1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 /* $FreeBSD$ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/param.h> 21 #include <sys/systm.h> 22 #include <sys/kernel.h> 23 #include <sys/endian.h> 24 #include <sys/firmware.h> 25 #include <sys/linker.h> 26 #include <sys/mbuf.h> 27 #include <sys/malloc.h> 28 #include <sys/module.h> 29 #include <sys/socket.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 33 #include <net/if.h> 34 #include <net/if_arp.h> 35 #include <net/ethernet.h> 36 #include <net/if_dl.h> 37 #include <net/if_media.h> 38 #include <net/if_types.h> 39 40 #include <sys/bus.h> 41 #include <machine/bus.h> 42 43 #include <net80211/ieee80211_var.h> 44 #include <net80211/ieee80211_phy.h> 45 #include <net80211/ieee80211_radiotap.h> 46 #include <net80211/ieee80211_regdomain.h> 47 48 #include <net/bpf.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include "usbdevs.h" 53 54 #include <dev/usb/wlan/if_upgtvar.h> 55 56 /* 57 * Driver for the USB PrismGT devices. 58 * 59 * For now just USB 2.0 devices with the GW3887 chipset are supported. 60 * The driver has been written based on the firmware version 2.13.1.0_LM87. 61 * 62 * TODO's: 63 * - MONITOR mode test. 64 * - Add HOSTAP mode. 65 * - Add IBSS mode. 66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 67 * 68 * Parts of this driver has been influenced by reading the p54u driver 69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 70 * Sebastien Bourdeauducq <lekernel@prism54.org>. 71 */ 72 73 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, 74 "USB PrismGT GW3887 driver parameters"); 75 76 #ifdef UPGT_DEBUG 77 int upgt_debug = 0; 78 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug, 79 0, "control debugging printfs"); 80 TUNABLE_INT("hw.upgt.debug", &upgt_debug); 81 enum { 82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 90 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 91 UPGT_DEBUG_ANY = 0xffffffff 92 }; 93 #define DPRINTF(sc, m, fmt, ...) do { \ 94 if (sc->sc_debug & (m)) \ 95 printf(fmt, __VA_ARGS__); \ 96 } while (0) 97 #else 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 (void) sc; \ 100 } while (0) 101 #endif 102 103 /* 104 * Prototypes. 105 */ 106 static device_probe_t upgt_match; 107 static device_attach_t upgt_attach; 108 static device_detach_t upgt_detach; 109 static int upgt_alloc_tx(struct upgt_softc *); 110 static int upgt_alloc_rx(struct upgt_softc *); 111 static int upgt_device_reset(struct upgt_softc *); 112 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 113 static int upgt_fw_verify(struct upgt_softc *); 114 static int upgt_mem_init(struct upgt_softc *); 115 static int upgt_fw_load(struct upgt_softc *); 116 static int upgt_fw_copy(const uint8_t *, char *, int); 117 static uint32_t upgt_crc32_le(const void *, size_t); 118 static struct mbuf * 119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 120 static struct mbuf * 121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 122 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 123 static int upgt_eeprom_read(struct upgt_softc *); 124 static int upgt_eeprom_parse(struct upgt_softc *); 125 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 126 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 127 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 129 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 130 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 131 static void upgt_init(void *); 132 static void upgt_init_locked(struct upgt_softc *); 133 static int upgt_ioctl(struct ifnet *, u_long, caddr_t); 134 static void upgt_start(struct ifnet *); 135 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static void upgt_scan_start(struct ieee80211com *); 138 static void upgt_scan_end(struct ieee80211com *); 139 static void upgt_set_channel(struct ieee80211com *); 140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void upgt_vap_delete(struct ieee80211vap *); 145 static void upgt_update_mcast(struct ifnet *); 146 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 147 static void upgt_set_multi(void *); 148 static void upgt_stop(struct upgt_softc *); 149 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 150 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 151 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 152 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 153 static void upgt_set_led(struct upgt_softc *, int); 154 static void upgt_set_led_blink(void *); 155 static void upgt_get_stats(struct upgt_softc *); 156 static void upgt_mem_free(struct upgt_softc *, uint32_t); 157 static uint32_t upgt_mem_alloc(struct upgt_softc *); 158 static void upgt_free_tx(struct upgt_softc *); 159 static void upgt_free_rx(struct upgt_softc *); 160 static void upgt_watchdog(void *); 161 static void upgt_abort_xfers(struct upgt_softc *); 162 static void upgt_abort_xfers_locked(struct upgt_softc *); 163 static void upgt_sysctl_node(struct upgt_softc *); 164 static struct upgt_data * 165 upgt_getbuf(struct upgt_softc *); 166 static struct upgt_data * 167 upgt_gettxbuf(struct upgt_softc *); 168 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 169 struct ieee80211_node *, struct upgt_data *); 170 171 static const char *upgt_fwname = "upgt-gw3887"; 172 173 static const STRUCT_USB_HOST_ID upgt_devs[] = { 174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 175 /* version 2 devices */ 176 UPGT_DEV(ACCTON, PRISM_GT), 177 UPGT_DEV(BELKIN, F5D7050), 178 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 179 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 180 UPGT_DEV(DELL, PRISM_GT_1), 181 UPGT_DEV(DELL, PRISM_GT_2), 182 UPGT_DEV(FSC, E5400), 183 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 185 UPGT_DEV(NETGEAR, WG111V2_2), 186 UPGT_DEV(INTERSIL, PRISM_GT), 187 UPGT_DEV(SMC, 2862WG), 188 UPGT_DEV(USR, USR5422), 189 UPGT_DEV(WISTRONNEWEB, UR045G), 190 UPGT_DEV(XYRATEX, PRISM_GT_1), 191 UPGT_DEV(XYRATEX, PRISM_GT_2), 192 UPGT_DEV(ZCOM, XG703A), 193 UPGT_DEV(ZCOM, XM142) 194 }; 195 196 static usb_callback_t upgt_bulk_rx_callback; 197 static usb_callback_t upgt_bulk_tx_callback; 198 199 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 200 [UPGT_BULK_TX] = { 201 .type = UE_BULK, 202 .endpoint = UE_ADDR_ANY, 203 .direction = UE_DIR_OUT, 204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 205 .flags = { 206 .force_short_xfer = 1, 207 .pipe_bof = 1 208 }, 209 .callback = upgt_bulk_tx_callback, 210 .timeout = UPGT_USB_TIMEOUT, /* ms */ 211 }, 212 [UPGT_BULK_RX] = { 213 .type = UE_BULK, 214 .endpoint = UE_ADDR_ANY, 215 .direction = UE_DIR_IN, 216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 217 .flags = { 218 .pipe_bof = 1, 219 .short_xfer_ok = 1 220 }, 221 .callback = upgt_bulk_rx_callback, 222 }, 223 }; 224 225 static int 226 upgt_match(device_t dev) 227 { 228 struct usb_attach_arg *uaa = device_get_ivars(dev); 229 230 if (uaa->usb_mode != USB_MODE_HOST) 231 return (ENXIO); 232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 233 return (ENXIO); 234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 235 return (ENXIO); 236 237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 238 } 239 240 static int 241 upgt_attach(device_t dev) 242 { 243 int error; 244 struct ieee80211com *ic; 245 struct ifnet *ifp; 246 struct upgt_softc *sc = device_get_softc(dev); 247 struct usb_attach_arg *uaa = device_get_ivars(dev); 248 uint8_t bands, iface_index = UPGT_IFACE_INDEX; 249 250 sc->sc_dev = dev; 251 sc->sc_udev = uaa->device; 252 #ifdef UPGT_DEBUG 253 sc->sc_debug = upgt_debug; 254 #endif 255 device_set_usb_desc(dev); 256 257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 258 MTX_DEF); 259 callout_init(&sc->sc_led_ch, 0); 260 callout_init(&sc->sc_watchdog_ch, 0); 261 262 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 263 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 264 if (error) { 265 device_printf(dev, "could not allocate USB transfers, " 266 "err=%s\n", usbd_errstr(error)); 267 goto fail1; 268 } 269 270 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 271 sc->sc_xfer[UPGT_BULK_RX], 0); 272 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 273 sc->sc_xfer[UPGT_BULK_TX], 0); 274 275 /* Setup TX and RX buffers */ 276 error = upgt_alloc_tx(sc); 277 if (error) 278 goto fail2; 279 error = upgt_alloc_rx(sc); 280 if (error) 281 goto fail3; 282 283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 284 if (ifp == NULL) { 285 device_printf(dev, "can not if_alloc()\n"); 286 goto fail4; 287 } 288 289 /* Initialize the device. */ 290 error = upgt_device_reset(sc); 291 if (error) 292 goto fail5; 293 /* Verify