1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 /* $FreeBSD$ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/param.h> 21 #include <sys/systm.h> 22 #include <sys/kernel.h> 23 #include <sys/endian.h> 24 #include <sys/firmware.h> 25 #include <sys/linker.h> 26 #include <sys/mbuf.h> 27 #include <sys/malloc.h> 28 #include <sys/module.h> 29 #include <sys/socket.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 33 #include <net/if.h> 34 #include <net/if_var.h> 35 #include <net/if_arp.h> 36 #include <net/ethernet.h> 37 #include <net/if_dl.h> 38 #include <net/if_media.h> 39 #include <net/if_types.h> 40 41 #include <sys/bus.h> 42 #include <machine/bus.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_phy.h> 46 #include <net80211/ieee80211_radiotap.h> 47 #include <net80211/ieee80211_regdomain.h> 48 49 #include <net/bpf.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include "usbdevs.h" 54 55 #include <dev/usb/wlan/if_upgtvar.h> 56 57 /* 58 * Driver for the USB PrismGT devices. 59 * 60 * For now just USB 2.0 devices with the GW3887 chipset are supported. 61 * The driver has been written based on the firmware version 2.13.1.0_LM87. 62 * 63 * TODO's: 64 * - MONITOR mode test. 65 * - Add HOSTAP mode. 66 * - Add IBSS mode. 67 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 68 * 69 * Parts of this driver has been influenced by reading the p54u driver 70 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 71 * Sebastien Bourdeauducq <lekernel@prism54.org>. 72 */ 73 74 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, 75 "USB PrismGT GW3887 driver parameters"); 76 77 #ifdef UPGT_DEBUG 78 int upgt_debug = 0; 79 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug, 80 0, "control debugging printfs"); 81 enum { 82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 90 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 91 UPGT_DEBUG_ANY = 0xffffffff 92 }; 93 #define DPRINTF(sc, m, fmt, ...) do { \ 94 if (sc->sc_debug & (m)) \ 95 printf(fmt, __VA_ARGS__); \ 96 } while (0) 97 #else 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 (void) sc; \ 100 } while (0) 101 #endif 102 103 /* 104 * Prototypes. 105 */ 106 static device_probe_t upgt_match; 107 static device_attach_t upgt_attach; 108 static device_detach_t upgt_detach; 109 static int upgt_alloc_tx(struct upgt_softc *); 110 static int upgt_alloc_rx(struct upgt_softc *); 111 static int upgt_device_reset(struct upgt_softc *); 112 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 113 static int upgt_fw_verify(struct upgt_softc *); 114 static int upgt_mem_init(struct upgt_softc *); 115 static int upgt_fw_load(struct upgt_softc *); 116 static int upgt_fw_copy(const uint8_t *, char *, int); 117 static uint32_t upgt_crc32_le(const void *, size_t); 118 static struct mbuf * 119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 120 static struct mbuf * 121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 122 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 123 static int upgt_eeprom_read(struct upgt_softc *); 124 static int upgt_eeprom_parse(struct upgt_softc *); 125 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 126 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 127 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 129 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 130 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 131 static void upgt_init(struct upgt_softc *); 132 static void upgt_parent(struct ieee80211com *); 133 static int upgt_transmit(struct ieee80211com *, struct mbuf *); 134 static void upgt_start(struct upgt_softc *); 135 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static void upgt_scan_start(struct ieee80211com *); 138 static void upgt_scan_end(struct ieee80211com *); 139 static void upgt_set_channel(struct ieee80211com *); 140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void upgt_vap_delete(struct ieee80211vap *); 145 static void upgt_update_mcast(struct ieee80211com *); 146 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 147 static void upgt_set_multi(void *); 148 static void upgt_stop(struct upgt_softc *); 149 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 150 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 151 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 152 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 153 static void upgt_set_led(struct upgt_softc *, int); 154 static void upgt_set_led_blink(void *); 155 static void upgt_get_stats(struct upgt_softc *); 156 static void upgt_mem_free(struct upgt_softc *, uint32_t); 157 static uint32_t upgt_mem_alloc(struct upgt_softc *); 158 static void upgt_free_tx(struct upgt_softc *); 159 static void upgt_free_rx(struct upgt_softc *); 160 static void upgt_watchdog(void *); 161 static void upgt_abort_xfers(struct upgt_softc *); 162 static void upgt_abort_xfers_locked(struct upgt_softc *); 163 static void upgt_sysctl_node(struct upgt_softc *); 164 static struct upgt_data * 165 upgt_getbuf(struct upgt_softc *); 166 static struct upgt_data * 167 upgt_gettxbuf(struct upgt_softc *); 168 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 169 struct ieee80211_node *, struct upgt_data *); 170 171 static const char *upgt_fwname = "upgt-gw3887"; 172 173 static const STRUCT_USB_HOST_ID upgt_devs[] = { 174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 175 /* version 2 devices */ 176 UPGT_DEV(ACCTON, PRISM_GT), 177 UPGT_DEV(BELKIN, F5D7050), 178 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 179 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 180 UPGT_DEV(DELL, PRISM_GT_1), 181 UPGT_DEV(DELL, PRISM_GT_2), 182 UPGT_DEV(FSC, E5400), 183 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 185 UPGT_DEV(NETGEAR, WG111V1_2), 186 UPGT_DEV(INTERSIL, PRISM_GT), 187 UPGT_DEV(SMC, 2862WG), 188 UPGT_DEV(USR, USR5422), 189 UPGT_DEV(WISTRONNEWEB, UR045G), 190 UPGT_DEV(XYRATEX, PRISM_GT_1), 191 UPGT_DEV(XYRATEX, PRISM_GT_2), 192 UPGT_DEV(ZCOM, XG703A), 193 UPGT_DEV(ZCOM, XM142) 194 }; 195 196 static usb_callback_t upgt_bulk_rx_callback; 197 static usb_callback_t upgt_bulk_tx_callback; 198 199 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 200 [UPGT_BULK_TX] = { 201 .type = UE_BULK, 202 .endpoint = UE_ADDR_ANY, 203 .direction = UE_DIR_OUT, 204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 205 .flags = { 206 .force_short_xfer = 1, 207 .pipe_bof = 1 208 }, 209 .callback = upgt_bulk_tx_callback, 210 .timeout = UPGT_USB_TIMEOUT, /* ms */ 211 }, 212 [UPGT_BULK_RX] = { 213 .type = UE_BULK, 214 .endpoint = UE_ADDR_ANY, 215 .direction = UE_DIR_IN, 216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 217 .flags = { 218 .pipe_bof = 1, 219 .short_xfer_ok = 1 220 }, 221 .callback = upgt_bulk_rx_callback, 222 }, 223 }; 224 225 static int 226 upgt_match(device_t dev) 227 { 228 struct usb_attach_arg *uaa = device_get_ivars(dev); 229 230 if (uaa->usb_mode != USB_MODE_HOST) 231 return (ENXIO); 232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 233 return (ENXIO); 234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 235 return (ENXIO); 236 237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 238 } 239 240 static int 241 upgt_attach(device_t dev) 242 { 243 struct upgt_softc *sc = device_get_softc(dev); 244 struct ieee80211com *ic = &sc->sc_ic; 245 struct usb_attach_arg *uaa = device_get_ivars(dev); 246 uint8_t bands, iface_index = UPGT_IFACE_INDEX; 247 int error; 248 249 sc->sc_dev = dev; 250 sc->sc_udev = uaa->device; 251 #ifdef UPGT_DEBUG 252 sc->sc_debug = upgt_debug; 253 #endif 254 device_set_usb_desc(dev); 255 256 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 257 MTX_DEF); 258 callout_init(&sc->sc_led_ch, 0); 259 callout_init(&sc->sc_watchdog_ch, 0); 260 mbufq_init(&sc->sc_snd, ifqmaxlen); 261 262 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 263 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 264 if (error) { 265 device_printf(dev, "could not allocate USB transfers, " 266 "err=%s\n", usbd_errstr(error)); 267 goto fail1; 268 } 269 270 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 271 sc->sc_xfer[UPGT_BULK_RX], 0); 272 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 273 sc->sc_xfer[UPGT_BULK_TX], 0); 274 275 /* Setup TX and RX buffers */ 276 error = upgt_alloc_tx(sc); 