xref: /freebsd/sys/dev/usb/wlan/if_upgt.c (revision 3055dc3e484f726cebd855aa0610e6b9383b6b87)
1 /*	$OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2 /*	$FreeBSD$ */
3 
4 /*
5  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/param.h>
21 #include <sys/systm.h>
22 #include <sys/kernel.h>
23 #include <sys/endian.h>
24 #include <sys/firmware.h>
25 #include <sys/linker.h>
26 #include <sys/mbuf.h>
27 #include <sys/malloc.h>
28 #include <sys/module.h>
29 #include <sys/socket.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 
33 #include <net/if.h>
34 #include <net/if_var.h>
35 #include <net/if_arp.h>
36 #include <net/ethernet.h>
37 #include <net/if_dl.h>
38 #include <net/if_media.h>
39 #include <net/if_types.h>
40 
41 #include <sys/bus.h>
42 #include <machine/bus.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_phy.h>
46 #include <net80211/ieee80211_radiotap.h>
47 #include <net80211/ieee80211_regdomain.h>
48 
49 #include <net/bpf.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include "usbdevs.h"
54 
55 #include <dev/usb/wlan/if_upgtvar.h>
56 
57 /*
58  * Driver for the USB PrismGT devices.
59  *
60  * For now just USB 2.0 devices with the GW3887 chipset are supported.
61  * The driver has been written based on the firmware version 2.13.1.0_LM87.
62  *
63  * TODO's:
64  * - MONITOR mode test.
65  * - Add HOSTAP mode.
66  * - Add IBSS mode.
67  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
68  *
69  * Parts of this driver has been influenced by reading the p54u driver
70  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
71  * Sebastien Bourdeauducq <lekernel@prism54.org>.
72  */
73 
74 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
75     "USB PrismGT GW3887 driver parameters");
76 
77 #ifdef UPGT_DEBUG
78 int upgt_debug = 0;
79 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug,
80 	    0, "control debugging printfs");
81 TUNABLE_INT("hw.upgt.debug", &upgt_debug);
82 enum {
83 	UPGT_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
84 	UPGT_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
85 	UPGT_DEBUG_RESET	= 0x00000004,	/* reset processing */
86 	UPGT_DEBUG_INTR		= 0x00000008,	/* INTR */
87 	UPGT_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
88 	UPGT_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
89 	UPGT_DEBUG_STATE	= 0x00000040,	/* 802.11 state transitions */
90 	UPGT_DEBUG_STAT		= 0x00000080,	/* statistic */
91 	UPGT_DEBUG_FW		= 0x00000100,	/* firmware */
92 	UPGT_DEBUG_ANY		= 0xffffffff
93 };
94 #define	DPRINTF(sc, m, fmt, ...) do {				\
95 	if (sc->sc_debug & (m))					\
96 		printf(fmt, __VA_ARGS__);			\
97 } while (0)
98 #else
99 #define	DPRINTF(sc, m, fmt, ...) do {				\
100 	(void) sc;						\
101 } while (0)
102 #endif
103 
104 /*
105  * Prototypes.
106  */
107 static device_probe_t upgt_match;
108 static device_attach_t upgt_attach;
109 static device_detach_t upgt_detach;
110 static int	upgt_alloc_tx(struct upgt_softc *);
111 static int	upgt_alloc_rx(struct upgt_softc *);
112 static int	upgt_device_reset(struct upgt_softc *);
113 static void	upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
114 static int	upgt_fw_verify(struct upgt_softc *);
115 static int	upgt_mem_init(struct upgt_softc *);
116 static int	upgt_fw_load(struct upgt_softc *);
117 static int	upgt_fw_copy(const uint8_t *, char *, int);
118 static uint32_t	upgt_crc32_le(const void *, size_t);
119 static struct mbuf *
120 		upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
121 static struct mbuf *
122 		upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
123 static void	upgt_txeof(struct usb_xfer *, struct upgt_data *);
124 static int	upgt_eeprom_read(struct upgt_softc *);
125 static int	upgt_eeprom_parse(struct upgt_softc *);
126 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
127 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
128 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
129 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
130 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
131 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
132 static void	upgt_init(void *);
133 static void	upgt_init_locked(struct upgt_softc *);
134 static int	upgt_ioctl(struct ifnet *, u_long, caddr_t);
135 static void	upgt_start(struct ifnet *);
136 static int	upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
137 		    const struct ieee80211_bpf_params *);
138 static void	upgt_scan_start(struct ieee80211com *);
139 static void	upgt_scan_end(struct ieee80211com *);
140 static void	upgt_set_channel(struct ieee80211com *);
141 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
142 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
143 		    const uint8_t [IEEE80211_ADDR_LEN],
144 		    const uint8_t [IEEE80211_ADDR_LEN]);
145 static void	upgt_vap_delete(struct ieee80211vap *);
146 static void	upgt_update_mcast(struct ifnet *);
147 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
148 static void	upgt_set_multi(void *);
149 static void	upgt_stop(struct upgt_softc *);
150 static void	upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
151 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
152 static int	upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
153 static void	upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
154 static void	upgt_set_led(struct upgt_softc *, int);
155 static void	upgt_set_led_blink(void *);
156 static void	upgt_get_stats(struct upgt_softc *);
157 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
158 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
159 static void	upgt_free_tx(struct upgt_softc *);
160 static void	upgt_free_rx(struct upgt_softc *);
161 static void	upgt_watchdog(void *);
162 static void	upgt_abort_xfers(struct upgt_softc *);
163 static void	upgt_abort_xfers_locked(struct upgt_softc *);
164 static void	upgt_sysctl_node(struct upgt_softc *);
165 static struct upgt_data *
166 		upgt_getbuf(struct upgt_softc *);
167 static struct upgt_data *
168 		upgt_gettxbuf(struct upgt_softc *);
169 static int	upgt_tx_start(struct upgt_softc *, struct mbuf *,
170 		    struct ieee80211_node *, struct upgt_data *);
171 
172 static const char *upgt_fwname = "upgt-gw3887";
173 
174 static const STRUCT_USB_HOST_ID upgt_devs[] = {
175 #define	UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
176 	/* version 2 devices */
177 	UPGT_DEV(ACCTON,	PRISM_GT),
178 	UPGT_DEV(BELKIN,	F5D7050),
179 	UPGT_DEV(CISCOLINKSYS,	WUSB54AG),
180 	UPGT_DEV(CONCEPTRONIC,	PRISM_GT),
181 	UPGT_DEV(DELL,		PRISM_GT_1),
182 	UPGT_DEV(DELL,		PRISM_GT_2),
183 	UPGT_DEV(FSC,		E5400),
184 	UPGT_DEV(GLOBESPAN,	PRISM_GT_1),
185 	UPGT_DEV(GLOBESPAN,	PRISM_GT_2),
186 	UPGT_DEV(NETGEAR,	WG111V2_2),
187 	UPGT_DEV(INTERSIL,	PRISM_GT),
188 	UPGT_DEV(SMC,		2862WG),
189 	UPGT_DEV(USR,		USR5422),
190 	UPGT_DEV(WISTRONNEWEB,	UR045G),
191 	UPGT_DEV(XYRATEX,	PRISM_GT_1),
192 	UPGT_DEV(XYRATEX,	PRISM_GT_2),
193 	UPGT_DEV(ZCOM,		XG703A),
194 	UPGT_DEV(ZCOM,		XM142)
195 };
196 
197 static usb_callback_t upgt_bulk_rx_callback;
198 static usb_callback_t upgt_bulk_tx_callback;
199 
200 static const struct usb_config upgt_config[UPGT_N_XFERS] = {
201 	[UPGT_BULK_TX] = {
202 		.type = UE_BULK,
203 		.endpoint = UE_ADDR_ANY,
204 		.direction = UE_DIR_OUT,
205 		.bufsize = MCLBYTES * UPGT_TX_MAXCOUNT,
206 		.flags = {
207 			.force_short_xfer = 1,
208 			.pipe_bof = 1
209 		},
210 		.callback = upgt_bulk_tx_callback,
211 		.timeout = UPGT_USB_TIMEOUT,	/* ms */
212 	},
213 	[UPGT_BULK_RX] = {
214 		.type = UE_BULK,
215 		.endpoint = UE_ADDR_ANY,
216 		.direction = UE_DIR_IN,
217 		.bufsize = MCLBYTES * UPGT_RX_MAXCOUNT,
218 		.flags = {
219 			.pipe_bof = 1,
220 			.short_xfer_ok = 1
221 		},
222 		.callback = upgt_bulk_rx_callback,
223 	},
224 };
225 
226 static int
227 upgt_match(device_t dev)
228 {
229 	struct usb_attach_arg *uaa = device_get_ivars(dev);
230 
231 	if (uaa->usb_mode != USB_MODE_HOST)
232 		return (ENXIO);
233 	if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
234 		return (ENXIO);
235 	if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
236 		return (ENXIO);
237 
238 	return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
239 }
240 
241 static int
242 upgt_attach(device_t dev)
243 {
244 	int error;
245 	struct ieee80211com *ic;
246 	struct ifnet *ifp;
247 	struct upgt_softc *sc = device_get_softc(dev);
248 	struct usb_attach_arg *uaa = device_get_ivars(dev);
249 	uint8_t bands, iface_index = UPGT_IFACE_INDEX;
