xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_runreg.h>
75 #include <dev/usb/wlan/if_runvar.h>
76 
77 #define	N(_a) ((int)(sizeof((_a)) / sizeof((_a)[0])))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const STRUCT_USB_HOST_ID run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS,		USB_N53),
140     RUN_DEV(ASUS2,		USBN11),
141     RUN_DEV(AZUREWAVE,		RT2870_1),
142     RUN_DEV(AZUREWAVE,		RT2870_2),
143     RUN_DEV(AZUREWAVE,		RT3070_1),
144     RUN_DEV(AZUREWAVE,		RT3070_2),
145     RUN_DEV(AZUREWAVE,		RT3070_3),
146     RUN_DEV(BELKIN,		F5D8053V3),
147     RUN_DEV(BELKIN,		F5D8055),
148     RUN_DEV(BELKIN,		F5D8055V2),
149     RUN_DEV(BELKIN,		F6D4050V1),
150     RUN_DEV(BELKIN,		RT2870_1),
151     RUN_DEV(BELKIN,		RT2870_2),
152     RUN_DEV(CISCOLINKSYS,	AE1000),
153     RUN_DEV(CISCOLINKSYS2,	RT3070),
154     RUN_DEV(CISCOLINKSYS3,	RT3070),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
162     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
163     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
164     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
165     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
166     RUN_DEV(COREGA,		CGWLUSB300GNM),
167     RUN_DEV(COREGA,		RT2870_1),
168     RUN_DEV(COREGA,		RT2870_2),
169     RUN_DEV(COREGA,		RT2870_3),
170     RUN_DEV(COREGA,		RT3070),
171     RUN_DEV(CYBERTAN,		RT2870),
172     RUN_DEV(DLINK,		RT2870),
173     RUN_DEV(DLINK,		RT3072),
174     RUN_DEV(DLINK2,		DWA130),
175     RUN_DEV(DLINK2,		RT2870_1),
176     RUN_DEV(DLINK2,		RT2870_2),
177     RUN_DEV(DLINK2,		RT3070_1),
178     RUN_DEV(DLINK2,		RT3070_2),
179     RUN_DEV(DLINK2,		RT3070_3),
180     RUN_DEV(DLINK2,		RT3070_4),
181     RUN_DEV(DLINK2,		RT3070_5),
182     RUN_DEV(DLINK2,		RT3072),
183     RUN_DEV(DLINK2,		RT3072_1),
184     RUN_DEV(EDIMAX,		EW7717),
185     RUN_DEV(EDIMAX,		EW7718),
186     RUN_DEV(EDIMAX,		RT2870_1),
187     RUN_DEV(ENCORE,		RT3070_1),
188     RUN_DEV(ENCORE,		RT3070_2),
189     RUN_DEV(ENCORE,		RT3070_3),
190     RUN_DEV(GIGABYTE,		GNWB31N),
191     RUN_DEV(GIGABYTE,		GNWB32L),
192     RUN_DEV(GIGABYTE,		RT2870_1),
193     RUN_DEV(GIGASET,		RT3070_1),
194     RUN_DEV(GIGASET,		RT3070_2),
195     RUN_DEV(GUILLEMOT,		HWNU300),
196     RUN_DEV(HAWKING,		HWUN2),
197     RUN_DEV(HAWKING,		RT2870_1),
198     RUN_DEV(HAWKING,		RT2870_2),
199     RUN_DEV(HAWKING,		RT3070),
200     RUN_DEV(IODATA,		RT3072_1),
201     RUN_DEV(IODATA,		RT3072_2),
202     RUN_DEV(IODATA,		RT3072_3),
203     RUN_DEV(IODATA,		RT3072_4),
204     RUN_DEV(LINKSYS4,		RT3070),
205     RUN_DEV(LINKSYS4,		WUSB100),
206     RUN_DEV(LINKSYS4,		WUSB54GCV3),
207     RUN_DEV(LINKSYS4,		WUSB600N),
208     RUN_DEV(LINKSYS4,		WUSB600NV2),
209     RUN_DEV(LOGITEC,		RT2870_1),
210     RUN_DEV(LOGITEC,		RT2870_2),
211     RUN_DEV(LOGITEC,		RT2870_3),
212     RUN_DEV(LOGITEC,		LANW300NU2),
213     RUN_DEV(LOGITEC,		LANW150NU2),
214     RUN_DEV(MELCO,		RT2870_1),
215     RUN_DEV(MELCO,		RT2870_2),
216     RUN_DEV(MELCO,		WLIUCAG300N),
217     RUN_DEV(MELCO,		WLIUCG300N),
218     RUN_DEV(MELCO,		WLIUCG301N),
219     RUN_DEV(MELCO,		WLIUCGN),
220     RUN_DEV(MELCO,		WLIUCGNM),
221     RUN_DEV(MELCO,		WLIUCGNM2),
222     RUN_DEV(MOTOROLA4,		RT2770),
223     RUN_DEV(MOTOROLA4,		RT3070),
224     RUN_DEV(MSI,		RT3070_1),
225     RUN_DEV(MSI,		RT3070_2),
226     RUN_DEV(MSI,		RT3070_3),
227     RUN_DEV(MSI,		RT3070_4),
228     RUN_DEV(MSI,		RT3070_5),
229     RUN_DEV(MSI,		RT3070_6),
230     RUN_DEV(MSI,		RT3070_7),
231     RUN_DEV(MSI,		RT3070_8),
232     RUN_DEV(MSI,		RT3070_9),
233     RUN_DEV(MSI,		RT3070_10),
234     RUN_DEV(MSI,		RT3070_11),
235     RUN_DEV(OVISLINK,		RT3072),
236     RUN_DEV(PARA,		RT3070),
237     RUN_DEV(PEGATRON,		RT2870),
238     RUN_DEV(PEGATRON,		RT3070),
239     RUN_DEV(PEGATRON,		RT3070_2),
240     RUN_DEV(PEGATRON,		RT3070_3),
241     RUN_DEV(PHILIPS,		RT2870),
242     RUN_DEV(PLANEX2,		GWUS300MINIS),
243     RUN_DEV(PLANEX2,		GWUSMICRON),
244     RUN_DEV(PLANEX2,		RT2870),
245     RUN_DEV(PLANEX2,		RT3070),
246     RUN_DEV(QCOM,		RT2870),
247     RUN_DEV(QUANTA,		RT3070),
248     RUN_DEV(RALINK,		RT2070),
249     RUN_DEV(RALINK,		RT2770),
250     RUN_DEV(RALINK,		RT2870),
251     RUN_DEV(RALINK,		RT3070),
252     RUN_DEV(RALINK,		RT3071),
253     RUN_DEV(RALINK,		RT3072),
254     RUN_DEV(RALINK,		RT3370),
255     RUN_DEV(RALINK,		RT3572),
256     RUN_DEV(RALINK,		RT8070),
257     RUN_DEV(SAMSUNG,		WIS09ABGN),
258     RUN_DEV(SAMSUNG2,		RT2870_1),
259     RUN_DEV(SENAO,		RT2870_1),
260     RUN_DEV(SENAO,		RT2870_2),
261     RUN_DEV(SENAO,		RT2870_3),
262     RUN_DEV(SENAO,		RT2870_4),
263     RUN_DEV(SENAO,		RT3070),
264     RUN_DEV(SENAO,		RT3071),
265     RUN_DEV(SENAO,		RT3072_1),
266     RUN_DEV(SENAO,		RT3072_2),
267     RUN_DEV(SENAO,		RT3072_3),
268     RUN_DEV(SENAO,		RT3072_4),
269     RUN_DEV(SENAO,		RT3072_5),
270     RUN_DEV(SITECOMEU,		RT2770),
271     RUN_DEV(SITECOMEU,		RT2870_1),
272     RUN_DEV(SITECOMEU,		RT2870_2),
273     RUN_DEV(SITECOMEU,		RT2870_3),
274     RUN_DEV(SITECOMEU,		RT2870_4),
275     RUN_DEV(SITECOMEU,		RT3070),
276     RUN_DEV(SITECOMEU,		RT3070_2),
277     RUN_DEV(SITECOMEU,		RT3070_3),
278     RUN_DEV(SITECOMEU,		RT3070_4),
279     RUN_DEV(SITECOMEU,		RT3071),
280     RUN_DEV(SITECOMEU,		RT3072_1),
281     RUN_DEV(SITECOMEU,		RT3072_2),
282     RUN_DEV(SITECOMEU,		RT3072_3),
283     RUN_DEV(SITECOMEU,		RT3072_4),
284     RUN_DEV(SITECOMEU,		RT3072_5),
285     RUN_DEV(SITECOMEU,		RT3072_6),
286     RUN_DEV(SITECOMEU,		WL608),
287     RUN_DEV(SPARKLAN,		RT2870_1),
288     RUN_DEV(SPARKLAN,		RT3070),
289     RUN_DEV(SWEEX2,		LW153),
290     RUN_DEV(SWEEX2,		LW303),
291     RUN_DEV(SWEEX2,		LW313),
292     RUN_DEV(TOSHIBA,		RT3070),
293     RUN_DEV(UMEDIA,		RT2870_1),
294     RUN_DEV(ZCOM,		RT2870_1),
295     RUN_DEV(ZCOM,		RT2870_2),
296     RUN_DEV(ZINWELL,		RT2870_1),
297     RUN_DEV(ZINWELL,		RT2870_2),
298     RUN_DEV(ZINWELL,		RT3070),
299     RUN_DEV(ZINWELL,		RT3072_1),
300     RUN_DEV(ZINWELL,		RT3072_2),
301     RUN_DEV(ZYXEL,		RT2870_1),
302     RUN_DEV(ZYXEL,		RT2870_2),
303 #undef RUN_DEV
304 };
305 
306 static device_probe_t	run_match;
307 static device_attach_t	run_attach;
308 static device_detach_t	run_detach;
309 
310 static usb_callback_t	run_bulk_rx_callback;
311 static usb_callback_t	run_bulk_tx_callback0;
312 static usb_callback_t	run_bulk_tx_callback1;
313 static usb_callback_t	run_bulk_tx_callback2;
314 static usb_callback_t	run_bulk_tx_callback3;
315 static usb_callback_t	run_bulk_tx_callback4;
316 static usb_callback_t	run_bulk_tx_callback5;
317 
318 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
319 		    usb_error_t error, unsigned int index);
320 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
321 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
322 		    const uint8_t [IEEE80211_ADDR_LEN],
323 		    const uint8_t [IEEE80211_ADDR_LEN]);
324 static void	run_vap_delete(struct ieee80211vap *);
325 static void	run_cmdq_cb(void *, int);
326 static void	run_setup_tx_list(struct run_softc *,
327 		    struct run_endpoint_queue *);
328 static void	run_unsetup_tx_list(struct run_softc *,
329 		    struct run_endpoint_queue *);
330 static int	run_load_microcode(struct run_softc *);
331 static int	run_reset(struct run_softc *);
332 static usb_error_t run_do_request(struct run_softc *,
333 		    struct usb_device_request *, void *);
334 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
335 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
336 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
337 static int	run_write(struct run_softc *, uint16_t, uint32_t);
338 static int	run_write_region_1(struct run_softc *, uint16_t,
339 		    const uint8_t *, int);
340 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
341 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
342 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
343 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
344 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
345 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
346 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
347 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
348 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
349 static const char *run_get_rf(int);
350 static int	run_read_eeprom(struct run_softc *);
351 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
352 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
353 static int	run_media_change(struct ifnet *);
354 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static int	run_wme_update(struct ieee80211com *);
356 static void	run_wme_update_cb(void *);
357 static void	run_key_update_begin(struct ieee80211vap *);
358 static void	run_key_update_end(struct ieee80211vap *);
359 static void	run_key_set_cb(void *);
360 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
361 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
362 static void	run_key_delete_cb(void *);
363 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
364 static void	run_ratectl_to(void *);
365 static void	run_ratectl_cb(void *, int);
366 static void	run_drain_fifo(void *);
367 static void	run_iter_func(void *, struct ieee80211_node *);
368 static void	run_newassoc_cb(void *);
369 static void	run_newassoc(struct ieee80211_node *, int);
370 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
371 static void	run_tx_free(struct run_endpoint_queue *pq,
372 		    struct run_tx_data *, int);
373 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
374 static int	run_tx(struct run_softc *, struct mbuf *,
375 		    struct ieee80211_node *);
376 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
377 		    struct ieee80211_node *);
378 static int	run_sendprot(struct run_softc *, const struct mbuf *,
379 		    struct ieee80211_node *, int, int);
380 static int	run_tx_param(struct run_softc *, struct mbuf *,
381 		    struct ieee80211_node *,
382 		    const struct ieee80211_bpf_params *);
383 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
384 		    const struct ieee80211_bpf_params *);
385 static void	run_start(struct ifnet *);
386 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
387 static void	run_set_agc(struct run_softc *, uint8_t);
388 static void	run_select_chan_group(struct run_softc *, int);
389 static void	run_set_rx_antenna(struct run_softc *, int);
390 static void	run_rt2870_set_chan(struct run_softc *, u_int);
391 static void	run_rt3070_set_chan(struct run_softc *, u_int);
392 static void	run_rt3572_set_chan(struct run_softc *, u_int);
393 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
394 static void	run_set_channel(struct ieee80211com *);
395 static void	run_scan_start(struct ieee80211com *);
396 static void	run_scan_end(struct ieee80211com *);
397 static void	run_update_beacon(struct ieee80211vap *, int);
398 static void	run_update_beacon_cb(void *);
399 static void	run_updateprot(struct ieee80211com *);
400 static void	run_updateprot_cb(void *);
401 static void	run_usb_timeout_cb(void *);
402 static void	run_reset_livelock(struct run_softc *);
403 static void	run_enable_tsf_sync(struct run_softc *);
404 static void	run_enable_mrr(struct run_softc *);
405 static void	run_set_txpreamble(struct run_softc *);
406 static void	run_set_basicrates(struct run_softc *);
407 static void	run_set_leds(struct run_softc *, uint16_t);
408 static void	run_set_bssid(struct run_softc *, const uint8_t *);
409 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
410 static void	run_updateslot(struct ifnet *);
411 static void	run_updateslot_cb(void *);
412 static void	run_update_mcast(struct ifnet *);
413 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
414 static void	run_update_promisc_locked(struct ifnet *);
415 static void	run_update_promisc(struct ifnet *);
416 static int	run_bbp_init(struct run_softc *);
417 static int	run_rt3070_rf_init(struct run_softc *);
418 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
419 		    uint8_t *);
420 static void	run_rt3070_rf_setup(struct run_softc *);
421 static int	run_txrx_enable(struct run_softc *);
422 static void	run_init(void *);
423 static void	run_init_locked(struct run_softc *);
424 static void	run_stop(void *);
425 static void	run_delay(struct run_softc *, unsigned int);
426 
427 static const struct {
428 	uint16_t	reg;
429 	uint32_t	val;
430 } rt2870_def_mac[] = {
431 	RT2870_DEF_MAC
432 };
433 
434 static const struct {
435 	uint8_t	reg;
436 	uint8_t	val;
437 } rt2860_def_bbp[] = {
438 	RT2860_DEF_BBP
439 };
440 
441 static const struct rfprog {
442 	uint8_t		chan;
443 	uint32_t	r1, r2, r3, r4;
444 } rt2860_rf2850[] = {
445 	RT2860_RF2850
446 };
447 
448 struct {
449 	uint8_t	n, r, k;
450 } rt3070_freqs[] = {
451 	RT3070_RF3052
452 };
453 
454 static const struct {
455 	uint8_t	reg;
456 	uint8_t	val;
457 } rt3070_def_rf[] = {
458 	RT3070_DEF_RF
459 },rt3572_def_rf[] = {
460 	RT3572_DEF_RF
461 };
462 
463 static const struct usb_config run_config[RUN_N_XFER] = {
464     [RUN_BULK_TX_BE] = {
465 	.type = UE_BULK,
466 	.endpoint = UE_ADDR_ANY,
467 	.ep_index = 0,
468 	.direction = UE_DIR_OUT,
469 	.bufsize = RUN_MAX_TXSZ,
470 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
471 	.callback = run_bulk_tx_callback0,
472 	.timeout = 5000,	/* ms */
473     },
474     [RUN_BULK_TX_BK] = {
475 	.type = UE_BULK,
476 	.endpoint = UE_ADDR_ANY,
477 	.direction = UE_DIR_OUT,
478 	.ep_index = 1,
479 	.bufsize = RUN_MAX_TXSZ,
480 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
481 	.callback = run_bulk_tx_callback1,
482 	.timeout = 5000,	/* ms */
483     },
484     [RUN_BULK_TX_VI] = {
485 	.type = UE_BULK,
486 	.endpoint = UE_ADDR_ANY,
487 	.direction = UE_DIR_OUT,
488 	.ep_index = 2,
489 	.bufsize = RUN_MAX_TXSZ,
490 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
491 	.callback = run_bulk_tx_callback2,
492 	.timeout = 5000,	/* ms */
493     },
494     [RUN_BULK_TX_VO] = {
495 	.type = UE_BULK,
496 	.endpoint = UE_ADDR_ANY,
497 	.direction = UE_DIR_OUT,
498 	.ep_index = 3,
499 	.bufsize = RUN_MAX_TXSZ,
500 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
501 	.callback = run_bulk_tx_callback3,
502 	.timeout = 5000,	/* ms */
503     },
504     [RUN_BULK_TX_HCCA] = {
505 	.type = UE_BULK,
506 	.endpoint = UE_ADDR_ANY,
507 	.direction = UE_DIR_OUT,
508 	.ep_index = 4,
509 	.bufsize = RUN_MAX_TXSZ,
510 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
511 	.callback = run_bulk_tx_callback4,
512 	.timeout = 5000,	/* ms */
513     },
514     [RUN_BULK_TX_PRIO] = {
515 	.type = UE_BULK,
516 	.endpoint = UE_ADDR_ANY,
517 	.direction = UE_DIR_OUT,
518 	.ep_index = 5,
519 	.bufsize = RUN_MAX_TXSZ,
520 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
521 	.callback = run_bulk_tx_callback5,
522 	.timeout = 5000,	/* ms */
523     },
524     [RUN_BULK_RX] = {
525 	.type = UE_BULK,
526 	.endpoint = UE_ADDR_ANY,
527 	.direction = UE_DIR_IN,
528 	.bufsize = RUN_MAX_RXSZ,
529 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
530 	.callback = run_bulk_rx_callback,
531     }
532 };
533 
534 static int
535 run_match(device_t self)
536 {
537 	struct usb_attach_arg *uaa = device_get_ivars(self);
538 
539 	if (uaa->usb_mode != USB_MODE_HOST)
540 		return (ENXIO);
541 	if (uaa->info.bConfigIndex != 0)
542 		return (ENXIO);
543 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
544 		return (ENXIO);
545 
546 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
547 }
548 
549 static int
550 run_attach(device_t self)
551 {
552 	struct run_softc *sc = device_get_softc(self);
553 	struct usb_attach_arg *uaa = device_get_ivars(self);
554 	struct ieee80211com *ic;
555 	struct ifnet *ifp;
556 	uint32_t ver;
557 	int i, ntries, error;
558 	uint8_t iface_index, bands;
559 
560 	device_set_usb_desc(self);
561 	sc->sc_udev = uaa->device;
562 	sc->sc_dev = self;
563 
564 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
565 	    MTX_NETWORK_LOCK, MTX_DEF);
566 
567 	iface_index = RT2860_IFACE_INDEX;
568 
569 	error = usbd_transfer_setup(uaa->device, &iface_index,
570 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
571 	if (error) {
572 		device_printf(self, "could not allocate USB transfers, "
573 		    "err=%s\n", usbd_errstr(error));
574 		goto detach;
575 	}
576 
577 	RUN_LOCK(sc);
578 
579 	/* wait for the chip to settle */
580 	for (ntries = 0; ntries < 100; ntries++) {
