1 /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ 2 3 /* 4 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include "opt_wlan.h" 20 21 #include <sys/param.h> 22 #include <sys/systm.h> 23 #include <sys/kernel.h> 24 #include <sys/endian.h> 25 #include <sys/firmware.h> 26 #include <sys/linker.h> 27 #include <sys/mbuf.h> 28 #include <sys/malloc.h> 29 #include <sys/module.h> 30 #include <sys/socket.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 34 #include <net/if.h> 35 #include <net/if_var.h> 36 #include <net/if_arp.h> 37 #include <net/ethernet.h> 38 #include <net/if_dl.h> 39 #include <net/if_media.h> 40 #include <net/if_types.h> 41 42 #include <sys/bus.h> 43 44 #include <net80211/ieee80211_var.h> 45 #include <net80211/ieee80211_phy.h> 46 #include <net80211/ieee80211_radiotap.h> 47 #include <net80211/ieee80211_regdomain.h> 48 49 #include <net/bpf.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include "usbdevs.h" 54 55 #include <dev/usb/wlan/if_upgtvar.h> 56 57 /* 58 * Driver for the USB PrismGT devices. 59 * 60 * For now just USB 2.0 devices with the GW3887 chipset are supported. 61 * The driver has been written based on the firmware version 2.13.1.0_LM87. 62 * 63 * TODO's: 64 * - MONITOR mode test. 65 * - Add HOSTAP mode. 66 * - Add IBSS mode. 67 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). 68 * 69 * Parts of this driver has been influenced by reading the p54u driver 70 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and 71 * Sebastien Bourdeauducq <lekernel@prism54.org>. 72 */ 73 74 static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 75 "USB PrismGT GW3887 driver parameters"); 76 77 #ifdef UPGT_DEBUG 78 int upgt_debug = 0; 79 SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug, 80 0, "control debugging printfs"); 81 enum { 82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ 84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ 85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */ 86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ 87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ 88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ 89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */ 90 UPGT_DEBUG_FW = 0x00000100, /* firmware */ 91 UPGT_DEBUG_ANY = 0xffffffff 92 }; 93 #define DPRINTF(sc, m, fmt, ...) do { \ 94 if (sc->sc_debug & (m)) \ 95 printf(fmt, __VA_ARGS__); \ 96 } while (0) 97 #else 98 #define DPRINTF(sc, m, fmt, ...) do { \ 99 (void) sc; \ 100 } while (0) 101 #endif 102 103 /* 104 * Prototypes. 105 */ 106 static device_probe_t upgt_match; 107 static device_attach_t upgt_attach; 108 static device_detach_t upgt_detach; 109 static int upgt_alloc_tx(struct upgt_softc *); 110 static int upgt_alloc_rx(struct upgt_softc *); 111 static int upgt_device_reset(struct upgt_softc *); 112 static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); 113 static int upgt_fw_verify(struct upgt_softc *); 114 static int upgt_mem_init(struct upgt_softc *); 115 static int upgt_fw_load(struct upgt_softc *); 116 static int upgt_fw_copy(const uint8_t *, char *, int); 117 static uint32_t upgt_crc32_le(const void *, size_t); 118 static struct mbuf * 119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); 120 static struct mbuf * 121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *); 122 static void upgt_txeof(struct usb_xfer *, struct upgt_data *); 123 static int upgt_eeprom_read(struct upgt_softc *); 124 static int upgt_eeprom_parse(struct upgt_softc *); 125 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); 126 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); 127 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); 128 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); 129 static uint32_t upgt_chksum_le(const uint32_t *, size_t); 130 static void upgt_tx_done(struct upgt_softc *, uint8_t *); 131 static void upgt_init(struct upgt_softc *); 132 static void upgt_parent(struct ieee80211com *); 133 static int upgt_transmit(struct ieee80211com *, struct mbuf *); 134 static void upgt_start(struct upgt_softc *); 135 static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, 136 const struct ieee80211_bpf_params *); 137 static void upgt_scan_start(struct ieee80211com *); 138 static void upgt_scan_end(struct ieee80211com *); 139 static void upgt_set_channel(struct ieee80211com *); 140 static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void upgt_vap_delete(struct ieee80211vap *); 145 static void upgt_update_mcast(struct ieee80211com *); 146 static uint8_t upgt_rx_rate(struct upgt_softc *, const int); 147 static void upgt_set_multi(void *); 148 static void upgt_stop(struct upgt_softc *); 149 static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); 150 static int upgt_set_macfilter(struct upgt_softc *, uint8_t); 151 static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); 152 static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); 153 static void upgt_set_led(struct upgt_softc *, int); 154 static void upgt_set_led_blink(void *); 155 static void upgt_get_stats(struct upgt_softc *); 156 static void upgt_mem_free(struct upgt_softc *, uint32_t); 157 static uint32_t upgt_mem_alloc(struct upgt_softc *); 158 static void upgt_free_tx(struct upgt_softc *); 159 static void upgt_free_rx(struct upgt_softc *); 160 static void upgt_watchdog(void *); 161 static void upgt_abort_xfers(struct upgt_softc *); 162 static void upgt_abort_xfers_locked(struct upgt_softc *); 163 static void upgt_sysctl_node(struct upgt_softc *); 164 static struct upgt_data * 165 upgt_getbuf(struct upgt_softc *); 166 static struct upgt_data * 167 upgt_gettxbuf(struct upgt_softc *); 168 static int upgt_tx_start(struct upgt_softc *, struct mbuf *, 169 struct ieee80211_node *, struct upgt_data *); 170 171 static const char *upgt_fwname = "upgt-gw3887"; 172 173 static const STRUCT_USB_HOST_ID upgt_devs[] = { 174 #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 175 /* version 2 devices */ 176 UPGT_DEV(ACCTON, PRISM_GT), 177 UPGT_DEV(BELKIN, F5D7050), 178 UPGT_DEV(CISCOLINKSYS, WUSB54AG), 179 UPGT_DEV(CONCEPTRONIC, PRISM_GT), 180 UPGT_DEV(DELL, PRISM_GT_1), 181 UPGT_DEV(DELL, PRISM_GT_2), 182 UPGT_DEV(FSC, E5400), 183 UPGT_DEV(GLOBESPAN, PRISM_GT_1), 184 UPGT_DEV(GLOBESPAN, PRISM_GT_2), 185 UPGT_DEV(NETGEAR, WG111V1_2), 186 UPGT_DEV(INTERSIL, PRISM_GT), 187 UPGT_DEV(SMC, 2862WG), 188 UPGT_DEV(USR, USR5422), 189 UPGT_DEV(WISTRONNEWEB, UR045G), 190 UPGT_DEV(XYRATEX, PRISM_GT_1), 191 UPGT_DEV(XYRATEX, PRISM_GT_2), 192 UPGT_DEV(ZCOM, XG703A), 193 UPGT_DEV(ZCOM, XM142) 194 }; 195 196 static usb_callback_t upgt_bulk_rx_callback; 197 static usb_callback_t upgt_bulk_tx_callback; 198 199 static const struct usb_config upgt_config[UPGT_N_XFERS] = { 200 [UPGT_BULK_TX] = { 201 .type = UE_BULK, 202 .endpoint = UE_ADDR_ANY, 203 .direction = UE_DIR_OUT, 204 .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, 205 .flags = { 206 .force_short_xfer = 1, 207 .pipe_bof = 1 208 }, 209 .callback = upgt_bulk_tx_callback, 210 .timeout = UPGT_USB_TIMEOUT, /* ms */ 211 }, 212 [UPGT_BULK_RX] = { 213 .type = UE_BULK, 214 .endpoint = UE_ADDR_ANY, 215 .direction = UE_DIR_IN, 216 .