250 
251 	sc->sc_dev = dev;
252 	sc->sc_udev = uaa->device;
253 #ifdef UPGT_DEBUG
254 	sc->sc_debug = upgt_debug;
255 #endif
256 	device_set_usb_desc(dev);
257 
258 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
259 	    MTX_DEF);
260 	callout_init(&sc->sc_led_ch, 0);
261 	callout_init(&sc->sc_watchdog_ch, 0);
262 
263 	error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
264 	    upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
265 	if (error) {
266 		device_printf(dev, "could not allocate USB transfers, "
267 		    "err=%s\n", usbd_errstr(error));
268 		goto fail1;
269 	}
270 
271 	sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer(
272 	    sc->sc_xfer[UPGT_BULK_RX], 0);
273 	sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(
274 	    sc->sc_xfer[UPGT_BULK_TX], 0);
275 
276 	/* Setup TX and RX buffers */
277 	error = upgt_alloc_tx(sc);
278 	if (error)
279 		goto fail2;
280 	error = upgt_alloc_rx(sc);
281 	if (error)
282 		goto fail3;
283 
284 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
285 	if (ifp == NULL) {
286 		device_printf(dev, "can not if_alloc()\n");
287 		goto fail4;
288 	}
289 
290 	/* Initialize the device.  */
291 	error = upgt_device_reset(sc);
292 	if (error)
293 		goto fail5;
294 	/* Verify the firmware.  */
295 	error = upgt_fw_verify(sc);
296 	if (error)
297 		goto fail5;
298 	/* Calculate device memory space.  */
299 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
300 		device_printf(dev,
301 		    "could not find memory space addresses on FW\n");
302 		error = EIO;
303 		goto fail5;
304 	}
305 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
306 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
307 
308 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
309 	    sc->sc_memaddr_frame_start);
310 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
311 	    sc->sc_memaddr_frame_end);
312 	DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
313 	    sc->sc_memaddr_rx_start);
314 
315 	upgt_mem_init(sc);
316 
317 	/* Load the firmware.  */
318 	error = upgt_fw_load(sc);
319 	if (error)
320 		goto fail5;
321 
322 	/* Read the whole EEPROM content and parse it.  */
323 	error = upgt_eeprom_read(sc);
324 	if (error)
325 		goto fail5;
326 	error = upgt_eeprom_parse(sc);
327 	if (error)
328 		goto fail5;
329 
330 	/* all works related with the device have done here. */
331 	upgt_abort_xfers(sc);
332 
333 	/* Setup the 802.11 device.  */
334 	ifp->if_softc = sc;
335 	if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
336 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 	ifp->if_init = upgt_init;
338 	ifp->if_ioctl = upgt_ioctl;
339 	ifp->if_start = upgt_start;
340 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
341 	IFQ_SET_READY(&ifp->if_snd);
342 
343 	ic = ifp->if_l2com;
344 	ic->ic_ifp = ifp;
345 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
346 	ic->ic_opmode = IEEE80211_M_STA;
347 	/* set device capabilities */
348 	ic->ic_caps =
349 		  IEEE80211_C_STA		/* station mode */
350 		| IEEE80211_C_MONITOR		/* monitor mode */
351 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
352 	        | IEEE80211_C_SHSLOT		/* short slot time supported */
353 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
354 	        | IEEE80211_C_WPA		/* 802.11i */
355 		;
356 
357 	bands = 0;
358 	setbit(&bands, IEEE80211_MODE_11B);
359 	setbit(&bands, IEEE80211_MODE_11G);
360 	ieee80211_init_channels(ic, NULL, &bands);
361 
362 	ieee80211_ifattach(ic, sc->sc_myaddr);
363 	ic->ic_raw_xmit = upgt_raw_xmit;
364 	ic->ic_scan_start = upgt_scan_start;
365 	ic->ic_scan_end = upgt_scan_end;
366 	ic->ic_set_channel = upgt_set_channel;
367 
368 	ic->ic_vap_create = upgt_vap_create;
369 	ic->ic_vap_delete = upgt_vap_delete;
370 	ic->ic_update_mcast = upgt_update_mcast;
371 
372 	ieee80211_radiotap_attach(ic,
373 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
374 		UPGT_TX_RADIOTAP_PRESENT,
375 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
376 		UPGT_RX_RADIOTAP_PRESENT);
377 
378 	upgt_sysctl_node(sc);
379 
380 	if (bootverbose)
381 		ieee80211_announce(ic);
382 
383 	return (0);
384 
385 fail5:	if_free(ifp);
386 fail4:	upgt_free_rx(sc);
387 fail3:	upgt_free_tx(sc);
388 fail2:	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
389 fail1:	mtx_destroy(&sc->sc_mtx);
390 
391 	return (error);
392 }
393 
394 static void
395 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
396 {
397 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
398 	struct ifnet *ifp = sc->sc_ifp;
399 	struct mbuf *m;
400 
401 	UPGT_ASSERT_LOCKED(sc);
402 
403 	/*
404 	 * Do any tx complete callback.  Note this must be done before releasing
405 	 * the node reference.
406 	 */
407 	if (data->m) {
408 		m = data->m;
409 		if (m->m_flags & M_TXCB) {
410 			/* XXX status? */
411 			ieee80211_process_callback(data->ni, m, 0);
412 		}
413 		m_freem(m);
414 		data->m = NULL;
415 	}
416 	if (data->ni) {
417 		ieee80211_free_node(data->ni);
418 		data->ni = NULL;
419 	}
420 	ifp->if_opackets++;
421 }
422 
423 static void
424 upgt_get_stats(struct upgt_softc *sc)
425 {
426 	struct upgt_data *data_cmd;
427 	struct upgt_lmac_mem *mem;
428 	struct upgt_lmac_stats *stats;
429 
430 	data_cmd = upgt_getbuf(sc);
431 	if (data_cmd == NULL) {
432 		device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
433 		return;
434 	}
435 
436 	/*
437 	 * Transmit the URB containing the CMD data.
438 	 */
439 	memset(data_cmd->buf, 0, MCLBYTES);
440 
441 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
442 	mem->addr = htole32(sc->sc_memaddr_frame_start +
443 	    UPGT_MEMSIZE_FRAME_HEAD);
444 
445 	stats = (struct upgt_lmac_stats *)(mem + 1);
446 
447 	stats->header1.flags = 0;
448 	stats->header1.type = UPGT_H1_TYPE_CTRL;
449 	stats->header1.len = htole16(
450 	    sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
451 
452 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
453 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
454 	stats->header2.flags = 0;
455 
456 	data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
457 
458 	mem->chksum = upgt_chksum_le((uint32_t *)stats,
459 	    data_cmd->buflen - sizeof(*mem));
460 
461 	upgt_bulk_tx(sc, data_cmd);
462 }
463 
464 static int
465 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
466 {
467 	struct upgt_softc *sc = ifp->if_softc;
468 	struct ieee80211com *ic = ifp->if_l2com;
469 	struct ifreq *ifr = (struct ifreq *) data;
470 	int error;
471 	int startall = 0;
472 
473 	UPGT_LOCK(sc);
474 	error = (sc->sc_flags & UPGT_FLAG_DETACHED) ? ENXIO : 0;
475 	UPGT_UNLOCK(sc);
476 	if (error)
477 		return (error);
478 
479 	switch (cmd) {
480 	case SIOCSIFFLAGS:
481 		if (ifp->if_flags & IFF_UP) {
482 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
483 				if ((ifp->if_flags ^ sc->sc_if_flags) &
484 				    (IFF_ALLMULTI | IFF_PROMISC))
485 					upgt_set_multi(sc);
486 			} else {
487 				upgt_init(sc);
488 				startall = 1;
489 			}
490 		} else {
491 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
492 				upgt_stop(sc);
493 		}
494 		sc->sc_if_flags = ifp->if_flags;
495 		if (startall)
496 			ieee80211_start_all(ic);
497 		break;
498 	case SIOCGIFMEDIA:
499 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
500 		break;
501 	case SIOCGIFADDR:
502 		error = ether_ioctl(ifp, cmd, data);
503 		break;
504 	default:
505 		error = EINVAL;
506 		break;
507 	}
508 	return error;
509 }
510 
511 static void
512 upgt_stop_locked(struct upgt_softc *sc)
513 {
514 	struct ifnet *ifp = sc->sc_ifp;
515 
516 	UPGT_ASSERT_LOCKED(sc);
517 
518 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
519 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
520 	upgt_abort_xfers_locked(sc);
521 }
522 
523 static void
524 upgt_stop(struct upgt_softc *sc)
525 {
526 	struct ifnet *ifp = sc->sc_ifp;
527 
528 	UPGT_LOCK(sc);
529 	upgt_stop_locked(sc);
530 	UPGT_UNLOCK(sc);
531 
532 	/* device down */
533 	sc->sc_tx_timer = 0;
534 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
535 	sc->sc_flags &= ~UPGT_FLAG_INITDONE;
536 }
537 
538 static void
539 upgt_set_led(struct upgt_softc *sc, int action)
540 {
541 	struct upgt_data *data_cmd;
542 	struct upgt_lmac_mem *mem;
543 	struct upgt_lmac_led *led;
544 
545 	data_cmd = upgt_getbuf(sc);
546 	if (data_cmd == NULL) {
547 		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
548 		return;
549 	}
550 
551 	/*
552 	 * Transmit the URB containing the CMD data.