581 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
582 			RUN_UNLOCK(sc);
583 			goto detach;
584 		}
585 		if (ver != 0 && ver != 0xffffffff)
586 			break;
587 		run_delay(sc, 10);
588 	}
589 	if (ntries == 100) {
590 		device_printf(sc->sc_dev,
591 		    "timeout waiting for NIC to initialize\n");
592 		RUN_UNLOCK(sc);
593 		goto detach;
594 	}
595 	sc->mac_ver = ver >> 16;
596 	sc->mac_rev = ver & 0xffff;
597 
598 	/* retrieve RF rev. no and various other things from EEPROM */
599 	run_read_eeprom(sc);
600 
601 	device_printf(sc->sc_dev,
602 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
603 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
604 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
605 
606 	RUN_UNLOCK(sc);
607 
608 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
609 	if (ifp == NULL) {
610 		device_printf(sc->sc_dev, "can not if_alloc()\n");
611 		goto detach;
612 	}
613 	ic = ifp->if_l2com;
614 
615 	ifp->if_softc = sc;
616 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 	ifp->if_init = run_init;
619 	ifp->if_ioctl = run_ioctl;
620 	ifp->if_start = run_start;
621 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
622 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
623 	IFQ_SET_READY(&ifp->if_snd);
624 
625 	ic->ic_ifp = ifp;
626 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
627 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
628 
629 	/* set device capabilities */
630 	ic->ic_caps =
631 	    IEEE80211_C_STA |		/* station mode supported */
632 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
633 	    IEEE80211_C_IBSS |
634 	    IEEE80211_C_HOSTAP |
635 	    IEEE80211_C_WDS |		/* 4-address traffic works */
636 	    IEEE80211_C_MBSS |
637 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
638 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
639 	    IEEE80211_C_WME |		/* WME */
640 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
641 
642 	ic->ic_cryptocaps =
643 	    IEEE80211_CRYPTO_WEP |
644 	    IEEE80211_CRYPTO_AES_CCM |
645 	    IEEE80211_CRYPTO_TKIPMIC |
646 	    IEEE80211_CRYPTO_TKIP;
647 
648 	ic->ic_flags |= IEEE80211_F_DATAPAD;
649 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
650 
651 	bands = 0;
652 	setbit(&bands, IEEE80211_MODE_11B);
653 	setbit(&bands, IEEE80211_MODE_11G);
654 	ieee80211_init_channels(ic, NULL, &bands);
655 
656 	/*
657 	 * Do this by own because h/w supports
658 	 * more channels than ieee80211_init_channels()
659 	 */
660 	if (sc->rf_rev == RT2860_RF_2750 ||
661 	    sc->rf_rev == RT2860_RF_2850 ||
662 	    sc->rf_rev == RT3070_RF_3052) {
663 		/* set supported .11a rates */
664 		for (i = 14; i < N(rt2860_rf2850); i++) {
665 			uint8_t chan = rt2860_rf2850[i].chan;
666 			ic->ic_channels[ic->ic_nchans].ic_freq =
667 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
668 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
669 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
670 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
671 			ic->ic_nchans++;
672 		}
673 	}
674 
675 	ieee80211_ifattach(ic, sc->sc_bssid);
676 
677 	ic->ic_scan_start = run_scan_start;
678 	ic->ic_scan_end = run_scan_end;
679 	ic->ic_set_channel = run_set_channel;
680 	ic->ic_node_alloc = run_node_alloc;
681 	ic->ic_newassoc = run_newassoc;
682 	ic->ic_updateslot = run_updateslot;
683 	ic->ic_update_mcast = run_update_mcast;
684 	ic->ic_wme.wme_update = run_wme_update;
685 	ic->ic_raw_xmit = run_raw_xmit;
686 	ic->ic_update_promisc = run_update_promisc;
687 
688 	ic->ic_vap_create = run_vap_create;
689 	ic->ic_vap_delete = run_vap_delete;
690 
691 	ieee80211_radiotap_attach(ic,
692 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
693 		RUN_TX_RADIOTAP_PRESENT,
694 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
695 		RUN_RX_RADIOTAP_PRESENT);
696 
697 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
698 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
699 	callout_init((struct callout *)&sc->ratectl_ch, 1);
700 
701 	if (bootverbose)
702 		ieee80211_announce(ic);
703 
704 	return (0);
705 
706 detach:
707 	run_detach(self);
708 	return (ENXIO);
709 }
710 
711 static int
712 run_detach(device_t self)
713 {
714 	struct run_softc *sc = device_get_softc(self);
715 	struct ifnet *ifp = sc->sc_ifp;
716 	struct ieee80211com *ic;
717 	int i;
718 
719 	/* stop all USB transfers */
720 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
721 
722 	RUN_LOCK(sc);
723 
724 	sc->ratectl_run = RUN_RATECTL_OFF;
725 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
726 
727 	/* free TX list, if any */
728 	for (i = 0; i != RUN_EP_QUEUES; i++)
729 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
730 	RUN_UNLOCK(sc);
731 
732 	if (ifp) {
733 		ic = ifp->if_l2com;
734 		/* drain tasks */
735 		usb_callout_drain(&sc->ratectl_ch);
736 		ieee80211_draintask(ic, &sc->cmdq_task);
737 		ieee80211_draintask(ic, &sc->ratectl_task);
738 		ieee80211_ifdetach(ic);
739 		if_free(ifp);
740 	}
741 
742 	mtx_destroy(&sc->sc_mtx);
743 
744 	return (0);
745 }
746 
747 static struct ieee80211vap *
748 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
749     enum ieee80211_opmode opmode, int flags,
750     const uint8_t bssid[IEEE80211_ADDR_LEN],
751     const uint8_t mac[IEEE80211_ADDR_LEN])
752 {
753 	struct ifnet *ifp = ic->ic_ifp;
754 	struct run_softc *sc = ifp->if_softc;
755 	struct run_vap *rvp;
756 	struct ieee80211vap *vap;
757 	int i;
758 
759 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
760 		if_printf(ifp, "number of VAPs maxed out\n");
761 		return (NULL);
762 	}
763 
764 	switch (opmode) {
765 	case IEEE80211_M_STA:
766 		/* enable s/w bmiss handling for sta mode */
767 		flags |= IEEE80211_CLONE_NOBEACONS;
768 		/* fall though */
769 	case IEEE80211_M_IBSS:
770 	case IEEE80211_M_MONITOR:
771 	case IEEE80211_M_HOSTAP:
772 	case IEEE80211_M_MBSS:
773 		/* other than WDS vaps, only one at a time */
774 		if (!TAILQ_EMPTY(&ic->ic_vaps))
775 			return (NULL);
776 		break;
777 	case IEEE80211_M_WDS:
778 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
779 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
780 				continue;
781 			/* WDS vap's always share the local mac address. */
782 			flags &= ~IEEE80211_CLONE_BSSID;
783 			break;
784 		}
785 		if (vap == NULL) {
786 			if_printf(ifp, "wds only supported in ap mode\n");
787 			return (NULL);
788 		}
789 		break;
790 	default:
791 		if_printf(ifp, "unknown opmode %d\n", opmode);
792 		return (NULL);
793 	}
794 
795 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
796 	    M_80211_VAP, M_NOWAIT | M_ZERO);
797 	if (rvp == NULL)
798 		return (NULL);
799 	vap = &rvp->vap;
800 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
801 
802 	vap->iv_key_update_begin = run_key_update_begin;
803 	vap->iv_key_update_end = run_key_update_end;
804 	vap->iv_update_beacon = run_update_beacon;
805 	vap->iv_max_aid = RT2870_WCID_MAX;
806 	/*
807 	 * To delete the right key from h/w, we need wcid.
808 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
809 	 * and matching wcid will be written into there. So, cast
810 	 * some spells to remove 'const' from ieee80211_key{}
811 	 */
812 	vap->iv_key_delete = (void *)run_key_delete;
813 	vap->iv_key_set = (void *)run_key_set;
814 
815 	/* override state transition machine */
816 	rvp->newstate = vap->iv_newstate;
817 	vap->iv_newstate = run_newstate;
818 
819 	ieee80211_ratectl_init(vap);
820 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
821 
822 	/* complete setup */
823 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
824 
825 	/* make sure id is always unique */
826 	for (i = 0; i < RUN_VAP_MAX; i++) {
827 		if((sc->rvp_bmap & 1 << i) == 0){
828 			sc->rvp_bmap |= 1 << i;
829 			rvp->rvp_id = i;
830 			break;
831 		}
832 	}
833 	if (sc->rvp_cnt++ == 0)
834 		ic->ic_opmode = opmode;
835 
836 	if (opmode == IEEE80211_M_HOSTAP)
837 		sc->cmdq_run = RUN_CMDQ_GO;
838 
839 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
840 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
841 
842 	return (vap);
843 }
844 
845 static void
846 run_vap_delete(struct ieee80211vap *vap)
847 {
848 	struct run_vap *rvp = RUN_VAP(vap);
849 	struct ifnet *ifp;
850 	struct ieee80211com *ic;
851 	struct run_softc *sc;
852 	uint8_t rvp_id;
853 
854 	if (vap == NULL)
855 		return;
856 
857 	ic = vap->iv_ic;
858 	ifp = ic->ic_ifp;
859 
860 	sc = ifp->if_softc;
861 
862 	RUN_LOCK(sc);
863 
864 	m_freem(rvp->beacon_mbuf);
865 	rvp->beacon_mbuf = NULL;
866 
867 	rvp_id = rvp->rvp_id;
868 	sc->ratectl_run &= ~(1 << rvp_id);
869 	sc->rvp_bmap &= ~(1 << rvp_id);
870 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
871 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
872 	--sc->rvp_cnt;
873 
874 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
875 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
876 
877 	RUN_UNLOCK(sc);
878 
879 	ieee80211_ratectl_deinit(vap);
880 	ieee80211_vap_detach(vap);
881 	free(rvp, M_80211_VAP);
882 }
883 
884 /*
885  * There are numbers of functions need to be called in context thread.
886  * Rather than creating taskqueue event for each of those functions,
887  * here is all-for-one taskqueue callback function. This function
888  * gurantees deferred functions are executed in the same order they
889  * were enqueued.
890  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
891  */
892 static void
893 run_cmdq_cb(void *arg, int pending)
894 {
895 	struct run_softc *sc = arg;
896 	uint8_t i;
897 
898 	/* call cmdq[].func locked */
899 	RUN_LOCK(sc);
900 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
901 	    i = sc->cmdq_exec, pending--) {
902 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
903 		if (sc->cmdq_run == RUN_CMDQ_GO) {
904 			/*
905 			 * If arg0 is NULL, callback func needs more
906 			 * than one arg. So, pass ptr to cmdq struct.
907 			 */
908 			if (sc->cmdq[i].arg0)
909 				sc->cmdq[i].func(sc->cmdq[i].arg0);
910 			else
911 				sc->cmdq[i].func(&sc->cmdq[i]);
912 		}
913 		sc->cmdq[i].arg0 = NULL;
914 		sc->cmdq[i].func = NULL;
915 		sc->cmdq_exec++;
916 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
917 	}
918 	RUN_UNLOCK(sc);
919 }
920 
921 static void
922 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
923 {
924 	struct run_tx_data *data;
925 
926 	memset(pq, 0, sizeof(*pq));
927 
928 	STAILQ_INIT(&pq->tx_qh);
929 	STAILQ_INIT(&pq->tx_fh);
930 
931 	for (data = &pq->tx_data[0];
932 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
933 		data->sc = sc;
934 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
935 	}
936 	pq->tx_nfree = RUN_TX_RING_COUNT;
937 }
938 
939 static void
940 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
941 {
942 	struct run_tx_data *data;
943 
944 	/* make sure any subsequent use of the queues will fail */
945 	pq->tx_nfree = 0;
946 	STAILQ_INIT(&pq->tx_fh);
947 	STAILQ_INIT(&pq->tx_qh);
948 
949 	/* free up all node references and mbufs */
950 	for (data = &pq->tx_data[0];
951 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
952 		if (data->m != NULL) {
953 			m_freem(data->m);
954 			data->m = NULL;
955 		}
956 		if (data->ni != NULL) {
957 			ieee80211_free_node(data->ni);
958 			data->ni = NULL;
959 		}
960 	}
961 }
962 
963 static int
964 run_load_microcode(struct run_softc *sc)
965 {
966 	usb_device_request_t req;
967 	const struct firmware *fw;
968 	const u_char *base;
969 	uint32_t tmp;
970 	int ntries, error;
971 	const uint64_t *temp;
972 	uint64_t bytes;
973 
974 	RUN_UNLOCK(sc);
975 	fw = firmware_get("runfw");
976 	RUN_LOCK(sc);
977 	if (fw == NULL) {
978 		device_printf(sc->sc_dev,
979 		    "failed loadfirmware of file %s\n", "runfw");
980 		return ENOENT;
981 	}
982 
983 	if (fw->datasize != 8192) {
984 		device_printf(sc->sc_dev,
985 		    "invalid firmware size (should be 8KB)\n");
986 		error = EINVAL;
987 		goto fail;
988 	}
989 
990 	/*
991 	 * RT3071/RT3072 use a different firmware
992 	 * run-rt2870 (8KB) contains both,
993 	 * first half (4KB) is for rt2870,
994 	 * last half is for rt3071.
995 	 */
996 	base = fw->data;
997 	if ((sc->mac_ver) != 0x2860 &&
998 	    (sc->mac_ver) != 0x2872 &&
999 	    (sc->mac_ver) != 0x3070) {
1000 		base += 4096;
1001 	}
1002 
1003 	/* cheap sanity check */
1004 	temp = fw->data;
1005 	bytes = *temp;
1006 	if (bytes != be64toh(0xffffff0210280210)) {
1007 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1008 		error = EINVAL;
1009 		goto fail;
1010 	}
1011 
1012 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1013 	/* write microcode image */
1014 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1015 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1016 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1017 
1018 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1019 	req.bRequest = RT2870_RESET;
1020 	USETW(req.wValue, 8);
1021 	USETW(req.wIndex, 0);
1022 	USETW(req.wLength, 0);
1023 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1024 	    != 0) {
1025 		device_printf(sc->sc_dev, "firmware reset failed\n");
1026 		goto fail;
1027 	}
1028 
1029 	run_delay(sc, 10);
1030 
1031 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1032 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1033 		goto fail;
1034 
1035 	/* wait until microcontroller is ready */
1036 	for (ntries = 0; ntries < 1000; ntries++) {
1037 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1038 			goto fail;
1039 		}
1040 		if (tmp & RT2860_MCU_READY)
1041 			break;
1042 		run_delay(sc, 10);
1043 	}
1044 	if (ntries == 1000) {
1045 		device_printf(sc->sc_dev,
1046 		    "timeout waiting for MCU to initialize\n");
1047 		error = ETIMEDOUT;
1048 		goto fail;
1049 	}
1050 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1051 	    (base == fw->data) ? "RT2870" : "RT3071",
1052 	    *(base + 4092), *(base + 4093));
1053 
1054 fail:
1055 	firmware_put(fw, FIRMWARE_UNLOAD);
1056 	return (error);
1057 }
1058 
1059 int
1060 run_reset(struct run_softc *sc)
1061 {
1062 	usb_device_request_t req;
1063 
1064 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1065 	req.bRequest = RT2870_RESET;
1066 	USETW(req.wValue, 1);
1067 	USETW(req.wIndex, 0);
1068 	USETW(req.wLength, 0);
1069 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1070 }
1071 
1072 static usb_error_t
1073 run_do_request(struct run_softc *sc,
1074     struct usb_device_request *req, void *data)
1075 {
1076 	usb_error_t err;
1077 	int ntries = 10;
1078 
1079 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1080 
1081 	while (ntries--) {
1082 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1083 		    req, data, 0, NULL, 250 /* ms */);
1084 		if (err == 0)
1085 			break;
1086 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1087 		    usbd_errstr(err));
1088 		run_delay(sc, 10);
1089 	}
1090 	return (err);
1091 }
1092 
1093 static int
1094 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1095 {
1096 	uint32_t tmp;
1097 	int error;
1098 
1099 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1100 	if (error == 0)
1101 		*val = le32toh(tmp);
1102 	else
1103 		*val = 0xffffffff;
1104 	return (error);
1105 }
1106 
1107 static int
1108 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1109 {
1110 	usb_device_request_t req;
1111 
1112 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1113 	req.bRequest = RT2870_READ_REGION_1;
1114 	USETW(req.wValue, 0);
1115 	USETW(req.wIndex, reg);
1116 	USETW(req.wLength, len);
1117 
1118 	return (run_do_request(sc, &req, buf));
1119 }
1120 
1121 static int
1122 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1123 {
1124 	usb_device_request_t req;
1125 
1126 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1127 	req.bRequest = RT2870_WRITE_2;
1128 	USETW(req.wValue, val);
1129 	USETW(req.wIndex, reg);
1130 	USETW(req.wLength, 0);
1131 
1132 	return (run_do_request(sc, &req, NULL));
1133 }
1134 
1135 static int
1136 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1137 {
1138 	int error;
1139 
1140 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1141 		error = run_write_2(sc, reg + 2, val >> 16);
1142 	return (error);
1143 }
1144 
1145 static int
1146 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1147     int len)
1148 {
1149 #if 1
1150 	int i, error = 0;
1151 	/*
1152 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1153 	 * We thus issue multiple WRITE_2 commands instead.
