1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 /* $FreeBSD$ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/param.h> 21 #include <sys/systm.h> 22 #include <sys/kernel.h> 23 #include <sys/endian.h> 24 #include <sys/firmware.h> 25 #include <sys/linker.h> 26 #include <sys/mbuf.h> 27 #include <sys/malloc.h> 28 #include <sys/module.h> 29 #include <sys/socket.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 33 #include <net/if.h> 34 #include <net/if_arp.h> 35 #include <net/ethernet.h> 36 #include <net/if_dl.h> 37 #include <net/if_media.h> 38 #include <net/if_types.h> 39 40 #include <sys/bus.h> 41 #include <machine/bus.h> 42 43 #include <net80211/ieee80211_var.h> 44 #include <net80211/ieee80211_phy.h> 45 #include <net80211/ieee80211_radiotap.h> 46 #include <net80211/ieee80211_regdomain.h> 47 48 #include <net/bpf.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include "usbdevs.h" 53 54 #include <dev/usb/wlan/if_upgtvar.h> 55 56 /* 57 * Driver for the USB PrismGT devices. 58 * 59 * For now just USB 2.0 devices with the GW3887 chipset are supported. 60 * The driver has been written based on the firmware version 2.13.1.0_LM87. 61 * 62 * TODO's: 63 * - MONITOR mode test. 64 * - Add HOSTAP mode. 65 * - Add IBSS mode. 66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 67 * 68 * Parts of this driver has been influenced by reading the p54u driver 69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 70 * Sebastien Bourdeauducq <lekernel@prism54.org>. 71 */ 72 73 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, 74 "USB PrismGT GW3887 driver parameters"); 75 76 #ifdef UPGT_DEBUG 77 int upgt_debug = 0; 78 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug, 79 0, "control debugging printfs"); 80 TUNABLE_INT("hw.upgt.debug", &upgt_debug); 81 enum { 82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 90 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 91 UPGT_DEBUG_ANY = 0xffffffff 92 }; 93 #define DPRINTF(sc, m, fmt, ...) do { \ 94 if (sc->sc_debug & (m)) \ 95 printf(fmt, __VA_ARGS__); \ 96 } while (0) 97 #else 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 (void) sc; \ 100 } while (0) 101 #endif 102 103 /* 104 * Prototypes. 105 */ 106 static device_probe_t upgt_match; 107 static device_attach_t upgt_attach; 108 static device_detach_t upgt_detach; 109 static int upgt_alloc_tx(struct upgt_softc *); 110 static int upgt_alloc_rx(struct upgt_softc *); 111 static int upgt_device_reset(struct upgt_softc *); 112 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 113 static int upgt_fw_verify(struct upgt_softc *); 114 static int upgt_mem_init(struct upgt_softc *); 115 static int upgt_fw_load(struct upgt_softc *); 116 static int upgt_fw_copy(const uint8_t *, char *, int); 117 static uint32_t upgt_crc32_le(const void *, size_t); 118 static struct mbuf * 119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 120 static struct mbuf * 121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 122 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 123 static int upgt_eeprom_read(struct upgt_softc *); 124 static int upgt_eeprom_parse(struct upgt_softc *); 125 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 126 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 127 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 129 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 130 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 131 static void upgt_init(void *); 132 static void upgt_init_locked(struct upgt_softc *); 133 static int upgt_ioctl(struct ifnet *, u_long, caddr_t); 134 static void upgt_start(struct ifnet *); 135 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static void upgt_scan_start(struct ieee80211com *); 138 static void upgt_scan_end(struct ieee80211com *); 139 static void upgt_set_channel(struct ieee80211com *); 140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void upgt_vap_delete(struct ieee80211vap *); 145 static void upgt_update_mcast(struct ifnet *); 146 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 147 static void upgt_set_multi(void *); 148 static void upgt_stop(struct upgt_softc *); 149 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 150 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 151 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 152 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 153 static void upgt_set_led(struct upgt_softc *, int); 154 static void upgt_set_led_blink(void *); 155 static void upgt_get_stats(struct upgt_softc *); 156 static void upgt_mem_free(struct upgt_softc *, uint32_t); 157 static uint32_t upgt_mem_alloc(struct upgt_softc *); 158 static void upgt_free_tx(struct upgt_softc *); 159 static void upgt_free_rx(struct upgt_softc *); 160 static void upgt_watchdog(void *); 161 static void upgt_abort_xfers(struct upgt_softc *); 162 static void upgt_abort_xfers_locked(struct upgt_softc *); 163 static void upgt_sysctl_node(struct upgt_softc *); 164 static struct upgt_data * 165 upgt_getbuf(struct upgt_softc *); 166 static struct upgt_data * 167 upgt_gettxbuf(struct upgt_softc *); 168 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 169 struct ieee80211_node *, struct upgt_data *); 170 171 static const char *upgt_fwname = "upgt-gw3887"; 172 173 static const STRUCT_USB_HOST_ID upgt_devs[] = { 174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 175 /* version 2 devices */ 176 UPGT_DEV(ACCTON, PRISM_GT), 177 UPGT_DEV(BELKIN, F5D7050), 178 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 179 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 180 UPGT_DEV(DELL, PRISM_GT_1), 181 UPGT_DEV(DELL, PRISM_GT_2), 182 UPGT_DEV(FSC, E5400), 183 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 185 UPGT_DEV(NETGEAR, WG111V2_2), 186 UPGT_DEV(INTERSIL, PRISM_GT), 187 UPGT_DEV(SMC, 2862WG), 188 UPGT_DEV(USR, USR5422), 189 UPGT_DEV(WISTRONNEWEB, UR045G), 190 UPGT_DEV(XYRATEX, PRISM_GT_1), 191 UPGT_DEV(XYRATEX, PRISM_GT_2), 192 UPGT_DEV(ZCOM, XG703A), 193 UPGT_DEV(ZCOM, XM142) 194 }; 195 196 static usb_callback_t upgt_bulk_rx_callback; 197 static usb_callback_t upgt_bulk_tx_callback; 198 199 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 200 [UPGT_BULK_TX] = { 201 .type = UE_BULK, 202 .endpoint = UE_ADDR_ANY, 203 .direction = UE_DIR_OUT, 204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 205 .flags = { 206 .force_short_xfer = 1, 207 .pipe_bof = 1 208 }, 209 .callback = upgt_bulk_tx_callback, 210 .timeout = UPGT_USB_TIMEOUT, /* ms */ 211 }, 212 [UPGT_BULK_RX] = { 213 .type = UE_BULK, 214 .endpoint = UE_ADDR_ANY, 215 .direction = UE_DIR_IN, 216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 217 .flags = { 218 .pipe_bof = 1, 219 .short_xfer_ok = 1 220 }, 221 .callback = upgt_bulk_rx_callback, 222 }, 223 }; 224 225 static int 226 upgt_match(device_t dev) 227 { 228 struct usb_attach_arg *uaa = device_get_ivars(dev); 229 230 if (uaa->usb_mode != USB_MODE_HOST) 231 return (ENXIO); 232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 233 return (ENXIO); 234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 235 return (ENXIO); 236 237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 238 } 239 240 static int 241 upgt_attach(device_t dev) 242 { 243 int error; 244 struct ieee80211com *ic; 245 struct ifnet *ifp; 246 struct upgt_softc *sc = device_get_softc(dev); 247 struct usb_attach_arg *uaa = device_get_ivars(dev); 248 uint8_t bands, iface_index = UPGT_IFACE_INDEX; 249 250 sc->sc_dev = dev; 251 sc->sc_udev = uaa->device; 252 #ifdef UPGT_DEBUG 253 sc->sc_debug = upgt_debug; 254 #endif 255 device_set_usb_desc(dev); 256 257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 258 MTX_DEF); 259 callout_init(&sc->sc_led_ch, 0); 260 callout_init(&sc->sc_watchdog_ch, 0); 261 262 /* Allocate TX and RX xfers. */ 263 error = upgt_alloc_tx(sc); 264 if (error) 265 goto fail1; 266 error = upgt_alloc_rx(sc); 267 if (error) 268 goto fail2; 269 270 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 271 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 272 if (error) { 273 device_printf(dev, "could not allocate USB transfers, " 274 "err=%s\n", usbd_errstr(error)); 275 goto fail3; 276 } 277 278 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 279 sc->sc_xfer[UPGT_BULK_RX], 0); 280 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 281 sc->sc_xfer[UPGT_BULK_TX], 0); 282 283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 284 if (ifp == NULL) { 285 device_printf(dev, "can