xref: /freebsd/sys/dev/usb/wlan/if_upgt.c (revision 8be96e101f2691b80ff9562b72f874da82e735aa)
1 /*	$OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2 /*	$FreeBSD$ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/param.h>
21 #include <sys/systm.h>
22 #include <sys/kernel.h>
23 #include <sys/endian.h>
24 #include <sys/firmware.h>
25 #include <sys/linker.h>
26 #include <sys/mbuf.h>
27 #include <sys/malloc.h>
28 #include <sys/module.h>
29 #include <sys/socket.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 
33 #include <net/if.h>
34 #include <net/if_arp.h>
35 #include <net/ethernet.h>
36 #include <net/if_dl.h>
37 #include <net/if_media.h>
38 #include <net/if_types.h>
39 
40 #include <sys/bus.h>
41 #include <machine/bus.h>
42 
43 #include <net80211/ieee80211_var.h>
44 #include <net80211/ieee80211_phy.h>
45 #include <net80211/ieee80211_radiotap.h>
46 #include <net80211/ieee80211_regdomain.h>
47 
48 #include <net/bpf.h>
49 
50 #include <dev/usb/usb.h>
51 #include <dev/usb/usbdi.h>
52 #include "usbdevs.h"
53 
54 #include <dev/usb/wlan/if_upgtvar.h>
55 
56 /*
57  * Driver for the USB PrismGT devices.
58  *
59  * For now just USB 2.0 devices with the GW3887 chipset are supported.
60  * The driver has been written based on the firmware version 2.13.1.0_LM87.
61  *
62  * TODO's:
63  * - MONITOR mode test.
64  * - Add HOSTAP mode.
65  * - Add IBSS mode.
66  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67  *
68  * Parts of this driver has been influenced by reading the p54u driver
69  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70  * Sebastien Bourdeauducq <lekernel@prism54.org>.
71  */
72 
73 SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74     "USB PrismGT GW3887 driver parameters");
75 
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 0;
78 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79 	    0, "control debugging printfs");
80 TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81 enum {
82 	UPGT_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
83 	UPGT_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
84 	UPGT_DEBUG_RESET	= 0x00000004,	/* reset processing */
85 	UPGT_DEBUG_INTR		= 0x00000008,	/* INTR */
86 	UPGT_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
87 	UPGT_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
88 	UPGT_DEBUG_STATE	= 0x00000040,	/* 802.11 state transitions */
89 	UPGT_DEBUG_STAT		= 0x00000080,	/* statistic */
90 	UPGT_DEBUG_FW		= 0x00000100,	/* firmware */
91 	UPGT_DEBUG_ANY		= 0xffffffff
92 };
93 #define	DPRINTF(sc, m, fmt, ...) do {				\
94 	if (sc->sc_debug & (m))					\
95 		printf(fmt, __VA_ARGS__);			\
96 } while (0)
97 #else
98 #define	DPRINTF(sc, m, fmt, ...) do {				\
99 	(void) sc;						\
100 } while (0)
101 #endif
102 
103 /*
104  * Prototypes.
105  */
106 static device_probe_t upgt_match;
107 static device_attach_t upgt_attach;
108 static device_detach_t upgt_detach;
109 static int	upgt_alloc_tx(struct upgt_softc *);
110 static int	upgt_alloc_rx(struct upgt_softc *);
111 static int	upgt_device_reset(struct upgt_softc *);
112 static void	upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113 static int	upgt_fw_verify(struct upgt_softc *);
114 static int	upgt_mem_init(struct upgt_softc *);
115 static int	upgt_fw_load(struct upgt_softc *);
116 static int	upgt_fw_copy(const uint8_t *, char *, int);
117 static uint32_t	upgt_crc32_le(const void *, size_t);
118 static struct mbuf *
119 		upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120 static struct mbuf *
121 		upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122 static void	upgt_txeof(struct usb_xfer *, struct upgt_data *);
123 static int	upgt_eeprom_read(struct upgt_softc *);
124 static int	upgt_eeprom_parse(struct upgt_softc *);
125 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
130 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
131 static void	upgt_init(void *);
132 static void	upgt_init_locked(struct upgt_softc *);
133 static int	upgt_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	upgt_start(struct ifnet *);
135 static int	upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 		    const struct ieee80211_bpf_params *);
137 static void	upgt_scan_start(struct ieee80211com *);
138 static void	upgt_scan_end(struct ieee80211com *);
139 static void	upgt_set_channel(struct ieee80211com *);
140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 		    const char name[IFNAMSIZ], int unit, int opmode,
142 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
144 static void	upgt_vap_delete(struct ieee80211vap *);
145 static void	upgt_update_mcast(struct ifnet *);
146 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
147 static void	upgt_set_multi(void *);
148 static void	upgt_stop(struct upgt_softc *);
149 static void	upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
151 static int	upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152 static void	upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153 static void	upgt_set_led(struct upgt_softc *, int);
154 static void	upgt_set_led_blink(void *);
155 static void	upgt_get_stats(struct upgt_softc *);
156 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
157 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
158 static void	upgt_free_tx(struct upgt_softc *);
159 static void	upgt_free_rx(struct upgt_softc *);
160 static void	upgt_watchdog(void *);
161 static void	upgt_abort_xfers(struct upgt_softc *);
162 static void	upgt_abort_xfers_locked(struct upgt_softc *);
163 static void	upgt_sysctl_node(struct upgt_softc *);
164 static struct upgt_data *
165 		upgt_getbuf(struct upgt_softc *);
166 static struct upgt_data *
167 		upgt_gettxbuf(struct upgt_softc *);
168 static int	upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 		    struct ieee80211_node *, struct upgt_data *);
170 
171 static const char *upgt_fwname = "upgt-gw3887";
172 
173 static const struct usb_device_id upgt_devs_2[] = {
174 #define	UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 	/* version 2 devices */
176 	UPGT_DEV(ACCTON,	PRISM_GT),
177 	UPGT_DEV(BELKIN,	F5D7050),
178 	UPGT_DEV(CISCOLINKSYS,	WUSB54AG),
179 	UPGT_DEV(CONCEPTRONIC,	PRISM_GT),
180 	UPGT_DEV(DELL,		PRISM_GT_1),
181 	UPGT_DEV(DELL,		PRISM_GT_2),
182 	UPGT_DEV(FSC,		E5400),
183 	UPGT_DEV(GLOBESPAN,	PRISM_GT_1),
184 	UPGT_DEV(GLOBESPAN,	PRISM_GT_2),
185 	UPGT_DEV(INTERSIL,	PRISM_GT),
186 	UPGT_DEV(SMC,		2862WG),
187 	UPGT_DEV(USR,		USR5422),
188 	UPGT_DEV(WISTRONNEWEB,	UR045G),
189 	UPGT_DEV(XYRATEX,	PRISM_GT_1),
190 	UPGT_DEV(XYRATEX,	PRISM_GT_2),
191 	UPGT_DEV(ZCOM,		XG703A),
192 	UPGT_DEV(ZCOM,		XM142)
193 };
194 
195 static usb_callback_t upgt_bulk_rx_callback;
196 static usb_callback_t upgt_bulk_tx_callback;
197 
198 static const struct usb_config upgt_config[UPGT_N_XFERS] = {
199 	[UPGT_BULK_TX] = {
200 		.type = UE_BULK,
201 		.endpoint = UE_ADDR_ANY,
202 		.direction = UE_DIR_OUT,
203 		.bufsize = MCLBYTES,
204 		.flags = {
205 			.ext_buffer = 1,
206 			.force_short_xfer = 1,
207 			.pipe_bof = 1
208 		},
209 		.callback = upgt_bulk_tx_callback,
210 		.timeout = UPGT_USB_TIMEOUT,	/* ms */
211 	},
212 	[UPGT_BULK_RX] = {
213 		.type = UE_BULK,
214 		.endpoint = UE_ADDR_ANY,
215 		.direction = UE_DIR_IN,
216 		.bufsize = MCLBYTES,
217 		.flags = {
218 			.ext_buffer = 1,
219 			.pipe_bof = 1,
220 			.short_xfer_ok = 1
221 		},
222 		.callback = upgt_bulk_rx_callback,
223 	},
224 };
225 
226 static int
227 upgt_match(device_t dev)
228 {
229 	struct usb_attach_arg *uaa = device_get_ivars(dev);
230 
231 	if (uaa->usb_mode != USB_MODE_HOST)
232 		return (ENXIO);
233 	if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
234 		return (ENXIO);
235 	if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
236 		return (ENXIO);
237 
238 	return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
239 }
240 
241 static int
242 upgt_attach(device_t dev)
243 {
244 	int error;
245 	struct ieee80211com *ic;
246 	struct ifnet *ifp;
247 	struct upgt_softc *sc = device_get_softc(dev);
248 	struct usb_attach_arg *uaa = device_get_ivars(dev);
249 	uint8_t bands, iface_index = UPGT_IFACE_INDEX;