the firmware. */ 294 error = upgt_fw_verify(sc); 295 if (error) 296 goto fail5; 297 /* Calculate device memory space. */ 298 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 299 device_printf(dev, 300 "could not find memory space addresses on FW\n"); 301 error = EIO; 302 goto fail5; 303 } 304 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 305 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 306 307 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 308 sc->sc_memaddr_frame_start); 309 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 310 sc->sc_memaddr_frame_end); 311 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 312 sc->sc_memaddr_rx_start); 313 314 upgt_mem_init(sc); 315 316 /* Load the firmware. */ 317 error = upgt_fw_load(sc); 318 if (error) 319 goto fail5; 320 321 /* Read the whole EEPROM content and parse it. */ 322 error = upgt_eeprom_read(sc); 323 if (error) 324 goto fail5; 325 error = upgt_eeprom_parse(sc); 326 if (error) 327 goto fail5; 328 329 /* all works related with the device have done here. */ 330 upgt_abort_xfers(sc); 331 332 /* Setup the 802.11 device. */ 333 ifp->if_softc = sc; 334 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev)); 335 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 336 ifp->if_init = upgt_init; 337 ifp->if_ioctl = upgt_ioctl; 338 ifp->if_start = upgt_start; 339 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 340 IFQ_SET_READY(&ifp->if_snd); 341 342 ic = ifp->if_l2com; 343 ic->ic_ifp = ifp; 344 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 345 ic->ic_opmode = IEEE80211_M_STA; 346 /* set device capabilities */ 347 ic->ic_caps = 348 IEEE80211_C_STA /* station mode */ 349 | IEEE80211_C_MONITOR /* monitor mode */ 350 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 351 | IEEE80211_C_SHSLOT /* short slot time supported */ 352 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 353 | IEEE80211_C_WPA /* 802.11i */ 354 ; 355 356 bands = 0; 357 setbit(&bands, IEEE80211_MODE_11B); 358 setbit(&bands, IEEE80211_MODE_11G); 359 ieee80211_init_channels(ic, NULL, &bands); 360 361 ieee80211_ifattach(ic, sc->sc_myaddr); 362 ic->ic_raw_xmit = upgt_raw_xmit; 363 ic->ic_scan_start = upgt_scan_start; 364 ic->ic_scan_end = upgt_scan_end; 365 ic->ic_set_channel = upgt_set_channel; 366 367 ic->ic_vap_create = upgt_vap_create; 368 ic->ic_vap_delete = upgt_vap_delete; 369 ic->ic_update_mcast = upgt_update_mcast; 370 371 ieee80211_radiotap_attach(ic, 372 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 373 UPGT_TX_RADIOTAP_PRESENT, 374 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 375 UPGT_RX_RADIOTAP_PRESENT); 376 377 upgt_sysctl_node(sc); 378 379 if (bootverbose) 380 ieee80211_announce(ic); 381 382 return (0); 383 384 fail5: if_free(ifp); 385 fail4: upgt_free_rx(sc); 386 fail3: upgt_free_tx(sc); 387 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 388 fail1: mtx_destroy(&sc->sc_mtx); 389 390 return (error); 391 } 392 393 static void 394 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 395 { 396 struct upgt_softc *sc = usbd_xfer_softc(xfer); 397 struct ifnet *ifp = sc->sc_ifp; 398 struct mbuf *m; 399 400 UPGT_ASSERT_LOCKED(sc); 401 402 /* 403 * Do any tx complete callback. Note this must be done before releasing 404 * the node reference. 405 */ 406 if (data->m) { 407 m = data->m; 408 if (m->m_flags & M_TXCB) { 409 /* XXX status? */ 410 ieee80211_process_callback(data->ni, m, 0); 411 } 412 m_freem(m); 413 data->m = NULL; 414 } 415 if (data->ni) { 416 ieee80211_free_node(data->ni); 417 data->ni = NULL; 418 } 419 ifp->if_opackets++; 420 } 421 422 static void 423 upgt_get_stats(struct upgt_softc *sc) 424 { 425 struct upgt_data *data_cmd; 426 struct upgt_lmac_mem *mem; 427 struct upgt_lmac_stats *stats; 428 429 data_cmd = upgt_getbuf(sc); 430 if (data_cmd == NULL) { 431 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__); 432 return; 433 } 434 435 /* 436 * Transmit the URB containing the CMD data. 437 */ 438 memset(data_cmd->buf, 0, MCLBYTES); 439 440 mem = (struct upgt_lmac_mem *)data_cmd->buf; 441 mem->addr = htole32(sc->sc_memaddr_frame_start + 442 UPGT_MEMSIZE_FRAME_HEAD); 443 444 stats = (struct upgt_lmac_stats *)(mem + 1); 445 446 stats->header1.flags = 0; 447 stats->header1.type = UPGT_H1_TYPE_CTRL; 448 stats->header1.len = htole16( 449 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 450 451 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 452 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 453 stats->header2.flags = 0; 454 455 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 456 457 mem->chksum = upgt_chksum_le((uint32_t *)stats, 458 data_cmd->buflen - sizeof(*mem)); 459 460 upgt_bulk_tx(sc, data_cmd); 461 } 462 463 static int 464 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 465 { 466 struct upgt_softc *sc = ifp->if_softc; 467 struct ieee80211com *ic = ifp->if_l2com; 468 struct ifreq *ifr = (struct ifreq *) data; 469 int error; 470 int startall = 0; 471 472 UPGT_LOCK(sc); 473 error = (sc->sc_flags & UPGT_FLAG_DETACHED) ? ENXIO : 0; 474 UPGT_UNLOCK(sc); 475 if (error) 476 return (error); 477 478 switch (cmd) { 479 case SIOCSIFFLAGS: 480 if (ifp->if_flags & IFF_UP) { 481 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 482 if ((ifp->if_flags ^ sc->sc_if_flags) & 483 (IFF_ALLMULTI | IFF_PROMISC)) 484 upgt_set_multi(sc); 485 } else { 486 upgt_init(sc); 487 startall = 1; 488 } 489 } else { 490 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 491 upgt_stop(sc); 492 } 493 sc->sc_if_flags = ifp->if_flags; 494 if (startall) 495 ieee80211_start_all(ic); 496 break; 497 case SIOCGIFMEDIA: 498 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 499 break; 500 case SIOCGIFADDR: 501 error = ether_ioctl(ifp, cmd, data); 502 break; 503 default: 504 error = EINVAL; 505 break; 506 } 507 return error; 508 } 509 510 static void 511 upgt_stop_locked(struct upgt_softc *sc) 512 { 513 struct ifnet *ifp = sc->sc_ifp; 514 515 UPGT_ASSERT_LOCKED(sc); 516 517 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 518 upgt_set_macfilter(sc, IEEE80211_S_INIT); 519 upgt_abort_xfers_locked(sc); 520 } 521 522 static void 523 upgt_stop(struct upgt_softc *sc) 524 { 525 struct ifnet *ifp = sc->sc_ifp; 526 527 UPGT_LOCK(sc); 528 upgt_stop_locked(sc); 529 UPGT_UNLOCK(sc); 530 531 /* device down */ 532 sc->sc_tx_timer = 0; 533 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 534 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 535 } 536 537 static void 538 upgt_set_led(struct upgt_softc *sc, int action) 539 { 540 struct upgt_data *data_cmd; 541 struct upgt_lmac_mem *mem; 542 struct upgt_lmac_led *led; 543 544 data_cmd = upgt_getbuf(sc); 545 if (data_cmd == NULL) { 546 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 547 return; 548 } 549 550 /* 551 * Transmit the URB containing the CMD data. 552 */ 553 memset(data_cmd->buf, 0, MCLBYTES); 554 555 mem = (struct upgt_lmac_mem *)data_cmd->buf; 556 mem->addr = htole32(sc->sc_memaddr_frame_start + 557 UPGT_MEMSIZE_FRAME_HEAD); 558 559 led = (struct upgt_lmac_led *)(mem + 1); 560 561 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 562 led->header1.type = UPGT_H1_TYPE_CTRL; 563 led->header1.len = htole16( 564 sizeof(struct upgt_lmac_led) - 565 sizeof(struct upgt_lmac_header)); 566 567 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 568 led->header2.type = htole16(UPGT_H2_TYPE_LED); 569 led->header2.flags = 0; 570 571 switch (action) { 572 case UPGT_LED_OFF: 573 led->mode = htole16(UPGT_LED_MODE_SET); 574 led->action_fix = 0; 575 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 576 led->action_tmp_dur = 0; 577 break; 578 case UPGT_LED_ON: 579 led->mode = htole16(UPGT_LED_MODE_SET); 580 led->action_fix = 0; 581 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 582 led->action_tmp_dur = 0; 583 break; 584 case UPGT_LED_BLINK: 585 if (sc->sc_state != IEEE80211_S_RUN) { 586 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 587 return; 588 } 589 if (sc->sc_led_blink) { 590 /* previous blink was not finished */ 591 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 592 return; 593 } 594 led->mode = htole16(UPGT_LED_MODE_SET); 595 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 596 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 597 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 598 /* lock blink */ 599 sc->sc_led_blink = 1; 600 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 601 break; 602 default: 603 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 604 return; 605 } 606 607 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 608 609 mem->chksum = upgt_chksum_le((uint32_t *)led, 610 data_cmd->buflen - sizeof(*mem)); 611 612 upgt_bulk_tx(sc, data_cmd); 613 } 614 615 static void 616 upgt_set_led_blink(void *arg) 617 { 618 struct upgt_softc *sc = arg; 619 620 /* blink finished, we are ready for a next one */ 621 sc->sc_led_blink = 0; 622 } 623 624 static void 625 upgt_init(void *priv) 626 { 627 struct upgt_softc *sc = priv; 628 struct ifnet *ifp = sc->sc_ifp; 629 struct ieee80211com *ic = ifp->if_l2com; 630 631 UPGT_LOCK(sc); 632 upgt_init_locked(sc); 633 UPGT_UNLOCK(sc); 634 635 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 636 ieee80211_start_all(ic); /* start all vap's */ 637 } 638 639 static void 640 upgt_init_locked(struct upgt_softc *sc) 641 { 642 struct ifnet *ifp = sc->sc_ifp; 643 644 UPGT_ASSERT_LOCKED(sc); 645 646 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 647 upgt_stop_locked(sc); 648 649 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 650 651 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 652 653 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 654 ifp->if_drv_flags |= IFF_DRV_RUNNING; 655 sc->sc_flags |= UPGT_FLAG_INITDONE; 656 657 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 658 } 659 660 static int 661 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 662 { 663 struct ifnet *ifp = sc->sc_ifp; 664 struct ieee80211com *ic = ifp->if_l2com; 665 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 666 struct ieee80211_node *ni; 667 struct upgt_data *data_cmd; 668 struct upgt_lmac_mem *mem; 669 struct upgt_lmac_filter *filter; 670 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 671 672 UPGT_ASSERT_LOCKED(sc); 673 674 data_cmd = upgt_getbuf(sc); 675 if (data_cmd == NULL) { 676 device_printf(sc->sc_dev, "out of TX buffers.\n"); 677 return (ENOBUFS); 678 } 679 680 /* 681 * Transmit the URB containing the CMD data. 682 */ 683 memset(data_cmd->buf, 0, MCLBYTES); 684 685 mem = (struct upgt_lmac_mem *)data_cmd->buf; 686 mem->addr = htole32(sc->sc_memaddr_frame_start + 687 UPGT_MEMSIZE_FRAME_HEAD); 688 689 filter = (struct upgt_lmac_filter *)(mem + 1); 690 691 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 692 filter->header1.type = UPGT_H1_TYPE_CTRL; 693 filter->header1.len = htole16( 694 sizeof(struct upgt_lmac_filter) - 695 sizeof(struct upgt_lmac_header)); 696 697 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 698 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 699 filter->header2.flags = 0; 700 701 switch (state) { 702 case IEEE80211_S_INIT: 703 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 704 __func__); 705 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 706 break; 707 case IEEE80211_S_SCAN: 708 DPRINTF(sc, UPGT_DEBUG_STATE, 709 "set MAC filter to SCAN (bssid %s)\n", 710 ether_sprintf(broadcast)); 711 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 712 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 713 IEEE80211_ADDR_COPY(filter->src, broadcast); 714 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 715 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 716 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 717 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 718 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 719 break; 720 case IEEE80211_S_RUN: 721 ni = ieee80211_ref_node(vap->iv_bss); 722 /* XXX monitor mode isn't tested yet. */ 723 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 724 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 725 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 726 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 727 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 728 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 729 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 730 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 731 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 732 } else { 733 DPRINTF(sc, UPGT_DEBUG_STATE, 734 "set MAC filter to RUN (bssid %s)\n", 735 ether_sprintf(ni->ni_bssid)); 736 filter->type = htole16(UPGT_FILTER_TYPE_STA); 737 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 738 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 739 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 740 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 741 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 742 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 743 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 744 } 745 ieee80211_free_node(ni); 746 break; 747 default: 748 device_printf(sc->sc_dev, 749 "MAC filter does not know that state\n"); 750 break; 751 } 752 753 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 754 755 mem->chksum = upgt_chksum_le((uint32_t *)filter, 756 data_cmd->buflen - sizeof(*mem)); 757 758 upgt_bulk_tx(sc, data_cmd); 759 760 return (0); 761 } 762 763 static void 764 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 765 { 766 struct ifnet *ifp = ic->ic_ifp; 767 struct upgt_softc *sc = ifp->if_softc; 768 const struct ieee80211_txparam *tp; 769 770 /* 771 * 0x01 = OFMD6 0x10 = DS1 772 * 0x04 = OFDM9 0x11 = DS2 773 * 0x06 = OFDM12 0x12 = DS5 774 * 0x07 = OFDM18 0x13 = DS11 775 * 0x08 = OFDM24 776 * 0x09 = OFDM36 777 * 0x0a = OFDM48 778 * 0x0b = OFDM54 779 */ 780 const uint8_t rateset_auto_11b[] = 781 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 782 const uint8_t rateset_auto_11g[] = 783 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 784 const uint8_t rateset_fix_11bg[] = 785 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 786 0x08, 0x09, 0x0a, 0x0b }; 787 788 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 789 790 /* XXX */ 791 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 792 /* 793 * Automatic rate control is done by the device. 794 * We just pass the rateset from which the device 795 * will pickup a rate. 796 */ 797 if (ic->ic_curmode == IEEE80211_MODE_11B) 798 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 799 sizeof(sc->sc_cur_rateset)); 800 if (ic->ic_curmode == IEEE80211_MODE_11G || 801 ic->ic_curmode == IEEE80211_MODE_AUTO) 802 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 803 sizeof(sc->sc_cur_rateset)); 804 } else { 805 /* set a fixed rate */ 806 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 807 sizeof(sc->sc_cur_rateset)); 808 } 809 } 810 811 static void 812 upgt_set_multi(void *arg) 813 { 814 struct upgt_softc *sc = arg; 815 struct ifnet *ifp = sc->sc_ifp; 816 817 if (!(ifp->if_flags & IFF_UP)) 818 return; 819 820 /* 821 * XXX don't know how to set a device. Lack of docs. Just try to set 822 * IFF_ALLMULTI flag here. 823 */ 824 ifp->if_flags |= IFF_ALLMULTI; 825 } 826 827 static void 828 upgt_start(struct ifnet *ifp) 829 { 830 struct upgt_softc *sc = ifp->if_softc; 831 struct upgt_data *data_tx; 832 struct ieee80211_node *ni; 833 struct mbuf *m; 834 835 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 836 return; 837 838 UPGT_LOCK(sc); 839 for (;;) { 840 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 841 if (m == NULL) 842 break; 843 844 data_tx = upgt_gettxbuf(sc); 845 if (data_tx == NULL) { 846 IFQ_DRV_PREPEND(&ifp->if_snd, m); 847 break; 848 } 849 850 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 851 m->m_pkthdr.rcvif = NULL; 852 853 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 854 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 855 UPGT_STAT_INC(sc, st_tx_inactive); 856 ieee80211_free_node(ni); 857 ifp->if_oerrors++; 858 continue; 859 } 860 sc->sc_tx_timer = 5; 861 } 862 UPGT_UNLOCK(sc); 863 } 864 865 static int 866 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 867 const struct ieee80211_bpf_params *params) 868 { 869 struct ieee80211com *ic = ni->ni_ic; 870 struct ifnet *ifp = ic->ic_ifp; 871 struct upgt_softc *sc = ifp->if_softc; 872 struct upgt_data *data_tx = NULL; 873 874 /* prevent management frames from being sent if we're not ready */ 875 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 876 m_freem(m); 877 ieee80211_free_node(ni); 878 return ENETDOWN; 879 } 880 881 UPGT_LOCK(sc); 882 data_tx = upgt_gettxbuf(sc); 883 if (data_tx == NULL) { 884 ieee80211_free_node(ni); 885 m_freem(m); 886 UPGT_UNLOCK(sc); 887 return (ENOBUFS); 888 } 889 890 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 891 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 892 UPGT_STAT_INC(sc, st_tx_inactive); 893 ieee80211_free_node(ni); 894 ifp->if_oerrors++; 895 UPGT_UNLOCK(sc); 896 return (EIO); 897 } 898 UPGT_UNLOCK(sc); 899 900 sc->sc_tx_timer = 5; 901 return (0); 902 } 903 904 static void 905 upgt_watchdog(void *arg) 906 { 907 struct upgt_softc *sc = arg; 908 struct ifnet *ifp = sc->sc_ifp; 909 910 if (sc->sc_tx_timer > 0) { 911 if (--sc->sc_tx_timer == 0) { 912 device_printf(sc->sc_dev, "watchdog timeout\n"); 913 /* upgt_init(ifp); XXX needs a process context ? */ 914 ifp->if_oerrors++; 915 return; 916 } 917 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 918 } 919 } 920 921 static uint32_t 922 upgt_mem_alloc(struct upgt_softc *sc) 923 { 924 int i; 925 926 for (i = 0; i < sc->sc_memory.pages; i++) { 927 if (sc->sc_memory.page[i].used == 0) { 928 sc->sc_memory.page[i].used = 1; 929 return (sc->sc_memory.page[i].addr); 930 } 931 } 932 933 return (0); 934 } 935 936 static void 937 upgt_scan_start(struct ieee80211com *ic) 938 { 939 /* do nothing. */ 940 } 941 942 static void 943 upgt_scan_end(struct ieee80211com *ic) 944 { 945 /* do nothing. */ 946 } 947 948 static void 949 upgt_set_channel(struct ieee80211com *ic) 950 { 951 struct upgt_softc *sc = ic->ic_ifp->if_softc; 952 953 UPGT_LOCK(sc); 954 upgt_set_chan(sc, ic->ic_curchan); 955 UPGT_UNLOCK(sc); 956 } 957 958 static void 959 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 960 { 961 struct ifnet *ifp = sc->sc_ifp; 962 struct ieee80211com *ic = ifp->if_l2com; 963 struct upgt_data *data_cmd; 964 struct upgt_lmac_mem *mem; 965 struct upgt_lmac_channel *chan; 966 int channel; 967 968 UPGT_ASSERT_LOCKED(sc); 969 970 channel = ieee80211_chan2ieee(ic, c); 971 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 972 /* XXX should NEVER happen */ 973 device_printf(sc->sc_dev, 974 "%s: invalid channel %x\n", __func__, channel); 975 return; 976 } 977 978 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 979 980 data_cmd = upgt_getbuf(sc); 981 if (data_cmd == NULL) { 982 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 983 return; 984 } 985 /* 986 * Transmit the URB containing the CMD data. 987 */ 988 memset(data_cmd->buf, 0, MCLBYTES); 989 990 mem = (struct upgt_lmac_mem *)data_cmd->buf; 991 mem->addr = htole32(sc->sc_memaddr_frame_start + 992 UPGT_MEMSIZE_FRAME_HEAD); 993 994 chan = (struct upgt_lmac_channel *)(mem + 1); 995 996 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 997 chan->header1.type = UPGT_H1_TYPE_CTRL; 998 chan->header1.len = htole16( 999 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 1000 1001 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1002 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 1003 chan->header2.flags = 0; 1004 1005 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 1006 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1007 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1008 chan->settings = sc->sc_eeprom_freq6_settings; 1009 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1010 1011 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 1012 sizeof(chan->freq3_1)); 1013 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 1014 sizeof(sc->sc_eeprom_freq4[channel])); 1015 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 1016 sizeof(chan->freq3_2)); 1017 1018 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 1019 1020 mem->chksum = upgt_chksum_le((uint32_t *)chan, 1021 data_cmd->buflen - sizeof(*mem)); 1022 1023 upgt_bulk_tx(sc, data_cmd); 1024 } 1025 1026 static struct ieee80211vap * 1027 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1028 enum ieee80211_opmode opmode, int flags, 1029 const uint8_t bssid[IEEE80211_ADDR_LEN], 1030 const uint8_t mac[IEEE80211_ADDR_LEN]) 1031 { 1032 struct upgt_vap *uvp; 1033 struct ieee80211vap *vap; 1034 1035 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1036 return NULL; 1037 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap), 1038 M_80211_VAP, M_NOWAIT | M_ZERO); 1039 if (uvp == NULL) 1040 return NULL; 1041 vap = &uvp->vap; 1042 /* enable s/w bmiss handling for sta mode */ 1043 ieee80211_vap_setup(ic, vap, name, unit, opmode, 1044 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 1045 1046 /* override state transition machine */ 1047 uvp->newstate = vap->iv_newstate; 1048 vap->iv_newstate = upgt_newstate; 1049 1050 /* setup device rates */ 1051 upgt_setup_rates(vap, ic); 1052 1053 /* complete setup */ 1054 ieee80211_vap_attach(vap, ieee80211_media_change, 1055 ieee80211_media_status); 1056 ic->ic_opmode = opmode; 1057 return vap; 1058 } 1059 1060 static int 1061 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1062 { 1063 struct upgt_vap *uvp = UPGT_VAP(vap); 1064 struct ieee80211com *ic = vap->iv_ic; 1065 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1066 1067 /* do it in a process context */ 1068 sc->sc_state = nstate; 1069 1070 IEEE80211_UNLOCK(ic); 1071 UPGT_LOCK(sc); 1072 callout_stop(&sc->sc_led_ch); 1073 callout_stop(&sc->sc_watchdog_ch); 1074 1075 switch (nstate) { 1076 case IEEE80211_S_INIT: 1077 /* do not accept any frames if the device is down */ 1078 (void)upgt_set_macfilter(sc, sc->sc_state); 1079 upgt_set_led(sc, UPGT_LED_OFF); 1080 break; 1081 case IEEE80211_S_SCAN: 1082 upgt_set_chan(sc, ic->ic_curchan); 1083 break; 1084 case IEEE80211_S_AUTH: 1085 upgt_set_chan(sc, ic->ic_curchan); 1086 break; 1087 case IEEE80211_S_ASSOC: 1088 break; 1089 case IEEE80211_S_RUN: 1090 upgt_set_macfilter(sc, sc->sc_state); 1091 upgt_set_led(sc, UPGT_LED_ON); 1092 break; 1093 default: 1094 break; 1095 } 1096 UPGT_UNLOCK(sc); 1097 IEEE80211_LOCK(ic); 1098 return (uvp->newstate(vap, nstate, arg)); 1099 } 1100 1101 static void 1102 upgt_vap_delete(struct ieee80211vap *vap) 1103 { 1104 struct upgt_vap *uvp = UPGT_VAP(vap); 1105 1106 ieee80211_vap_detach(vap); 1107 free(uvp, M_80211_VAP); 1108 } 1109 1110 static void 1111 upgt_update_mcast(struct ifnet *ifp) 1112 { 1113 struct upgt_softc *sc = ifp->if_softc; 1114 1115 upgt_set_multi(sc); 1116 } 1117 1118 static int 1119 upgt_eeprom_parse(struct upgt_softc *sc) 1120 { 1121 struct upgt_eeprom_header *eeprom_header; 1122 struct upgt_eeprom_option *eeprom_option; 1123 uint16_t option_len; 1124 uint16_t option_type; 1125 uint16_t preamble_len; 1126 int option_end = 0; 1127 1128 /* calculate eeprom options start offset */ 1129 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1130 preamble_len = le16toh(eeprom_header->preamble_len); 1131 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1132 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1133 1134 while (!option_end) { 1135 1136 /* sanity check */ 1137 if (eeprom_option >= (struct upgt_eeprom_option *) 1138 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { 1139 return (EINVAL); 1140 } 1141 1142 /* the eeprom option length is stored in words */ 1143 option_len = 1144 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1145 option_type = 1146 le16toh(eeprom_option->type); 1147 1148 /* sanity check */ 1149 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) 1150 return (EINVAL); 1151 1152 switch (option_type) { 1153 case UPGT_EEPROM_TYPE_NAME: 1154 DPRINTF(sc, UPGT_DEBUG_FW, 1155 "EEPROM name len=%d\n", option_len); 1156 break; 1157 case UPGT_EEPROM_TYPE_SERIAL: 1158 DPRINTF(sc, UPGT_DEBUG_FW, 1159 "EEPROM serial len=%d\n", option_len); 1160 break; 1161 case UPGT_EEPROM_TYPE_MAC: 1162 DPRINTF(sc, UPGT_DEBUG_FW, 1163 "EEPROM mac len=%d\n", option_len); 1164 1165 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data); 1166 break; 1167 case UPGT_EEPROM_TYPE_HWRX: 1168 DPRINTF(sc, UPGT_DEBUG_FW, 1169 "EEPROM hwrx len=%d\n", option_len); 1170 1171 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1172 break; 1173 case UPGT_EEPROM_TYPE_CHIP: 1174 DPRINTF(sc, UPGT_DEBUG_FW, 1175 "EEPROM chip len=%d\n", option_len); 1176 break; 1177 case UPGT_EEPROM_TYPE_FREQ3: 1178 DPRINTF(sc, UPGT_DEBUG_FW, 1179 "EEPROM freq3 len=%d\n", option_len); 1180 1181 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1182 option_len); 1183 break; 1184 case UPGT_EEPROM_TYPE_FREQ4: 1185 DPRINTF(sc, UPGT_DEBUG_FW, 1186 "EEPROM freq4 len=%d\n", option_len); 1187 1188 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1189 option_len); 1190 break; 1191 case UPGT_EEPROM_TYPE_FREQ5: 1192 DPRINTF(sc, UPGT_DEBUG_FW, 1193 "EEPROM freq5 len=%d\n", option_len); 1194 break; 1195 case UPGT_EEPROM_TYPE_FREQ6: 1196 DPRINTF(sc, UPGT_DEBUG_FW, 1197 "EEPROM freq6 len=%d\n", option_len); 1198 1199 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1200 option_len); 1201 break; 1202 case UPGT_EEPROM_TYPE_END: 1203 DPRINTF(sc, UPGT_DEBUG_FW, 1204 "EEPROM end len=%d\n", option_len); 1205 option_end = 1; 1206 break; 1207 case UPGT_EEPROM_TYPE_OFF: 1208 DPRINTF(sc, UPGT_DEBUG_FW, 1209 "%s: EEPROM off without end option\n", __func__); 1210 return (EIO); 1211 default: 1212 DPRINTF(sc, UPGT_DEBUG_FW, 1213 "EEPROM unknown type 0x%04x