277 if (error) 278 goto fail2; 279 error = upgt_alloc_rx(sc); 280 if (error) 281 goto fail3; 282 283 /* Initialize the device. */ 284 error = upgt_device_reset(sc); 285 if (error) 286 goto fail4; 287 /* Verify the firmware. */ 288 error = upgt_fw_verify(sc); 289 if (error) 290 goto fail4; 291 /* Calculate device memory space. */ 292 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 293 device_printf(dev, 294 "could not find memory space addresses on FW\n"); 295 error = EIO; 296 goto fail4; 297 } 298 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 299 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 300 301 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 302 sc->sc_memaddr_frame_start); 303 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 304 sc->sc_memaddr_frame_end); 305 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 306 sc->sc_memaddr_rx_start); 307 308 upgt_mem_init(sc); 309 310 /* Load the firmware. */ 311 error = upgt_fw_load(sc); 312 if (error) 313 goto fail4; 314 315 /* Read the whole EEPROM content and parse it. */ 316 error = upgt_eeprom_read(sc); 317 if (error) 318 goto fail4; 319 error = upgt_eeprom_parse(sc); 320 if (error) 321 goto fail4; 322 323 /* all works related with the device have done here. */ 324 upgt_abort_xfers(sc); 325 326 ic->ic_softc = sc; 327 ic->ic_name = device_get_nameunit(dev); 328 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 329 ic->ic_opmode = IEEE80211_M_STA; 330 /* set device capabilities */ 331 ic->ic_caps = 332 IEEE80211_C_STA /* station mode */ 333 | IEEE80211_C_MONITOR /* monitor mode */ 334 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 335 | IEEE80211_C_SHSLOT /* short slot time supported */ 336 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 337 | IEEE80211_C_WPA /* 802.11i */ 338 ; 339 340 bands = 0; 341 setbit(&bands, IEEE80211_MODE_11B); 342 setbit(&bands, IEEE80211_MODE_11G); 343 ieee80211_init_channels(ic, NULL, &bands); 344 345 ieee80211_ifattach(ic); 346 ic->ic_raw_xmit = upgt_raw_xmit; 347 ic->ic_scan_start = upgt_scan_start; 348 ic->ic_scan_end = upgt_scan_end; 349 ic->ic_set_channel = upgt_set_channel; 350 ic->ic_vap_create = upgt_vap_create; 351 ic->ic_vap_delete = upgt_vap_delete; 352 ic->ic_update_mcast = upgt_update_mcast; 353 ic->ic_transmit = upgt_transmit; 354 ic->ic_parent = upgt_parent; 355 356 ieee80211_radiotap_attach(ic, 357 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 358 UPGT_TX_RADIOTAP_PRESENT, 359 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 360 UPGT_RX_RADIOTAP_PRESENT); 361 362 upgt_sysctl_node(sc); 363 364 if (bootverbose) 365 ieee80211_announce(ic); 366 367 return (0); 368 369 fail4: upgt_free_rx(sc); 370 fail3: upgt_free_tx(sc); 371 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 372 fail1: mtx_destroy(&sc->sc_mtx); 373 374 return (error); 375 } 376 377 static void 378 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 379 { 380 381 if (data->m) { 382 /* XXX status? */ 383 ieee80211_tx_complete(data->ni, data->m, 0); 384 data->m = NULL; 385 data->ni = NULL; 386 } 387 } 388 389 static void 390 upgt_get_stats(struct upgt_softc *sc) 391 { 392 struct upgt_data *data_cmd; 393 struct upgt_lmac_mem *mem; 394 struct upgt_lmac_stats *stats; 395 396 data_cmd = upgt_getbuf(sc); 397 if (data_cmd == NULL) { 398 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 399 return; 400 } 401 402 /* 403 * Transmit the URB containing the CMD data. 404 */ 405 memset(data_cmd->buf, 0, MCLBYTES); 406 407 mem = (struct upgt_lmac_mem *)data_cmd->buf; 408 mem->addr = htole32(sc->sc_memaddr_frame_start + 409 UPGT_MEMSIZE_FRAME_HEAD); 410 411 stats = (struct upgt_lmac_stats *)(mem + 1); 412 413 stats->header1.flags = 0; 414 stats->header1.type = UPGT_H1_TYPE_CTRL; 415 stats->header1.len = htole16( 416 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 417 418 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 419 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 420 stats->header2.flags = 0; 421 422 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 423 424 mem->chksum = upgt_chksum_le((uint32_t *)stats, 425 data_cmd->buflen - sizeof(*mem)); 426 427 upgt_bulk_tx(sc, data_cmd); 428 } 429 430 static void 431 upgt_parent(struct ieee80211com *ic) 432 { 433 struct upgt_softc *sc = ic->ic_softc; 434 int startall = 0; 435 436 UPGT_LOCK(sc); 437 if (sc->sc_flags & UPGT_FLAG_DETACHED) { 438 UPGT_UNLOCK(sc); 439 return; 440 } 441 if (ic->ic_nrunning > 0) { 442 if (sc->sc_flags & UPGT_FLAG_INITDONE) { 443 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0) 444 upgt_set_multi(sc); 445 } else { 446 upgt_init(sc); 447 startall = 1; 448 } 449 } else if (sc->sc_flags & UPGT_FLAG_INITDONE) 450 upgt_stop(sc); 451 UPGT_UNLOCK(sc); 452 if (startall) 453 ieee80211_start_all(ic); 454 } 455 456 static void 457 upgt_stop(struct upgt_softc *sc) 458 { 459 460 UPGT_ASSERT_LOCKED(sc); 461 462 if (sc->sc_flags & UPGT_FLAG_INITDONE) 463 upgt_set_macfilter(sc, IEEE80211_S_INIT); 464 upgt_abort_xfers_locked(sc); 465 /* device down */ 466 sc->sc_tx_timer = 0; 467 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 468 } 469 470 static void 471 upgt_set_led(struct upgt_softc *sc, int action) 472 { 473 struct upgt_data *data_cmd; 474 struct upgt_lmac_mem *mem; 475 struct upgt_lmac_led *led; 476 477 data_cmd = upgt_getbuf(sc); 478 if (data_cmd == NULL) { 479 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 480 return; 481 } 482 483 /* 484 * Transmit the URB containing the CMD data. 485 */ 486 memset(data_cmd->buf, 0, MCLBYTES); 487 488 mem = (struct upgt_lmac_mem *)data_cmd->buf; 489 mem->addr = htole32(sc->sc_memaddr_frame_start + 490 UPGT_MEMSIZE_FRAME_HEAD); 491 492 led = (struct upgt_lmac_led *)(mem + 1); 493 494 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 495 led->header1.type = UPGT_H1_TYPE_CTRL; 496 led->header1.len = htole16( 497 sizeof(struct upgt_lmac_led) - 498 sizeof(struct upgt_lmac_header)); 499 500 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 501 led->header2.type = htole16(UPGT_H2_TYPE_LED); 502 led->header2.flags = 0; 503 504 switch (action) { 505 case UPGT_LED_OFF: 506 led->mode = htole16(UPGT_LED_MODE_SET); 507 led->action_fix = 0; 508 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 509 led->action_tmp_dur = 0; 510 break; 511 case UPGT_LED_ON: 512 led->mode = htole16(UPGT_LED_MODE_SET); 513 led->action_fix = 0; 514 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 515 led->action_tmp_dur = 0; 516 break; 517 case UPGT_LED_BLINK: 518 if (sc->sc_state != IEEE80211_S_RUN) { 519 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 520 return; 521 } 522 if (sc->sc_led_blink) { 523 /* previous blink was not finished */ 524 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 525 return; 526 } 527 led->mode = htole16(UPGT_LED_MODE_SET); 528 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 529 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 530 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 531 /* lock blink */ 532 sc->sc_led_blink = 1; 533 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 534 break; 535 default: 536 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 537 return; 538 } 539 540 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 541 542 mem->chksum = upgt_chksum_le((uint32_t *)led, 543 data_cmd->buflen - sizeof(*mem)); 544 545 upgt_bulk_tx(sc, data_cmd); 546 } 547 548 static void 549 upgt_set_led_blink(void *arg) 550 { 551 struct upgt_softc *sc = arg; 552 553 /* blink finished, we are ready for a next one */ 554 sc->sc_led_blink = 0; 555 } 556 557 static void 558 upgt_init(struct upgt_softc *sc) 559 { 560 561 UPGT_ASSERT_LOCKED(sc); 562 563 if (sc->sc_flags & UPGT_FLAG_INITDONE) 564 upgt_stop(sc); 565 566 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 567 568 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 569 570 sc->sc_flags |= UPGT_FLAG_INITDONE; 571 572 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 573 } 574 575 static int 576 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 577 { 578 struct ieee80211com *ic = &sc->sc_ic; 579 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 580 struct ieee80211_node *ni; 581 struct upgt_data *data_cmd; 582 struct upgt_lmac_mem *mem; 583 struct upgt_lmac_filter *filter; 584 585 UPGT_ASSERT_LOCKED(sc); 586 587 data_cmd = upgt_getbuf(sc); 588 if (data_cmd == NULL) { 589 device_printf(sc->sc_dev, "out of TX buffers.