250 
251 	sc->sc_dev = dev;
252 	sc->sc_udev = uaa->device;
253 #ifdef UPGT_DEBUG
254 	sc->sc_debug = upgt_debug;
255 #endif
256 	device_set_usb_desc(dev);
257 
258 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
259 	    MTX_DEF);
260 	callout_init(&sc->sc_led_ch, 0);
261 	callout_init(&sc->sc_watchdog_ch, 0);
262 
263 	/* Allocate TX and RX xfers.  */
264 	error = upgt_alloc_tx(sc);
265 	if (error)
266 		goto fail1;
267 	error = upgt_alloc_rx(sc);
268 	if (error)
269 		goto fail2;
270 
271 	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
272 	    upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
273 	if (error) {
274 		device_printf(dev, "could not allocate USB transfers, "
275 		    "err=%s\n", usbd_errstr(error));
276 		goto fail3;
277 	}
278 
279 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
280 	if (ifp == NULL) {
281 		device_printf(dev, "can not if_alloc()\n");
282 		goto fail4;
283 	}
284 
285 	/* Initialize the device.  */
286 	error = upgt_device_reset(sc);
287 	if (error)
288 		goto fail5;
289 	/* Verify the firmware.  */
290 	error = upgt_fw_verify(sc);
291 	if (error)
292 		goto fail5;
293 	/* Calculate device memory space.  */
294 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
295 		device_printf(dev,
296 		    "could not find memory space addresses on FW\n");
297 		error = EIO;
298 		goto fail5;
299 	}
300 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
301 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
302 
303 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
304 	    sc->sc_memaddr_frame_start);
305 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
306 	    sc->sc_memaddr_frame_end);
307 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
308 	    sc->sc_memaddr_rx_start);
309 
310 	upgt_mem_init(sc);
311 
312 	/* Load the firmware.  */
313 	error = upgt_fw_load(sc);
314 	if (error)
315 		goto fail5;
316 
317 	/* Read the whole EEPROM content and parse it.  */
318 	error = upgt_eeprom_read(sc);
319 	if (error)
320 		goto fail5;
321 	error = upgt_eeprom_parse(sc);
322 	if (error)
323 		goto fail5;
324 
325 	/* all works related with the device have done here. */
326 	upgt_abort_xfers(sc);
327 
328 	/* Setup the 802.11 device.  */
329 	ifp->if_softc = sc;
330 	if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
331 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 	ifp->if_init = upgt_init;
333 	ifp->if_ioctl = upgt_ioctl;
334 	ifp->if_start = upgt_start;
335 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
336 	IFQ_SET_READY(&ifp->if_snd);
337 
338 	ic = ifp->if_l2com;
339 	ic->ic_ifp = ifp;
340 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
341 	ic->ic_opmode = IEEE80211_M_STA;
342 	/* set device capabilities */
343 	ic->ic_caps =
344 		  IEEE80211_C_STA		/* station mode */
345 		| IEEE80211_C_MONITOR		/* monitor mode */
346 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
347 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
348 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
349 	        | IEEE80211_C_WPA		/* 802.11i */
350 		;
351 
352 	bands = 0;
353 	setbit(&bands, IEEE80211_MODE_11B);
354 	setbit(&bands, IEEE80211_MODE_11G);
355 	ieee80211_init_channels(ic, NULL, &bands);
356 
357 	ieee80211_ifattach(ic, sc->sc_myaddr);
358 	ic->ic_raw_xmit = upgt_raw_xmit;
359 	ic->ic_scan_start = upgt_scan_start;
360 	ic->ic_scan_end = upgt_scan_end;
361 	ic->ic_set_channel = upgt_set_channel;
362 
363 	ic->ic_vap_create = upgt_vap_create;
364 	ic->ic_vap_delete = upgt_vap_delete;
365 	ic->ic_update_mcast = upgt_update_mcast;
366 
367 	ieee80211_radiotap_attach(ic,
368 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
369 		UPGT_TX_RADIOTAP_PRESENT,
370 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
371 		UPGT_RX_RADIOTAP_PRESENT);
372 
373 	upgt_sysctl_node(sc);
374 
375 	if (bootverbose)
376 		ieee80211_announce(ic);
377 
378 	return (0);
379 
380 fail5:	if_free(ifp);
381 fail4:	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
382 fail3:	upgt_free_rx(sc);
383 fail2:	upgt_free_tx(sc);
384 fail1:	mtx_destroy(&sc->sc_mtx);
385 
386 	return (error);
387 }
388 
389 static void
390 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
391 {
392 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
393 	struct ifnet *ifp = sc->sc_ifp;
394 	struct mbuf *m;
395 
396 	UPGT_ASSERT_LOCKED(sc);
397 
398 	/*
399 	 * Do any tx complete callback.  Note this must be done before releasing
400 	 * the node reference.
401 	 */
402 	if (data->m) {
403 		m = data->m;
404 		if (m->m_flags & M_TXCB) {
405 			/* XXX status? */
406 			ieee80211_process_callback(data->ni, m, 0);
407 		}
408 		m_freem(m);
409 		data->m = NULL;
410 	}
411 	if (data->ni) {
412 		ieee80211_free_node(data->ni);
413 		data->ni = NULL;
414 	}
415 	ifp->if_opackets++;
416 }
417 
418 static void
419 upgt_get_stats(struct upgt_softc *sc)
420 {
421 	struct upgt_data *data_cmd;
422 	struct upgt_lmac_mem *mem;
423 	struct upgt_lmac_stats *stats;
424 
425 	data_cmd = upgt_getbuf(sc);
426 	if (data_cmd == NULL) {
427 		device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
428 		return;
429 	}
430 
431 	/*
432 	 * Transmit the URB containing the CMD data.
433 	 */
434 	bzero(data_cmd->buf, MCLBYTES);
435 
436 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
437 	mem->addr = htole32(sc->sc_memaddr_frame_start +
438 	    UPGT_MEMSIZE_FRAME_HEAD);
439 
440 	stats = (struct upgt_lmac_stats *)(mem + 1);
441 
442 	stats->header1.flags = 0;
443 	stats->header1.type = UPGT_H1_TYPE_CTRL;
444 	stats->header1.len = htole16(
445 	    sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
446 
447 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
448 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
449 	stats->header2.flags = 0;
450 
451 	data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
452 
453 	mem->chksum = upgt_chksum_le((uint32_t *)stats,
454 	    data_cmd->buflen - sizeof(*mem));
455 
456 	upgt_bulk_tx(sc, data_cmd);
457 }
458 
459 static int
460 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
461 {
462 	struct upgt_softc *sc = ifp->if_softc;
463 	struct ieee80211com *ic = ifp->if_l2com;
464 	struct ifreq *ifr = (struct ifreq *) data;
465 	int error = 0, startall = 0;
466 
467 	switch (cmd) {
468 	case SIOCSIFFLAGS:
469 		if (ifp->if_flags & IFF_UP) {
470 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
471 				if ((ifp->if_flags ^ sc->sc_if_flags) &
472 				    (IFF_ALLMULTI | IFF_PROMISC))
473 					upgt_set_multi(sc);
474 			} else {
475 				upgt_init(sc);
476 				startall = 1;
477 			}
478 		} else {
479 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
480 				upgt_stop(sc);
481 		}
482 		sc->sc_if_flags = ifp->if_flags;
483 		if (startall)
484 			ieee80211_start_all(ic);
485 		break;
486 	case SIOCGIFMEDIA:
487 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
488 		break;
489 	case SIOCGIFADDR:
490 		error = ether_ioctl(ifp, cmd, data);
491 		break;
492 	default:
493 		error = EINVAL;
494 		break;
495 	}
496 	return error;
497 }
498 
499 static void
500 upgt_stop_locked(struct upgt_softc *sc)
501 {
502 	struct ifnet *ifp = sc->sc_ifp;
503 
504 	UPGT_ASSERT_LOCKED(sc);
505 
506 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
507 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
508 	upgt_abort_xfers_locked(sc);
509 }
510 
511 static void
512 upgt_stop(struct upgt_softc *sc)
513 {
514 	struct ifnet *ifp = sc->sc_ifp;
515 
516 	UPGT_LOCK(sc);
517 	upgt_stop_locked(sc);
518 	UPGT_UNLOCK(sc);
519 
520 	/* device down */
521 	sc->sc_tx_timer = 0;
522 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
523 	sc->sc_flags &= ~UPGT_FLAG_INITDONE;
524 }
525 
526 static void
527 upgt_set_led(struct upgt_softc *sc, int action)
528 {
529 	struct upgt_data *data_cmd;
530 	struct upgt_lmac_mem *mem;
531 	struct upgt_lmac_led *led;
532 
533 	data_cmd = upgt_getbuf(sc);
534 	if (data_cmd == NULL) {
535 		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
536 		return;
537 	}
538 
539 	/*
540 	 * Transmit the URB containing the CMD data.
