 } 840 } 841 842 static uint32_t 843 upgt_mem_alloc(struct upgt_softc *sc) 844 { 845 int i; 846 847 for (i = 0; i < sc->sc_memory.pages; i++) { 848 if (sc->sc_memory.page[i].used == 0) { 849 sc->sc_memory.page[i].used = 1; 850 return (sc->sc_memory.page[i].addr); 851 } 852 } 853 854 return (0); 855 } 856 857 static void 858 upgt_scan_start(struct ieee80211com *ic) 859 { 860 /* do nothing. */ 861 } 862 863 static void 864 upgt_scan_end(struct ieee80211com *ic) 865 { 866 /* do nothing. */ 867 } 868 869 static void 870 upgt_set_channel(struct ieee80211com *ic) 871 { 872 struct upgt_softc *sc = ic->ic_softc; 873 874 UPGT_LOCK(sc); 875 upgt_set_chan(sc, ic->ic_curchan); 876 UPGT_UNLOCK(sc); 877 } 878 879 static void 880 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 881 { 882 struct ieee80211com *ic = &sc->sc_ic; 883 struct upgt_data *data_cmd; 884 struct upgt_lmac_mem *mem; 885 struct upgt_lmac_channel *chan; 886 int channel; 887 888 UPGT_ASSERT_LOCKED(sc); 889 890 channel = ieee80211_chan2ieee(ic, c); 891 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 892 /* XXX should NEVER happen */ 893 device_printf(sc->sc_dev, 894 "%s: invalid channel %x\n", __func__, channel); 895 return; 896 } 897 898 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 899 900 data_cmd = upgt_getbuf(sc); 901 if (data_cmd == NULL) { 902 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 903 return; 904 } 905 /* 906 * Transmit the URB containing the CMD data. 907 */ 908 memset(data_cmd->buf, 0, MCLBYTES); 909 910 mem = (struct upgt_lmac_mem *)data_cmd->buf; 911 mem->addr = htole32(sc->sc_memaddr_frame_start + 912 UPGT_MEMSIZE_FRAME_HEAD); 913 914 chan = (struct upgt_lmac_channel *)(mem + 1); 915 916 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 917 chan->header1.type = UPGT_H1_TYPE_CTRL; 918 chan->header1.len = htole16( 919 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 920 921 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 922 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 923 chan->header2.flags = 0; 924 925 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 926 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 927 chan->freq6 = sc->sc_eeprom_freq6[channel]; 928 chan->settings = sc->sc_eeprom_freq6_settings; 929 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 930 931 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 932 sizeof(chan->freq3_1)); 933 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 934 sizeof(sc->sc_eeprom_freq4[channel])); 935 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 936 sizeof(chan->freq3_2)); 937 938 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 939 940 mem->chksum = upgt_chksum_le((uint32_t *)chan, 941 data_cmd->buflen - sizeof(*mem)); 942 943 upgt_bulk_tx(sc, data_cmd); 944 } 945 946 static struct ieee80211vap * 947 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 948 enum ieee80211_opmode opmode, int flags, 949 const uint8_t bssid[IEEE80211_ADDR_LEN], 950 const uint8_t mac[IEEE80211_ADDR_LEN]) 951 { 952 struct upgt_vap *uvp; 953 struct ieee80211vap *vap; 954 955 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 956 return NULL; 957 uvp = malloc(sizeof(struct upgt_vap), M_80211_VAP, M_WAITOK | M_ZERO); 958 vap = &uvp->vap; 959 /* enable s/w bmiss handling for sta mode */ 960 961 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 962 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 963 /* out of memory */ 964 free(uvp, M_80211_VAP); 965 return (NULL); 966 } 967 968 /* override state transition machine */ 969 uvp->newstate = vap->iv_newstate; 970 vap->iv_newstate = upgt_newstate; 971 972 /* setup device rates */ 973 upgt_setup_rates(vap, ic); 974 975 /* complete setup */ 976 ieee80211_vap_attach(vap, ieee80211_media_change, 977 ieee80211_media_status, mac); 978 ic->ic_opmode = opmode; 979 return vap; 980 } 981 982 static int 983 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 984 { 985 struct upgt_vap *uvp = UPGT_VAP(vap); 986 struct ieee80211com *ic = vap->iv_ic; 987 struct upgt_softc *sc = ic->ic_softc; 988 989 /* do it in a process context */ 990 sc->sc_state = nstate; 991 992 IEEE80211_UNLOCK(ic); 993 UPGT_LOCK(sc); 994 callout_stop(&sc->sc_led_ch); 995 callout_stop(&sc->sc_watchdog_ch); 996 997 switch (nstate) { 998 case IEEE80211_S_INIT: 999 /* do not accept any frames if the device is down */ 1000 (void)upgt_set_macfilter(sc, sc->sc_state); 1001 upgt_set_led(sc, UPGT_LED_OFF); 1002 break; 1003 case IEEE80211_S_SCAN: 1004 upgt_set_chan(sc, ic->ic_curchan); 1005 break; 1006 case IEEE80211_S_AUTH: 1007 upgt_set_chan(sc, ic->ic_curchan); 1008 break; 1009 case IEEE80211_S_ASSOC: 1010 break; 1011 case IEEE80211_S_RUN: 1012 upgt_set_macfilter(sc, sc->sc_state); 1013 upgt_set_led(sc, UPGT_LED_ON); 1014 break; 1015 default: 1016 break; 1017 } 1018 UPGT_UNLOCK(sc); 1019 IEEE80211_LOCK(ic); 1020 return (uvp->newstate(vap, nstate, arg)); 1021 } 1022 1023 static void 1024 upgt_vap_delete(struct ieee80211vap *vap) 1025 { 1026 struct upgt_vap *uvp = UPGT_VAP(vap); 1027 1028 ieee80211_vap_detach(vap); 1029 free(uvp, M_80211_VAP); 1030 } 1031 1032 static void 1033 upgt_update_mcast(struct ieee80211com *ic) 1034 { 1035 struct upgt_softc *sc = ic->ic_softc; 1036 1037 upgt_set_multi(sc); 1038 } 1039 1040 static int 1041 upgt_eeprom_parse(struct upgt_softc *sc) 1042 { 1043 struct ieee80211com *ic = &sc->sc_ic; 1044 struct upgt_eeprom_header *eeprom_header; 1045 struct upgt_eeprom_option *eeprom_option; 1046 uint16_t option_len; 1047 uint16_t option_type; 1048 uint16_t preamble_len; 1049 int option_end = 0; 1050 1051 /* calculate eeprom options start offset */ 1052 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1053 preamble_len = le16toh(eeprom_header->preamble_len); 1054 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1055 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1056 1057 while (!option_end) { 1058 /* sanity check */ 1059 if (eeprom_option >= (struct upgt_eeprom_option *) 1060 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { 1061 return (EINVAL); 1062 } 1063 1064 /* the eeprom option length is stored in words */ 1065 option_len = 1066 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1067 option_type = 1068 le16toh(eeprom_option->type); 1069 1070 /* sanity check */ 1071 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) 1072 return (EINVAL); 1073 1074 switch (option_type) { 1075 case UPGT_EEPROM_TYPE_NAME: 1076 DPRINTF(sc, UPGT_DEBUG_FW, 1077 "EEPROM name len=%d\n", option_len); 1078 break; 1079 case UPGT_EEPROM_TYPE_SERIAL: 1080 DPRINTF(sc, UPGT_DEBUG_FW, 1081 "EEPROM serial len=%d\n", option_len); 1082 break; 1083 case UPGT_EEPROM_TYPE_MAC: 1084 DPRINTF(sc, UPGT_DEBUG_FW, 1085 "EEPROM mac len=%d\n", option_len); 1086 1087 IEEE80211_ADDR_COPY(ic->ic_macaddr, 1088 eeprom_option->data); 1089 break; 1090 case UPGT_EEPROM_TYPE_HWRX: 1091 DPRINTF(sc, UPGT_DEBUG_FW, 1092 "EEPROM hwrx len=%d\n", option_len); 1093 1094 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1095 break; 1096 case UPGT_EEPROM_TYPE_CHIP: 1097 DPRINTF(sc, UPGT_DEBUG_FW, 1098 "EEPROM chip len=%d\n", option_len); 1099 break; 1100 case UPGT_EEPROM_TYPE_FREQ3: 1101 DPRINTF(sc, UPGT_DEBUG_FW, 1102 "EEPROM freq3 len=%d\n", option_len); 1103 1104 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1105 option_len); 1106 break; 1107 case UPGT_EEPROM_TYPE_FREQ4: 1108 DPRINTF(sc, UPGT_DEBUG_FW, 1109 "EEPROM freq4 len=%d\n", option_len); 1110 1111 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1112 option_len); 1113 break; 1114 case UPGT_EEPROM_TYPE_FREQ5: 1115 DPRINTF(sc, UPGT_DEBUG_FW, 1116 "EEPROM freq5 len=%d\n", option_len); 1117 break; 1118 case UPGT_EEPROM_TYPE_FREQ6: 1119 DPRINTF(sc, UPGT_DEBUG_FW, 1120 "EEPROM freq6 len=%d\n", option_len); 1121 1122 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1123 option_len); 1124 break; 1125 case UPGT_EEPROM_TYPE_END: 1126 DPRINTF(sc, UPGT_DEBUG_FW, 1127 "EEPROM end len=%d\n", option_len); 1128 option_end = 1; 1129 break; 1130 case UPGT_EEPROM_TYPE_OFF: 1131 DPRINTF(sc, UPGT_DEBUG_FW, 1132 "%s: EEPROM off without end option\n", __func__); 1133 return (EIO); 1134 default: 1135 DPRINTF(sc, UPGT_DEBUG_FW, 1136 "EEPROM unknown type 0x%04x len=%d\n", 1137 option_type, option_len); 1138 break; 1139 } 1140 1141 /* jump to next EEPROM option */ 1142 eeprom_option = (struct upgt_eeprom_option *) 1143 (eeprom_option->data + option_len); 1144 } 1145 return (0); 1146 } 1147 1148 static void 1149 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1150 { 1151 struct upgt_eeprom_freq3_header *freq3_header; 1152 struct upgt_lmac_freq3 *freq3; 1153 int i; 1154 int elements; 1155 unsigned channel; 1156 1157 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1158 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1159 1160 elements = freq3_header->elements; 1161 1162 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1163 freq3_header->flags, elements); 1164 1165 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) 1166 return; 1167 1168 for (i = 0; i < elements; i++) { 1169 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1170 if (channel >= IEEE80211_CHAN_MAX) 1171 continue; 1172 1173 sc->sc_eeprom_freq3[channel] = freq3[i]; 1174 1175 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1176 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1177 } 1178 } 1179 1180 void 1181 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1182 { 1183 struct upgt_eeprom_freq4_header *freq4_header; 1184 struct upgt_eeprom_freq4_1 *freq4_1; 1185 struct upgt_eeprom_freq4_2 *freq4_2; 1186 int i; 1187 int j; 1188 int elements; 1189 int settings; 1190 unsigned channel; 1191 1192 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1193 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1194 elements = freq4_header->elements; 1195 settings = freq4_header->settings; 1196 1197 /* we need this value later */ 1198 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1199 1200 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1201 freq4_header->flags, elements, settings); 1202 1203 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) 1204 return; 1205 1206 for (i = 0; i < elements; i++) { 1207 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1208 if (channel >= IEEE80211_CHAN_MAX) 1209 continue; 1210 1211 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1212 for (j = 0; j < settings; j++) { 1213 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1214 sc->sc_eeprom_freq4[channel][j].pad = 0; 1215 } 1216 1217 