\n"); 590 return (ENOBUFS); 591 } 592 593 /* 594 * Transmit the URB containing the CMD data. 595 */ 596 memset(data_cmd->buf, 0, MCLBYTES); 597 598 mem = (struct upgt_lmac_mem *)data_cmd->buf; 599 mem->addr = htole32(sc->sc_memaddr_frame_start + 600 UPGT_MEMSIZE_FRAME_HEAD); 601 602 filter = (struct upgt_lmac_filter *)(mem + 1); 603 604 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 605 filter->header1.type = UPGT_H1_TYPE_CTRL; 606 filter->header1.len = htole16( 607 sizeof(struct upgt_lmac_filter) - 608 sizeof(struct upgt_lmac_header)); 609 610 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 611 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 612 filter->header2.flags = 0; 613 614 switch (state) { 615 case IEEE80211_S_INIT: 616 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 617 __func__); 618 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 619 break; 620 case IEEE80211_S_SCAN: 621 DPRINTF(sc, UPGT_DEBUG_STATE, 622 "set MAC filter to SCAN (bssid %s)\n", 623 ether_sprintf(ieee80211broadcastaddr)); 624 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 625 IEEE80211_ADDR_COPY(filter->dst, 626 vap ? vap->iv_myaddr : ic->ic_macaddr); 627 IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr); 628 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 629 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 630 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 631 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 632 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 633 break; 634 case IEEE80211_S_RUN: 635 ni = ieee80211_ref_node(vap->iv_bss); 636 /* XXX monitor mode isn't tested yet. */ 637 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 638 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 639 IEEE80211_ADDR_COPY(filter->dst, 640 vap ? vap->iv_myaddr : ic->ic_macaddr); 641 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 642 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 643 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 644 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 645 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 646 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 647 } else { 648 DPRINTF(sc, UPGT_DEBUG_STATE, 649 "set MAC filter to RUN (bssid %s)\n", 650 ether_sprintf(ni->ni_bssid)); 651 filter->type = htole16(UPGT_FILTER_TYPE_STA); 652 IEEE80211_ADDR_COPY(filter->dst, 653 vap ? vap->iv_myaddr : ic->ic_macaddr); 654 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 655 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 656 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 657 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 658 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 659 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 660 } 661 ieee80211_free_node(ni); 662 break; 663 default: 664 device_printf(sc->sc_dev, 665 "MAC filter does not know that state\n"); 666 break; 667 } 668 669 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 670 671 mem->chksum = upgt_chksum_le((uint32_t *)filter, 672 data_cmd->buflen - sizeof(*mem)); 673 674 upgt_bulk_tx(sc, data_cmd); 675 676 return (0); 677 } 678 679 static void 680 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 681 { 682 struct upgt_softc *sc = ic->ic_softc; 683 const struct ieee80211_txparam *tp; 684 685 /* 686 * 0x01 = OFMD6 0x10 = DS1 687 * 0x04 = OFDM9 0x11 = DS2 688 * 0x06 = OFDM12 0x12 = DS5 689 * 0x07 = OFDM18 0x13 = DS11 690 * 0x08 = OFDM24 691 * 0x09 = OFDM36 692 * 0x0a = OFDM48 693 * 0x0b = OFDM54 694 */ 695 const uint8_t rateset_auto_11b[] = 696 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 697 const uint8_t rateset_auto_11g[] = 698 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 699 const uint8_t rateset_fix_11bg[] = 700 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 701 0x08, 0x09, 0x0a, 0x0b }; 702 703 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 704 705 /* XXX */ 706 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 707 /* 708 * Automatic rate control is done by the device. 709 * We just pass the rateset from which the device 710 * will pickup a rate. 711 */ 712 if (ic->ic_curmode == IEEE80211_MODE_11B) 713 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 714 sizeof(sc->sc_cur_rateset)); 715 if (ic->ic_curmode == IEEE80211_MODE_11G || 716 ic->ic_curmode == IEEE80211_MODE_AUTO) 717 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 718 sizeof(sc->sc_cur_rateset)); 719 } else { 720 /* set a fixed rate */ 721 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 722 sizeof(sc->sc_cur_rateset)); 723 } 724 } 725 726 static void 727 upgt_set_multi(void *arg) 728 { 729 730 /* XXX don't know how to set a device. Lack of docs. */ 731 } 732 733 static int 734 upgt_transmit(struct ieee80211com *ic, struct mbuf *m) 735 { 736 struct upgt_softc *sc = ic->ic_softc; 737 int error; 738 739 UPGT_LOCK(sc); 740 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) { 741 UPGT_UNLOCK(sc); 742 return (ENXIO); 743 } 744 error = mbufq_enqueue(&sc->sc_snd, m); 745 if (error) { 746 UPGT_UNLOCK(sc); 747 return (error); 748 } 749 upgt_start(sc); 750 UPGT_UNLOCK(sc); 751 752 return (0); 753 } 754 755 static void 756 upgt_start(struct upgt_softc *sc) 757 { 758 struct upgt_data *data_tx; 759 struct ieee80211_node *ni; 760 struct mbuf *m; 761 762 UPGT_ASSERT_LOCKED(sc); 763 764 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) 765 return; 766 767 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 768 data_tx = upgt_gettxbuf(sc); 769 if (data_tx == NULL) { 770 mbufq_prepend(&sc->sc_snd, m); 771 break; 772 } 773 774 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 775 m->m_pkthdr.rcvif = NULL; 776 777 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 778 if_inc_counter(ni->ni_vap->iv_ifp, 779 IFCOUNTER_OERRORS, 1); 780 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 781 UPGT_STAT_INC(sc, st_tx_inactive); 782 ieee80211_free_node(ni); 783 continue; 784 } 785 sc->sc_tx_timer = 5; 786 } 787 } 788 789 static int 790 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 791 const struct ieee80211_bpf_params *params) 792 { 793 struct ieee80211com *ic = ni->ni_ic; 794 struct upgt_softc *sc = ic->ic_softc; 795 struct upgt_data *data_tx = NULL; 796 797 UPGT_LOCK(sc); 798 /* prevent management frames from being sent if we're not ready */ 799 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) { 800 m_freem(m); 801 ieee80211_free_node(ni); 802 UPGT_UNLOCK(sc); 803 return ENETDOWN; 804 } 805 806 data_tx = upgt_gettxbuf(sc); 807 if (data_tx == NULL) { 808 ieee80211_free_node(ni); 809 m_freem(m); 810 UPGT_UNLOCK(sc); 811 return (ENOBUFS); 812 } 813 814 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 815 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 816 UPGT_STAT_INC(sc, st_tx_inactive); 817 ieee80211_free_node(ni); 818 UPGT_UNLOCK(sc); 819 return (EIO); 820 } 821 UPGT_UNLOCK(sc); 822 823 sc->sc_tx_timer = 5; 824 return (0); 825 } 826 827 static void 828 upgt_watchdog(void *arg) 829 { 830 struct upgt_softc *sc = arg; 831 struct ieee80211com *ic = &sc->sc_ic; 832 833 if (sc->sc_tx_timer > 0) { 834 if (--sc->sc_tx_timer == 0) { 835 device_printf(sc->sc_dev, "watchdog timeout\n"); 836 /* upgt_init(sc); XXX needs a process context ? */ 837 counter_u64_add(ic->ic_oerrors, 1); 838 return; 839 } 840 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 841 } 842 } 843 844 static uint32_t 845 upgt_mem_alloc(struct upgt_softc *sc) 846 { 847 int i; 848 849 for (i = 0; i < sc->sc_memory.pages; i++) { 850 if (sc->sc_memory.page[i].used == 0) { 851 sc->sc_memory.page[i].used = 1; 852 return (sc->sc_memory.page[i].addr); 853 } 854 } 855 856 return (0); 857 } 858 859 static void 860 upgt_scan_start(struct ieee80211com *ic) 861 { 862 /* do nothing. */ 863 } 864 865 static void 866 upgt_scan_end(struct ieee80211com *ic) 867 { 868 /* do nothing. */ 869 } 870 871 static void 872 upgt_set_channel(struct ieee80211com *ic) 873 { 874 struct upgt_softc *sc = ic->ic_softc; 875 876 UPGT_LOCK(sc); 877 upgt_set_chan(sc, ic->ic_curchan); 878 UPGT_UNLOCK(sc); 879 } 880 881 static void 882 