541 	 */
542 	bzero(data_cmd->buf, MCLBYTES);
543 
544 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
545 	mem->addr = htole32(sc->sc_memaddr_frame_start +
546 	    UPGT_MEMSIZE_FRAME_HEAD);
547 
548 	led = (struct upgt_lmac_led *)(mem + 1);
549 
550 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
551 	led->header1.type = UPGT_H1_TYPE_CTRL;
552 	led->header1.len = htole16(
553 	    sizeof(struct upgt_lmac_led) -
554 	    sizeof(struct upgt_lmac_header));
555 
556 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
557 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
558 	led->header2.flags = 0;
559 
560 	switch (action) {
561 	case UPGT_LED_OFF:
562 		led->mode = htole16(UPGT_LED_MODE_SET);
563 		led->action_fix = 0;
564 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
565 		led->action_tmp_dur = 0;
566 		break;
567 	case UPGT_LED_ON:
568 		led->mode = htole16(UPGT_LED_MODE_SET);
569 		led->action_fix = 0;
570 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
571 		led->action_tmp_dur = 0;
572 		break;
573 	case UPGT_LED_BLINK:
574 		if (sc->sc_state != IEEE80211_S_RUN) {
575 			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
576 			return;
577 		}
578 		if (sc->sc_led_blink) {
579 			/* previous blink was not finished */
580 			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
581 			return;
582 		}
583 		led->mode = htole16(UPGT_LED_MODE_SET);
584 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
585 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
586 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
587 		/* lock blink */
588 		sc->sc_led_blink = 1;
589 		callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
590 		break;
591 	default:
592 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
593 		return;
594 	}
595 
596 	data_cmd->buflen = sizeof(*mem) + sizeof(*led);
597 
598 	mem->chksum = upgt_chksum_le((uint32_t *)led,
599 	    data_cmd->buflen - sizeof(*mem));
600 
601 	upgt_bulk_tx(sc, data_cmd);
602 }
603 
604 static void
605 upgt_set_led_blink(void *arg)
606 {
607 	struct upgt_softc *sc = arg;
608 
609 	/* blink finished, we are ready for a next one */
610 	sc->sc_led_blink = 0;
611 }
612 
613 static void
614 upgt_init(void *priv)
615 {
616 	struct upgt_softc *sc = priv;
617 	struct ifnet *ifp = sc->sc_ifp;
618 	struct ieee80211com *ic = ifp->if_l2com;
619 
620 	UPGT_LOCK(sc);
621 	upgt_init_locked(sc);
622 	UPGT_UNLOCK(sc);
623 
624 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
625 		ieee80211_start_all(ic);		/* start all vap's */
626 }
627 
628 static void
629 upgt_init_locked(struct upgt_softc *sc)
630 {
631 	struct ifnet *ifp = sc->sc_ifp;
632 
633 	UPGT_ASSERT_LOCKED(sc);
634 
635 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
636 		upgt_stop_locked(sc);
637 
638 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
639 
640 	(void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
641 
642 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
643 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
644 	sc->sc_flags |= UPGT_FLAG_INITDONE;
645 
646 	callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
647 }
648 
649 static int
650 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
651 {
652 	struct ifnet *ifp = sc->sc_ifp;
653 	struct ieee80211com *ic = ifp->if_l2com;
654 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
655 	struct ieee80211_node *ni = vap->iv_bss;
656 	struct upgt_data *data_cmd;
657 	struct upgt_lmac_mem *mem;
658 	struct upgt_lmac_filter *filter;
659 	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
660 
661 	UPGT_ASSERT_LOCKED(sc);
662 
663 	data_cmd = upgt_getbuf(sc);
664 	if (data_cmd == NULL) {
665 		device_printf(sc->sc_dev, "out of TX buffers.\n");
666 		return (ENOBUFS);
667 	}
668 
669 	/*
670 	 * Transmit the URB containing the CMD data.
671 	 */
672 	bzero(data_cmd->buf, MCLBYTES);
673 
674 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
675 	mem->addr = htole32(sc->sc_memaddr_frame_start +
676 	    UPGT_MEMSIZE_FRAME_HEAD);
677 
678 	filter = (struct upgt_lmac_filter *)(mem + 1);
679 
680 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
681 	filter->header1.type = UPGT_H1_TYPE_CTRL;
682 	filter->header1.len = htole16(
683 	    sizeof(struct upgt_lmac_filter) -
684 	    sizeof(struct upgt_lmac_header));
685 
686 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
687 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
688 	filter->header2.flags = 0;
689 
690 	switch (state) {
691 	case IEEE80211_S_INIT:
692 		DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
693 		    __func__);
694 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
695 		break;
696 	case IEEE80211_S_SCAN:
697 		DPRINTF(sc, UPGT_DEBUG_STATE,
698 		    "set MAC filter to SCAN (bssid %s)\n",
699 		    ether_sprintf(broadcast));
700 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
701 		IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
702 		IEEE80211_ADDR_COPY(filter->src, broadcast);
703 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
704 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
705 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
706 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
707 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
708 		break;
709 	case IEEE80211_S_RUN:
710 		/* XXX monitor mode isn't tested yet.  */
711 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
712 			filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
713 			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
714 			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
715 			filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
716 			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
717 			filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
718 			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
719 			filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
720 		} else {
721 			DPRINTF(sc, UPGT_DEBUG_STATE,
722 			    "set MAC filter to RUN (bssid %s)\n",
723 			    ether_sprintf(ni->ni_bssid));
724 			filter->type = htole16(UPGT_FILTER_TYPE_STA);
725 			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
726 			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
727 			filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
728 			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
729 			filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
730 			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
731 			filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
732 		}
733 		break;
734 	default:
735 		device_printf(sc->sc_dev,
736 		    "MAC filter does not know that state\n");
737 		break;
738 	}
739 
740 	data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
741 
742 	mem->chksum = upgt_chksum_le((uint32_t *)filter,
743 	    data_cmd->buflen - sizeof(*mem));
744 
745 	upgt_bulk_tx(sc, data_cmd);
746 
747 	return (0);
748 }
749 
750 static void
751 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
752 {
753 	struct ifnet *ifp = ic->ic_ifp;
754 	struct upgt_softc *sc = ifp->if_softc;
755 	const struct ieee80211_txparam *tp;
756 
757 	/*
758 	 * 0x01 = OFMD6   0x10 = DS1
759 	 * 0x04 = OFDM9   0x11 = DS2
760 	 * 0x06 = OFDM12  0x12 = DS5
761 	 * 0x07 = OFDM18  0x13 = DS11
762 	 * 0x08 = OFDM24
763 	 * 0x09 = OFDM36
764 	 * 0x0a = OFDM48
765 	 * 0x0b = OFDM54
766 	 */
767 	const uint8_t rateset_auto_11b[] =
768 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
769 	const uint8_t rateset_auto_11g[] =
770 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
771 	const uint8_t rateset_fix_11bg[] =
772 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
773 	      0x08, 0x09, 0x0a, 0x0b };
774 
775 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
776 
777 	/* XXX */
778 	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
779 		/*
780 		 * Automatic rate control is done by the device.
781 		 * We just pass the rateset from which the device
782 		 * will pickup a rate.
783 		 */
784 		if (ic->ic_curmode == IEEE80211_MODE_11B)
785 			bcopy(rateset_auto_11b, sc->sc_cur_rateset,
786 			    sizeof(sc->sc_cur_rateset));
787 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
788 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
789 			bcopy(rateset_auto_11g, sc->sc_cur_rateset,
790 			    sizeof(sc->sc_cur_rateset));
791 	} else {
792 		/* set a fixed rate */
793 		memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
794 		    sizeof(sc->sc_cur_rateset));
795 	}
796 }
797 
798 static void
799 upgt_set_multi(void *arg)
800 {
801 	struct upgt_softc *sc = arg;
802 	struct ifnet *ifp = sc->sc_ifp;
803 
804 	if (!(ifp->if_flags & IFF_UP))
805 		return;
806 
807 	/*
808 	 * XXX don't know how to set a device.  Lack of docs.  Just try to set
809 	 * IFF_ALLMULTI flag here.
810 	 */
811 	ifp->if_flags |= IFF_ALLMULTI;
812 }
813 
814 static void
815 upgt_start(struct ifnet *ifp)
816 {
817 	struct upgt_softc *sc = ifp->if_softc;
818 	struct upgt_data *data_tx;
819 	struct ieee80211_node *ni;
820 	struct mbuf *m;
821 
822 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
823 		return;
824 
825 	UPGT_LOCK(sc);
826 	for (;;) {
827 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
828 		if (m == NULL)
829 			break;
830 
831 		data_tx = upgt_gettxbuf(sc);
832 		if (data_tx == NULL) {
833 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
834 			break;
835 		}
836 
837 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
838 		m->m_pkthdr.rcvif = NULL;
839 
840 		if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
841 			STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
842 			UPGT_STAT_INC(sc, st_tx_inactive);
843 			ieee80211_free_node(ni);
844 			ifp->if_oerrors++;
845 			continue;
846 		}
847 		sc->sc_tx_timer = 5;
848 	}
849 	UPGT_UNLOCK(sc);
850 }
851 
852 static int
853 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
854 	const struct ieee80211_bpf_params *params)
855 {
856 	struct ieee80211com *ic = ni->ni_ic;
857 	struct ifnet *ifp = ic->ic_ifp;
858 	struct upgt_softc *sc = ifp->if_softc;
859 	struct upgt_data *data_tx = NULL;
860 
861 	/* prevent management frames from being sent if we're not ready */
862 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
863 		m_freem(m);
864 		ieee80211_free_node(ni);
865 		return ENETDOWN;
866 	}
867 
868 	UPGT_LOCK(sc);
869 	data_tx = upgt_gettxbuf(sc);
870 	if (data_tx == NULL) {
871 		ieee80211_free_node(ni);
872 		m_freem(m);
873 		UPGT_UNLOCK(sc);
874 		return (ENOBUFS);
875 	}
876 
877 	if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
878 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
879 		UPGT_STAT_INC(sc, st_tx_inactive);
880 		ieee80211_free_node(ni);
881 		ifp->if_oerrors++;
882 		UPGT_UNLOCK(sc);
883 		return (EIO);
884 	}
885 	UPGT_UNLOCK(sc);
886 
887 	sc->sc_tx_timer = 5;
888 	return (0);
889 }
890 
891 static void
892 upgt_watchdog(void *arg)
893 {
894 	struct upgt_softc *sc = arg;
895 	struct ifnet *ifp = sc->sc_ifp;
896 
897 	if (sc->sc_tx_timer > 0) {
898 		if (--sc->sc_tx_timer == 0) {
899 			device_printf(sc->sc_dev, "watchdog timeout\n");
900 			/* upgt_init(ifp); XXX needs a process context ? */
901 			ifp->if_oerrors++;
902 			return;
903 		}
904 		callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
905 	}
906 }
907 
908 static uint32_t
909 upgt_mem_alloc(struct upgt_softc *sc)
910 {
911 	int i;
912 
913 	for (i = 0; i < sc->sc_memory.pages; i++) {
914 		if (sc->sc_memory.page[i].used == 0) {
915 			sc->sc_memory.page[i].used = 1;
916 			return (sc->sc_memory.page[i].addr);
917 		}
918 	}
919 
920 	return (0);
921 }
922 
923 static void
924 upgt_scan_start(struct ieee80211com *ic)
925 {
926 	/* do nothing.  */
927 }
928 
929 static void
930 upgt_scan_end(struct ieee80211com *ic)
931 {
932 	/* do nothing.  */
933 }
934 
935 static void
936 upgt_set_channel(struct ieee80211com *ic)
937 {
938 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
939 
940 	UPGT_LOCK(sc);
941 	upgt_set_chan(sc, ic->ic_curchan);
942 	UPGT_UNLOCK(sc);
943 }
944 
945 static void
946 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
947 {
948 	struct ifnet *ifp = sc->sc_ifp;
949 	struct ieee80211com *ic = ifp->if_l2com;
950 	struct upgt_data *data_cmd;
951 	struct upgt_lmac_mem *mem;
952 	struct upgt_lmac_channel *chan;
953 	int channel;
954 
955 	UPGT_ASSERT_LOCKED(sc);
956 
957 	channel = ieee80211_chan2ieee(ic, c);
958 	if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
959 		/* XXX should NEVER happen */
960 		device_printf(sc->sc_dev,
961 		    "%s: invalid channel %x\n", __func__, channel);
962 		return;
963 	}
964 
965 	DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
966 
967 	data_cmd = upgt_getbuf(sc);
968 	if (data_cmd == NULL) {
969 		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
970 		return;
971 	}
972 	/*
973 	 * Transmit the URB containing the CMD data.