1154 	 */
1155 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1156 	for (i = 0; i < len && error == 0; i += 2)
1157 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1158 	return (error);
1159 #else
1160 	usb_device_request_t req;
1161 
1162 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1163 	req.bRequest = RT2870_WRITE_REGION_1;
1164 	USETW(req.wValue, 0);
1165 	USETW(req.wIndex, reg);
1166 	USETW(req.wLength, len);
1167 	return (run_do_request(sc, &req, buf));
1168 #endif
1169 }
1170 
1171 static int
1172 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1173 {
1174 	int i, error = 0;
1175 
1176 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1177 	for (i = 0; i < len && error == 0; i += 4)
1178 		error = run_write(sc, reg + i, val);
1179 	return (error);
1180 }
1181 
1182 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1183 static int
1184 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1185 {
1186 	uint32_t tmp;
1187 	uint16_t reg;
1188 	int error, ntries;
1189 
1190 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1191 		return (error);
1192 
1193 	addr *= 2;
1194 	/*-
1195 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1196 	 * DATA0: F E D C
1197 	 * DATA1: B A 9 8
1198 	 * DATA2: 7 6 5 4
1199 	 * DATA3: 3 2 1 0
1200 	 */
1201 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1202 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1203 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1204 	for (ntries = 0; ntries < 100; ntries++) {
1205 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1206 			return (error);
1207 		if (!(tmp & RT3070_EFSROM_KICK))
1208 			break;
1209 		run_delay(sc, 2);
1210 	}
1211 	if (ntries == 100)
1212 		return (ETIMEDOUT);
1213 
1214 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1215 		*val = 0xffff;	/* address not found */
1216 		return (0);
1217 	}
1218 	/* determine to which 32-bit register our 16-bit word belongs */
1219 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1220 	if ((error = run_read(sc, reg, &tmp)) != 0)
1221 		return (error);
1222 
1223 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1224 	return (0);
1225 }
1226 
1227 static int
1228 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1229 {
1230 	usb_device_request_t req;
1231 	uint16_t tmp;
1232 	int error;
1233 
1234 	addr *= 2;
1235 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1236 	req.bRequest = RT2870_EEPROM_READ;
1237 	USETW(req.wValue, 0);
1238 	USETW(req.wIndex, addr);
1239 	USETW(req.wLength, sizeof tmp);
1240 
1241 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1242 	if (error == 0)
1243 		*val = le16toh(tmp);
1244 	else
1245 		*val = 0xffff;
1246 	return (error);
1247 }
1248 
1249 static __inline int
1250 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1251 {
1252 	/* either eFUSE ROM or EEPROM */
1253 	return sc->sc_srom_read(sc, addr, val);
1254 }
1255 
1256 static int
1257 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1258 {
1259 	uint32_t tmp;
1260 	int error, ntries;
1261 
1262 	for (ntries = 0; ntries < 10; ntries++) {
1263 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1264 			return (error);
1265 		if (!(tmp & RT2860_RF_REG_CTRL))
1266 			break;
1267 	}
1268 	if (ntries == 10)
1269 		return (ETIMEDOUT);
1270 
1271 	/* RF registers are 24-bit on the RT2860 */
1272 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1273 	    (val & 0x3fffff) << 2 | (reg & 3);
1274 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1275 }
1276 
1277 static int
1278 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1279 {
1280 	uint32_t tmp;
1281 	int error, ntries;
1282 
1283 	for (ntries = 0; ntries < 100; ntries++) {
1284 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1285 			return (error);
1286 		if (!(tmp & RT3070_RF_KICK))
1287 			break;
1288 	}
1289 	if (ntries == 100)
1290 		return (ETIMEDOUT);
1291 
1292 	tmp = RT3070_RF_KICK | reg << 8;
1293 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1294 		return (error);
1295 
1296 	for (ntries = 0; ntries < 100; ntries++) {
1297 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1298 			return (error);
1299 		if (!(tmp & RT3070_RF_KICK))
1300 			break;
1301 	}
1302 	if (ntries == 100)
1303 		return (ETIMEDOUT);
1304 
1305 	*val = tmp & 0xff;
1306 	return (0);
1307 }
1308 
1309 static int
1310 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1311 {
1312 	uint32_t tmp;
1313 	int error, ntries;
1314 
1315 	for (ntries = 0; ntries < 10; ntries++) {
1316 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1317 			return (error);
1318 		if (!(tmp & RT3070_RF_KICK))
1319 			break;
1320 	}
1321 	if (ntries == 10)
1322 		return (ETIMEDOUT);
1323 
1324 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1325 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1326 }
1327 
1328 static int
1329 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1330 {
1331 	uint32_t tmp;
1332 	int ntries, error;
1333 
1334 	for (ntries = 0; ntries < 10; ntries++) {
1335 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1336 			return (error);
1337 		if (!(tmp & RT2860_BBP_CSR_KICK))
1338 			break;
1339 	}
1340 	if (ntries == 10)
1341 		return (ETIMEDOUT);
1342 
1343 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1344 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1345 		return (error);
1346 
1347 	for (ntries = 0; ntries < 10; ntries++) {
1348 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1349 			return (error);
1350 		if (!(tmp & RT2860_BBP_CSR_KICK))
1351 			break;
1352 	}
1353 	if (ntries == 10)
1354 		return (ETIMEDOUT);
1355 
1356 	*val = tmp & 0xff;
1357 	return (0);
1358 }
1359 
1360 static int
1361 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1362 {
1363 	uint32_t tmp;
1364 	int ntries, error;
1365 
1366 	for (ntries = 0; ntries < 10; ntries++) {
1367 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1368 			return (error);
1369 		if (!(tmp & RT2860_BBP_CSR_KICK))
1370 			break;
1371 	}
1372 	if (ntries == 10)
1373 		return (ETIMEDOUT);
1374 
1375 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1376 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1377 }
1378 
1379 /*
1380  * Send a command to the 8051 microcontroller unit.
1381  */
1382 static int
1383 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1384 {
1385 	uint32_t tmp;
1386 	int error, ntries;
1387 
1388 	for (ntries = 0; ntries < 100; ntries++) {
1389 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1390 			return error;
1391 		if (!(tmp & RT2860_H2M_BUSY))
1392 			break;
1393 	}
1394 	if (ntries == 100)
1395 		return ETIMEDOUT;
1396 
1397 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1398 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1399 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1400 	return (error);
1401 }
1402 
1403 /*
1404  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1405  * Used to adjust per-rate Tx power registers.
1406  */
1407 static __inline uint32_t
1408 b4inc(uint32_t b32, int8_t delta)
1409 {
1410 	int8_t i, b4;
1411 
1412 	for (i = 0; i < 8; i++) {
1413 		b4 = b32 & 0xf;
1414 		b4 += delta;
1415 		if (b4 < 0)
1416 			b4 = 0;
1417 		else if (b4 > 0xf)
1418 			b4 = 0xf;
1419 		b32 = b32 >> 4 | b4 << 28;
1420 	}
1421 	return (b32);
1422 }
1423 
1424 static const char *
1425 run_get_rf(int rev)
1426 {
1427 	switch (rev) {
1428 	case RT2860_RF_2820:	return "RT2820";
1429 	case RT2860_RF_2850:	return "RT2850";
1430 	case RT2860_RF_2720:	return "RT2720";
1431 	case RT2860_RF_2750:	return "RT2750";
1432 	case RT3070_RF_3020:	return "RT3020";
1433 	case RT3070_RF_2020:	return "RT2020";
1434 	case RT3070_RF_3021:	return "RT3021";
1435 	case RT3070_RF_3022:	return "RT3022";
1436 	case RT3070_RF_3052:	return "RT3052";
1437 	}
1438 	return ("unknown");
1439 }
1440 
1441 int
1442 run_read_eeprom(struct run_softc *sc)
1443 {
1444 	int8_t delta_2ghz, delta_5ghz;
1445 	uint32_t tmp;
1446 	uint16_t val;
1447 	int ridx, ant, i;
1448 
1449 	/* check whether the ROM is eFUSE ROM or EEPROM */
1450 	sc->sc_srom_read = run_eeprom_read_2;
1451 	if (sc->mac_ver >= 0x3070) {
1452 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1453 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1454 		if (tmp & RT3070_SEL_EFUSE)
1455 			sc->sc_srom_read = run_efuse_read_2;
1456 	}
1457 
1458 	/* read ROM version */
1459 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1460 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1461 
1462 	/* read MAC address */
1463 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1464 	sc->sc_bssid[0] = val & 0xff;
1465 	sc->sc_bssid[1] = val >> 8;
1466 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1467 	sc->sc_bssid[2] = val & 0xff;
1468 	sc->sc_bssid[3] = val >> 8;
1469 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1470 	sc->sc_bssid[4] = val & 0xff;
1471 	sc->sc_bssid[5] = val >> 8;
1472 
1473 	/* read vender BBP settings */
1474 	for (i = 0; i < 10; i++) {
1475 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1476 		sc->bbp[i].val = val & 0xff;
1477 		sc->bbp[i].reg = val >> 8;
1478 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1479 	}
1480 	if (sc->mac_ver >= 0x3071) {
1481 		/* read vendor RF settings */
1482 		for (i = 0; i < 10; i++) {
1483 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1484 			sc->rf[i].val = val & 0xff;
1485 			sc->rf[i].reg = val >> 8;
1486 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1487 			    sc->rf[i].val);
1488 		}
1489 	}
1490 
1491 	/* read RF frequency offset from EEPROM */
1492 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1493 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1494 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1495 
1496 	if (val >> 8 != 0xff) {
1497 		/* read LEDs operating mode */
1498 		sc->leds = val >> 8;
1499 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1500 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1501 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1502 	} else {
1503 		/* broken EEPROM, use default settings */
1504 		sc->leds = 0x01;
1505 		sc->led[0] = 0x5555;
1506 		sc->led[1] = 0x2221;
1507 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1508 	}
1509 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1510 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1511 
1512 	/* read RF information */
1513 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1514 	if (val == 0xffff) {
1515 		DPRINTF("invalid EEPROM antenna info, using default\n");
1516 		if (sc->mac_ver == 0x3572) {
1517 			/* default to RF3052 2T2R */
1518 			sc->rf_rev = RT3070_RF_3052;
1519 			sc->ntxchains = 2;
1520 			sc->nrxchains = 2;
1521 		} else if (sc->mac_ver >= 0x3070) {
1522 			/* default to RF3020 1T1R */
1523 			sc->rf_rev = RT3070_RF_3020;
1524 			sc->ntxchains = 1;
1525 			sc->nrxchains = 1;
1526 		} else {
1527 			/* default to RF2820 1T2R */
1528 			sc->rf_rev = RT2860_RF_2820;
1529 			sc->ntxchains = 1;
1530 			sc->nrxchains = 2;
1531 		}
1532 	} else {
1533 		sc->rf_rev = (val >> 8) & 0xf;
1534 		sc->ntxchains = (val >> 4) & 0xf;
1535 		sc->nrxchains = val & 0xf;
1536 	}
1537 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1538 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1539 
1540 	/* check if RF supports automatic Tx access gain control */
1541 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1542 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1543 	/* check if driver should patch the DAC issue */
1544 	if ((val >> 8) != 0xff)
1545 		sc->patch_dac = (val >> 15) & 1;
1546 	if ((val & 0xff) != 0xff) {
1547 		sc->ext_5ghz_lna = (val >> 3) & 1;
1548 		sc->ext_2ghz_lna = (val >> 2) & 1;
1549 		/* check if RF supports automatic Tx access gain control */
1550 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1551 		/* check if we have a hardware radio switch */
1552 		sc->rfswitch = val & 1;
1553 	}
1554 
1555 	/* read power settings for 2GHz channels */
1556 	for (i = 0; i < 14; i += 2) {
1557 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1558 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1559 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1560 
1561 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1562 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1563 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1564 	}
1565 	/* fix broken Tx power entries */
1566 	for (i = 0; i < 14; i++) {
1567 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1568 			sc->txpow1[i] = 5;
1569 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1570 			sc->txpow2[i] = 5;
1571 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1572 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1573 	}
1574 	/* read power settings for 5GHz channels */
1575 	for (i = 0; i < 40; i += 2) {
1576 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1577 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1578 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1579 
1580 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1581 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1582 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1583 	}
1584 	/* fix broken Tx power entries */
1585 	for (i = 0; i < 40; i++) {
1586 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1587 			sc->txpow1[14 + i] = 5;
1588 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1589 			sc->txpow2[14 + i] = 5;
1590 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1591 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1592 		    sc->txpow2[14 + i]);
1593 	}
1594 
1595 	/* read Tx power compensation for each Tx rate */
1596 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1597 	delta_2ghz = delta_5ghz = 0;
1598 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1599 		delta_2ghz = val & 0xf;
1600 		if (!(val & 0x40))	/* negative number */
1601 			delta_2ghz = -delta_2ghz;
1602 	}
1603 	val >>= 8;
1604 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1605 		delta_5ghz = val & 0xf;
1606 		if (!(val & 0x40))	/* negative number */
1607 			delta_5ghz = -delta_5ghz;
1608 	}
1609 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1610 	    delta_2ghz, delta_5ghz);
1611 
1612 	for (ridx = 0; ridx < 5; ridx++) {
1613 		uint32_t reg;
1614 
1615 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1616 		reg = val;
1617 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1618 		reg |= (uint32_t)val << 16;
1619 
1620 		sc->txpow20mhz[ridx] = reg;
1621 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1622 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1623 
1624 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1625 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1626 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1627 	}
1628 
1629 	/* read RSSI offsets and LNA gains from EEPROM */
1630 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1631 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1632 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1633 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1634 	if (sc->mac_ver >= 0x3070) {
1635 		/*
1636 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1637 		 * field contains the Tx mixer gain for the 2GHz band.
1638 		 */
1639 		if ((val & 0xff) != 0xff)
1640 			sc->txmixgain_2ghz = val & 0x7;
1641 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1642 	} else
1643 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1644 	sc->lna[2] = val >> 8;		/* channel group 2 */
1645 
1646 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1647 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1648 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1649 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1650 	if (sc->mac_ver == 0x3572) {
1651 		/*
1652 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1653 		 * field contains the Tx mixer gain for the 5GHz band.
1654 		 */
1655 		if ((val & 0xff) != 0xff)
1656 			sc->txmixgain_5ghz = val & 0x7;
1657 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1658 	} else
1659 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1660 	sc->lna[3] = val >> 8;		/* channel group 3 */
1661 
1662 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1663 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1664 	sc->lna[1] = val >> 8;		/* channel group 1 */
1665 
1666 	/* fix broken 5GHz LNA entries */
1667 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1668 		DPRINTF("invalid LNA for channel group %d\n", 2);
1669 		sc->lna[2] = sc->lna[1];
1670 	}
1671 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1672 		DPRINTF("invalid LNA for channel group %d\n", 3);
1673 		sc->lna[3] = sc->lna[1];
1674 	}
1675 
1676 	/* fix broken RSSI offset entries */
1677 	for (ant = 0; ant < 3; ant++) {
1678 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1679 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1680 			    ant + 1, sc->rssi_2ghz[ant]);
1681 			sc->rssi_2ghz[ant] = 0;
1682 		}
1683 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1684 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1685 			    ant + 1, sc->rssi_5ghz[ant]);
1686 			sc->rssi_5ghz[ant] = 0;
1687 		}
1688 	}
1689 	return (0);
1690 }
1691 
1692 static struct ieee80211_node *
1693 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1694 {
1695 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1696 }
1697 
1698 static int
1699 run_media_change(struct ifnet *ifp)
1700 {
1701 	struct ieee80211vap *vap = ifp->if_softc;
1702 	struct ieee80211com *ic = vap->iv_ic;
1703 	const struct ieee80211_txparam *tp;
1704 	struct run_softc *sc = ic->ic_ifp->if_softc;
1705 	uint8_t rate, ridx;
1706 	int error;
1707 
1708 	RUN_LOCK(sc);
1709 
1710 	error = ieee80211_media_change(ifp);
1711 	if (error != ENETRESET) {
1712 		RUN_UNLOCK(sc);
1713 		return (error);
1714 	}
1715 
1716 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1717 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1718 		struct ieee80211_node *ni;
1719 		struct run_node	*rn;
1720 
1721 		rate = ic->ic_sup_rates[ic->ic_curmode].