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 883 { 884 struct ieee80211com *ic = &sc->sc_ic; 885 struct upgt_data *data_cmd; 886 struct upgt_lmac_mem *mem; 887 struct upgt_lmac_channel *chan; 888 int channel; 889 890 UPGT_ASSERT_LOCKED(sc); 891 892 channel = ieee80211_chan2ieee(ic, c); 893 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 894 /* XXX should NEVER happen */ 895 device_printf(sc->sc_dev, 896 "%s: invalid channel %x\n", __func__, channel); 897 return; 898 } 899 900 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 901 902 data_cmd = upgt_getbuf(sc); 903 if (data_cmd == NULL) { 904 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 905 return; 906 } 907 /* 908 * Transmit the URB containing the CMD data. 909 */ 910 memset(data_cmd->buf, 0, MCLBYTES); 911 912 mem = (struct upgt_lmac_mem *)data_cmd->buf; 913 mem->addr = htole32(sc->sc_memaddr_frame_start + 914 UPGT_MEMSIZE_FRAME_HEAD); 915 916 chan = (struct upgt_lmac_channel *)(mem + 1); 917 918 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 919 chan->header1.type = UPGT_H1_TYPE_CTRL; 920 chan->header1.len = htole16( 921 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 922 923 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 924 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 925 chan->header2.flags = 0; 926 927 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 928 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 929 chan->freq6 = sc->sc_eeprom_freq6[channel]; 930 chan->settings = sc->sc_eeprom_freq6_settings; 931 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 932 933 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 934 sizeof(chan->freq3_1)); 935 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 936 sizeof(sc->sc_eeprom_freq4[channel])); 937 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 938 sizeof(chan->freq3_2)); 939 940 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 941 942 mem->chksum = upgt_chksum_le((uint32_t *)chan, 943 data_cmd->buflen - sizeof(*mem)); 944 945 upgt_bulk_tx(sc, data_cmd); 946 } 947 948 static struct ieee80211vap * 949 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 950 enum ieee80211_opmode opmode, int flags, 951 const uint8_t bssid[IEEE80211_ADDR_LEN], 952 const uint8_t mac[IEEE80211_ADDR_LEN]) 953 { 954 struct upgt_vap *uvp; 955 struct ieee80211vap *vap; 956 957 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 958 return NULL; 959 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap), 960 M_80211_VAP, M_NOWAIT | M_ZERO); 961 if (uvp == NULL) 962 return NULL; 963 vap = &uvp->vap; 964 /* enable s/w bmiss handling for sta mode */ 965 966 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 967 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 968 /* out of memory */ 969 free(uvp, M_80211_VAP); 970 return (NULL); 971 } 972 973 /* override state transition machine */ 974 uvp->newstate = vap->iv_newstate; 975 vap->iv_newstate = upgt_newstate; 976 977 /* setup device rates */ 978 upgt_setup_rates(vap, ic); 979 980 /* complete setup */ 981 ieee80211_vap_attach(vap, ieee80211_media_change, 982 ieee80211_media_status, mac); 983 ic->ic_opmode = opmode; 984 return vap; 985 } 986 987 static int 988 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 989 { 990 struct upgt_vap *uvp = UPGT_VAP(vap); 991 struct ieee80211com *ic = vap->iv_ic; 992 struct upgt_softc *sc = ic->ic_softc; 993 994 /* do it in a process context */ 995 sc->sc_state = nstate; 996 997 IEEE80211_UNLOCK(ic); 998 UPGT_LOCK(sc); 999 callout_stop(&sc->sc_led_ch); 1000 callout_stop(&sc->sc_watchdog_ch); 1001 1002 switch (nstate) { 1003 case IEEE80211_S_INIT: 1004 /* do not accept any frames if the device is down */ 1005 (void)upgt_set_macfilter(sc, sc->sc_state); 1006 upgt_set_led(sc, UPGT_LED_OFF); 1007 break; 1008 case IEEE80211_S_SCAN: 1009 upgt_set_chan(sc, ic->ic_curchan); 1010 break; 1011 case IEEE80211_S_AUTH: 1012 upgt_set_chan(sc, ic->ic_curchan); 1013 break; 1014 case IEEE80211_S_ASSOC: 1015 break; 1016 case IEEE80211_S_RUN: 1017 upgt_set_macfilter(sc, sc->sc_state); 1018 upgt_set_led(sc, UPGT_LED_ON); 1019 break; 1020 default: 1021 break; 1022 } 1023 UPGT_UNLOCK(sc); 1024 IEEE80211_LOCK(ic); 1025 return (uvp->newstate(vap, nstate, arg)); 1026 } 1027 1028 static void 1029 upgt_vap_delete(struct ieee80211vap *vap) 1030 { 1031 struct upgt_vap *uvp = UPGT_VAP(vap); 1032 1033 ieee80211_vap_detach(vap); 1034 free(uvp, M_80211_VAP); 1035 } 1036 1037 static void 1038 upgt_update_mcast(struct ieee80211com *ic) 1039 { 1040 struct upgt_softc *sc = ic->ic_softc; 1041 1042 upgt_set_multi(sc); 1043 } 1044 1045 static int 1046 upgt_eeprom_parse(struct upgt_softc *sc) 1047 { 1048 struct ieee80211com *ic = &sc->sc_ic; 1049 struct upgt_eeprom_header *eeprom_header; 1050 struct upgt_eeprom_option *eeprom_option; 1051 uint16_t option_len; 1052 uint16_t option_type; 1053 uint16_t preamble_len; 1054 int option_end = 0; 1055 1056 /* calculate eeprom options start offset */ 1057 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1058 preamble_len = le16toh(eeprom_header->preamble_len); 1059 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1060 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1061 1062 while (!option_end) { 1063 1064 /* sanity check */ 1065 if (eeprom_option >= (struct upgt_eeprom_option *) 1066 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { 1067 return (EINVAL); 1068 } 1069 1070 /* the eeprom option length is stored in words */ 1071 option_len = 1072 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1073 option_type = 1074 le16toh(eeprom_option->type); 1075 1076 /* sanity check */ 1077 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) 1078 return (EINVAL); 1079 1080 switch (option_type) { 1081 case UPGT_EEPROM_TYPE_NAME: 1082 DPRINTF(sc, UPGT_DEBUG_FW, 1083 "EEPROM name len=%d\n", option_len); 1084 break; 1085 case UPGT_EEPROM_TYPE_SERIAL: 1086 DPRINTF(sc, UPGT_DEBUG_FW, 1087 "EEPROM serial len=%d\n", option_len); 1088 break; 1089 case UPGT_EEPROM_TYPE_MAC: 1090 DPRINTF(sc, UPGT_DEBUG_FW, 1091 "EEPROM mac len=%d\n", option_len); 1092 1093 IEEE80211_ADDR_COPY(ic->ic_macaddr, 1094 eeprom_option->data); 1095 break; 1096 case UPGT_EEPROM_TYPE_HWRX: 1097 DPRINTF(sc, UPGT_DEBUG_FW, 1098 "EEPROM hwrx len=%d\n", option_len); 1099 1100 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1101 break; 1102 case UPGT_EEPROM_TYPE_CHIP: 1103 DPRINTF(sc, UPGT_DEBUG_FW, 1104 "EEPROM chip len=%d\n", option_len); 1105 break; 1106 case UPGT_EEPROM_TYPE_FREQ3: 1107 DPRINTF(sc, UPGT_DEBUG_FW, 1108 "EEPROM freq3 len=%d\n", option_len); 1109 1110 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1111 option_len); 1112 break; 1113 case UPGT_EEPROM_TYPE_FREQ4: 1114 DPRINTF(sc, UPGT_DEBUG_FW, 1115 "EEPROM freq4 len=%d\n", option_len); 1116 1117 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1118 option_len); 1119 break; 1120 case UPGT_EEPROM_TYPE_FREQ5: 1121 DPRINTF(sc, UPGT_DEBUG_FW, 1122 "EEPROM freq5 len=%d\n", option_len); 1123 break; 1124 case UPGT_EEPROM_TYPE_FREQ6: 1125 DPRINTF(sc, UPGT_DEBUG_FW, 1126 "EEPROM freq6 len=%d\n", option_len); 1127 1128 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1129 option_len); 1130 break; 1131 case UPGT_EEPROM_TYPE_END: 1132 DPRINTF(sc, UPGT_DEBUG_FW, 1133 "EEPROM end len=%d\n", option_len); 1134 option_end = 1; 1135 break; 1136 case UPGT_EEPROM_TYPE_OFF: 1137 DPRINTF(sc, UPGT_DEBUG_FW, 1138 "%s: EEPROM off without end option\n", __func__); 1139 return (EIO); 1140 default: 1141 DPRINTF(sc, UPGT_DEBUG_FW, 1142 "EEPROM unknown type 0x%04x len=%d\n", 1143 option_type, option_len); 1144 break; 1145 } 1146 1147 /* jump to next EEPROM option */ 1148 eeprom_option = (struct upgt_eeprom_option *) 1149 (eeprom_option->data + option_len); 1150 } 1151 return (0); 1152 } 1153 1154 static void 1155 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1156 { 1157 struct upgt_eeprom_freq3_header *freq3_header; 1158 struct upgt_lmac_freq3 *freq3; 1159 int i; 1160 int elements; 1161 int flags; 1162 unsigned channel; 1163 1164 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1165 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1166 1167 flags = freq3_header->flags; 1168 elements = freq3_header->elements; 1169 1170 