1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 /* $FreeBSD$ */ 3 4 /* 5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/param.h> 21 #include <sys/systm.h> 22 #include <sys/kernel.h> 23 #include <sys/endian.h> 24 #include <sys/firmware.h> 25 #include <sys/linker.h> 26 #include <sys/mbuf.h> 27 #include <sys/malloc.h> 28 #include <sys/module.h> 29 #include <sys/socket.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 33 #include <net/if.h> 34 #include <net/if_var.h> 35 #include <net/if_arp.h> 36 #include <net/ethernet.h> 37 #include <net/if_dl.h> 38 #include <net/if_media.h> 39 #include <net/if_types.h> 40 41 #include <sys/bus.h> 42 #include <machine/bus.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_phy.h> 46 #include <net80211/ieee80211_radiotap.h> 47 #include <net80211/ieee80211_regdomain.h> 48 49 #include <net/bpf.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include "usbdevs.h" 54 55 #include <dev/usb/wlan/if_upgtvar.h> 56 57 /* 58 * Driver for the USB PrismGT devices. 59 * 60 * For now just USB 2.0 devices with the GW3887 chipset are supported. 61 * The driver has been written based on the firmware version 2.13.1.0_LM87. 62 * 63 * TODO's: 64 * - MONITOR mode test. 65 * - Add HOSTAP mode. 66 * - Add IBSS mode. 67 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 68 * 69 * Parts of this driver has been influenced by reading the p54u driver 70 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 71 * Sebastien Bourdeauducq <lekernel@prism54.org>. 72 */ 73 74 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, 75 "USB PrismGT GW3887 driver parameters"); 76 77 #ifdef UPGT_DEBUG 78 int upgt_debug = 0; 79 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_TUN, &upgt_debug, 80 0, "control debugging printfs"); 81 TUNABLE_INT("hw.upgt.debug", &upgt_debug); 82 enum { 83 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 84 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 85 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 86 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 87 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 88 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 89 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 90 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 91 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 92 UPGT_DEBUG_ANY = 0xffffffff 93 }; 94 #define DPRINTF(sc, m, fmt, ...) do { \ 95 if (sc->sc_debug & (m)) \ 96 printf(fmt, __VA_ARGS__); \ 97 } while (0) 98 #else 99 #define DPRINTF(sc, m, fmt, ...) do { \ 100 (void) sc; \ 101 } while (0) 102 #endif 103 104 /* 105 * Prototypes. 106 */ 107 static device_probe_t upgt_match; 108 static device_attach_t upgt_attach; 109 static device_detach_t upgt_detach; 110 static int upgt_alloc_tx(struct upgt_softc *); 111 static int upgt_alloc_rx(struct upgt_softc *); 112 static int upgt_device_reset(struct upgt_softc *); 113 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 114 static int upgt_fw_verify(struct upgt_softc *); 115 static int upgt_mem_init(struct upgt_softc *); 116 static int upgt_fw_load(struct upgt_softc *); 117 static int upgt_fw_copy(const uint8_t *, char *, int); 118 static uint32_t upgt_crc32_le(const void *, size_t); 119 static struct mbuf * 120 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 121 static struct mbuf * 122 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 123 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 124 static int upgt_eeprom_read(struct upgt_softc *); 125 static int upgt_eeprom_parse(struct upgt_softc *); 126 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 127 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 129 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 130 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 131 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 132 static void upgt_init(void *); 133 static void upgt_init_locked(struct upgt_softc *); 134 static int upgt_ioctl(struct ifnet *, u_long, caddr_t); 135 static void upgt_start(struct ifnet *); 136 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 137 const struct ieee80211_bpf_params *); 138 static void upgt_scan_start(struct ieee80211com *); 139 static void upgt_scan_end(struct ieee80211com *); 140 static void upgt_set_channel(struct ieee80211com *); 141 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 142 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 143 const uint8_t [IEEE80211_ADDR_LEN], 144 const uint8_t [IEEE80211_ADDR_LEN]); 145 static void upgt_vap_delete(struct ieee80211vap *); 146 static void upgt_update_mcast(struct ifnet *); 147 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 148 static void upgt_set_multi(void *); 149 static void upgt_stop(struct upgt_softc *); 150 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 151 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 152 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 153 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 154 static void upgt_set_led(struct upgt_softc *, int); 155 static void upgt_set_led_blink(void *); 156 static void upgt_get_stats(struct upgt_softc *); 157 static void upgt_mem_free(struct upgt_softc *, uint32_t); 158 static uint32_t upgt_mem_alloc(struct upgt_softc *); 159 static void upgt_free_tx(struct upgt_softc *); 160 static void upgt_free_rx(struct upgt_softc *); 161 static void upgt_watchdog(void *); 162 static void upgt_abort_xfers(struct upgt_softc *); 163 static void upgt_abort_xfers_locked(struct upgt_softc *); 164 static void upgt_sysctl_node(struct upgt_softc *); 165 static struct upgt_data * 166 upgt_getbuf(struct upgt_softc *); 167 static struct upgt_data * 168 upgt_gettxbuf(struct upgt_softc *); 169 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 170 struct ieee80211_node *, struct upgt_data *); 171 172 static const char *upgt_fwname = "upgt-gw3887"; 173 174 static const STRUCT_USB_HOST_ID upgt_devs[] = { 175 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 176 /* version 2 devices */ 177 UPGT_DEV(ACCTON, PRISM_GT), 178 UPGT_DEV(BELKIN, F5D7050), 179 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 180 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 181 UPGT_DEV(DELL, PRISM_GT_1), 182 UPGT_DEV(DELL, PRISM_GT_2), 183 UPGT_DEV(FSC, E5400), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 185 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 186 UPGT_DEV(NETGEAR, WG111V2_2), 187 UPGT_DEV(INTERSIL, PRISM_GT), 188 UPGT_DEV(SMC, 2862WG), 189 UPGT_DEV(USR, USR5422), 190 UPGT_DEV(WISTRONNEWEB, UR045G), 191 UPGT_DEV(XYRATEX, PRISM_GT_1), 192 UPGT_DEV(XYRATEX, PRISM_GT_2), 193 UPGT_DEV(ZCOM, XG703A), 194 UPGT_DEV(ZCOM, XM142) 195 }; 196 197 static usb_callback_t upgt_bulk_rx_callback; 198 static usb_callback_t upgt_bulk_tx_callback; 199 200 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 201 [UPGT_BULK_TX] = { 202 .type = UE_BULK, 203 .endpoint = UE_ADDR_ANY, 204 .direction = UE_DIR_OUT, 205 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 206 .flags = { 207 .force_short_xfer = 1, 208 .pipe_bof = 1 209 }, 210 .callback = upgt_bulk_tx_callback, 211 .timeout = UPGT_USB_TIMEOUT, /* ms */ 212 }, 213 [UPGT_BULK_RX] = { 214 .type = UE_BULK, 215 .endpoint = UE_ADDR_ANY, 216 .direction = UE_DIR_IN, 217 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 218 .flags = { 219 .pipe_bof = 1, 220 .short_xfer_ok = 1 221 }, 222 .callback = upgt_bulk_rx_callback, 223 }, 224 }; 225 226 static int 227 upgt_match(device_t dev) 228 { 229 struct usb_attach_arg *uaa = device_get_ivars(dev); 230 231 if (uaa->usb_mode != USB_MODE_HOST) 232 return (ENXIO); 233 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 234 return (ENXIO); 235 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 236 return (ENXIO); 237 238 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 239 } 240 241 static int 242 upgt_attach(device_t dev) 243 { 244 int error; 245 struct ieee80211com *ic; 246 struct ifnet *ifp; 247 struct upgt_softc *sc = device_get_softc(dev); 248 struct usb_attach_arg *uaa = device_get_ivars(dev); 249 uint8_t bands, iface_index = UPGT_IFACE_INDEX; 250 251 sc->sc_dev = dev; 252 sc->sc_udev = uaa->device; 253 #ifdef UPGT_DEBUG 254 sc->sc_debug = upgt_debug; 255 #endif 256 device_set_usb_desc(dev); 257 258 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 259 MTX_DEF); 260 callout_init(&sc->sc_led_ch, 0); 261 callout_init(&sc->sc_watchdog_ch, 0); 262 263 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 264 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 265 if (error) { 266 device_printf(dev, "could not allocate USB transfers, " 267 "err=%s\n", usbd_errstr(error)); 268 goto fail1; 269 } 270 271 