1722 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1723 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1724 			if (rt2860_rates[ridx].rate == rate)
1725 				break;
1726 		ni = ieee80211_ref_node(vap->iv_bss);
1727 		rn = (struct run_node *)ni;
1728 		rn->fix_ridx = ridx;
1729 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1730 		ieee80211_free_node(ni);
1731 	}
1732 
1733 #if 0
1734 	if ((ifp->if_flags & IFF_UP) &&
1735 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1736 		run_init_locked(sc);
1737 	}
1738 #endif
1739 
1740 	RUN_UNLOCK(sc);
1741 
1742 	return (0);
1743 }
1744 
1745 static int
1746 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1747 {
1748 	const struct ieee80211_txparam *tp;
1749 	struct ieee80211com *ic = vap->iv_ic;
1750 	struct run_softc *sc = ic->ic_ifp->if_softc;
1751 	struct run_vap *rvp = RUN_VAP(vap);
1752 	enum ieee80211_state ostate;
1753 	uint32_t sta[3];
1754 	uint32_t tmp;
1755 	uint8_t ratectl;
1756 	uint8_t restart_ratectl = 0;
1757 	uint8_t bid = 1 << rvp->rvp_id;
1758 
1759 	ostate = vap->iv_state;
1760 	DPRINTF("%s -> %s\n",
1761 		ieee80211_state_name[ostate],
1762 		ieee80211_state_name[nstate]);
1763 
1764 	IEEE80211_UNLOCK(ic);
1765 	RUN_LOCK(sc);
1766 
1767 	ratectl = sc->ratectl_run; /* remember current state */
1768 	sc->ratectl_run = RUN_RATECTL_OFF;
1769 	usb_callout_stop(&sc->ratectl_ch);
1770 
1771 	if (ostate == IEEE80211_S_RUN) {
1772 		/* turn link LED off */
1773 		run_set_leds(sc, RT2860_LED_RADIO);
1774 	}
1775 
1776 	switch (nstate) {
1777 	case IEEE80211_S_INIT:
1778 		restart_ratectl = 1;
1779 
1780 		if (ostate != IEEE80211_S_RUN)
1781 			break;
1782 
1783 		ratectl &= ~bid;
1784 		sc->runbmap &= ~bid;
1785 
1786 		/* abort TSF synchronization if there is no vap running */
1787 		if (--sc->running == 0) {
1788 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1789 			run_write(sc, RT2860_BCN_TIME_CFG,
1790 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1791 			    RT2860_TBTT_TIMER_EN));
1792 		}
1793 		break;
1794 
1795 	case IEEE80211_S_RUN:
1796 		if (!(sc->runbmap & bid)) {
1797 			if(sc->running++)
1798 				restart_ratectl = 1;
1799 			sc->runbmap |= bid;
1800 		}
1801 
1802 		m_freem(rvp->beacon_mbuf);
1803 		rvp->beacon_mbuf = NULL;
1804 
1805 		switch (vap->iv_opmode) {
1806 		case IEEE80211_M_HOSTAP:
1807 		case IEEE80211_M_MBSS:
1808 			sc->ap_running |= bid;
1809 			ic->ic_opmode = vap->iv_opmode;
1810 			run_update_beacon_cb(vap);
1811 			break;
1812 		case IEEE80211_M_IBSS:
1813 			sc->adhoc_running |= bid;
1814 			if (!sc->ap_running)
1815 				ic->ic_opmode = vap->iv_opmode;
1816 			run_update_beacon_cb(vap);
1817 			break;
1818 		case IEEE80211_M_STA:
1819 			sc->sta_running |= bid;
1820 			if (!sc->ap_running && !sc->adhoc_running)
1821 				ic->ic_opmode = vap->iv_opmode;
1822 
1823 			/* read statistic counters (clear on read) */
1824 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1825 			    (uint8_t *)sta, sizeof sta);
1826 
1827 			break;
1828 		default:
1829 			ic->ic_opmode = vap->iv_opmode;
1830 			break;
1831 		}
1832 
1833 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1834 			struct ieee80211_node *ni;
1835 
1836 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1837 				RUN_UNLOCK(sc);
1838 				IEEE80211_LOCK(ic);
1839 				return (-1);
1840 			}
1841 			run_updateslot(ic->ic_ifp);
1842 			run_enable_mrr(sc);
1843 			run_set_txpreamble(sc);
1844 			run_set_basicrates(sc);
1845 			ni = ieee80211_ref_node(vap->iv_bss);
1846 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1847 			run_set_bssid(sc, ni->ni_bssid);
1848 			ieee80211_free_node(ni);
1849 			run_enable_tsf_sync(sc);
1850 
1851 			/* enable automatic rate adaptation */
1852 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1853 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1854 				ratectl |= bid;
1855 		}
1856 
1857 		/* turn link LED on */
1858 		run_set_leds(sc, RT2860_LED_RADIO |
1859 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1860 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1861 
1862 		break;
1863 	default:
1864 		DPRINTFN(6, "undefined case\n");
1865 		break;
1866 	}
1867 
1868 	/* restart amrr for running VAPs */
1869 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1870 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1871 
1872 	RUN_UNLOCK(sc);
1873 	IEEE80211_LOCK(ic);
1874 
1875 	return(rvp->newstate(vap, nstate, arg));
1876 }
1877 
1878 /* ARGSUSED */
1879 static void
1880 run_wme_update_cb(void *arg)
1881 {
1882 	struct ieee80211com *ic = arg;
1883 	struct run_softc *sc = ic->ic_ifp->if_softc;
1884 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1885 	int aci, error = 0;
1886 
1887 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1888 
1889 	/* update MAC TX configuration registers */
1890 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1891 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1892 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1893 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1894 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1895 		    wmesp->wme_params[aci].wmep_txopLimit);
1896 		if (error) goto err;
1897 	}
1898 
1899 	/* update SCH/DMA registers too */
1900 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1901 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1902 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1903 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1904 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1905 	if (error) goto err;
1906 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1907 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1908 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1909 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1910 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1911 	if (error) goto err;
1912 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1913 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1914 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1915 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1916 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1917 	if (error) goto err;
1918 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1919 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1920 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1921 	if (error) goto err;
1922 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1923 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1924 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1925 
1926 err:
1927 	if (error)
1928 		DPRINTF("WME update failed\n");
1929 
1930 	return;
1931 }
1932 
1933 static int
1934 run_wme_update(struct ieee80211com *ic)
1935 {
1936 	struct run_softc *sc = ic->ic_ifp->if_softc;
1937 
1938 	/* sometime called wothout lock */
1939 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1940 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1941 		DPRINTF("cmdq_store=%d\n", i);
1942 		sc->cmdq[i].func = run_wme_update_cb;
1943 		sc->cmdq[i].arg0 = ic;
1944 		ieee80211_runtask(ic, &sc->cmdq_task);
1945 		return (0);
1946 	}
1947 
1948 	RUN_LOCK(sc);
1949 	run_wme_update_cb(ic);
1950 	RUN_UNLOCK(sc);
1951 
1952 	/* return whatever, upper layer desn't care anyway */
1953 	return (0);
1954 }
1955 
1956 static void
1957 run_key_update_begin(struct ieee80211vap *vap)
1958 {
1959 	/*
1960 	 * To avoid out-of-order events, both run_key_set() and
1961 	 * _delete() are deferred and handled by run_cmdq_cb().
1962 	 * So, there is nothing we need to do here.
1963 	 */
1964 }
1965 
1966 static void
1967 run_key_update_end(struct ieee80211vap *vap)
1968 {
1969 	/* null */
1970 }
1971 
1972 static void
1973 run_key_set_cb(void *arg)
1974 {
1975 	struct run_cmdq *cmdq = arg;
1976 	struct ieee80211vap *vap = cmdq->arg1;
1977 	struct ieee80211_key *k = cmdq->k;
1978 	struct ieee80211com *ic = vap->iv_ic;
1979 	struct run_softc *sc = ic->ic_ifp->if_softc;
1980 	struct ieee80211_node *ni;
1981 	uint32_t attr;
1982 	uint16_t base, associd;
1983 	uint8_t mode, wcid, iv[8];
1984 
1985 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1986 
1987 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1988 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1989 	else
1990 		ni = vap->iv_bss;
1991 	associd = (ni != NULL) ? ni->ni_associd : 0;
1992 
1993 	/* map net80211 cipher to RT2860 security mode */
1994 	switch (k->wk_cipher->ic_cipher) {
1995 	case IEEE80211_CIPHER_WEP:
1996 		if(k->wk_keylen < 8)
1997 			mode = RT2860_MODE_WEP40;
1998 		else
1999 			mode = RT2860_MODE_WEP104;
2000 		break;
2001 	case IEEE80211_CIPHER_TKIP:
2002 		mode = RT2860_MODE_TKIP;
2003 		break;
2004 	case IEEE80211_CIPHER_AES_CCM:
2005 		mode = RT2860_MODE_AES_CCMP;
2006 		break;
2007 	default:
2008 		DPRINTF("undefined case\n");
2009 		return;
2010 	}
2011 
2012 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2013 	    associd, k->wk_keyix, mode,
2014 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2015 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2016 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2017 
2018 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2019 		wcid = 0;	/* NB: update WCID0 for group keys */
2020 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2021 	} else {
2022 		wcid = RUN_AID2WCID(associd);
2023 		base = RT2860_PKEY(wcid);
2024 	}
2025 
2026 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2027 		if(run_write_region_1(sc, base, k->wk_key, 16))
2028 			return;
2029 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2030 			return;
2031 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2032 			return;
2033 	} else {
2034 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2035 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2036 			return;
2037 	}
2038 
2039 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2040 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2041 		/* set initial packet number in IV+EIV */
2042 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2043 			memset(iv, 0, sizeof iv);
2044 			iv[3] = vap->iv_def_txkey << 6;
2045 		} else {
2046 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2047 				iv[0] = k->wk_keytsc >> 8;
2048 				iv[1] = (iv[0] | 0x20) & 0x7f;
2049 				iv[2] = k->wk_keytsc;
2050 			} else /* CCMP */ {
2051 				iv[0] = k->wk_keytsc;
2052 				iv[1] = k->wk_keytsc >> 8;
2053 				iv[2] = 0;
2054 			}
2055 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2056 			iv[4] = k->wk_keytsc >> 16;
2057 			iv[5] = k->wk_keytsc >> 24;
2058 			iv[6] = k->wk_keytsc >> 32;
2059 			iv[7] = k->wk_keytsc >> 40;
2060 		}
2061 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2062 			return;
2063 	}
2064 
2065 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2066 		/* install group key */
2067 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2068 			return;
2069 		attr &= ~(0xf << (k->wk_keyix * 4));
2070 		attr |= mode << (k->wk_keyix * 4);
2071 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2072 			return;
2073 	} else {
2074 		/* install pairwise key */
2075 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2076 			return;
2077 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2078 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2079 			return;
2080 	}
2081 
2082 	/* TODO create a pass-thru key entry? */
2083 
2084 	/* need wcid to delete the right key later */
2085 	k->wk_pad = wcid;
2086 }
2087 
2088 /*
2089  * Don't have to be deferred, but in order to keep order of
2090  * execution, i.e. with run_key_delete(), defer this and let
2091  * run_cmdq_cb() maintain the order.
2092  *
2093  * return 0 on error
2094  */
2095 static int
2096 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2097 		const uint8_t mac[IEEE80211_ADDR_LEN])
2098 {
2099 	struct ieee80211com *ic = vap->iv_ic;
2100 	struct run_softc *sc = ic->ic_ifp->if_softc;
2101 	uint32_t i;
2102 
2103 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2104 	DPRINTF("cmdq_store=%d\n", i);
2105 	sc->cmdq[i].func = run_key_set_cb;
2106 	sc->cmdq[i].arg0 = NULL;
2107 	sc->cmdq[i].arg1 = vap;
2108 	sc->cmdq[i].k = k;
2109 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2110 	ieee80211_runtask(ic, &sc->cmdq_task);
2111 
2112 	/*
2113 	 * To make sure key will be set when hostapd
2114 	 * calls iv_key_set() before if_init().
2115 	 */
2116 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2117 		RUN_LOCK(sc);
2118 		sc->cmdq_key_set = RUN_CMDQ_GO;
2119 		RUN_UNLOCK(sc);
2120 	}
2121 
2122 	return (1);
2123 }
2124 
2125 /*
2126  * If wlan is destroyed without being brought down i.e. without
2127  * wlan down or wpa_cli terminate, this function is called after
2128  * vap is gone. Don't refer it.
2129  */
2130 static void
2131 run_key_delete_cb(void *arg)
2132 {
2133 	struct run_cmdq *cmdq = arg;
2134 	struct run_softc *sc = cmdq->arg1;
2135 	struct ieee80211_key *k = &cmdq->key;
2136 	uint32_t attr;
2137 	uint8_t wcid;
2138 
2139 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2140 
2141 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2142 		/* remove group key */
2143 		DPRINTF("removing group key\n");
2144 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2145 		attr &= ~(0xf << (k->wk_keyix * 4));
2146 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2147 	} else {
2148 		/* remove pairwise key */
2149 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2150 		/* matching wcid was written to wk_pad in run_key_set() */
2151 		wcid = k->wk_pad;
2152 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2153 		attr &= ~0xf;
2154 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2155 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2156 	}
2157 
2158 	k->wk_pad = 0;
2159 }
2160 
2161 /*
2162  * return 0 on error
2163  */
2164 static int
2165 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2166 {
2167 	struct ieee80211com *ic = vap->iv_ic;
2168 	struct run_softc *sc = ic->ic_ifp->if_softc;
2169 	struct ieee80211_key *k0;
2170 	uint32_t i;
2171 
2172 	/*
2173 	 * When called back, key might be gone. So, make a copy
2174 	 * of some values need to delete keys before deferring.
2175 	 * But, because of LOR with node lock, cannot use lock here.
2176 	 * So, use atomic instead.
2177 	 */
2178 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2179 	DPRINTF("cmdq_store=%d\n", i);
2180 	sc->cmdq[i].func = run_key_delete_cb;
2181 	sc->cmdq[i].arg0 = NULL;
2182 	sc->cmdq[i].arg1 = sc;
2183 	k0 = &sc->cmdq[i].key;
2184 	k0->wk_flags = k->wk_flags;
2185 	k0->wk_keyix = k->wk_keyix;
2186 	/* matching wcid was written to wk_pad in run_key_set() */
2187 	k0->wk_pad = k->wk_pad;
2188 	ieee80211_runtask(ic, &sc->cmdq_task);
2189 	return (1);	/* return fake success */
2190 
2191 }
2192 
2193 static void
2194 run_ratectl_to(void *arg)
2195 {
2196 	struct run_softc *sc = arg;
2197 
2198 	/* do it in a process context, so it can go sleep */
2199 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2200 	/* next timeout will be rescheduled in the callback task */
2201 }
2202 
2203 /* ARGSUSED */
2204 static void
2205 run_ratectl_cb(void *arg, int pending)
2206 {
2207 	struct run_softc *sc = arg;
2208 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2209 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2210 
2211 	if (vap == NULL)
2212 		return;
2213 
2214 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2215 		run_iter_func(sc, vap->iv_bss);
2216 	else {
2217 		/*
2218 		 * run_reset_livelock() doesn't do anything with AMRR,
2219 		 * but Ralink wants us to call it every 1 sec. So, we
2220 		 * piggyback here rather than creating another callout.
2221 		 * Livelock may occur only in HOSTAP or IBSS mode
2222 		 * (when h/w is sending beacons).
2223 		 */
2224 		RUN_LOCK(sc);
2225 		run_reset_livelock(sc);
2226 		/* just in case, there are some stats to drain */
2227 		run_drain_fifo(sc);
2228 		RUN_UNLOCK(sc);
2229 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2230 	}
2231 
2232 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2233 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2234 }
2235 
2236 static void
2237 run_drain_fifo(void *arg)
2238 {
2239 	struct run_softc *sc = arg;
2240 	struct ifnet *ifp = sc->sc_ifp;
2241 	uint32_t stat;
2242 	uint16_t (*wstat)[3];
2243 	uint8_t wcid, mcs, pid;
2244 	int8_t retry;
2245 
2246 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2247 
2248 	for (;;) {
2249 		/* drain Tx status FIFO (maxsize = 16) */
2250 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2251 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2252 		if (!(stat & RT2860_TXQ_VLD))
2253 			break;
2254 
2255 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2256 
2257 		/* if no ACK was requested, no feedback is available */
2258 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2259 		    wcid == 0)
2260 			continue;
2261 
2262 		/*
2263 		 * Even though each stat is Tx-complete-status like format,
2264 		 * the device can poll stats. Because there is no guarantee
2265 		 * that the referring node is still around when read the stats.
2266 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2267 		 * have hard time not to refer already freed node.
2268 		 *
2269 		 * To eliminate such page faults, we poll stats in softc.
2270 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2271 		 */
2272 		wstat = &(sc->wcid_stats[wcid]);
2273 		(*wstat)[RUN_TXCNT]++;
2274 		if (stat & RT2860_TXQ_OK)
2275 			(*wstat)[RUN_SUCCESS]++;
2276 		else
2277 			ifp->if_oerrors++;
2278 		/*
2279 		 * Check if there were retries, ie if the Tx success rate is
2280 		 * different from the requested rate. Note that it works only
2281 		 * because we do not allow rate fallback from OFDM to CCK.
2282 		 */
2283 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2284 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2285 		if ((retry = pid -1 - mcs) > 0) {
2286 			(*wstat)[RUN_TXCNT] += retry;
2287 			(*wstat)[RUN_RETRY] += retry;
2288 		}
2289 	}
2290 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2291 
2292 	sc->fifo_cnt = 0;
2293 }
2294 
2295 static void
2296 run_iter_func(void *arg, struct ieee80211_node *ni)
2297 {
2298 	struct run_softc *sc = arg;
2299 	struct ieee80211vap *vap = ni->ni_vap;
2300 	struct ieee80211com *ic = ni->ni_ic;
2301 	struct ifnet *ifp = ic->ic_ifp;
2302 	struct run_node *rn = (void *)ni;
2303 	union run_stats sta[2];
2304 	uint16_t (*wstat)[3];
2305 	int txcnt, success, retrycnt, error;
2306 
2307 	RUN_LOCK(sc);
2308 
2309 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2310 	    vap->iv_opmode == IEEE80211_M_STA)) {
2311 		/* read statistic counters (clear on read) and update AMRR state */
2312 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2313 		    sizeof sta);
2314 		if (error != 0)
2315 			goto fail;
2316 
2317 		/* count failed TX as errors */
2318 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2319 
2320 		retrycnt = le16toh(sta[1].tx.retry);
2321 		success = le16toh(sta[1].tx.success);
2322 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2323 
2324 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2325 			retrycnt, success, le16toh(sta[0].error.fail));
2326 	} else {
2327 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2328 
2329 		if (wstat == &(sc->wcid_stats[0]) ||
2330 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2331 			goto fail;
2332 
2333 		txcnt = (*wstat)[RUN_TXCNT];
2334 		success = (*wstat)[RUN_SUCCESS];
2335 		retrycnt = (*wstat)[RUN_RETRY];
2336 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2337 		    retrycnt, txcnt, success);
2338 
2339 		memset(wstat, 0, sizeof(*wstat));
2340 	}
2341 
2342 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2343 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2344 
2345 fail:
2346 	RUN_UNLOCK(sc);
2347 
2348 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2349 }
2350 
2351 static void
2352 run_newassoc_cb(void *arg)
2353 {
2354 	struct run_cmdq *cmdq = arg;
2355 	struct ieee80211_node *ni = cmdq->arg1;
2356 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2357 	uint8_t wcid = cmdq->wcid;
2358 
2359 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2360 
2361 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2362 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2363 
2364 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2365 }
2366 
2367 static void
2368 run_newassoc(struct ieee80211_node *ni, int isnew)
2369 {
2370 	struct run_node *rn = (void *)ni;
2371 	struct ieee80211_rateset *rs = &ni->ni_rates;
2372 	struct ieee80211vap *vap = ni->ni_vap;
2373 	struct ieee80211com *ic = vap->iv_ic;
2374 	struct run_softc *sc = ic->ic_ifp->if_softc;
2375 	uint8_t rate;
2376 	uint8_t ridx;
2377 	uint8_t wcid = RUN_AID2WCID(ni->ni_associd);
2378 	int i, j;
2379 
2380 	if (wcid > RT2870_WCID_MAX) {
2381 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2382 		return;
2383 	}
2384 
2385 	/* only interested in true associations */
2386 	if (isnew && ni->ni_associd != 0) {
2387 
2388 		/*
2389 		 * This function could is called though timeout function.