len=%d\n", 1214 option_type, option_len); 1215 break; 1216 } 1217 1218 /* jump to next EEPROM option */ 1219 eeprom_option = (struct upgt_eeprom_option *) 1220 (eeprom_option->data + option_len); 1221 } 1222 return (0); 1223 } 1224 1225 static void 1226 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1227 { 1228 struct upgt_eeprom_freq3_header *freq3_header; 1229 struct upgt_lmac_freq3 *freq3; 1230 int i; 1231 int elements; 1232 int flags; 1233 unsigned channel; 1234 1235 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1236 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1237 1238 flags = freq3_header->flags; 1239 elements = freq3_header->elements; 1240 1241 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1242 flags, elements); 1243 1244 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) 1245 return; 1246 1247 for (i = 0; i < elements; i++) { 1248 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1249 if (channel >= IEEE80211_CHAN_MAX) 1250 continue; 1251 1252 sc->sc_eeprom_freq3[channel] = freq3[i]; 1253 1254 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1255 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1256 } 1257 } 1258 1259 void 1260 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1261 { 1262 struct upgt_eeprom_freq4_header *freq4_header; 1263 struct upgt_eeprom_freq4_1 *freq4_1; 1264 struct upgt_eeprom_freq4_2 *freq4_2; 1265 int i; 1266 int j; 1267 int elements; 1268 int settings; 1269 int flags; 1270 unsigned channel; 1271 1272 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1273 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1274 flags = freq4_header->flags; 1275 elements = freq4_header->elements; 1276 settings = freq4_header->settings; 1277 1278 /* we need this value later */ 1279 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1280 1281 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1282 flags, elements, settings); 1283 1284 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) 1285 return; 1286 1287 for (i = 0; i < elements; i++) { 1288 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1289 if (channel >= IEEE80211_CHAN_MAX) 1290 continue; 1291 1292 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1293 for (j = 0; j < settings; j++) { 1294 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1295 sc->sc_eeprom_freq4[channel][j].pad = 0; 1296 } 1297 1298 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1299 le16toh(freq4_1[i].freq), channel); 1300 } 1301 } 1302 1303 void 1304 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1305 { 1306 struct upgt_lmac_freq6 *freq6; 1307 int i; 1308 int elements; 1309 unsigned channel; 1310 1311 freq6 = (struct upgt_lmac_freq6 *)data; 1312 elements = len / sizeof(struct upgt_lmac_freq6); 1313 1314 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1315 1316 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) 1317 return; 1318 1319 for (i = 0; i < elements; i++) { 1320 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1321 if (channel >= IEEE80211_CHAN_MAX) 1322 continue; 1323 1324 sc->sc_eeprom_freq6[channel] = freq6[i]; 1325 1326 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1327 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1328 } 1329 } 1330 1331 static void 1332 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1333 { 1334 struct upgt_eeprom_option_hwrx *option_hwrx; 1335 1336 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1337 1338 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1339 1340 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1341 sc->sc_eeprom_hwrx); 1342 } 1343 1344 static int 1345 upgt_eeprom_read(struct upgt_softc *sc) 1346 { 1347 struct upgt_data *data_cmd; 1348 struct upgt_lmac_mem *mem; 1349 struct upgt_lmac_eeprom *eeprom; 1350 int block, error, offset; 1351 1352 UPGT_LOCK(sc); 1353 usb_pause_mtx(&sc->sc_mtx, 100); 1354 1355 offset = 0; 1356 block = UPGT_EEPROM_BLOCK_SIZE; 1357 while (offset < UPGT_EEPROM_SIZE) { 1358 DPRINTF(sc, UPGT_DEBUG_FW, 1359 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1360 1361 data_cmd = upgt_getbuf(sc); 1362 if (data_cmd == NULL) { 1363 UPGT_UNLOCK(sc); 1364 return (ENOBUFS); 1365 } 1366 1367 /* 1368 * Transmit the URB containing the CMD data. 1369 */ 1370 memset(data_cmd->buf, 0, MCLBYTES); 1371 1372 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1373 mem->addr = htole32(sc->sc_memaddr_frame_start + 1374 UPGT_MEMSIZE_FRAME_HEAD); 1375 1376 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1377 eeprom->header1.flags = 0; 1378 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1379 eeprom->header1.len = htole16(( 1380 sizeof(struct upgt_lmac_eeprom) - 1381 sizeof(struct upgt_lmac_header)) + block); 1382 1383 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1384 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1385 eeprom->header2.flags = 0; 1386 1387 eeprom->offset = htole16(offset); 1388 eeprom->len = htole16(block); 1389 1390 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1391 1392 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1393 data_cmd->buflen - sizeof(*mem)); 1394 upgt_bulk_tx(sc, data_cmd); 1395 1396 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1397 if (error != 0) { 1398 device_printf(sc->sc_dev, 1399 "timeout while waiting for EEPROM data\n"); 1400 UPGT_UNLOCK(sc); 1401 return (EIO); 1402 } 1403 1404 offset += block; 1405 if (UPGT_EEPROM_SIZE - offset < block) 1406 block = UPGT_EEPROM_SIZE - offset; 1407 } 1408 1409 UPGT_UNLOCK(sc); 1410 return (0); 1411 } 1412 1413 /* 1414 * When a rx data came in the function returns a mbuf and a rssi values. 1415 */ 1416 static struct mbuf * 1417 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1418 { 1419 struct mbuf *m = NULL; 1420 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1421 struct upgt_lmac_header *header; 1422 struct upgt_lmac_eeprom *eeprom; 1423 uint8_t h1_type; 1424 uint16_t h2_type; 1425 int actlen, sumlen; 1426 1427 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1428 1429 UPGT_ASSERT_LOCKED(sc); 1430 1431 if (actlen < 1) 1432 return (NULL); 1433 1434 /* Check only at the very beginning. */ 1435 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1436 (memcmp(data->buf, "OK", 2) == 0)) { 1437 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1438 wakeup_one(sc); 1439 return (NULL); 1440 } 1441 1442 if (actlen < (int)UPGT_RX_MINSZ) 1443 return (NULL); 1444 1445 /* 1446 * Check what type of frame came in. 1447 */ 1448 header = (struct upgt_lmac_header *)(data->buf + 4); 1449 1450 h1_type = header->header1.type; 1451 h2_type = le16toh(header->header2.type); 1452 1453 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1454 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1455 uint16_t eeprom_offset = le16toh(eeprom->offset); 1456 uint16_t eeprom_len = le16toh(eeprom->len); 1457 1458 DPRINTF(sc, UPGT_DEBUG_FW, 1459 "received EEPROM block (offset=%d, len=%d)\n", 1460 eeprom_offset, eeprom_len); 1461 1462 memcpy(sc->sc_eeprom + eeprom_offset, 1463 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1464 eeprom_len); 1465 1466 /* EEPROM data has arrived in time, wakeup. */ 1467 wakeup(sc); 1468 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1469 h2_type == UPGT_H2_TYPE_TX_DONE) { 1470 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1471 __func__); 1472 upgt_tx_done(sc, data->buf + 4); 1473 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1474 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1475 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1476 __func__); 1477 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1478 rssi); 1479 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1480 h2_type == UPGT_H2_TYPE_STATS) { 1481 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1482 __func__); 1483 /* TODO: what could we do with the statistic data? */ 1484 } else { 1485 /* ignore unknown frame types */ 1486 DPRINTF(sc, UPGT_DEBUG_INTR, 1487 "received unknown frame type 0x%02x\n", 1488 header->header1.type); 1489 } 1490 return (m); 1491 } 1492 1493 /* 1494 * The firmware awaits a checksum for each frame we send to it. 1495 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1496 */ 1497 static uint32_t 1498 upgt_chksum_le(const uint32_t *buf, size_t size) 1499 { 1500 size_t i; 1501 uint32_t crc = 0; 1502 1503 for (i = 0; i < size; i += sizeof(uint32_t)) { 1504 crc = htole32(crc ^ *buf++); 1505 crc = htole32((crc >> 5) ^ (crc << 3)); 1506 } 1507 1508 return (crc); 1509 } 1510 1511 static struct mbuf * 1512 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1513 { 1514 struct ifnet *ifp = sc->sc_ifp; 1515 struct ieee80211com *ic = ifp->if_l2com; 1516 struct upgt_lmac_rx_desc *rxdesc; 1517 struct mbuf *m; 1518 1519 /* 1520 * don't pass packets to the ieee80211 framework if the driver isn't 1521 * RUNNING. 