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 272 sc->sc_xfer[UPGT_BULK_RX], 0); 273 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 274 sc->sc_xfer[UPGT_BULK_TX], 0); 275 276 /* Setup TX and RX buffers */ 277 error = upgt_alloc_tx(sc); 278 if (error) 279 goto fail2; 280 error = upgt_alloc_rx(sc); 281 if (error) 282 goto fail3; 283 284 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 285 if (ifp == NULL) { 286 device_printf(dev, "can not if_alloc()\n"); 287 goto fail4; 288 } 289 290 /* Initialize the device. */ 291 error = upgt_device_reset(sc); 292 if (error) 293 goto fail5; 294 /* Verify the firmware. */ 295 error = upgt_fw_verify(sc); 296 if (error) 297 goto fail5; 298 /* Calculate device memory space. */ 299 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 300 device_printf(dev, 301 "could not find memory space addresses on FW\n"); 302 error = EIO; 303 goto fail5; 304 } 305 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 306 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 307 308 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 309 sc->sc_memaddr_frame_start); 310 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 311 sc->sc_memaddr_frame_end); 312 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 313 sc->sc_memaddr_rx_start); 314 315 upgt_mem_init(sc); 316 317 /* Load the firmware. */ 318 error = upgt_fw_load(sc); 319 if (error) 320 goto fail5; 321 322 /* Read the whole EEPROM content and parse it. */ 323 error = upgt_eeprom_read(sc); 324 if (error) 325 goto fail5; 326 error = upgt_eeprom_parse(sc); 327 if (error) 328 goto fail5; 329 330 /* all works related with the device have done here. */ 331 upgt_abort_xfers(sc); 332 333 /* Setup the 802.11 device. */ 334 ifp->if_softc = sc; 335 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev)); 336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 337 ifp->if_init = upgt_init; 338 ifp->if_ioctl = upgt_ioctl; 339 ifp->if_start = upgt_start; 340 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 341 IFQ_SET_READY(&ifp->if_snd); 342 343 ic = ifp->if_l2com; 344 ic->ic_ifp = ifp; 345 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 346 ic->ic_opmode = IEEE80211_M_STA; 347 /* set device capabilities */ 348 ic->ic_caps = 349 IEEE80211_C_STA /* station mode */ 350 | IEEE80211_C_MONITOR /* monitor mode */ 351 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 352 | IEEE80211_C_SHSLOT /* short slot time supported */ 353 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 354 | IEEE80211_C_WPA /* 802.11i */ 355 ; 356 357 bands = 0; 358 setbit(&bands, IEEE80211_MODE_11B); 359 setbit(&bands, IEEE80211_MODE_11G); 360 ieee80211_init_channels(ic, NULL, &bands); 361 362 ieee80211_ifattach(ic, sc->sc_myaddr); 363 ic->ic_raw_xmit = upgt_raw_xmit; 364 ic->ic_scan_start = upgt_scan_start; 365 ic->ic_scan_end = upgt_scan_end; 366 ic->ic_set_channel = upgt_set_channel; 367 368 ic->ic_vap_create = upgt_vap_create; 369 ic->ic_vap_delete = upgt_vap_delete; 370 ic->ic_update_mcast = upgt_update_mcast; 371 372 ieee80211_radiotap_attach(ic, 373 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 374 UPGT_TX_RADIOTAP_PRESENT, 375 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 376 UPGT_RX_RADIOTAP_PRESENT); 377 378 upgt_sysctl_node(sc); 379 380 if (bootverbose) 381 ieee80211_announce(ic); 382 383 return (0); 384 385 fail5: if_free(ifp); 386 fail4: upgt_free_rx(sc); 387 fail3: upgt_free_tx(sc); 388 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 389 fail1: mtx_destroy(&sc->sc_mtx); 390 391 return (error); 392 } 393 394 static void 395 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 396 { 397 struct upgt_softc *sc = usbd_xfer_softc(xfer); 398 struct ifnet *ifp = sc->sc_ifp; 399 struct mbuf *m; 400 401 UPGT_ASSERT_LOCKED(sc); 402 403 /* 404 * Do any tx complete callback. Note this must be done before releasing 405 * the node reference. 406 */ 407 if (data->m) { 408 m = data->m; 409 if (m->m_flags & M_TXCB) { 410 /* XXX status? */ 411 ieee80211_process_callback(data->ni, m, 0); 412 } 413 m_freem(m); 414 data->m = NULL; 415 } 416 if (data->ni) { 417 ieee80211_free_node(data->ni); 418 data->ni = NULL; 419 } 420 ifp->if_opackets++; 421 } 422 423 static void 424 upgt_get_stats(struct upgt_softc *sc) 425 { 426 struct upgt_data *data_cmd; 427 struct upgt_lmac_mem *mem; 428 struct upgt_lmac_stats *stats; 429 430 data_cmd = upgt_getbuf(sc); 431 if (data_cmd == NULL) { 432 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__); 433 return; 434 } 435 436 /* 437 * Transmit the URB containing the CMD data. 438 */ 439 memset(data_cmd->buf, 0, MCLBYTES); 440 441 mem = (struct upgt_lmac_mem *)data_cmd->buf; 442 mem->addr = htole32(sc->sc_memaddr_frame_start + 443 UPGT_MEMSIZE_FRAME_HEAD); 444 445 stats = (struct upgt_lmac_stats *)(mem + 1); 446 447 stats->header1.flags = 0; 448 stats->header1.type = UPGT_H1_TYPE_CTRL; 449 stats->header1.len = htole16( 450 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 451 452 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 453 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 454 stats->header2.flags = 0; 455 456 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 457 458 mem->chksum = upgt_chksum_le((uint32_t *)stats, 459 data_cmd->buflen - sizeof(*mem)); 460 461 upgt_bulk_tx(sc, data_cmd); 462 } 463 464 static int 465 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 466 { 467 struct upgt_softc *sc = ifp->if_softc; 468 struct ieee80211com *ic = ifp->if_l2com; 469 struct ifreq *ifr = (struct ifreq *) data; 470 int error; 471 int startall = 0; 472 473 UPGT_LOCK(sc); 474 error = (sc->sc_flags & UPGT_FLAG_DETACHED) ? ENXIO : 0; 475 UPGT_UNLOCK(sc); 476 if (error) 477 return (error); 478 479 switch (cmd) { 480 case SIOCSIFFLAGS: 481 if (ifp->if_flags & IFF_UP) { 482 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 483 if ((ifp->if_flags ^ sc->sc_if_flags) & 484 (IFF_ALLMULTI | IFF_PROMISC)) 485 upgt_set_multi(sc); 486 } else { 487 upgt_init(sc); 488 startall = 1; 489 } 490 } else { 491 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 492 upgt_stop(sc); 493 } 494 sc->sc_if_flags = ifp->if_flags; 495 if (startall) 496 ieee80211_start_all(ic); 497 break; 498 case SIOCGIFMEDIA: 499 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 500 break; 501 case SIOCGIFADDR: 502 error = ether_ioctl(ifp, cmd, data); 503 break; 504 default: 505 error = EINVAL; 506 break; 507 } 508 return error; 509 } 510 511 static void 512 upgt_stop_locked(struct upgt_softc *sc) 513 { 514 struct ifnet *ifp = sc->sc_ifp; 515 516 UPGT_ASSERT_LOCKED(sc); 517 518 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 519 upgt_set_macfilter(sc, IEEE80211_S_INIT); 520 upgt_abort_xfers_locked(sc); 521 } 522 523 static void 524 upgt_stop(struct upgt_softc *sc) 525 { 526 struct ifnet *ifp = sc->sc_ifp; 527 528 UPGT_LOCK(sc); 529 upgt_stop_locked(sc); 530 UPGT_UNLOCK(sc); 531 532 /* device down */ 533 sc->sc_tx_timer = 0; 534 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 535 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 536 } 537 538 static void 539 upgt_set_led(struct upgt_softc *sc, int action) 540 { 541 struct upgt_data *data_cmd; 542 struct upgt_lmac_mem *mem; 543 struct upgt_lmac_led *led; 544 545 data_cmd = upgt_getbuf(sc); 546 if (data_cmd == NULL) { 547 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 548 return; 549 } 550 551 /* 552 * Transmit the URB containing the CMD data. 553 */ 554 memset(data_cmd->buf, 0, MCLBYTES); 555 556 mem = (struct upgt_lmac_mem *)data_cmd->buf; 557 mem->addr = htole32(sc->sc_memaddr_frame_start + 558 UPGT_MEMSIZE_FRAME_HEAD); 559 560 led = (struct upgt_lmac_led *)(mem + 1); 561 562 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 563 led->header1.type = UPGT_H1_TYPE_CTRL; 564 led->header1.len = htole16( 565 sizeof(struct upgt_lmac_led) - 566 sizeof(struct upgt_lmac_header)); 567 568 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 569 led->header2.type = htole16(UPGT_H2_TYPE_LED); 570 led->header2.flags = 0; 571 572 switch (action) { 573 case UPGT_LED_OFF: 574 led->mode = htole16(UPGT_LED_MODE_SET); 575 led->action_fix = 0; 576 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 577 led->action_tmp_dur = 0; 578 break; 579 case UPGT_LED_ON: 580 led->mode = htole16(UPGT_LED_MODE_SET); 581 led->action_fix = 0; 582 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 583 led->action_tmp_dur = 0; 584 break; 585 case UPGT_LED_BLINK: 586 if (sc->sc_state != IEEE80211_S_RUN) { 587 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 588 return; 589 } 590 if (sc->sc_led_blink) { 591 /* previous blink was not finished */ 592 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 593 return; 