553 	 */
554 	memset(data_cmd->buf, 0, MCLBYTES);
555 
556 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
557 	mem->addr = htole32(sc->sc_memaddr_frame_start +
558 	    UPGT_MEMSIZE_FRAME_HEAD);
559 
560 	led = (struct upgt_lmac_led *)(mem + 1);
561 
562 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
563 	led->header1.type = UPGT_H1_TYPE_CTRL;
564 	led->header1.len = htole16(
565 	    sizeof(struct upgt_lmac_led) -
566 	    sizeof(struct upgt_lmac_header));
567 
568 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
569 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
570 	led->header2.flags = 0;
571 
572 	switch (action) {
573 	case UPGT_LED_OFF:
574 		led->mode = htole16(UPGT_LED_MODE_SET);
575 		led->action_fix = 0;
576 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
577 		led->action_tmp_dur = 0;
578 		break;
579 	case UPGT_LED_ON:
580 		led->mode = htole16(UPGT_LED_MODE_SET);
581 		led->action_fix = 0;
582 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
583 		led->action_tmp_dur = 0;
584 		break;
585 	case UPGT_LED_BLINK:
586 		if (sc->sc_state != IEEE80211_S_RUN) {
587 			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
588 			return;
589 		}
590 		if (sc->sc_led_blink) {
591 			/* previous blink was not finished */
592 			STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
593 			return;
594 		}
595 		led->mode = htole16(UPGT_LED_MODE_SET);
596 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
597 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
598 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
599 		/* lock blink */
600 		sc->sc_led_blink = 1;
601 		callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
602 		break;
603 	default:
604 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
605 		return;
606 	}
607 
608 	data_cmd->buflen = sizeof(*mem) + sizeof(*led);
609 
610 	mem->chksum = upgt_chksum_le((uint32_t *)led,
611 	    data_cmd->buflen - sizeof(*mem));
612 
613 	upgt_bulk_tx(sc, data_cmd);
614 }
615 
616 static void
617 upgt_set_led_blink(void *arg)
618 {
619 	struct upgt_softc *sc = arg;
620 
621 	/* blink finished, we are ready for a next one */
622 	sc->sc_led_blink = 0;
623 }
624 
625 static void
626 upgt_init(void *priv)
627 {
628 	struct upgt_softc *sc = priv;
629 	struct ifnet *ifp = sc->sc_ifp;
630 	struct ieee80211com *ic = ifp->if_l2com;
631 
632 	UPGT_LOCK(sc);
633 	upgt_init_locked(sc);
634 	UPGT_UNLOCK(sc);
635 
636 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
637 		ieee80211_start_all(ic);		/* start all vap's */
638 }
639 
640 static void
641 upgt_init_locked(struct upgt_softc *sc)
642 {
643 	struct ifnet *ifp = sc->sc_ifp;
644 
645 	UPGT_ASSERT_LOCKED(sc);
646 
647 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
648 		upgt_stop_locked(sc);
649 
650 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
651 
652 	(void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
653 
654 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
655 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
656 	sc->sc_flags |= UPGT_FLAG_INITDONE;
657 
658 	callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
659 }
660 
661 static int
662 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
663 {
664 	struct ifnet *ifp = sc->sc_ifp;
665 	struct ieee80211com *ic = ifp->if_l2com;
666 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
667 	struct ieee80211_node *ni;
668 	struct upgt_data *data_cmd;
669 	struct upgt_lmac_mem *mem;
670 	struct upgt_lmac_filter *filter;
671 	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
672 
673 	UPGT_ASSERT_LOCKED(sc);
674 
675 	data_cmd = upgt_getbuf(sc);
676 	if (data_cmd == NULL) {
677 		device_printf(sc->sc_dev, "out of TX buffers.\n");
678 		return (ENOBUFS);
679 	}
680 
681 	/*
682 	 * Transmit the URB containing the CMD data.
683 	 */
684 	memset(data_cmd->buf, 0, MCLBYTES);
685 
686 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
687 	mem->addr = htole32(sc->sc_memaddr_frame_start +
688 	    UPGT_MEMSIZE_FRAME_HEAD);
689 
690 	filter = (struct upgt_lmac_filter *)(mem + 1);
691 
692 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
693 	filter->header1.type = UPGT_H1_TYPE_CTRL;
694 	filter->header1.len = htole16(
695 	    sizeof(struct upgt_lmac_filter) -
696 	    sizeof(struct upgt_lmac_header));
697 
698 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
699 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
700 	filter->header2.flags = 0;
701 
702 	switch (state) {
703 	case IEEE80211_S_INIT:
704 		DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
705 		    __func__);
706 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
707 		break;
708 	case IEEE80211_S_SCAN:
709 		DPRINTF(sc, UPGT_DEBUG_STATE,
710 		    "set MAC filter to SCAN (bssid %s)\n",
711 		    ether_sprintf(broadcast));
712 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
713 		IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
714 		IEEE80211_ADDR_COPY(filter->src, broadcast);
715 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
716 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
717 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
718 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
719 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
720 		break;
721 	case IEEE80211_S_RUN:
722 		ni = ieee80211_ref_node(vap->iv_bss);
723 		/* XXX monitor mode isn't tested yet.  */
724 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
725 			filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
726 			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
727 			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
728 			filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
729 			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
730 			filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
731 			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
732 			filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
733 		} else {
734 			DPRINTF(sc, UPGT_DEBUG_STATE,
735 			    "set MAC filter to RUN (bssid %s)\n",
736 			    ether_sprintf(ni->ni_bssid));
737 			filter->type = htole16(UPGT_FILTER_TYPE_STA);
738 			IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
739 			IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
740 			filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
741 			filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
742 			filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
743 			filter->rxhw = htole32(sc->sc_eeprom_hwrx);
744 			filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
745 		}
746 		ieee80211_free_node(ni);
747 		break;
748 	default:
749 		device_printf(sc->sc_dev,
750 		    "MAC filter does not know that state\n");
751 		break;
752 	}
753 
754 	data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
755 
756 	mem->chksum = upgt_chksum_le((uint32_t *)filter,
757 	    data_cmd->buflen - sizeof(*mem));
758 
759 	upgt_bulk_tx(sc, data_cmd);
760 
761 	return (0);
762 }
763 
764 static void
765 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
766 {
767 	struct ifnet *ifp = ic->ic_ifp;
768 	struct upgt_softc *sc = ifp->if_softc;
769 	const struct ieee80211_txparam *tp;
770 
771 	/*
772 	 * 0x01 = OFMD6   0x10 = DS1
773 	 * 0x04 = OFDM9   0x11 = DS2
774 	 * 0x06 = OFDM12  0x12 = DS5
775 	 * 0x07 = OFDM18  0x13 = DS11
776 	 * 0x08 = OFDM24
777 	 * 0x09 = OFDM36
778 	 * 0x0a = OFDM48
779 	 * 0x0b = OFDM54
780 	 */
781 	const uint8_t rateset_auto_11b[] =
782 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
783 	const uint8_t rateset_auto_11g[] =
784 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
785 	const uint8_t rateset_fix_11bg[] =
786 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
787 	      0x08, 0x09, 0x0a, 0x0b };
788 
789 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
790 
791 	/* XXX */
792 	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
793 		/*
794 		 * Automatic rate control is done by the device.
795 		 * We just pass the rateset from which the device
796 		 * will pickup a rate.
797 		 */
798 		if (ic->ic_curmode == IEEE80211_MODE_11B)
799 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
800 			    sizeof(sc->sc_cur_rateset));
801 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
802 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
803 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
804 			    sizeof(sc->sc_cur_rateset));
805 	} else {
806 		/* set a fixed rate */
807 		memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
808 		    sizeof(sc->sc_cur_rateset));
809 	}
810 }
811 
812 static void
813 upgt_set_multi(void *arg)
814 {
815 	struct upgt_softc *sc = arg;
816 	struct ifnet *ifp = sc->sc_ifp;
817 
818 	if (!(ifp->if_flags & IFF_UP))
819 		return;
820 
821 	/*
822 	 * XXX don't know how to set a device.  Lack of docs.  Just try to set
823 	 * IFF_ALLMULTI flag here.
824 	 */
825 	ifp->if_flags |= IFF_ALLMULTI;
826 }
827 
828 static void
829 upgt_start(struct ifnet *ifp)
830 {
831 	struct upgt_softc *sc = ifp->if_softc;
832 	struct upgt_data *data_tx;
833 	struct ieee80211_node *ni;
834 	struct mbuf *m;
835 
836 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
837 		return;
838 
839 	UPGT_LOCK(sc);
840 	for (;;) {
841 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
842 		if (m == NULL)
843 			break;
844 
845 		data_tx = upgt_gettxbuf(sc);
846 		if (data_tx == NULL) {
847 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
848 			break;
849 		}
850 
851 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
852 		m->m_pkthdr.rcvif = NULL;
853 
854 		if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
855 			STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
856 			UPGT_STAT_INC(sc, st_tx_inactive);
857 			ieee80211_free_node(ni);
858 			ifp->if_oerrors++;
859 			continue;
860 		}
861 		sc->sc_tx_timer = 5;
862 	}
863 	UPGT_UNLOCK(sc);
864 }
865 
866 static int
867 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
868 	const struct ieee80211_bpf_params *params)
869 {
870 	struct ieee80211com *ic = ni->ni_ic;
871 	struct ifnet *ifp = ic->ic_ifp;
872 	struct upgt_softc *sc = ifp->if_softc;
873 	struct upgt_data *data_tx = NULL;
874 
875 	/* prevent management frames from being sent if we're not ready */
876 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
877 		m_freem(m);
878 		ieee80211_free_node(ni);
879 		return ENETDOWN;
880 	}
881 
882 	UPGT_LOCK(sc);
883 	data_tx = upgt_gettxbuf(sc);
884 	if (data_tx == NULL) {
885 		ieee80211_free_node(ni);
886 		m_freem(m);
887 		UPGT_UNLOCK(sc);
888 		return (ENOBUFS);
889 	}
890 
891 	if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
892 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
893 		UPGT_STAT_INC(sc, st_tx_inactive);
894 		ieee80211_free_node(ni);
895 		ifp->if_oerrors++;
896 		UPGT_UNLOCK(sc);
897 		return (EIO);
898 	}
899 	UPGT_UNLOCK(sc);
900 
901 	sc->sc_tx_timer = 5;
902 	return (0);
903 }
904 
905 static void
906 upgt_watchdog(void *arg)
907 {
908 	struct upgt_softc *sc = arg;
909 	struct ifnet *ifp = sc->sc_ifp;
910 
911 	if (sc->sc_tx_timer > 0) {
912 		if (--sc->sc_tx_timer == 0) {
913 			device_printf(sc->sc_dev, "watchdog timeout\n");
914 			/* upgt_init(ifp); XXX needs a process context ? */
915 			ifp->if_oerrors++;
916 			return;
917 		}
918 		callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
919 	}
920 }
921 
922 static uint32_t
923 upgt_mem_alloc(struct upgt_softc *sc)
924 {
925 	int i;
926 
927 	for (i = 0; i < sc->sc_memory.pages; i++) {
928 		if (sc->sc_memory.page[i].used == 0) {
929 			sc->sc_memory.page[i].used = 1;
930 			return (sc->sc_memory.page[i].addr);
931 		}
932 	}
933 
934 	return (0);
935 }
936 
937 static void
938 upgt_scan_start(struct ieee80211com *ic)
939 {
940 	/* do nothing.  */
941 }
942 
943 static void
944 upgt_scan_end(struct ieee80211com *ic)
945 {
946 	/* do nothing.  */
947 }
948 
949 static void
950 upgt_set_channel(struct ieee80211com *ic)
951 {
952 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
953 
954 	UPGT_LOCK(sc);
955 	upgt_set_chan(sc, ic->ic_curchan);
956 	UPGT_UNLOCK(sc);
957 }
958 
959 static void
960 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
961 {
962 	struct ifnet *ifp = sc->sc_ifp;
963 	struct ieee80211com *ic = ifp->if_l2com;
964 	struct upgt_data *data_cmd;
965 	struct upgt_lmac_mem *mem;
966 	struct upgt_lmac_channel *chan;
967 	int channel;
968 
969 	UPGT_ASSERT_LOCKED(sc);
970 
971 	channel = ieee80211_chan2ieee(ic, c);
972 	if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
973 		/* XXX should NEVER happen */
974 		device_printf(sc->sc_dev,
975 		    "%s: invalid channel %x\n", __func__, channel);
976 		return;
977 	}
978 
979 	DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
980 
981 	data_cmd = upgt_getbuf(sc);
982 	if (data_cmd == NULL) {
983 		device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
984 		return;
985 	}
986 	/*
987 	 * Transmit the URB containing the CMD data.