not if_alloc()\n"); 286 goto fail4; 287 } 288 289 /* Initialize the device. */ 290 error = upgt_device_reset(sc); 291 if (error) 292 goto fail5; 293 /* Verify the firmware. */ 294 error = upgt_fw_verify(sc); 295 if (error) 296 goto fail5; 297 /* Calculate device memory space. */ 298 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 299 device_printf(dev, 300 "could not find memory space addresses on FW\n"); 301 error = EIO; 302 goto fail5; 303 } 304 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 305 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 306 307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 308 sc->sc_memaddr_frame_start); 309 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 310 sc->sc_memaddr_frame_end); 311 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 312 sc->sc_memaddr_rx_start); 313 314 upgt_mem_init(sc); 315 316 /* Load the firmware. */ 317 error = upgt_fw_load(sc); 318 if (error) 319 goto fail5; 320 321 /* Read the whole EEPROM content and parse it. */ 322 error = upgt_eeprom_read(sc); 323 if (error) 324 goto fail5; 325 error = upgt_eeprom_parse(sc); 326 if (error) 327 goto fail5; 328 329 /* all works related with the device have done here. */ 330 upgt_abort_xfers(sc); 331 332 /* Setup the 802.11 device. */ 333 ifp->if_softc = sc; 334 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev)); 335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 336 ifp->if_init = upgt_init; 337 ifp->if_ioctl = upgt_ioctl; 338 ifp->if_start = upgt_start; 339 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 340 IFQ_SET_READY(&ifp->if_snd); 341 342 ic = ifp->if_l2com; 343 ic->ic_ifp = ifp; 344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 345 ic->ic_opmode = IEEE80211_M_STA; 346 /* set device capabilities */ 347 ic->ic_caps = 348 IEEE80211_C_STA /* station mode */ 349 | IEEE80211_C_MONITOR /* monitor mode */ 350 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 351 | IEEE80211_C_SHSLOT /* short slot time supported */ 352 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 353 | IEEE80211_C_WPA /* 802.11i */ 354 ; 355 356 bands = 0; 357 setbit(&bands, IEEE80211_MODE_11B); 358 setbit(&bands, IEEE80211_MODE_11G); 359 ieee80211_init_channels(ic, NULL, &bands); 360 361 ieee80211_ifattach(ic, sc->sc_myaddr); 362 ic->ic_raw_xmit = upgt_raw_xmit; 363 ic->ic_scan_start = upgt_scan_start; 364 ic->ic_scan_end = upgt_scan_end; 365 ic->ic_set_channel = upgt_set_channel; 366 367 ic->ic_vap_create = upgt_vap_create; 368 ic->ic_vap_delete = upgt_vap_delete; 369 ic->ic_update_mcast = upgt_update_mcast; 370 371 ieee80211_radiotap_attach(ic, 372 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 373 UPGT_TX_RADIOTAP_PRESENT, 374 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 375 UPGT_RX_RADIOTAP_PRESENT); 376 377 upgt_sysctl_node(sc); 378 379 if (bootverbose) 380 ieee80211_announce(ic); 381 382 return (0); 383 384 fail5: if_free(ifp); 385 fail4: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 386 fail3: upgt_free_rx(sc); 387 fail2: upgt_free_tx(sc); 388 fail1: mtx_destroy(&sc->sc_mtx); 389 390 return (error); 391 } 392 393 static void 394 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 395 { 396 struct upgt_softc *sc = usbd_xfer_softc(xfer); 397 struct ifnet *ifp = sc->sc_ifp; 398 struct mbuf *m; 399 400 UPGT_ASSERT_LOCKED(sc); 401 402 /* 403 * Do any tx complete callback. Note this must be done before releasing 404 * the node reference. 405 */ 406 if (data->m) { 407 m = data->m; 408 if (m->m_flags & M_TXCB) { 409 /* XXX status? */ 410 ieee80211_process_callback(data->ni, m, 0); 411 } 412 m_freem(m); 413 data->m = NULL; 414 } 415 if (data->ni) { 416 ieee80211_free_node(data->ni); 417 data->ni = NULL; 418 } 419 ifp->if_opackets++; 420 } 421 422 static void 423 upgt_get_stats(struct upgt_softc *sc) 424 { 425 struct upgt_data *data_cmd; 426 struct upgt_lmac_mem *mem; 427 struct upgt_lmac_stats *stats; 428 429 data_cmd = upgt_getbuf(sc); 430 if (data_cmd == NULL) { 431 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__); 432 return; 433 } 434 435 /* 436 * Transmit the URB containing the CMD data. 437 */ 438 memset(data_cmd->buf, 0, MCLBYTES); 439 440 mem = (struct upgt_lmac_mem *)data_cmd->buf; 441 mem->addr = htole32(sc->sc_memaddr_frame_start + 442 UPGT_MEMSIZE_FRAME_HEAD); 443 444 stats = (struct upgt_lmac_stats *)(mem + 1); 445 446 stats->header1.flags = 0; 447 stats->header1.type = UPGT_H1_TYPE_CTRL; 448 stats->header1.len = htole16( 449 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 450 451 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 452 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 453 stats->header2.flags = 0; 454 455 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 456 457 mem->chksum = upgt_chksum_le((uint32_t *)stats, 458 data_cmd->buflen - sizeof(*mem)); 459 460 upgt_bulk_tx(sc, data_cmd); 461 } 462 463 static int 464 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 465 { 466 struct upgt_softc *sc = ifp->if_softc; 467 struct ieee80211com *ic = ifp->if_l2com; 468 struct ifreq *ifr = (struct ifreq *) data; 469 int error = 0, startall = 0; 470 471 switch (cmd) { 472 case SIOCSIFFLAGS: 473 if (ifp->if_flags & IFF_UP) { 474 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 475 if ((ifp->if_flags ^ sc->sc_if_flags) & 476 (IFF_ALLMULTI | IFF_PROMISC)) 477 upgt_set_multi(sc); 478 } else { 479 upgt_init(sc); 480 startall = 1; 481 } 482 } else { 483 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 484 upgt_stop(sc); 485 } 486 sc->sc_if_flags = ifp->if_flags; 487 if (startall) 488 ieee80211_start_all(ic); 489 break; 490 case SIOCGIFMEDIA: 491 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 492 break; 493 case SIOCGIFADDR: 494 error = ether_ioctl(ifp, cmd, data); 495 break; 496 default: 497 error = EINVAL; 498 break; 499 } 500 return error; 501 } 502 503 static void 504 upgt_stop_locked(struct upgt_softc *sc) 505 { 506 struct ifnet *ifp = sc->sc_ifp; 507 508 UPGT_ASSERT_LOCKED(sc); 509 510 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 511 upgt_set_macfilter(sc, IEEE80211_S_INIT); 512 upgt_abort_xfers_locked(sc); 513 } 514 515 static void 516 upgt_stop(struct upgt_softc *sc) 517 { 518 struct ifnet *ifp = sc->sc_ifp; 519 520 UPGT_LOCK(sc); 521 upgt_stop_locked(sc); 522 UPGT_UNLOCK(sc); 523 524 /* device down */ 525 sc->sc_tx_timer = 0; 526 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 527 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 528 } 529 530 static void 531 upgt_set_led(struct upgt_softc *sc, int action) 532 { 533 struct upgt_data *data_cmd; 534 struct upgt_lmac_mem *mem; 535 struct upgt_lmac_led *led; 536 537 data_cmd = upgt_getbuf(sc); 538 if (data_cmd == NULL) { 539 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 540 return; 541 } 542 543 /* 544 * Transmit the URB containing the CMD data. 545 */ 546 memset(data_cmd->buf, 0, MCLBYTES); 547 548 mem = (struct upgt_lmac_mem *)data_cmd->buf; 549 mem->addr = htole32(sc->sc_memaddr_frame_start + 550 UPGT_MEMSIZE_FRAME_HEAD); 551 552 led = (struct upgt_lmac_led *)(mem + 1); 553 554 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 555 led->header1.type = UPGT_H1_TYPE_CTRL; 556 led->header1.len = htole16( 557 sizeof(struct upgt_lmac_led) - 558 sizeof(struct upgt_lmac_header)); 559 560 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 561 led->header2.type = htole16(UPGT_H2_TYPE_LED); 562 led->header2.flags = 0; 563 564 switch (action) { 565 case UPGT_LED_OFF: 566 led->mode = htole16(UPGT_LED_MODE_SET); 567 led->action_fix = 0; 568 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 569 led->action_tmp_dur = 0; 570 break; 571 case UPGT_LED_ON: 572 led->mode = htole16(UPGT_LED_MODE_SET); 573 led->action_fix = 0; 574 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 575 led->action_tmp_dur = 0; 576 break; 577 case UPGT_LED_BLINK: 578 if (sc->sc_state != IEEE80211_S_RUN) { 579 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 580 return; 581 } 582 if (sc->sc_led_blink) { 583 /* previous blink was not finished */ 584 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 585 return; 586 } 587 led->mode = htole16(UPGT_LED_MODE_SET); 588 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 589 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 590 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 591 /* lock blink */ 592 sc->sc_led_blink = 1; 593 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 