594 } 595 led->mode = htole16(UPGT_LED_MODE_SET); 596 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 597 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 598 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 599 /* lock blink */ 600 sc->sc_led_blink = 1; 601 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 602 break; 603 default: 604 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 605 return; 606 } 607 608 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 609 610 mem->chksum = upgt_chksum_le((uint32_t *)led, 611 data_cmd->buflen - sizeof(*mem)); 612 613 upgt_bulk_tx(sc, data_cmd); 614 } 615 616 static void 617 upgt_set_led_blink(void *arg) 618 { 619 struct upgt_softc *sc = arg; 620 621 /* blink finished, we are ready for a next one */ 622 sc->sc_led_blink = 0; 623 } 624 625 static void 626 upgt_init(void *priv) 627 { 628 struct upgt_softc *sc = priv; 629 struct ifnet *ifp = sc->sc_ifp; 630 struct ieee80211com *ic = ifp->if_l2com; 631 632 UPGT_LOCK(sc); 633 upgt_init_locked(sc); 634 UPGT_UNLOCK(sc); 635 636 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 637 ieee80211_start_all(ic); /* start all vap's */ 638 } 639 640 static void 641 upgt_init_locked(struct upgt_softc *sc) 642 { 643 struct ifnet *ifp = sc->sc_ifp; 644 645 UPGT_ASSERT_LOCKED(sc); 646 647 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 648 upgt_stop_locked(sc); 649 650 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 651 652 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 653 654 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 655 ifp->if_drv_flags |= IFF_DRV_RUNNING; 656 sc->sc_flags |= UPGT_FLAG_INITDONE; 657 658 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 659 } 660 661 static int 662 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 663 { 664 struct ifnet *ifp = sc->sc_ifp; 665 struct ieee80211com *ic = ifp->if_l2com; 666 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 667 struct ieee80211_node *ni; 668 struct upgt_data *data_cmd; 669 struct upgt_lmac_mem *mem; 670 struct upgt_lmac_filter *filter; 671 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 672 673 UPGT_ASSERT_LOCKED(sc); 674 675 data_cmd = upgt_getbuf(sc); 676 if (data_cmd == NULL) { 677 device_printf(sc->sc_dev, "out of TX buffers.\n"); 678 return (ENOBUFS); 679 } 680 681 /* 682 * Transmit the URB containing the CMD data. 683 */ 684 memset(data_cmd->buf, 0, MCLBYTES); 685 686 mem = (struct upgt_lmac_mem *)data_cmd->buf; 687 mem->addr = htole32(sc->sc_memaddr_frame_start + 688 UPGT_MEMSIZE_FRAME_HEAD); 689 690 filter = (struct upgt_lmac_filter *)(mem + 1); 691 692 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 693 filter->header1.type = UPGT_H1_TYPE_CTRL; 694 filter->header1.len = htole16( 695 sizeof(struct upgt_lmac_filter) - 696 sizeof(struct upgt_lmac_header)); 697 698 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 699 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 700 filter->header2.flags = 0; 701 702 switch (state) { 703 case IEEE80211_S_INIT: 704 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 705 __func__); 706 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 707 break; 708 case IEEE80211_S_SCAN: 709 DPRINTF(sc, UPGT_DEBUG_STATE, 710 "set MAC filter to SCAN (bssid %s)\n", 711 ether_sprintf(broadcast)); 712 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 713 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 714 IEEE80211_ADDR_COPY(filter->src, broadcast); 715 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 716 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 717 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 718 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 719 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 720 break; 721 case IEEE80211_S_RUN: 722 ni = ieee80211_ref_node(vap->iv_bss); 723 /* XXX monitor mode isn't tested yet. */ 724 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 725 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 726 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 727 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 728 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 729 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 730 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 731 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 732 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 733 } else { 734 DPRINTF(sc, UPGT_DEBUG_STATE, 735 "set MAC filter to RUN (bssid %s)\n", 736 ether_sprintf(ni->ni_bssid)); 737 filter->type = htole16(UPGT_FILTER_TYPE_STA); 738 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); 739 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 740 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 741 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 742 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 743 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 744 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 745 } 746 ieee80211_free_node(ni); 747 break; 748 default: 749 device_printf(sc->sc_dev, 750 "MAC filter does not know that state\n"); 751 break; 752 } 753 754 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 755 756 mem->chksum = upgt_chksum_le((uint32_t *)filter, 757 data_cmd->buflen - sizeof(*mem)); 758 759 upgt_bulk_tx(sc, data_cmd); 760 761 return (0); 762 } 763 764 static void 765 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 766 { 767 struct ifnet *ifp = ic->ic_ifp; 768 struct upgt_softc *sc = ifp->if_softc; 769 const struct ieee80211_txparam *tp; 770 771 /* 772 * 0x01 = OFMD6 0x10 = DS1 773 * 0x04 = OFDM9 0x11 = DS2 774 * 0x06 = OFDM12 0x12 = DS5 775 * 0x07 = OFDM18 0x13 = DS11 776 * 0x08 = OFDM24 777 * 0x09 = OFDM36 778 * 0x0a = OFDM48 779 * 0x0b = OFDM54 780 */ 781 const uint8_t rateset_auto_11b[] = 782 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 783 const uint8_t rateset_auto_11g[] = 784 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 785 const uint8_t rateset_fix_11bg[] = 786 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 787 0x08, 0x09, 0x0a, 0x0b }; 788 789 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 790 791 /* XXX */ 792 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 793 /* 794 * Automatic rate control is done by the device. 795 * We just pass the rateset from which the device 796 * will pickup a rate. 797 */ 798 if (ic->ic_curmode == IEEE80211_MODE_11B) 799 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 800 sizeof(sc->sc_cur_rateset)); 801 if (ic->ic_curmode == IEEE80211_MODE_11G || 802 ic->ic_curmode == IEEE80211_MODE_AUTO) 803 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 804 sizeof(sc->sc_cur_rateset)); 805 } else { 806 /* set a fixed rate */ 807 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 808 sizeof(sc->sc_cur_rateset)); 809 } 810 } 811 812 static void 813 upgt_set_multi(void *arg) 814 { 815 struct upgt_softc *sc = arg; 816 struct ifnet *ifp = sc->sc_ifp; 817 818 if (!(ifp->if_flags & IFF_UP)) 819 return; 820 821 /* 822 * XXX don't know how to set a device. Lack of docs. Just try to set 823 * IFF_ALLMULTI flag here. 824 */ 825 ifp->if_flags |= IFF_ALLMULTI; 826 } 827 828 static void 829 upgt_start(struct ifnet *ifp) 830 { 831 struct upgt_softc *sc = ifp->if_softc; 832 struct upgt_data *data_tx; 833 struct ieee80211_node *ni; 834 struct mbuf *m; 835 836 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 837 return; 838 839 UPGT_LOCK(sc); 840 for (;;) { 841 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 842 if (m == NULL) 843 break; 844 845 data_tx = upgt_gettxbuf(sc); 846 if (data_tx == NULL) { 847 IFQ_DRV_PREPEND(&ifp->if_snd, m); 848 break; 849 } 850 851 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 852 m->m_pkthdr.rcvif = NULL; 853 854 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 855 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 856 UPGT_STAT_INC(sc, st_tx_inactive); 857 ieee80211_free_node(ni); 858 ifp->if_oerrors++; 859 continue; 860 } 861 sc->sc_tx_timer = 5; 862 } 863 UPGT_UNLOCK(sc); 864 } 865 866 static int 867 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 868 const struct ieee80211_bpf_params *params) 869 { 870 struct ieee80211com *ic = ni->ni_ic; 871 struct ifnet *ifp = ic->ic_ifp; 872 struct upgt_softc *sc = ifp->if_softc; 873 struct upgt_data *data_tx = NULL; 874 875 /* prevent management frames from being sent if we're not ready */ 876 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 877 m_freem(m); 878 ieee80211_free_node(ni); 879 return ENETDOWN; 880 } 881 882 UPGT_LOCK(sc); 883 data_tx = upgt_gettxbuf(sc); 884 if (data_tx == NULL) { 885 ieee80211_free_node(ni); 886 m_freem(m); 887 UPGT_UNLOCK(sc); 