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1171 flags, elements); 1172 1173 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) 1174 return; 1175 1176 for (i = 0; i < elements; i++) { 1177 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1178 if (channel >= IEEE80211_CHAN_MAX) 1179 continue; 1180 1181 sc->sc_eeprom_freq3[channel] = freq3[i]; 1182 1183 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1184 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1185 } 1186 } 1187 1188 void 1189 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1190 { 1191 struct upgt_eeprom_freq4_header *freq4_header; 1192 struct upgt_eeprom_freq4_1 *freq4_1; 1193 struct upgt_eeprom_freq4_2 *freq4_2; 1194 int i; 1195 int j; 1196 int elements; 1197 int settings; 1198 int flags; 1199 unsigned channel; 1200 1201 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1202 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1203 flags = freq4_header->flags; 1204 elements = freq4_header->elements; 1205 settings = freq4_header->settings; 1206 1207 /* we need this value later */ 1208 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1209 1210 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1211 flags, elements, settings); 1212 1213 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) 1214 return; 1215 1216 for (i = 0; i < elements; i++) { 1217 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1218 if (channel >= IEEE80211_CHAN_MAX) 1219 continue; 1220 1221 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1222 for (j = 0; j < settings; j++) { 1223 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1224 sc->sc_eeprom_freq4[channel][j].pad = 0; 1225 } 1226 1227 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1228 le16toh(freq4_1[i].freq), channel); 1229 } 1230 } 1231 1232 void 1233 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1234 { 1235 struct upgt_lmac_freq6 *freq6; 1236 int i; 1237 int elements; 1238 unsigned channel; 1239 1240 freq6 = (struct upgt_lmac_freq6 *)data; 1241 elements = len / sizeof(struct upgt_lmac_freq6); 1242 1243 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1244 1245 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) 1246 return; 1247 1248 for (i = 0; i < elements; i++) { 1249 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1250 if (channel >= IEEE80211_CHAN_MAX) 1251 continue; 1252 1253 sc->sc_eeprom_freq6[channel] = freq6[i]; 1254 1255 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1256 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1257 } 1258 } 1259 1260 static void 1261 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1262 { 1263 struct upgt_eeprom_option_hwrx *option_hwrx; 1264 1265 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1266 1267 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1268 1269 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1270 sc->sc_eeprom_hwrx); 1271 } 1272 1273 static int 1274 upgt_eeprom_read(struct upgt_softc *sc) 1275 { 1276 struct upgt_data *data_cmd; 1277 struct upgt_lmac_mem *mem; 1278 struct upgt_lmac_eeprom *eeprom; 1279 int block, error, offset; 1280 1281 UPGT_LOCK(sc); 1282 usb_pause_mtx(&sc->sc_mtx, 100); 1283 1284 offset = 0; 1285 block = UPGT_EEPROM_BLOCK_SIZE; 1286 while (offset < UPGT_EEPROM_SIZE) { 1287 DPRINTF(sc, UPGT_DEBUG_FW, 1288 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1289 1290 data_cmd = upgt_getbuf(sc); 1291 if (data_cmd == NULL) { 1292 UPGT_UNLOCK(sc); 1293 return (ENOBUFS); 1294 } 1295 1296 /* 1297 * Transmit the URB containing the CMD data. 1298 */ 1299 memset(data_cmd->buf, 0, MCLBYTES); 1300 1301 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1302 mem->addr = htole32(sc->sc_memaddr_frame_start + 1303 UPGT_MEMSIZE_FRAME_HEAD); 1304 1305 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1306 eeprom->header1.flags = 0; 1307 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1308 eeprom->header1.len = htole16(( 1309 sizeof(struct upgt_lmac_eeprom) - 1310 sizeof(struct upgt_lmac_header)) + block); 1311 1312 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1313 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1314 eeprom->header2.flags = 0; 1315 1316 eeprom->offset = htole16(offset); 1317 eeprom->len = htole16(block); 1318 1319 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1320 1321 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1322 data_cmd->buflen - sizeof(*mem)); 1323 upgt_bulk_tx(sc, data_cmd); 1324 1325 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1326 if (error != 0) { 1327 device_printf(sc->sc_dev, 1328 "timeout while waiting for EEPROM data\n"); 1329 UPGT_UNLOCK(sc); 1330 return (EIO); 1331 } 1332 1333 offset += block; 1334 if (UPGT_EEPROM_SIZE - offset < block) 1335 block = UPGT_EEPROM_SIZE - offset; 1336 } 1337 1338 UPGT_UNLOCK(sc); 1339 return (0); 1340 } 1341 1342 /* 1343 * When a rx data came in the function returns a mbuf and a rssi values. 1344 */ 1345 static struct mbuf * 1346 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1347 { 1348 struct mbuf *m = NULL; 1349 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1350 struct upgt_lmac_header *header; 1351 struct upgt_lmac_eeprom *eeprom; 1352 uint8_t h1_type; 1353 uint16_t h2_type; 1354 int actlen, sumlen; 1355 1356 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1357 1358 UPGT_ASSERT_LOCKED(sc); 1359 1360 if (actlen < 1) 1361 return (NULL); 1362 1363 /* Check only at the very beginning. */ 1364 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1365 (memcmp(data->buf, "OK", 2) == 0)) { 1366 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1367 wakeup_one(sc); 1368 return (NULL); 1369 } 1370 1371 if (actlen < (int)UPGT_RX_MINSZ) 1372 return (NULL); 1373 1374 /* 1375 * Check what type of frame came in. 1376 */ 1377 header = (struct upgt_lmac_header *)(data->buf + 4); 1378 1379 h1_type = header->header1.type; 1380 h2_type = le16toh(header->header2.type); 1381 1382 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1383 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1384 uint16_t eeprom_offset = le16toh(eeprom->offset); 1385 uint16_t eeprom_len = le16toh(eeprom->len); 1386 1387 DPRINTF(sc, UPGT_DEBUG_FW, 1388 "received EEPROM block (offset=%d, len=%d)\n", 1389 eeprom_offset, eeprom_len); 1390 1391 memcpy(sc->sc_eeprom + eeprom_offset, 1392 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1393 eeprom_len); 1394 1395 /* EEPROM data has arrived in time, wakeup. */ 1396 wakeup(sc); 1397 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1398 h2_type == UPGT_H2_TYPE_TX_DONE) { 1399 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1400 __func__); 1401 upgt_tx_done(sc, data->buf + 4); 1402 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1403 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1404 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1405 __func__); 1406 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1407 rssi); 1408 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1409 h2_type == UPGT_H2_TYPE_STATS) { 1410 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1411 __func__); 1412 /* TODO: what could we do with the statistic data? */ 1413 } else { 1414 /* ignore unknown frame types */ 1415 DPRINTF(sc, UPGT_DEBUG_INTR, 1416 "received unknown frame type 0x%02x\n", 1417 header->header1.type); 1418 } 1419 return (m); 1420 } 1421 1422 /* 1423 * The firmware awaits a checksum for each frame we send to it. 1424 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1425 */ 1426 static uint32_t 1427 upgt_chksum_le(const uint32_t *buf, size_t size) 1428 { 1429 size_t i; 1430 uint32_t crc = 0; 1431 1432 for (i = 0; i < size; i += sizeof(uint32_t)) { 1433 crc = htole32(crc ^ *buf++); 1434 crc = htole32((crc >> 5) ^ (crc << 3)); 1435 } 1436 1437 return (crc); 1438 } 1439 1440 static struct mbuf * 1441 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1442 { 1443 struct ieee80211com *ic = &sc->sc_ic; 1444 struct upgt_lmac_rx_desc *rxdesc; 1445 struct mbuf *m; 1446 1447 /* 1448 * don't pass packets to the ieee80211 framework if the driver isn't 1449 * RUNNING. 