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1218 le16toh(freq4_1[i].freq), channel); 1219 } 1220 } 1221 1222 void 1223 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1224 { 1225 struct upgt_lmac_freq6 *freq6; 1226 int i; 1227 int elements; 1228 unsigned channel; 1229 1230 freq6 = (struct upgt_lmac_freq6 *)data; 1231 elements = len / sizeof(struct upgt_lmac_freq6); 1232 1233 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1234 1235 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) 1236 return; 1237 1238 for (i = 0; i < elements; i++) { 1239 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1240 if (channel >= IEEE80211_CHAN_MAX) 1241 continue; 1242 1243 sc->sc_eeprom_freq6[channel] = freq6[i]; 1244 1245 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1246 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1247 } 1248 } 1249 1250 static void 1251 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1252 { 1253 struct upgt_eeprom_option_hwrx *option_hwrx; 1254 1255 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1256 1257 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1258 1259 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1260 sc->sc_eeprom_hwrx); 1261 } 1262 1263 static int 1264 upgt_eeprom_read(struct upgt_softc *sc) 1265 { 1266 struct upgt_data *data_cmd; 1267 struct upgt_lmac_mem *mem; 1268 struct upgt_lmac_eeprom *eeprom; 1269 int block, error, offset; 1270 1271 UPGT_LOCK(sc); 1272 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100)); 1273 1274 offset = 0; 1275 block = UPGT_EEPROM_BLOCK_SIZE; 1276 while (offset < UPGT_EEPROM_SIZE) { 1277 DPRINTF(sc, UPGT_DEBUG_FW, 1278 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1279 1280 data_cmd = upgt_getbuf(sc); 1281 if (data_cmd == NULL) { 1282 UPGT_UNLOCK(sc); 1283 return (ENOBUFS); 1284 } 1285 1286 /* 1287 * Transmit the URB containing the CMD data. 1288 */ 1289 memset(data_cmd->buf, 0, MCLBYTES); 1290 1291 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1292 mem->addr = htole32(sc->sc_memaddr_frame_start + 1293 UPGT_MEMSIZE_FRAME_HEAD); 1294 1295 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1296 eeprom->header1.flags = 0; 1297 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1298 eeprom->header1.len = htole16(( 1299 sizeof(struct upgt_lmac_eeprom) - 1300 sizeof(struct upgt_lmac_header)) + block); 1301 1302 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1303 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1304 eeprom->header2.flags = 0; 1305 1306 eeprom->offset = htole16(offset); 1307 eeprom->len = htole16(block); 1308 1309 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1310 1311 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1312 data_cmd->buflen - sizeof(*mem)); 1313 upgt_bulk_tx(sc, data_cmd); 1314 1315 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1316 if (error != 0) { 1317 device_printf(sc->sc_dev, 1318 "timeout while waiting for EEPROM data\n"); 1319 UPGT_UNLOCK(sc); 1320 return (EIO); 1321 } 1322 1323 offset += block; 1324 if (UPGT_EEPROM_SIZE - offset < block) 1325 block = UPGT_EEPROM_SIZE - offset; 1326 } 1327 1328 UPGT_UNLOCK(sc); 1329 return (0); 1330 } 1331 1332 /* 1333 * When a rx data came in the function returns a mbuf and a rssi values. 1334 */ 1335 static struct mbuf * 1336 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1337 { 1338 struct mbuf *m = NULL; 1339 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1340 struct upgt_lmac_header *header; 1341 struct upgt_lmac_eeprom *eeprom; 1342 uint8_t h1_type; 1343 uint16_t h2_type; 1344 int actlen, sumlen; 1345 1346 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1347 1348 UPGT_ASSERT_LOCKED(sc); 1349 1350 if (actlen < 1) 1351 return (NULL); 1352 1353 /* Check only at the very beginning. */ 1354 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1355 (memcmp(data->buf, "OK", 2) == 0)) { 1356 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1357 wakeup_one(sc); 1358 return (NULL); 1359 } 1360 1361 if (actlen < (int)UPGT_RX_MINSZ) 1362 return (NULL); 1363 1364 /* 1365 * Check what type of frame came in. 1366 */ 1367 header = (struct upgt_lmac_header *)(data->buf + 4); 1368 1369 h1_type = header->header1.type; 1370 h2_type = le16toh(header->header2.type); 1371 1372 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1373 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1374 uint16_t eeprom_offset = le16toh(eeprom->offset); 1375 uint16_t eeprom_len = le16toh(eeprom->len); 1376 1377 DPRINTF(sc, UPGT_DEBUG_FW, 1378 "received EEPROM block (offset=%d, len=%d)\n", 1379 eeprom_offset, eeprom_len); 1380 1381 memcpy(sc->sc_eeprom + eeprom_offset, 1382 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1383 eeprom_len); 1384 1385 /* EEPROM data has arrived in time, wakeup. */ 1386 wakeup(sc); 1387 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1388 h2_type == UPGT_H2_TYPE_TX_DONE) { 1389 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1390 __func__); 1391 upgt_tx_done(sc, data->buf + 4); 1392 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1393 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1394 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1395 __func__); 1396 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1397 rssi); 