888 return (ENOBUFS); 889 } 890 891 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 892 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 893 UPGT_STAT_INC(sc, st_tx_inactive); 894 ieee80211_free_node(ni); 895 ifp->if_oerrors++; 896 UPGT_UNLOCK(sc); 897 return (EIO); 898 } 899 UPGT_UNLOCK(sc); 900 901 sc->sc_tx_timer = 5; 902 return (0); 903 } 904 905 static void 906 upgt_watchdog(void *arg) 907 { 908 struct upgt_softc *sc = arg; 909 struct ifnet *ifp = sc->sc_ifp; 910 911 if (sc->sc_tx_timer > 0) { 912 if (--sc->sc_tx_timer == 0) { 913 device_printf(sc->sc_dev, "watchdog timeout\n"); 914 /* upgt_init(ifp); XXX needs a process context ? */ 915 ifp->if_oerrors++; 916 return; 917 } 918 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 919 } 920 } 921 922 static uint32_t 923 upgt_mem_alloc(struct upgt_softc *sc) 924 { 925 int i; 926 927 for (i = 0; i < sc->sc_memory.pages; i++) { 928 if (sc->sc_memory.page[i].used == 0) { 929 sc->sc_memory.page[i].used = 1; 930 return (sc->sc_memory.page[i].addr); 931 } 932 } 933 934 return (0); 935 } 936 937 static void 938 upgt_scan_start(struct ieee80211com *ic) 939 { 940 /* do nothing. */ 941 } 942 943 static void 944 upgt_scan_end(struct ieee80211com *ic) 945 { 946 /* do nothing. */ 947 } 948 949 static void 950 upgt_set_channel(struct ieee80211com *ic) 951 { 952 struct upgt_softc *sc = ic->ic_ifp->if_softc; 953 954 UPGT_LOCK(sc); 955 upgt_set_chan(sc, ic->ic_curchan); 956 UPGT_UNLOCK(sc); 957 } 958 959 static void 960 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 961 { 962 struct ifnet *ifp = sc->sc_ifp; 963 struct ieee80211com *ic = ifp->if_l2com; 964 struct upgt_data *data_cmd; 965 struct upgt_lmac_mem *mem; 966 struct upgt_lmac_channel *chan; 967 int channel; 968 969 UPGT_ASSERT_LOCKED(sc); 970 971 channel = ieee80211_chan2ieee(ic, c); 972 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 973 /* XXX should NEVER happen */ 974 device_printf(sc->sc_dev, 975 "%s: invalid channel %x\n", __func__, channel); 976 return; 977 } 978 979 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 980 981 data_cmd = upgt_getbuf(sc); 982 if (data_cmd == NULL) { 983 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 984 return; 985 } 986 /* 987 * Transmit the URB containing the CMD data. 988 */ 989 memset(data_cmd->buf, 0, MCLBYTES); 990 991 mem = (struct upgt_lmac_mem *)data_cmd->buf; 992 mem->addr = htole32(sc->sc_memaddr_frame_start + 993 UPGT_MEMSIZE_FRAME_HEAD); 994 995 chan = (struct upgt_lmac_channel *)(mem + 1); 996 997 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 998 chan->header1.type = UPGT_H1_TYPE_CTRL; 999 chan->header1.len = htole16( 1000 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 1001 1002 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1003 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 1004 chan->header2.flags = 0; 1005 1006 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 1007 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 1008 chan->freq6 = sc->sc_eeprom_freq6[channel]; 1009 chan->settings = sc->sc_eeprom_freq6_settings; 1010 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 1011 1012 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 1013 sizeof(chan->freq3_1)); 1014 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 1015 sizeof(sc->sc_eeprom_freq4[channel])); 1016 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 1017 sizeof(chan->freq3_2)); 1018 1019 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 1020 1021 mem->chksum = upgt_chksum_le((uint32_t *)chan, 1022 data_cmd->buflen - sizeof(*mem)); 1023 1024 upgt_bulk_tx(sc, data_cmd); 1025 } 1026 1027 static struct ieee80211vap * 1028 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1029 enum ieee80211_opmode opmode, int flags, 1030 const uint8_t bssid[IEEE80211_ADDR_LEN], 1031 const uint8_t mac[IEEE80211_ADDR_LEN]) 1032 { 1033 struct upgt_vap *uvp; 1034 struct ieee80211vap *vap; 1035 1036 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1037 return NULL; 1038 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap), 1039 M_80211_VAP, M_NOWAIT | M_ZERO); 1040 if (uvp == NULL) 1041 return NULL; 1042 vap = &uvp->vap; 1043 /* enable s/w bmiss handling for sta mode */ 1044 ieee80211_vap_setup(ic, vap, name, unit, opmode, 1045 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 1046 1047 /* override state transition machine */ 1048 uvp->newstate = vap->iv_newstate; 1049 vap->iv_newstate = upgt_newstate; 1050 1051 /* setup device rates */ 1052 upgt_setup_rates(vap, ic); 1053 1054 /* complete setup */ 1055 ieee80211_vap_attach(vap, ieee80211_media_change, 1056 ieee80211_media_status); 1057 ic->ic_opmode = opmode; 1058 return vap; 1059 } 1060 1061 static int 1062 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1063 { 1064 struct upgt_vap *uvp = UPGT_VAP(vap); 1065 struct ieee80211com *ic = vap->iv_ic; 1066 struct upgt_softc *sc = ic->ic_ifp->if_softc; 1067 1068 /* do it in a process context */ 1069 sc->sc_state = nstate; 1070 1071 IEEE80211_UNLOCK(ic); 1072 UPGT_LOCK(sc); 1073 callout_stop(&sc->sc_led_ch); 1074 callout_stop(&sc->sc_watchdog_ch); 1075 1076 switch (nstate) { 1077 case IEEE80211_S_INIT: 1078 /* do not accept any frames if the device is down */ 1079 (void)upgt_set_macfilter(sc, sc->sc_state); 1080 upgt_set_led(sc, UPGT_LED_OFF); 1081 break; 1082 case IEEE80211_S_SCAN: 1083 upgt_set_chan(sc, ic->ic_curchan); 1084 break; 1085 case IEEE80211_S_AUTH: 1086 upgt_set_chan(sc, ic->ic_curchan); 1087 break; 1088 case IEEE80211_S_ASSOC: 1089 break; 1090 case IEEE80211_S_RUN: 1091 upgt_set_macfilter(sc, sc->sc_state); 1092 upgt_set_led(sc, UPGT_LED_ON); 1093 break; 1094 default: 1095 break; 1096 } 1097 UPGT_UNLOCK(sc); 1098 IEEE80211_LOCK(ic); 1099 return (uvp->newstate(vap, nstate, arg)); 1100 } 1101 1102 static void 1103 upgt_vap_delete(struct ieee80211vap *vap) 1104 { 1105 struct upgt_vap *uvp = UPGT_VAP(vap); 1106 1107 ieee80211_vap_detach(vap); 1108 free(uvp, M_80211_VAP); 1109 } 1110 1111 static void 1112 upgt_update_mcast(struct ifnet *ifp) 1113 { 1114 struct upgt_softc *sc = ifp->if_softc; 1115 1116 upgt_set_multi(sc); 1117 } 1118 1119 static int 1120 upgt_eeprom_parse(struct upgt_softc *sc) 1121 { 1122 struct upgt_eeprom_header *eeprom_header; 1123 struct upgt_eeprom_option *eeprom_option; 1124 uint16_t option_len; 1125 uint16_t option_type; 1126 uint16_t preamble_len; 1127 int option_end = 0; 1128 1129 /* calculate eeprom options start offset */ 1130 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1131 preamble_len = le16toh(eeprom_header->preamble_len); 1132 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1133 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1134 1135 while (!option_end) { 1136 1137 /* sanity check */ 1138 if (eeprom_option >= (struct upgt_eeprom_option *) 1139 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { 1140 return (EINVAL); 1141 } 1142 1143 /* the eeprom option length is stored in words */ 1144 option_len = 1145 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1146 option_type = 1147 le16toh(eeprom_option->type); 1148 1149 /* sanity check */ 1150 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) 1151 return (EINVAL); 1152 1153 switch (option_type) { 1154 case UPGT_EEPROM_TYPE_NAME: 1155 DPRINTF(sc, UPGT_DEBUG_FW, 1156 "EEPROM name len=%d\n", option_len); 1157 break; 1158 case UPGT_EEPROM_TYPE_SERIAL: 1159 DPRINTF(sc, UPGT_DEBUG_FW, 1160 "EEPROM serial len=%d\n", option_len); 1161 break; 1162 case UPGT_EEPROM_TYPE_MAC: 1163 DPRINTF(sc, UPGT_DEBUG_FW, 1164 "EEPROM mac len=%d\n", option_len); 1165 1166 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data); 1167 break; 1168 case UPGT_EEPROM_TYPE_HWRX: 1169 DPRINTF(sc, UPGT_DEBUG_FW, 1170 "EEPROM hwrx len=%d\n", option_len); 1171 1172 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1173 break; 1174 case UPGT_EEPROM_TYPE_CHIP: 1175 DPRINTF(sc, UPGT_DEBUG_FW, 1176 "EEPROM chip len=%d\n", option_len); 1177 break; 1178 case UPGT_EEPROM_TYPE_FREQ3: 1179 DPRINTF(sc, UPGT_DEBUG_FW, 1180 "EEPROM freq3 len=%d\n", option_len); 1181 1182 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1183 option_len); 1184 break; 1185 case UPGT_EEPROM_TYPE_FREQ4: 1186 DPRINTF(sc, UPGT_DEBUG_FW, 1187 "EEPROM freq4 len=%d\n", option_len); 1188 1189 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1190 option_len); 1191 break; 1192 case UPGT_EEPROM_TYPE_FREQ5: 1193 DPRINTF(sc, UPGT_DEBUG_FW, 1194 "EEPROM freq5 len=%d\n", option_len); 1195 break; 1196 case UPGT_EEPROM_TYPE_FREQ6: 1197 DPRINTF(sc, UPGT_DEBUG_FW, 1198 "EEPROM freq6 len=%d\n", option_len); 1199 1200 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1201 option_len); 1202 break; 1203 case UPGT_EEPROM_TYPE_END: 