2390 		 * Need to defer.
2391 		 */
2392 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2393 		DPRINTF("cmdq_store=%d\n", cnt);
2394 		sc->cmdq[cnt].func = run_newassoc_cb;
2395 		sc->cmdq[cnt].arg0 = NULL;
2396 		sc->cmdq[cnt].arg1 = ni;
2397 		sc->cmdq[cnt].wcid = wcid;
2398 		ieee80211_runtask(ic, &sc->cmdq_task);
2399 	}
2400 
2401 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2402 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2403 
2404 	for (i = 0; i < rs->rs_nrates; i++) {
2405 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2406 		/* convert 802.11 rate to hardware rate index */
2407 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2408 			if (rt2860_rates[ridx].rate == rate)
2409 				break;
2410 		rn->ridx[i] = ridx;
2411 		/* determine rate of control response frames */
2412 		for (j = i; j >= 0; j--) {
2413 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2414 			    rt2860_rates[rn->ridx[i]].phy ==
2415 			    rt2860_rates[rn->ridx[j]].phy)
2416 				break;
2417 		}
2418 		if (j >= 0) {
2419 			rn->ctl_ridx[i] = rn->ridx[j];
2420 		} else {
2421 			/* no basic rate found, use mandatory one */
2422 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2423 		}
2424 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2425 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2426 	}
2427 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2428 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2429 		if (rt2860_rates[ridx].rate == rate)
2430 			break;
2431 	rn->mgt_ridx = ridx;
2432 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2433 
2434 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2435 }
2436 
2437 /*
2438  * Return the Rx chain with the highest RSSI for a given frame.
2439  */
2440 static __inline uint8_t
2441 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2442 {
2443 	uint8_t rxchain = 0;
2444 
2445 	if (sc->nrxchains > 1) {
2446 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2447 			rxchain = 1;
2448 		if (sc->nrxchains > 2)
2449 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2450 				rxchain = 2;
2451 	}
2452 	return (rxchain);
2453 }
2454 
2455 static void
2456 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2457 {
2458 	struct ifnet *ifp = sc->sc_ifp;
2459 	struct ieee80211com *ic = ifp->if_l2com;
2460 	struct ieee80211_frame *wh;
2461 	struct ieee80211_node *ni;
2462 	struct rt2870_rxd *rxd;
2463 	struct rt2860_rxwi *rxwi;
2464 	uint32_t flags;
2465 	uint16_t len, phy;
2466 	uint8_t ant, rssi;
2467 	int8_t nf;
2468 
2469 	rxwi = mtod(m, struct rt2860_rxwi *);
2470 	len = le16toh(rxwi->len) & 0xfff;
2471 	if (__predict_false(len > dmalen)) {
2472 		m_freem(m);
2473 		ifp->if_ierrors++;
2474 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2475 		return;
2476 	}
2477 	/* Rx descriptor is located at the end */
2478 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2479 	flags = le32toh(rxd->flags);
2480 
2481 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2482 		m_freem(m);
2483 		ifp->if_ierrors++;
2484 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2485 		return;
2486 	}
2487 
2488 	m->m_data += sizeof(struct rt2860_rxwi);
2489 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2490 
2491 	wh = mtod(m, struct ieee80211_frame *);
2492 
2493 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2494 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2495 		m->m_flags |= M_WEP;
2496 	}
2497 
2498 	if (flags & RT2860_RX_L2PAD) {
2499 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2500 		len += 2;
2501 	}
2502 
2503 	ni = ieee80211_find_rxnode(ic,
2504 	    mtod(m, struct ieee80211_frame_min *));
2505 
2506 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2507 		/* report MIC failures to net80211 for TKIP */
2508 		if (ni != NULL)
2509 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2510 		m_freem(m);
2511 		ifp->if_ierrors++;
2512 		DPRINTF("MIC error. Someone is lying.\n");
2513 		return;
2514 	}
2515 
2516 	ant = run_maxrssi_chain(sc, rxwi);
2517 	rssi = rxwi->rssi[ant];
2518 	nf = run_rssi2dbm(sc, rssi, ant);
2519 
2520 	m->m_pkthdr.rcvif = ifp;
2521 	m->m_pkthdr.len = m->m_len = len;
2522 
2523 	if (ni != NULL) {
2524 		(void)ieee80211_input(ni, m, rssi, nf);
2525 		ieee80211_free_node(ni);
2526 	} else {
2527 		(void)ieee80211_input_all(ic, m, rssi, nf);
2528 	}
2529 
2530 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2531 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2532 
2533 		tap->wr_flags = 0;
2534 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2535 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2536 		tap->wr_antsignal = rssi;
2537 		tap->wr_antenna = ant;
2538 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2539 		tap->wr_rate = 2;	/* in case it can't be found below */
2540 		phy = le16toh(rxwi->phy);
2541 		switch (phy & RT2860_PHY_MODE) {
2542 		case RT2860_PHY_CCK:
2543 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2544 			case 0:	tap->wr_rate =   2; break;
2545 			case 1:	tap->wr_rate =   4; break;
2546 			case 2:	tap->wr_rate =  11; break;
2547 			case 3:	tap->wr_rate =  22; break;
2548 			}
2549 			if (phy & RT2860_PHY_SHPRE)
2550 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2551 			break;
2552 		case RT2860_PHY_OFDM:
2553 			switch (phy & RT2860_PHY_MCS) {
2554 			case 0:	tap->wr_rate =  12; break;
2555 			case 1:	tap->wr_rate =  18; break;
2556 			case 2:	tap->wr_rate =  24; break;
2557 			case 3:	tap->wr_rate =  36; break;
2558 			case 4:	tap->wr_rate =  48; break;
2559 			case 5:	tap->wr_rate =  72; break;
2560 			case 6:	tap->wr_rate =  96; break;
2561 			case 7:	tap->wr_rate = 108; break;
2562 			}
2563 			break;
2564 		}
2565 	}
2566 }
2567 
2568 static void
2569 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2570 {
2571 	struct run_softc *sc = usbd_xfer_softc(xfer);
2572 	struct ifnet *ifp = sc->sc_ifp;
2573 	struct mbuf *m = NULL;
2574 	struct mbuf *m0;
2575 	uint32_t dmalen;
2576 	int xferlen;
2577 
2578 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2579 
2580 	switch (USB_GET_STATE(xfer)) {
2581 	case USB_ST_TRANSFERRED:
2582 
2583 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2584 
2585 		if (xferlen < (int)(sizeof(uint32_t) +
2586 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2587 			DPRINTF("xfer too short %d\n", xferlen);
2588 			goto tr_setup;
2589 		}
2590 
2591 		m = sc->rx_m;
2592 		sc->rx_m = NULL;
2593 
2594 		/* FALLTHROUGH */
2595 	case USB_ST_SETUP:
2596 tr_setup:
2597 		if (sc->rx_m == NULL) {
2598 			sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
2599 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2600 		}
2601 		if (sc->rx_m == NULL) {
2602 			DPRINTF("could not allocate mbuf - idle with stall\n");
2603 			ifp->if_ierrors++;
2604 			usbd_xfer_set_stall(xfer);
2605 			usbd_xfer_set_frames(xfer, 0);
2606 		} else {
2607 			/*
2608 			 * Directly loading a mbuf cluster into DMA to
2609 			 * save some data copying. This works because
2610 			 * there is only one cluster.
2611 			 */
2612 			usbd_xfer_set_frame_data(xfer, 0,
2613 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2614 			usbd_xfer_set_frames(xfer, 1);
2615 		}
2616 		usbd_transfer_submit(xfer);
2617 		break;
2618 
2619 	default:	/* Error */
2620 		if (error != USB_ERR_CANCELLED) {
2621 			/* try to clear stall first */
2622 			usbd_xfer_set_stall(xfer);
2623 
2624 			if (error == USB_ERR_TIMEOUT)
2625 				device_printf(sc->sc_dev, "device timeout\n");
2626 
2627 			ifp->if_ierrors++;
2628 
2629 			goto tr_setup;
2630 		}
2631 		if (sc->rx_m != NULL) {
2632 			m_freem(sc->rx_m);
2633 			sc->rx_m = NULL;
2634 		}
2635 		break;
2636 	}
2637 
2638 	if (m == NULL)
2639 		return;
2640 
2641 	/* inputting all the frames must be last */
2642 
2643 	RUN_UNLOCK(sc);
2644 
2645 	m->m_pkthdr.len = m->m_len = xferlen;
2646 
2647 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2648 	for(;;) {
2649 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2650 
2651 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2652 		    ((dmalen & 3) != 0)) {
2653 			DPRINTF("bad DMA length %u\n", dmalen);
2654 			break;
2655 		}
2656 		if ((dmalen + 8) > (uint32_t)xferlen) {
2657 			DPRINTF("bad DMA length %u > %d\n",
2658 			dmalen + 8, xferlen);
2659 			break;
2660 		}
2661 
2662 		/* If it is the last one or a single frame, we won't copy. */
2663 		if ((xferlen -= dmalen + 8) <= 8) {
2664 			/* trim 32-bit DMA-len header */
2665 			m->m_data += 4;
2666 			m->m_pkthdr.len = m->m_len -= 4;
2667 			run_rx_frame(sc, m, dmalen);
2668 			break;
2669 		}
2670 
2671 		/* copy aggregated frames to another mbuf */
2672 		m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2673 		if (__predict_false(m0 == NULL)) {
2674 			DPRINTF("could not allocate mbuf\n");
2675 			ifp->if_ierrors++;
2676 			break;
2677 		}
2678 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2679 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2680 		m0->m_pkthdr.len = m0->m_len =
2681 		    dmalen + sizeof(struct rt2870_rxd);
2682 		run_rx_frame(sc, m0, dmalen);
2683 
2684 		/* update data ptr */
2685 		m->m_data += dmalen + 8;
2686 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2687 	}
2688 
2689 	RUN_LOCK(sc);
2690 }
2691 
2692 static void
2693 run_tx_free(struct run_endpoint_queue *pq,
2694     struct run_tx_data *data, int txerr)
2695 {
2696 	if (data->m != NULL) {
2697 		if (data->m->m_flags & M_TXCB)
2698 			ieee80211_process_callback(data->ni, data->m,
2699 			    txerr ? ETIMEDOUT : 0);
2700 		m_freem(data->m);
2701 		data->m = NULL;
2702 
2703 		if (data->ni == NULL) {
2704 			DPRINTF("no node\n");
2705 		} else {
2706 			ieee80211_free_node(data->ni);
2707 			data->ni = NULL;
2708 		}
2709 	}
2710 
2711 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2712 	pq->tx_nfree++;
2713 }
2714 
2715 static void
2716 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2717 {
2718 	struct run_softc *sc = usbd_xfer_softc(xfer);
2719 	struct ifnet *ifp = sc->sc_ifp;
2720 	struct ieee80211com *ic = ifp->if_l2com;
2721 	struct run_tx_data *data;
2722 	struct ieee80211vap *vap = NULL;
2723 	struct usb_page_cache *pc;
2724 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2725 	struct mbuf *m;
2726 	usb_frlength_t size;
2727 	int actlen;
2728 	int sumlen;
2729 
2730 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2731 
2732 	switch (USB_GET_STATE(xfer)) {
2733 	case USB_ST_TRANSFERRED:
2734 		DPRINTFN(11, "transfer complete: %d "
2735 		    "bytes @ index %d\n", actlen, index);
2736 
2737 		data = usbd_xfer_get_priv(xfer);
2738 
2739 		run_tx_free(pq, data, 0);
2740 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2741 
2742 		usbd_xfer_set_priv(xfer, NULL);
2743 
2744 		ifp->if_opackets++;
2745 
2746 		/* FALLTHROUGH */
2747 	case USB_ST_SETUP:
2748 tr_setup:
2749 		data = STAILQ_FIRST(&pq->tx_qh);
2750 		if (data == NULL)
2751 			break;
2752 
2753 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2754 
2755 		m = data->m;
2756 		if ((m->m_pkthdr.len +
2757 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2758 			DPRINTF("data overflow, %u bytes\n",
2759 			    m->m_pkthdr.len);
2760 
2761 			ifp->if_oerrors++;
2762 
2763 			run_tx_free(pq, data, 1);
2764 
2765 			goto tr_setup;
2766 		}
2767 
2768 		pc = usbd_xfer_get_frame(xfer, 0);
2769 		size = sizeof(data->desc);
2770 		usbd_copy_in(pc, 0, &data->desc, size);
2771 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2772 		size += m->m_pkthdr.len;
2773 		/*
2774 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2775 		 * 4-byte padding), and be sure to zero those trailing
2776 		 * bytes:
2777 		 */
2778 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2779 		size += ((-size) & 3) + 8;
2780 
2781 		vap = data->ni->ni_vap;
2782 		if (ieee80211_radiotap_active_vap(vap)) {
2783 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2784 			struct rt2860_txwi *txwi =
2785 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2786 
2787 			tap->wt_flags = 0;
2788 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2789 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2790 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2791 			tap->wt_hwqueue = index;
2792 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2793 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2794 
2795 			ieee80211_radiotap_tx(vap, m);
2796 		}
2797 
2798 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2799 		    m->m_pkthdr.len, size, index);
2800 
2801 		usbd_xfer_set_frame_len(xfer, 0, size);
2802 		usbd_xfer_set_priv(xfer, data);
2803 
2804 		usbd_transfer_submit(xfer);
2805 
2806 		RUN_UNLOCK(sc);
2807 		run_start(ifp);
2808 		RUN_LOCK(sc);
2809 
2810 		break;
2811 
2812 	default:
2813 		DPRINTF("USB transfer error, %s\n",
2814 		    usbd_errstr(error));
2815 
2816 		data = usbd_xfer_get_priv(xfer);
2817 
2818 		ifp->if_oerrors++;
2819 
2820 		if (data != NULL) {
2821 			if(data->ni != NULL)
2822 				vap = data->ni->ni_vap;
2823 			run_tx_free(pq, data, error);
2824 			usbd_xfer_set_priv(xfer, NULL);
2825 		}
2826 		if (vap == NULL)
2827 			vap = TAILQ_FIRST(&ic->ic_vaps);
2828 
2829 		if (error != USB_ERR_CANCELLED) {
2830 			if (error == USB_ERR_TIMEOUT) {
2831 				device_printf(sc->sc_dev, "device timeout\n");
2832 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2833 				DPRINTF("cmdq_store=%d\n", i);
2834 				sc->cmdq[i].func = run_usb_timeout_cb;
2835 				sc->cmdq[i].arg0 = vap;
2836 				ieee80211_runtask(ic, &sc->cmdq_task);
2837 			}
2838 
2839 			/*
2840 			 * Try to clear stall first, also if other
2841 			 * errors occur, hence clearing stall
2842 			 * introduces a 50 ms delay:
2843 			 */
2844 			usbd_xfer_set_stall(xfer);
2845 			goto tr_setup;
2846 		}
2847 		break;
2848 	}
2849 }
2850 
2851 static void
2852 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2853 {
2854 	run_bulk_tx_callbackN(xfer, error, 0);
2855 }
2856 
2857 static void
2858 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2859 {
2860 	run_bulk_tx_callbackN(xfer, error, 1);
2861 }
2862 
2863 static void
2864 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2865 {
2866 	run_bulk_tx_callbackN(xfer, error, 2);
2867 }
2868 
2869 static void
2870 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2871 {
2872 	run_bulk_tx_callbackN(xfer, error, 3);
2873 }
2874 
2875 static void
2876 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2877 {
2878 	run_bulk_tx_callbackN(xfer, error, 4);
2879 }
2880 
2881 static void
2882 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2883 {
2884 	run_bulk_tx_callbackN(xfer, error, 5);
2885 }
2886 
2887 static void
2888 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2889 {
2890 	struct mbuf *m = data->m;
2891 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2892 	struct ieee80211vap *vap = data->ni->ni_vap;
2893 	struct ieee80211_frame *wh;
2894 	struct rt2870_txd *txd;
2895 	struct rt2860_txwi *txwi;
2896 	uint16_t xferlen;
2897 	uint16_t mcs;
2898 	uint8_t ridx = data->ridx;
2899 	uint8_t pad;
2900 
2901 	/* get MCS code from rate index */
2902 	mcs = rt2860_rates[ridx].mcs;
2903 
2904 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2905 
2906 	/* roundup to 32-bit alignment */
2907 	xferlen = (xferlen + 3) & ~3;
2908 
2909 	txd = (struct rt2870_txd *)&data->desc;
2910 	txd->len = htole16(xferlen);
2911 
2912 	wh = mtod(m, struct ieee80211_frame *);
2913 
2914 	/*
2915 	 * Ether both are true or both are false, the header
2916 	 * are nicely aligned to 32-bit. So, no L2 padding.