594 break; 595 default: 596 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 597 return; 598 } 599 600 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 601 602 mem->chksum = upgt_chksum_le((uint32_t *)led, 603 data_cmd->buflen - sizeof(*mem)); 604 605 upgt_bulk_tx(sc, data_cmd); 606 } 607 608 static void 609 upgt_set_led_blink(void *arg) 610 { 611 struct upgt_softc *sc = arg; 612 613 /* blink finished, we are ready for a next one */ 614 sc->sc_led_blink = 0; 615 } 616 617 static void 618 upgt_init(void *priv) 619 { 620 struct upgt_softc *sc = priv; 621 struct ifnet *ifp = sc->sc_ifp; 622 struct ieee80211com *ic = ifp->if_l2com; 623 624 UPGT_LOCK(sc); 625 upgt_init_locked(sc); 626 UPGT_UNLOCK(sc); 627 628 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 629 ieee80211_start_all(ic); /* start all vap's */ 630 } 631 632 static void 633 upgt_init_locked(struct upgt_softc *sc) 634 { 635 struct ifnet *ifp = sc->sc_ifp; 636 637 UPGT_ASSERT_LOCKED(sc); 638 639 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 640 upgt_stop_locked(sc); 641 642 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 643 644 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 645 646 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 647 ifp->if_drv_flags |= IFF_DRV_RUNNING; 648 sc->sc_flags |= UPGT_FLAG_INITDONE; 649 650 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 651 } 652 653 static int 654 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 655 { 656 struct ifnet *ifp = sc->sc_ifp; 657 struct ieee80211com *ic = ifp->if_l2com; 658 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 659 struct ieee80211_node *ni; 660 struct upgt_data *data_cmd; 661 struct upgt_lmac_mem *mem; 662 struct upgt_lmac_filter *filter; 663 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 664 665 UPGT_ASSERT_LOCKED(sc); 666 667 data_cmd = upgt_getbuf(sc); 668 if (data_cmd == NULL) { 669 device_printf(sc->sc_dev, "out of TX buffers.\n"); 670 return (ENOBUFS); 671 } 672 673 /* 674 * Transmit the URB containing the CMD data. 675 */ 676 memset(data_cmd->buf, 0, MCLBYTES); 677 678 mem = (struct upgt_lmac_mem *)data_cmd->buf; 679 mem->addr = htole32(sc->sc_memaddr_frame_start + 680 UPGT_MEMSIZE_FRAME_HEAD); 681 682 filter = (struct upgt_lmac_filter *)(mem + 1); 683 684 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 685 filter->header1.type = UPGT_H1_TYPE_CTRL; 686 filter->header1.len = htole16( 687 sizeof(struct upgt_lmac_filter) - 688 sizeof(struct upgt_lmac_header)); 689 690 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 691 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 692 filter->header2.flags = 0; 693 694 switch (state) { 695 case IEEE80211_S_INIT: 696 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 697 __func__); 698 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 699 break; 700 case IEEE80211_S_SCAN: 701 DPRINTF(sc, UPGT_DEBUG_STATE, 702 "set MAC filter to SCAN (bssid %s)\n", 703 ether_sprintf(broadcast)); 704 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 705 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 706 IEEE80211_ADDR_COPY(filter->src, broadcast); 707 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 708 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 709 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 710 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 711 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 712 break; 713 case IEEE80211_S_RUN: 714 ni = ieee80211_ref_node(vap->iv_bss); 715 /* XXX monitor mode isn't tested yet. */ 716 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 717 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 718 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 719 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 720 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 721 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 722 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 723 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 724 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 725 } else { 726 DPRINTF(sc, UPGT_DEBUG_STATE, 727 "set MAC filter to RUN (bssid %s)\n", 728 ether_sprintf(ni->ni_bssid)); 729 filter->type = htole16(UPGT_FILTER_TYPE_STA); 730 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 731 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 732 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 733 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 734 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 735 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 736 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 737 } 738 ieee80211_free_node(ni); 739 break; 740 default: 741 device_printf(sc->sc_dev, 742 "MAC filter does not know that state\n"); 743 break; 744 } 745 746 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 747 748 mem->chksum = upgt_chksum_le((uint32_t *)filter, 749 data_cmd->buflen - sizeof(*mem)); 750 751 upgt_bulk_tx(sc, data_cmd); 752 753 return (0); 754 } 755 756 static void 757 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 758 { 759 struct ifnet *ifp = ic->ic_ifp; 760 struct upgt_softc *sc = ifp->if_softc; 761 const struct ieee80211_txparam *tp; 762 763 /* 764 * 0x01 = OFMD6 0x10 = DS1 765 * 0x04 = OFDM9 0x11 = DS2 766 * 0x06 = OFDM12 0x12 = DS5 767 * 0x07 = OFDM18 0x13 = DS11 768 * 0x08 = OFDM24 769 * 0x09 = OFDM36 770 * 0x0a = OFDM48 771 * 0x0b = OFDM54 772 */ 773 const uint8_t rateset_auto_11b[] = 774 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 775 const uint8_t rateset_auto_11g[] = 776 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 777 const uint8_t rateset_fix_11bg[] = 778 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 779 0x08, 0x09, 0x0a, 0x0b }; 780 781 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 782 783 /* XXX */ 784 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 785 /* 786 * Automatic rate control is done by the device. 787 * We just pass the rateset from which the device 788 * will pickup a rate. 789 */ 790 if (ic->ic_curmode == IEEE80211_MODE_11B) 791 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 792 sizeof(sc->sc_cur_rateset)); 793 if (ic->ic_curmode == IEEE80211_MODE_11G || 794 ic->ic_curmode == IEEE80211_MODE_AUTO) 795 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 796 sizeof(sc->sc_cur_rateset)); 797 } else { 798 /* set a fixed rate */ 799 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 800 sizeof(sc->sc_cur_rateset)); 801 } 802 } 803 804 static void 805 upgt_set_multi(void *arg) 806 { 807 struct upgt_softc *sc = arg; 808 struct ifnet *ifp = sc->sc_ifp; 809 810 if (!(ifp->if_flags & IFF_UP)) 811 return; 812 813 /* 814 * XXX don't know how to set a device. Lack of docs. Just try to set 815 * IFF_ALLMULTI flag here. 816 */ 817 ifp->if_flags |= IFF_ALLMULTI; 818 } 819 820 static void 821 upgt_start(struct ifnet *ifp) 822 { 823 struct upgt_softc *sc = ifp->if_softc; 824 struct upgt_data *data_tx; 825 struct ieee80211_node *ni; 826 struct mbuf *m; 827 828 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 829 return; 830 831 UPGT_LOCK(sc); 832 for (;;) { 833 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 834 if (m == NULL) 835 break; 836 837 data_tx = upgt_gettxbuf(sc); 838 if (data_tx == NULL) { 839 IFQ_DRV_PREPEND(&ifp->if_snd, m); 840 break; 841 } 842 843 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 844 m->m_pkthdr.rcvif = NULL; 845 846 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 847 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 848 UPGT_STAT_INC(sc, st_tx_inactive); 849 ieee80211_free_node(ni); 850 ifp->if_oerrors++; 851 continue; 852 } 853 sc->sc_tx_timer = 5; 854 } 855 UPGT_UNLOCK(sc); 856 } 857 858 static int 859 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 860 const struct ieee80211_bpf_params *params) 861 { 862 struct ieee80211com *ic = ni->ni_ic; 863 struct ifnet *ifp = ic->ic_ifp; 864 struct upgt_softc *sc = ifp->if_softc; 865 struct upgt_data *data_tx = NULL; 866 867 /* prevent management frames from being sent if we're not ready */ 868 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 869 m_freem(m); 870 ieee80211_free_node(ni); 871 return ENETDOWN; 872 } 873 874 UPGT_LOCK(sc); 875 data_tx = upgt_gettxbuf(sc); 876 if (data_tx == NULL) { 877 ieee80211_free_node(ni); 878 m_freem(m); 879 UPGT_UNLOCK(sc); 880 return (ENOBUFS); 881 } 882 883 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 