974 	 */
975 	bzero(data_cmd->buf, MCLBYTES);
976 
977 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
978 	mem->addr = htole32(sc->sc_memaddr_frame_start +
979 	    UPGT_MEMSIZE_FRAME_HEAD);
980 
981 	chan = (struct upgt_lmac_channel *)(mem + 1);
982 
983 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
984 	chan->header1.type = UPGT_H1_TYPE_CTRL;
985 	chan->header1.len = htole16(
986 	    sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
987 
988 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
989 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
990 	chan->header2.flags = 0;
991 
992 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
993 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
994 	chan->freq6 = sc->sc_eeprom_freq6[channel];
995 	chan->settings = sc->sc_eeprom_freq6_settings;
996 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
997 
998 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
999 	    sizeof(chan->freq3_1));
1000 	bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1001 	    sizeof(sc->sc_eeprom_freq4[channel]));
1002 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1003 	    sizeof(chan->freq3_2));
1004 
1005 	data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1006 
1007 	mem->chksum = upgt_chksum_le((uint32_t *)chan,
1008 	    data_cmd->buflen - sizeof(*mem));
1009 
1010 	upgt_bulk_tx(sc, data_cmd);
1011 }
1012 
1013 static struct ieee80211vap *
1014 upgt_vap_create(struct ieee80211com *ic,
1015 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
1016 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1017 	const uint8_t mac[IEEE80211_ADDR_LEN])
1018 {
1019 	struct upgt_vap *uvp;
1020 	struct ieee80211vap *vap;
1021 
1022 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1023 		return NULL;
1024 	uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1025 	    M_80211_VAP, M_NOWAIT | M_ZERO);
1026 	if (uvp == NULL)
1027 		return NULL;
1028 	vap = &uvp->vap;
1029 	/* enable s/w bmiss handling for sta mode */
1030 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
1031 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1032 
1033 	/* override state transition machine */
1034 	uvp->newstate = vap->iv_newstate;
1035 	vap->iv_newstate = upgt_newstate;
1036 
1037 	/* setup device rates */
1038 	upgt_setup_rates(vap, ic);
1039 
1040 	/* complete setup */
1041 	ieee80211_vap_attach(vap, ieee80211_media_change,
1042 	    ieee80211_media_status);
1043 	ic->ic_opmode = opmode;
1044 	return vap;
1045 }
1046 
1047 static int
1048 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1049 {
1050 	struct upgt_vap *uvp = UPGT_VAP(vap);
1051 	struct ieee80211com *ic = vap->iv_ic;
1052 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1053 
1054 	/* do it in a process context */
1055 	sc->sc_state = nstate;
1056 
1057 	IEEE80211_UNLOCK(ic);
1058 	UPGT_LOCK(sc);
1059 	callout_stop(&sc->sc_led_ch);
1060 	callout_stop(&sc->sc_watchdog_ch);
1061 
1062 	switch (nstate) {
1063 	case IEEE80211_S_INIT:
1064 		/* do not accept any frames if the device is down */
1065 		(void)upgt_set_macfilter(sc, sc->sc_state);
1066 		upgt_set_led(sc, UPGT_LED_OFF);
1067 		break;
1068 	case IEEE80211_S_SCAN:
1069 		upgt_set_chan(sc, ic->ic_curchan);
1070 		break;
1071 	case IEEE80211_S_AUTH:
1072 		upgt_set_chan(sc, ic->ic_curchan);
1073 		break;
1074 	case IEEE80211_S_ASSOC:
1075 		break;
1076 	case IEEE80211_S_RUN:
1077 		upgt_set_macfilter(sc, sc->sc_state);
1078 		upgt_set_led(sc, UPGT_LED_ON);
1079 		break;
1080 	default:
1081 		break;
1082 	}
1083 	UPGT_UNLOCK(sc);
1084 	IEEE80211_LOCK(ic);
1085 	return (uvp->newstate(vap, nstate, arg));
1086 }
1087 
1088 static void
1089 upgt_vap_delete(struct ieee80211vap *vap)
1090 {
1091 	struct upgt_vap *uvp = UPGT_VAP(vap);
1092 
1093 	ieee80211_vap_detach(vap);
1094 	free(uvp, M_80211_VAP);
1095 }
1096 
1097 static void
1098 upgt_update_mcast(struct ifnet *ifp)
1099 {
1100 	struct upgt_softc *sc = ifp->if_softc;
1101 
1102 	upgt_set_multi(sc);
1103 }
1104 
1105 static int
1106 upgt_eeprom_parse(struct upgt_softc *sc)
1107 {
1108 	struct upgt_eeprom_header *eeprom_header;
1109 	struct upgt_eeprom_option *eeprom_option;
1110 	uint16_t option_len;
1111 	uint16_t option_type;
1112 	uint16_t preamble_len;
1113 	int option_end = 0;
1114 
1115 	/* calculate eeprom options start offset */
1116 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1117 	preamble_len = le16toh(eeprom_header->preamble_len);
1118 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1119 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1120 
1121 	while (!option_end) {
1122 		/* the eeprom option length is stored in words */
1123 		option_len =
1124 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1125 		option_type =
1126 		    le16toh(eeprom_option->type);
1127 
1128 		switch (option_type) {
1129 		case UPGT_EEPROM_TYPE_NAME:
1130 			DPRINTF(sc, UPGT_DEBUG_FW,
1131 			    "EEPROM name len=%d\n", option_len);
1132 			break;
1133 		case UPGT_EEPROM_TYPE_SERIAL:
1134 			DPRINTF(sc, UPGT_DEBUG_FW,
1135 			    "EEPROM serial len=%d\n", option_len);
1136 			break;
1137 		case UPGT_EEPROM_TYPE_MAC:
1138 			DPRINTF(sc, UPGT_DEBUG_FW,
1139 			    "EEPROM mac len=%d\n", option_len);
1140 
1141 			IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1142 			break;
1143 		case UPGT_EEPROM_TYPE_HWRX:
1144 			DPRINTF(sc, UPGT_DEBUG_FW,
1145 			    "EEPROM hwrx len=%d\n", option_len);
1146 
1147 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1148 			break;
1149 		case UPGT_EEPROM_TYPE_CHIP:
1150 			DPRINTF(sc, UPGT_DEBUG_FW,
1151 			    "EEPROM chip len=%d\n", option_len);
1152 			break;
1153 		case UPGT_EEPROM_TYPE_FREQ3:
1154 			DPRINTF(sc, UPGT_DEBUG_FW,
1155 			    "EEPROM freq3 len=%d\n", option_len);
1156 
1157 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1158 			    option_len);
1159 			break;
1160 		case UPGT_EEPROM_TYPE_FREQ4:
1161 			DPRINTF(sc, UPGT_DEBUG_FW,
1162 			    "EEPROM freq4 len=%d\n", option_len);
1163 
1164 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1165 			    option_len);
1166 			break;
1167 		case UPGT_EEPROM_TYPE_FREQ5:
1168 			DPRINTF(sc, UPGT_DEBUG_FW,
1169 			    "EEPROM freq5 len=%d\n", option_len);
1170 			break;
1171 		case UPGT_EEPROM_TYPE_FREQ6:
1172 			DPRINTF(sc, UPGT_DEBUG_FW,
1173 			    "EEPROM freq6 len=%d\n", option_len);
1174 
1175 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1176 			    option_len);
1177 			break;
1178 		case UPGT_EEPROM_TYPE_END:
1179 			DPRINTF(sc, UPGT_DEBUG_FW,
1180 			    "EEPROM end len=%d\n", option_len);
1181 			option_end = 1;
1182 			break;
1183 		case UPGT_EEPROM_TYPE_OFF:
1184 			DPRINTF(sc, UPGT_DEBUG_FW,
1185 			    "%s: EEPROM off without end option\n", __func__);
1186 			return (EIO);
1187 		default:
1188 			DPRINTF(sc, UPGT_DEBUG_FW,
1189 			    "EEPROM unknown type 0x%04x len=%d\n",
1190 			    option_type, option_len);
1191 			break;
1192 		}
1193 
1194 		/* jump to next EEPROM option */
1195 		eeprom_option = (struct upgt_eeprom_option *)
1196 		    (eeprom_option->data + option_len);
1197 	}
1198 
1199 	return (0);
1200 }
1201 
1202 static void
1203 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1204 {
1205 	struct upgt_eeprom_freq3_header *freq3_header;
1206 	struct upgt_lmac_freq3 *freq3;
1207 	int i, elements, flags;
1208 	unsigned channel;
1209 
1210 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1211 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1212 
1213 	flags = freq3_header->flags;
1214 	elements = freq3_header->elements;
1215 
1216 	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1217 	    flags, elements);
1218 
1219 	for (i = 0; i < elements; i++) {
1220 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1221 		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1222 			continue;
1223 
1224 		sc->sc_eeprom_freq3[channel] = freq3[i];
1225 
1226 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1227 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1228 	}