2917 	 */
2918 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2919 		pad = 0;
2920 	else
2921 		pad = 2;
2922 
2923 	/* setup TX Wireless Information */
2924 	txwi = (struct rt2860_txwi *)(txd + 1);
2925 	txwi->len = htole16(m->m_pkthdr.len - pad);
2926 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2927 		txwi->phy = htole16(RT2860_PHY_CCK);
2928 		if (ridx != RT2860_RIDX_CCK1 &&
2929 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2930 			mcs |= RT2860_PHY_SHPRE;
2931 	} else
2932 		txwi->phy = htole16(RT2860_PHY_OFDM);
2933 	txwi->phy |= htole16(mcs);
2934 
2935 	/* check if RTS/CTS or CTS-to-self protection is required */
2936 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2937 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2938 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2939 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2940 		txwi->txop |= RT2860_TX_TXOP_HT;
2941 	else
2942 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2943 
2944 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2945 		txwi->xflags |= RT2860_TX_NSEQ;
2946 }
2947 
2948 /* This function must be called locked */
2949 static int
2950 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2951 {
2952 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2953 	struct ieee80211vap *vap = ni->ni_vap;
2954 	struct ieee80211_frame *wh;
2955 	struct ieee80211_channel *chan;
2956 	const struct ieee80211_txparam *tp;
2957 	struct run_node *rn = (void *)ni;
2958 	struct run_tx_data *data;
2959 	struct rt2870_txd *txd;
2960 	struct rt2860_txwi *txwi;
2961 	uint16_t qos;
2962 	uint16_t dur;
2963 	uint16_t qid;
2964 	uint8_t type;
2965 	uint8_t tid;
2966 	uint8_t ridx;
2967 	uint8_t ctl_ridx;
2968 	uint8_t qflags;
2969 	uint8_t xflags = 0;
2970 	int hasqos;
2971 
2972 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2973 
2974 	wh = mtod(m, struct ieee80211_frame *);
2975 
2976 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2977 
2978 	/*
2979 	 * There are 7 bulk endpoints: 1 for RX
2980 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2981 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2982 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2983 	 */
2984 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2985 		uint8_t *frm;
2986 
2987 		if(IEEE80211_HAS_ADDR4(wh))
2988 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2989 		else
2990 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
2991 
2992 		qos = le16toh(*(const uint16_t *)frm);
2993 		tid = qos & IEEE80211_QOS_TID;
2994 		qid = TID_TO_WME_AC(tid);
2995 	} else {
2996 		qos = 0;
2997 		tid = 0;
2998 		qid = WME_AC_BE;
2999 	}
3000 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3001 
3002 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3003 	    qos, qid, tid, qflags);
3004 
3005 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3006 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3007 
3008 	/* pickup a rate index */
3009 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3010 	    type != IEEE80211_FC0_TYPE_DATA) {
3011 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3012 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3013 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3014 	} else {
3015 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3016 			ridx = rn->fix_ridx;
3017 		else
3018 			ridx = rn->amrr_ridx;
3019 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3020 	}
3021 
3022 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3023 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3024 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3025 		xflags |= RT2860_TX_ACK;
3026 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3027 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3028 		else
3029 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3030 		*(uint16_t *)wh->i_dur = htole16(dur);
3031 	}
3032 
3033 	/* reserve slots for mgmt packets, just in case */
3034 	if (sc->sc_epq[qid].tx_nfree < 3) {
3035 		DPRINTFN(10, "tx ring %d is full\n", qid);
3036 		return (-1);
3037 	}
3038 
3039 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3040 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3041 	sc->sc_epq[qid].tx_nfree--;
3042 
3043 	txd = (struct rt2870_txd *)&data->desc;
3044 	txd->flags = qflags;
3045 	txwi = (struct rt2860_txwi *)(txd + 1);
3046 	txwi->xflags = xflags;
3047 	txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ?
3048 	    0 : RUN_AID2WCID(ni->ni_associd);
3049 	/* clear leftover garbage bits */
3050 	txwi->flags = 0;
3051 	txwi->txop = 0;
3052 
3053 	data->m = m;
3054 	data->ni = ni;
3055 	data->ridx = ridx;
3056 
3057 	run_set_tx_desc(sc, data);
3058 
3059 	/*
3060 	 * The chip keeps track of 2 kind of Tx stats,
3061 	 *  * TX_STAT_FIFO, for per WCID stats, and
3062 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3063 	 *
3064 	 * To use FIFO stats, we need to store MCS into the driver-private
3065  	 * PacketID field. So that, we can tell whose stats when we read them.
3066  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3067  	 * that we don't want feedback in TX_STAT_FIFO.
3068  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3069  	 *
3070  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3071  	 */
3072 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3073 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3074 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3075 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3076 
3077 		/*
3078 		 * Unlike PCI based devices, we don't get any interrupt from
3079 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3080 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3081 		 * quickly get fulled. To prevent overflow, increment a counter on
3082 		 * every FIFO stat request, so we know how many slots are left.
3083 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3084 		 * are used only in those modes.
3085 		 * We just drain stats. AMRR gets updated every 1 sec by
3086 		 * run_ratectl_cb() via callout.
3087 		 * Call it early. Otherwise overflow.
3088 		 */
3089 		if (sc->fifo_cnt++ == 10) {
3090 			/*
3091 			 * With multiple vaps or if_bridge, if_start() is called
3092 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3093 			 */
3094 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3095 			DPRINTFN(6, "cmdq_store=%d\n", i);
3096 			sc->cmdq[i].func = run_drain_fifo;
3097 			sc->cmdq[i].arg0 = sc;
3098 			ieee80211_runtask(ic, &sc->cmdq_task);
3099 		}
3100 	}
3101 
3102         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3103 
3104 	usbd_transfer_start(sc->sc_xfer[qid]);
3105 
3106 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3107 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3108 	    rt2860_rates[ridx].rate, qid);
3109 
3110 	return (0);
3111 }
3112 
3113 static int
3114 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3115 {
3116 	struct ifnet *ifp = sc->sc_ifp;
3117 	struct ieee80211com *ic = ifp->if_l2com;
3118 	struct run_node *rn = (void *)ni;
3119 	struct run_tx_data *data;
3120 	struct ieee80211_frame *wh;
3121 	struct rt2870_txd *txd;
3122 	struct rt2860_txwi *txwi;
3123 	uint16_t dur;
3124 	uint8_t ridx = rn->mgt_ridx;
3125 	uint8_t type;
3126 	uint8_t xflags = 0;
3127 	uint8_t wflags = 0;
3128 
3129 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3130 
3131 	wh = mtod(m, struct ieee80211_frame *);
3132 
3133 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3134 
3135 	/* tell hardware to add timestamp for probe responses */
3136 	if ((wh->i_fc[0] &
3137 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3138 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3139 		wflags |= RT2860_TX_TS;
3140 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3141 		xflags |= RT2860_TX_ACK;
3142 
3143 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3144 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3145 		*(uint16_t *)wh->i_dur = htole16(dur);
3146 	}
3147 
3148 	if (sc->sc_epq[0].tx_nfree == 0) {
3149 		/* let caller free mbuf */
3150 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3151 		return (EIO);
3152 	}
3153 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3154 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3155 	sc->sc_epq[0].tx_nfree--;
3156 
3157 	txd = (struct rt2870_txd *)&data->desc;
3158 	txd->flags = RT2860_TX_QSEL_EDCA;
3159 	txwi = (struct rt2860_txwi *)(txd + 1);
3160 	txwi->wcid = 0xff;
3161 	txwi->flags = wflags;
3162 	txwi->xflags = xflags;
3163 	txwi->txop = 0;	/* clear leftover garbage bits */
3164 
3165 	data->m = m;
3166 	data->ni = ni;
3167 	data->ridx = ridx;
3168 
3169 	run_set_tx_desc(sc, data);
3170 
3171 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3172 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3173 	    rt2860_rates[ridx].rate);
3174 
3175 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3176 
3177 	usbd_transfer_start(sc->sc_xfer[0]);
3178 
3179 	return (0);
3180 }
3181 
3182 static int
3183 run_sendprot(struct run_softc *sc,
3184     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3185 {
3186 	struct ieee80211com *ic = ni->ni_ic;
3187 	struct ieee80211_frame *wh;
3188 	struct run_tx_data *data;
3189 	struct rt2870_txd *txd;
3190 	struct rt2860_txwi *txwi;
3191 	struct mbuf *mprot;
3192 	int ridx;
3193 	int protrate;
3194 	int ackrate;
3195 	int pktlen;
3196 	int isshort;
3197 	uint16_t dur;
3198 	uint8_t type;
3199 	uint8_t wflags = 0;
3200 	uint8_t xflags = 0;
3201 
3202 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3203 
3204 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3205 	    ("protection %d", prot));
3206 
3207 	wh = mtod(m, struct ieee80211_frame *);
3208 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3209 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3210 
3211 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3212 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3213 
3214 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3215 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3216 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3217 	wflags = RT2860_TX_FRAG;
3218 
3219 	/* check that there are free slots before allocating the mbuf */
3220 	if (sc->sc_epq[0].tx_nfree == 0) {
3221 		/* let caller free mbuf */
3222 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3223 		return (ENOBUFS);
3224 	}
3225 
3226 	if (prot == IEEE80211_PROT_RTSCTS) {
3227 		/* NB: CTS is the same size as an ACK */
3228 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3229 		xflags |= RT2860_TX_ACK;
3230 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3231 	} else {
3232 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3233 	}
3234 	if (mprot == NULL) {
3235 		sc->sc_ifp->if_oerrors++;
3236 		DPRINTF("could not allocate mbuf\n");
3237 		return (ENOBUFS);
3238 	}
3239 
3240         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3241         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3242         sc->sc_epq[0].tx_nfree--;
3243 
3244 	txd = (struct rt2870_txd *)&data->desc;
3245 	txd->flags = RT2860_TX_QSEL_EDCA;
3246 	txwi = (struct rt2860_txwi *)(txd + 1);
3247 	txwi->wcid = 0xff;
3248 	txwi->flags = wflags;
3249 	txwi->xflags = xflags;
3250 	txwi->txop = 0;	/* clear leftover garbage bits */
3251 
3252 	data->m = mprot;
3253 	data->ni = ieee80211_ref_node(ni);
3254 
3255 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3256 		if (rt2860_rates[ridx].rate == protrate)
3257 			break;
3258 	data->ridx = ridx;
3259 
3260 	run_set_tx_desc(sc, data);
3261 
3262         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3263             m->m_pkthdr.len, rate);
3264 
3265         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3266 
3267 	usbd_transfer_start(sc->sc_xfer[0]);
3268 
3269 	return (0);
3270 }
3271 
3272 static int
3273 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3274     const struct ieee80211_bpf_params *params)
3275 {
3276 	struct ieee80211com *ic = ni->ni_ic;
3277 	struct ieee80211_frame *wh;
3278 	struct run_tx_data *data;
3279 	struct rt2870_txd *txd;
3280 	struct rt2860_txwi *txwi;
3281 	uint8_t type;
3282 	uint8_t ridx;
3283 	uint8_t rate;
3284 	uint8_t opflags = 0;
3285 	uint8_t xflags = 0;
3286 	int error;
3287 
3288 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3289 
3290 	KASSERT(params != NULL, ("no raw xmit params"));
3291 
3292 	wh = mtod(m, struct ieee80211_frame *);
3293 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3294 
3295 	rate = params->ibp_rate0;
3296 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3297 		/* let caller free mbuf */
3298 		return (EINVAL);
3299 	}
3300 
3301 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3302 		xflags |= RT2860_TX_ACK;
3303 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3304 		error = run_sendprot(sc, m, ni,
3305 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3306 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3307 		    rate);
3308 		if (error) {
3309 			/* let caller free mbuf */
3310 			return error;
3311 		}
3312 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3313 	}
3314 
3315 	if (sc->sc_epq[0].tx_nfree == 0) {
3316 		/* let caller free mbuf */
3317 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3318 		DPRINTF("sending raw frame, but tx ring is full\n");
3319 		return (EIO);
3320 	}
3321         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3322         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3323         sc->sc_epq[0].tx_nfree--;
3324 
3325 	txd = (struct rt2870_txd *)&data->desc;
3326 	txd->flags = RT2860_TX_QSEL_EDCA;
3327 	txwi = (struct rt2860_txwi *)(txd + 1);
3328 	txwi->wcid = 0xff;
3329 	txwi->xflags = xflags;
3330 	txwi->txop = opflags;
3331 	txwi->flags = 0;	/* clear leftover garbage bits */
3332 
3333         data->m = m;
3334         data->ni = ni;
3335 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3336 		if (rt2860_rates[ridx].rate == rate)
3337 			break;
3338 	data->ridx = ridx;
3339 
3340         run_set_tx_desc(sc, data);
3341 
3342         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3343             m->m_pkthdr.len, rate);
3344 
3345         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3346 
3347 	usbd_transfer_start(sc->sc_xfer[0]);
3348 
3349         return (0);
3350 }
3351 
3352 static int
3353 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3354     const struct ieee80211_bpf_params *params)
3355 {
3356 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3357 	struct run_softc *sc = ifp->if_softc;
3358 	int error = 0;
3359 
3360 	RUN_LOCK(sc);
3361 
3362 	/* prevent management frames from being sent if we're not ready */
3363 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3364 		error =  ENETDOWN;
3365 		goto done;
3366 	}
3367 
3368 	if (params == NULL) {
3369 		/* tx mgt packet */
3370 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3371 			ifp->if_oerrors++;
3372 			DPRINTF("mgt tx failed\n");
3373 			goto done;
3374 		}
3375 	} else {
3376 		/* tx raw packet with param */
3377 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3378 			ifp->if_oerrors++;
3379 			DPRINTF("tx with param failed\n");
3380 			goto done;
3381 		}
3382 	}
3383 
3384 	ifp->if_opackets++;
3385 
3386 done:
3387 	RUN_UNLOCK(sc);
3388 
3389 	if (error != 0) {
3390 		if(m != NULL)
3391 			m_freem(m);
3392 		ieee80211_free_node(ni);
3393 	}
3394 
3395 	return (error);
3396 }
3397 
3398 static void
3399 run_start(struct ifnet *ifp)
3400 {
3401 	struct run_softc *sc = ifp->if_softc;
3402 	struct ieee80211_node *ni;
3403 	struct mbuf *m;
3404 
3405 	RUN_LOCK(sc);
3406 
3407 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3408 		RUN_UNLOCK(sc);
3409 		return;
3410 	}
3411 
3412 	for (;;) {
3413 		/* send data frames */
3414 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3415 		if (m == NULL)
3416 			break;
3417 
3418 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3419 		if (run_tx(sc, m, ni) != 0) {
3420 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3421 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3422 			break;
3423 		}
3424 	}
3425 
3426 	RUN_UNLOCK(sc);
3427 }
3428 
3429 static int
3430 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3431 {
3432 	struct run_softc *sc = ifp->if_softc;
3433 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3434 	struct ifreq *ifr = (struct ifreq *) data;
3435 	int startall = 0;
3436 	int error = 0;
3437 
3438 	switch (cmd) {
3439 	case SIOCSIFFLAGS:
3440 		RUN_LOCK(sc);
3441 		if (ifp->if_flags & IFF_UP) {
3442 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3443 				startall = 1;
3444 				run_init_locked(sc);
3445 			} else
3446 				run_update_promisc_locked(ifp);
3447 		} else {
3448 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3449 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3450 					run_stop(sc);
3451 			}
3452 		}
3453 		RUN_UNLOCK(sc);
3454 		if (startall)
3455 			ieee80211_start_all(ic);
3456 		break;
3457 	case SIOCGIFMEDIA:
3458 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3459 		break;
3460 	case SIOCGIFADDR:
3461 		error = ether_ioctl(ifp, cmd, data);
3462 		break;
3463 	default:
3464 		error = EINVAL;
3465 		break;
3466 	}
3467 
3468 	return (error);
3469 }
3470 
3471 static void
3472 run_set_agc(struct run_softc *sc, uint8_t agc)
3473 {
3474 	uint8_t bbp;
3475 
3476 	if (sc->mac_ver == 0x3572) {
3477 		run_bbp_read(sc, 27, &bbp);
3478 		bbp &= ~(0x3 << 5);
3479 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3480 		run_bbp_write(sc, 66, agc);
3481 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3482 		run_bbp_write(sc, 66, agc);
3483 	} else
3484 		run_bbp_write(sc, 66, agc);
3485 }
3486 
3487 static void
3488 run_select_chan_group(struct run_softc *sc, int group)
3489 {
3490 	uint32_t tmp;
3491 	uint8_t agc;
3492 
3493 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3494 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3495 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3496 	run_bbp_write(sc, 86, 0x00);
3497 
3498 	if (group == 0) {
3499 		if (sc->ext_2ghz_lna) {
3500 			run_bbp_write(sc, 82, 0x62);
3501 			run_bbp_write(sc, 75, 0x46);
3502 		} else {
3503 			run_bbp_write(sc, 82, 0x84);
3504 			run_bbp_write(sc, 75, 0x50);
3505 		}
3506 	} else {
3507 		if (sc->mac_ver == 0x3572)
3508 			run_bbp_write(sc, 82, 0x94);
3509 		else
3510 			run_bbp_write(sc, 82, 0xf2);
3511 		if (sc->ext_5ghz_lna)
3512 			run_bbp_write(sc, 75, 0x46);
3513 		else
3514 			run_bbp_write(sc, 75, 0x50);
3515 	}
3516 
3517 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3518 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3519 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3520 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3521 