1450 */ 1451 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) 1452 return (NULL); 1453 1454 /* access RX packet descriptor */ 1455 rxdesc = (struct upgt_lmac_rx_desc *)data; 1456 1457 /* create mbuf which is suitable for strict alignment archs */ 1458 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1459 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1460 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1461 if (m == NULL) { 1462 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1463 return (NULL); 1464 } 1465 m_adj(m, ETHER_ALIGN); 1466 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1467 /* trim FCS */ 1468 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1469 1470 if (ieee80211_radiotap_active(ic)) { 1471 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1472 1473 tap->wr_flags = 0; 1474 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1475 tap->wr_antsignal = rxdesc->rssi; 1476 } 1477 1478 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1479 *rssi = rxdesc->rssi; 1480 return (m); 1481 } 1482 1483 static uint8_t 1484 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1485 { 1486 struct ieee80211com *ic = &sc->sc_ic; 1487 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1488 static const uint8_t ofdm_upgt2rate[12] = 1489 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1490 1491 if (ic->ic_curmode == IEEE80211_MODE_11B && 1492 !(rate < 0 || rate > 3)) 1493 return cck_upgt2rate[rate & 0xf]; 1494 1495 if (ic->ic_curmode == IEEE80211_MODE_11G && 1496 !(rate < 0 || rate > 11)) 1497 return ofdm_upgt2rate[rate & 0xf]; 1498 1499 return (0); 1500 } 1501 1502 static void 1503 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1504 { 1505 struct upgt_lmac_tx_done_desc *desc; 1506 int i, freed = 0; 1507 1508 UPGT_ASSERT_LOCKED(sc); 1509 1510 desc = (struct upgt_lmac_tx_done_desc *)data; 1511 1512 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1513 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1514 1515 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1516 upgt_mem_free(sc, data_tx->addr); 1517 data_tx->ni = NULL; 1518 data_tx->addr = 0; 1519 data_tx->m = NULL; 1520 1521 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1522 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1523 le32toh(desc->header2.reqid), 1524 le16toh(desc->status), le16toh(desc->rssi)); 1525 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1526 le16toh(desc->seq)); 1527 1528 freed++; 1529 } 1530 } 1531 1532 if (freed != 0) { 1533 UPGT_UNLOCK(sc); 1534 sc->sc_tx_timer = 0; 1535 upgt_start(sc); 1536 UPGT_LOCK(sc); 1537 } 1538 } 1539 1540 static void 1541 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1542 { 1543 int i; 1544 1545 for (i = 0; i < sc->sc_memory.pages; i++) { 1546 if (sc->sc_memory.page[i].addr == addr) { 1547 sc->sc_memory.page[i].used = 0; 1548 return; 1549 } 1550 } 1551 1552 device_printf(sc->sc_dev, 1553 "could not free memory address 0x%08x\n", addr); 1554 } 1555 1556 static int 1557 upgt_fw_load(struct upgt_softc *sc) 1558 { 1559 const struct firmware *fw; 1560 struct upgt_data *data_cmd; 1561 struct upgt_fw_x2_header *x2; 1562 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1563 int error = 0; 1564 size_t offset; 1565 int bsize; 1566 int n; 1567 uint32_t crc32; 1568 1569 fw = firmware_get(upgt_fwname); 1570 if (fw == NULL) { 1571 device_printf(sc->sc_dev, "could not read microcode %s\n", 1572 upgt_fwname); 1573 return (EIO); 1574 } 1575 1576 UPGT_LOCK(sc); 1577 1578 /* send firmware start load command */ 1579 data_cmd = upgt_getbuf(sc); 1580 if (data_cmd == NULL) { 1581 error = ENOBUFS; 1582 goto fail; 1583 } 1584 data_cmd->buflen = sizeof(start_fwload_cmd); 1585 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1586 upgt_bulk_tx(sc, data_cmd); 1587 1588 /* send X2 header */ 1589 data_cmd = upgt_getbuf(sc); 1590 if (data_cmd == NULL) { 1591 error = ENOBUFS; 1592 goto fail; 1593 } 1594 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1595 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1596 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1597 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1598 x2->len = htole32(fw->datasize); 1599 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1600 UPGT_X2_SIGNATURE_SIZE, 1601 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1602 sizeof(uint32_t)); 1603 upgt_bulk_tx(sc, data_cmd); 1604 1605 /* download firmware */ 1606 for (offset = 0; offset < fw->datasize; offset += bsize) { 1607 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1608 bsize = UPGT_FW_BLOCK_SIZE; 1609 else 1610 bsize = fw->datasize - offset; 1611 1612 data_cmd = upgt_getbuf(sc); 1613 if (data_cmd == NULL) { 1614 error = ENOBUFS; 1615 goto fail; 1616 } 1617 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1618 data_cmd->buf, bsize); 1619 data_cmd->buflen = bsize; 1620 upgt_bulk_tx(sc, data_cmd); 1621 1622 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", 1623 offset, n, bsize); 1624 bsize = n; 1625 } 1626 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1627 1628 /* load firmware */ 1629 data_cmd = upgt_getbuf(sc); 1630 if (data_cmd == NULL) { 1631 error = ENOBUFS; 1632 goto fail; 1633 } 1634 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1635 *((uint32_t *)(data_cmd->buf) ) = crc32; 1636 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1637 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1638 data_cmd->buflen = 6; 1639 upgt_bulk_tx(sc, data_cmd); 1640 1641 /* waiting 'OK' response. */ 1642 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1643 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1644 if (error != 0) { 1645 device_printf(sc->sc_dev, "firmware load failed\n"); 1646 error = EIO; 1647 } 1648 1649 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1650 fail: 1651 UPGT_UNLOCK(sc); 1652 firmware_put(fw, FIRMWARE_UNLOAD); 1653 return (error); 1654 } 1655 1656 static uint32_t 1657 upgt_crc32_le(const void *buf, size_t size) 1658 { 1659 uint32_t crc; 1660 1661 crc = ether_crc32_le(buf, size); 1662 1663 /* apply final XOR value as common for CRC-32 */ 1664 crc = htole32(crc ^ 0xffffffffU); 1665 1666 return (crc); 1667 } 1668 1669 /* 1670 * While copying the version 2 firmware, we need to replace two characters: 1671 * 1672 * 0x7e -> 0x7d 0x5e 1673 * 0x7d -> 0x7d 0x5d 1674 */ 1675 static int 1676 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1677 { 1678 int i, j; 1679 1680 for (i = 0, j = 0; i < size && j < size; i++) { 1681 switch (src[i]) { 1682 case 0x7e: 1683 dst[j] = 0x7d; 1684 j++; 1685 dst[j] = 0x5e; 1686 j++; 1687 break; 1688 case 0x7d: 1689 dst[j] = 0x7d; 1690 j++; 1691 dst[j] = 0x5d; 1692 j++; 1693 break; 1694 default: 1695 dst[j] = src[i]; 1696 j++; 1697 break; 1698 } 1699 } 1700 1701 return (i); 1702 } 1703 1704 static int 1705 upgt_mem_init(struct upgt_softc *sc) 1706 { 1707 int i; 1708 1709 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1710 sc->sc_memory.page[i].used = 0; 1711 1712 if (i == 0) { 1713 /* 1714 * The first memory page is always reserved for 1715 * command data. 1716 */ 1717 sc->sc_memory.page[i].addr = 1718 sc->sc_memaddr_frame_start + MCLBYTES; 1719 } else { 1720 sc->sc_memory.page[i].addr = 1721 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1722 } 1723 1724 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1725 sc->sc_memaddr_frame_end) 1726 break; 1727 1728 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1729 i, sc->sc_memory.page[i].addr); 1730 } 1731 1732 sc->sc_memory.pages = i; 1733 1734 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1735 return (0); 1736 } 1737 1738 static int 1739 upgt_fw_verify(struct upgt_softc *sc) 1740 { 1741 const struct firmware *fw; 1742 const struct upgt_fw_bra_option *bra_opt; 1743 const struct upgt_fw_bra_descr *descr; 1744 const uint8_t *p; 1745 const uint32_t *uc; 1746 uint32_t bra_option_type, bra_option_len; 1747 size_t offset; 1748 int bra_end = 0; 1749 int error = 0; 1750 1751 fw = firmware_get(upgt_fwname); 1752 if (fw == NULL) { 1753 device_printf(sc->sc_dev, "could not read microcode %s\n", 1754 upgt_fwname); 1755 return EIO; 1756 } 1757 1758 /* 1759 * Seek to beginning of Boot Record Area (BRA). 