988 	 */
989 	memset(data_cmd->buf, 0, MCLBYTES);
990 
991 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
992 	mem->addr = htole32(sc->sc_memaddr_frame_start +
993 	    UPGT_MEMSIZE_FRAME_HEAD);
994 
995 	chan = (struct upgt_lmac_channel *)(mem + 1);
996 
997 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
998 	chan->header1.type = UPGT_H1_TYPE_CTRL;
999 	chan->header1.len = htole16(
1000 	    sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
1001 
1002 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1003 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1004 	chan->header2.flags = 0;
1005 
1006 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
1007 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1008 	chan->freq6 = sc->sc_eeprom_freq6[channel];
1009 	chan->settings = sc->sc_eeprom_freq6_settings;
1010 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1011 
1012 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
1013 	    sizeof(chan->freq3_1));
1014 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
1015 	    sizeof(sc->sc_eeprom_freq4[channel]));
1016 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
1017 	    sizeof(chan->freq3_2));
1018 
1019 	data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1020 
1021 	mem->chksum = upgt_chksum_le((uint32_t *)chan,
1022 	    data_cmd->buflen - sizeof(*mem));
1023 
1024 	upgt_bulk_tx(sc, data_cmd);
1025 }
1026 
1027 static struct ieee80211vap *
1028 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1029     enum ieee80211_opmode opmode, int flags,
1030     const uint8_t bssid[IEEE80211_ADDR_LEN],
1031     const uint8_t mac[IEEE80211_ADDR_LEN])
1032 {
1033 	struct upgt_vap *uvp;
1034 	struct ieee80211vap *vap;
1035 
1036 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1037 		return NULL;
1038 	uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1039 	    M_80211_VAP, M_NOWAIT | M_ZERO);
1040 	if (uvp == NULL)
1041 		return NULL;
1042 	vap = &uvp->vap;
1043 	/* enable s/w bmiss handling for sta mode */
1044 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
1045 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1046 
1047 	/* override state transition machine */
1048 	uvp->newstate = vap->iv_newstate;
1049 	vap->iv_newstate = upgt_newstate;
1050 
1051 	/* setup device rates */
1052 	upgt_setup_rates(vap, ic);
1053 
1054 	/* complete setup */
1055 	ieee80211_vap_attach(vap, ieee80211_media_change,
1056 	    ieee80211_media_status);
1057 	ic->ic_opmode = opmode;
1058 	return vap;
1059 }
1060 
1061 static int
1062 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1063 {
1064 	struct upgt_vap *uvp = UPGT_VAP(vap);
1065 	struct ieee80211com *ic = vap->iv_ic;
1066 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1067 
1068 	/* do it in a process context */
1069 	sc->sc_state = nstate;
1070 
1071 	IEEE80211_UNLOCK(ic);
1072 	UPGT_LOCK(sc);
1073 	callout_stop(&sc->sc_led_ch);
1074 	callout_stop(&sc->sc_watchdog_ch);
1075 
1076 	switch (nstate) {
1077 	case IEEE80211_S_INIT:
1078 		/* do not accept any frames if the device is down */
1079 		(void)upgt_set_macfilter(sc, sc->sc_state);
1080 		upgt_set_led(sc, UPGT_LED_OFF);
1081 		break;
1082 	case IEEE80211_S_SCAN:
1083 		upgt_set_chan(sc, ic->ic_curchan);
1084 		break;
1085 	case IEEE80211_S_AUTH:
1086 		upgt_set_chan(sc, ic->ic_curchan);
1087 		break;
1088 	case IEEE80211_S_ASSOC:
1089 		break;
1090 	case IEEE80211_S_RUN:
1091 		upgt_set_macfilter(sc, sc->sc_state);
1092 		upgt_set_led(sc, UPGT_LED_ON);
1093 		break;
1094 	default:
1095 		break;
1096 	}
1097 	UPGT_UNLOCK(sc);
1098 	IEEE80211_LOCK(ic);
1099 	return (uvp->newstate(vap, nstate, arg));
1100 }
1101 
1102 static void
1103 upgt_vap_delete(struct ieee80211vap *vap)
1104 {
1105 	struct upgt_vap *uvp = UPGT_VAP(vap);
1106 
1107 	ieee80211_vap_detach(vap);
1108 	free(uvp, M_80211_VAP);
1109 }
1110 
1111 static void
1112 upgt_update_mcast(struct ifnet *ifp)
1113 {
1114 	struct upgt_softc *sc = ifp->if_softc;
1115 
1116 	upgt_set_multi(sc);
1117 }
1118 
1119 static int
1120 upgt_eeprom_parse(struct upgt_softc *sc)
1121 {
1122 	struct upgt_eeprom_header *eeprom_header;
1123 	struct upgt_eeprom_option *eeprom_option;
1124 	uint16_t option_len;
1125 	uint16_t option_type;
1126 	uint16_t preamble_len;
1127 	int option_end = 0;
1128 
1129 	/* calculate eeprom options start offset */
1130 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1131 	preamble_len = le16toh(eeprom_header->preamble_len);
1132 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1133 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1134 
1135 	while (!option_end) {
1136 
1137 		/* sanity check */
1138 		if (eeprom_option >= (struct upgt_eeprom_option *)
1139 		    (sc->sc_eeprom + UPGT_EEPROM_SIZE)) {
1140 			return (EINVAL);
1141 		}
1142 
1143 		/* the eeprom option length is stored in words */
1144 		option_len =
1145 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1146 		option_type =
1147 		    le16toh(eeprom_option->type);
1148 
1149 		/* sanity check */
1150 		if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE)
1151 			return (EINVAL);
1152 
1153 		switch (option_type) {
1154 		case UPGT_EEPROM_TYPE_NAME:
1155 			DPRINTF(sc, UPGT_DEBUG_FW,
1156 			    "EEPROM name len=%d\n", option_len);
1157 			break;
1158 		case UPGT_EEPROM_TYPE_SERIAL:
1159 			DPRINTF(sc, UPGT_DEBUG_FW,
1160 			    "EEPROM serial len=%d\n", option_len);
1161 			break;
1162 		case UPGT_EEPROM_TYPE_MAC:
1163 			DPRINTF(sc, UPGT_DEBUG_FW,
1164 			    "EEPROM mac len=%d\n", option_len);
1165 
1166 			IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1167 			break;
1168 		case UPGT_EEPROM_TYPE_HWRX:
1169 			DPRINTF(sc, UPGT_DEBUG_FW,
1170 			    "EEPROM hwrx len=%d\n", option_len);
1171 
1172 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1173 			break;
1174 		case UPGT_EEPROM_TYPE_CHIP:
1175 			DPRINTF(sc, UPGT_DEBUG_FW,
1176 			    "EEPROM chip len=%d\n", option_len);
1177 			break;
1178 		case UPGT_EEPROM_TYPE_FREQ3:
1179 			DPRINTF(sc, UPGT_DEBUG_FW,
1180 			    "EEPROM freq3 len=%d\n", option_len);
1181 
1182 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1183 			    option_len);
1184 			break;
1185 		case UPGT_EEPROM_TYPE_FREQ4:
1186 			DPRINTF(sc, UPGT_DEBUG_FW,
1187 			    "EEPROM freq4 len=%d\n", option_len);
1188 
1189 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1190 			    option_len);
1191 			break;
1192 		case UPGT_EEPROM_TYPE_FREQ5:
1193 			DPRINTF(sc, UPGT_DEBUG_FW,
1194 			    "EEPROM freq5 len=%d\n", option_len);
1195 			break;
1196 		case UPGT_EEPROM_TYPE_FREQ6:
1197 			DPRINTF(sc, UPGT_DEBUG_FW,
1198 			    "EEPROM freq6 len=%d\n", option_len);
1199 
1200 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1201 			    option_len);
1202 			break;
1203 		case UPGT_EEPROM_TYPE_END:
1204 			DPRINTF(sc, UPGT_DEBUG_FW,
1205 			    "EEPROM end len=%d\n", option_len);
1206 			option_end = 1;
1207 			break;
1208 		case UPGT_EEPROM_TYPE_OFF:
1209 			DPRINTF(sc, UPGT_DEBUG_FW,
1210 			    "%s: EEPROM off without end option\n", __func__);
1211 			return (EIO);
1212 		default:
1213 			DPRINTF(sc, UPGT_DEBUG_FW,
1214 			    "EEPROM unknown type 0x%04x len=%d\n",
1215 			    option_type, option_len);
1216 			break;
1217 		}
1218 
1219 		/* jump to next EEPROM option */
1220 		eeprom_option = (struct upgt_eeprom_option *)
1221 		    (eeprom_option->data + option_len);
1222 	}
1223 	return (0);
1224 }
1225 
1226 static void
1227 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1228 {
1229 	struct upgt_eeprom_freq3_header *freq3_header;
1230 	struct upgt_lmac_freq3 *freq3;
1231 	int i;
1232 	int elements;
1233 	int flags;
1234 	unsigned channel;
1235 
1236 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1237 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1238 
1239 	flags = freq3_header->flags;
1240 	elements = freq3_header->elements;
1241 
1242 	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1243 	    flags, elements);
1244 
1245 	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0])))
1246 		return;
1247 
1248 	for (i = 0; i < elements; i++) {
1249 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1250 		if (channel >= IEEE80211_CHAN_MAX)
1251 			continue;
1252 
1253 		sc->sc_eeprom_freq3[channel] = freq3[i];