1229 }
1230 
1231 void
1232 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1233 {
1234 	struct upgt_eeprom_freq4_header *freq4_header;
1235 	struct upgt_eeprom_freq4_1 *freq4_1;
1236 	struct upgt_eeprom_freq4_2 *freq4_2;
1237 	int i, j, elements, settings, flags;
1238 	unsigned channel;
1239 
1240 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1241 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1242 	flags = freq4_header->flags;
1243 	elements = freq4_header->elements;
1244 	settings = freq4_header->settings;
1245 
1246 	/* we need this value later */
1247 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1248 
1249 	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1250 	    flags, elements, settings);
1251 
1252 	for (i = 0; i < elements; i++) {
1253 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1254 		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1255 			continue;
1256 
1257 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1258 		for (j = 0; j < settings; j++) {
1259 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1260 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1261 		}
1262 
1263 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1264 		    le16toh(freq4_1[i].freq), channel);
1265 	}
1266 }
1267 
1268 void
1269 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1270 {
1271 	struct upgt_lmac_freq6 *freq6;
1272 	int i, elements;
1273 	unsigned channel;
1274 
1275 	freq6 = (struct upgt_lmac_freq6 *)data;
1276 	elements = len / sizeof(struct upgt_lmac_freq6);
1277 
1278 	DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1279 
1280 	for (i = 0; i < elements; i++) {
1281 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1282 		if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1283 			continue;
1284 
1285 		sc->sc_eeprom_freq6[channel] = freq6[i];
1286 
1287 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1288 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1289 	}
1290 }
1291 
1292 static void
1293 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1294 {
1295 	struct upgt_eeprom_option_hwrx *option_hwrx;
1296 
1297 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1298 
1299 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1300 
1301 	DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1302 	    sc->sc_eeprom_hwrx);
1303 }
1304 
1305 static int
1306 upgt_eeprom_read(struct upgt_softc *sc)
1307 {
1308 	struct upgt_data *data_cmd;
1309 	struct upgt_lmac_mem *mem;
1310 	struct upgt_lmac_eeprom	*eeprom;
1311 	int block, error, offset;
1312 
1313 	UPGT_LOCK(sc);
1314 	usb_pause_mtx(&sc->sc_mtx, 100);
1315 
1316 	offset = 0;
1317 	block = UPGT_EEPROM_BLOCK_SIZE;
1318 	while (offset < UPGT_EEPROM_SIZE) {
1319 		DPRINTF(sc, UPGT_DEBUG_FW,
1320 		    "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1321 
1322 		data_cmd = upgt_getbuf(sc);
1323 		if (data_cmd == NULL) {
1324 			UPGT_UNLOCK(sc);
1325 			return (ENOBUFS);
1326 		}
1327 
1328 		/*
1329 		 * Transmit the URB containing the CMD data.
1330 		 */
1331 		bzero(data_cmd->buf, MCLBYTES);
1332 
1333 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
1334 		mem->addr = htole32(sc->sc_memaddr_frame_start +
1335 		    UPGT_MEMSIZE_FRAME_HEAD);
1336 
1337 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1338 		eeprom->header1.flags = 0;
1339 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1340 		eeprom->header1.len = htole16((
1341 		    sizeof(struct upgt_lmac_eeprom) -
1342 		    sizeof(struct upgt_lmac_header)) + block);
1343 
1344 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1345 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1346 		eeprom->header2.flags = 0;
1347 
1348 		eeprom->offset = htole16(offset);
1349 		eeprom->len = htole16(block);
1350 
1351 		data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1352 
1353 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1354 		    data_cmd->buflen - sizeof(*mem));
1355 		upgt_bulk_tx(sc, data_cmd);
1356 
1357 		error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1358 		if (error != 0) {
1359 			device_printf(sc->sc_dev,
1360 			    "timeout while waiting for EEPROM data\n");
1361 			UPGT_UNLOCK(sc);
1362 			return (EIO);
1363 		}
1364 
1365 		offset += block;
1366 		if (UPGT_EEPROM_SIZE - offset < block)
1367 			block = UPGT_EEPROM_SIZE - offset;
1368 	}
1369 
1370 	UPGT_UNLOCK(sc);
1371 	return (0);
1372 }
1373 
1374 /*
1375  * When a rx data came in the function returns a mbuf and a rssi values.
1376  */
1377 static struct mbuf *
1378 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1379 {
1380 	struct mbuf *m = NULL;
1381 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
1382 	struct upgt_lmac_header *header;
1383 	struct upgt_lmac_eeprom *eeprom;
1384 	uint8_t h1_type;
1385 	uint16_t h2_type;
1386 	int actlen, sumlen;
1387 
1388 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1389 
1390 	UPGT_ASSERT_LOCKED(sc);
1391 
1392 	if (actlen < 1)
1393 		return (NULL);
1394 
1395 	/* Check only at the very beginning.  */
1396 	if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1397 	    (memcmp(data->buf, "OK", 2) == 0)) {
1398 		sc->sc_flags |= UPGT_FLAG_FWLOADED;
1399 		wakeup_one(sc);
1400 		return (NULL);
1401 	}
1402 
1403 	if (actlen < UPGT_RX_MINSZ)
1404 		return (NULL);
1405 
1406 	/*
1407 	 * Check what type of frame came in.
1408 	 */
1409 	header = (struct upgt_lmac_header *)(data->buf + 4);
1410 
1411 	h1_type = header->header1.type;
1412 	h2_type = le16toh(header->header2.type);
1413 
1414 	if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1415 		eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1416 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1417 		uint16_t eeprom_len = le16toh(eeprom->len);
1418 
1419 		DPRINTF(sc, UPGT_DEBUG_FW,
1420 		    "received EEPROM block (offset=%d, len=%d)\n",
1421 		    eeprom_offset, eeprom_len);
1422 
1423 		bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1424 			sc->sc_eeprom + eeprom_offset, eeprom_len);
1425 
1426 		/* EEPROM data has arrived in time, wakeup.  */
1427 		wakeup(sc);
1428 	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1429 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1430 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1431 		    __func__);
1432 		upgt_tx_done(sc, data->buf + 4);
1433 	} else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1434 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1435 		DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1436 		    __func__);
1437 		m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1438 		    rssi);
1439 	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1440 	    h2_type == UPGT_H2_TYPE_STATS) {
1441 		DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1442 		    __func__);
1443 		/* TODO: what could we do with the statistic data? */
1444 	} else {
1445 		/* ignore unknown frame types */
1446 		DPRINTF(sc, UPGT_DEBUG_INTR,
1447 		    "received unknown frame type 0x%02x\n",
1448 		    header->header1.type);
1449 	}
1450 	return (m);
1451 }
1452 
1453 /*
1454  * The firmware awaits a checksum for each frame we send to it.
1455  * The algorithm used therefor is uncommon but somehow similar to CRC32.
1456  */
1457 static uint32_t
1458 upgt_chksum_le(const uint32_t *buf, size_t size)
1459 {
1460 	int i;
1461 	uint32_t crc = 0;
1462 
1463 	for (i = 0; i < size; i += sizeof(uint32_t)) {
1464 		crc = htole32(crc ^ *buf++);
1465 		crc = htole32((crc >> 5) ^ (crc << 3));
1466 	}
1467 
1468 	return (crc);
1469 }
1470 
1471 static struct mbuf *
1472 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1473 {
1474 	struct ifnet *ifp = sc->sc_ifp;
1475 	struct ieee80211com *ic = ifp->if_l2com;
1476 	struct upgt_lmac_rx_desc *rxdesc;
1477 	struct mbuf *m;
1478 
1479 	/*
1480 	 * don't pass packets to the ieee80211 framework if the driver isn't
1481 	 * RUNNING.