1204 DPRINTF(sc, UPGT_DEBUG_FW, 1205 "EEPROM end len=%d\n", option_len); 1206 option_end = 1; 1207 break; 1208 case UPGT_EEPROM_TYPE_OFF: 1209 DPRINTF(sc, UPGT_DEBUG_FW, 1210 "%s: EEPROM off without end option\n", __func__); 1211 return (EIO); 1212 default: 1213 DPRINTF(sc, UPGT_DEBUG_FW, 1214 "EEPROM unknown type 0x%04x len=%d\n", 1215 option_type, option_len); 1216 break; 1217 } 1218 1219 /* jump to next EEPROM option */ 1220 eeprom_option = (struct upgt_eeprom_option *) 1221 (eeprom_option->data + option_len); 1222 } 1223 return (0); 1224 } 1225 1226 static void 1227 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1228 { 1229 struct upgt_eeprom_freq3_header *freq3_header; 1230 struct upgt_lmac_freq3 *freq3; 1231 int i; 1232 int elements; 1233 int flags; 1234 unsigned channel; 1235 1236 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1237 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1238 1239 flags = freq3_header->flags; 1240 elements = freq3_header->elements; 1241 1242 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1243 flags, elements); 1244 1245 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) 1246 return; 1247 1248 for (i = 0; i < elements; i++) { 1249 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1250 if (channel >= IEEE80211_CHAN_MAX) 1251 continue; 1252 1253 sc->sc_eeprom_freq3[channel] = freq3[i]; 1254 1255 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1256 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1257 } 1258 } 1259 1260 void 1261 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1262 { 1263 struct upgt_eeprom_freq4_header *freq4_header; 1264 struct upgt_eeprom_freq4_1 *freq4_1; 1265 struct upgt_eeprom_freq4_2 *freq4_2; 1266 int i; 1267 int j; 1268 int elements; 1269 int settings; 1270 int flags; 1271 unsigned channel; 1272 1273 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1274 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1275 flags = freq4_header->flags; 1276 elements = freq4_header->elements; 1277 settings = freq4_header->settings; 1278 1279 /* we need this value later */ 1280 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1281 1282 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1283 flags, elements, settings); 1284 1285 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) 1286 return; 1287 1288 for (i = 0; i < elements; i++) { 1289 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1290 if (channel >= IEEE80211_CHAN_MAX) 1291 continue; 1292 1293 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1294 for (j = 0; j < settings; j++) { 1295 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1296 sc->sc_eeprom_freq4[channel][j].pad = 0; 1297 } 1298 1299 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1300 le16toh(freq4_1[i].freq), channel); 1301 } 1302 } 1303 1304 void 1305 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1306 { 1307 struct upgt_lmac_freq6 *freq6; 1308 int i; 1309 int elements; 1310 unsigned channel; 1311 1312 freq6 = (struct upgt_lmac_freq6 *)data; 1313 elements = len / sizeof(struct upgt_lmac_freq6); 1314 1315 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1316 1317 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) 1318 return; 1319 1320 for (i = 0; i < elements; i++) { 1321 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1322 if (channel >= IEEE80211_CHAN_MAX) 1323 continue; 1324 1325 sc->sc_eeprom_freq6[channel] = freq6[i]; 1326 1327 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1328 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1329 } 1330 } 1331 1332 static void 1333 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1334 { 1335 struct upgt_eeprom_option_hwrx *option_hwrx; 1336 1337 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1338 1339 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1340 1341 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1342 sc->sc_eeprom_hwrx); 1343 } 1344 1345 static int 1346 upgt_eeprom_read(struct upgt_softc *sc) 1347 { 1348 struct upgt_data *data_cmd; 1349 struct upgt_lmac_mem *mem; 1350 struct upgt_lmac_eeprom *eeprom; 1351 int block, error, offset; 1352 1353 UPGT_LOCK(sc); 1354 usb_pause_mtx(&sc->sc_mtx, 100); 1355 1356 offset = 0; 1357 block = UPGT_EEPROM_BLOCK_SIZE; 1358 while (offset < UPGT_EEPROM_SIZE) { 1359 DPRINTF(sc, UPGT_DEBUG_FW, 1360 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1361 1362 data_cmd = upgt_getbuf(sc); 1363 if (data_cmd == NULL) { 1364 UPGT_UNLOCK(sc); 1365 return (ENOBUFS); 1366 } 1367 1368 /* 1369 * Transmit the URB containing the CMD data. 1370 */ 1371 memset(data_cmd->buf, 0, MCLBYTES); 1372 1373 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1374 mem->addr = htole32(sc->sc_memaddr_frame_start + 1375 UPGT_MEMSIZE_FRAME_HEAD); 1376 1377 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1378 eeprom->header1.flags = 0; 1379 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1380 eeprom->header1.len = htole16(( 1381 sizeof(struct upgt_lmac_eeprom) - 1382 sizeof(struct upgt_lmac_header)) + block); 1383 1384 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1385 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1386 eeprom->header2.flags = 0; 1387 1388 eeprom->offset = htole16(offset); 1389 eeprom->len = htole16(block); 1390 1391 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1392 1393 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1394 data_cmd->buflen - sizeof(*mem)); 1395 upgt_bulk_tx(sc, data_cmd); 1396 1397 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1398 if (error != 0) { 1399 device_printf(sc->sc_dev, 1400 "timeout while waiting for EEPROM data\n"); 1401 UPGT_UNLOCK(sc); 1402 return (EIO); 1403 } 1404 1405 offset += block; 1406 if (UPGT_EEPROM_SIZE - offset < block) 1407 block = UPGT_EEPROM_SIZE - offset; 1408 } 1409 1410 UPGT_UNLOCK(sc); 1411 return (0); 1412 } 1413 1414 /* 1415 * When a rx data came in the function returns a mbuf and a rssi values. 1416 */ 1417 static struct mbuf * 1418 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1419 { 1420 struct mbuf *m = NULL; 1421 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1422 struct upgt_lmac_header *header; 1423 struct upgt_lmac_eeprom *eeprom; 1424 uint8_t h1_type; 1425 uint16_t h2_type; 1426 int actlen, sumlen; 1427 1428 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1429 1430 UPGT_ASSERT_LOCKED(sc); 1431 1432 if (actlen < 1) 1433 return (NULL); 1434 1435 /* Check only at the very beginning. */ 1436 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1437 (memcmp(data->buf, "OK", 2) == 0)) { 1438 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1439 wakeup_one(sc); 1440 return (NULL); 1441 } 1442 1443 if (actlen < (int)UPGT_RX_MINSZ) 1444 return (NULL); 1445 1446 /* 1447 * Check what type of frame came in. 1448 */ 1449 header = (struct upgt_lmac_header *)(data->buf + 4); 1450 1451 h1_type = header->header1.type; 1452 h2_type = le16toh(header->header2.type); 1453 1454 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1455 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1456 uint16_t eeprom_offset = le16toh(eeprom->offset); 1457 uint16_t eeprom_len = le16toh(eeprom->len); 1458 1459 DPRINTF(sc, UPGT_DEBUG_FW, 1460 "received EEPROM block (offset=%d, len=%d)\n", 1461 eeprom_offset, eeprom_len); 1462 1463 memcpy(sc->sc_eeprom + eeprom_offset, 1464 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1465 eeprom_len); 1466 1467 /* EEPROM data has arrived in time, wakeup. */ 1468 wakeup(sc); 1469 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1470 h2_type == UPGT_H2_TYPE_TX_DONE) { 1471 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1472 __func__); 1473 upgt_tx_done(sc, data->buf + 4); 1474 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1475 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1476 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1477 __func__); 1478 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1479 rssi); 1480 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1481 h2_type == UPGT_H2_TYPE_STATS) { 1482 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1483 __func__); 1484 /* TODO: what could we do with the statistic data? */ 1485 } else { 1486 /* ignore unknown frame types */ 1487 DPRINTF(sc, UPGT_DEBUG_INTR, 1488 "received unknown frame type 0x%02x\n", 1489 header->header1.type); 1490 } 1491 return (m); 1492 } 1493 1494 /* 1495 * The firmware awaits a checksum for each frame we send to it. 1496 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1497 */ 1498 static uint32_t 1499 upgt_chksum_le(const uint32_t *buf, size_t size) 1500 { 1501 size_t i; 1502 uint32_t crc = 0; 1503 1504 for (i = 0; i < size; i += sizeof(uint32_t)) { 1505 crc = htole32(crc ^ *buf++); 1506 crc = htole32((crc >> 5) ^ (crc << 3)); 1507 } 1508 1509 return (crc); 1510 } 1511 1512 static struct mbuf * 1513 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1514 { 1515 struct ifnet *ifp = sc->sc_ifp; 1516 struct ieee80211com *ic = ifp->if_l2com; 1517 struct upgt_lmac_rx_desc *rxdesc; 1518 struct mbuf *m; 1519 1520 /* 1521 * don't pass packets to the ieee80211 framework if the driver isn't 1522 * RUNNING. 