1254 
1255 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1256 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1257 	}
1258 }
1259 
1260 void
1261 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1262 {
1263 	struct upgt_eeprom_freq4_header *freq4_header;
1264 	struct upgt_eeprom_freq4_1 *freq4_1;
1265 	struct upgt_eeprom_freq4_2 *freq4_2;
1266 	int i;
1267 	int j;
1268 	int elements;
1269 	int settings;
1270 	int flags;
1271 	unsigned channel;
1272 
1273 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1274 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1275 	flags = freq4_header->flags;
1276 	elements = freq4_header->elements;
1277 	settings = freq4_header->settings;
1278 
1279 	/* we need this value later */
1280 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1281 
1282 	DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1283 	    flags, elements, settings);
1284 
1285 	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0])))
1286 		return;
1287 
1288 	for (i = 0; i < elements; i++) {
1289 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1290 		if (channel >= IEEE80211_CHAN_MAX)
1291 			continue;
1292 
1293 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1294 		for (j = 0; j < settings; j++) {
1295 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1296 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1297 		}
1298 
1299 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1300 		    le16toh(freq4_1[i].freq), channel);
1301 	}
1302 }
1303 
1304 void
1305 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1306 {
1307 	struct upgt_lmac_freq6 *freq6;
1308 	int i;
1309 	int elements;
1310 	unsigned channel;
1311 
1312 	freq6 = (struct upgt_lmac_freq6 *)data;
1313 	elements = len / sizeof(struct upgt_lmac_freq6);
1314 
1315 	DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1316 
1317 	if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0])))
1318 		return;
1319 
1320 	for (i = 0; i < elements; i++) {
1321 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1322 		if (channel >= IEEE80211_CHAN_MAX)
1323 			continue;
1324 
1325 		sc->sc_eeprom_freq6[channel] = freq6[i];
1326 
1327 		DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1328 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1329 	}
1330 }
1331 
1332 static void
1333 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1334 {
1335 	struct upgt_eeprom_option_hwrx *option_hwrx;
1336 
1337 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1338 
1339 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1340 
1341 	DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1342 	    sc->sc_eeprom_hwrx);
1343 }
1344 
1345 static int
1346 upgt_eeprom_read(struct upgt_softc *sc)
1347 {
1348 	struct upgt_data *data_cmd;
1349 	struct upgt_lmac_mem *mem;
1350 	struct upgt_lmac_eeprom	*eeprom;
1351 	int block, error, offset;
1352 
1353 	UPGT_LOCK(sc);
1354 	usb_pause_mtx(&sc->sc_mtx, 100);
1355 
1356 	offset = 0;
1357 	block = UPGT_EEPROM_BLOCK_SIZE;
1358 	while (offset < UPGT_EEPROM_SIZE) {
1359 		DPRINTF(sc, UPGT_DEBUG_FW,
1360 		    "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1361 
1362 		data_cmd = upgt_getbuf(sc);
1363 		if (data_cmd == NULL) {
1364 			UPGT_UNLOCK(sc);
1365 			return (ENOBUFS);
1366 		}
1367 
1368 		/*
1369 		 * Transmit the URB containing the CMD data.
1370 		 */
1371 		memset(data_cmd->buf, 0, MCLBYTES);
1372 
1373 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
1374 		mem->addr = htole32(sc->sc_memaddr_frame_start +
1375 		    UPGT_MEMSIZE_FRAME_HEAD);
1376 
1377 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1378 		eeprom->header1.flags = 0;
1379 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1380 		eeprom->header1.len = htole16((
1381 		    sizeof(struct upgt_lmac_eeprom) -
1382 		    sizeof(struct upgt_lmac_header)) + block);
1383 
1384 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1385 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1386 		eeprom->header2.flags = 0;
1387 
1388 		eeprom->offset = htole16(offset);
1389 		eeprom->len = htole16(block);
1390 
1391 		data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1392 
1393 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1394 		    data_cmd->buflen - sizeof(*mem));
1395 		upgt_bulk_tx(sc, data_cmd);
1396 
1397 		error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1398 		if (error != 0) {
1399 			device_printf(sc->sc_dev,
1400 			    "timeout while waiting for EEPROM data\n");
1401 			UPGT_UNLOCK(sc);
1402 			return (EIO);
1403 		}
1404 
1405 		offset += block;
1406 		if (UPGT_EEPROM_SIZE - offset < block)
1407 			block = UPGT_EEPROM_SIZE - offset;
1408 	}
1409 
1410 	UPGT_UNLOCK(sc);
1411 	return (0);
1412 }
1413 
1414 /*
1415  * When a rx data came in the function returns a mbuf and a rssi values.
1416  */
1417 static struct mbuf *
1418 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1419 {
1420 	struct mbuf *m = NULL;
1421 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
1422 	struct upgt_lmac_header *header;
1423 	struct upgt_lmac_eeprom *eeprom;
1424 	uint8_t h1_type;
1425 	uint16_t h2_type;
1426 	int actlen, sumlen;
1427 
1428 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1429 
1430 	UPGT_ASSERT_LOCKED(sc);
1431 
1432 	if (actlen < 1)
1433 		return (NULL);
1434 
1435 	/* Check only at the very beginning.  */
1436 	if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1437 	    (memcmp(data->buf, "OK", 2) == 0)) {
1438 		sc->sc_flags |= UPGT_FLAG_FWLOADED;
1439 		wakeup_one(sc);
1440 		return (NULL);
1441 	}
1442 
1443 	if (actlen < (int)UPGT_RX_MINSZ)
1444 		return (NULL);
1445 
1446 	/*
1447 	 * Check what type of frame came in.
1448 	 */
1449 	header = (struct upgt_lmac_header *)(data->buf + 4);
1450 
1451 	h1_type = header->header1.type;
1452 	h2_type = le16toh(header->header2.type);
1453 
1454 	if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1455 		eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1456 		uint16_t eeprom_offset = le16toh(eeprom->offset);
1457 		uint16_t eeprom_len = le16toh(eeprom->len);
1458 
1459 		DPRINTF(sc, UPGT_DEBUG_FW,
1460 		    "received EEPROM block (offset=%d, len=%d)\n",
1461 		    eeprom_offset, eeprom_len);
1462 
1463 		memcpy(sc->sc_eeprom + eeprom_offset,
1464 		    data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1465 		    eeprom_len);
1466 
1467 		/* EEPROM data has arrived in time, wakeup.  */
1468 		wakeup(sc);
1469 	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1470 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1471 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1472 		    __func__);
1473 		upgt_tx_done(sc, data->buf + 4);
1474 	} else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1475 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1476 		DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1477 		    __func__);
1478 		m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1479 		    rssi);
1480 	} else if (h1_type == UPGT_H1_TYPE_CTRL &&
1481 	    h2_type == UPGT_H2_TYPE_STATS) {
1482 		DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1483 		    __func__);
1484 		/* TODO: what could we do with the statistic data? */
1485 	} else {
1486 		/* ignore unknown frame types */
1487 		DPRINTF(sc, UPGT_DEBUG_INTR,
1488 		    "received unknown frame type 0x%02x\n",
1489 		    header->header1.type);
1490 	}
1491 	return (m);
1492 }
1493 
1494 /*
1495  * The firmware awaits a checksum for each frame we send to it.
1496  * The algorithm used therefor is uncommon but somehow similar to CRC32.
1497  */
1498 static uint32_t
1499 upgt_chksum_le(const uint32_t *buf, size_t size)
1500 {
1501 	size_t i;
1502 	uint32_t crc = 0;
1503 
1504 	for (i = 0; i < size; i += sizeof(uint32_t)) {
1505 		crc = htole32(crc ^ *buf++);
1506 		crc = htole32((crc >> 5) ^ (crc << 3));
1507 	}
1508 
1509 	return (crc);
1510 }
1511 
1512 static struct mbuf *
1513 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1514 {
1515 	struct ifnet *ifp = sc->sc_ifp;
1516 	struct ieee80211com *ic = ifp->if_l2com;
1517 	struct upgt_lmac_rx_desc *rxdesc;
1518 	struct mbuf *m;
1519 
1520 	/*
1521 	 * don't pass packets to the ieee80211 framework if the driver isn't
1522 	 * RUNNING.