1482 	 */
1483 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1484 		return (NULL);
1485 
1486 	/* access RX packet descriptor */
1487 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1488 
1489 	/* create mbuf which is suitable for strict alignment archs */
1490 	KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1491 	    ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1492 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1493 	if (m == NULL) {
1494 		device_printf(sc->sc_dev, "could not create RX mbuf\n");
1495 		return (NULL);
1496 	}
1497 	m_adj(m, ETHER_ALIGN);
1498 	bcopy(rxdesc->data, mtod(m, char *), pkglen);
1499 	/* trim FCS */
1500 	m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1501 	m->m_pkthdr.rcvif = ifp;
1502 
1503 	if (ieee80211_radiotap_active(ic)) {
1504 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1505 
1506 		tap->wr_flags = 0;
1507 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1508 		tap->wr_antsignal = rxdesc->rssi;
1509 	}
1510 	ifp->if_ipackets++;
1511 
1512 	DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1513 	*rssi = rxdesc->rssi;
1514 	return (m);
1515 }
1516 
1517 static uint8_t
1518 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1519 {
1520 	struct ifnet *ifp = sc->sc_ifp;
1521 	struct ieee80211com *ic = ifp->if_l2com;
1522 	static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1523 	static const uint8_t ofdm_upgt2rate[12] =
1524 	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1525 
1526 	if (ic->ic_curmode == IEEE80211_MODE_11B &&
1527 	    !(rate < 0 || rate > 3))
1528 		return cck_upgt2rate[rate & 0xf];
1529 
1530 	if (ic->ic_curmode == IEEE80211_MODE_11G &&
1531 	    !(rate < 0 || rate > 11))
1532 		return ofdm_upgt2rate[rate & 0xf];
1533 
1534 	return (0);
1535 }
1536 
1537 static void
1538 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1539 {
1540 	struct ifnet *ifp = sc->sc_ifp;
1541 	struct upgt_lmac_tx_done_desc *desc;
1542 	int i, freed = 0;
1543 
1544 	UPGT_ASSERT_LOCKED(sc);
1545 
1546 	desc = (struct upgt_lmac_tx_done_desc *)data;
1547 
1548 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1549 		struct upgt_data *data_tx = &sc->sc_tx_data[i];
1550 
1551 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1552 			upgt_mem_free(sc, data_tx->addr);
1553 			data_tx->ni = NULL;
1554 			data_tx->addr = 0;
1555 			data_tx->m = NULL;
1556 			data_tx->use = 0;
1557 
1558 			DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1559 			    "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1560 			    le32toh(desc->header2.reqid),
1561 			    le16toh(desc->status), le16toh(desc->rssi));
1562 			DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1563 			    le16toh(desc->seq));
1564 
1565 			freed++;
1566 		}
1567 	}
1568 
1569 	if (freed != 0) {
1570 		sc->sc_tx_timer = 0;
1571 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1572 		UPGT_UNLOCK(sc);
1573 		upgt_start(ifp);
1574 		UPGT_LOCK(sc);
1575 	}
1576 }
1577 
1578 static void
1579 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1580 {
1581 	int i;
1582 
1583 	for (i = 0; i < sc->sc_memory.pages; i++) {
1584 		if (sc->sc_memory.page[i].addr == addr) {
1585 			sc->sc_memory.page[i].used = 0;
1586 			return;
1587 		}
1588 	}
1589 
1590 	device_printf(sc->sc_dev,
1591 	    "could not free memory address 0x%08x\n", addr);
1592 }
1593 
1594 static int
1595 upgt_fw_load(struct upgt_softc *sc)
1596 {
1597 	const struct firmware *fw;
1598 	struct upgt_data *data_cmd;
1599 	struct upgt_fw_x2_header *x2;
1600 	char start_fwload_cmd[] = { 0x3c, 0x0d };
1601 	int error = 0, offset, bsize, n;
1602 	uint32_t crc32;
1603 
1604 	fw = firmware_get(upgt_fwname);
1605 	if (fw == NULL) {
1606 		device_printf(sc->sc_dev, "could not read microcode %s\n",
1607 		    upgt_fwname);
1608 		return (EIO);
1609 	}
1610 
1611 	UPGT_LOCK(sc);
1612 
1613 	/* send firmware start load command */
1614 	data_cmd = upgt_getbuf(sc);
1615 	if (data_cmd == NULL) {
1616 		error = ENOBUFS;
1617 		goto fail;
1618 	}
1619 	data_cmd->buflen = sizeof(start_fwload_cmd);
1620 	bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1621 	upgt_bulk_tx(sc, data_cmd);
1622 
1623 	/* send X2 header */
1624 	data_cmd = upgt_getbuf(sc);
1625 	if (data_cmd == NULL) {
1626 		error = ENOBUFS;
1627 		goto fail;
1628 	}
1629 	data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1630 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1631 	bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1632 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1633 	x2->len = htole32(fw->datasize);
1634 	x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1635 	    UPGT_X2_SIGNATURE_SIZE,
1636 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1637 	    sizeof(uint32_t));
1638 	upgt_bulk_tx(sc, data_cmd);
1639 
1640 	/* download firmware */
1641 	for (offset = 0; offset < fw->datasize; offset += bsize) {
1642 		if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1643 			bsize = UPGT_FW_BLOCK_SIZE;
1644 		else
1645 			bsize = fw->datasize - offset;
1646 
1647 		data_cmd = upgt_getbuf(sc);
1648 		if (data_cmd == NULL) {
1649 			error = ENOBUFS;
1650 			goto fail;
1651 		}
1652 		n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1653 		    data_cmd->buf, bsize);
1654 		data_cmd->buflen = bsize;
1655 		upgt_bulk_tx(sc, data_cmd);
1656 
1657 		DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1658 		    offset, n, bsize);
1659 		bsize = n;
1660 	}
1661 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1662 
1663 	/* load firmware */
1664 	data_cmd = upgt_getbuf(sc);
1665 	if (data_cmd == NULL) {
1666 		error = ENOBUFS;
1667 		goto fail;
1668 	}
1669 	crc32 = upgt_crc32_le(fw->data, fw->datasize);
1670 	*((uint32_t *)(data_cmd->buf)    ) = crc32;
1671 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1672 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1673 	data_cmd->buflen = 6;
1674 	upgt_bulk_tx(sc, data_cmd);
1675 
1676 	/* waiting 'OK' response.  */
1677 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1678 	error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1679 	if (error != 0) {
1680 		device_printf(sc->sc_dev, "firmware load failed\n");
1681 		error = EIO;
1682 	}
1683 
1684 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1685 fail:
1686 	UPGT_UNLOCK(sc);
1687 	firmware_put(fw, FIRMWARE_UNLOAD);
1688 	return (error);
1689 }
1690 
1691 static uint32_t
1692 upgt_crc32_le(const void *buf, size_t size)
1693 {
1694 	uint32_t crc;
1695 
1696 	crc = ether_crc32_le(buf, size);
1697 
1698 	/* apply final XOR value as common for CRC-32 */
1699 	crc = htole32(crc ^ 0xffffffffU);
1700 
1701 	return (crc);
1702 }
1703 
1704 /*
1705  * While copying the version 2 firmware, we need to replace two characters:
1706  *
1707  * 0x7e -> 0x7d 0x5e
1708  * 0x7d -> 0x7d 0x5d
1709  */
1710 static int
1711 upgt_fw_copy(const uint8_t *src, char *dst, int size)
1712 {
1713 	int i, j;
1714 
1715 	for (i = 0, j = 0; i < size && j < size; i++) {
1716 		switch (src[i]) {
1717 		case 0x7e:
1718 			dst[j] = 0x7d;
1719 			j++;
1720 			dst[j] = 0x5e;
1721 			j++;
1722 			break;
1723 		case 0x7d:
1724 			dst[j] = 0x7d;
1725 			j++;
1726 			dst[j] = 0x5d;
1727 			j++;
1728 			break;
1729 		default:
1730 			dst[j] = src[i];
1731 			j++;
1732 			break;
1733 		}
1734 	}
1735 
1736 	return (i);
1737 }
1738 
1739 static int
1740 upgt_mem_init(struct upgt_softc *sc)
1741 {
1742 	int i;
1743 
1744 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1745 		sc->sc_memory.page[i].used = 0;
1746 
1747 		if (i == 0) {
1748 			/*
1749 			 * The first memory page is always reserved for
1750 			 * command data.
1751 			 */
1752 			sc->sc_memory.page[i].addr =
1753 			    sc->sc_memaddr_frame_start + MCLBYTES;
1754 		} else {
1755 			sc->sc_memory.page[i].addr =
1756 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
1757 		}
1758 
1759 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
1760 		    sc->sc_memaddr_frame_end)
1761 			break;
1762 
1763 		DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1764 		    i, sc->sc_memory.page[i].addr);
1765 	}
1766 
1767 	sc->sc_memory.pages = i;
1768 
1769 	DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1770 	return (0);
1771 }
1772 
1773 static int
1774 upgt_fw_verify(struct upgt_softc *sc)
1775 {
1776 	const struct firmware *fw;
1777 	const struct upgt_fw_bra_option *bra_opt;
1778 	const struct upgt_fw_bra_descr *descr;
1779 	const uint8_t *p;
1780 	const uint32_t *uc;
1781 	uint32_t bra_option_type, bra_option_len;
1782 	int offset, bra_end = 0, error = 0;
1783 
1784 	fw = firmware_get(upgt_fwname);
1785 	if (fw == NULL) {
1786 		device_printf(sc->sc_dev, "could not read microcode %s\n",
1787 		    upgt_fwname);
1788 		return EIO;
1789 	}
1790 
1791 	/*
1792 	 * Seek to beginning of Boot Record Area (BRA).