3522 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3523 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3524 	if (sc->nrxchains > 1)
3525 		tmp |= RT2860_LNA_PE1_EN;
3526 	if (group == 0) {	/* 2GHz */
3527 		tmp |= RT2860_PA_PE_G0_EN;
3528 		if (sc->ntxchains > 1)
3529 			tmp |= RT2860_PA_PE_G1_EN;
3530 	} else {		/* 5GHz */
3531 		tmp |= RT2860_PA_PE_A0_EN;
3532 		if (sc->ntxchains > 1)
3533 			tmp |= RT2860_PA_PE_A1_EN;
3534 	}
3535 	if (sc->mac_ver == 0x3572) {
3536 		run_rt3070_rf_write(sc, 8, 0x00);
3537 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3538 		run_rt3070_rf_write(sc, 8, 0x80);
3539 	} else
3540 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3541 
3542 	/* set initial AGC value */
3543 	if (group == 0) {	/* 2GHz band */
3544 		if (sc->mac_ver >= 0x3070)
3545 			agc = 0x1c + sc->lna[0] * 2;
3546 		else
3547 			agc = 0x2e + sc->lna[0];
3548 	} else {		/* 5GHz band */
3549 		if (sc->mac_ver == 0x3572)
3550 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3551 		else
3552 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3553 	}
3554 	run_set_agc(sc, agc);
3555 }
3556 
3557 static void
3558 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3559 {
3560 	const struct rfprog *rfprog = rt2860_rf2850;
3561 	uint32_t r2, r3, r4;
3562 	int8_t txpow1, txpow2;
3563 	int i;
3564 
3565 	/* find the settings for this channel (we know it exists) */
3566 	for (i = 0; rfprog[i].chan != chan; i++);
3567 
3568 	r2 = rfprog[i].r2;
3569 	if (sc->ntxchains == 1)
3570 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3571 	if (sc->nrxchains == 1)
3572 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3573 	else if (sc->nrxchains == 2)
3574 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3575 
3576 	/* use Tx power values from EEPROM */
3577 	txpow1 = sc->txpow1[i];
3578 	txpow2 = sc->txpow2[i];
3579 	if (chan > 14) {
3580 		if (txpow1 >= 0)
3581 			txpow1 = txpow1 << 1 | 1;
3582 		else
3583 			txpow1 = (7 + txpow1) << 1;
3584 		if (txpow2 >= 0)
3585 			txpow2 = txpow2 << 1 | 1;
3586 		else
3587 			txpow2 = (7 + txpow2) << 1;
3588 	}
3589 	r3 = rfprog[i].r3 | txpow1 << 7;
3590 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3591 
3592 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3593 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3594 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3595 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3596 
3597 	run_delay(sc, 10);
3598 
3599 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3600 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3601 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3602 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3603 
3604 	run_delay(sc, 10);
3605 
3606 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3607 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3608 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3609 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3610 }
3611 
3612 static void
3613 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3614 {
3615 	int8_t txpow1, txpow2;
3616 	uint8_t rf;
3617 	int i;
3618 
3619 	/* RT3070 is 2GHz only */
3620 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3621 
3622 	/* find the settings for this channel (we know it exists) */
3623 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3624 
3625 	/* use Tx power values from EEPROM */
3626 	txpow1 = sc->txpow1[i];
3627 	txpow2 = sc->txpow2[i];
3628 
3629 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3630 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3631 	run_rt3070_rf_read(sc, 6, &rf);
3632 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3633 	run_rt3070_rf_write(sc, 6, rf);
3634 
3635 	/* set Tx0 power */
3636 	run_rt3070_rf_read(sc, 12, &rf);
3637 	rf = (rf & ~0x1f) | txpow1;
3638 	run_rt3070_rf_write(sc, 12, rf);
3639 
3640 	/* set Tx1 power */
3641 	run_rt3070_rf_read(sc, 13, &rf);
3642 	rf = (rf & ~0x1f) | txpow2;
3643 	run_rt3070_rf_write(sc, 13, rf);
3644 
3645 	run_rt3070_rf_read(sc, 1, &rf);
3646 	rf &= ~0xfc;
3647 	if (sc->ntxchains == 1)
3648 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3649 	else if (sc->ntxchains == 2)
3650 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3651 	if (sc->nrxchains == 1)
3652 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3653 	else if (sc->nrxchains == 2)
3654 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3655 	run_rt3070_rf_write(sc, 1, rf);
3656 
3657 	/* set RF offset */
3658 	run_rt3070_rf_read(sc, 23, &rf);
3659 	rf = (rf & ~0x7f) | sc->freq;
3660 	run_rt3070_rf_write(sc, 23, rf);
3661 
3662 	/* program RF filter */
3663 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3664 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3665 	run_rt3070_rf_write(sc, 24, rf);
3666 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3667 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3668 	run_rt3070_rf_write(sc, 31, rf);
3669 
3670 	/* enable RF tuning */
3671 	run_rt3070_rf_read(sc, 7, &rf);
3672 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3673 }
3674 
3675 static void
3676 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3677 {
3678 	int8_t txpow1, txpow2;
3679 	uint32_t tmp;
3680 	uint8_t rf;
3681 	int i;
3682 
3683 	/* find the settings for this channel (we know it exists) */
3684 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3685 
3686 	/* use Tx power values from EEPROM */
3687 	txpow1 = sc->txpow1[i];
3688 	txpow2 = sc->txpow2[i];
3689 
3690 	if (chan <= 14) {
3691 		run_bbp_write(sc, 25, sc->bbp25);
3692 		run_bbp_write(sc, 26, sc->bbp26);
3693 	} else {
3694 		/* enable IQ phase correction */
3695 		run_bbp_write(sc, 25, 0x09);
3696 		run_bbp_write(sc, 26, 0xff);
3697 	}
3698 
3699 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3700 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3701 	run_rt3070_rf_read(sc, 6, &rf);
3702 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3703 	rf |= (chan <= 14) ? 0x08 : 0x04;
3704 	run_rt3070_rf_write(sc, 6, rf);
3705 
3706 	/* set PLL mode */
3707 	run_rt3070_rf_read(sc, 5, &rf);
3708 	rf &= ~(0x08 | 0x04);
3709 	rf |= (chan <= 14) ? 0x04 : 0x08;
3710 	run_rt3070_rf_write(sc, 5, rf);
3711 
3712 	/* set Tx power for chain 0 */
3713 	if (chan <= 14)
3714 		rf = 0x60 | txpow1;
3715 	else
3716 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3717 	run_rt3070_rf_write(sc, 12, rf);
3718 
3719 	/* set Tx power for chain 1 */
3720 	if (chan <= 14)
3721 		rf = 0x60 | txpow2;
3722 	else
3723 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3724 	run_rt3070_rf_write(sc, 13, rf);
3725 
3726 	/* set Tx/Rx streams */
3727 	run_rt3070_rf_read(sc, 1, &rf);
3728 	rf &= ~0xfc;
3729 	if (sc->ntxchains == 1)
3730 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3731 	else if (sc->ntxchains == 2)
3732 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3733 	if (sc->nrxchains == 1)
3734 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3735 	else if (sc->nrxchains == 2)
3736 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3737 	run_rt3070_rf_write(sc, 1, rf);
3738 
3739 	/* set RF offset */
3740 	run_rt3070_rf_read(sc, 23, &rf);
3741 	rf = (rf & ~0x7f) | sc->freq;
3742 	run_rt3070_rf_write(sc, 23, rf);
3743 
3744 	/* program RF filter */
3745 	rf = sc->rf24_20mhz;
3746 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3747 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3748 
3749 	/* enable RF tuning */
3750 	run_rt3070_rf_read(sc, 7, &rf);
3751 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3752 	run_rt3070_rf_write(sc, 7, rf);
3753 
3754 	/* TSSI */
3755 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3756 	run_rt3070_rf_write(sc, 9, rf);
3757 
3758 	/* set loop filter 1 */
3759 	run_rt3070_rf_write(sc, 10, 0xf1);
3760 	/* set loop filter 2 */
3761 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3762 
3763 	/* set tx_mx2_ic */
3764 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3765 	/* set tx_mx1_ic */
3766 	if (chan <= 14)
3767 		rf = 0x48 | sc->txmixgain_2ghz;
3768 	else
3769 		rf = 0x78 | sc->txmixgain_5ghz;
3770 	run_rt3070_rf_write(sc, 16, rf);
3771 
3772 	/* set tx_lo1 */
3773 	run_rt3070_rf_write(sc, 17, 0x23);
3774 	/* set tx_lo2 */
3775 	if (chan <= 14)
3776 		rf = 0x93;
3777 	else if (chan <= 64)
3778 		rf = 0xb7;
3779 	else if (chan <= 128)
3780 		rf = 0x74;
3781 	else
3782 		rf = 0x72;
3783 	run_rt3070_rf_write(sc, 19, rf);
3784 
3785 	/* set rx_lo1 */
3786 	if (chan <= 14)
3787 		rf = 0xb3;
3788 	else if (chan <= 64)
3789 		rf = 0xf6;
3790 	else if (chan <= 128)
3791 		rf = 0xf4;
3792 	else
3793 		rf = 0xf3;
3794 	run_rt3070_rf_write(sc, 20, rf);
3795 
3796 	/* set pfd_delay */
3797 	if (chan <= 14)
3798 		rf = 0x15;
3799 	else if (chan <= 64)
3800 		rf = 0x3d;
3801 	else
3802 		rf = 0x01;
3803 	run_rt3070_rf_write(sc, 25, rf);
3804 
3805 	/* set rx_lo2 */
3806 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3807 	/* set ldo_rf_vc */
3808 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3809 	/* set drv_cc */
3810 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3811 
3812 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3813 	tmp &= ~0x8080;
3814 	if (chan <= 14)
3815 		tmp |= 0x80;
3816 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3817 
3818 	/* enable RF tuning */
3819 	run_rt3070_rf_read(sc, 7, &rf);
3820 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3821 
3822 	run_delay(sc, 2);
3823 }
3824 
3825 static void
3826 run_set_rx_antenna(struct run_softc *sc, int aux)
3827 {
3828 	uint32_t tmp;
3829 
3830 	if (aux) {
3831 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3832 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3833 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3834 	} else {
3835 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3836 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3837 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3838 	}
3839 }
3840 
3841 static int
3842 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3843 {
3844 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3845 	uint32_t chan, group;
3846 
3847 	chan = ieee80211_chan2ieee(ic, c);
3848 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3849 		return (EINVAL);
3850 
3851 	if (sc->mac_ver == 0x3572)
3852 		run_rt3572_set_chan(sc, chan);
3853 	else if (sc->mac_ver >= 0x3070)
3854 		run_rt3070_set_chan(sc, chan);
3855 	else
3856 		run_rt2870_set_chan(sc, chan);
3857 
3858 	/* determine channel group */
3859 	if (chan <= 14)
3860 		group = 0;
3861 	else if (chan <= 64)
3862 		group = 1;
3863 	else if (chan <= 128)
3864 		group = 2;
3865 	else
3866 		group = 3;
3867 
3868 	/* XXX necessary only when group has changed! */
3869 	run_select_chan_group(sc, group);
3870 
3871 	run_delay(sc, 10);
3872 
3873 	return (0);
3874 }
3875 
3876 static void
3877 run_set_channel(struct ieee80211com *ic)
3878 {
3879 	struct run_softc *sc = ic->ic_ifp->if_softc;
3880 
3881 	RUN_LOCK(sc);
3882 	run_set_chan(sc, ic->ic_curchan);
3883 	RUN_UNLOCK(sc);
3884 
3885 	return;
3886 }
3887 
3888 static void
3889 run_scan_start(struct ieee80211com *ic)
3890 {
3891 	struct run_softc *sc = ic->ic_ifp->if_softc;
3892 	uint32_t tmp;
3893 
3894 	RUN_LOCK(sc);
3895 
3896 	/* abort TSF synchronization */
3897 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3898 	run_write(sc, RT2860_BCN_TIME_CFG,
3899 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3900 	    RT2860_TBTT_TIMER_EN));
3901 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3902 
3903 	RUN_UNLOCK(sc);
3904 
3905 	return;
3906 }
3907 
3908 static void
3909 run_scan_end(struct ieee80211com *ic)
3910 {
3911 	struct run_softc *sc = ic->ic_ifp->if_softc;
3912 
3913 	RUN_LOCK(sc);
3914 
3915 	run_enable_tsf_sync(sc);
3916 	/* XXX keep local copy */
3917 	run_set_bssid(sc, sc->sc_bssid);
3918 
3919 	RUN_UNLOCK(sc);
3920 
3921 	return;
3922 }
3923 
3924 /*
3925  * Could be called from ieee80211_node_timeout()
3926  * (non-sleepable thread)
3927  */
3928 static void
3929 run_update_beacon(struct ieee80211vap *vap, int item)
3930 {
3931 	struct ieee80211com *ic = vap->iv_ic;
3932 	struct run_softc *sc = ic->ic_ifp->if_softc;
3933 	struct run_vap *rvp = RUN_VAP(vap);
3934 	int mcast = 0;
3935 	uint32_t i;
3936 
3937 	KASSERT(vap != NULL, ("no beacon"));
3938 
3939 	switch (item) {
3940 	case IEEE80211_BEACON_ERP:
3941 		run_updateslot(ic->ic_ifp);
3942 		break;
3943 	case IEEE80211_BEACON_HTINFO:
3944 		run_updateprot(ic);
3945 		break;
3946 	case IEEE80211_BEACON_TIM:
3947 		mcast = 1;	/*TODO*/
3948 		break;
3949 	default:
3950 		break;
3951 	}
3952 
3953 	setbit(rvp->bo.bo_flags, item);
3954 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3955 
3956 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3957 	DPRINTF("cmdq_store=%d\n", i);
3958 	sc->cmdq[i].func = run_update_beacon_cb;
3959 	sc->cmdq[i].arg0 = vap;
3960 	ieee80211_runtask(ic, &sc->cmdq_task);
3961 
3962 	return;
3963 }
3964 
3965 static void
3966 run_update_beacon_cb(void *arg)
3967 {
3968 	struct ieee80211vap *vap = arg;
3969 	struct run_vap *rvp = RUN_VAP(vap);
3970 	struct ieee80211com *ic = vap->iv_ic;
3971 	struct run_softc *sc = ic->ic_ifp->if_softc;
3972 	struct rt2860_txwi txwi;
3973 	struct mbuf *m;
3974 	uint8_t ridx;
3975 
3976 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3977 		return;
3978 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
3979 		return;
3980 
3981 	/*
3982 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
3983 	 * is taking care of apropriate calls.
3984 	 */
3985 	if (rvp->beacon_mbuf == NULL) {
3986 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
3987 		    &rvp->bo);
3988 		if (rvp->beacon_mbuf == NULL)
3989 			return;
3990 	}
3991 	m = rvp->beacon_mbuf;
3992 
3993 	memset(&txwi, 0, sizeof txwi);
3994 	txwi.wcid = 0xff;
3995 	txwi.len = htole16(m->m_pkthdr.len);
3996 	/* send beacons at the lowest available rate */
3997 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3998 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3999 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4000 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4001 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4002 	txwi.txop = RT2860_TX_TXOP_HT;
4003 	txwi.flags = RT2860_TX_TS;
4004 	txwi.xflags = RT2860_TX_NSEQ;
4005 
4006 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4007 	    (uint8_t *)&txwi, sizeof txwi);
4008 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4009 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4010 
4011 	return;
4012 }
4013 
4014 static void
4015 run_updateprot(struct ieee80211com *ic)
4016 {
4017 	struct run_softc *sc = ic->ic_ifp->if_softc;
4018 	uint32_t i;
4019 
4020 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4021 	DPRINTF("cmdq_store=%d\n", i);
4022 	sc->cmdq[i].func = run_updateprot_cb;
4023 	sc->cmdq[i].arg0 = ic;
4024 	ieee80211_runtask(ic, &sc->cmdq_task);
4025 }
4026 
4027 static void
4028 run_updateprot_cb(void *arg)
4029 {
4030 	struct ieee80211com *ic = arg;
4031 	struct run_softc *sc = ic->ic_ifp->if_softc;
4032 	uint32_t tmp;
4033 
4034 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4035 	/* setup protection frame rate (MCS code) */
4036 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4037 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4038 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4039 
4040 	/* CCK frames don't require protection */
4041 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4042 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4043 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4044 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4045 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4046 			tmp |= RT2860_PROT_CTRL_CTS;
4047 	}
4048 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4049 }
4050 
4051 static void
4052 run_usb_timeout_cb(void *arg)
4053 {
4054 	struct ieee80211vap *vap = arg;
4055 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4056 
4057 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4058 
4059 	if(vap->iv_state == IEEE80211_S_RUN &&
4060 	    vap->iv_opmode != IEEE80211_M_STA)
4061 		run_reset_livelock(sc);
4062 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4063 		DPRINTF("timeout caused by scan\n");
4064 		/* cancel bgscan */
4065 		ieee80211_cancel_scan(vap);
4066 	} else
4067 		DPRINTF("timeout by unknown cause\n");
4068 }
4069 
4070 static void
4071 run_reset_livelock(struct run_softc *sc)
4072 {
4073 	uint32_t tmp;
4074 
4075 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4076 
4077 	/*
4078 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4079 	 * can run into a livelock and start sending CTS-to-self frames like
4080 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4081 	 */
4082 	run_read(sc, RT2860_DEBUG, &tmp);
4083 	DPRINTFN(3, "debug reg %08x\n", tmp);
4084 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4085 		DPRINTF("CTS-to-self livelock detected\n");
4086 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4087 		run_delay(sc, 1);
4088 		run_write(sc, RT2860_MAC_SYS_CTRL,
4089 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4090 	}
4091 }
4092 
4093 static void
4094 run_update_promisc_locked(struct ifnet *ifp)
4095 {
4096 	struct run_softc *sc = ifp->if_softc;
4097         uint32_t tmp;
4098 
4099 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4100 
4101 	tmp |= RT2860_DROP_UC_NOME;
4102         if (ifp->if_flags & IFF_PROMISC)
4103 		tmp &= ~RT2860_DROP_UC_NOME;
4104 
4105 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4106 
4107         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4108             "entering" : "leaving");
4109 }
4110 
4111 static void
4112 run_update_promisc(struct ifnet *ifp)
4113 {
4114 	struct run_softc *sc = ifp->if_softc;
4115 
4116 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4117 		return;
4118 
4119 	RUN_LOCK(sc);
4120 	run_update_promisc_locked(ifp);
4121 	RUN_UNLOCK(sc);
4122 }
4123 
4124 static void
4125 run_enable_tsf_sync(struct run_softc *sc)
4126 {
4127 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4128 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4129 	uint32_t tmp;
4130 
4131 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4132 
4133 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4134 	tmp &= ~0x1fffff;
4135 	tmp |= vap->iv_bss->ni_intval * 16;
4136 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4137 
4138 	if (ic->ic_opmode == IEEE80211_M_STA) {
4139 		/*
4140 		 * Local TSF is always updated with remote TSF on beacon
4141 		 * reception.
4142 		 */
4143 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4144 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4145 	        tmp |= RT2860_BCN_TX_EN;
4146 	        /*
4147 	         * Local TSF is updated with remote TSF on beacon reception
4148 	         * only if the remote TSF is greater than local TSF.