1523 	 */
1524 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1525 		return (NULL);
1526 
1527 	/* access RX packet descriptor */
1528 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1529 
1530 	/* create mbuf which is suitable for strict alignment archs */
1531 	KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1532 	    ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1533 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1534 	if (m == NULL) {
1535 		device_printf(sc->sc_dev, "could not create RX mbuf\n");
1536 		return (NULL);
1537 	}
1538 	m_adj(m, ETHER_ALIGN);
1539 	memcpy(mtod(m, char *), rxdesc->data, pkglen);
1540 	/* trim FCS */
1541 	m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1542 	m->m_pkthdr.rcvif = ifp;
1543 
1544 	if (ieee80211_radiotap_active(ic)) {
1545 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1546 
1547 		tap->wr_flags = 0;
1548 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1549 		tap->wr_antsignal = rxdesc->rssi;
1550 	}
1551 	ifp->if_ipackets++;
1552 
1553 	DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1554 	*rssi = rxdesc->rssi;
1555 	return (m);
1556 }
1557 
1558 static uint8_t
1559 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1560 {
1561 	struct ifnet *ifp = sc->sc_ifp;
1562 	struct ieee80211com *ic = ifp->if_l2com;
1563 	static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1564 	static const uint8_t ofdm_upgt2rate[12] =
1565 	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1566 
1567 	if (ic->ic_curmode == IEEE80211_MODE_11B &&
1568 	    !(rate < 0 || rate > 3))
1569 		return cck_upgt2rate[rate & 0xf];
1570 
1571 	if (ic->ic_curmode == IEEE80211_MODE_11G &&
1572 	    !(rate < 0 || rate > 11))
1573 		return ofdm_upgt2rate[rate & 0xf];
1574 
1575 	return (0);
1576 }
1577 
1578 static void
1579 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1580 {
1581 	struct ifnet *ifp = sc->sc_ifp;
1582 	struct upgt_lmac_tx_done_desc *desc;
1583 	int i, freed = 0;
1584 
1585 	UPGT_ASSERT_LOCKED(sc);
1586 
1587 	desc = (struct upgt_lmac_tx_done_desc *)data;
1588 
1589 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1590 		struct upgt_data *data_tx = &sc->sc_tx_data[i];
1591 
1592 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1593 			upgt_mem_free(sc, data_tx->addr);
1594 			data_tx->ni = NULL;
1595 			data_tx->addr = 0;
1596 			data_tx->m = NULL;
1597 
1598 			DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1599 			    "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1600 			    le32toh(desc->header2.reqid),
1601 			    le16toh(desc->status), le16toh(desc->rssi));
1602 			DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1603 			    le16toh(desc->seq));
1604 
1605 			freed++;
1606 		}
1607 	}
1608 
1609 	if (freed != 0) {
1610 		sc->sc_tx_timer = 0;
1611 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1612 		UPGT_UNLOCK(sc);
1613 		upgt_start(ifp);
1614 		UPGT_LOCK(sc);
1615 	}
1616 }
1617 
1618 static void
1619 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1620 {
1621 	int i;
1622 
1623 	for (i = 0; i < sc->sc_memory.pages; i++) {
1624 		if (sc->sc_memory.page[i].addr == addr) {
1625 			sc->sc_memory.page[i].used = 0;
1626 			return;
1627 		}
1628 	}
1629 
1630 	device_printf(sc->sc_dev,
1631 	    "could not free memory address 0x%08x\n", addr);
1632 }
1633 
1634 static int
1635 upgt_fw_load(struct upgt_softc *sc)
1636 {
1637 	const struct firmware *fw;
1638 	struct upgt_data *data_cmd;
1639 	struct upgt_fw_x2_header *x2;
1640 	char start_fwload_cmd[] = { 0x3c, 0x0d };
1641 	int error = 0;
1642 	size_t offset;
1643 	int bsize;
1644 	int n;
1645 	uint32_t crc32;
1646 
1647 	fw = firmware_get(upgt_fwname);
1648 	if (fw == NULL) {
1649 		device_printf(sc->sc_dev, "could not read microcode %s\n",
1650 		    upgt_fwname);
1651 		return (EIO);
1652 	}
1653 
1654 	UPGT_LOCK(sc);
1655 
1656 	/* send firmware start load command */
1657 	data_cmd = upgt_getbuf(sc);
1658 	if (data_cmd == NULL) {
1659 		error = ENOBUFS;
1660 		goto fail;
1661 	}
1662 	data_cmd->buflen = sizeof(start_fwload_cmd);
1663 	memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen);
1664 	upgt_bulk_tx(sc, data_cmd);
1665 
1666 	/* send X2 header */
1667 	data_cmd = upgt_getbuf(sc);
1668 	if (data_cmd == NULL) {
1669 		error = ENOBUFS;
1670 		goto fail;
1671 	}
1672 	data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1673 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1674 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
1675 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1676 	x2->len = htole32(fw->datasize);
1677 	x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1678 	    UPGT_X2_SIGNATURE_SIZE,
1679 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1680 	    sizeof(uint32_t));
1681 	upgt_bulk_tx(sc, data_cmd);
1682 
1683 	/* download firmware */
1684 	for (offset = 0; offset < fw->datasize; offset += bsize) {
1685 		if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1686 			bsize = UPGT_FW_BLOCK_SIZE;
1687 		else
1688 			bsize = fw->datasize - offset;
1689 
1690 		data_cmd = upgt_getbuf(sc);
1691 		if (data_cmd == NULL) {
1692 			error = ENOBUFS;
1693 			goto fail;
1694 		}
1695 		n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1696 		    data_cmd->buf, bsize);
1697 		data_cmd->buflen = bsize;
1698 		upgt_bulk_tx(sc, data_cmd);
1699 
1700 		DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1701 		    offset, n, bsize);
1702 		bsize = n;
1703 	}
1704 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1705 
1706 	/* load firmware */
1707 	data_cmd = upgt_getbuf(sc);
1708 	if (data_cmd == NULL) {
1709 		error = ENOBUFS;
1710 		goto fail;
1711 	}
1712 	crc32 = upgt_crc32_le(fw->data, fw->datasize);
1713 	*((uint32_t *)(data_cmd->buf)    ) = crc32;
1714 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
1715 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
1716 	data_cmd->buflen = 6;
1717 	upgt_bulk_tx(sc, data_cmd);
1718 
1719 	/* waiting 'OK' response.  */
1720 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1721 	error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1722 	if (error != 0) {
1723 		device_printf(sc->sc_dev, "firmware load failed\n");
1724 		error = EIO;
1725 	}
1726 
1727 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1728 fail:
1729 	UPGT_UNLOCK(sc);
1730 	firmware_put(fw, FIRMWARE_UNLOAD);
1731 	return (error);
1732 }
1733 
1734 static uint32_t
1735 upgt_crc32_le(const void *buf, size_t size)
1736 {
1737 	uint32_t crc;
1738 
1739 	crc = ether_crc32_le(buf, size);
1740 
1741 	/* apply final XOR value as common for CRC-32 */
1742 	crc = htole32(crc ^ 0xffffffffU);
1743 
1744 	return (crc);
1745 }
1746 
1747 /*
1748  * While copying the version 2 firmware, we need to replace two characters:
1749  *
1750  * 0x7e -> 0x7d 0x5e
1751  * 0x7d -> 0x7d 0x5d
1752  */
1753 static int
1754 upgt_fw_copy(const uint8_t *src, char *dst, int size)
1755 {
1756 	int i, j;
1757 
1758 	for (i = 0, j = 0; i < size && j < size; i++) {
1759 		switch (src[i]) {
1760 		case 0x7e:
1761 			dst[j] = 0x7d;
1762 			j++;
1763 			dst[j] = 0x5e;
1764 			j++;
1765 			break;
1766 		case 0x7d:
1767 			dst[j] = 0x7d;
1768 			j++;
1769 			dst[j] = 0x5d;
1770 			j++;
1771 			break;
1772 		default:
1773 			dst[j] = src[i];
1774 			j++;
1775 			break;
1776 		}
1777 	}
1778 
1779 	return (i);
1780 }
1781 
1782 static int
1783 upgt_mem_init(struct upgt_softc *sc)
1784 {
1785 	int i;
1786 
1787 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1788 		sc->sc_memory.page[i].used = 0;
1789 
1790 		if (i == 0) {
1791 			/*
1792 			 * The first memory page is always reserved for
1793 			 * command data.
1794 			 */
1795 			sc->sc_memory.page[i].addr =
1796 			    sc->sc_memaddr_frame_start + MCLBYTES;
1797 		} else {
1798 			sc->sc_memory.page[i].addr =
1799 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
1800 		}
1801 
1802 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
1803 		    sc->sc_memaddr_frame_end)
1804 			break;
1805 
1806 		DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1807 		    i, sc->sc_memory.page[i].addr);
1808 	}
1809 
1810 	sc->sc_memory.pages = i;
1811 
1812 	DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1813 	return (0);
1814 }
1815 
1816 static int
1817 upgt_fw_verify(struct upgt_softc *sc)
1818 {
1819 	const struct firmware *fw;
1820 	const struct upgt_fw_bra_option *bra_opt;
1821 	const struct upgt_fw_bra_descr *descr;
1822 	const uint8_t *p;
1823 	const uint32_t *uc;
1824 	uint32_t bra_option_type, bra_option_len;
1825 	size_t offset;
1826 	int bra_end = 0;
1827 	int error = 0;
1828 
1829 	fw = firmware_get(upgt_fwname);
1830 	if (fw == NULL) {
1831 		device_printf(sc->sc_dev, "could not read microcode %s\n",
1832 		    upgt_fwname);
1833 		return EIO;
1834 	}
1835 
1836 	/*
1837 	 * Seek to beginning of Boot Record Area (BRA).