1398 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1399 h2_type == UPGT_H2_TYPE_STATS) { 1400 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1401 __func__); 1402 /* TODO: what could we do with the statistic data? */ 1403 } else { 1404 /* ignore unknown frame types */ 1405 DPRINTF(sc, UPGT_DEBUG_INTR, 1406 "received unknown frame type 0x%02x\n", 1407 header->header1.type); 1408 } 1409 return (m); 1410 } 1411 1412 /* 1413 * The firmware awaits a checksum for each frame we send to it. 1414 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1415 */ 1416 static uint32_t 1417 upgt_chksum_le(const uint32_t *buf, size_t size) 1418 { 1419 size_t i; 1420 uint32_t crc = 0; 1421 1422 for (i = 0; i < size; i += sizeof(uint32_t)) { 1423 crc = htole32(crc ^ *buf++); 1424 crc = htole32((crc >> 5) ^ (crc << 3)); 1425 } 1426 1427 return (crc); 1428 } 1429 1430 static struct mbuf * 1431 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1432 { 1433 struct ieee80211com *ic = &sc->sc_ic; 1434 struct upgt_lmac_rx_desc *rxdesc; 1435 struct mbuf *m; 1436 1437 /* 1438 * don't pass packets to the ieee80211 framework if the driver isn't 1439 * RUNNING. 1440 */ 1441 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) 1442 return (NULL); 1443 1444 /* access RX packet descriptor */ 1445 rxdesc = (struct upgt_lmac_rx_desc *)data; 1446 1447 /* create mbuf which is suitable for strict alignment archs */ 1448 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1449 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1450 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1451 if (m == NULL) { 1452 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1453 return (NULL); 1454 } 1455 m_adj(m, ETHER_ALIGN); 1456 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1457 /* trim FCS */ 1458 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1459 1460 if (ieee80211_radiotap_active(ic)) { 1461 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1462 1463 tap->wr_flags = 0; 1464 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1465 tap->wr_antsignal = rxdesc->rssi; 1466 } 1467 1468 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1469 *rssi = rxdesc->rssi; 1470 return (m); 1471 } 1472 1473 static uint8_t 1474 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1475 { 1476 struct ieee80211com *ic = &sc->sc_ic; 1477 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1478 static const uint8_t ofdm_upgt2rate[12] = 1479 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1480 1481 if (ic->ic_curmode == IEEE80211_MODE_11B && 1482 !(rate < 0 || rate > 3)) 1483 return cck_upgt2rate[rate & 0xf]; 1484 1485 if (ic->ic_curmode == IEEE80211_MODE_11G && 1486 !(rate < 0 || rate > 11)) 1487 return ofdm_upgt2rate[rate & 0xf]; 1488 1489 return (0); 1490 } 1491 1492 static void 1493 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1494 { 1495 struct upgt_lmac_tx_done_desc *desc; 1496 int i, freed = 0; 1497 1498 UPGT_ASSERT_LOCKED(sc); 1499 1500 desc = (struct upgt_lmac_tx_done_desc *)data; 1501 1502 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1503 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1504 1505 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1506 upgt_mem_free(sc, data_tx->addr); 1507 data_tx->ni = NULL; 1508 data_tx->addr = 0; 1509 data_tx->m = NULL; 1510 1511 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1512 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1513 le32toh(desc->header2.reqid), 1514 le16toh(desc->status), le16toh(desc->rssi)); 1515 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1516 le16toh(desc->seq)); 1517 1518 freed++; 1519 } 1520 } 1521 1522 if (freed != 0) { 1523 UPGT_UNLOCK(sc); 1524 sc->sc_tx_timer = 0; 1525 upgt_start(sc); 1526 UPGT_LOCK(sc); 1527 } 1528 } 1529 1530 static void 1531 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1532 { 1533 int i; 1534 1535 for (i = 0; i < sc->sc_memory.pages; i++) { 1536 if (sc->sc_memory.page[i].addr == addr) { 1537 sc->sc_memory.page[i].used = 0; 1538 return; 1539 } 1540 } 1541 1542 device_printf(sc->sc_dev, 1543 "could not free memory address 0x%08x\n", addr); 1544 } 1545 1546 static int 1547 upgt_fw_load(struct upgt_softc *sc) 1548 { 1549 const struct firmware *fw; 1550 struct upgt_data *data_cmd; 1551 struct upgt_fw_x2_header *x2; 1552 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1553 int error = 0; 1554 size_t offset; 1555 int bsize; 1556 int n; 1557 uint32_t crc32; 1558 1559 fw = firmware_get(upgt_fwname); 1560 if (fw == NULL) { 1561 device_printf(sc->sc_dev, "could not read microcode %s\n", 1562 upgt_fwname); 1563 return (EIO); 1564 } 1565 1566 UPGT_LOCK(sc); 1567 1568 /* send firmware start load command */ 1569 data_cmd = upgt_getbuf(sc); 1570 if (data_cmd == NULL) { 1571 error = ENOBUFS; 1572 goto fail; 1573 } 1574 data_cmd->buflen = sizeof(start_fwload_cmd); 1575 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1576 upgt_bulk_tx(sc, data_cmd); 1577 1578 /* send X2 header */ 1579 data_cmd = upgt_getbuf(sc); 1580 if (data_cmd == NULL) { 1581 error = ENOBUFS; 1582 goto fail; 1583 } 1584 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1585 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1586 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1587 