1793 	 */
1794 	for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1795 		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1796 		if (*uc == 0)
1797 			break;
1798 	}
1799 	for (; offset < fw->datasize; offset += sizeof(*uc)) {
1800 		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1801 		if (*uc != 0)
1802 			break;
1803 	}
1804 	if (offset == fw->datasize) {
1805 		device_printf(sc->sc_dev,
1806 		    "firmware Boot Record Area not found\n");
1807 		error = EIO;
1808 		goto fail;
1809 	}
1810 
1811 	DPRINTF(sc, UPGT_DEBUG_FW,
1812 	    "firmware Boot Record Area found at offset %d\n", offset);
1813 
1814 	/*
1815 	 * Parse Boot Record Area (BRA) options.
1816 	 */
1817 	while (offset < fw->datasize && bra_end == 0) {
1818 		/* get current BRA option */
1819 		p = (const uint8_t *)fw->data + offset;
1820 		bra_opt = (const struct upgt_fw_bra_option *)p;
1821 		bra_option_type = le32toh(bra_opt->type);
1822 		bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1823 
1824 		switch (bra_option_type) {
1825 		case UPGT_BRA_TYPE_FW:
1826 			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1827 			    bra_option_len);
1828 
1829 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1830 				device_printf(sc->sc_dev,
1831 				    "wrong UPGT_BRA_TYPE_FW len\n");
1832 				error = EIO;
1833 				goto fail;
1834 			}
1835 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1836 			    bra_option_len) == 0) {
1837 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
1838 				break;
1839 			}
1840 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1841 			    bra_option_len) == 0) {
1842 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
1843 				break;
1844 			}
1845 			device_printf(sc->sc_dev,
1846 			    "unsupported firmware type\n");
1847 			error = EIO;
1848 			goto fail;
1849 		case UPGT_BRA_TYPE_VERSION:
1850 			DPRINTF(sc, UPGT_DEBUG_FW,
1851 			    "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1852 			break;
1853 		case UPGT_BRA_TYPE_DEPIF:
1854 			DPRINTF(sc, UPGT_DEBUG_FW,
1855 			    "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1856 			break;
1857 		case UPGT_BRA_TYPE_EXPIF:
1858 			DPRINTF(sc, UPGT_DEBUG_FW,
1859 			    "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1860 			break;
1861 		case UPGT_BRA_TYPE_DESCR:
1862 			DPRINTF(sc, UPGT_DEBUG_FW,
1863 			    "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1864 
1865 			descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1866 
1867 			sc->sc_memaddr_frame_start =
1868 			    le32toh(descr->memaddr_space_start);
1869 			sc->sc_memaddr_frame_end =
1870 			    le32toh(descr->memaddr_space_end);
1871 
1872 			DPRINTF(sc, UPGT_DEBUG_FW,
1873 			    "memory address space start=0x%08x\n",
1874 			    sc->sc_memaddr_frame_start);
1875 			DPRINTF(sc, UPGT_DEBUG_FW,
1876 			    "memory address space end=0x%08x\n",
1877 			    sc->sc_memaddr_frame_end);
1878 			break;
1879 		case UPGT_BRA_TYPE_END:
1880 			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1881 			    bra_option_len);
1882 			bra_end = 1;
1883 			break;
1884 		default:
1885 			DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1886 			    bra_option_len);
1887 			error = EIO;
1888 			goto fail;
1889 		}
1890 
1891 		/* jump to next BRA option */
1892 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1893 	}
1894 
1895 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1896 fail:
1897 	firmware_put(fw, FIRMWARE_UNLOAD);
1898 	return (error);
1899 }
1900 
1901 static void
1902 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1903 {
1904 
1905 	UPGT_ASSERT_LOCKED(sc);
1906 
1907 	STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1908 	UPGT_STAT_INC(sc, st_tx_pending);
1909 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1910 }
1911 
1912 static int
1913 upgt_device_reset(struct upgt_softc *sc)
1914 {
1915 	struct upgt_data *data;
1916 	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1917 
1918 	UPGT_LOCK(sc);
1919 
1920 	data = upgt_getbuf(sc);
1921 	if (data == NULL) {
1922 		UPGT_UNLOCK(sc);
1923 		return (ENOBUFS);
1924 	}
1925 	bcopy(init_cmd, data->buf, sizeof(init_cmd));
1926 	data->buflen = sizeof(init_cmd);
1927 	upgt_bulk_tx(sc, data);
1928 	usb_pause_mtx(&sc->sc_mtx, 100);
1929 
1930 	UPGT_UNLOCK(sc);
1931 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1932 	return (0);
1933 }
1934 
1935 static int
1936 upgt_alloc_tx(struct upgt_softc *sc)
1937 {
1938 	int i;
1939 
1940 	STAILQ_INIT(&sc->sc_tx_active);
1941 	STAILQ_INIT(&sc->sc_tx_inactive);
1942 	STAILQ_INIT(&sc->sc_tx_pending);
1943 
1944 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1945 		struct upgt_data *data = &sc->sc_tx_data[i];
1946 
1947 		data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1948 		if (data->buf == NULL) {
1949 			device_printf(sc->sc_dev,
1950 			    "could not allocate TX buffer\n");
1951 			return (ENOMEM);
1952 		}
1953 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1954 		UPGT_STAT_INC(sc, st_tx_inactive);
1955 	}
1956 
1957 	return (0);
1958 }
1959 
1960 static int
1961 upgt_alloc_rx(struct upgt_softc *sc)
1962 {
1963 	int i;
1964 
1965 	STAILQ_INIT(&sc->sc_rx_active);
1966 	STAILQ_INIT(&sc->sc_rx_inactive);
1967 
1968 	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1969 		struct upgt_data *data = &sc->sc_rx_data[i];
1970 
1971 		data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1972 		if (data->buf == NULL) {
1973 			device_printf(sc->sc_dev,
1974 			    "could not allocate RX buffer\n");
1975 			return (ENOMEM);
1976 		}
1977 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1978 	}
1979 
1980 	return (0);
1981 }
1982 
1983 static int
1984 upgt_detach(device_t dev)
1985 {
1986 	struct upgt_softc *sc = device_get_softc(dev);
1987 	struct ifnet *ifp = sc->sc_ifp;
1988 	struct ieee80211com *ic = ifp->if_l2com;
1989 
1990 	if (!device_is_attached(dev))
1991 		return 0;
1992 
1993 	upgt_stop(sc);
1994 
1995 	callout_drain(&sc->sc_led_ch);
1996 	callout_drain(&sc->sc_watchdog_ch);
1997 
1998 	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
1999 	ieee80211_ifdetach(ic);
2000 	upgt_free_rx(sc);
2001 	upgt_free_tx(sc);
2002 
2003 	if_free(ifp);
2004 	mtx_destroy(&sc->sc_mtx);
2005 
2006 	return (0);
2007 }
2008 
2009 static void
2010 upgt_free_rx(struct upgt_softc *sc)
2011 {
2012 	int i;
2013 
2014 	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2015 		struct upgt_data *data = &sc->sc_rx_data[i];
2016 
2017 		free(data->buf, M_USBDEV);
2018 		data->ni = NULL;
2019 	}
2020 }
2021 
2022 static void
2023 upgt_free_tx(struct upgt_softc *sc)
2024 {
2025 	int i;
2026 
2027 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2028 		struct upgt_data *data = &sc->sc_tx_data[i];
2029 
2030 		free(data->buf, M_USBDEV);
2031 		data->ni = NULL;
2032 	}
2033 }
2034 
2035 static void
2036 upgt_abort_xfers_locked(struct upgt_softc *sc)
2037 {
2038 	int i;
2039 
2040 	UPGT_ASSERT_LOCKED(sc);
2041 	/* abort any pending transfers */
2042 	for (i = 0; i < UPGT_N_XFERS; i++)
2043 		usbd_transfer_stop(sc->sc_xfer[i]);
2044 }
2045 
2046 static void
2047 upgt_abort_xfers(struct upgt_softc *sc)
2048 {
2049 
2050 	UPGT_LOCK(sc);
2051 	upgt_abort_xfers_locked(sc);
2052 	UPGT_UNLOCK(sc);
2053 }
2054 
2055 #define	UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2056 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2057 
2058 static void
2059 upgt_sysctl_node(struct upgt_softc *sc)
2060 {
2061 	struct sysctl_ctx_list *ctx;
2062 	struct sysctl_oid_list *child;
2063 	struct sysctl_oid *tree;
2064 	struct upgt_stat *stats;
2065 
2066 	stats = &sc->sc_stat;
2067 	ctx = device_get_sysctl_ctx(sc->sc_dev);
2068 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2069 
2070 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2071 	    NULL, "UPGT statistics");
2072 	child = SYSCTL_CHILDREN(tree);
2073 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2074 	    &stats->st_tx_active, "Active numbers in TX queue");
2075 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2076 	    &stats->st_tx_inactive, "Inactive numbers in TX queue");
2077 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2078 	    &stats->st_tx_pending, "Pending numbers in TX queue");
2079 }
2080 
2081 #undef UPGT_SYSCTL_STAT_ADD32
2082 
2083 static struct upgt_data *
2084 _upgt_getbuf(struct upgt_softc *sc)
2085 {
2086 	struct upgt_data *bf;
2087 
2088 	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2089 	if (bf != NULL) {
2090 		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2091 		UPGT_STAT_DEC(sc, st_tx_inactive);
2092 	} else
2093 		bf = NULL;
2094 	if (bf == NULL)
2095 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2096 		    "out of xmit buffers");
2097 	return (bf);
2098 }
2099 
2100 static struct upgt_data *
2101 upgt_getbuf(struct upgt_softc *sc)
2102 {
2103 	struct upgt_data *bf;
2104 
2105 	UPGT_ASSERT_LOCKED(sc);
2106 
2107 	bf = _upgt_getbuf(sc);
2108 	if (bf == NULL) {
2109 		struct ifnet *ifp = sc->sc_ifp;
2110 
2111 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2112 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2113 	}
2114 
2115 	return (bf);
2116 }
2117 
2118 static struct upgt_data *
2119 upgt_gettxbuf(struct upgt_softc *sc)
2120 {
2121 	struct upgt_data *bf;
2122 
2123 	UPGT_ASSERT_LOCKED(sc);
2124 
2125 	bf = upgt_getbuf(sc);
2126 	if (bf == NULL)
2127 		return (NULL);
2128 
2129 	bf->addr = upgt_mem_alloc(sc);
2130 	if (bf->addr == 0) {
2131 		struct ifnet *ifp = sc->sc_ifp;
2132 
2133 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2134 		    __func__);
2135 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2136 		UPGT_STAT_INC(sc, st_tx_inactive);
2137 		if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2138 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2139 		return (NULL);
2140 	}
2141 	return (bf);
2142 }
2143 
2144 static int
2145 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2146     struct upgt_data *data)
2147 {
2148 	struct ieee80211vap *vap = ni->ni_vap;
2149 	int error = 0, len;
2150 	struct ieee80211_frame *wh;
2151 	struct ieee80211_key *k;
2152 	struct ifnet *ifp = sc->sc_ifp;
2153 	struct upgt_lmac_mem *mem;
2154 	struct upgt_lmac_tx_desc *txdesc;
2155 
2156 	UPGT_ASSERT_LOCKED(sc);
2157 
2158 	upgt_set_led(sc, UPGT_LED_BLINK);
2159 
2160 	/*
2161 	 * Software crypto.