1838 	 */
1839 	for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1840 		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1841 		if (*uc == 0)
1842 			break;
1843 	}
1844 	for (; offset < fw->datasize; offset += sizeof(*uc)) {
1845 		uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1846 		if (*uc != 0)
1847 			break;
1848 	}
1849 	if (offset == fw->datasize) {
1850 		device_printf(sc->sc_dev,
1851 		    "firmware Boot Record Area not found\n");
1852 		error = EIO;
1853 		goto fail;
1854 	}
1855 
1856 	DPRINTF(sc, UPGT_DEBUG_FW,
1857 	    "firmware Boot Record Area found at offset %d\n", offset);
1858 
1859 	/*
1860 	 * Parse Boot Record Area (BRA) options.
1861 	 */
1862 	while (offset < fw->datasize && bra_end == 0) {
1863 		/* get current BRA option */
1864 		p = (const uint8_t *)fw->data + offset;
1865 		bra_opt = (const struct upgt_fw_bra_option *)p;
1866 		bra_option_type = le32toh(bra_opt->type);
1867 		bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1868 
1869 		switch (bra_option_type) {
1870 		case UPGT_BRA_TYPE_FW:
1871 			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1872 			    bra_option_len);
1873 
1874 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1875 				device_printf(sc->sc_dev,
1876 				    "wrong UPGT_BRA_TYPE_FW len\n");
1877 				error = EIO;
1878 				goto fail;
1879 			}
1880 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1881 			    bra_option_len) == 0) {
1882 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
1883 				break;
1884 			}
1885 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1886 			    bra_option_len) == 0) {
1887 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
1888 				break;
1889 			}
1890 			device_printf(sc->sc_dev,
1891 			    "unsupported firmware type\n");
1892 			error = EIO;
1893 			goto fail;
1894 		case UPGT_BRA_TYPE_VERSION:
1895 			DPRINTF(sc, UPGT_DEBUG_FW,
1896 			    "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1897 			break;
1898 		case UPGT_BRA_TYPE_DEPIF:
1899 			DPRINTF(sc, UPGT_DEBUG_FW,
1900 			    "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1901 			break;
1902 		case UPGT_BRA_TYPE_EXPIF:
1903 			DPRINTF(sc, UPGT_DEBUG_FW,
1904 			    "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1905 			break;
1906 		case UPGT_BRA_TYPE_DESCR:
1907 			DPRINTF(sc, UPGT_DEBUG_FW,
1908 			    "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1909 
1910 			descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1911 
1912 			sc->sc_memaddr_frame_start =
1913 			    le32toh(descr->memaddr_space_start);
1914 			sc->sc_memaddr_frame_end =
1915 			    le32toh(descr->memaddr_space_end);
1916 
1917 			DPRINTF(sc, UPGT_DEBUG_FW,
1918 			    "memory address space start=0x%08x\n",
1919 			    sc->sc_memaddr_frame_start);
1920 			DPRINTF(sc, UPGT_DEBUG_FW,
1921 			    "memory address space end=0x%08x\n",
1922 			    sc->sc_memaddr_frame_end);
1923 			break;
1924 		case UPGT_BRA_TYPE_END:
1925 			DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1926 			    bra_option_len);
1927 			bra_end = 1;
1928 			break;
1929 		default:
1930 			DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1931 			    bra_option_len);
1932 			error = EIO;
1933 			goto fail;
1934 		}
1935 
1936 		/* jump to next BRA option */
1937 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1938 	}
1939 
1940 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1941 fail:
1942 	firmware_put(fw, FIRMWARE_UNLOAD);
1943 	return (error);
1944 }
1945 
1946 static void
1947 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1948 {
1949 
1950 	UPGT_ASSERT_LOCKED(sc);
1951 
1952 	STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1953 	UPGT_STAT_INC(sc, st_tx_pending);
1954 	usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1955 }
1956 
1957 static int
1958 upgt_device_reset(struct upgt_softc *sc)
1959 {
1960 	struct upgt_data *data;
1961 	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1962 
1963 	UPGT_LOCK(sc);
1964 
1965 	data = upgt_getbuf(sc);
1966 	if (data == NULL) {
1967 		UPGT_UNLOCK(sc);
1968 		return (ENOBUFS);
1969 	}
1970 	memcpy(data->buf, init_cmd, sizeof(init_cmd));
1971 	data->buflen = sizeof(init_cmd);
1972 	upgt_bulk_tx(sc, data);
1973 	usb_pause_mtx(&sc->sc_mtx, 100);
1974 
1975 	UPGT_UNLOCK(sc);
1976 	DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1977 	return (0);
1978 }
1979 
1980 static int
1981 upgt_alloc_tx(struct upgt_softc *sc)
1982 {
1983 	int i;
1984 
1985 	STAILQ_INIT(&sc->sc_tx_active);
1986 	STAILQ_INIT(&sc->sc_tx_inactive);
1987 	STAILQ_INIT(&sc->sc_tx_pending);
1988 
1989 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1990 		struct upgt_data *data = &sc->sc_tx_data[i];
1991 		data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES);
1992 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1993 		UPGT_STAT_INC(sc, st_tx_inactive);
1994 	}
1995 
1996 	return (0);
1997 }
1998 
1999 static int
2000 upgt_alloc_rx(struct upgt_softc *sc)
2001 {
2002 	int i;
2003 
2004 	STAILQ_INIT(&sc->sc_rx_active);
2005 	STAILQ_INIT(&sc->sc_rx_inactive);
2006 
2007 	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2008 		struct upgt_data *data = &sc->sc_rx_data[i];
2009 		data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES);
2010 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2011 	}
2012 	return (0);
2013 }
2014 
2015 static int
2016 upgt_detach(device_t dev)
2017 {
2018 	struct upgt_softc *sc = device_get_softc(dev);
2019 	struct ifnet *ifp = sc->sc_ifp;
2020 	struct ieee80211com *ic = ifp->if_l2com;
2021 	unsigned int x;
2022 
2023 	/*
2024 	 * Prevent further allocations from RX/TX/CMD
2025 	 * data lists and ioctls
2026 	 */
2027 	UPGT_LOCK(sc);
2028 	sc->sc_flags |= UPGT_FLAG_DETACHED;
2029 
2030 	STAILQ_INIT(&sc->sc_tx_active);
2031 	STAILQ_INIT(&sc->sc_tx_inactive);
2032 	STAILQ_INIT(&sc->sc_tx_pending);
2033 
2034 	STAILQ_INIT(&sc->sc_rx_active);
2035 	STAILQ_INIT(&sc->sc_rx_inactive);
2036 	UPGT_UNLOCK(sc);
2037 
2038 	upgt_stop(sc);
2039 
2040 	callout_drain(&sc->sc_led_ch);
2041 	callout_drain(&sc->sc_watchdog_ch);
2042 
2043 	/* drain USB transfers */
2044 	for (x = 0; x != UPGT_N_XFERS; x++)
2045 		usbd_transfer_drain(sc->sc_xfer[x]);
2046 
2047 	/* free data buffers */
2048 	UPGT_LOCK(sc);
2049 	upgt_free_rx(sc);
2050 	upgt_free_tx(sc);
2051 	UPGT_UNLOCK(sc);
2052 
2053 	/* free USB transfers and some data buffers */
2054 	usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2055 
2056 	ieee80211_ifdetach(ic);
2057 	if_free(ifp);
2058 	mtx_destroy(&sc->sc_mtx);
2059 
2060 	return (0);
2061 }
2062 
2063 static void
2064 upgt_free_rx(struct upgt_softc *sc)
2065 {
2066 	int i;
2067 
2068 	for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2069 		struct upgt_data *data = &sc->sc_rx_data[i];
2070 
2071 		data->buf = NULL;
2072 		data->ni = NULL;
2073 	}
2074 }
2075 
2076 static void
2077 upgt_free_tx(struct upgt_softc *sc)
2078 {
2079 	int i;
2080 
2081 	for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2082 		struct upgt_data *data = &sc->sc_tx_data[i];
2083 
2084 		if (data->ni != NULL)
2085 			ieee80211_free_node(data->ni);
2086 
2087 		data->buf = NULL;
2088 		data->ni = NULL;
2089 	}
2090 }
2091 
2092 static void
2093 upgt_abort_xfers_locked(struct upgt_softc *sc)
2094 {
2095 	int i;
2096 
2097 	UPGT_ASSERT_LOCKED(sc);
2098 	/* abort any pending transfers */
2099 	for (i = 0; i < UPGT_N_XFERS; i++)
2100 		usbd_transfer_stop(sc->sc_xfer[i]);
2101 }
2102 
2103 static void
2104 upgt_abort_xfers(struct upgt_softc *sc)
2105 {
2106 
2107 	UPGT_LOCK(sc);
2108 	upgt_abort_xfers_locked(sc);
2109 	UPGT_UNLOCK(sc);
2110 }
2111 
2112 #define	UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2113 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2114 
2115 static void
2116 upgt_sysctl_node(struct upgt_softc *sc)
2117 {
2118 	struct sysctl_ctx_list *ctx;
2119 	struct sysctl_oid_list *child;
2120 	struct sysctl_oid *tree;
2121 	struct upgt_stat *stats;
2122 
2123 	stats = &sc->sc_stat;
2124 	ctx = device_get_sysctl_ctx(sc->sc_dev);
2125 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2126 
2127 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2128 	    NULL, "UPGT statistics");
2129 	child = SYSCTL_CHILDREN(tree);
2130 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2131 	    &stats->st_tx_active, "Active numbers in TX queue");
2132 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2133 	    &stats->st_tx_inactive, "Inactive numbers in TX queue");
2134 	UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2135 	    &stats->st_tx_pending, "Pending numbers in TX queue");
2136 }
2137 
2138 #undef UPGT_SYSCTL_STAT_ADD32
2139 
2140 static struct upgt_data *
2141 _upgt_getbuf(struct upgt_softc *sc)
2142 {
2143 	struct upgt_data *bf;
2144 
2145 	bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2146 	if (bf != NULL) {
2147 		STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2148 		UPGT_STAT_DEC(sc, st_tx_inactive);
2149 	} else
2150 		bf = NULL;
2151 	if (bf == NULL)
2152 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2153 		    "out of xmit buffers");
2154 	return (bf);
2155 }
2156 
2157 static struct upgt_data *
2158 upgt_getbuf(struct upgt_softc *sc)
2159 {
2160 	struct upgt_data *bf;
2161 
2162 	UPGT_ASSERT_LOCKED(sc);
2163 
2164 	bf = _upgt_getbuf(sc);
2165 	if (bf == NULL) {
2166 		struct ifnet *ifp = sc->sc_ifp;
2167 
2168 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2169 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2170 	}
2171 
2172 	return (bf);
2173 }
2174 
2175 static struct upgt_data *
2176 upgt_gettxbuf(struct upgt_softc *sc)
2177 {
2178 	struct upgt_data *bf;
2179 
2180 	UPGT_ASSERT_LOCKED(sc);
2181 
2182 	bf = upgt_getbuf(sc);
2183 	if (bf == NULL)
2184 		return (NULL);
2185 
2186 	bf->addr = upgt_mem_alloc(sc);
2187 	if (bf->addr == 0) {
2188 		struct ifnet *ifp = sc->sc_ifp;
2189 
2190 		DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2191 		    __func__);
2192 		STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2193 		UPGT_STAT_INC(sc, st_tx_inactive);
2194 		if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2195 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2196 		return (NULL);
2197 	}
2198 	return (bf);
2199 }
2200 
2201 static int
2202 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2203     struct upgt_data *data)
2204 {
2205 	struct ieee80211vap *vap = ni->ni_vap;
2206 	int error = 0, len;
2207 	struct ieee80211_frame *wh;
2208 	struct ieee80211_key *k;
2209 	struct ifnet *ifp = sc->sc_ifp;
2210 	struct upgt_lmac_mem *mem;
2211 	struct upgt_lmac_tx_desc *txdesc;
2212 
2213 	UPGT_ASSERT_LOCKED(sc);
2214 
2215 	upgt_set_led(sc, UPGT_LED_BLINK);
2216 
2217 	/*
2218 	 * Software crypto.