1523 */ 1524 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1525 return (NULL); 1526 1527 /* access RX packet descriptor */ 1528 rxdesc = (struct upgt_lmac_rx_desc *)data; 1529 1530 /* create mbuf which is suitable for strict alignment archs */ 1531 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1532 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1533 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1534 if (m == NULL) { 1535 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1536 return (NULL); 1537 } 1538 m_adj(m, ETHER_ALIGN); 1539 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1540 /* trim FCS */ 1541 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1542 m->m_pkthdr.rcvif = ifp; 1543 1544 if (ieee80211_radiotap_active(ic)) { 1545 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1546 1547 tap->wr_flags = 0; 1548 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1549 tap->wr_antsignal = rxdesc->rssi; 1550 } 1551 ifp->if_ipackets++; 1552 1553 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1554 *rssi = rxdesc->rssi; 1555 return (m); 1556 } 1557 1558 static uint8_t 1559 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1560 { 1561 struct ifnet *ifp = sc->sc_ifp; 1562 struct ieee80211com *ic = ifp->if_l2com; 1563 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1564 static const uint8_t ofdm_upgt2rate[12] = 1565 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1566 1567 if (ic->ic_curmode == IEEE80211_MODE_11B && 1568 !(rate < 0 || rate > 3)) 1569 return cck_upgt2rate[rate & 0xf]; 1570 1571 if (ic->ic_curmode == IEEE80211_MODE_11G && 1572 !(rate < 0 || rate > 11)) 1573 return ofdm_upgt2rate[rate & 0xf]; 1574 1575 return (0); 1576 } 1577 1578 static void 1579 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1580 { 1581 struct ifnet *ifp = sc->sc_ifp; 1582 struct upgt_lmac_tx_done_desc *desc; 1583 int i, freed = 0; 1584 1585 UPGT_ASSERT_LOCKED(sc); 1586 1587 desc = (struct upgt_lmac_tx_done_desc *)data; 1588 1589 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1590 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1591 1592 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1593 upgt_mem_free(sc, data_tx->addr); 1594 data_tx->ni = NULL; 1595 data_tx->addr = 0; 1596 data_tx->m = NULL; 1597 1598 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1599 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1600 le32toh(desc->header2.reqid), 1601 le16toh(desc->status), le16toh(desc->rssi)); 1602 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1603 le16toh(desc->seq)); 1604 1605 freed++; 1606 } 1607 } 1608 1609 if (freed != 0) { 1610 sc->sc_tx_timer = 0; 1611 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1612 UPGT_UNLOCK(sc); 1613 upgt_start(ifp); 1614 UPGT_LOCK(sc); 1615 } 1616 } 1617 1618 static void 1619 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1620 { 1621 int i; 1622 1623 for (i = 0; i < sc->sc_memory.pages; i++) { 1624 if (sc->sc_memory.page[i].addr == addr) { 1625 sc->sc_memory.page[i].used = 0; 1626 return; 1627 } 1628 } 1629 1630 device_printf(sc->sc_dev, 1631 "could not free memory address 0x%08x\n", addr); 1632 } 1633 1634 static int 1635 upgt_fw_load(struct upgt_softc *sc) 1636 { 1637 const struct firmware *fw; 1638 struct upgt_data *data_cmd; 1639 struct upgt_fw_x2_header *x2; 1640 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1641 int error = 0; 1642 size_t offset; 1643 int bsize; 1644 int n; 1645 uint32_t crc32; 1646 1647 fw = firmware_get(upgt_fwname); 1648 if (fw == NULL) { 1649 device_printf(sc->sc_dev, "could not read microcode %s\n", 1650 upgt_fwname); 1651 return (EIO); 1652 } 1653 1654 UPGT_LOCK(sc); 1655 1656 /* send firmware start load command */ 1657 data_cmd = upgt_getbuf(sc); 1658 if (data_cmd == NULL) { 1659 error = ENOBUFS; 1660 goto fail; 1661 } 1662 data_cmd->buflen = sizeof(start_fwload_cmd); 1663 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1664 upgt_bulk_tx(sc, data_cmd); 1665 1666 /* send X2 header */ 1667 data_cmd = upgt_getbuf(sc); 1668 if (data_cmd == NULL) { 1669 error = ENOBUFS; 1670 goto fail; 1671 } 1672 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1673 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1674 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1675 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1676 x2->len = htole32(fw->datasize); 1677 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1678 UPGT_X2_SIGNATURE_SIZE, 1679 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1680 sizeof(uint32_t)); 1681 upgt_bulk_tx(sc, data_cmd); 1682 1683 /* download firmware */ 1684 for (offset = 0; offset < fw->datasize; offset += bsize) { 1685 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1686 bsize = UPGT_FW_BLOCK_SIZE; 1687 else 1688 bsize = fw->datasize - offset; 1689 1690 data_cmd = upgt_getbuf(sc); 1691 if (data_cmd == NULL) { 1692 error = ENOBUFS; 1693 goto fail; 1694 } 1695 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1696 data_cmd->buf, bsize); 1697 data_cmd->buflen = bsize; 1698 upgt_bulk_tx(sc, data_cmd); 1699 1700 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", 1701 offset, n, bsize); 1702 bsize = n; 1703 } 1704 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1705 1706 /* load firmware */ 1707 data_cmd = upgt_getbuf(sc); 1708 if (data_cmd == NULL) { 1709 error = ENOBUFS; 1710 goto fail; 1711 } 1712 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1713 *((uint32_t *)(data_cmd->buf) ) = crc32; 1714 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1715 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1716 data_cmd->buflen = 6; 1717 upgt_bulk_tx(sc, data_cmd); 1718 1719 /* waiting 'OK' response. */ 1720 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1721 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1722 if (error != 0) { 1723 device_printf(sc->sc_dev, "firmware load failed\n"); 1724 error = EIO; 1725 } 1726 1727 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1728 fail: 1729 UPGT_UNLOCK(sc); 1730 firmware_put(fw, FIRMWARE_UNLOAD); 1731 return (error); 1732 } 1733 1734 static uint32_t 1735 upgt_crc32_le(const void *buf, size_t size) 1736 { 1737 uint32_t crc; 1738 1739 crc = ether_crc32_le(buf, size); 1740 1741 /* apply final XOR value as common for CRC-32 */ 1742 crc = htole32(crc ^ 0xffffffffU); 1743 1744 return (crc); 1745 } 1746 1747 /* 1748 * While copying the version 2 firmware, we need to replace two characters: 1749 * 1750 * 0x7e -> 0x7d 0x5e 1751 * 0x7d -> 0x7d 0x5d 1752 */ 1753 static int 1754 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1755 { 1756 int i, j; 1757 1758 for (i = 0, j = 0; i < size && j < size; i++) { 1759 switch (src[i]) { 1760 case 0x7e: 1761 dst[j] = 0x7d; 1762 j++; 1763 dst[j] = 0x5e; 1764 j++; 1765 break; 1766 case 0x7d: 1767 dst[j] = 0x7d; 1768 j++; 1769 dst[j] = 0x5d; 1770 j++; 1771 break; 1772 default: 1773 dst[j] = src[i]; 1774 j++; 1775 break; 1776 } 1777 } 1778 1779 return (i); 1780 } 1781 1782 static int 1783 upgt_mem_init(struct upgt_softc *sc) 1784 { 1785 int i; 1786 1787 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1788 sc->sc_memory.page[i].used = 0; 1789 1790 if (i == 0) { 1791 /* 1792 * The first memory page is always reserved for 1793 * command data. 1794 */ 1795 sc->sc_memory.page[i].addr = 1796 sc->sc_memaddr_frame_start + MCLBYTES; 1797 } else { 1798 sc->sc_memory.page[i].addr = 1799 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1800 } 1801 1802 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1803 sc->sc_memaddr_frame_end) 1804 break; 1805 1806 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1807 i, sc->sc_memory.page[i].addr); 1808 } 1809 1810 sc->sc_memory.pages = i; 1811 1812 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1813 return (0); 1814 } 1815 1816 static int 1817 upgt_fw_verify(struct upgt_softc *sc) 1818 { 1819 const struct firmware *fw; 1820 const struct upgt_fw_bra_option *bra_opt; 1821 const struct upgt_fw_bra_descr *descr; 1822 const uint8_t *p; 1823 const uint32_t *uc; 1824 uint32_t bra_option_type, bra_option_len; 1825 size_t offset; 1826 int bra_end = 0; 1827 int error = 0; 1828 1829 fw = firmware_get(upgt_fwname); 1830 if (fw == NULL) { 1831 device_printf(sc->sc_dev, "could not read microcode %s\n", 1832 upgt_fwname); 1833 return EIO; 1834 } 1835 1836 /* 1837 * Seek to beginning of Boot Record Area (BRA). 