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1588 x2->len = htole32(fw->datasize); 1589 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1590 UPGT_X2_SIGNATURE_SIZE, 1591 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1592 sizeof(uint32_t)); 1593 upgt_bulk_tx(sc, data_cmd); 1594 1595 /* download firmware */ 1596 for (offset = 0; offset < fw->datasize; offset += bsize) { 1597 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1598 bsize = UPGT_FW_BLOCK_SIZE; 1599 else 1600 bsize = fw->datasize - offset; 1601 1602 data_cmd = upgt_getbuf(sc); 1603 if (data_cmd == NULL) { 1604 error = ENOBUFS; 1605 goto fail; 1606 } 1607 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1608 data_cmd->buf, bsize); 1609 data_cmd->buflen = bsize; 1610 upgt_bulk_tx(sc, data_cmd); 1611 1612 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%zu, read=%d, sent=%d\n", 1613 offset, n, bsize); 1614 bsize = n; 1615 } 1616 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1617 1618 /* load firmware */ 1619 data_cmd = upgt_getbuf(sc); 1620 if (data_cmd == NULL) { 1621 error = ENOBUFS; 1622 goto fail; 1623 } 1624 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1625 *((uint32_t *)(data_cmd->buf) ) = crc32; 1626 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1627 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1628 data_cmd->buflen = 6; 1629 upgt_bulk_tx(sc, data_cmd); 1630 1631 /* waiting 'OK' response. */ 1632 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1633 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1634 if (error != 0) { 1635 device_printf(sc->sc_dev, "firmware load failed\n"); 1636 error = EIO; 1637 } 1638 1639 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1640 fail: 1641 UPGT_UNLOCK(sc); 1642 firmware_put(fw, FIRMWARE_UNLOAD); 1643 return (error); 1644 } 1645 1646 static uint32_t 1647 upgt_crc32_le(const void *buf, size_t size) 1648 { 1649 uint32_t crc; 1650 1651 crc = ether_crc32_le(buf, size); 1652 1653 /* apply final XOR value as common for CRC-32 */ 1654 crc = htole32(crc ^ 0xffffffffU); 1655 1656 return (crc); 1657 } 1658 1659 /* 1660 * While copying the version 2 firmware, we need to replace two characters: 1661 * 1662 * 0x7e -> 0x7d 0x5e 1663 * 0x7d -> 0x7d 0x5d 1664 */ 1665 static int 1666 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1667 { 1668 int i, j; 1669 1670 for (i = 0, j = 0; i < size && j < size; i++) { 1671 switch (src[i]) { 1672 case 0x7e: 1673 dst[j] = 0x7d; 1674 j++; 1675 dst[j] = 0x5e; 1676 j++; 1677 break; 1678 case 0x7d: 1679 dst[j] = 0x7d; 1680 j++; 1681 dst[j] = 0x5d; 1682 j++; 1683 break; 1684 default: 1685 dst[j] = src[i]; 1686 j++; 1687 break; 1688 } 1689 } 1690 1691 return (i); 1692 } 1693 1694 static int 1695 upgt_mem_init(struct upgt_softc *sc) 1696 { 1697 int i; 1698 1699 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1700 sc->sc_memory.page[i].used = 0; 1701 1702 if (i == 0) { 1703 /* 1704 * The first memory page is always reserved for 1705 * command data. 1706 */ 1707 sc->sc_memory.page[i].addr = 1708 sc->sc_memaddr_frame_start + MCLBYTES; 1709 } else { 1710 sc->sc_memory.page[i].addr = 1711 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1712 } 1713 1714 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1715 sc->sc_memaddr_frame_end) 1716 break; 1717 1718 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1719 i, sc->sc_memory.page[i].addr); 1720 } 1721 1722 sc->sc_memory.pages = i; 1723 1724 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1725 return (0); 1726 } 1727 1728 static int 1729 upgt_fw_verify(struct upgt_softc *sc) 1730 { 1731 const struct firmware *fw; 1732 const struct upgt_fw_bra_option *bra_opt; 1733 const struct upgt_fw_bra_descr *descr; 1734 const uint8_t *p; 1735 const uint32_t *uc; 1736 uint32_t bra_option_type, bra_option_len; 1737 size_t offset; 1738 int bra_end = 0; 1739 int error = 0; 1740 1741 fw = firmware_get(upgt_fwname); 1742 if (fw == NULL) { 1743 device_printf(sc->sc_dev, "could not read microcode %s\n", 1744 upgt_fwname); 1745 return EIO; 1746 } 1747 1748 /* 1749 * Seek to beginning of Boot Record Area (BRA). 1750 */ 1751 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1752 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1753 if (*uc == 0) 1754 break; 1755 } 1756 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1757 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1758 if (*uc != 0) 1759 break; 1760 } 1761 if (offset == fw->datasize) { 1762 device_printf(sc->sc_dev, 1763 "firmware Boot Record Area not found\n"); 1764 error = EIO; 1765 goto fail; 1766 } 1767 1768 DPRINTF(sc, UPGT_DEBUG_FW, 1769 "firmware Boot Record Area found at offset %zu\n", offset); 1770 1771 /* 1772 * Parse Boot Record Area (BRA) options. 