2162 	 */
2163 	wh = mtod(m, struct ieee80211_frame *);
2164 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2165 		k = ieee80211_crypto_encap(ni, m);
2166 		if (k == NULL) {
2167 			device_printf(sc->sc_dev,
2168 			    "ieee80211_crypto_encap returns NULL.\n");
2169 			error = EIO;
2170 			goto done;
2171 		}
2172 
2173 		/* in case packet header moved, reset pointer */
2174 		wh = mtod(m, struct ieee80211_frame *);
2175 	}
2176 
2177 	/* Transmit the URB containing the TX data.  */
2178 	bzero(data->buf, MCLBYTES);
2179 	mem = (struct upgt_lmac_mem *)data->buf;
2180 	mem->addr = htole32(data->addr);
2181 	txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2182 
2183 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2184 	    IEEE80211_FC0_TYPE_MGT) {
2185 		/* mgmt frames  */
2186 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2187 		/* always send mgmt frames at lowest rate (DS1) */
2188 		memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2189 	} else {
2190 		/* data frames  */
2191 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2192 		bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2193 	}
2194 	txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2195 	txdesc->header1.len = htole16(m->m_pkthdr.len);
2196 	txdesc->header2.reqid = htole32(data->addr);
2197 	txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2198 	txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2199 	txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2200 	txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2201 
2202 	if (ieee80211_radiotap_active_vap(vap)) {
2203 		struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2204 
2205 		tap->wt_flags = 0;
2206 		tap->wt_rate = 0;	/* XXX where to get from? */
2207 
2208 		ieee80211_radiotap_tx(vap, m);
2209 	}
2210 
2211 	/* copy frame below our TX descriptor header */
2212 	m_copydata(m, 0, m->m_pkthdr.len,
2213 	    data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2214 	/* calculate frame size */
2215 	len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2216 	/* we need to align the frame to a 4 byte boundary */
2217 	len = (len + 3) & ~3;
2218 	/* calculate frame checksum */
2219 	mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2220 	data->ni = ni;
2221 	data->m = m;
2222 	data->buflen = len;
2223 
2224 	DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2225 	    __func__, len);
2226 	KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2227 
2228 	upgt_bulk_tx(sc, data);
2229 done:
2230 	/*
2231 	 * If we don't regulary read the device statistics, the RX queue
2232 	 * will stall.  It's strange, but it works, so we keep reading
2233 	 * the statistics here.  *shrug*
2234 	 */
2235 	if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2236 		upgt_get_stats(sc);
2237 
2238 	return (error);
2239 }
2240 
2241 static void
2242 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2243 {
2244 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2245 	struct ifnet *ifp = sc->sc_ifp;
2246 	struct ieee80211com *ic = ifp->if_l2com;
2247 	struct ieee80211_frame *wh;
2248 	struct ieee80211_node *ni;
2249 	struct mbuf *m = NULL;
2250 	struct upgt_data *data;
2251 	int8_t nf;
2252 	int rssi = -1;
2253 
2254 	UPGT_ASSERT_LOCKED(sc);
2255 
2256 	switch (USB_GET_STATE(xfer)) {
2257 	case USB_ST_TRANSFERRED:
2258 		data = STAILQ_FIRST(&sc->sc_rx_active);
2259 		if (data == NULL)
2260 			goto setup;
2261 		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2262 		m = upgt_rxeof(xfer, data, &rssi);
2263 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2264 		/* FALLTHROUGH */
2265 	case USB_ST_SETUP:
2266 setup:
2267 		data = STAILQ_FIRST(&sc->sc_rx_inactive);
2268 		if (data == NULL)
2269 			return;
2270 		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2271 		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2272 		usbd_xfer_set_frame_data(xfer, 0, data->buf,
2273 		    usbd_xfer_max_len(xfer));
2274 		usbd_transfer_submit(xfer);
2275 
2276 		/*
2277 		 * To avoid LOR we should unlock our private mutex here to call
2278 		 * ieee80211_input() because here is at the end of a USB
2279 		 * callback and safe to unlock.
2280 		 */
2281 		UPGT_UNLOCK(sc);
2282 		if (m != NULL) {
2283 			wh = mtod(m, struct ieee80211_frame *);
2284 			ni = ieee80211_find_rxnode(ic,
2285 			    (struct ieee80211_frame_min *)wh);
2286 			nf = -95;	/* XXX */
2287 			if (ni != NULL) {
2288 				(void) ieee80211_input(ni, m, rssi, nf);
2289 				/* node is no longer needed */
2290 				ieee80211_free_node(ni);
2291 			} else
2292 				(void) ieee80211_input_all(ic, m, rssi, nf);
2293 			m = NULL;
2294 		}
2295 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2296 		    !IFQ_IS_EMPTY(&ifp->if_snd))
2297 			upgt_start(ifp);
2298 		UPGT_LOCK(sc);
2299 		break;
2300 	default:
2301 		/* needs it to the inactive queue due to a error.  */
2302 		data = STAILQ_FIRST(&sc->sc_rx_active);
2303 		if (data != NULL) {
2304 			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2305 			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2306 		}
2307 		if (error != USB_ERR_CANCELLED) {
2308 			usbd_xfer_set_stall(xfer);
2309 			ifp->if_ierrors++;
2310 			goto setup;
2311 		}
2312 		break;
2313 	}
2314 }
2315 
2316 static void
2317 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2318 {
2319 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2320 	struct ifnet *ifp = sc->sc_ifp;
2321 	struct upgt_data *data;
2322 
2323 	UPGT_ASSERT_LOCKED(sc);
2324 	switch (USB_GET_STATE(xfer)) {
2325 	case USB_ST_TRANSFERRED:
2326 		data = STAILQ_FIRST(&sc->sc_tx_active);
2327 		if (data == NULL)
2328 			goto setup;
2329 		STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2330 		UPGT_STAT_DEC(sc, st_tx_active);
2331 		upgt_txeof(xfer, data);
2332 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2333 		UPGT_STAT_INC(sc, st_tx_inactive);
2334 		/* FALLTHROUGH */
2335 	case USB_ST_SETUP:
2336 setup:
2337 		data = STAILQ_FIRST(&sc->sc_tx_pending);
2338 		if (data == NULL) {
2339 			DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2340 			    __func__);
2341 			return;
2342 		}
2343 		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2344 		UPGT_STAT_DEC(sc, st_tx_pending);
2345 		STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2346 		UPGT_STAT_INC(sc, st_tx_active);
2347 
2348 		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2349 		usbd_transfer_submit(xfer);
2350 		UPGT_UNLOCK(sc);
2351 		upgt_start(ifp);
2352 		UPGT_LOCK(sc);
2353 		break;
2354 	default:
2355 		data = STAILQ_FIRST(&sc->sc_tx_active);
2356 		if (data == NULL)
2357 			goto setup;
2358 		if (data->ni != NULL) {
2359 			ieee80211_free_node(data->ni);
2360 			data->ni = NULL;
2361 			ifp->if_oerrors++;
2362 		}
2363 		if (error != USB_ERR_CANCELLED) {
2364 			usbd_xfer_set_stall(xfer);
2365 			goto setup;
2366 		}
2367 		break;
2368 	}
2369 }
2370 
2371 static device_method_t upgt_methods[] = {
2372         /* Device interface */
2373         DEVMETHOD(device_probe, upgt_match),
2374         DEVMETHOD(device_attach, upgt_attach),
2375         DEVMETHOD(device_detach, upgt_detach),
2376 
2377 	{ 0, 0 }
2378 };
2379 
2380 static driver_t upgt_driver = {
2381         "upgt",
2382         upgt_methods,
2383         sizeof(struct upgt_softc)
2384 };
2385 
2386 static devclass_t upgt_devclass;
2387 
2388 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2389 MODULE_VERSION(if_upgt, 1);
2390 MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2391 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2392 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);
2393