1522 */ 1523 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1524 return (NULL); 1525 1526 /* access RX packet descriptor */ 1527 rxdesc = (struct upgt_lmac_rx_desc *)data; 1528 1529 /* create mbuf which is suitable for strict alignment archs */ 1530 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1531 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1532 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1533 if (m == NULL) { 1534 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1535 return (NULL); 1536 } 1537 m_adj(m, ETHER_ALIGN); 1538 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1539 /* trim FCS */ 1540 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1541 m->m_pkthdr.rcvif = ifp; 1542 1543 if (ieee80211_radiotap_active(ic)) { 1544 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1545 1546 tap->wr_flags = 0; 1547 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1548 tap->wr_antsignal = rxdesc->rssi; 1549 } 1550 ifp->if_ipackets++; 1551 1552 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1553 *rssi = rxdesc->rssi; 1554 return (m); 1555 } 1556 1557 static uint8_t 1558 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1559 { 1560 struct ifnet *ifp = sc->sc_ifp; 1561 struct ieee80211com *ic = ifp->if_l2com; 1562 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1563 static const uint8_t ofdm_upgt2rate[12] = 1564 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1565 1566 if (ic->ic_curmode == IEEE80211_MODE_11B && 1567 !(rate < 0 || rate > 3)) 1568 return cck_upgt2rate[rate & 0xf]; 1569 1570 if (ic->ic_curmode == IEEE80211_MODE_11G && 1571 !(rate < 0 || rate > 11)) 1572 return ofdm_upgt2rate[rate & 0xf]; 1573 1574 return (0); 1575 } 1576 1577 static void 1578 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1579 { 1580 struct ifnet *ifp = sc->sc_ifp; 1581 struct upgt_lmac_tx_done_desc *desc; 1582 int i, freed = 0; 1583 1584 UPGT_ASSERT_LOCKED(sc); 1585 1586 desc = (struct upgt_lmac_tx_done_desc *)data; 1587 1588 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1589 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1590 1591 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1592 upgt_mem_free(sc, data_tx->addr); 1593 data_tx->ni = NULL; 1594 data_tx->addr = 0; 1595 data_tx->m = NULL; 1596 1597 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1598 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1599 le32toh(desc->header2.reqid), 1600 le16toh(desc->status), le16toh(desc->rssi)); 1601 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1602 le16toh(desc->seq)); 1603 1604 freed++; 1605 } 1606 } 1607 1608 if (freed != 0) { 1609 sc->sc_tx_timer = 0; 1610 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1611 UPGT_UNLOCK(sc); 1612 upgt_start(ifp); 1613 UPGT_LOCK(sc); 1614 } 1615 } 1616 1617 static void 1618 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1619 { 1620 int i; 1621 1622 for (i = 0; i < sc->sc_memory.pages; i++) { 1623 if (sc->sc_memory.page[i].addr == addr) { 1624 sc->sc_memory.page[i].used = 0; 1625 return; 1626 } 1627 } 1628 1629 device_printf(sc->sc_dev, 1630 "could not free memory address 0x%08x\n", addr); 1631 } 1632 1633 static int 1634 upgt_fw_load(struct upgt_softc *sc) 1635 { 1636 const struct firmware *fw; 1637 struct upgt_data *data_cmd; 1638 struct upgt_fw_x2_header *x2; 1639 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1640 int error = 0; 1641 size_t offset; 1642 int bsize; 1643 int n; 1644 uint32_t crc32; 1645 1646 fw = firmware_get(upgt_fwname); 1647 if (fw == NULL) { 1648 device_printf(sc->sc_dev, "could not read microcode %s\n", 1649 upgt_fwname); 1650 return (EIO); 1651 } 1652 1653 UPGT_LOCK(sc); 1654 1655 /* send firmware start load command */ 1656 data_cmd = upgt_getbuf(sc); 1657 if (data_cmd == NULL) { 1658 error = ENOBUFS; 1659 goto fail; 1660 } 1661 data_cmd->buflen = sizeof(start_fwload_cmd); 1662 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1663 upgt_bulk_tx(sc, data_cmd); 1664 1665 /* send X2 header */ 1666 data_cmd = upgt_getbuf(sc); 1667 if (data_cmd == NULL) { 1668 error = ENOBUFS; 1669 goto fail; 1670 } 1671 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1672 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1673 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1674 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1675 x2->len = htole32(fw->datasize); 1676 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1677 UPGT_X2_SIGNATURE_SIZE, 1678 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1679 sizeof(uint32_t)); 1680 upgt_bulk_tx(sc, data_cmd); 1681 1682 /* download firmware */ 1683 for (offset = 0; offset < fw->datasize; offset += bsize) { 1684 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1685 bsize = UPGT_FW_BLOCK_SIZE; 1686 else 1687 bsize = fw->datasize - offset; 1688 1689 data_cmd = upgt_getbuf(sc); 1690 if (data_cmd == NULL) { 1691 error = ENOBUFS; 1692 goto fail; 1693 } 1694 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1695 data_cmd->buf, bsize); 1696 data_cmd->buflen = bsize; 1697 upgt_bulk_tx(sc, data_cmd); 1698 1699 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", 1700 offset, n, bsize); 1701 bsize = n; 1702 } 1703 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1704 1705 /* load firmware */ 1706 data_cmd = upgt_getbuf(sc); 1707 if (data_cmd == NULL) { 1708 error = ENOBUFS; 1709 goto fail; 1710 } 1711 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1712 *((uint32_t *)(data_cmd->buf) ) = crc32; 1713 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1714 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1715 data_cmd->buflen = 6; 1716 upgt_bulk_tx(sc, data_cmd); 1717 1718 /* waiting 'OK' response. */ 1719 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1720 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1721 if (error != 0) { 1722 device_printf(sc->sc_dev, "firmware load failed\n"); 1723 error = EIO; 1724 } 1725 1726 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1727 fail: 1728 UPGT_UNLOCK(sc); 1729 firmware_put(fw, FIRMWARE_UNLOAD); 1730 return (error); 1731 } 1732 1733 static uint32_t 1734 upgt_crc32_le(const void *buf, size_t size) 1735 { 1736 uint32_t crc; 1737 1738 crc = ether_crc32_le(buf, size); 1739 1740 /* apply final XOR value as common for CRC-32 */ 1741 crc = htole32(crc ^ 0xffffffffU); 1742 1743 return (crc); 1744 } 1745 1746 /* 1747 * While copying the version 2 firmware, we need to replace two characters: 1748 * 1749 * 0x7e -> 0x7d 0x5e 1750 * 0x7d -> 0x7d 0x5d 1751 */ 1752 static int 1753 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1754 { 1755 int i, j; 1756 1757 for (i = 0, j = 0; i < size && j < size; i++) { 1758 switch (src[i]) { 1759 case 0x7e: 1760 dst[j] = 0x7d; 1761 j++; 1762 dst[j] = 0x5e; 1763 j++; 1764 break; 1765 case 0x7d: 1766 dst[j] = 0x7d; 1767 j++; 1768 dst[j] = 0x5d; 1769 j++; 1770 break; 1771 default: 1772 dst[j] = src[i]; 1773 j++; 1774 break; 1775 } 1776 } 1777 1778 return (i); 1779 } 1780 1781 static int 1782 upgt_mem_init(struct upgt_softc *sc) 1783 { 1784 int i; 1785 1786 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1787 sc->sc_memory.page[i].used = 0; 1788 1789 if (i == 0) { 1790 /* 1791 * The first memory page is always reserved for 1792 * command data. 1793 */ 1794 sc->sc_memory.page[i].addr = 1795 sc->sc_memaddr_frame_start + MCLBYTES; 1796 } else { 1797 sc->sc_memory.page[i].addr = 1798 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1799 } 1800 1801 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1802 sc->sc_memaddr_frame_end) 1803 break; 1804 1805 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1806 i, sc->sc_memory.page[i].addr); 1807 } 1808 1809 sc->sc_memory.pages = i; 1810 1811 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1812 return (0); 1813 } 1814 1815 static int 1816 upgt_fw_verify(struct upgt_softc *sc) 1817 { 1818 const struct firmware *fw; 1819 const struct upgt_fw_bra_option *bra_opt; 1820 const struct upgt_fw_bra_descr *descr; 1821 const uint8_t *p; 1822 const uint32_t *uc; 1823 uint32_t bra_option_type, bra_option_len; 1824 size_t offset; 1825 int bra_end = 0; 1826 int error = 0; 1827 1828 fw = firmware_get(upgt_fwname); 1829 if (fw == NULL) { 1830 device_printf(sc->sc_dev, "could not read microcode %s\n", 1831 upgt_fwname); 1832 return EIO; 1833 } 1834 1835 /* 1836 * Seek to beginning of Boot Record Area (BRA). 