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, 217 .flags = { 218 .pipe_bof = 1, 219 .short_xfer_ok = 1 220 }, 221 .callback = upgt_bulk_rx_callback, 222 }, 223 }; 224 225 static int 226 upgt_match(device_t dev) 227 { 228 struct usb_attach_arg *uaa = device_get_ivars(dev); 229 230 if (uaa->usb_mode != USB_MODE_HOST) 231 return (ENXIO); 232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) 233 return (ENXIO); 234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) 235 return (ENXIO); 236 237 return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); 238 } 239 240 static int 241 upgt_attach(device_t dev) 242 { 243 struct upgt_softc *sc = device_get_softc(dev); 244 struct ieee80211com *ic = &sc->sc_ic; 245 struct usb_attach_arg *uaa = device_get_ivars(dev); 246 uint8_t bands[IEEE80211_MODE_BYTES]; 247 uint8_t iface_index = UPGT_IFACE_INDEX; 248 int error; 249 250 sc->sc_dev = dev; 251 sc->sc_udev = uaa->device; 252 #ifdef UPGT_DEBUG 253 sc->sc_debug = upgt_debug; 254 #endif 255 device_set_usb_desc(dev); 256 257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, 258 MTX_DEF); 259 callout_init(&sc->sc_led_ch, 0); 260 callout_init(&sc->sc_watchdog_ch, 0); 261 mbufq_init(&sc->sc_snd, ifqmaxlen); 262 263 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, 264 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); 265 if (error) { 266 device_printf(dev, "could not allocate USB transfers, " 267 "err=%s\n", usbd_errstr(error)); 268 goto fail1; 269 } 270 271 sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( 272 sc->sc_xfer[UPGT_BULK_RX], 0); 273 sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( 274 sc->sc_xfer[UPGT_BULK_TX], 0); 275 276 /* Setup TX and RX buffers */ 277 error = upgt_alloc_tx(sc); 278 if (error) 279 goto fail2; 280 error = upgt_alloc_rx(sc); 281 if (error) 282 goto fail3; 283 284 /* Initialize the device. */ 285 error = upgt_device_reset(sc); 286 if (error) 287 goto fail4; 288 /* Verify the firmware. */ 289 error = upgt_fw_verify(sc); 290 if (error) 291 goto fail4; 292 /* Calculate device memory space. */ 293 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { 294 device_printf(dev, 295 "could not find memory space addresses on FW\n"); 296 error = EIO; 297 goto fail4; 298 } 299 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; 300 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; 301 302 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", 303 sc->sc_memaddr_frame_start); 304 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", 305 sc->sc_memaddr_frame_end); 306 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", 307 sc->sc_memaddr_rx_start); 308 309 upgt_mem_init(sc); 310 311 /* Load the firmware. */ 312 error = upgt_fw_load(sc); 313 if (error) 314 goto fail4; 315 316 /* Read the whole EEPROM content and parse it. */ 317 error = upgt_eeprom_read(sc); 318 if (error) 319 goto fail4; 320 error = upgt_eeprom_parse(sc); 321 if (error) 322 goto fail4; 323 324 /* all works related with the device have done here. */ 325 upgt_abort_xfers(sc); 326 327 ic->ic_softc = sc; 328 ic->ic_name = device_get_nameunit(dev); 329 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 330 ic->ic_opmode = IEEE80211_M_STA; 331 /* set device capabilities */ 332 ic->ic_caps = 333 IEEE80211_C_STA /* station mode */ 334 | IEEE80211_C_MONITOR /* monitor mode */ 335 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 336 | IEEE80211_C_SHSLOT /* short slot time supported */ 337 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 338 | IEEE80211_C_WPA /* 802.11i */ 339 ; 340 341 memset(bands, 0, sizeof(bands)); 342 setbit(bands, IEEE80211_MODE_11B); 343 setbit(bands, IEEE80211_MODE_11G); 344 ieee80211_init_channels(ic, NULL, bands); 345 346 ieee80211_ifattach(ic); 347 ic->ic_raw_xmit = upgt_raw_xmit; 348 ic->ic_scan_start = upgt_scan_start; 349 ic->ic_scan_end = upgt_scan_end; 350 ic->ic_set_channel = upgt_set_channel; 351 ic->ic_vap_create = upgt_vap_create; 352 ic->ic_vap_delete = upgt_vap_delete; 353 ic->ic_update_mcast = upgt_update_mcast; 354 ic->ic_transmit = upgt_transmit; 355 ic->ic_parent = upgt_parent; 356 357 ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD; 358 359 ieee80211_radiotap_attach(ic, 360 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 361 UPGT_TX_RADIOTAP_PRESENT, 362 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 363 UPGT_RX_RADIOTAP_PRESENT); 364 365 upgt_sysctl_node(sc); 366 367 if (bootverbose) 368 ieee80211_announce(ic); 369 370 return (0); 371 372 fail4: upgt_free_rx(sc); 373 fail3: upgt_free_tx(sc); 374 fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 375 fail1: mtx_destroy(&sc->sc_mtx); 376 377 return (error); 378 } 379 380 static void 381 upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) 382 { 383 384 if (data->m) { 385 /* XXX status? */ 386 ieee80211_tx_complete(data->ni, data->m, 0); 387 data->m = NULL; 388 data->ni = NULL; 389 } 390 } 391 392 static void 393 upgt_get_stats(struct upgt_softc *sc) 394 { 395 struct upgt_data *data_cmd; 396 struct upgt_lmac_mem *mem; 397 struct upgt_lmac_stats *stats; 398 399 data_cmd = upgt_getbuf(sc); 400 if (data_cmd == NULL) { 401 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 402 return; 403 } 404 405 /* 406 * Transmit the URB containing the CMD data. 407 */ 408 memset(data_cmd->buf, 0, MCLBYTES); 409 410 mem = (struct upgt_lmac_mem *)data_cmd->buf; 411 mem->addr = htole32(sc->sc_memaddr_frame_start + 412 UPGT_MEMSIZE_FRAME_HEAD); 413 414 stats = (struct upgt_lmac_stats *)(mem + 1); 415 416 stats->header1.flags = 0; 417 stats->header1.type = UPGT_H1_TYPE_CTRL; 418 stats->header1.len = htole16( 419 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); 420 421 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); 422 stats->header2.type = htole16(UPGT_H2_TYPE_STATS); 423 stats->header2.flags = 0; 424 425 data_cmd->buflen = sizeof(*mem) + sizeof(*stats); 426 427 mem->chksum = upgt_chksum_le((uint32_t *)stats, 428 data_cmd->buflen - sizeof(*mem)); 429 430 upgt_bulk_tx(sc, data_cmd); 431 } 432 433 static void 434 upgt_parent(struct ieee80211com *ic) 435 { 436 struct upgt_softc *sc = ic->ic_softc; 437 int startall = 0; 438 439 UPGT_LOCK(sc); 440 if (sc->sc_flags & UPGT_FLAG_DETACHED) { 441 UPGT_UNLOCK(sc); 442 return; 443 } 444 if (ic->ic_nrunning > 0) { 445 if (sc->sc_flags & UPGT_FLAG_INITDONE) { 446 if (ic->ic_allmulti > 0 || ic->ic_promisc > 0) 447 upgt_set_multi(sc); 448 } else { 449 upgt_init(sc); 450 startall = 1; 451 } 452 } else if (sc->sc_flags & UPGT_FLAG_INITDONE) 453 upgt_stop(sc); 454 UPGT_UNLOCK(sc); 455 if (startall) 456 ieee80211_start_all(ic); 457 } 458 459 static void 460 upgt_stop(struct upgt_softc *sc) 461 { 462 463 UPGT_ASSERT_LOCKED(sc); 464 465 if (sc->sc_flags & UPGT_FLAG_INITDONE) 466 upgt_set_macfilter(sc, IEEE80211_S_INIT); 467 upgt_abort_xfers_locked(sc); 468 /* device down */ 469 sc->sc_tx_timer = 0; 470 sc->sc_flags &= ~UPGT_FLAG_INITDONE; 471 } 472 473 static void 474 upgt_set_led(struct upgt_softc *sc, int action) 475 { 476 struct upgt_data *data_cmd; 477 struct upgt_lmac_mem *mem; 478 struct upgt_lmac_led *led; 479 480 data_cmd = upgt_getbuf(sc); 481 if (data_cmd == NULL) { 482 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 483 return; 484 } 485 486 /* 487 * Transmit the URB containing the CMD data. 488 */ 489 memset(data_cmd->buf, 0, MCLBYTES); 490 491 mem = (struct upgt_lmac_mem *)data_cmd->buf; 492 mem->addr = htole32(sc->sc_memaddr_frame_start + 493 UPGT_MEMSIZE_FRAME_HEAD); 494 495 led = (struct upgt_lmac_led *)(mem + 1); 496 497 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 498 led->header1.type = UPGT_H1_TYPE_CTRL; 499 led->header1.len = htole16( 500 sizeof(struct upgt_lmac_led) - 501 sizeof(struct upgt_lmac_header)); 502 503 led->header2.reqid = htole32(sc->sc_memaddr_frame_start); 504 led->header2.type = htole16(UPGT_H2_TYPE_LED); 505 led->header2.flags = 0; 506 507 switch (action) { 508 case UPGT_LED_OFF: 509 led->mode = htole16(UPGT_LED_MODE_SET); 510 led->action_fix = 0; 511 led->action_tmp = htole16(UPGT_LED_ACTION_OFF); 512 led->action_tmp_dur = 0; 513 break; 514 case UPGT_LED_ON: 515 led->mode = htole16(UPGT_LED_MODE_SET); 516 led->action_fix = 0; 517 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 518 led->action_tmp_dur = 0; 519 break; 520 case UPGT_LED_BLINK: 521 if (sc->sc_state != IEEE80211_S_RUN) { 522 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 523 return; 524 } 525 if (sc->sc_led_blink) { 526 /* previous blink was not finished */ 527 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 528 return; 529 } 530 led->mode = htole16(UPGT_LED_MODE_SET); 531 led->action_fix = htole16(UPGT_LED_ACTION_OFF); 532 led->action_tmp = htole16(UPGT_LED_ACTION_ON); 533 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); 534 /* lock blink */ 535 sc->sc_led_blink = 1; 536 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); 537 break; 538 default: 539 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); 540 return; 541 } 542 543 data_cmd->buflen = sizeof(*mem) + sizeof(*led); 544 545 mem->chksum = upgt_chksum_le((uint32_t *)led, 546 data_cmd->buflen - sizeof(*mem)); 547 548 upgt_bulk_tx(sc, data_cmd); 549 } 550 551 static void 552 upgt_set_led_blink(void *arg) 553 { 554 struct upgt_softc *sc = arg; 555 556 /* blink finished, we are ready for a next one */ 557 sc->sc_led_blink = 0; 558 } 559 560 static void 561 upgt_init(struct upgt_softc *sc) 562 { 563 564 UPGT_ASSERT_LOCKED(sc); 565 566 if (sc->sc_flags & UPGT_FLAG_INITDONE) 567 upgt_stop(sc); 568 569 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 570 571 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); 572 573 sc->sc_flags |= UPGT_FLAG_INITDONE; 574 575 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 576 } 577 578 static int 579 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) 580 { 581 struct ieee80211com *ic = &sc->sc_ic; 582 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 583 struct ieee80211_node *ni; 584 struct upgt_data *data_cmd; 585 struct upgt_lmac_mem *mem; 586 struct upgt_lmac_filter *filter; 587 588 UPGT_ASSERT_LOCKED(sc); 589 590 data_cmd = upgt_getbuf(sc); 591 if (data_cmd == NULL) { 592 device_printf(sc->sc_dev, "out of TX buffers.