2219 	 */
2220 	wh = mtod(m, struct ieee80211_frame *);
2221 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2222 		k = ieee80211_crypto_encap(ni, m);
2223 		if (k == NULL) {
2224 			device_printf(sc->sc_dev,
2225 			    "ieee80211_crypto_encap returns NULL.\n");
2226 			error = EIO;
2227 			goto done;
2228 		}
2229 
2230 		/* in case packet header moved, reset pointer */
2231 		wh = mtod(m, struct ieee80211_frame *);
2232 	}
2233 
2234 	/* Transmit the URB containing the TX data.  */
2235 	memset(data->buf, 0, MCLBYTES);
2236 	mem = (struct upgt_lmac_mem *)data->buf;
2237 	mem->addr = htole32(data->addr);
2238 	txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2239 
2240 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2241 	    IEEE80211_FC0_TYPE_MGT) {
2242 		/* mgmt frames  */
2243 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2244 		/* always send mgmt frames at lowest rate (DS1) */
2245 		memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2246 	} else {
2247 		/* data frames  */
2248 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2249 		memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates));
2250 	}
2251 	txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2252 	txdesc->header1.len = htole16(m->m_pkthdr.len);
2253 	txdesc->header2.reqid = htole32(data->addr);
2254 	txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2255 	txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2256 	txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2257 	txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2258 
2259 	if (ieee80211_radiotap_active_vap(vap)) {
2260 		struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2261 
2262 		tap->wt_flags = 0;
2263 		tap->wt_rate = 0;	/* XXX where to get from? */
2264 
2265 		ieee80211_radiotap_tx(vap, m);
2266 	}
2267 
2268 	/* copy frame below our TX descriptor header */
2269 	m_copydata(m, 0, m->m_pkthdr.len,
2270 	    data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2271 	/* calculate frame size */
2272 	len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2273 	/* we need to align the frame to a 4 byte boundary */
2274 	len = (len + 3) & ~3;
2275 	/* calculate frame checksum */
2276 	mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2277 	data->ni = ni;
2278 	data->m = m;
2279 	data->buflen = len;
2280 
2281 	DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2282 	    __func__, len);
2283 	KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2284 
2285 	upgt_bulk_tx(sc, data);
2286 done:
2287 	/*
2288 	 * If we don't regulary read the device statistics, the RX queue
2289 	 * will stall.  It's strange, but it works, so we keep reading
2290 	 * the statistics here.  *shrug*
2291 	 */
2292 	if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2293 		upgt_get_stats(sc);
2294 
2295 	return (error);
2296 }
2297 
2298 static void
2299 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2300 {
2301 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2302 	struct ifnet *ifp = sc->sc_ifp;
2303 	struct ieee80211com *ic = ifp->if_l2com;
2304 	struct ieee80211_frame *wh;
2305 	struct ieee80211_node *ni;
2306 	struct mbuf *m = NULL;
2307 	struct upgt_data *data;
2308 	int8_t nf;
2309 	int rssi = -1;
2310 
2311 	UPGT_ASSERT_LOCKED(sc);
2312 
2313 	switch (USB_GET_STATE(xfer)) {
2314 	case USB_ST_TRANSFERRED:
2315 		data = STAILQ_FIRST(&sc->sc_rx_active);
2316 		if (data == NULL)
2317 			goto setup;
2318 		STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2319 		m = upgt_rxeof(xfer, data, &rssi);
2320 		STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2321 		/* FALLTHROUGH */
2322 	case USB_ST_SETUP:
2323 setup:
2324 		data = STAILQ_FIRST(&sc->sc_rx_inactive);
2325 		if (data == NULL)
2326 			return;
2327 		STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2328 		STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2329 		usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES);
2330 		usbd_transfer_submit(xfer);
2331 
2332 		/*
2333 		 * To avoid LOR we should unlock our private mutex here to call
2334 		 * ieee80211_input() because here is at the end of a USB
2335 		 * callback and safe to unlock.
2336 		 */
2337 		UPGT_UNLOCK(sc);
2338 		if (m != NULL) {
2339 			wh = mtod(m, struct ieee80211_frame *);
2340 			ni = ieee80211_find_rxnode(ic,
2341 			    (struct ieee80211_frame_min *)wh);
2342 			nf = -95;	/* XXX */
2343 			if (ni != NULL) {
2344 				(void) ieee80211_input(ni, m, rssi, nf);
2345 				/* node is no longer needed */
2346 				ieee80211_free_node(ni);
2347 			} else
2348 				(void) ieee80211_input_all(ic, m, rssi, nf);
2349 			m = NULL;
2350 		}
2351 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2352 		    !IFQ_IS_EMPTY(&ifp->if_snd))
2353 			upgt_start(ifp);
2354 		UPGT_LOCK(sc);
2355 		break;
2356 	default:
2357 		/* needs it to the inactive queue due to a error.  */
2358 		data = STAILQ_FIRST(&sc->sc_rx_active);
2359 		if (data != NULL) {
2360 			STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2361 			STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2362 		}
2363 		if (error != USB_ERR_CANCELLED) {
2364 			usbd_xfer_set_stall(xfer);
2365 			ifp->if_ierrors++;
2366 			goto setup;
2367 		}
2368 		break;
2369 	}
2370 }
2371 
2372 static void
2373 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2374 {
2375 	struct upgt_softc *sc = usbd_xfer_softc(xfer);
2376 	struct ifnet *ifp = sc->sc_ifp;
2377 	struct upgt_data *data;
2378 
2379 	UPGT_ASSERT_LOCKED(sc);
2380 	switch (USB_GET_STATE(xfer)) {
2381 	case USB_ST_TRANSFERRED:
2382 		data = STAILQ_FIRST(&sc->sc_tx_active);
2383 		if (data == NULL)
2384 			goto setup;
2385 		STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2386 		UPGT_STAT_DEC(sc, st_tx_active);
2387 		upgt_txeof(xfer, data);
2388 		STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2389 		UPGT_STAT_INC(sc, st_tx_inactive);
2390 		/* FALLTHROUGH */
2391 	case USB_ST_SETUP:
2392 setup:
2393 		data = STAILQ_FIRST(&sc->sc_tx_pending);
2394 		if (data == NULL) {
2395 			DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2396 			    __func__);
2397 			return;
2398 		}
2399 		STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2400 		UPGT_STAT_DEC(sc, st_tx_pending);
2401 		STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2402 		UPGT_STAT_INC(sc, st_tx_active);
2403 
2404 		usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2405 		usbd_transfer_submit(xfer);
2406 		UPGT_UNLOCK(sc);
2407 		upgt_start(ifp);
2408 		UPGT_LOCK(sc);
2409 		break;
2410 	default:
2411 		data = STAILQ_FIRST(&sc->sc_tx_active);
2412 		if (data == NULL)
2413 			goto setup;
2414 		if (data->ni != NULL) {
2415 			ieee80211_free_node(data->ni);
2416 			data->ni = NULL;
2417 			ifp->if_oerrors++;
2418 		}
2419 		if (error != USB_ERR_CANCELLED) {
2420 			usbd_xfer_set_stall(xfer);
2421 			goto setup;
2422 		}
2423 		break;
2424 	}
2425 }
2426 
2427 static device_method_t upgt_methods[] = {
2428         /* Device interface */
2429         DEVMETHOD(device_probe, upgt_match),
2430         DEVMETHOD(device_attach, upgt_attach),
2431         DEVMETHOD(device_detach, upgt_detach),
2432 	DEVMETHOD_END
2433 };
2434 
2435 static driver_t upgt_driver = {
2436 	.name = "upgt",
2437 	.methods = upgt_methods,
2438 	.size = sizeof(struct upgt_softc)
2439 };
2440 
2441 static devclass_t upgt_devclass;
2442 
2443 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2444 MODULE_VERSION(if_upgt, 1);
2445 MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2446 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2447 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);
2448