1838 */ 1839 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1840 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1841 if (*uc == 0) 1842 break; 1843 } 1844 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1845 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1846 if (*uc != 0) 1847 break; 1848 } 1849 if (offset == fw->datasize) { 1850 device_printf(sc->sc_dev, 1851 "firmware Boot Record Area not found\n"); 1852 error = EIO; 1853 goto fail; 1854 } 1855 1856 DPRINTF(sc, UPGT_DEBUG_FW, 1857 "firmware Boot Record Area found at offset %d\n", offset); 1858 1859 /* 1860 * Parse Boot Record Area (BRA) options. 1861 */ 1862 while (offset < fw->datasize && bra_end == 0) { 1863 /* get current BRA option */ 1864 p = (const uint8_t *)fw->data + offset; 1865 bra_opt = (const struct upgt_fw_bra_option *)p; 1866 bra_option_type = le32toh(bra_opt->type); 1867 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1868 1869 switch (bra_option_type) { 1870 case UPGT_BRA_TYPE_FW: 1871 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1872 bra_option_len); 1873 1874 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1875 device_printf(sc->sc_dev, 1876 "wrong UPGT_BRA_TYPE_FW len\n"); 1877 error = EIO; 1878 goto fail; 1879 } 1880 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1881 bra_option_len) == 0) { 1882 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1883 break; 1884 } 1885 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1886 bra_option_len) == 0) { 1887 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1888 break; 1889 } 1890 device_printf(sc->sc_dev, 1891 "unsupported firmware type\n"); 1892 error = EIO; 1893 goto fail; 1894 case UPGT_BRA_TYPE_VERSION: 1895 DPRINTF(sc, UPGT_DEBUG_FW, 1896 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1897 break; 1898 case UPGT_BRA_TYPE_DEPIF: 1899 DPRINTF(sc, UPGT_DEBUG_FW, 1900 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1901 break; 1902 case UPGT_BRA_TYPE_EXPIF: 1903 DPRINTF(sc, UPGT_DEBUG_FW, 1904 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1905 break; 1906 case UPGT_BRA_TYPE_DESCR: 1907 DPRINTF(sc, UPGT_DEBUG_FW, 1908 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1909 1910 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1911 1912 sc->sc_memaddr_frame_start = 1913 le32toh(descr->memaddr_space_start); 1914 sc->sc_memaddr_frame_end = 1915 le32toh(descr->memaddr_space_end); 1916 1917 DPRINTF(sc, UPGT_DEBUG_FW, 1918 "memory address space start=0x%08x\n", 1919 sc->sc_memaddr_frame_start); 1920 DPRINTF(sc, UPGT_DEBUG_FW, 1921 "memory address space end=0x%08x\n", 1922 sc->sc_memaddr_frame_end); 1923 break; 1924 case UPGT_BRA_TYPE_END: 1925 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1926 bra_option_len); 1927 bra_end = 1; 1928 break; 1929 default: 1930 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1931 bra_option_len); 1932 error = EIO; 1933 goto fail; 1934 } 1935 1936 /* jump to next BRA option */ 1937 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1938 } 1939 1940 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1941 fail: 1942 firmware_put(fw, FIRMWARE_UNLOAD); 1943 return (error); 1944 } 1945 1946 static void 1947 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1948 { 1949 1950 UPGT_ASSERT_LOCKED(sc); 1951 1952 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1953 UPGT_STAT_INC(sc, st_tx_pending); 1954 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1955 } 1956 1957 static int 1958 upgt_device_reset(struct upgt_softc *sc) 1959 { 1960 struct upgt_data *data; 1961 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1962 1963 UPGT_LOCK(sc); 1964 1965 data = upgt_getbuf(sc); 1966 if (data == NULL) { 1967 UPGT_UNLOCK(sc); 1968 return (ENOBUFS); 1969 } 1970 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1971 data->buflen = sizeof(init_cmd); 1972 upgt_bulk_tx(sc, data); 1973 usb_pause_mtx(&sc->sc_mtx, 100); 1974 1975 UPGT_UNLOCK(sc); 1976 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1977 return (0); 1978 } 1979 1980 static int 1981 upgt_alloc_tx(struct upgt_softc *sc) 1982 { 1983 int i; 1984 1985 STAILQ_INIT(&sc->sc_tx_active); 1986 STAILQ_INIT(&sc->sc_tx_inactive); 1987 STAILQ_INIT(&sc->sc_tx_pending); 1988 1989 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1990 struct upgt_data *data = &sc->sc_tx_data[i]; 1991 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1992 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1993 UPGT_STAT_INC(sc, st_tx_inactive); 1994 } 1995 1996 return (0); 1997 } 1998 1999 static int 2000 upgt_alloc_rx(struct upgt_softc *sc) 2001 { 2002 int i; 2003 2004 STAILQ_INIT(&sc->sc_rx_active); 2005 STAILQ_INIT(&sc->sc_rx_inactive); 2006 2007 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 2008 struct upgt_data *data = &sc->sc_rx_data[i]; 2009 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 2010 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2011 } 2012 return (0); 2013 } 2014 2015 static int 2016 upgt_detach(device_t dev) 2017 { 2018 struct upgt_softc *sc = device_get_softc(dev); 2019 struct ifnet *ifp = sc->sc_ifp; 2020 struct ieee80211com *ic = ifp->if_l2com; 2021 unsigned int x; 2022 2023 /* 2024 * Prevent further allocations from RX/TX/CMD 2025 * data lists and ioctls 2026 */ 2027 UPGT_LOCK(sc); 2028 sc->sc_flags |= UPGT_FLAG_DETACHED; 2029 2030 STAILQ_INIT(&sc->sc_tx_active); 2031 STAILQ_INIT(&sc->sc_tx_inactive); 2032 STAILQ_INIT(&sc->sc_tx_pending); 2033 2034 STAILQ_INIT(&sc->sc_rx_active); 2035 STAILQ_INIT(&sc->sc_rx_inactive); 2036 UPGT_UNLOCK(sc); 2037 2038 upgt_stop(sc); 2039 2040 callout_drain(&sc->sc_led_ch); 2041 callout_drain(&sc->sc_watchdog_ch); 2042 2043 /* drain USB transfers */ 2044 for (x = 0; x != UPGT_N_XFERS; x++) 2045 usbd_transfer_drain(sc->sc_xfer[x]); 2046 2047 /* free data buffers */ 2048 UPGT_LOCK(sc); 2049 upgt_free_rx(sc); 2050 upgt_free_tx(sc); 2051 UPGT_UNLOCK(sc); 2052 2053 /* free USB transfers and some data buffers */ 2054 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 2055 2056 ieee80211_ifdetach(ic); 2057 if_free(ifp); 2058 mtx_destroy(&sc->sc_mtx); 2059 2060 return (0); 2061 } 2062 2063 static void 2064 upgt_free_rx(struct upgt_softc *sc) 2065 { 2066 int i; 2067 2068 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 2069 struct upgt_data *data = &sc->sc_rx_data[i]; 2070 2071 data->buf = NULL; 2072 data->ni = NULL; 2073 } 2074 } 2075 2076 static void 2077 upgt_free_tx(struct upgt_softc *sc) 2078 { 2079 int i; 2080 2081 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 2082 struct upgt_data *data = &sc->sc_tx_data[i]; 2083 2084 if (data->ni != NULL) 2085 ieee80211_free_node(data->ni); 2086 2087 data->buf = NULL; 2088 data->ni = NULL; 2089 } 2090 } 2091 2092 static void 2093 upgt_abort_xfers_locked(struct upgt_softc *sc) 2094 { 2095 int i; 2096 2097 UPGT_ASSERT_LOCKED(sc); 2098 /* abort any pending transfers */ 2099 for (i = 0; i < UPGT_N_XFERS; i++) 2100 usbd_transfer_stop(sc->sc_xfer[i]); 2101 } 2102 2103 static void 2104 upgt_abort_xfers(struct upgt_softc *sc) 2105 { 2106 2107 UPGT_LOCK(sc); 2108 upgt_abort_xfers_locked(sc); 2109 UPGT_UNLOCK(sc); 2110 } 2111 2112 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2113 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2114 2115 static void 2116 upgt_sysctl_node(struct upgt_softc *sc) 2117 { 2118 struct sysctl_ctx_list *ctx; 2119 struct sysctl_oid_list *child; 2120 struct sysctl_oid *tree; 2121 struct upgt_stat *stats; 2122 2123 stats = &sc->sc_stat; 2124 ctx = device_get_sysctl_ctx(sc->sc_dev); 2125 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2126 2127 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 2128 NULL, "UPGT statistics"); 2129 child = SYSCTL_CHILDREN(tree); 2130 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2131 &stats->st_tx_active, "Active numbers in TX queue"); 2132 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2133 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2134 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2135 &stats->st_tx_pending, "Pending numbers in TX queue"); 2136 } 2137 2138 #undef UPGT_SYSCTL_STAT_ADD32 2139 2140 static struct upgt_data * 2141 _upgt_getbuf(struct upgt_softc *sc) 2142 { 2143 struct upgt_data *bf; 2144 2145 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2146 if (bf != NULL) { 2147 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2148 UPGT_STAT_DEC(sc, st_tx_inactive); 2149 } else 2150 bf = NULL; 2151 if (bf == NULL) 2152 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2153 "out of xmit buffers"); 2154 return (bf); 2155 } 2156 2157 