884 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 885 UPGT_STAT_INC(sc, st_tx_inactive); 886 ieee80211_free_node(ni); 887 ifp->if_oerrors++; 888 UPGT_UNLOCK(sc); 889 return (EIO); 890 } 891 UPGT_UNLOCK(sc); 892 893 sc->sc_tx_timer = 5; 894 return (0); 895 } 896 897 static void 898 upgt_watchdog(void *arg) 899 { 900 struct upgt_softc *sc = arg; 901 struct ifnet *ifp = sc->sc_ifp; 902 903 if (sc->sc_tx_timer > 0) { 904 if (--sc->sc_tx_timer == 0) { 905 device_printf(sc->sc_dev, "watchdog timeout\n"); 906 /* upgt_init(ifp); XXX needs a process context ? */ 907 ifp->if_oerrors++; 908 return; 909 } 910 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 911 } 912 } 913 914 static uint32_t 915 upgt_mem_alloc(struct upgt_softc *sc) 916 { 917 int i; 918 919 for (i = 0; i < sc->sc_memory.pages; i++) { 920 if (sc->sc_memory.page[i].used == 0) { 921 sc->sc_memory.page[i].used = 1; 922 return (sc->sc_memory.page[i].addr); 923 } 924 } 925 926 return (0); 927 } 928 929 static void 930 upgt_scan_start(struct ieee80211com *ic) 931 { 932 /* do nothing. */ 933 } 934 935 static void 936 upgt_scan_end(struct ieee80211com *ic) 937 { 938 /* do nothing. */ 939 } 940 941 static void 942 upgt_set_channel(struct ieee80211com *ic) 943 { 944 struct upgt_softc *sc = ic->ic_ifp->if_softc; 945 946 UPGT_LOCK(sc); 947 upgt_set_chan(sc, ic->ic_curchan); 948 UPGT_UNLOCK(sc); 949 } 950 951 static void 952 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 953 { 954 struct ifnet *ifp = sc->sc_ifp; 955 struct ieee80211com *ic = ifp->if_l2com; 956 struct upgt_data *data_cmd; 957 struct upgt_lmac_mem *mem; 958 struct upgt_lmac_channel *chan; 959 int channel; 960 961 UPGT_ASSERT_LOCKED(sc); 962 963 channel = ieee80211_chan2ieee(ic, c); 964 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 965 /* XXX should NEVER happen */ 966 device_printf(sc->sc_dev, 967 "%s: invalid channel %x\n", __func__, channel); 968 return; 969 } 970 971 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 972 973 data_cmd = upgt_getbuf(sc); 974 if (data_cmd == NULL) { 975 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 976 return; 977 } 978 /* 979 * Transmit the URB containing the CMD data. 980 */ 981 memset(data_cmd->buf, 0, MCLBYTES); 982 983 mem = (struct upgt_lmac_mem *)data_cmd->buf; 984 mem->addr = htole32(sc->sc_memaddr_frame_start + 985 UPGT_MEMSIZE_FRAME_HEAD); 986 987 chan = (struct upgt_lmac_channel *)(mem + 1); 988 989 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 990 chan->header1.type = UPGT_H1_TYPE_CTRL; 991 chan->header1.len = htole16( 992 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 993 994 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 995 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 996 chan->header2.flags = 0; 997 998 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 999 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1000 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1001 chan->settings = sc->sc_eeprom_freq6_settings; 1002 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1003 1004 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 1005 sizeof(chan->freq3_1)); 1006 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 1007 sizeof(sc->sc_eeprom_freq4[channel])); 1008 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 1009 sizeof(chan->freq3_2)); 1010 1011 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 1012 1013 mem->chksum = upgt_chksum_le((uint32_t *)chan, 1014 data_cmd->buflen - sizeof(*mem)); 1015 1016 upgt_bulk_tx(sc, data_cmd); 1017 } 1018 1019 static struct ieee80211vap * 1020 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1021 enum ieee80211_opmode opmode, int flags, 1022 const uint8_t bssid[IEEE80211_ADDR_LEN], 1023 const uint8_t mac[IEEE80211_ADDR_LEN]) 1024 { 1025 struct upgt_vap *uvp; 1026 struct ieee80211vap *vap; 1027 1028 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1029 return NULL; 1030 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap), 1031 M_80211_VAP, M_NOWAIT | M_ZERO); 1032 if (uvp == NULL) 1033 return NULL; 1034 vap = &uvp->vap; 1035 /* enable s/w bmiss handling for sta mode */ 1036 ieee80211_vap_setup(ic, vap, name, unit, opmode, 1037 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 1038 1039 /* override state transition machine */ 1040 uvp->newstate = vap->iv_newstate; 1041 vap->iv_newstate = upgt_newstate; 1042 1043 /* setup device rates */ 1044 upgt_setup_rates(vap, ic); 1045 1046 /* complete setup */ 1047 ieee80211_vap_attach(vap, ieee80211_media_change, 1048 ieee80211_media_status); 1049 ic->ic_opmode = opmode; 1050 return vap; 1051 } 1052 1053 static int 1054 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1055 { 1056 struct upgt_vap *uvp = UPGT_VAP(vap); 1057 struct ieee80211com *ic = vap->iv_ic; 1058 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1059 1060 /* do it in a process context */ 1061 sc->sc_state = nstate; 1062 1063 IEEE80211_UNLOCK(ic); 1064 UPGT_LOCK(sc); 1065 callout_stop(&sc->sc_led_ch); 1066 callout_stop(&sc->sc_watchdog_ch); 1067 1068 switch (nstate) { 1069 case IEEE80211_S_INIT: 1070 /* do not accept any frames if the device is down */ 1071 (void)upgt_set_macfilter(sc, sc->sc_state); 1072 upgt_set_led(sc, UPGT_LED_OFF); 1073 break; 1074 case IEEE80211_S_SCAN: 1075 upgt_set_chan(sc, ic->ic_curchan); 1076 break; 1077 case IEEE80211_S_AUTH: 1078 upgt_set_chan(sc, ic->ic_curchan); 1079 break; 1080 case IEEE80211_S_ASSOC: 1081 break; 1082 case IEEE80211_S_RUN: 1083 upgt_set_macfilter(sc, sc->sc_state); 1084 upgt_set_led(sc, UPGT_LED_ON); 1085 break; 1086 default: 1087 break; 1088 } 1089 UPGT_UNLOCK(sc); 1090 IEEE80211_LOCK(ic); 1091 return (uvp->newstate(vap, nstate, arg)); 1092 } 1093 1094 static void 1095 upgt_vap_delete(struct ieee80211vap *vap) 1096 { 1097 struct upgt_vap *uvp = UPGT_VAP(vap); 1098 1099 ieee80211_vap_detach(vap); 1100 free(uvp, M_80211_VAP); 1101 } 1102 1103 static void 1104 upgt_update_mcast(struct ifnet *ifp) 1105 { 1106 struct upgt_softc *sc = ifp->if_softc; 1107 1108 upgt_set_multi(sc); 1109 } 1110 1111 static int 1112 upgt_eeprom_parse(struct upgt_softc *sc) 1113 { 1114 struct upgt_eeprom_header *eeprom_header; 1115 struct upgt_eeprom_option *eeprom_option; 1116 uint16_t option_len; 1117 uint16_t option_type; 1118 uint16_t preamble_len; 1119 int option_end = 0; 1120 1121 /* calculate eeprom options start offset */ 1122 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1123 preamble_len = le16toh(eeprom_header->preamble_len); 1124 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1125 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1126 1127 while (!option_end) { 1128 /* the eeprom option length is stored in words */ 1129 option_len = 1130 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1131 option_type = 1132 le16toh(eeprom_option->type); 1133 1134 switch (option_type) { 1135 case UPGT_EEPROM_TYPE_NAME: 1136 DPRINTF(sc, UPGT_DEBUG_FW, 1137 "EEPROM name len=%d\n", option_len); 1138 break; 1139 case UPGT_EEPROM_TYPE_SERIAL: 1140 DPRINTF(sc, UPGT_DEBUG_FW, 1141 "EEPROM serial len=%d\n", option_len); 1142 break; 1143 case UPGT_EEPROM_TYPE_MAC: 1144 DPRINTF(sc, UPGT_DEBUG_FW, 1145 "EEPROM mac len=%d\n", option_len); 1146 1147 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data); 1148 break; 1149 case UPGT_EEPROM_TYPE_HWRX: 1150 DPRINTF(sc, UPGT_DEBUG_FW, 1151 "EEPROM hwrx len=%d\n", option_len); 1152 1153 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1154 break; 1155 case UPGT_EEPROM_TYPE_CHIP: 1156 DPRINTF(sc, UPGT_DEBUG_FW, 1157 "EEPROM chip len=%d\n", option_len); 1158 break; 1159 case UPGT_EEPROM_TYPE_FREQ3: 1160 DPRINTF(sc, UPGT_DEBUG_FW, 1161 "EEPROM freq3 len=%d\n", option_len); 1162 1163 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1164 option_len); 1165 break; 1166 case UPGT_EEPROM_TYPE_FREQ4: 1167 DPRINTF(sc, UPGT_DEBUG_FW, 1168 "EEPROM freq4 len=%d\n", option_len); 1169 1170 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1171 option_len); 1172 break; 1173 case UPGT_EEPROM_TYPE_FREQ5: 1174 DPRINTF(sc, UPGT_DEBUG_FW, 1175 "EEPROM freq5 len=%d\n", option_len); 1176 break; 1177 case UPGT_EEPROM_TYPE_FREQ6: 1178 DPRINTF(sc, UPGT_DEBUG_FW, 1179 "EEPROM freq6 len=%d\n", option_len); 1180 1181 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1182 option_len); 1183 break; 1184 case UPGT_EEPROM_TYPE_END: 1185 DPRINTF(sc, UPGT_DEBUG_FW, 1186 "EEPROM end len=%d\n", option_len); 1187 option_end = 1; 1188 break; 1189 case UPGT_EEPROM_TYPE_OFF: 1190 DPRINTF(sc, UPGT_DEBUG_FW, 1191 "%s: EEPROM off without end option\n", __func__); 1192 return (EIO); 1193 default: 1194 DPRINTF(sc, UPGT_DEBUG_FW, 1195 "EEPROM unknown type 0x%04x len=%d\n", 1196 option_type, option_len); 1197 break; 1198 } 1199 1200 /* jump to next EEPROM option */ 1201 eeprom_option = (struct upgt_eeprom_option *) 1202 (eeprom_option->data + option_len); 1203 } 1204 1205 return (0); 1206 } 1207 1208 static void 1209 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1210 { 1211 struct upgt_eeprom_freq3_header *freq3_header; 1212 struct upgt_lmac_freq3 *freq3; 1213 int i, elements, flags; 1214 unsigned channel; 1215 1216 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1217 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1218 1219 flags = freq3_header->flags; 1220 elements = freq3_header->elements; 1221 1222 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1223 flags, elements); 1224 1225 for (i = 0; i < elements; i++) { 1226 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1227 if (channel >= IEEE80211_CHAN_MAX) 1228 continue; 1229 1230 sc->sc_eeprom_freq3[channel] = freq3[i]; 1231 1232 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1233 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1234 } 1235 } 1236 1237 void 1238 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1239 { 1240 struct upgt_eeprom_freq4_header *freq4_header; 1241 struct upgt_eeprom_freq4_1 *freq4_1; 1242 struct upgt_eeprom_freq4_2 *freq4_2; 1243 int i, j, elements, settings, flags; 1244 unsigned channel; 1245 1246 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1247 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1248 flags = freq4_header->flags; 1249 elements = freq4_header->elements; 1250 settings = freq4_header->settings; 1251 1252 /* we need this value later */ 1253 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1254 1255 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1256 flags, elements, settings); 1257 1258 for (i = 0; i < elements; i++) { 1259 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1260 if (channel >= IEEE80211_CHAN_MAX) 1261 continue; 1262 1263 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1264 for (j = 0; j < settings; j++) { 1265 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1266 sc->sc_eeprom_freq4[channel][j].pad = 0; 1267 } 1268 1269 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1270 le16toh(freq4_1[i].freq), channel); 1271 } 1272 } 1273 1274 void 1275 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1276 { 1277 struct upgt_lmac_freq6 *freq6; 1278 int i, elements; 1279 unsigned channel; 1280 1281 freq6 = (struct upgt_lmac_freq6 *)data; 1282 elements = len / sizeof(struct upgt_lmac_freq6); 1283 1284 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1285 1286 for (i = 0; i < elements; i++) { 1287 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1288 if (channel >= IEEE80211_CHAN_MAX) 1289 continue; 1290 1291 sc->sc_eeprom_freq6[channel] = freq6[i]; 1292 1293 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1294 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1295 } 1296 } 1297 1298 static void 1299 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1300 { 1301 struct upgt_eeprom_option_hwrx *option_hwrx; 1302 1303 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1304 1305 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1306 1307 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1308 sc->sc_eeprom_hwrx); 1309 } 1310 1311 static int 1312 upgt_eeprom_read(struct upgt_softc *sc) 1313 { 1314 struct upgt_data *data_cmd; 1315 struct upgt_lmac_mem *mem; 1316 struct upgt_lmac_eeprom *eeprom; 1317 int block, error, offset; 1318 1319 UPGT_LOCK(sc); 1320 usb_pause_mtx(&sc->sc_mtx, 100); 1321 1322 offset = 0; 1323 block = UPGT_EEPROM_BLOCK_SIZE; 1324 while (offset < UPGT_EEPROM_SIZE) { 1325 DPRINTF(sc, UPGT_DEBUG_FW, 1326 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1327 1328 data_cmd = upgt_getbuf(sc); 1329 if (data_cmd == NULL) { 1330 UPGT_UNLOCK(sc); 1331 return (ENOBUFS); 1332 } 1333 1334 /* 1335 * Transmit the URB containing the CMD data. 1336 */ 1337 memset(data_cmd->buf, 0, MCLBYTES); 1338 1339 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1340 mem->addr = htole32(sc->sc_memaddr_frame_start + 1341 UPGT_MEMSIZE_FRAME_HEAD); 1342 1343 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1344 eeprom->header1.flags = 0; 1345 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1346 eeprom->header1.len = htole16(( 1347 sizeof(struct upgt_lmac_eeprom) - 1348 sizeof(struct upgt_lmac_header)) + block); 1349 1350 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1351 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1352 eeprom->header2.flags = 0; 1353 1354 eeprom->offset = htole16(offset); 1355 eeprom->len = htole16(block); 1356 1357 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1358 1359 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1360 data_cmd->buflen - sizeof(*mem)); 1361 upgt_bulk_tx(sc, data_cmd); 1362 1363 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1364 if (error != 0) { 1365 device_printf(sc->sc_dev, 1366 "timeout while waiting for EEPROM data\n"); 1367 UPGT_UNLOCK(sc); 1368 return (EIO); 1369 } 1370 1371 offset += block; 1372 if (UPGT_EEPROM_SIZE - offset < block) 1373 block = UPGT_EEPROM_SIZE - offset; 1374 } 1375 1376 UPGT_UNLOCK(sc); 1377 return (0); 1378 } 1379 1380 /* 1381 * When a rx data came in the function returns a mbuf and a rssi values. 1382 */ 1383 static struct mbuf * 1384 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1385 { 1386 struct mbuf *m = NULL; 1387 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1388 struct upgt_lmac_header *header; 1389 struct upgt_lmac_eeprom *eeprom; 1390 uint8_t h1_type; 1391 uint16_t h2_type; 1392 int actlen, sumlen; 1393 1394 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1395 1396 UPGT_ASSERT_LOCKED(sc); 1397 1398 if (actlen < 1) 1399 return (NULL); 1400 1401 /* Check only at the very beginning. */ 1402 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1403 (memcmp(data->buf, "OK", 2) == 0)) { 1404 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1405 wakeup_one(sc); 1406 return (NULL); 1407 } 1408 1409 if (actlen < (int)UPGT_RX_MINSZ) 1410 return (NULL); 1411 1412 /* 1413 * Check what type of frame came in. 1414 */ 1415 header = (struct upgt_lmac_header *)(data->buf + 4); 1416 1417 h1_type = header->header1.type; 1418 h2_type = le16toh(header->header2.type); 1419 1420 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1421 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1422 uint16_t eeprom_offset = le16toh(eeprom->offset); 1423 uint16_t eeprom_len = le16toh(eeprom->len); 1424 1425 DPRINTF(sc, UPGT_DEBUG_FW, 1426 "received EEPROM block (offset=%d, len=%d)\n", 1427 eeprom_offset, eeprom_len); 1428 1429 memcpy(sc->sc_eeprom + eeprom_offset, 1430 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1431 eeprom_len); 1432 1433 /* EEPROM data has arrived in time, wakeup. */ 1434 wakeup(sc); 1435 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1436 h2_type == UPGT_H2_TYPE_TX_DONE) { 1437 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1438 __func__); 1439 upgt_tx_done(sc, data->buf + 4); 1440 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1441 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1442 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1443 __func__); 1444 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1445 rssi); 1446 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1447 h2_type == UPGT_H2_TYPE_STATS) { 1448 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1449 __func__); 1450 /* TODO: what could we do with the statistic data? */ 1451 } else { 1452 /* ignore unknown frame types */ 1453 DPRINTF(sc, UPGT_DEBUG_INTR, 1454 "received unknown frame type 0x%02x\n", 1455 header->header1.type); 1456 } 1457 return (m); 1458 } 1459 1460 /* 1461 * The firmware awaits a checksum for each frame we send to it. 1462 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1463 */ 1464 static uint32_t 1465 upgt_chksum_le(const uint32_t *buf, size_t size) 1466 { 1467 size_t i; 1468 uint32_t crc = 0; 1469 1470 for (i = 0; i < size; i += sizeof(uint32_t)) { 1471 crc = htole32(crc ^ *buf++); 1472 crc = htole32((crc >> 5) ^ (crc << 3)); 1473 } 1474 1475 return (crc); 1476 } 1477 1478 static struct mbuf * 1479 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1480 { 1481 struct ifnet *ifp = sc->sc_ifp; 1482 struct ieee80211com *ic = ifp->if_l2com; 1483 struct upgt_lmac_rx_desc *rxdesc; 1484 struct mbuf *m; 1485 1486 /* 1487 * don't pass packets to the ieee80211 framework if the driver isn't 1488 * RUNNING. 