1837 */ 1838 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1839 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1840 if (*uc == 0) 1841 break; 1842 } 1843 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1844 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1845 if (*uc != 0) 1846 break; 1847 } 1848 if (offset == fw->datasize) { 1849 device_printf(sc->sc_dev, 1850 "firmware Boot Record Area not found\n"); 1851 error = EIO; 1852 goto fail; 1853 } 1854 1855 DPRINTF(sc, UPGT_DEBUG_FW, 1856 "firmware Boot Record Area found at offset %d\n", offset); 1857 1858 /* 1859 * Parse Boot Record Area (BRA) options. 1860 */ 1861 while (offset < fw->datasize && bra_end == 0) { 1862 /* get current BRA option */ 1863 p = (const uint8_t *)fw->data + offset; 1864 bra_opt = (const struct upgt_fw_bra_option *)p; 1865 bra_option_type = le32toh(bra_opt->type); 1866 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1867 1868 switch (bra_option_type) { 1869 case UPGT_BRA_TYPE_FW: 1870 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1871 bra_option_len); 1872 1873 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1874 device_printf(sc->sc_dev, 1875 "wrong UPGT_BRA_TYPE_FW len\n"); 1876 error = EIO; 1877 goto fail; 1878 } 1879 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1880 bra_option_len) == 0) { 1881 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1882 break; 1883 } 1884 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1885 bra_option_len) == 0) { 1886 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1887 break; 1888 } 1889 device_printf(sc->sc_dev, 1890 "unsupported firmware type\n"); 1891 error = EIO; 1892 goto fail; 1893 case UPGT_BRA_TYPE_VERSION: 1894 DPRINTF(sc, UPGT_DEBUG_FW, 1895 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1896 break; 1897 case UPGT_BRA_TYPE_DEPIF: 1898 DPRINTF(sc, UPGT_DEBUG_FW, 1899 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1900 break; 1901 case UPGT_BRA_TYPE_EXPIF: 1902 DPRINTF(sc, UPGT_DEBUG_FW, 1903 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1904 break; 1905 case UPGT_BRA_TYPE_DESCR: 1906 DPRINTF(sc, UPGT_DEBUG_FW, 1907 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1908 1909 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1910 1911 sc->sc_memaddr_frame_start = 1912 le32toh(descr->memaddr_space_start); 1913 sc->sc_memaddr_frame_end = 1914 le32toh(descr->memaddr_space_end); 1915 1916 DPRINTF(sc, UPGT_DEBUG_FW, 1917 "memory address space start=0x%08x\n", 1918 sc->sc_memaddr_frame_start); 1919 DPRINTF(sc, UPGT_DEBUG_FW, 1920 "memory address space end=0x%08x\n", 1921 sc->sc_memaddr_frame_end); 1922 break; 1923 case UPGT_BRA_TYPE_END: 1924 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1925 bra_option_len); 1926 bra_end = 1; 1927 break; 1928 default: 1929 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1930 bra_option_len); 1931 error = EIO; 1932 goto fail; 1933 } 1934 1935 /* jump to next BRA option */ 1936 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1937 } 1938 1939 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1940 fail: 1941 firmware_put(fw, FIRMWARE_UNLOAD); 1942 return (error); 1943 } 1944 1945 static void 1946 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1947 { 1948 1949 UPGT_ASSERT_LOCKED(sc); 1950 1951 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1952 UPGT_STAT_INC(sc, st_tx_pending); 1953 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1954 } 1955 1956 static int 1957 upgt_device_reset(struct upgt_softc *sc) 1958 { 1959 struct upgt_data *data; 1960 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1961 1962 UPGT_LOCK(sc); 1963 1964 data = upgt_getbuf(sc); 1965 if (data == NULL) { 1966 UPGT_UNLOCK(sc); 1967 return (ENOBUFS); 1968 } 1969 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1970 data->buflen = sizeof(init_cmd); 1971 upgt_bulk_tx(sc, data); 1972 usb_pause_mtx(&sc->sc_mtx, 100); 1973 1974 UPGT_UNLOCK(sc); 1975 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1976 return (0); 1977 } 1978 1979 static int 1980 upgt_alloc_tx(struct upgt_softc *sc) 1981 { 1982 int i; 1983 1984 STAILQ_INIT(&sc->sc_tx_active); 1985 STAILQ_INIT(&sc->sc_tx_inactive); 1986 STAILQ_INIT(&sc->sc_tx_pending); 1987 1988 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1989 struct upgt_data *data = &sc->sc_tx_data[i]; 1990 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1991 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1992 UPGT_STAT_INC(sc, st_tx_inactive); 1993 } 1994 1995 return (0); 1996 } 1997 1998 static int 1999 upgt_alloc_rx(struct upgt_softc *sc) 2000 { 2001 int i; 2002 2003 STAILQ_INIT(&sc->sc_rx_active); 2004 STAILQ_INIT(&sc->sc_rx_inactive); 2005 2006 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 2007 struct upgt_data *data = &sc->sc_rx_data[i]; 2008 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 2009 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2010 } 2011 return (0); 2012 } 2013 2014 static int 2015 upgt_detach(device_t dev) 2016 { 2017 struct upgt_softc *sc = device_get_softc(dev); 2018 struct ifnet *ifp = sc->sc_ifp; 2019 struct ieee80211com *ic = ifp->if_l2com; 2020 unsigned int x; 2021 2022 /* 2023 * Prevent further allocations from RX/TX/CMD 2024 * data lists and ioctls 2025 */ 2026 UPGT_LOCK(sc); 2027 sc->sc_flags |= UPGT_FLAG_DETACHED; 2028 2029 STAILQ_INIT(&sc->sc_tx_active); 2030 STAILQ_INIT(&sc->sc_tx_inactive); 2031 STAILQ_INIT(&sc->sc_tx_pending); 2032 2033 STAILQ_INIT(&sc->sc_rx_active); 2034 STAILQ_INIT(&sc->sc_rx_inactive); 2035 UPGT_UNLOCK(sc); 2036 2037 upgt_stop(sc); 2038 2039 callout_drain(&sc->sc_led_ch); 2040 callout_drain(&sc->sc_watchdog_ch); 2041 2042 /* drain USB transfers */ 2043 for (x = 0; x != UPGT_N_XFERS; x++) 2044 usbd_transfer_drain(sc->sc_xfer[x]); 2045 2046 /* free data buffers */ 2047 UPGT_LOCK(sc); 2048 upgt_free_rx(sc); 2049 upgt_free_tx(sc); 2050 UPGT_UNLOCK(sc); 2051 2052 /* free USB transfers and some data buffers */ 2053 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 2054 2055 ieee80211_ifdetach(ic); 2056 if_free(ifp); 2057 mtx_destroy(&sc->sc_mtx); 2058 2059 return (0); 2060 } 2061 2062 static void 2063 upgt_free_rx(struct upgt_softc *sc) 2064 { 2065 int i; 2066 2067 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 2068 struct upgt_data *data = &sc->sc_rx_data[i]; 2069 2070 data->buf = NULL; 2071 data->ni = NULL; 2072 } 2073 } 2074 2075 static void 2076 upgt_free_tx(struct upgt_softc *sc) 2077 { 2078 int i; 2079 2080 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 2081 struct upgt_data *data = &sc->sc_tx_data[i]; 2082 2083 if (data->ni != NULL) 2084 ieee80211_free_node(data->ni); 2085 2086 data->buf = NULL; 2087 data->ni = NULL; 2088 } 2089 } 2090 2091 static void 2092 upgt_abort_xfers_locked(struct upgt_softc *sc) 2093 { 2094 int i; 2095 2096 UPGT_ASSERT_LOCKED(sc); 2097 /* abort any pending transfers */ 2098 for (i = 0; i < UPGT_N_XFERS; i++) 2099 usbd_transfer_stop(sc->sc_xfer[i]); 2100 } 2101 2102 static void 2103 upgt_abort_xfers(struct upgt_softc *sc) 2104 { 2105 2106 UPGT_LOCK(sc); 2107 upgt_abort_xfers_locked(sc); 2108 UPGT_UNLOCK(sc); 2109 } 2110 2111 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2112 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2113 2114 static void 2115 upgt_sysctl_node(struct upgt_softc *sc) 2116 { 2117 struct sysctl_ctx_list *ctx; 2118 struct sysctl_oid_list *child; 2119 struct sysctl_oid *tree; 2120 struct upgt_stat *stats; 2121 2122 stats = &sc->sc_stat; 2123 ctx = device_get_sysctl_ctx(sc->sc_dev); 2124 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2125 2126 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2127 NULL, "UPGT statistics"); 2128 child = SYSCTL_CHILDREN(tree); 2129 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2130 &stats->st_tx_active, "Active numbers in TX queue"); 2131 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2132 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2133 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2134 &stats->st_tx_pending, "Pending numbers in TX queue"); 2135 } 2136 2137 #undef UPGT_SYSCTL_STAT_ADD32 2138 2139 static struct upgt_data * 2140 _upgt_getbuf(struct upgt_softc *sc) 2141 { 2142 struct upgt_data *bf; 2143 2144 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2145 if (bf != NULL) { 2146 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2147 UPGT_STAT_DEC(sc, st_tx_inactive); 2148 } else 2149 bf = NULL; 2150 if (bf == NULL) 2151 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2152 "out of xmit buffers"); 2153 return (bf); 2154 } 2155 2156 static struct upgt_data * 2157 upgt_getbuf(struct upgt_softc *sc) 2158 { 2159 struct