\n"); 593 return (ENOBUFS); 594 } 595 596 /* 597 * Transmit the URB containing the CMD data. 598 */ 599 memset(data_cmd->buf, 0, MCLBYTES); 600 601 mem = (struct upgt_lmac_mem *)data_cmd->buf; 602 mem->addr = htole32(sc->sc_memaddr_frame_start + 603 UPGT_MEMSIZE_FRAME_HEAD); 604 605 filter = (struct upgt_lmac_filter *)(mem + 1); 606 607 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 608 filter->header1.type = UPGT_H1_TYPE_CTRL; 609 filter->header1.len = htole16( 610 sizeof(struct upgt_lmac_filter) - 611 sizeof(struct upgt_lmac_header)); 612 613 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); 614 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); 615 filter->header2.flags = 0; 616 617 switch (state) { 618 case IEEE80211_S_INIT: 619 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", 620 __func__); 621 filter->type = htole16(UPGT_FILTER_TYPE_RESET); 622 break; 623 case IEEE80211_S_SCAN: 624 DPRINTF(sc, UPGT_DEBUG_STATE, 625 "set MAC filter to SCAN (bssid %s)\n", 626 ether_sprintf(ieee80211broadcastaddr)); 627 filter->type = htole16(UPGT_FILTER_TYPE_NONE); 628 IEEE80211_ADDR_COPY(filter->dst, 629 vap ? vap->iv_myaddr : ic->ic_macaddr); 630 IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr); 631 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 632 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 633 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 634 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 635 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 636 break; 637 case IEEE80211_S_RUN: 638 ni = ieee80211_ref_node(vap->iv_bss); 639 /* XXX monitor mode isn't tested yet. */ 640 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 641 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); 642 IEEE80211_ADDR_COPY(filter->dst, 643 vap ? vap->iv_myaddr : ic->ic_macaddr); 644 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 645 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); 646 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 647 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); 648 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 649 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); 650 } else { 651 DPRINTF(sc, UPGT_DEBUG_STATE, 652 "set MAC filter to RUN (bssid %s)\n", 653 ether_sprintf(ni->ni_bssid)); 654 filter->type = htole16(UPGT_FILTER_TYPE_STA); 655 IEEE80211_ADDR_COPY(filter->dst, 656 vap ? vap->iv_myaddr : ic->ic_macaddr); 657 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); 658 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); 659 filter->rxaddr = htole32(sc->sc_memaddr_rx_start); 660 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); 661 filter->rxhw = htole32(sc->sc_eeprom_hwrx); 662 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); 663 } 664 ieee80211_free_node(ni); 665 break; 666 default: 667 device_printf(sc->sc_dev, 668 "MAC filter does not know that state\n"); 669 break; 670 } 671 672 data_cmd->buflen = sizeof(*mem) + sizeof(*filter); 673 674 mem->chksum = upgt_chksum_le((uint32_t *)filter, 675 data_cmd->buflen - sizeof(*mem)); 676 677 upgt_bulk_tx(sc, data_cmd); 678 679 return (0); 680 } 681 682 static void 683 upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) 684 { 685 struct upgt_softc *sc = ic->ic_softc; 686 const struct ieee80211_txparam *tp; 687 688 /* 689 * 0x01 = OFMD6 0x10 = DS1 690 * 0x04 = OFDM9 0x11 = DS2 691 * 0x06 = OFDM12 0x12 = DS5 692 * 0x07 = OFDM18 0x13 = DS11 693 * 0x08 = OFDM24 694 * 0x09 = OFDM36 695 * 0x0a = OFDM48 696 * 0x0b = OFDM54 697 */ 698 const uint8_t rateset_auto_11b[] = 699 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; 700 const uint8_t rateset_auto_11g[] = 701 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; 702 const uint8_t rateset_fix_11bg[] = 703 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 704 0x08, 0x09, 0x0a, 0x0b }; 705 706 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 707 708 /* XXX */ 709 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { 710 /* 711 * Automatic rate control is done by the device. 712 * We just pass the rateset from which the device 713 * will pickup a rate. 714 */ 715 if (ic->ic_curmode == IEEE80211_MODE_11B) 716 memcpy(sc->sc_cur_rateset, rateset_auto_11b, 717 sizeof(sc->sc_cur_rateset)); 718 if (ic->ic_curmode == IEEE80211_MODE_11G || 719 ic->ic_curmode == IEEE80211_MODE_AUTO) 720 memcpy(sc->sc_cur_rateset, rateset_auto_11g, 721 sizeof(sc->sc_cur_rateset)); 722 } else { 723 /* set a fixed rate */ 724 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], 725 sizeof(sc->sc_cur_rateset)); 726 } 727 } 728 729 static void 730 upgt_set_multi(void *arg) 731 { 732 733 /* XXX don't know how to set a device. Lack of docs. */ 734 } 735 736 static int 737 upgt_transmit(struct ieee80211com *ic, struct mbuf *m) 738 { 739 struct upgt_softc *sc = ic->ic_softc; 740 int error; 741 742 UPGT_LOCK(sc); 743 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) { 744 UPGT_UNLOCK(sc); 745 return (ENXIO); 746 } 747 error = mbufq_enqueue(&sc->sc_snd, m); 748 if (error) { 749 UPGT_UNLOCK(sc); 750 return (error); 751 } 752 upgt_start(sc); 753 UPGT_UNLOCK(sc); 754 755 return (0); 756 } 757 758 static void 759 upgt_start(struct upgt_softc *sc) 760 { 761 struct upgt_data *data_tx; 762 struct ieee80211_node *ni; 763 struct mbuf *m; 764 765 UPGT_ASSERT_LOCKED(sc); 766 767 if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) 768 return; 769 770 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 771 data_tx = upgt_gettxbuf(sc); 772 if (data_tx == NULL) { 773 mbufq_prepend(&sc->sc_snd, m); 774 break; 775 } 776 777 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 778 m->m_pkthdr.rcvif = NULL; 779 780 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 781 if_inc_counter(ni->ni_vap->iv_ifp, 782 IFCOUNTER_OERRORS, 1); 783 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 784 UPGT_STAT_INC(sc, st_tx_inactive); 785 ieee80211_free_node(ni); 786 continue; 787 } 788 sc->sc_tx_timer = 5; 789 } 790 } 791 792 static int 793 upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 794 const struct ieee80211_bpf_params *params) 795 { 796 struct ieee80211com *ic = ni->ni_ic; 797 struct upgt_softc *sc = ic->ic_softc; 798 struct upgt_data *data_tx = NULL; 799 800 UPGT_LOCK(sc); 801 /* prevent management frames from being sent if we're not ready */ 802 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) { 803 m_freem(m); 804 UPGT_UNLOCK(sc); 805 return ENETDOWN; 806 } 807 808 data_tx = upgt_gettxbuf(sc); 809 if (data_tx == NULL) { 810 m_freem(m); 811 UPGT_UNLOCK(sc); 812 return (ENOBUFS); 813 } 814 815 if (upgt_tx_start(sc, m, ni, data_tx) != 0) { 816 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); 817 UPGT_STAT_INC(sc, st_tx_inactive); 818 UPGT_UNLOCK(sc); 819 return (EIO); 820 } 821 UPGT_UNLOCK(sc); 822 823 sc->sc_tx_timer = 5; 824 return (0); 825 } 826 827 static void 828 upgt_watchdog(void *arg) 829 { 830 struct upgt_softc *sc = arg; 831 struct ieee80211com *ic = &sc->sc_ic; 832 833 if (sc->sc_tx_timer > 0) { 834 if (--sc->sc_tx_timer == 0) { 835 device_printf(sc->sc_dev, "watchdog timeout\n"); 836 /* upgt_init(sc); XXX needs a process context ? */ 837 counter_u64_add(ic->ic_oerrors, 1); 838 return; 839 } 840 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); 841 } 842 } 843 844 static uint32_t 845 upgt_mem_alloc(struct upgt_softc *sc) 846 { 847 int i; 848 849 for (i = 0; i < sc->sc_memory.pages; i++) { 850 if (sc->sc_memory.page[i].used == 0) { 851 sc->sc_memory.page[i].used = 1; 852 return (sc->sc_memory.page[i].addr); 853 } 854 } 855 856 return (0); 857 } 858 859 static void 860 upgt_scan_start(struct ieee80211com *ic) 861 { 862 /* do nothing. */ 863 } 864 865 static void 866 