1773 */ 1774 while (offset < fw->datasize && bra_end == 0) { 1775 /* get current BRA option */ 1776 p = (const uint8_t *)fw->data + offset; 1777 bra_opt = (const struct upgt_fw_bra_option *)p; 1778 bra_option_type = le32toh(bra_opt->type); 1779 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1780 1781 switch (bra_option_type) { 1782 case UPGT_BRA_TYPE_FW: 1783 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1784 bra_option_len); 1785 1786 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1787 device_printf(sc->sc_dev, 1788 "wrong UPGT_BRA_TYPE_FW len\n"); 1789 error = EIO; 1790 goto fail; 1791 } 1792 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1793 bra_option_len) == 0) { 1794 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1795 break; 1796 } 1797 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1798 bra_option_len) == 0) { 1799 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1800 break; 1801 } 1802 device_printf(sc->sc_dev, 1803 "unsupported firmware type\n"); 1804 error = EIO; 1805 goto fail; 1806 case UPGT_BRA_TYPE_VERSION: 1807 DPRINTF(sc, UPGT_DEBUG_FW, 1808 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1809 break; 1810 case UPGT_BRA_TYPE_DEPIF: 1811 DPRINTF(sc, UPGT_DEBUG_FW, 1812 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1813 break; 1814 case UPGT_BRA_TYPE_EXPIF: 1815 DPRINTF(sc, UPGT_DEBUG_FW, 1816 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1817 break; 1818 case UPGT_BRA_TYPE_DESCR: 1819 DPRINTF(sc, UPGT_DEBUG_FW, 1820 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1821 1822 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1823 1824 sc->sc_memaddr_frame_start = 1825 le32toh(descr->memaddr_space_start); 1826 sc->sc_memaddr_frame_end = 1827 le32toh(descr->memaddr_space_end); 1828 1829 DPRINTF(sc, UPGT_DEBUG_FW, 1830 "memory address space start=0x%08x\n", 1831 sc->sc_memaddr_frame_start); 1832 DPRINTF(sc, UPGT_DEBUG_FW, 1833 "memory address space end=0x%08x\n", 1834 sc->sc_memaddr_frame_end); 1835 break; 1836 case UPGT_BRA_TYPE_END: 1837 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1838 bra_option_len); 1839 bra_end = 1; 1840 break; 1841 default: 1842 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1843 bra_option_len); 1844 error = EIO; 1845 goto fail; 1846 } 1847 1848 /* jump to next BRA option */ 1849 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1850 } 1851 1852 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1853 fail: 1854 firmware_put(fw, FIRMWARE_UNLOAD); 1855 return (error); 1856 } 1857 1858 static void 1859 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1860 { 1861 1862 UPGT_ASSERT_LOCKED(sc); 1863 1864 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1865 UPGT_STAT_INC(sc, st_tx_pending); 1866 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1867 } 1868 1869 static int 1870 upgt_device_reset(struct upgt_softc *sc) 1871 { 1872 struct upgt_data *data; 1873 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1874 1875 UPGT_LOCK(sc); 1876 1877 data = upgt_getbuf(sc); 1878 if (data == NULL) { 1879 UPGT_UNLOCK(sc); 1880 return (ENOBUFS); 1881 } 1882 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1883 data->buflen = sizeof(init_cmd); 1884 upgt_bulk_tx(sc, data); 1885 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100)); 1886 1887 UPGT_UNLOCK(sc); 1888 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1889 return (0); 1890 } 1891 1892 static int 1893 upgt_alloc_tx(struct upgt_softc *sc) 1894 { 1895 int i; 1896 1897 STAILQ_INIT(&sc->sc_tx_active); 1898 STAILQ_INIT(&sc->sc_tx_inactive); 1899 STAILQ_INIT(&sc->sc_tx_pending); 1900 1901 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1902 struct upgt_data *data = &sc->sc_tx_data[i]; 1903 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1904 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1905 UPGT_STAT_INC(sc, st_tx_inactive); 1906 } 1907 1908 return (0); 1909 } 1910 1911 static int 1912 upgt_alloc_rx(struct upgt_softc *sc) 1913 { 1914 int i; 1915 1916 STAILQ_INIT(&sc->sc_rx_active); 1917 STAILQ_INIT(&sc->sc_rx_inactive); 1918 1919 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1920 struct upgt_data *data = &sc->sc_rx_data[i]; 1921 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 1922 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1923 } 1924 return (0); 1925 } 1926 1927 static int 1928 upgt_detach(device_t dev) 1929 { 1930 struct upgt_softc *sc = device_get_softc(dev); 1931 struct ieee80211com *ic = &sc->sc_ic; 1932 unsigned x; 1933 1934 /* 1935 * Prevent further allocations from RX/TX/CMD 1936 * data lists and ioctls 1937 */ 1938 UPGT_LOCK(sc); 1939 sc->sc_flags |= UPGT_FLAG_DETACHED; 1940 1941 STAILQ_INIT(&sc->sc_tx_active); 1942 STAILQ_INIT(&sc->sc_tx_inactive); 1943 STAILQ_INIT(&sc->sc_tx_pending); 1944 1945 STAILQ_INIT(&sc->sc_rx_active); 1946 STAILQ_INIT(&sc->sc_rx_inactive); 1947 1948 upgt_stop(sc); 1949 UPGT_UNLOCK(sc); 1950 1951 callout_drain(&sc->sc_led_ch); 1952 callout_drain(&sc->sc_watchdog_ch); 1953 1954 /* drain USB transfers */ 1955 for (x = 0; x != UPGT_N_XFERS; x++) 1956 usbd_transfer_drain(sc->sc_xfer[x]); 1957 1958 /* free data buffers */ 1959 UPGT_LOCK(sc); 1960 upgt_free_rx(sc); 1961 upgt_free_tx(sc); 1962 UPGT_UNLOCK(sc); 1963 1964 /* free USB transfers and some data buffers */ 1965 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 1966 1967 ieee80211_ifdetach(ic); 1968 mbufq_drain(&sc->sc_snd); 1969 mtx_destroy(&sc->sc_mtx); 1970 1971 return (0); 1972 } 1973 1974 static void 1975 upgt_free_rx(struct upgt_softc *sc) 1976 { 1977 int i; 1978 1979 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1980 struct upgt_data *data = &sc->sc_rx_data[i]; 1981 1982 data->buf = NULL; 1983 data->ni = NULL; 1984 } 1985 } 1986 1987 static void 1988 upgt_free_tx(struct upgt_softc *sc) 1989 { 1990 int i; 1991 1992 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1993 struct upgt_data *data = &sc->sc_tx_data[i]; 1994 1995 if (data->ni != NULL) 1996 ieee80211_free_node(data->ni); 1997 1998 data->buf = NULL; 1999 data->ni = NULL; 2000 } 2001 } 2002 2003 static void 2004 upgt_abort_xfers_locked(struct upgt_softc *sc) 2005 { 2006 int i; 2007 2008 UPGT_ASSERT_LOCKED(sc); 2009 /* abort any pending transfers */ 2010 for (i = 0; i < UPGT_N_XFERS; i++) 2011 usbd_transfer_stop(sc->sc_xfer[i]); 2012 } 2013 2014 static void 2015 upgt_abort_xfers(struct upgt_softc *sc) 2016 { 2017 2018 UPGT_LOCK(sc); 2019 upgt_abort_xfers_locked(sc); 2020 UPGT_UNLOCK(sc); 2021 } 2022 2023 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2024 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2025 2026 static void 2027 upgt_sysctl_node(struct upgt_softc *sc) 2028 { 2029 struct sysctl_ctx_list *ctx; 2030 struct sysctl_oid_list *child; 2031 struct sysctl_oid *tree; 2032 struct upgt_stat *stats; 2033 2034 stats = &sc->sc_stat; 2035 ctx = device_get_sysctl_ctx(sc->sc_dev); 2036 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2037 2038 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 2039 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "UPGT statistics"); 2040 child = SYSCTL_CHILDREN(tree); 2041 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2042 &stats->st_tx_active, "Active numbers in TX queue"); 2043 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2044 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2045 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2046 &stats->st_tx_pending, "Pending numbers in TX queue"); 2047 } 2048 2049 #undef UPGT_SYSCTL_STAT_ADD32 2050 2051 static struct upgt_data * 2052 _upgt_getbuf(struct upgt_softc *sc) 2053 { 2054 struct upgt_data *bf; 2055 2056 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2057 if (bf != NULL) { 2058 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2059 UPGT_STAT_DEC(sc, st_tx_inactive); 2060 } else 2061 bf = NULL; 2062 if (bf == NULL) 2063 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2064 "out of xmit buffers"); 2065 return (bf); 2066 } 2067 2068 static struct upgt_data * 2069 upgt_getbuf(struct upgt_softc *sc) 2070 { 2071 struct upgt_data *bf; 2072 2073 UPGT_ASSERT_LOCKED(sc); 2074 2075 bf = _upgt_getbuf(sc); 2076 if (bf == NULL) 2077 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2078 2079 return (bf); 2080 } 2081 2082 static struct upgt_data * 2083 upgt_gettxbuf(struct upgt_softc *sc) 2084 { 2085 struct upgt_data *bf; 2086 2087 UPGT_ASSERT_LOCKED(sc); 2088 2089 bf = upgt_getbuf(sc); 2090 if (bf == NULL) 2091 return (NULL); 2092 2093 bf->addr = upgt_mem_alloc(sc); 2094 if (bf->addr == 0) { 2095 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2096 __func__); 2097 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2098 UPGT_STAT_INC(sc, st_tx_inactive); 2099 return (NULL); 2100 } 2101 return (bf); 2102 } 2103 2104 static int 2105 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2106 struct upgt_data *data) 2107 { 2108 struct ieee80211vap *vap = ni->ni_vap; 2109 int error = 0, len; 2110 struct ieee80211_frame *wh; 2111 struct ieee80211_key *k; 2112 struct upgt_lmac_mem *mem; 2113 struct upgt_lmac_tx_desc *txdesc; 2114 2115 UPGT_ASSERT_LOCKED(sc); 2116 2117 upgt_set_led(sc, UPGT_LED_BLINK); 2118 2119 /* 2120 * Software crypto. 2121 */ 2122 wh = mtod(m, struct ieee80211_frame *); 2123 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2124 k = ieee80211_crypto_encap(ni, m); 2125 if (k == NULL) { 2126 device_printf(sc->sc_dev, 2127 "ieee80211_crypto_encap returns NULL.\n"); 2128 error = EIO; 2129 goto done; 2130 } 2131 2132 /* in case packet header moved, reset pointer */ 2133 wh = mtod(m, struct ieee80211_frame *); 2134 } 2135 2136 /* Transmit the URB containing the TX data. */ 2137 memset(data->buf, 0, MCLBYTES); 2138 mem = (struct upgt_lmac_mem *)data->buf; 2139 mem->addr = htole32(data->addr); 2140 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2141 2142 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2143 IEEE80211_FC0_TYPE_MGT) { 2144 /* mgmt frames */ 2145 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2146 /* always send mgmt frames at lowest rate (DS1) */ 2147 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2148 } else { 2149 /* data frames */ 2150 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2151 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2152 } 2153 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2154 txdesc->header1.len = htole16(m->m_pkthdr.len); 2155 txdesc->header2.reqid = htole32(data->addr); 2156 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2157 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2158 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2159 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2160 2161 if (ieee80211_radiotap_active_vap(vap)) { 2162 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2163 2164 tap->wt_flags = 0; 2165 tap->wt_rate = 0; /* XXX where to get from? */ 2166 2167 ieee80211_radiotap_tx(vap, m); 2168 } 2169 2170 /* copy frame below our TX descriptor header */ 2171 m_copydata(m, 0, m->m_pkthdr.len, 2172 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2173 /* calculate frame size */ 2174 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2175 /* we need to align the frame to a 4 byte boundary */ 2176 len = (len + 3) & ~3; 2177 /* calculate frame checksum */ 2178 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2179 data->ni = ni; 2180 data->m = m; 2181 data->buflen = len; 2182 2183 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2184 __func__, len); 2185 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2186 2187 upgt_bulk_tx(sc, data); 2188 done: 2189 /* 2190 * If we don't regulary read the device statistics, the RX queue 2191 * will stall. It's strange, but it works, so we keep reading 2192 * the statistics here. *shrug* 2193 */ 2194 if (!