upgt_data *bf; 2160 2161 UPGT_ASSERT_LOCKED(sc); 2162 2163 bf = _upgt_getbuf(sc); 2164 if (bf == NULL) { 2165 struct ifnet *ifp = sc->sc_ifp; 2166 2167 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2168 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2169 } 2170 2171 return (bf); 2172 } 2173 2174 static struct upgt_data * 2175 upgt_gettxbuf(struct upgt_softc *sc) 2176 { 2177 struct upgt_data *bf; 2178 2179 UPGT_ASSERT_LOCKED(sc); 2180 2181 bf = upgt_getbuf(sc); 2182 if (bf == NULL) 2183 return (NULL); 2184 2185 bf->addr = upgt_mem_alloc(sc); 2186 if (bf->addr == 0) { 2187 struct ifnet *ifp = sc->sc_ifp; 2188 2189 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2190 __func__); 2191 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2192 UPGT_STAT_INC(sc, st_tx_inactive); 2193 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) 2194 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2195 return (NULL); 2196 } 2197 return (bf); 2198 } 2199 2200 static int 2201 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2202 struct upgt_data *data) 2203 { 2204 struct ieee80211vap *vap = ni->ni_vap; 2205 int error = 0, len; 2206 struct ieee80211_frame *wh; 2207 struct ieee80211_key *k; 2208 struct ifnet *ifp = sc->sc_ifp; 2209 struct upgt_lmac_mem *mem; 2210 struct upgt_lmac_tx_desc *txdesc; 2211 2212 UPGT_ASSERT_LOCKED(sc); 2213 2214 upgt_set_led(sc, UPGT_LED_BLINK); 2215 2216 /* 2217 * Software crypto. 2218 */ 2219 wh = mtod(m, struct ieee80211_frame *); 2220 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2221 k = ieee80211_crypto_encap(ni, m); 2222 if (k == NULL) { 2223 device_printf(sc->sc_dev, 2224 "ieee80211_crypto_encap returns NULL.\n"); 2225 error = EIO; 2226 goto done; 2227 } 2228 2229 /* in case packet header moved, reset pointer */ 2230 wh = mtod(m, struct ieee80211_frame *); 2231 } 2232 2233 /* Transmit the URB containing the TX data. */ 2234 memset(data->buf, 0, MCLBYTES); 2235 mem = (struct upgt_lmac_mem *)data->buf; 2236 mem->addr = htole32(data->addr); 2237 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2238 2239 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2240 IEEE80211_FC0_TYPE_MGT) { 2241 /* mgmt frames */ 2242 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2243 /* always send mgmt frames at lowest rate (DS1) */ 2244 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2245 } else { 2246 /* data frames */ 2247 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2248 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2249 } 2250 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2251 txdesc->header1.len = htole16(m->m_pkthdr.len); 2252 txdesc->header2.reqid = htole32(data->addr); 2253 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2254 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2255 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2256 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2257 2258 if (ieee80211_radiotap_active_vap(vap)) { 2259 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2260 2261 tap->wt_flags = 0; 2262 tap->wt_rate = 0; /* XXX where to get from? */ 2263 2264 ieee80211_radiotap_tx(vap, m); 2265 } 2266 2267 /* copy frame below our TX descriptor header */ 2268 m_copydata(m, 0, m->m_pkthdr.len, 2269 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2270 /* calculate frame size */ 2271 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2272 /* we need to align the frame to a 4 byte boundary */ 2273 len = (len + 3) & ~3; 2274 /* calculate frame checksum */ 2275 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2276 data->ni = ni; 2277 data->m = m; 2278 data->buflen = len; 2279 2280 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2281 __func__, len); 2282 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2283 2284 upgt_bulk_tx(sc, data); 2285 done: 2286 /* 2287 * If we don't regulary read the device statistics, the RX queue 2288 * will stall. It's strange, but it works, so we keep reading 2289 * the statistics here. *shrug* 2290 */ 2291 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL)) 2292 upgt_get_stats(sc); 2293 2294 return (error); 2295 } 2296 2297 static void 2298 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2299 { 2300 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2301 struct ifnet *ifp = sc->sc_ifp; 2302 struct ieee80211com *ic = ifp->if_l2com; 2303 struct ieee80211_frame *wh; 2304 struct ieee80211_node *ni; 2305 struct mbuf *m = NULL; 2306 struct upgt_data *data; 2307 int8_t nf; 2308 int rssi = -1; 2309 2310 UPGT_ASSERT_LOCKED(sc); 2311 2312 switch (USB_GET_STATE(xfer)) { 2313 case USB_ST_TRANSFERRED: 2314 data = STAILQ_FIRST(&sc->sc_rx_active); 2315 if (data == NULL) 2316 goto setup; 2317 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2318 m = upgt_rxeof(xfer, data, &rssi); 2319 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2320 /* FALLTHROUGH */ 2321 case USB_ST_SETUP: 2322 setup: 2323 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2324 if (data == NULL) 2325 return; 2326 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2327 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2328 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2329 usbd_transfer_submit(xfer); 2330 2331 /* 2332 * To avoid LOR we should unlock our private mutex here to call 2333 * ieee80211_input() because here is at the end of a USB 2334 * callback and safe to unlock. 2335 */ 2336 UPGT_UNLOCK(sc); 2337 if (m != NULL) { 2338 wh = mtod(m, struct ieee80211_frame *); 2339 ni = ieee80211_find_rxnode(ic, 2340 (struct ieee80211_frame_min *)wh); 2341 nf = -95; /* XXX */ 2342 if (ni != NULL) { 2343 (void) ieee80211_input(ni, m, rssi, nf); 2344 /* node is no longer needed */ 2345 ieee80211_free_node(ni); 2346 } else 2347 (void) ieee80211_input_all(ic, m, rssi, nf); 2348 m = NULL; 2349 } 2350 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2351 !IFQ_IS_EMPTY(&ifp->if_snd)) 2352 upgt_start(ifp); 2353 UPGT_LOCK(sc); 2354 break; 2355 default: 2356 /* needs it to the inactive queue due to a error. */ 2357 data = STAILQ_FIRST(&sc->sc_rx_active); 2358 if (data != NULL) { 2359 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2360 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2361 } 2362 if (error != USB_ERR_CANCELLED) { 2363 usbd_xfer_set_stall(xfer); 2364 ifp->if_ierrors++; 2365 goto setup; 2366 } 2367 break; 2368 } 2369 } 2370 2371 static void 2372 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2373 { 2374 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2375 struct ifnet *ifp = sc->sc_ifp; 2376 struct upgt_data *data; 2377 2378 UPGT_ASSERT_LOCKED(sc); 2379 switch (USB_GET_STATE(xfer)) { 2380 case USB_ST_TRANSFERRED: 2381 data = STAILQ_FIRST(&sc->sc_tx_active); 2382 if (data == NULL) 2383 goto setup; 2384 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2385 UPGT_STAT_DEC(sc, st_tx_active); 2386 upgt_txeof(xfer, data); 2387 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2388 UPGT_STAT_INC(sc, st_tx_inactive); 2389 /* FALLTHROUGH */ 2390 case USB_ST_SETUP: 2391 setup: 2392 data = STAILQ_FIRST(&sc->sc_tx_pending); 2393 if (data == NULL) { 2394 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2395 __func__); 2396 return; 2397 } 2398 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2399 UPGT_STAT_DEC(sc, st_tx_pending); 2400 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2401 UPGT_STAT_INC(sc, st_tx_active); 2402 2403 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2404 usbd_transfer_submit(xfer); 2405 UPGT_UNLOCK(sc); 2406 upgt_start(ifp); 2407 UPGT_LOCK(sc); 2408 break; 2409 default: 2410 data = STAILQ_FIRST(&sc->sc_tx_active); 2411 if (data == NULL) 2412 goto setup; 2413 if (data->ni != NULL) { 2414 ieee80211_free_node(data->ni); 2415 data->ni = NULL; 2416 ifp->if_oerrors++; 2417 } 2418 if (error != USB_ERR_CANCELLED) { 2419 usbd_xfer_set_stall(xfer); 2420 goto setup; 2421 } 2422 break; 2423 } 2424 } 2425 2426 static device_method_t upgt_methods[] = { 2427 /* Device interface */ 2428 DEVMETHOD(device_probe, upgt_match), 2429 DEVMETHOD(device_attach, upgt_attach), 2430 DEVMETHOD(device_detach, upgt_detach), 2431 DEVMETHOD_END 2432 }; 2433 2434 static driver_t upgt_driver = { 2435 .name = "upgt", 2436 .methods = upgt_methods, 2437 .size = sizeof(struct upgt_softc) 2438 }; 2439 2440 static devclass_t upgt_devclass; 2441 2442 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); 2443 MODULE_VERSION(if_upgt, 1); 2444 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2445 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2446 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2447