static struct upgt_data * 2158 upgt_getbuf(struct upgt_softc *sc) 2159 { 2160 struct upgt_data *bf; 2161 2162 UPGT_ASSERT_LOCKED(sc); 2163 2164 bf = _upgt_getbuf(sc); 2165 if (bf == NULL) { 2166 struct ifnet *ifp = sc->sc_ifp; 2167 2168 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2169 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2170 } 2171 2172 return (bf); 2173 } 2174 2175 static struct upgt_data * 2176 upgt_gettxbuf(struct upgt_softc *sc) 2177 { 2178 struct upgt_data *bf; 2179 2180 UPGT_ASSERT_LOCKED(sc); 2181 2182 bf = upgt_getbuf(sc); 2183 if (bf == NULL) 2184 return (NULL); 2185 2186 bf->addr = upgt_mem_alloc(sc); 2187 if (bf->addr == 0) { 2188 struct ifnet *ifp = sc->sc_ifp; 2189 2190 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2191 __func__); 2192 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2193 UPGT_STAT_INC(sc, st_tx_inactive); 2194 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) 2195 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2196 return (NULL); 2197 } 2198 return (bf); 2199 } 2200 2201 static int 2202 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2203 struct upgt_data *data) 2204 { 2205 struct ieee80211vap *vap = ni->ni_vap; 2206 int error = 0, len; 2207 struct ieee80211_frame *wh; 2208 struct ieee80211_key *k; 2209 struct ifnet *ifp = sc->sc_ifp; 2210 struct upgt_lmac_mem *mem; 2211 struct upgt_lmac_tx_desc *txdesc; 2212 2213 UPGT_ASSERT_LOCKED(sc); 2214 2215 upgt_set_led(sc, UPGT_LED_BLINK); 2216 2217 /* 2218 * Software crypto. 2219 */ 2220 wh = mtod(m, struct ieee80211_frame *); 2221 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2222 k = ieee80211_crypto_encap(ni, m); 2223 if (k == NULL) { 2224 device_printf(sc->sc_dev, 2225 "ieee80211_crypto_encap returns NULL.\n"); 2226 error = EIO; 2227 goto done; 2228 } 2229 2230 /* in case packet header moved, reset pointer */ 2231 wh = mtod(m, struct ieee80211_frame *); 2232 } 2233 2234 /* Transmit the URB containing the TX data. */ 2235 memset(data->buf, 0, MCLBYTES); 2236 mem = (struct upgt_lmac_mem *)data->buf; 2237 mem->addr = htole32(data->addr); 2238 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2239 2240 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2241 IEEE80211_FC0_TYPE_MGT) { 2242 /* mgmt frames */ 2243 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2244 /* always send mgmt frames at lowest rate (DS1) */ 2245 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2246 } else { 2247 /* data frames */ 2248 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2249 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2250 } 2251 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2252 txdesc->header1.len = htole16(m->m_pkthdr.len); 2253 txdesc->header2.reqid = htole32(data->addr); 2254 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2255 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2256 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2257 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2258 2259 if (ieee80211_radiotap_active_vap(vap)) { 2260 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2261 2262 tap->wt_flags = 0; 2263 tap->wt_rate = 0; /* XXX where to get from? */ 2264 2265 ieee80211_radiotap_tx(vap, m); 2266 } 2267 2268 /* copy frame below our TX descriptor header */ 2269 m_copydata(m, 0, m->m_pkthdr.len, 2270 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2271 /* calculate frame size */ 2272 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2273 /* we need to align the frame to a 4 byte boundary */ 2274 len = (len + 3) & ~3; 2275 /* calculate frame checksum */ 2276 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2277 data->ni = ni; 2278 data->m = m; 2279 data->buflen = len; 2280 2281 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2282 __func__, len); 2283 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2284 2285 upgt_bulk_tx(sc, data); 2286 done: 2287 /* 2288 * If we don't regulary read the device statistics, the RX queue 2289 * will stall. It's strange, but it works, so we keep reading 2290 * the statistics here. *shrug* 2291 */ 2292 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL)) 2293 upgt_get_stats(sc); 2294 2295 return (error); 2296 } 2297 2298 static void 2299 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2300 { 2301 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2302 struct ifnet *ifp = sc->sc_ifp; 2303 struct ieee80211com *ic = ifp->if_l2com; 2304 struct ieee80211_frame *wh; 2305 struct ieee80211_node *ni; 2306 struct mbuf *m = NULL; 2307 struct upgt_data *data; 2308 int8_t nf; 2309 int rssi = -1; 2310 2311 UPGT_ASSERT_LOCKED(sc); 2312 2313 switch (USB_GET_STATE(xfer)) { 2314 case USB_ST_TRANSFERRED: 2315 data = STAILQ_FIRST(&sc->sc_rx_active); 2316 if (data == NULL) 2317 goto setup; 2318 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2319 m = upgt_rxeof(xfer, data, &rssi); 2320 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2321 /* FALLTHROUGH */ 2322 case USB_ST_SETUP: 2323 setup: 2324 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2325 if (data == NULL) 2326 return; 2327 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2328 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2329 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2330 usbd_transfer_submit(xfer); 2331 2332 /* 2333 * To avoid LOR we should unlock our private mutex here to call 2334 * ieee80211_input() because here is at the end of a USB 2335 * callback and safe to unlock. 2336 */ 2337 UPGT_UNLOCK(sc); 2338 if (m != NULL) { 2339 wh = mtod(m, struct ieee80211_frame *); 2340 ni = ieee80211_find_rxnode(ic, 2341 (struct ieee80211_frame_min *)wh); 2342 nf = -95; /* XXX */ 2343 if (ni != NULL) { 2344 (void) ieee80211_input(ni, m, rssi, nf); 2345 /* node is no longer needed */ 2346 ieee80211_free_node(ni); 2347 } else 2348 (void) ieee80211_input_all(ic, m, rssi, nf); 2349 m = NULL; 2350 } 2351 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 2352 !IFQ_IS_EMPTY(&ifp->if_snd)) 2353 upgt_start(ifp); 2354 UPGT_LOCK(sc); 2355 break; 2356 default: 2357 /* needs it to the inactive queue due to a error. */ 2358 data = STAILQ_FIRST(&sc->sc_rx_active); 2359 if (data != NULL) { 2360 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2361 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2362 } 2363 if (error != USB_ERR_CANCELLED) { 2364 usbd_xfer_set_stall(xfer); 2365 ifp->if_ierrors++; 2366 goto setup; 2367 } 2368 break; 2369 } 2370 } 2371 2372 static void 2373 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2374 { 2375 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2376 struct ifnet *ifp = sc->sc_ifp; 2377 struct upgt_data *data; 2378 2379 UPGT_ASSERT_LOCKED(sc); 2380 switch (USB_GET_STATE(xfer)) { 2381 case USB_ST_TRANSFERRED: 2382 data = STAILQ_FIRST(&sc->sc_tx_active); 2383 if (data == NULL) 2384 goto setup; 2385 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2386 UPGT_STAT_DEC(sc, st_tx_active); 2387 upgt_txeof(xfer, data); 2388 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2389 UPGT_STAT_INC(sc, st_tx_inactive); 2390 /* FALLTHROUGH */ 2391 case USB_ST_SETUP: 2392 setup: 2393 data = STAILQ_FIRST(&sc->sc_tx_pending); 2394 if (data == NULL) { 2395 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2396 __func__); 2397 return; 2398 } 2399 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2400 UPGT_STAT_DEC(sc, st_tx_pending); 2401 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2402 UPGT_STAT_INC(sc, st_tx_active); 2403 2404 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2405 usbd_transfer_submit(xfer); 2406 UPGT_UNLOCK(sc); 2407 upgt_start(ifp); 2408 UPGT_LOCK(sc); 2409 break; 2410 default: 2411 data = STAILQ_FIRST(&sc->sc_tx_active); 2412 if (data == NULL) 2413 goto setup; 2414 if (data->ni != NULL) { 2415 ieee80211_free_node(data->ni); 2416 data->ni = NULL; 2417 ifp->if_oerrors++; 2418 } 2419 if (error != USB_ERR_CANCELLED) { 2420 usbd_xfer_set_stall(xfer); 2421 goto setup; 2422 } 2423 break; 2424 } 2425 } 2426 2427 static device_method_t upgt_methods[] = { 2428 /* Device interface */ 2429 DEVMETHOD(device_probe, upgt_match), 2430 DEVMETHOD(device_attach, upgt_attach), 2431 DEVMETHOD(device_detach, upgt_detach), 2432 DEVMETHOD_END 2433 }; 2434 2435 static driver_t upgt_driver = { 2436 .name = "upgt", 2437 .methods = upgt_methods, 2438 .size = sizeof(struct upgt_softc) 2439 }; 2440 2441 static devclass_t upgt_devclass; 2442 2443 DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); 2444 MODULE_VERSION(if_upgt, 1); 2445 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2446 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2447 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2448