1760 */ 1761 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1762 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1763 if (*uc == 0) 1764 break; 1765 } 1766 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1767 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1768 if (*uc != 0) 1769 break; 1770 } 1771 if (offset == fw->datasize) { 1772 device_printf(sc->sc_dev, 1773 "firmware Boot Record Area not found\n"); 1774 error = EIO; 1775 goto fail; 1776 } 1777 1778 DPRINTF(sc, UPGT_DEBUG_FW, 1779 "firmware Boot Record Area found at offset %d\n", offset); 1780 1781 /* 1782 * Parse Boot Record Area (BRA) options. 1783 */ 1784 while (offset < fw->datasize && bra_end == 0) { 1785 /* get current BRA option */ 1786 p = (const uint8_t *)fw->data + offset; 1787 bra_opt = (const struct upgt_fw_bra_option *)p; 1788 bra_option_type = le32toh(bra_opt->type); 1789 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1790 1791 switch (bra_option_type) { 1792 case UPGT_BRA_TYPE_FW: 1793 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1794 bra_option_len); 1795 1796 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1797 device_printf(sc->sc_dev, 1798 "wrong UPGT_BRA_TYPE_FW len\n"); 1799 error = EIO; 1800 goto fail; 1801 } 1802 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1803 bra_option_len) == 0) { 1804 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1805 break; 1806 } 1807 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1808 bra_option_len) == 0) { 1809 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1810 break; 1811 } 1812 device_printf(sc->sc_dev, 1813 "unsupported firmware type\n"); 1814 error = EIO; 1815 goto fail; 1816 case UPGT_BRA_TYPE_VERSION: 1817 DPRINTF(sc, UPGT_DEBUG_FW, 1818 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1819 break; 1820 case UPGT_BRA_TYPE_DEPIF: 1821 DPRINTF(sc, UPGT_DEBUG_FW, 1822 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1823 break; 1824 case UPGT_BRA_TYPE_EXPIF: 1825 DPRINTF(sc, UPGT_DEBUG_FW, 1826 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1827 break; 1828 case UPGT_BRA_TYPE_DESCR: 1829 DPRINTF(sc, UPGT_DEBUG_FW, 1830 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1831 1832 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1833 1834 sc->sc_memaddr_frame_start = 1835 le32toh(descr->memaddr_space_start); 1836 sc->sc_memaddr_frame_end = 1837 le32toh(descr->memaddr_space_end); 1838 1839 DPRINTF(sc, UPGT_DEBUG_FW, 1840 "memory address space start=0x%08x\n", 1841 sc->sc_memaddr_frame_start); 1842 DPRINTF(sc, UPGT_DEBUG_FW, 1843 "memory address space end=0x%08x\n", 1844 sc->sc_memaddr_frame_end); 1845 break; 1846 case UPGT_BRA_TYPE_END: 1847 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1848 bra_option_len); 1849 bra_end = 1; 1850 break; 1851 default: 1852 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1853 bra_option_len); 1854 error = EIO; 1855 goto fail; 1856 } 1857 1858 /* jump to next BRA option */ 1859 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1860 } 1861 1862 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1863 fail: 1864 firmware_put(fw, FIRMWARE_UNLOAD); 1865 return (error); 1866 } 1867 1868 static void 1869 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1870 { 1871 1872 UPGT_ASSERT_LOCKED(sc); 1873 1874 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1875 UPGT_STAT_INC(sc, st_tx_pending); 1876 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1877 } 1878 1879 static int 1880 upgt_device_reset(struct upgt_softc *sc) 1881 { 1882 struct upgt_data *data; 1883 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1884 1885 UPGT_LOCK(sc); 1886 1887 data = upgt_getbuf(sc); 1888 if (data == NULL) { 1889 UPGT_UNLOCK(sc); 1890 return (ENOBUFS); 1891 } 1892 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1893 data->buflen = sizeof(init_cmd); 1894 upgt_bulk_tx(sc, data); 1895 usb_pause_mtx(&sc->sc_mtx, 100); 1896 1897 UPGT_UNLOCK(sc); 1898 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1899 return (0); 1900 } 1901 1902 static int 1903 upgt_alloc_tx(struct upgt_softc *sc) 1904 { 1905 int i; 1906 1907 STAILQ_INIT(&sc->sc_tx_active); 1908 STAILQ_INIT(&sc->sc_tx_inactive); 1909 STAILQ_INIT(&sc->sc_tx_pending); 1910 1911 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1912 struct upgt_data *data = &sc->sc_tx_data[i]; 1913 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1914 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1915 UPGT_STAT_INC(sc, st_tx_inactive); 1916 } 1917 1918 return (0); 1919 } 1920 1921 static int 1922 upgt_alloc_rx(struct upgt_softc *sc) 1923 { 1924 int i; 1925 1926 STAILQ_INIT(&sc->sc_rx_active); 1927 STAILQ_INIT(&sc->sc_rx_inactive); 1928 1929 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1930 struct upgt_data *data = &sc->sc_rx_data[i]; 1931 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 1932 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1933 } 1934 return (0); 1935 } 1936 1937 static int 1938 upgt_detach(device_t dev) 1939 { 1940 struct upgt_softc *sc = device_get_softc(dev); 1941 struct ieee80211com *ic = &sc->sc_ic; 1942 unsigned int x; 1943 1944 /* 1945 * Prevent further allocations from RX/TX/CMD 1946 * data lists and ioctls 1947 */ 1948 UPGT_LOCK(sc); 1949 sc->sc_flags |= UPGT_FLAG_DETACHED; 1950 1951 STAILQ_INIT(&sc->sc_tx_active); 1952 STAILQ_INIT(&sc->sc_tx_inactive); 1953 STAILQ_INIT(&sc->sc_tx_pending); 1954 1955 STAILQ_INIT(&sc->sc_rx_active); 1956 STAILQ_INIT(&sc->sc_rx_inactive); 1957 1958 upgt_stop(sc); 1959 UPGT_UNLOCK(sc); 1960 1961 callout_drain(&sc->sc_led_ch); 1962 callout_drain(&sc->sc_watchdog_ch); 1963 1964 /* drain USB transfers */ 1965 for (x = 0; x != UPGT_N_XFERS; x++) 1966 usbd_transfer_drain(sc->sc_xfer[x]); 1967 1968 /* free data buffers */ 1969 UPGT_LOCK(sc); 1970 upgt_free_rx(sc); 1971 upgt_free_tx(sc); 1972 UPGT_UNLOCK(sc); 1973 1974 /* free USB transfers and some data buffers */ 1975 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 1976 1977 ieee80211_ifdetach(ic); 1978 mbufq_drain(&sc->sc_snd); 1979 mtx_destroy(&sc->sc_mtx); 1980 1981 return (0); 1982 } 1983 1984 static void 1985 upgt_free_rx(struct upgt_softc *sc) 1986 { 1987 int i; 1988 1989 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1990 struct upgt_data *data = &sc->sc_rx_data[i]; 1991 1992 data->buf = NULL; 1993 data->ni = NULL; 1994 } 1995 } 1996 1997 static void 1998 upgt_free_tx(struct upgt_softc *sc) 1999 { 2000 int i; 2001 2002 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 2003 struct upgt_data *data = &sc->sc_tx_data[i]; 2004 2005 if (data->ni != NULL) 2006 ieee80211_free_node(data->ni); 2007 2008 data->buf = NULL; 2009 data->ni = NULL; 2010 } 2011 } 2012 2013 static void 2014 upgt_abort_xfers_locked(struct upgt_softc *sc) 2015 { 2016 int i; 2017 2018 UPGT_ASSERT_LOCKED(sc); 2019 /* abort any pending transfers */ 2020 for (i = 0; i < UPGT_N_XFERS; i++) 2021 usbd_transfer_stop(sc->sc_xfer[i]); 2022 } 2023 2024 static void 2025 upgt_abort_xfers(struct upgt_softc *sc) 2026 { 2027 2028 UPGT_LOCK(sc); 2029 upgt_abort_xfers_locked(sc); 2030 UPGT_UNLOCK(sc); 2031 } 2032 2033 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2034 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2035 2036 static void 2037 upgt_sysctl_node(struct upgt_softc *sc) 2038 { 2039 struct sysctl_ctx_list *ctx; 2040 struct sysctl_oid_list *child; 2041 struct sysctl_oid *tree; 2042 struct upgt_stat *stats; 2043 2044 stats = &sc->sc_stat; 2045 ctx = device_get_sysctl_ctx(sc->sc_dev); 2046 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2047 2048 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2049 NULL, "UPGT statistics"); 2050 child = SYSCTL_CHILDREN(tree); 2051 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2052 &stats->st_tx_active, "Active numbers in TX queue"); 2053 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2054 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2055 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2056 &stats->st_tx_pending, "Pending numbers in TX queue"); 2057 } 2058 2059 #undef UPGT_SYSCTL_STAT_ADD32 2060 2061 static struct upgt_data * 2062 _upgt_getbuf(struct upgt_softc *sc) 2063 { 2064 struct upgt_data *bf; 2065 2066 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2067 if (bf != NULL) { 2068 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2069 UPGT_STAT_DEC(sc, st_tx_inactive); 2070 } else 2071 bf = NULL; 2072 if (bf == NULL) 2073 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2074 "out of xmit buffers"); 2075 return (bf); 2076 } 2077 2078 static struct upgt_data * 2079 upgt_getbuf(struct upgt_softc *sc) 2080 { 2081 struct upgt_data *bf; 2082 2083 UPGT_ASSERT_LOCKED(sc); 2084 2085 bf = _upgt_getbuf(sc); 2086 if (bf == NULL) 2087 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2088 2089 return (bf); 2090 } 2091 2092 static struct upgt_data * 2093 upgt_gettxbuf(struct upgt_softc *sc) 2094 { 2095 struct upgt_data *bf; 2096 2097 UPGT_ASSERT_LOCKED(sc); 2098 2099 bf = upgt_getbuf(sc); 2100 if (bf == NULL) 2101 return (NULL); 2102 2103 bf->addr = upgt_mem_alloc(sc); 2104 if (bf->addr == 0) { 2105 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2106 __func__); 2107 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2108 UPGT_STAT_INC(sc, st_tx_inactive); 2109 return (NULL); 2110 } 2111 return (bf); 2112 } 2113 2114 static int 2115 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2116 struct upgt_data *data) 2117 { 2118 struct ieee80211vap *vap = ni->ni_vap; 2119 int error = 0, len; 2120 struct ieee80211_frame *wh; 2121 struct ieee80211_key *k; 2122 struct upgt_lmac_mem *mem; 2123 struct upgt_lmac_tx_desc *txdesc; 2124 2125 UPGT_ASSERT_LOCKED(sc); 2126 2127 upgt_set_led(sc, UPGT_LED_BLINK); 2128 2129 /* 2130 * Software crypto. 