1489 */ 1490 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1491 return (NULL); 1492 1493 /* access RX packet descriptor */ 1494 rxdesc = (struct upgt_lmac_rx_desc *)data; 1495 1496 /* create mbuf which is suitable for strict alignment archs */ 1497 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1498 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1499 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1500 if (m == NULL) { 1501 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1502 return (NULL); 1503 } 1504 m_adj(m, ETHER_ALIGN); 1505 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1506 /* trim FCS */ 1507 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1508 m->m_pkthdr.rcvif = ifp; 1509 1510 if (ieee80211_radiotap_active(ic)) { 1511 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1512 1513 tap->wr_flags = 0; 1514 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1515 tap->wr_antsignal = rxdesc->rssi; 1516 } 1517 ifp->if_ipackets++; 1518 1519 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1520 *rssi = rxdesc->rssi; 1521 return (m); 1522 } 1523 1524 static uint8_t 1525 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1526 { 1527 struct ifnet *ifp = sc->sc_ifp; 1528 struct ieee80211com *ic = ifp->if_l2com; 1529 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1530 static const uint8_t ofdm_upgt2rate[12] = 1531 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1532 1533 if (ic->ic_curmode == IEEE80211_MODE_11B && 1534 !(rate < 0 || rate > 3)) 1535 return cck_upgt2rate[rate & 0xf]; 1536 1537 if (ic->ic_curmode == IEEE80211_MODE_11G && 1538 !(rate < 0 || rate > 11)) 1539 return ofdm_upgt2rate[rate & 0xf]; 1540 1541 return (0); 1542 } 1543 1544 static void 1545 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1546 { 1547 struct ifnet *ifp = sc->sc_ifp; 1548 struct upgt_lmac_tx_done_desc *desc; 1549 int i, freed = 0; 1550 1551 UPGT_ASSERT_LOCKED(sc); 1552 1553 desc = (struct upgt_lmac_tx_done_desc *)data; 1554 1555 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1556 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1557 1558 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1559 upgt_mem_free(sc, data_tx->addr); 1560 data_tx->ni = NULL; 1561 data_tx->addr = 0; 1562 data_tx->m = NULL; 1563 data_tx->use = 0; 1564 1565 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1566 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1567 le32toh(desc->header2.reqid), 1568 le16toh(desc->status), le16toh(desc->rssi)); 1569 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1570 le16toh(desc->seq)); 1571 1572 freed++; 1573 } 1574 } 1575 1576 if (freed != 0) { 1577 sc->sc_tx_timer = 0; 1578 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1579 UPGT_UNLOCK(sc); 1580 upgt_start(ifp); 1581 UPGT_LOCK(sc); 1582 } 1583 } 1584 1585 static void 1586 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1587 { 1588 int i; 1589 1590 for (i = 0; i < sc->sc_memory.pages; i++) { 1591 if (sc->sc_memory.page[i].addr == addr) { 1592 sc->sc_memory.page[i].used = 0; 1593 return; 1594 } 1595 } 1596 1597 device_printf(sc->sc_dev, 1598 "could not free memory address 0x%08x\n", addr); 1599 } 1600 1601 static int 1602 upgt_fw_load(struct upgt_softc *sc) 1603 { 1604 const struct firmware *fw; 1605 struct upgt_data *data_cmd; 1606 struct upgt_fw_x2_header *x2; 1607 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1608 int error = 0; 1609 size_t offset; 1610 int bsize; 1611 int n; 1612 uint32_t crc32; 1613 1614 fw = firmware_get(upgt_fwname); 1615 if (fw == NULL) { 1616 device_printf(sc->sc_dev, "could not read microcode %s\n", 1617 upgt_fwname); 1618 return (EIO); 1619 } 1620 1621 UPGT_LOCK(sc); 1622 1623 /* send firmware start load command */ 1624 data_cmd = upgt_getbuf(sc); 1625 if (data_cmd == NULL) { 1626 error = ENOBUFS; 1627 goto fail; 1628 } 1629 data_cmd->buflen = sizeof(start_fwload_cmd); 1630 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1631 upgt_bulk_tx(sc, data_cmd); 1632 1633 /* send X2 header */ 1634 data_cmd = upgt_getbuf(sc); 1635 if (data_cmd == NULL) { 1636 error = ENOBUFS; 1637 goto fail; 1638 } 1639 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1640 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1641 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1642 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1643 x2->len = htole32(fw->datasize); 1644 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1645 UPGT_X2_SIGNATURE_SIZE, 1646 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1647 sizeof(uint32_t)); 1648 upgt_bulk_tx(sc, data_cmd); 1649 1650 /* download firmware */ 1651 for (offset = 0; offset < fw->datasize; offset += bsize) { 1652 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1653 bsize = UPGT_FW_BLOCK_SIZE; 1654 else 1655 bsize = fw->datasize - offset; 1656 1657 data_cmd = upgt_getbuf(sc); 1658 if (data_cmd == NULL) { 1659 error = ENOBUFS; 1660 goto fail; 1661 } 1662 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1663 data_cmd->buf, bsize); 1664 data_cmd->buflen = bsize; 1665 upgt_bulk_tx(sc, data_cmd); 1666 1667 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", 1668 offset, n, bsize); 1669 bsize = n; 1670 } 1671 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1672 1673 /* load firmware */ 1674 data_cmd = upgt_getbuf(sc); 1675 if (data_cmd == NULL) { 1676 error = ENOBUFS; 1677 goto fail; 1678 } 1679 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1680 *((uint32_t *)(data_cmd->buf) ) = crc32; 1681 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1682 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1683 data_cmd->buflen = 6; 1684 upgt_bulk_tx(sc, data_cmd); 1685 1686 /* waiting 'OK' response. */ 1687 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1688 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1689 if (error != 0) { 1690 device_printf(sc->sc_dev, "firmware load failed\n"); 1691 error = EIO; 1692 } 1693 1694 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1695 fail: 1696 UPGT_UNLOCK(sc); 1697 firmware_put(fw, FIRMWARE_UNLOAD); 1698 return (error); 1699 } 1700 1701 static uint32_t 1702 upgt_crc32_le(const void *buf, size_t size) 1703 { 1704 uint32_t crc; 1705 1706 crc = ether_crc32_le(buf, size); 1707 1708 /* apply final XOR value as common for CRC-32 */ 1709 crc = htole32(crc ^ 0xffffffffU); 1710 1711 return (crc); 1712 } 1713 1714 /* 1715 * While copying the version 2 firmware, we need to replace two characters: 1716 * 1717 * 0x7e -> 0x7d 0x5e 1718 * 0x7d -> 0x7d 0x5d 1719 */ 1720 static int 1721 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1722 { 1723 int i, j; 1724 1725 for (i = 0, j = 0; i < size && j < size; i++) { 1726 switch (src[i]) { 1727 case 0x7e: 1728 dst[j] = 0x7d; 1729 j++; 1730 dst[j] = 0x5e; 1731 j++; 1732 break; 1733 case 0x7d: 1734 dst[j] = 0x7d; 1735 j++; 1736 dst[j] = 0x5d; 1737 j++; 1738 break; 1739 default: 1740 dst[j] = src[i]; 1741 j++; 1742 break; 1743 } 1744 } 1745 1746 return (i); 1747 } 1748 1749 static int 1750 upgt_mem_init(struct upgt_softc *sc) 1751 { 1752 int i; 1753 1754 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1755 sc->sc_memory.page[i].used = 0; 1756 1757 if (i == 0) { 1758 /* 1759 * The first memory page is always reserved for 1760 * command data. 1761 */ 1762 sc->sc_memory.page[i].addr = 1763 sc->sc_memaddr_frame_start + MCLBYTES; 1764 } else { 1765 sc->sc_memory.page[i].addr = 1766 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1767 } 1768 1769 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1770 sc->sc_memaddr_frame_end) 1771 break; 1772 1773 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1774 i, sc->sc_memory.page[i].addr); 1775 } 1776 1777 sc->sc_memory.pages = i; 1778 1779 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1780 return (0); 1781 } 1782 1783 static int 1784 upgt_fw_verify(struct upgt_softc *sc) 1785 { 1786 const struct firmware *fw; 1787 const struct upgt_fw_bra_option *bra_opt; 1788 const struct upgt_fw_bra_descr *descr; 1789 const uint8_t *p; 1790 const uint32_t *uc; 1791 uint32_t bra_option_type, bra_option_len; 1792 size_t offset; 1793 int bra_end = 0; 1794 int error = 0; 1795 1796 fw = firmware_get(upgt_fwname); 1797 if (fw == NULL) { 1798 device_printf(sc->sc_dev, "could not read microcode %s\n", 1799 upgt_fwname); 1800 return EIO; 1801 } 1802 1803 /* 1804 * Seek to beginning of Boot Record Area (BRA). 