upgt_scan_end(struct ieee80211com *ic) 867 { 868 /* do nothing. */ 869 } 870 871 static void 872 upgt_set_channel(struct ieee80211com *ic) 873 { 874 struct upgt_softc *sc = ic->ic_softc; 875 876 UPGT_LOCK(sc); 877 upgt_set_chan(sc, ic->ic_curchan); 878 UPGT_UNLOCK(sc); 879 } 880 881 static void 882 upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) 883 { 884 struct ieee80211com *ic = &sc->sc_ic; 885 struct upgt_data *data_cmd; 886 struct upgt_lmac_mem *mem; 887 struct upgt_lmac_channel *chan; 888 int channel; 889 890 UPGT_ASSERT_LOCKED(sc); 891 892 channel = ieee80211_chan2ieee(ic, c); 893 if (channel == 0 || channel == IEEE80211_CHAN_ANY) { 894 /* XXX should NEVER happen */ 895 device_printf(sc->sc_dev, 896 "%s: invalid channel %x\n", __func__, channel); 897 return; 898 } 899 900 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); 901 902 data_cmd = upgt_getbuf(sc); 903 if (data_cmd == NULL) { 904 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); 905 return; 906 } 907 /* 908 * Transmit the URB containing the CMD data. 909 */ 910 memset(data_cmd->buf, 0, MCLBYTES); 911 912 mem = (struct upgt_lmac_mem *)data_cmd->buf; 913 mem->addr = htole32(sc->sc_memaddr_frame_start + 914 UPGT_MEMSIZE_FRAME_HEAD); 915 916 chan = (struct upgt_lmac_channel *)(mem + 1); 917 918 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; 919 chan->header1.type = UPGT_H1_TYPE_CTRL; 920 chan->header1.len = htole16( 921 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); 922 923 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); 924 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); 925 chan->header2.flags = 0; 926 927 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); 928 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); 929 chan->freq6 = sc->sc_eeprom_freq6[channel]; 930 chan->settings = sc->sc_eeprom_freq6_settings; 931 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; 932 933 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, 934 sizeof(chan->freq3_1)); 935 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], 936 sizeof(sc->sc_eeprom_freq4[channel])); 937 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, 938 sizeof(chan->freq3_2)); 939 940 data_cmd->buflen = sizeof(*mem) + sizeof(*chan); 941 942 mem->chksum = upgt_chksum_le((uint32_t *)chan, 943 data_cmd->buflen - sizeof(*mem)); 944 945 upgt_bulk_tx(sc, data_cmd); 946 } 947 948 static struct ieee80211vap * 949 upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 950 enum ieee80211_opmode opmode, int flags, 951 const uint8_t bssid[IEEE80211_ADDR_LEN], 952 const uint8_t mac[IEEE80211_ADDR_LEN]) 953 { 954 struct upgt_vap *uvp; 955 struct ieee80211vap *vap; 956 957 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 958 return NULL; 959 uvp = malloc(sizeof(struct upgt_vap), M_80211_VAP, M_WAITOK | M_ZERO); 960 vap = &uvp->vap; 961 /* enable s/w bmiss handling for sta mode */ 962 963 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 964 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 965 /* out of memory */ 966 free(uvp, M_80211_VAP); 967 return (NULL); 968 } 969 970 /* override state transition machine */ 971 uvp->newstate = vap->iv_newstate; 972 vap->iv_newstate = upgt_newstate; 973 974 /* setup device rates */ 975 upgt_setup_rates(vap, ic); 976 977 /* complete setup */ 978 ieee80211_vap_attach(vap, ieee80211_media_change, 979 ieee80211_media_status, mac); 980 ic->ic_opmode = opmode; 981 return vap; 982 } 983 984 static int 985 upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 986 { 987 struct upgt_vap *uvp = UPGT_VAP(vap); 988 struct ieee80211com *ic = vap->iv_ic; 989 struct upgt_softc *sc = ic->ic_softc; 990 991 /* do it in a process context */ 992 sc->sc_state = nstate; 993 994 IEEE80211_UNLOCK(ic); 995 UPGT_LOCK(sc); 996 callout_stop(&sc->sc_led_ch); 997 callout_stop(&sc->sc_watchdog_ch); 998 999 switch (nstate) { 1000 case IEEE80211_S_INIT: 1001 /* do not accept any frames if the device is down */ 1002 (void)upgt_set_macfilter(sc, sc->sc_state); 1003 upgt_set_led(sc, UPGT_LED_OFF); 1004 break; 1005 case IEEE80211_S_SCAN: 1006 upgt_set_chan(sc, ic->ic_curchan); 1007 break; 1008 case IEEE80211_S_AUTH: 1009 upgt_set_chan(sc, ic->ic_curchan); 1010 break; 1011 case IEEE80211_S_ASSOC: 1012 break; 1013 case IEEE80211_S_RUN: 1014 upgt_set_macfilter(sc, sc->sc_state); 1015 upgt_set_led(sc, UPGT_LED_ON); 1016 break; 1017 default: 1018 break; 1019 } 1020 UPGT_UNLOCK(sc); 1021 IEEE80211_LOCK(ic); 1022 return (uvp->newstate(vap, nstate, arg)); 1023 } 1024 1025 static void 1026 upgt_vap_delete(struct ieee80211vap *vap) 1027 { 1028 struct upgt_vap *uvp = UPGT_VAP(vap); 1029 1030 ieee80211_vap_detach(vap); 1031 free(uvp, M_80211_VAP); 1032 } 1033 1034 static void 1035 upgt_update_mcast(struct ieee80211com *ic) 1036 { 1037 struct upgt_softc *sc = ic->ic_softc; 1038 1039 upgt_set_multi(sc); 1040 } 1041 1042 static int 1043 upgt_eeprom_parse(struct upgt_softc *sc) 1044 { 1045 struct ieee80211com *ic = &sc->sc_ic; 1046 struct upgt_eeprom_header *eeprom_header; 1047 struct upgt_eeprom_option *eeprom_option; 1048 uint16_t option_len; 1049 uint16_t option_type; 1050 uint16_t preamble_len; 1051 int option_end = 0; 1052 1053 /* calculate eeprom options start offset */ 1054 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; 1055 preamble_len = le16toh(eeprom_header->preamble_len); 1056 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + 1057 (sizeof(struct upgt_eeprom_header) + preamble_len)); 1058 1059 while (!option_end) { 1060 /* sanity check */ 1061 if (eeprom_option >= (struct upgt_eeprom_option *) 1062 (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { 1063 return (EINVAL); 1064 } 1065 1066 /* the eeprom option length is stored in words */ 1067 option_len = 1068 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); 1069 option_type = 1070 le16toh(eeprom_option->type); 1071 1072 /* sanity check */ 1073 if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) 1074 return (EINVAL); 1075 1076 switch (option_type) { 1077 case UPGT_EEPROM_TYPE_NAME: 1078 DPRINTF(sc, UPGT_DEBUG_FW, 1079 "EEPROM name len=%d\n", option_len); 1080 break; 1081 case UPGT_EEPROM_TYPE_SERIAL: 1082 DPRINTF(sc, UPGT_DEBUG_FW, 1083 "EEPROM serial len=%d\n", option_len); 1084 break; 1085 case UPGT_EEPROM_TYPE_MAC: 1086 DPRINTF(sc, UPGT_DEBUG_FW, 1087 "EEPROM mac len=%d\n", option_len); 1088 1089 IEEE80211_ADDR_COPY(ic->ic_macaddr, 1090 eeprom_option->data); 1091 break; 1092 case UPGT_EEPROM_TYPE_HWRX: 1093 DPRINTF(sc, UPGT_DEBUG_FW, 1094 "EEPROM hwrx len=%d\n", option_len); 1095 1096 upgt_eeprom_parse_hwrx(sc, eeprom_option->data); 1097 break; 1098 case UPGT_EEPROM_TYPE_CHIP: 1099 DPRINTF(sc, UPGT_DEBUG_FW, 1100 "EEPROM chip len=%d\n", option_len); 1101 break; 1102 case UPGT_EEPROM_TYPE_FREQ3: 1103 DPRINTF(sc, UPGT_DEBUG_FW, 1104 "EEPROM freq3 len=%d\n", option_len); 1105 1106 upgt_eeprom_parse_freq3(sc, eeprom_option->data, 1107 option_len); 1108 break; 1109 case UPGT_EEPROM_TYPE_FREQ4: 1110 DPRINTF(sc, UPGT_DEBUG_FW, 1111 "EEPROM freq4 len=%d\n", option_len); 1112 1113 upgt_eeprom_parse_freq4(sc, eeprom_option->data, 1114 option_len); 1115 break; 1116 case UPGT_EEPROM_TYPE_FREQ5: 1117 DPRINTF(sc, UPGT_DEBUG_FW, 1118 "EEPROM freq5 len=%d\n", option_len); 1119 break; 1120 case UPGT_EEPROM_TYPE_FREQ6: 1121 DPRINTF(sc, UPGT_DEBUG_FW, 1122 "EEPROM freq6 len=%d\n", option_len); 1123 1124 upgt_eeprom_parse_freq6(sc, eeprom_option->data, 1125 option_len); 1126 break; 1127 case UPGT_EEPROM_TYPE_END: 1128 DPRINTF(sc, UPGT_DEBUG_FW, 1129 "EEPROM end len=%d\n", option_len); 1130 option_end = 1; 1131 break; 1132 case UPGT_EEPROM_TYPE_OFF: 1133 DPRINTF(sc, UPGT_DEBUG_FW, 1134 "%s: EEPROM off without end option\n", __func__); 1135 return (EIO); 1136 default: 1137 DPRINTF(sc, UPGT_DEBUG_FW, 1138 "EEPROM unknown type 0x%04x len=%d\n", 1139 option_type, option_len); 1140 break; 1141 } 1142 1143 /* jump to next EEPROM option */ 1144 eeprom_option = (struct upgt_eeprom_option *) 1145 (eeprom_option->data + option_len); 1146 } 1147 return (0); 1148 } 1149 1150 static void 1151 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) 1152 { 1153 struct upgt_eeprom_freq3_header *freq3_header; 1154 struct upgt_lmac_freq3 *freq3; 1155 int i; 1156 int elements; 1157 unsigned channel; 1158 1159 freq3_header = (struct upgt_eeprom_freq3_header *)data; 1160 