2131 */ 2132 wh = mtod(m, struct ieee80211_frame *); 2133 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2134 k = ieee80211_crypto_encap(ni, m); 2135 if (k == NULL) { 2136 device_printf(sc->sc_dev, 2137 "ieee80211_crypto_encap returns NULL.\n"); 2138 error = EIO; 2139 goto done; 2140 } 2141 2142 /* in case packet header moved, reset pointer */ 2143 wh = mtod(m, struct ieee80211_frame *); 2144 } 2145 2146 /* Transmit the URB containing the TX data. */ 2147 memset(data->buf, 0, MCLBYTES); 2148 mem = (struct upgt_lmac_mem *)data->buf; 2149 mem->addr = htole32(data->addr); 2150 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2151 2152 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2153 IEEE80211_FC0_TYPE_MGT) { 2154 /* mgmt frames */ 2155 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2156 /* always send mgmt frames at lowest rate (DS1) */ 2157 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2158 } else { 2159 /* data frames */ 2160 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2161 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2162 } 2163 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2164 txdesc->header1.len = htole16(m->m_pkthdr.len); 2165 txdesc->header2.reqid = htole32(data->addr); 2166 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2167 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2168 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2169 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2170 2171 if (ieee80211_radiotap_active_vap(vap)) { 2172 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2173 2174 tap->wt_flags = 0; 2175 tap->wt_rate = 0; /* XXX where to get from? */ 2176 2177 ieee80211_radiotap_tx(vap, m); 2178 } 2179 2180 /* copy frame below our TX descriptor header */ 2181 m_copydata(m, 0, m->m_pkthdr.len, 2182 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2183 /* calculate frame size */ 2184 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2185 /* we need to align the frame to a 4 byte boundary */ 2186 len = (len + 3) & ~3; 2187 /* calculate frame checksum */ 2188 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2189 data->ni = ni; 2190 data->m = m; 2191 data->buflen = len; 2192 2193 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2194 __func__, len); 2195 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2196 2197 upgt_bulk_tx(sc, data); 2198 done: 2199 /* 2200 * If we don't regulary read the device statistics, the RX queue 2201 * will stall. It's strange, but it works, so we keep reading 2202 * the statistics here. *shrug* 2203 */ 2204 if (!(vap->iv_ifp->if_get_counter(vap->iv_ifp, IFCOUNTER_OPACKETS) % 2205 UPGT_TX_STAT_INTERVAL)) 2206 upgt_get_stats(sc); 2207 2208 return (error); 2209 } 2210 2211 static void 2212 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2213 { 2214 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2215 struct ieee80211com *ic = &sc->sc_ic; 2216 struct ieee80211_frame *wh; 2217 struct ieee80211_node *ni; 2218 struct mbuf *m = NULL; 2219 struct upgt_data *data; 2220 int8_t nf; 2221 int rssi = -1; 2222 2223 UPGT_ASSERT_LOCKED(sc); 2224 2225 switch (USB_GET_STATE(xfer)) { 2226 case USB_ST_TRANSFERRED: 2227 data = STAILQ_FIRST(&sc->sc_rx_active); 2228 if (data == NULL) 2229 goto setup; 2230 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2231 m = upgt_rxeof(xfer, data, &rssi); 2232 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2233 /* FALLTHROUGH */ 2234 case USB_ST_SETUP: 2235 setup: 2236 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2237 if (data == NULL) 2238 return; 2239 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2240 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2241 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2242 usbd_transfer_submit(xfer); 2243 2244 /* 2245 * To avoid LOR we should unlock our private mutex here to call 2246 * ieee80211_input() because here is at the end of a USB 2247 * callback and safe to unlock. 2248 */ 2249 UPGT_UNLOCK(sc); 2250 if (m != NULL) { 2251 wh = mtod(m, struct ieee80211_frame *); 2252 ni = ieee80211_find_rxnode(ic, 2253 (struct ieee80211_frame_min *)wh); 2254 nf = -95; /* XXX */ 2255 if (ni != NULL) { 2256 (void) ieee80211_input(ni, m, rssi, nf); 2257 /* node is no longer needed */ 2258 ieee80211_free_node(ni); 2259 } else 2260 (void) ieee80211_input_all(ic, m, rssi, nf); 2261 m = NULL; 2262 } 2263 UPGT_LOCK(sc); 2264 upgt_start(sc); 2265 break; 2266 default: 2267 /* needs it to the inactive queue due to a error. */ 2268 data = STAILQ_FIRST(&sc->sc_rx_active); 2269 if (data != NULL) { 2270 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2271 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2272 } 2273 if (error != USB_ERR_CANCELLED) { 2274 usbd_xfer_set_stall(xfer); 2275 counter_u64_add(ic->ic_ierrors, 1); 2276 goto setup; 2277 } 2278 break; 2279 } 2280 } 2281 2282 static void 2283 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2284 { 2285 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2286 struct upgt_data *data; 2287 2288 UPGT_ASSERT_LOCKED(sc); 2289 switch (USB_GET_STATE(xfer)) { 2290 case USB_ST_TRANSFERRED: 2291 data = STAILQ_FIRST(&sc->sc_tx_active); 2292 if (data == NULL) 2293 goto setup; 2294 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2295 UPGT_STAT_DEC(sc, st_tx_active); 2296 upgt_txeof(xfer, data); 2297 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2298 UPGT_STAT_INC(sc, st_tx_inactive); 2299 /* FALLTHROUGH */ 2300 case USB_ST_SETUP: 2301 setup: 2302 data = STAILQ_FIRST(&sc->sc_tx_pending); 2303 if (data == NULL) { 2304 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2305 __func__); 2306 return; 2307 } 2308 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2309 UPGT_STAT_DEC(sc, st_tx_pending); 2310 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2311 UPGT_STAT_INC(sc, st_tx_active); 2312 2313 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2314 usbd_transfer_submit(xfer); 2315 upgt_start(sc); 2316 break; 2317 default: 2318 data = STAILQ_FIRST(&sc->sc_tx_active); 2319 if (data == NULL) 2320 goto setup; 2321 if (data->ni != NULL) { 2322 if_inc_counter(data->ni->ni_vap->iv_ifp, 2323 IFCOUNTER_OERRORS, 1); 2324 ieee80211_free_node(data->ni); 2325 data->ni = NULL; 2326 } 2327 if (error != USB_ERR_CANCELLED) { 2328 usbd_xfer_set_stall(xfer); 2329 goto setup; 2330 } 2331 break; 2332 } 2333 } 2334 2335 static device_method_t upgt_methods[] = { 2336 /* Device interface */ 2337 DEVMETHOD(device_probe, upgt_match), 2338 DEVMETHOD(device_attach, upgt_attach), 2339 DEVMETHOD(device_detach, upgt_detach), 2340 DEVMETHOD_END 2341 }; 2342 2343 static driver_t upgt_driver = { 2344 .name = "upgt", 2345 .methods = upgt_methods, 2346 .size = sizeof(struct upgt_softc) 2347 }; 2348 2349 static devclass_t upgt_devclass; 2350 2351 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); 2352 MODULE_VERSION(if_upgt, 1); 2353 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2354 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2355 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2356