1805 */ 1806 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1807 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1808 if (*uc == 0) 1809 break; 1810 } 1811 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1812 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1813 if (*uc != 0) 1814 break; 1815 } 1816 if (offset == fw->datasize) { 1817 device_printf(sc->sc_dev, 1818 "firmware Boot Record Area not found\n"); 1819 error = EIO; 1820 goto fail; 1821 } 1822 1823 DPRINTF(sc, UPGT_DEBUG_FW, 1824 "firmware Boot Record Area found at offset %d\n", offset); 1825 1826 /* 1827 * Parse Boot Record Area (BRA) options. 1828 */ 1829 while (offset < fw->datasize && bra_end == 0) { 1830 /* get current BRA option */ 1831 p = (const uint8_t *)fw->data + offset; 1832 bra_opt = (const struct upgt_fw_bra_option *)p; 1833 bra_option_type = le32toh(bra_opt->type); 1834 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1835 1836 switch (bra_option_type) { 1837 case UPGT_BRA_TYPE_FW: 1838 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1839 bra_option_len); 1840 1841 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1842 device_printf(sc->sc_dev, 1843 "wrong UPGT_BRA_TYPE_FW len\n"); 1844 error = EIO; 1845 goto fail; 1846 } 1847 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1848 bra_option_len) == 0) { 1849 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1850 break; 1851 } 1852 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1853 bra_option_len) == 0) { 1854 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1855 break; 1856 } 1857 device_printf(sc->sc_dev, 1858 "unsupported firmware type\n"); 1859 error = EIO; 1860 goto fail; 1861 case UPGT_BRA_TYPE_VERSION: 1862 DPRINTF(sc, UPGT_DEBUG_FW, 1863 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1864 break; 1865 case UPGT_BRA_TYPE_DEPIF: 1866 DPRINTF(sc, UPGT_DEBUG_FW, 1867 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1868 break; 1869 case UPGT_BRA_TYPE_EXPIF: 1870 DPRINTF(sc, UPGT_DEBUG_FW, 1871 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1872 break; 1873 case UPGT_BRA_TYPE_DESCR: 1874 DPRINTF(sc, UPGT_DEBUG_FW, 1875 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1876 1877 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1878 1879 sc->sc_memaddr_frame_start = 1880 le32toh(descr->memaddr_space_start); 1881 sc->sc_memaddr_frame_end = 1882 le32toh(descr->memaddr_space_end); 1883 1884 DPRINTF(sc, UPGT_DEBUG_FW, 1885 "memory address space start=0x%08x\n", 1886 sc->sc_memaddr_frame_start); 1887 DPRINTF(sc, UPGT_DEBUG_FW, 1888 "memory address space end=0x%08x\n", 1889 sc->sc_memaddr_frame_end); 1890 break; 1891 case UPGT_BRA_TYPE_END: 1892 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1893 bra_option_len); 1894 bra_end = 1; 1895 break; 1896 default: 1897 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1898 bra_option_len); 1899 error = EIO; 1900 goto fail; 1901 } 1902 1903 /* jump to next BRA option */ 1904 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1905 } 1906 1907 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1908 fail: 1909 firmware_put(fw, FIRMWARE_UNLOAD); 1910 return (error); 1911 } 1912 1913 static void 1914 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1915 { 1916 1917 UPGT_ASSERT_LOCKED(sc); 1918 1919 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1920 UPGT_STAT_INC(sc, st_tx_pending); 1921 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1922 } 1923 1924 static int 1925 upgt_device_reset(struct upgt_softc *sc) 1926 { 1927 struct upgt_data *data; 1928 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1929 1930 UPGT_LOCK(sc); 1931 1932 data = upgt_getbuf(sc); 1933 if (data == NULL) { 1934 UPGT_UNLOCK(sc); 1935 return (ENOBUFS); 1936 } 1937 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1938 data->buflen = sizeof(init_cmd); 1939 upgt_bulk_tx(sc, data); 1940 usb_pause_mtx(&sc->sc_mtx, 100); 1941 1942 UPGT_UNLOCK(sc); 1943 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1944 return (0); 1945 } 1946 1947 static int 1948 upgt_alloc_tx(struct upgt_softc *sc) 1949 { 1950 int i; 1951 1952 STAILQ_INIT(&sc->sc_tx_active); 1953 STAILQ_INIT(&sc->sc_tx_inactive); 1954 STAILQ_INIT(&sc->sc_tx_pending); 1955 1956 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1957 struct upgt_data *data = &sc->sc_tx_data[i]; 1958 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1959 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1960 UPGT_STAT_INC(sc, st_tx_inactive); 1961 } 1962 1963 return (0); 1964 } 1965 1966 static int 1967 upgt_alloc_rx(struct upgt_softc *sc) 1968 { 1969 int i; 1970 1971 STAILQ_INIT(&sc->sc_rx_active); 1972 STAILQ_INIT(&sc->sc_rx_inactive); 1973 1974 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1975 struct upgt_data *data = &sc->sc_rx_data[i]; 1976 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 1977 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1978 } 1979 1980 return (0); 1981 } 1982 1983 static int 1984 upgt_detach(device_t dev) 1985 { 1986 struct upgt_softc *sc = device_get_softc(dev); 1987 struct ifnet *ifp = sc->sc_ifp; 1988 struct ieee80211com *ic = ifp->if_l2com; 1989 1990 if (!device_is_attached(dev)) 1991 return 0; 1992 1993 upgt_stop(sc); 1994 1995 callout_drain(&sc->sc_led_ch); 1996 callout_drain(&sc->sc_watchdog_ch); 1997 1998 ieee80211_ifdetach(ic); 1999 2000 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 2001 2002 upgt_free_rx(sc); 2003 upgt_free_tx(sc); 2004 2005 if_free(ifp); 2006 mtx_destroy(&sc->sc_mtx); 2007 2008 return (0); 2009 } 2010 2011 static void 2012 upgt_free_rx(struct upgt_softc *sc) 2013 { 2014 int i; 2015 2016 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 2017 struct upgt_data *data = &sc->sc_rx_data[i]; 2018 2019 data->buf = NULL; 2020 data->ni = NULL; 2021 } 2022 } 2023 2024 static void 2025 upgt_free_tx(struct upgt_softc *sc) 2026 { 2027 int i; 2028 2029 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 2030 struct upgt_data *data = &sc->sc_tx_data[i]; 2031 2032 data->buf = NULL; 2033 data->ni = NULL; 2034 } 2035 } 2036 2037 static void 2038 upgt_abort_xfers_locked(struct upgt_softc *sc) 2039 { 2040 int i; 2041 2042 UPGT_ASSERT_LOCKED(sc); 2043 /* abort any pending transfers */ 2044 for (i = 0; i < UPGT_N_XFERS; i++) 2045 usbd_transfer_stop(sc->sc_xfer[i]); 2046 } 2047 2048 static void 2049 upgt_abort_xfers(struct upgt_softc *sc) 2050 { 2051 2052 UPGT_LOCK(sc); 2053 upgt_abort_xfers_locked(sc); 2054 UPGT_UNLOCK(sc); 2055 } 2056 2057 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2058 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2059 2060 static void 2061 upgt_sysctl_node(struct upgt_softc *sc) 2062 { 2063 struct sysctl_ctx_list *ctx; 2064 struct sysctl_oid_list *child; 2065 struct sysctl_oid *tree; 2066 struct upgt_stat *stats; 2067 2068 stats = &sc->sc_stat; 2069 ctx = device_get_sysctl_ctx(sc->sc_dev); 2070 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2071 2072 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2073 NULL, "UPGT statistics"); 2074 child = SYSCTL_CHILDREN(tree); 2075 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2076 &stats->st_tx_active, "Active numbers in TX queue"); 2077 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2078 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2079 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2080 &stats->st_tx_pending, "Pending numbers in TX queue"); 2081 } 2082 2083 #undef UPGT_SYSCTL_STAT_ADD32 2084 2085 static struct upgt_data * 2086 _upgt_getbuf(struct upgt_softc *sc) 2087 { 2088 struct upgt_data *bf; 2089 2090 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2091 if (bf != NULL) { 2092 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2093 UPGT_STAT_DEC(sc, st_tx_inactive); 2094 } else 2095 bf = NULL; 2096 if (bf == NULL) 2097 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2098 "out of xmit buffers"); 2099 return (bf); 2100 } 2101 2102 static struct upgt_data * 2103 upgt_getbuf(struct upgt_softc *sc) 2104 { 2105 struct upgt_data *bf; 2106 2107 UPGT_ASSERT_LOCKED(sc); 2108 2109 bf = _upgt_getbuf(sc); 2110 if (bf == NULL) { 2111 struct ifnet *ifp = sc->sc_ifp; 2112 2113 