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); 1161 1162 elements = freq3_header->elements; 1163 1164 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", 1165 freq3_header->flags, elements); 1166 1167 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) 1168 return; 1169 1170 for (i = 0; i < elements; i++) { 1171 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); 1172 if (channel >= IEEE80211_CHAN_MAX) 1173 continue; 1174 1175 sc->sc_eeprom_freq3[channel] = freq3[i]; 1176 1177 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1178 le16toh(sc->sc_eeprom_freq3[channel].freq), channel); 1179 } 1180 } 1181 1182 void 1183 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) 1184 { 1185 struct upgt_eeprom_freq4_header *freq4_header; 1186 struct upgt_eeprom_freq4_1 *freq4_1; 1187 struct upgt_eeprom_freq4_2 *freq4_2; 1188 int i; 1189 int j; 1190 int elements; 1191 int settings; 1192 unsigned channel; 1193 1194 freq4_header = (struct upgt_eeprom_freq4_header *)data; 1195 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); 1196 elements = freq4_header->elements; 1197 settings = freq4_header->settings; 1198 1199 /* we need this value later */ 1200 sc->sc_eeprom_freq6_settings = freq4_header->settings; 1201 1202 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", 1203 freq4_header->flags, elements, settings); 1204 1205 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) 1206 return; 1207 1208 for (i = 0; i < elements; i++) { 1209 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); 1210 if (channel >= IEEE80211_CHAN_MAX) 1211 continue; 1212 1213 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; 1214 for (j = 0; j < settings; j++) { 1215 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; 1216 sc->sc_eeprom_freq4[channel][j].pad = 0; 1217 } 1218 1219 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1220 le16toh(freq4_1[i].freq), channel); 1221 } 1222 } 1223 1224 void 1225 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) 1226 { 1227 struct upgt_lmac_freq6 *freq6; 1228 int i; 1229 int elements; 1230 unsigned channel; 1231 1232 freq6 = (struct upgt_lmac_freq6 *)data; 1233 elements = len / sizeof(struct upgt_lmac_freq6); 1234 1235 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); 1236 1237 if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) 1238 return; 1239 1240 for (i = 0; i < elements; i++) { 1241 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); 1242 if (channel >= IEEE80211_CHAN_MAX) 1243 continue; 1244 1245 sc->sc_eeprom_freq6[channel] = freq6[i]; 1246 1247 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", 1248 le16toh(sc->sc_eeprom_freq6[channel].freq), channel); 1249 } 1250 } 1251 1252 static void 1253 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) 1254 { 1255 struct upgt_eeprom_option_hwrx *option_hwrx; 1256 1257 option_hwrx = (struct upgt_eeprom_option_hwrx *)data; 1258 1259 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; 1260 1261 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", 1262 sc->sc_eeprom_hwrx); 1263 } 1264 1265 static int 1266 upgt_eeprom_read(struct upgt_softc *sc) 1267 { 1268 struct upgt_data *data_cmd; 1269 struct upgt_lmac_mem *mem; 1270 struct upgt_lmac_eeprom *eeprom; 1271 int block, error, offset; 1272 1273 UPGT_LOCK(sc); 1274 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100)); 1275 1276 offset = 0; 1277 block = UPGT_EEPROM_BLOCK_SIZE; 1278 while (offset < UPGT_EEPROM_SIZE) { 1279 DPRINTF(sc, UPGT_DEBUG_FW, 1280 "request EEPROM block (offset=%d, len=%d)\n", offset, block); 1281 1282 data_cmd = upgt_getbuf(sc); 1283 if (data_cmd == NULL) { 1284 UPGT_UNLOCK(sc); 1285 return (ENOBUFS); 1286 } 1287 1288 /* 1289 * Transmit the URB containing the CMD data. 1290 */ 1291 memset(data_cmd->buf, 0, MCLBYTES); 1292 1293 mem = (struct upgt_lmac_mem *)data_cmd->buf; 1294 mem->addr = htole32(sc->sc_memaddr_frame_start + 1295 UPGT_MEMSIZE_FRAME_HEAD); 1296 1297 eeprom = (struct upgt_lmac_eeprom *)(mem + 1); 1298 eeprom->header1.flags = 0; 1299 eeprom->header1.type = UPGT_H1_TYPE_CTRL; 1300 eeprom->header1.len = htole16(( 1301 sizeof(struct upgt_lmac_eeprom) - 1302 sizeof(struct upgt_lmac_header)) + block); 1303 1304 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); 1305 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); 1306 eeprom->header2.flags = 0; 1307 1308 eeprom->offset = htole16(offset); 1309 eeprom->len = htole16(block); 1310 1311 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; 1312 1313 mem->chksum = upgt_chksum_le((uint32_t *)eeprom, 1314 data_cmd->buflen - sizeof(*mem)); 1315 upgt_bulk_tx(sc, data_cmd); 1316 1317 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); 1318 if (error != 0) { 1319 device_printf(sc->sc_dev, 1320 "timeout while waiting for EEPROM data\n"); 1321 UPGT_UNLOCK(sc); 1322 return (EIO); 1323 } 1324 1325 offset += block; 1326 if (UPGT_EEPROM_SIZE - offset < block) 1327 block = UPGT_EEPROM_SIZE - offset; 1328 } 1329 1330 UPGT_UNLOCK(sc); 1331 return (0); 1332 } 1333 1334 /* 1335 * When a rx data came in the function returns a mbuf and a rssi values. 1336 */ 1337 static struct mbuf * 1338 upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) 1339 { 1340 struct mbuf *m = NULL; 1341 struct upgt_softc *sc = usbd_xfer_softc(xfer); 1342 struct upgt_lmac_header *header; 1343 struct upgt_lmac_eeprom *eeprom; 1344 uint8_t h1_type; 1345 uint16_t h2_type; 1346 int actlen, sumlen; 1347 1348 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1349 1350 UPGT_ASSERT_LOCKED(sc); 1351 1352 if (actlen < 1) 1353 return (NULL); 1354 1355 /* Check only at the very beginning. */ 1356 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && 1357 (memcmp(data->buf, "OK", 2) == 0)) { 1358 sc->sc_flags |= UPGT_FLAG_FWLOADED; 1359 wakeup_one(sc); 1360 return (NULL); 1361 } 1362 1363 if (actlen < (int)UPGT_RX_MINSZ) 1364 return (NULL); 1365 1366 /* 1367 * Check what type of frame came in. 1368 */ 1369 header = (struct upgt_lmac_header *)(data->buf + 4); 1370 1371 h1_type = header->header1.type; 1372 h2_type = le16toh(header->header2.type); 1373 1374 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { 1375 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); 1376 uint16_t eeprom_offset = le16toh(eeprom->offset); 1377 uint16_t eeprom_len = le16toh(eeprom->len); 1378 1379 DPRINTF(sc, UPGT_DEBUG_FW, 1380 "received EEPROM block (offset=%d, len=%d)\n", 1381 eeprom_offset, eeprom_len); 1382 1383 memcpy(sc->sc_eeprom + eeprom_offset, 1384 data->buf + sizeof(struct upgt_lmac_eeprom) + 4, 1385 eeprom_len); 1386 1387 /* EEPROM data has arrived in time, wakeup. */ 1388 wakeup(sc); 1389 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1390 h2_type == UPGT_H2_TYPE_TX_DONE) { 1391 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", 1392 __func__); 1393 upgt_tx_done(sc, data->buf + 4); 1394 } else if (h1_type == UPGT_H1_TYPE_RX_DATA || 1395 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { 1396 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", 1397 __func__); 1398 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), 1399 rssi); 1400 } else if (h1_type == UPGT_H1_TYPE_CTRL && 1401 h2_type == UPGT_H2_TYPE_STATS) { 1402 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", 1403 __func__); 1404 /* TODO: what could we do with the statistic data? */ 1405 } else { 1406 /* ignore unknown frame types */ 1407 DPRINTF(sc, UPGT_DEBUG_INTR, 1408 "received unknown frame type 0x%02x\n", 1409 header->header1.type); 1410 } 1411 return (m); 1412 } 1413 1414 /* 1415 * The firmware awaits a checksum for each frame we send to it. 1416 * The algorithm used therefor is uncommon but somehow similar to CRC32. 1417 */ 1418 static uint32_t 1419 upgt_chksum_le(const uint32_t *buf, size_t size) 1420 { 1421 size_t i; 1422 uint32_t crc = 0; 1423 1424 for (i = 0; i < size; i += sizeof(uint32_t)) { 1425 crc = htole32(crc ^ *buf++); 1426 crc = htole32((crc >> 5) ^ (crc << 3)); 1427 } 1428 1429 return (crc); 1430 } 1431 1432 static struct mbuf * 1433 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) 1434 { 1435 struct ieee80211com *ic = &sc->sc_ic; 1436 struct upgt_lmac_rx_desc *rxdesc; 1437 struct mbuf *m; 1438 1439 /* 1440 * don't pass packets to the ieee80211 framework if the driver isn't 1441 * RUNNING. 