(if_getcounter(vap->iv_ifp, IFCOUNTER_OPACKETS) % 2195 UPGT_TX_STAT_INTERVAL)) 2196 upgt_get_stats(sc); 2197 2198 return (error); 2199 } 2200 2201 static void 2202 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2203 { 2204 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2205 struct ieee80211com *ic = &sc->sc_ic; 2206 struct ieee80211_frame *wh; 2207 struct ieee80211_node *ni; 2208 struct epoch_tracker et; 2209 struct mbuf *m = NULL; 2210 struct upgt_data *data; 2211 int8_t nf; 2212 int rssi = -1; 2213 2214 UPGT_ASSERT_LOCKED(sc); 2215 2216 switch (USB_GET_STATE(xfer)) { 2217 case USB_ST_TRANSFERRED: 2218 data = STAILQ_FIRST(&sc->sc_rx_active); 2219 if (data == NULL) 2220 goto setup; 2221 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2222 m = upgt_rxeof(xfer, data, &rssi); 2223 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2224 /* FALLTHROUGH */ 2225 case USB_ST_SETUP: 2226 setup: 2227 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2228 if (data == NULL) 2229 return; 2230 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2231 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2232 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2233 usbd_transfer_submit(xfer); 2234 2235 /* 2236 * To avoid LOR we should unlock our private mutex here to call 2237 * ieee80211_input() because here is at the end of a USB 2238 * callback and safe to unlock. 2239 */ 2240 UPGT_UNLOCK(sc); 2241 if (m != NULL) { 2242 wh = mtod(m, struct ieee80211_frame *); 2243 ni = ieee80211_find_rxnode(ic, 2244 (struct ieee80211_frame_min *)wh); 2245 nf = -95; /* XXX */ 2246 NET_EPOCH_ENTER(et); 2247 if (ni != NULL) { 2248 (void) ieee80211_input(ni, m, rssi, nf); 2249 /* node is no longer needed */ 2250 ieee80211_free_node(ni); 2251 } else 2252 (void) ieee80211_input_all(ic, m, rssi, nf); 2253 NET_EPOCH_EXIT(et); 2254 m = NULL; 2255 } 2256 UPGT_LOCK(sc); 2257 upgt_start(sc); 2258 break; 2259 default: 2260 /* needs it to the inactive queue due to a error. */ 2261 data = STAILQ_FIRST(&sc->sc_rx_active); 2262 if (data != NULL) { 2263 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2264 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2265 } 2266 if (error != USB_ERR_CANCELLED) { 2267 usbd_xfer_set_stall(xfer); 2268 counter_u64_add(ic->ic_ierrors, 1); 2269 goto setup; 2270 } 2271 break; 2272 } 2273 } 2274 2275 static void 2276 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2277 { 2278 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2279 struct upgt_data *data; 2280 2281 UPGT_ASSERT_LOCKED(sc); 2282 switch (USB_GET_STATE(xfer)) { 2283 case USB_ST_TRANSFERRED: 2284 data = STAILQ_FIRST(&sc->sc_tx_active); 2285 if (data == NULL) 2286 goto setup; 2287 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2288 UPGT_STAT_DEC(sc, st_tx_active); 2289 upgt_txeof(xfer, data); 2290 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2291 UPGT_STAT_INC(sc, st_tx_inactive); 2292 /* FALLTHROUGH */ 2293 case USB_ST_SETUP: 2294 setup: 2295 data = STAILQ_FIRST(&sc->sc_tx_pending); 2296 if (data == NULL) { 2297 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2298 __func__); 2299 return; 2300 } 2301 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2302 UPGT_STAT_DEC(sc, st_tx_pending); 2303 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2304 UPGT_STAT_INC(sc, st_tx_active); 2305 2306 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2307 usbd_transfer_submit(xfer); 2308 upgt_start(sc); 2309 break; 2310 default: 2311 data = STAILQ_FIRST(&sc->sc_tx_active); 2312 if (data == NULL) 2313 goto setup; 2314 if (data->ni != NULL) { 2315 if_inc_counter(data->ni->ni_vap->iv_ifp, 2316 IFCOUNTER_OERRORS, 1); 2317 ieee80211_free_node(data->ni); 2318 data->ni = NULL; 2319 } 2320 if (error != USB_ERR_CANCELLED) { 2321 usbd_xfer_set_stall(xfer); 2322 goto setup; 2323 } 2324 break; 2325 } 2326 } 2327 2328 static device_method_t upgt_methods[] = { 2329 /* Device interface */ 2330 DEVMETHOD(device_probe, upgt_match), 2331 DEVMETHOD(device_attach, upgt_attach), 2332 DEVMETHOD(device_detach, upgt_detach), 2333 DEVMETHOD_END 2334 }; 2335 2336 static driver_t upgt_driver = { 2337 .name = "upgt", 2338 .methods = upgt_methods, 2339 .size = sizeof(struct upgt_softc) 2340 }; 2341 2342 DRIVER_MODULE(if_upgt, uhub, upgt_driver, NULL, NULL); 2343 MODULE_VERSION(if_upgt, 1); 2344 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2345 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2346 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2347 USB_PNP_HOST_INFO(upgt_devs); 2348