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2114 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2115 } 2116 2117 return (bf); 2118 } 2119 2120 static struct upgt_data * 2121 upgt_gettxbuf(struct upgt_softc *sc) 2122 { 2123 struct upgt_data *bf; 2124 2125 UPGT_ASSERT_LOCKED(sc); 2126 2127 bf = upgt_getbuf(sc); 2128 if (bf == NULL) 2129 return (NULL); 2130 2131 bf->addr = upgt_mem_alloc(sc); 2132 if (bf->addr == 0) { 2133 struct ifnet *ifp = sc->sc_ifp; 2134 2135 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2136 __func__); 2137 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2138 UPGT_STAT_INC(sc, st_tx_inactive); 2139 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) 2140 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2141 return (NULL); 2142 } 2143 return (bf); 2144 } 2145 2146 static int 2147 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2148 struct upgt_data *data) 2149 { 2150 struct ieee80211vap *vap = ni->ni_vap; 2151 int error = 0, len; 2152 struct ieee80211_frame *wh; 2153 struct ieee80211_key *k; 2154 struct ifnet *ifp = sc->sc_ifp; 2155 struct upgt_lmac_mem *mem; 2156 struct upgt_lmac_tx_desc *txdesc; 2157 2158 UPGT_ASSERT_LOCKED(sc); 2159 2160 upgt_set_led(sc, UPGT_LED_BLINK); 2161 2162 /* 2163 * Software crypto. 2164 */ 2165 wh = mtod(m, struct ieee80211_frame *); 2166 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2167 k = ieee80211_crypto_encap(ni, m); 2168 if (k == NULL) { 2169 device_printf(sc->sc_dev, 2170 "ieee80211_crypto_encap returns NULL.\n"); 2171 error = EIO; 2172 goto done; 2173 } 2174 2175 /* in case packet header moved, reset pointer */ 2176 wh = mtod(m, struct ieee80211_frame *); 2177 } 2178 2179 /* Transmit the URB containing the TX data. */ 2180 memset(data->buf, 0, MCLBYTES); 2181 mem = (struct upgt_lmac_mem *)data->buf; 2182 mem->addr = htole32(data->addr); 2183 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2184 2185 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2186 IEEE80211_FC0_TYPE_MGT) { 2187 /* mgmt frames */ 2188 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2189 /* always send mgmt frames at lowest rate (DS1) */ 2190 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2191 } else { 2192 /* data frames */ 2193 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2194 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2195 } 2196 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2197 txdesc->header1.len = htole16(m->m_pkthdr.len); 2198 txdesc->header2.reqid = htole32(data->addr); 2199 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2200 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2201 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2202 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2203 2204 if (ieee80211_radiotap_active_vap(vap)) { 2205 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2206 2207 tap->wt_flags = 0; 2208 tap->wt_rate = 0; /* XXX where to get from? */ 2209 2210 ieee80211_radiotap_tx(vap, m); 2211 } 2212 2213 /* copy frame below our TX descriptor header */ 2214 m_copydata(m, 0, m->m_pkthdr.len, 2215 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2216 /* calculate frame size */ 2217 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2218 /* we need to align the frame to a 4 byte boundary */ 2219 len = (len + 3) & ~3; 2220 /* calculate frame checksum */ 2221 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2222 data->ni = ni; 2223 data->m = m; 2224 data->buflen = len; 2225 2226 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2227 __func__, len); 2228 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2229 2230 upgt_bulk_tx(sc, data); 2231 done: 2232 /* 2233 * If we don't regulary read the device statistics, the RX queue 2234 * will stall. It's strange, but it works, so we keep reading 2235 * the statistics here. *shrug* 2236 */ 2237 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL)) 2238 upgt_get_stats(sc); 2239 2240 return (error); 2241 } 2242 2243 static void 2244 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2245 { 2246 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2247 struct ifnet *ifp = sc->sc_ifp; 2248 struct ieee80211com *ic = ifp->if_l2com; 2249 struct ieee80211_frame *wh; 2250 struct ieee80211_node *ni; 2251 struct mbuf *m = NULL; 2252 struct upgt_data *data; 2253 int8_t nf; 2254 int rssi = -1; 2255 2256 UPGT_ASSERT_LOCKED(sc); 2257 2258 switch (USB_GET_STATE(xfer)) { 2259 case USB_ST_TRANSFERRED: 2260 data = STAILQ_FIRST(&sc->sc_rx_active); 2261 if (data == NULL) 2262 goto setup; 2263 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2264 m = upgt_rxeof(xfer, data, &rssi); 2265 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2266 /* FALLTHROUGH */ 2267 case USB_ST_SETUP: 2268 setup: 2269 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2270 if (data == NULL) 2271 return; 2272 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2273 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2274 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2275 usbd_transfer_submit(xfer); 2276 2277 /* 2278 * To avoid LOR we should unlock our private mutex here to call 2279 * ieee80211_input() because here is at the end of a USB 2280 * callback and safe to unlock. 2281 */ 2282 UPGT_UNLOCK(sc); 2283 if (m != NULL) { 2284 wh = mtod(m, struct ieee80211_frame *); 2285 ni = ieee80211_find_rxnode(ic, 2286 (struct ieee80211_frame_min *)wh); 2287 nf = -95; /* XXX */ 2288 if (ni != NULL) { 2289 (void) ieee80211_input(ni, m, rssi, nf); 2290 /* node is no longer needed */ 2291 ieee80211_free_node(ni); 2292 } else 2293 (void) ieee80211_input_all(ic, m, rssi, nf); 2294 m = NULL; 2295 } 2296 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2297 !IFQ_IS_EMPTY(&ifp->if_snd)) 2298 upgt_start(ifp); 2299 UPGT_LOCK(sc); 2300 break; 2301 default: 2302 /* needs it to the inactive queue due to a error. */ 2303 data = STAILQ_FIRST(&sc->sc_rx_active); 2304 if (data != NULL) { 2305 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2306 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2307 } 2308 if (error != USB_ERR_CANCELLED) { 2309 usbd_xfer_set_stall(xfer); 2310 ifp->if_ierrors++; 2311 goto setup; 2312 } 2313 break; 2314 } 2315 } 2316 2317 static void 2318 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2319 { 2320 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2321 struct ifnet *ifp = sc->sc_ifp; 2322 struct upgt_data *data; 2323 2324 UPGT_ASSERT_LOCKED(sc); 2325 switch (USB_GET_STATE(xfer)) { 2326 case USB_ST_TRANSFERRED: 2327 data = STAILQ_FIRST(&sc->sc_tx_active); 2328 if (data == NULL) 2329 goto setup; 2330 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2331 UPGT_STAT_DEC(sc, st_tx_active); 2332 upgt_txeof(xfer, data); 2333 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2334 UPGT_STAT_INC(sc, st_tx_inactive); 2335 /* FALLTHROUGH */ 2336 case USB_ST_SETUP: 2337 setup: 2338 data = STAILQ_FIRST(&sc->sc_tx_pending); 2339 if (data == NULL) { 2340 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2341 __func__); 2342 return; 2343 } 2344 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2345 UPGT_STAT_DEC(sc, st_tx_pending); 2346 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2347 UPGT_STAT_INC(sc, st_tx_active); 2348 2349 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2350 usbd_transfer_submit(xfer); 2351 UPGT_UNLOCK(sc); 2352 upgt_start(ifp); 2353 UPGT_LOCK(sc); 2354 break; 2355 default: 2356 data = STAILQ_FIRST(&sc->sc_tx_active); 2357 if (data == NULL) 2358 goto setup; 2359 if (data->ni != NULL) { 2360 ieee80211_free_node(data->ni); 2361 data->ni = NULL; 2362 ifp->if_oerrors++; 2363 } 2364 if (error != USB_ERR_CANCELLED) { 2365 usbd_xfer_set_stall(xfer); 2366 goto setup; 2367 } 2368 break; 2369 } 2370 } 2371 2372 static device_method_t upgt_methods[] = { 2373 /* Device interface */ 2374 DEVMETHOD(device_probe, upgt_match), 2375 DEVMETHOD(device_attach, upgt_attach), 2376 DEVMETHOD(device_detach, upgt_detach), 2377 DEVMETHOD_END 2378 }; 2379 2380 static driver_t upgt_driver = { 2381 .name = "upgt", 2382 .methods = upgt_methods, 2383 .size = sizeof(struct upgt_softc) 2384 }; 2385 2386 static devclass_t upgt_devclass; 2387 2388 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); 2389 MODULE_VERSION(if_upgt, 1); 2390 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2391 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2392 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2393