1442 */ 1443 if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) 1444 return (NULL); 1445 1446 /* access RX packet descriptor */ 1447 rxdesc = (struct upgt_lmac_rx_desc *)data; 1448 1449 /* create mbuf which is suitable for strict alignment archs */ 1450 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, 1451 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); 1452 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1453 if (m == NULL) { 1454 device_printf(sc->sc_dev, "could not create RX mbuf\n"); 1455 return (NULL); 1456 } 1457 m_adj(m, ETHER_ALIGN); 1458 memcpy(mtod(m, char *), rxdesc->data, pkglen); 1459 /* trim FCS */ 1460 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; 1461 1462 if (ieee80211_radiotap_active(ic)) { 1463 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; 1464 1465 tap->wr_flags = 0; 1466 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); 1467 tap->wr_antsignal = rxdesc->rssi; 1468 } 1469 1470 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); 1471 *rssi = rxdesc->rssi; 1472 return (m); 1473 } 1474 1475 static uint8_t 1476 upgt_rx_rate(struct upgt_softc *sc, const int rate) 1477 { 1478 struct ieee80211com *ic = &sc->sc_ic; 1479 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; 1480 static const uint8_t ofdm_upgt2rate[12] = 1481 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; 1482 1483 if (ic->ic_curmode == IEEE80211_MODE_11B && 1484 !(rate < 0 || rate > 3)) 1485 return cck_upgt2rate[rate & 0xf]; 1486 1487 if (ic->ic_curmode == IEEE80211_MODE_11G && 1488 !(rate < 0 || rate > 11)) 1489 return ofdm_upgt2rate[rate & 0xf]; 1490 1491 return (0); 1492 } 1493 1494 static void 1495 upgt_tx_done(struct upgt_softc *sc, uint8_t *data) 1496 { 1497 struct upgt_lmac_tx_done_desc *desc; 1498 int i, freed = 0; 1499 1500 UPGT_ASSERT_LOCKED(sc); 1501 1502 desc = (struct upgt_lmac_tx_done_desc *)data; 1503 1504 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1505 struct upgt_data *data_tx = &sc->sc_tx_data[i]; 1506 1507 if (data_tx->addr == le32toh(desc->header2.reqid)) { 1508 upgt_mem_free(sc, data_tx->addr); 1509 data_tx->ni = NULL; 1510 data_tx->addr = 0; 1511 data_tx->m = NULL; 1512 1513 DPRINTF(sc, UPGT_DEBUG_TX_PROC, 1514 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", 1515 le32toh(desc->header2.reqid), 1516 le16toh(desc->status), le16toh(desc->rssi)); 1517 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", 1518 le16toh(desc->seq)); 1519 1520 freed++; 1521 } 1522 } 1523 1524 if (freed != 0) { 1525 UPGT_UNLOCK(sc); 1526 sc->sc_tx_timer = 0; 1527 upgt_start(sc); 1528 UPGT_LOCK(sc); 1529 } 1530 } 1531 1532 static void 1533 upgt_mem_free(struct upgt_softc *sc, uint32_t addr) 1534 { 1535 int i; 1536 1537 for (i = 0; i < sc->sc_memory.pages; i++) { 1538 if (sc->sc_memory.page[i].addr == addr) { 1539 sc->sc_memory.page[i].used = 0; 1540 return; 1541 } 1542 } 1543 1544 device_printf(sc->sc_dev, 1545 "could not free memory address 0x%08x\n", addr); 1546 } 1547 1548 static int 1549 upgt_fw_load(struct upgt_softc *sc) 1550 { 1551 const struct firmware *fw; 1552 struct upgt_data *data_cmd; 1553 struct upgt_fw_x2_header *x2; 1554 char start_fwload_cmd[] = { 0x3c, 0x0d }; 1555 int error = 0; 1556 size_t offset; 1557 int bsize; 1558 int n; 1559 uint32_t crc32; 1560 1561 fw = firmware_get(upgt_fwname); 1562 if (fw == NULL) { 1563 device_printf(sc->sc_dev, "could not read microcode %s\n", 1564 upgt_fwname); 1565 return (EIO); 1566 } 1567 1568 UPGT_LOCK(sc); 1569 1570 /* send firmware start load command */ 1571 data_cmd = upgt_getbuf(sc); 1572 if (data_cmd == NULL) { 1573 error = ENOBUFS; 1574 goto fail; 1575 } 1576 data_cmd->buflen = sizeof(start_fwload_cmd); 1577 memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); 1578 upgt_bulk_tx(sc, data_cmd); 1579 1580 /* send X2 header */ 1581 data_cmd = upgt_getbuf(sc); 1582 if (data_cmd == NULL) { 1583 error = ENOBUFS; 1584 goto fail; 1585 } 1586 data_cmd->buflen = sizeof(struct upgt_fw_x2_header); 1587 x2 = (struct upgt_fw_x2_header *)data_cmd->buf; 1588 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); 1589 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); 1590 x2->len = htole32(fw->datasize); 1591 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + 1592 UPGT_X2_SIGNATURE_SIZE, 1593 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - 1594 sizeof(uint32_t)); 1595 upgt_bulk_tx(sc, data_cmd); 1596 1597 /* download firmware */ 1598 for (offset = 0; offset < fw->datasize; offset += bsize) { 1599 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) 1600 bsize = UPGT_FW_BLOCK_SIZE; 1601 else 1602 bsize = fw->datasize - offset; 1603 1604 data_cmd = upgt_getbuf(sc); 1605 if (data_cmd == NULL) { 1606 error = ENOBUFS; 1607 goto fail; 1608 } 1609 n = upgt_fw_copy((const uint8_t *)fw->data + offset, 1610 data_cmd->buf, bsize); 1611 data_cmd->buflen = bsize; 1612 upgt_bulk_tx(sc, data_cmd); 1613 1614 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%zu, read=%d, sent=%d\n", 1615 offset, n, bsize); 1616 bsize = n; 1617 } 1618 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); 1619 1620 /* load firmware */ 1621 data_cmd = upgt_getbuf(sc); 1622 if (data_cmd == NULL) { 1623 error = ENOBUFS; 1624 goto fail; 1625 } 1626 crc32 = upgt_crc32_le(fw->data, fw->datasize); 1627 *((uint32_t *)(data_cmd->buf) ) = crc32; 1628 *((uint8_t *)(data_cmd->buf) + 4) = 'g'; 1629 *((uint8_t *)(data_cmd->buf) + 5) = '\r'; 1630 data_cmd->buflen = 6; 1631 upgt_bulk_tx(sc, data_cmd); 1632 1633 /* waiting 'OK' response. */ 1634 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); 1635 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); 1636 if (error != 0) { 1637 device_printf(sc->sc_dev, "firmware load failed\n"); 1638 error = EIO; 1639 } 1640 1641 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); 1642 fail: 1643 UPGT_UNLOCK(sc); 1644 firmware_put(fw, FIRMWARE_UNLOAD); 1645 return (error); 1646 } 1647 1648 static uint32_t 1649 upgt_crc32_le(const void *buf, size_t size) 1650 { 1651 uint32_t crc; 1652 1653 crc = ether_crc32_le(buf, size); 1654 1655 /* apply final XOR value as common for CRC-32 */ 1656 crc = htole32(crc ^ 0xffffffffU); 1657 1658 return (crc); 1659 } 1660 1661 /* 1662 * While copying the version 2 firmware, we need to replace two characters: 1663 * 1664 * 0x7e -> 0x7d 0x5e 1665 * 0x7d -> 0x7d 0x5d 1666 */ 1667 static int 1668 upgt_fw_copy(const uint8_t *src, char *dst, int size) 1669 { 1670 int i, j; 1671 1672 for (i = 0, j = 0; i < size && j < size; i++) { 1673 switch (src[i]) { 1674 case 0x7e: 1675 dst[j] = 0x7d; 1676 j++; 1677 dst[j] = 0x5e; 1678 j++; 1679 break; 1680 case 0x7d: 1681 dst[j] = 0x7d; 1682 j++; 1683 dst[j] = 0x5d; 1684 j++; 1685 break; 1686 default: 1687 dst[j] = src[i]; 1688 j++; 1689 break; 1690 } 1691 } 1692 1693 return (i); 1694 } 1695 1696 static int 1697 upgt_mem_init(struct upgt_softc *sc) 1698 { 1699 int i; 1700 1701 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { 1702 sc->sc_memory.page[i].used = 0; 1703 1704 if (i == 0) { 1705 /* 1706 * The first memory page is always reserved for 1707 * command data. 1708 */ 1709 sc->sc_memory.page[i].addr = 1710 sc->sc_memaddr_frame_start + MCLBYTES; 1711 } else { 1712 sc->sc_memory.page[i].addr = 1713 sc->sc_memory.page[i - 1].addr + MCLBYTES; 1714 } 1715 1716 if (sc->sc_memory.page[i].addr + MCLBYTES >= 1717 sc->sc_memaddr_frame_end) 1718 break; 1719 1720 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", 1721 i, sc->sc_memory.page[i].addr); 1722 } 1723 1724 sc->sc_memory.pages = i; 1725 1726 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); 1727 return (0); 1728 } 1729 1730 static int 1731 upgt_fw_verify(struct upgt_softc *sc) 1732 { 1733 const struct firmware *fw; 1734 const struct upgt_fw_bra_option *bra_opt; 1735 const struct upgt_fw_bra_descr *descr; 1736 const uint8_t *p; 1737 const uint32_t *uc; 1738 uint32_t bra_option_type, bra_option_len; 1739 size_t offset; 1740 int bra_end = 0; 1741 int error = 0; 1742 1743 fw = firmware_get(upgt_fwname); 1744 if (fw == NULL) { 1745 device_printf(sc->sc_dev, "could not read microcode %s\n", 1746 upgt_fwname); 1747 return EIO; 1748 } 1749 1750 /* 1751 * Seek to beginning of Boot Record Area (BRA). 1752 */ 1753 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { 1754 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1755 if (*uc == 0) 1756 break; 1757 } 1758 for (; offset < fw->datasize; offset += sizeof(*uc)) { 1759 uc = (const uint32_t *)((const uint8_t *)fw->data + offset); 1760 if (*uc != 0) 1761 break; 1762 } 1763 if (offset == fw->datasize) { 1764 device_printf(sc->sc_dev, 1765 "firmware Boot Record Area not found\n"); 1766 error = EIO; 1767 goto fail; 1768 } 1769 1770 DPRINTF(sc, UPGT_DEBUG_FW, 1771 "firmware Boot Record Area found at offset %zu\n", offset); 1772 1773 /* 1774 * Parse Boot Record Area (BRA) options. 1775 */ 1776 while (offset < fw->datasize && bra_end == 0) { 1777 /* get current BRA option */ 1778 p = (const uint8_t *)fw->data + offset; 1779 bra_opt = (const struct upgt_fw_bra_option *)p; 1780 bra_option_type = le32toh(bra_opt->type); 1781 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); 1782 1783 switch (bra_option_type) { 1784 case UPGT_BRA_TYPE_FW: 1785 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", 1786 bra_option_len); 1787 1788 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { 1789 device_printf(sc->sc_dev, 1790 "wrong UPGT_BRA_TYPE_FW len\n"); 1791 error = EIO; 1792 goto fail; 1793 } 1794 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, 1795 bra_option_len) == 0) { 1796 sc->sc_fw_type = UPGT_FWTYPE_LM86; 1797 break; 1798 } 1799 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, 1800 bra_option_len) == 0) { 1801 sc->sc_fw_type = UPGT_FWTYPE_LM87; 1802 break; 1803 } 1804 device_printf(sc->sc_dev, 1805 "unsupported firmware type\n"); 1806 error = EIO; 1807 goto fail; 1808 case UPGT_BRA_TYPE_VERSION: 1809 DPRINTF(sc, UPGT_DEBUG_FW, 1810 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); 1811 break; 1812 case UPGT_BRA_TYPE_DEPIF: 1813 DPRINTF(sc, UPGT_DEBUG_FW, 1814 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); 1815 break; 1816 case UPGT_BRA_TYPE_EXPIF: 1817 DPRINTF(sc, UPGT_DEBUG_FW, 1818 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); 1819 break; 1820 case UPGT_BRA_TYPE_DESCR: 1821 DPRINTF(sc, UPGT_DEBUG_FW, 1822 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); 1823 1824 descr = (const struct upgt_fw_bra_descr *)bra_opt->data; 1825 1826 sc->sc_memaddr_frame_start = 1827 le32toh(descr->memaddr_space_start); 1828 sc->sc_memaddr_frame_end = 1829 le32toh(descr->memaddr_space_end); 1830 1831 DPRINTF(sc, UPGT_DEBUG_FW, 1832 "memory address space start=0x%08x\n", 1833 sc->sc_memaddr_frame_start); 1834 DPRINTF(sc, UPGT_DEBUG_FW, 1835 "memory address space end=0x%08x\n", 1836 sc->sc_memaddr_frame_end); 1837 break; 1838 case UPGT_BRA_TYPE_END: 1839 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", 1840 bra_option_len); 1841 bra_end = 1; 1842 break; 1843 default: 1844 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", 1845 bra_option_len); 1846 error = EIO; 1847 goto fail; 1848 } 1849 1850 /* jump to next BRA option */ 1851 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; 1852 } 1853 1854 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); 1855 fail: 1856 firmware_put(fw, FIRMWARE_UNLOAD); 1857 return (error); 1858 } 1859 1860 static void 1861 upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) 1862 { 1863 1864 UPGT_ASSERT_LOCKED(sc); 1865 1866 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); 1867 UPGT_STAT_INC(sc, st_tx_pending); 1868 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); 1869 } 1870 1871 static int 1872 upgt_device_reset(struct upgt_softc *sc) 1873 { 1874 struct upgt_data *data; 1875 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; 1876 1877 UPGT_LOCK(sc); 1878 1879 data = upgt_getbuf(sc); 1880 if (data == NULL) { 1881 UPGT_UNLOCK(sc); 1882 return (ENOBUFS); 1883 } 1884 memcpy(data->buf, init_cmd, sizeof(init_cmd)); 1885 data->buflen = sizeof(init_cmd); 1886 upgt_bulk_tx(sc, data); 1887 usb_pause_mtx(&sc->sc_mtx, USB_MS_TO_TICKS(100)); 1888 1889 UPGT_UNLOCK(sc); 1890 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); 1891 return (0); 1892 } 1893 1894 static int 1895 upgt_alloc_tx(struct upgt_softc *sc) 1896 { 1897 int i; 1898 1899 STAILQ_INIT(&sc->sc_tx_active); 1900 STAILQ_INIT(&sc->sc_tx_inactive); 1901 STAILQ_INIT(&sc->sc_tx_pending); 1902 1903 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1904 struct upgt_data *data = &sc->sc_tx_data[i]; 1905 data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); 1906 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 1907 UPGT_STAT_INC(sc, st_tx_inactive); 1908 } 1909 1910 return (0); 1911 } 1912 1913 static int 1914 upgt_alloc_rx(struct upgt_softc *sc) 1915 { 1916 int i; 1917 1918 STAILQ_INIT(&sc->sc_rx_active); 1919 STAILQ_INIT(&sc->sc_rx_inactive); 1920 1921 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1922 struct upgt_data *data = &sc->sc_rx_data[i]; 1923 data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); 1924 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 1925 } 1926 return (0); 1927 } 1928 1929 static int 1930 upgt_detach(device_t dev) 1931 { 1932 struct upgt_softc *sc = device_get_softc(dev); 1933 struct ieee80211com *ic = &sc->sc_ic; 1934 unsigned x; 1935 1936 /* 1937 * Prevent further allocations from RX/TX/CMD 1938 * data lists and ioctls 1939 */ 1940 UPGT_LOCK(sc); 1941 sc->sc_flags |= UPGT_FLAG_DETACHED; 1942 1943 STAILQ_INIT(&sc->sc_tx_active); 1944 STAILQ_INIT(&sc->sc_tx_inactive); 1945 STAILQ_INIT(&sc->sc_tx_pending); 1946 1947 STAILQ_INIT(&sc->sc_rx_active); 1948 STAILQ_INIT(&sc->sc_rx_inactive); 1949 1950 upgt_stop(sc); 1951 UPGT_UNLOCK(sc); 1952 1953 callout_drain(&sc->sc_led_ch); 1954 callout_drain(&sc->sc_watchdog_ch); 1955 1956 /* drain USB transfers */ 1957 for (x = 0; x != UPGT_N_XFERS; x++) 1958 usbd_transfer_drain(sc->sc_xfer[x]); 1959 1960 /* free data buffers */ 1961 UPGT_LOCK(sc); 1962 upgt_free_rx(sc); 1963 upgt_free_tx(sc); 1964 UPGT_UNLOCK(sc); 1965 1966 /* free USB transfers and some data buffers */ 1967 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); 1968 1969 ieee80211_ifdetach(ic); 1970 mbufq_drain(&sc->sc_snd); 1971 mtx_destroy(&sc->sc_mtx); 1972 1973 return (0); 1974 } 1975 1976 static void 1977 upgt_free_rx(struct upgt_softc *sc) 1978 { 1979 int i; 1980 1981 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { 1982 struct upgt_data *data = &sc->sc_rx_data[i]; 1983 1984 data->buf = NULL; 1985 data->ni = NULL; 1986 } 1987 } 1988 1989 static void 1990 upgt_free_tx(struct upgt_softc *sc) 1991 { 1992 int i; 1993 1994 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { 1995 struct upgt_data *data = &sc->sc_tx_data[i]; 1996 1997 if (data->ni != NULL) 1998 ieee80211_free_node(data->ni); 1999 2000 data->buf = NULL; 2001 data->ni = NULL; 2002 } 2003 } 2004 2005 static void 2006 upgt_abort_xfers_locked(struct upgt_softc *sc) 2007 { 2008 int i; 2009 2010 UPGT_ASSERT_LOCKED(sc); 2011 /* abort any pending transfers */ 2012 for (i = 0; i < UPGT_N_XFERS; i++) 2013 usbd_transfer_stop(sc->sc_xfer[i]); 2014 } 2015 2016 static void 2017 upgt_abort_xfers(struct upgt_softc *sc) 2018 { 2019 2020 UPGT_LOCK(sc); 2021 upgt_abort_xfers_locked(sc); 2022 UPGT_UNLOCK(sc); 2023 } 2024 2025 #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 2026 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 2027 2028 static void 2029 upgt_sysctl_node(struct upgt_softc *sc) 2030 { 2031 struct sysctl_ctx_list *ctx; 2032 struct sysctl_oid_list *child; 2033 struct sysctl_oid *tree; 2034 struct upgt_stat *stats; 2035 2036 stats = &sc->sc_stat; 2037 ctx = device_get_sysctl_ctx(sc->sc_dev); 2038 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); 2039 2040 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 2041 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "UPGT statistics"); 2042 child = SYSCTL_CHILDREN(tree); 2043 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", 2044 &stats->st_tx_active, "Active numbers in TX queue"); 2045 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", 2046 &stats->st_tx_inactive, "Inactive numbers in TX queue"); 2047 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", 2048 &stats->st_tx_pending, "Pending numbers in TX queue"); 2049 } 2050 2051 #undef UPGT_SYSCTL_STAT_ADD32 2052 2053 static struct upgt_data * 2054 _upgt_getbuf(struct upgt_softc *sc) 2055 { 2056 struct upgt_data *bf; 2057 2058 bf = STAILQ_FIRST(&sc->sc_tx_inactive); 2059 if (bf != NULL) { 2060 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); 2061 UPGT_STAT_DEC(sc, st_tx_inactive); 2062 } else 2063 bf = NULL; 2064 if (bf == NULL) 2065 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, 2066 "out of xmit buffers"); 2067 return (bf); 2068 } 2069 2070 static struct upgt_data * 2071 upgt_getbuf(struct upgt_softc *sc) 2072 { 2073 struct upgt_data *bf; 2074 2075 UPGT_ASSERT_LOCKED(sc); 2076 2077 bf = _upgt_getbuf(sc); 2078 if (bf == NULL) 2079 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); 2080 2081 return (bf); 2082 } 2083 2084 static struct upgt_data * 2085 upgt_gettxbuf(struct upgt_softc *sc) 2086 { 2087 struct upgt_data *bf; 2088 2089 UPGT_ASSERT_LOCKED(sc); 2090 2091 bf = upgt_getbuf(sc); 2092 if (bf == NULL) 2093 return (NULL); 2094 2095 bf->addr = upgt_mem_alloc(sc); 2096 if (bf->addr == 0) { 2097 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", 2098 __func__); 2099 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); 2100 UPGT_STAT_INC(sc, st_tx_inactive); 2101 return (NULL); 2102 } 2103 return (bf); 2104 } 2105 2106 static int 2107 upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2108 struct upgt_data *data) 2109 { 2110 struct ieee80211vap *vap = ni->ni_vap; 2111 int error = 0, len; 2112 struct ieee80211_frame *wh; 2113 struct ieee80211_key *k; 2114 struct upgt_lmac_mem *mem; 2115 struct upgt_lmac_tx_desc *txdesc; 2116 2117 UPGT_ASSERT_LOCKED(sc); 2118 2119 upgt_set_led(sc, UPGT_LED_BLINK); 2120 2121 /* Assign sequence number */ 2122 ieee80211_output_seqno_assign(ni, -1, m); 2123 2124 /* 2125 * Software crypto. 2126 */ 2127 wh = mtod(m, struct ieee80211_frame *); 2128 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2129 k = ieee80211_crypto_encap(ni, m); 2130 if (k == NULL) { 2131 device_printf(sc->sc_dev, 2132 "ieee80211_crypto_encap returns NULL.\n"); 2133 error = EIO; 2134 goto done; 2135 } 2136 2137 /* in case packet header moved, reset pointer */ 2138 wh = mtod(m, struct ieee80211_frame *); 2139 } 2140 2141 /* Transmit the URB containing the TX data. */ 2142 memset(data->buf, 0, MCLBYTES); 2143 mem = (struct upgt_lmac_mem *)data->buf; 2144 mem->addr = htole32(data->addr); 2145 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); 2146 2147 if (IEEE80211_IS_MGMT(wh)) { 2148 /* mgmt frames */ 2149 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; 2150 /* always send mgmt frames at lowest rate (DS1) */ 2151 memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); 2152 } else { 2153 /* data frames */ 2154 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; 2155 memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); 2156 } 2157 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; 2158 txdesc->header1.len = htole16(m->m_pkthdr.len); 2159 txdesc->header2.reqid = htole32(data->addr); 2160 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); 2161 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); 2162 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); 2163 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; 2164 2165 if (ieee80211_radiotap_active_vap(vap)) { 2166 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; 2167 2168 tap->wt_flags = 0; 2169 tap->wt_rate = 0; /* XXX where to get from? */ 2170 2171 ieee80211_radiotap_tx(vap, m); 2172 } 2173 2174 /* copy frame below our TX descriptor header */ 2175 m_copydata(m, 0, m->m_pkthdr.len, 2176 data->buf + (sizeof(*mem) + sizeof(*txdesc))); 2177 /* calculate frame size */ 2178 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; 2179 /* we need to align the frame to a 4 byte boundary */ 2180 len = (len + 3) & ~3; 2181 /* calculate frame checksum */ 2182 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); 2183 data->ni = ni; 2184 data->m = m; 2185 data->buflen = len; 2186 2187 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", 2188 __func__, len); 2189 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); 2190 2191 upgt_bulk_tx(sc, data); 2192 done: 2193 /* 2194 * If we don't regulary read the device statistics, the RX queue 2195 * will stall. It's strange, but it works, so we keep reading 2196 * the statistics here. *shrug* 2197 */ 2198 if (!(if_getcounter(vap->iv_ifp, IFCOUNTER_OPACKETS) % 2199 UPGT_TX_STAT_INTERVAL)) 2200 upgt_get_stats(sc); 2201 2202 return (error); 2203 } 2204 2205 static void 2206 upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2207 { 2208 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2209 struct ieee80211com *ic = &sc->sc_ic; 2210 struct ieee80211_frame *wh; 2211 struct ieee80211_node *ni; 2212 struct mbuf *m = NULL; 2213 struct upgt_data *data; 2214 int8_t nf; 2215 int rssi = -1; 2216 2217 UPGT_ASSERT_LOCKED(sc); 2218 2219 switch (USB_GET_STATE(xfer)) { 2220 case USB_ST_TRANSFERRED: 2221 data = STAILQ_FIRST(&sc->sc_rx_active); 2222 if (data == NULL) 2223 goto setup; 2224 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2225 m = upgt_rxeof(xfer, data, &rssi); 2226 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2227 /* FALLTHROUGH */ 2228 case USB_ST_SETUP: 2229 setup: 2230 data = STAILQ_FIRST(&sc->sc_rx_inactive); 2231 if (data == NULL) 2232 return; 2233 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); 2234 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); 2235 usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); 2236 usbd_transfer_submit(xfer); 2237 2238 /* 2239 * To avoid LOR we should unlock our private mutex here to call 2240 * ieee80211_input() because here is at the end of a USB 2241 * callback and safe to unlock. 2242 */ 2243 UPGT_UNLOCK(sc); 2244 if (m != NULL) { 2245 wh = mtod(m, struct ieee80211_frame *); 2246 ni = ieee80211_find_rxnode(ic, 2247 (struct ieee80211_frame_min *)wh); 2248 nf = -95; /* XXX */ 2249 if (ni != NULL) { 2250 (void) ieee80211_input(ni, m, rssi, nf); 2251 /* node is no longer needed */ 2252 ieee80211_free_node(ni); 2253 } else 2254 (void) ieee80211_input_all(ic, m, rssi, nf); 2255 m = NULL; 2256 } 2257 UPGT_LOCK(sc); 2258 upgt_start(sc); 2259 break; 2260 default: 2261 /* needs it to the inactive queue due to a error. */ 2262 data = STAILQ_FIRST(&sc->sc_rx_active); 2263 if (data != NULL) { 2264 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); 2265 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); 2266 } 2267 if (error != USB_ERR_CANCELLED) { 2268 usbd_xfer_set_stall(xfer); 2269 counter_u64_add(ic->ic_ierrors, 1); 2270 goto setup; 2271 } 2272 break; 2273 } 2274 } 2275 2276 static void 2277 upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) 2278 { 2279 struct upgt_softc *sc = usbd_xfer_softc(xfer); 2280 struct upgt_data *data; 2281 2282 UPGT_ASSERT_LOCKED(sc); 2283 switch (USB_GET_STATE(xfer)) { 2284 case USB_ST_TRANSFERRED: 2285 data = STAILQ_FIRST(&sc->sc_tx_active); 2286 if (data == NULL) 2287 goto setup; 2288 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); 2289 UPGT_STAT_DEC(sc, st_tx_active); 2290 upgt_txeof(xfer, data); 2291 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); 2292 UPGT_STAT_INC(sc, st_tx_inactive); 2293 /* FALLTHROUGH */ 2294 case USB_ST_SETUP: 2295 setup: 2296 data = STAILQ_FIRST(&sc->sc_tx_pending); 2297 if (data == NULL) { 2298 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", 2299 __func__); 2300 return; 2301 } 2302 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); 2303 UPGT_STAT_DEC(sc, st_tx_pending); 2304 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); 2305 UPGT_STAT_INC(sc, st_tx_active); 2306 2307 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); 2308 usbd_transfer_submit(xfer); 2309 upgt_start(sc); 2310 break; 2311 default: 2312 data = STAILQ_FIRST(&sc->sc_tx_active); 2313 if (data == NULL) 2314 goto setup; 2315 if (data->ni != NULL) { 2316 if_inc_counter(data->ni->ni_vap->iv_ifp, 2317 IFCOUNTER_OERRORS, 1); 2318 ieee80211_free_node(data->ni); 2319 data->ni = NULL; 2320 } 2321 if (error != USB_ERR_CANCELLED) { 2322 usbd_xfer_set_stall(xfer); 2323 goto setup; 2324 } 2325 break; 2326 } 2327 } 2328 2329 static device_method_t upgt_methods[] = { 2330 /* Device interface */ 2331 DEVMETHOD(device_probe, upgt_match), 2332 DEVMETHOD(device_attach, upgt_attach), 2333 DEVMETHOD(device_detach, upgt_detach), 2334 DEVMETHOD_END 2335 }; 2336 2337 static driver_t upgt_driver = { 2338 .name = "upgt", 2339 .methods = upgt_methods, 2340 .size = sizeof(struct upgt_softc) 2341 }; 2342 2343 DRIVER_MODULE(if_upgt, uhub, upgt_driver, NULL, NULL); 2344 MODULE_VERSION(if_upgt, 1); 2345 MODULE_DEPEND(if_upgt, usb, 1, 1, 1); 2346 MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); 2347 MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); 2348 USB_PNP_HOST_INFO(upgt_devs); 2349