4149 	         */
4150 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4151 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4152 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4153 	        tmp |= RT2860_BCN_TX_EN;
4154 	        /* SYNC with nobody */
4155 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4156 	} else {
4157 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4158 		return;
4159 	}
4160 
4161 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4162 }
4163 
4164 static void
4165 run_enable_mrr(struct run_softc *sc)
4166 {
4167 #define CCK(mcs)	(mcs)
4168 #define OFDM(mcs)	(1 << 3 | (mcs))
4169 	run_write(sc, RT2860_LG_FBK_CFG0,
4170 	    OFDM(6) << 28 |	/* 54->48 */
4171 	    OFDM(5) << 24 |	/* 48->36 */
4172 	    OFDM(4) << 20 |	/* 36->24 */
4173 	    OFDM(3) << 16 |	/* 24->18 */
4174 	    OFDM(2) << 12 |	/* 18->12 */
4175 	    OFDM(1) <<  8 |	/* 12-> 9 */
4176 	    OFDM(0) <<  4 |	/*  9-> 6 */
4177 	    OFDM(0));		/*  6-> 6 */
4178 
4179 	run_write(sc, RT2860_LG_FBK_CFG1,
4180 	    CCK(2) << 12 |	/* 11->5.5 */
4181 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4182 	    CCK(0) <<  4 |	/*   2-> 1 */
4183 	    CCK(0));		/*   1-> 1 */
4184 #undef OFDM
4185 #undef CCK
4186 }
4187 
4188 static void
4189 run_set_txpreamble(struct run_softc *sc)
4190 {
4191 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4192 	uint32_t tmp;
4193 
4194 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4195 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4196 		tmp |= RT2860_CCK_SHORT_EN;
4197 	else
4198 		tmp &= ~RT2860_CCK_SHORT_EN;
4199 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4200 }
4201 
4202 static void
4203 run_set_basicrates(struct run_softc *sc)
4204 {
4205 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4206 
4207 	/* set basic rates mask */
4208 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4209 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4210 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4211 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4212 	else	/* 11g */
4213 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4214 }
4215 
4216 static void
4217 run_set_leds(struct run_softc *sc, uint16_t which)
4218 {
4219 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4220 	    which | (sc->leds & 0x7f));
4221 }
4222 
4223 static void
4224 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4225 {
4226 	run_write(sc, RT2860_MAC_BSSID_DW0,
4227 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4228 	run_write(sc, RT2860_MAC_BSSID_DW1,
4229 	    bssid[4] | bssid[5] << 8);
4230 }
4231 
4232 static void
4233 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4234 {
4235 	run_write(sc, RT2860_MAC_ADDR_DW0,
4236 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4237 	run_write(sc, RT2860_MAC_ADDR_DW1,
4238 	    addr[4] | addr[5] << 8 | 0xff << 16);
4239 }
4240 
4241 static void
4242 run_updateslot(struct ifnet *ifp)
4243 {
4244 	struct run_softc *sc = ifp->if_softc;
4245 	struct ieee80211com *ic = ifp->if_l2com;
4246 	uint32_t i;
4247 
4248 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4249 	DPRINTF("cmdq_store=%d\n", i);
4250 	sc->cmdq[i].func = run_updateslot_cb;
4251 	sc->cmdq[i].arg0 = ifp;
4252 	ieee80211_runtask(ic, &sc->cmdq_task);
4253 
4254 	return;
4255 }
4256 
4257 /* ARGSUSED */
4258 static void
4259 run_updateslot_cb(void *arg)
4260 {
4261 	struct ifnet *ifp = arg;
4262 	struct run_softc *sc = ifp->if_softc;
4263 	struct ieee80211com *ic = ifp->if_l2com;
4264 	uint32_t tmp;
4265 
4266 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4267 	tmp &= ~0xff;
4268 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4269 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4270 }
4271 
4272 static void
4273 run_update_mcast(struct ifnet *ifp)
4274 {
4275 	/* h/w filter supports getting everything or nothing */
4276 	ifp->if_flags |= IFF_ALLMULTI;
4277 }
4278 
4279 static int8_t
4280 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4281 {
4282 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4283 	struct ieee80211_channel *c = ic->ic_curchan;
4284 	int delta;
4285 
4286 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4287 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4288 		delta = sc->rssi_5ghz[rxchain];
4289 
4290 		/* determine channel group */
4291 		if (chan <= 64)
4292 			delta -= sc->lna[1];
4293 		else if (chan <= 128)
4294 			delta -= sc->lna[2];
4295 		else
4296 			delta -= sc->lna[3];
4297 	} else
4298 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4299 
4300 	return (-12 - delta - rssi);
4301 }
4302 
4303 static int
4304 run_bbp_init(struct run_softc *sc)
4305 {
4306 	int i, error, ntries;
4307 	uint8_t bbp0;
4308 
4309 	/* wait for BBP to wake up */
4310 	for (ntries = 0; ntries < 20; ntries++) {
4311 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4312 			return error;
4313 		if (bbp0 != 0 && bbp0 != 0xff)
4314 			break;
4315 	}
4316 	if (ntries == 20)
4317 		return (ETIMEDOUT);
4318 
4319 	/* initialize BBP registers to default values */
4320 	for (i = 0; i < N(rt2860_def_bbp); i++) {
4321 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4322 		    rt2860_def_bbp[i].val);
4323 	}
4324 
4325 	/* fix BBP84 for RT2860E */
4326 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4327 		run_bbp_write(sc, 84, 0x19);
4328 
4329 	if (sc->mac_ver >= 0x3070) {
4330 		run_bbp_write(sc, 79, 0x13);
4331 		run_bbp_write(sc, 80, 0x05);
4332 		run_bbp_write(sc, 81, 0x33);
4333 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4334 		run_bbp_write(sc, 69, 0x16);
4335 		run_bbp_write(sc, 73, 0x12);
4336 	}
4337 	return (0);
4338 }
4339 
4340 static int
4341 run_rt3070_rf_init(struct run_softc *sc)
4342 {
4343 	uint32_t tmp;
4344 	uint8_t rf, target, bbp4;
4345 	int i;
4346 
4347 	run_rt3070_rf_read(sc, 30, &rf);
4348 	/* toggle RF R30 bit 7 */
4349 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4350 	run_delay(sc, 10);
4351 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4352 
4353 	/* initialize RF registers to default value */
4354 	if (sc->mac_ver == 0x3572) {
4355 		for (i = 0; i < N(rt3572_def_rf); i++) {
4356 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4357 			    rt3572_def_rf[i].val);
4358 		}
4359 	} else {
4360 		for (i = 0; i < N(rt3070_def_rf); i++) {
4361 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4362 			    rt3070_def_rf[i].val);
4363 		}
4364 	}
4365 
4366 	if (sc->mac_ver == 0x3070) {
4367 		/* change voltage from 1.2V to 1.35V for RT3070 */
4368 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4369 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4370 		run_write(sc, RT3070_LDO_CFG0, tmp);
4371 
4372 	} else if (sc->mac_ver == 0x3071) {
4373 		run_rt3070_rf_read(sc, 6, &rf);
4374 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4375 		run_rt3070_rf_write(sc, 31, 0x14);
4376 
4377 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4378 		tmp &= ~0x1f000000;
4379 		if (sc->mac_rev < 0x0211)
4380 			tmp |= 0x0d000000;	/* 1.3V */
4381 		else
4382 			tmp |= 0x01000000;	/* 1.2V */
4383 		run_write(sc, RT3070_LDO_CFG0, tmp);
4384 
4385 		/* patch LNA_PE_G1 */
4386 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4387 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4388 
4389 	} else if (sc->mac_ver == 0x3572) {
4390 		run_rt3070_rf_read(sc, 6, &rf);
4391 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4392 
4393 		/* increase voltage from 1.2V to 1.35V */
4394 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4395 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4396 		run_write(sc, RT3070_LDO_CFG0, tmp);
4397 
4398 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4399 			run_delay(sc, 1);	/* wait for 1msec */
4400 			/* decrease voltage back to 1.2V */
4401 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4402 			run_write(sc, RT3070_LDO_CFG0, tmp);
4403 		}
4404 	}
4405 
4406 	/* select 20MHz bandwidth */
4407 	run_rt3070_rf_read(sc, 31, &rf);
4408 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4409 
4410 	/* calibrate filter for 20MHz bandwidth */
4411 	sc->rf24_20mhz = 0x1f;	/* default value */
4412 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4413 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4414 
4415 	/* select 40MHz bandwidth */
4416 	run_bbp_read(sc, 4, &bbp4);
4417 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4418 	run_rt3070_rf_read(sc, 31, &rf);
4419 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4420 
4421 	/* calibrate filter for 40MHz bandwidth */
4422 	sc->rf24_40mhz = 0x2f;	/* default value */
4423 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4424 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4425 
4426 	/* go back to 20MHz bandwidth */
4427 	run_bbp_read(sc, 4, &bbp4);
4428 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4429 
4430 	if (sc->mac_ver == 0x3572) {
4431 		/* save default BBP registers 25 and 26 values */
4432 		run_bbp_read(sc, 25, &sc->bbp25);
4433 		run_bbp_read(sc, 26, &sc->bbp26);
4434 	} else if (sc->mac_rev < 0x0211)
4435 		run_rt3070_rf_write(sc, 27, 0x03);
4436 
4437 	run_read(sc, RT3070_OPT_14, &tmp);
4438 	run_write(sc, RT3070_OPT_14, tmp | 1);
4439 
4440 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4441 		run_rt3070_rf_read(sc, 17, &rf);
4442 		rf &= ~RT3070_TX_LO1;
4443 		if ((sc->mac_ver == 0x3070 ||
4444 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4445 		    !sc->ext_2ghz_lna)
4446 			rf |= 0x20;	/* fix for long range Rx issue */
4447 		if (sc->txmixgain_2ghz >= 1)
4448 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4449 		run_rt3070_rf_write(sc, 17, rf);
4450 	}
4451 
4452 	if (sc->mac_rev == 0x3071) {
4453 		run_rt3070_rf_read(sc, 1, &rf);
4454 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4455 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4456 		run_rt3070_rf_write(sc, 1, rf);
4457 
4458 		run_rt3070_rf_read(sc, 15, &rf);
4459 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4460 
4461 		run_rt3070_rf_read(sc, 20, &rf);
4462 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4463 
4464 		run_rt3070_rf_read(sc, 21, &rf);
4465 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4466 	}
4467 
4468 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4469 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4470 		run_rt3070_rf_read(sc, 27, &rf);
4471 		rf &= ~0x77;
4472 		if (sc->mac_rev < 0x0211)
4473 			rf |= 0x03;
4474 		run_rt3070_rf_write(sc, 27, rf);
4475 	}
4476 	return (0);
4477 }
4478 
4479 static int
4480 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4481     uint8_t *val)
4482 {
4483 	uint8_t rf22, rf24;
4484 	uint8_t bbp55_pb, bbp55_sb, delta;
4485 	int ntries;
4486 
4487 	/* program filter */
4488 	run_rt3070_rf_read(sc, 24, &rf24);
4489 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4490 	run_rt3070_rf_write(sc, 24, rf24);
4491 
4492 	/* enable baseband loopback mode */
4493 	run_rt3070_rf_read(sc, 22, &rf22);
4494 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4495 
4496 	/* set power and frequency of passband test tone */
4497 	run_bbp_write(sc, 24, 0x00);
4498 	for (ntries = 0; ntries < 100; ntries++) {
4499 		/* transmit test tone */
4500 		run_bbp_write(sc, 25, 0x90);
4501 		run_delay(sc, 10);
4502 		/* read received power */
4503 		run_bbp_read(sc, 55, &bbp55_pb);
4504 		if (bbp55_pb != 0)
4505 			break;
4506 	}
4507 	if (ntries == 100)
4508 		return ETIMEDOUT;
4509 
4510 	/* set power and frequency of stopband test tone */
4511 	run_bbp_write(sc, 24, 0x06);
4512 	for (ntries = 0; ntries < 100; ntries++) {
4513 		/* transmit test tone */
4514 		run_bbp_write(sc, 25, 0x90);
4515 		run_delay(sc, 10);
4516 		/* read received power */
4517 		run_bbp_read(sc, 55, &bbp55_sb);
4518 
4519 		delta = bbp55_pb - bbp55_sb;
4520 		if (delta > target)
4521 			break;
4522 
4523 		/* reprogram filter */
4524 		rf24++;
4525 		run_rt3070_rf_write(sc, 24, rf24);
4526 	}
4527 	if (ntries < 100) {
4528 		if (rf24 != init)
4529 			rf24--;	/* backtrack */
4530 		*val = rf24;
4531 		run_rt3070_rf_write(sc, 24, rf24);
4532 	}
4533 
4534 	/* restore initial state */
4535 	run_bbp_write(sc, 24, 0x00);
4536 
4537 	/* disable baseband loopback mode */
4538 	run_rt3070_rf_read(sc, 22, &rf22);
4539 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4540 
4541 	return (0);
4542 }
4543 
4544 static void
4545 run_rt3070_rf_setup(struct run_softc *sc)
4546 {
4547 	uint8_t bbp, rf;
4548 	int i;
4549 
4550 	if (sc->mac_ver == 0x3572) {
4551 		/* enable DC filter */
4552 		if (sc->mac_rev >= 0x0201)
4553 			run_bbp_write(sc, 103, 0xc0);
4554 
4555 		run_bbp_read(sc, 138, &bbp);
4556 		if (sc->ntxchains == 1)
4557 			bbp |= 0x20;	/* turn off DAC1 */
4558 		if (sc->nrxchains == 1)
4559 			bbp &= ~0x02;	/* turn off ADC1 */
4560 		run_bbp_write(sc, 138, bbp);
4561 
4562 		if (sc->mac_rev >= 0x0211) {
4563 			/* improve power consumption */
4564 			run_bbp_read(sc, 31, &bbp);
4565 			run_bbp_write(sc, 31, bbp & ~0x03);
4566 		}
4567 
4568 		run_rt3070_rf_read(sc, 16, &rf);
4569 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4570 		run_rt3070_rf_write(sc, 16, rf);
4571 
4572 	} else if (sc->mac_ver == 0x3071) {
4573 		/* enable DC filter */
4574 		if (sc->mac_rev >= 0x0201)
4575 			run_bbp_write(sc, 103, 0xc0);
4576 
4577 		run_bbp_read(sc, 138, &bbp);
4578 		if (sc->ntxchains == 1)
4579 			bbp |= 0x20;	/* turn off DAC1 */
4580 		if (sc->nrxchains == 1)
4581 			bbp &= ~0x02;	/* turn off ADC1 */
4582 		run_bbp_write(sc, 138, bbp);
4583 
4584 		if (sc->mac_rev >= 0x0211) {
4585 			/* improve power consumption */
4586 			run_bbp_read(sc, 31, &bbp);
4587 			run_bbp_write(sc, 31, bbp & ~0x03);
4588 		}
4589 
4590 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4591 		if (sc->mac_rev < 0x0211) {
4592 			run_write(sc, RT2860_TX_SW_CFG2,
4593 			    sc->patch_dac ? 0x2c : 0x0f);
4594 		} else
4595 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4596 
4597 	} else if (sc->mac_ver == 0x3070) {
4598 		if (sc->mac_rev >= 0x0201) {
4599 			/* enable DC filter */
4600 			run_bbp_write(sc, 103, 0xc0);
4601 
4602 			/* improve power consumption */
4603 			run_bbp_read(sc, 31, &bbp);
4604 			run_bbp_write(sc, 31, bbp & ~0x03);
4605 		}
4606 
4607 		if (sc->mac_rev < 0x0211) {
4608 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4609 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4610 		} else
4611 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4612 	}
4613 
4614 	/* initialize RF registers from ROM for >=RT3071*/
4615 	if (sc->mac_ver >= 0x3071) {
4616 		for (i = 0; i < 10; i++) {
4617 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4618 				continue;
4619 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4620 		}
4621 	}
4622 }
4623 
4624 static int
4625 run_txrx_enable(struct run_softc *sc)
4626 {
4627 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4628 	uint32_t tmp;
4629 	int error, ntries;
4630 
4631 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4632 	for (ntries = 0; ntries < 200; ntries++) {
4633 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4634 			return error;
4635 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4636 			break;
4637 		run_delay(sc, 50);
4638 	}
4639 	if (ntries == 200)
4640 		return ETIMEDOUT;
4641 
4642 	run_delay(sc, 50);
4643 
4644 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4645 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4646 
4647 	/* enable Rx bulk aggregation (set timeout and limit) */
4648 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4649 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4650 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4651 
4652 	/* set Rx filter */
4653 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4654 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4655 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4656 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4657 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4658 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4659 		if (ic->ic_opmode == IEEE80211_M_STA)
4660 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4661 	}
4662 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4663 
4664 	run_write(sc, RT2860_MAC_SYS_CTRL,
4665 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4666 
4667 	return (0);
4668 }
4669 
4670 static void
4671 run_init_locked(struct run_softc *sc)
4672 {
4673 	struct ifnet *ifp = sc->sc_ifp;
4674 	struct ieee80211com *ic = ifp->if_l2com;
4675 	uint32_t tmp;
4676 	uint8_t bbp1, bbp3;
4677 	int i;
4678 	int ridx;
4679 	int ntries;
4680 
4681 	if (ic->ic_nrunning > 1)
4682 		return;
4683 
4684 	run_stop(sc);
4685 
4686 	if (run_load_microcode(sc) != 0) {
4687 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4688 		goto fail;
4689 	}
4690 
4691 	for (ntries = 0; ntries < 100; ntries++) {
4692 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4693 			goto fail;
4694 		if (tmp != 0 && tmp != 0xffffffff)
4695 			break;
4696 		run_delay(sc, 10);
4697 	}
4698 	if (ntries == 100)
4699 		goto fail;
4700 
4701 	for (i = 0; i != RUN_EP_QUEUES; i++)
4702 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4703 
4704 	run_set_macaddr(sc, IF_LLADDR(ifp));
4705 
4706 	for (ntries = 0; ntries < 100; ntries++) {
4707 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4708 			goto fail;
4709 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4710 			break;
4711 		run_delay(sc, 10);
4712 	}
4713 	if (ntries == 100) {
4714 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4715 		goto fail;
4716 	}
4717 	tmp &= 0xff0;
4718 	tmp |= RT2860_TX_WB_DDONE;
4719 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4720 
4721 	/* turn off PME_OEN to solve high-current issue */
4722 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4723 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4724 
4725 	run_write(sc, RT2860_MAC_SYS_CTRL,
4726 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4727 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4728 
4729 	if (run_reset(sc) != 0) {
4730 		device_printf(sc->sc_dev, "could not reset chipset\n");
4731 		goto fail;
4732 	}
4733 
4734 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4735 
4736 	/* init Tx power for all Tx rates (from EEPROM) */
4737 	for (ridx = 0; ridx < 5; ridx++) {
4738 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4739 			continue;
4740 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4741 	}
4742 
4743 	for (i = 0; i < N(rt2870_def_mac); i++)
4744 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4745 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4746 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4747 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4748 
4749 	if (sc->mac_ver >= 0x3070) {
4750 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4751 		run_write(sc, RT2860_TX_SW_CFG0,
4752 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4753 	}
4754 
4755 	/* wait while MAC is busy */
4756 	for (ntries = 0; ntries < 100; ntries++) {
4757 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4758 			goto fail;
4759 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4760 			break;
4761 		run_delay(sc, 10);
4762 	}
4763 	if (ntries == 100)
4764 		goto fail;
4765 
4766 	/* clear Host to MCU mailbox */
4767 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4768 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4769 	run_delay(sc, 10);
4770 
4771 	if (run_bbp_init(sc) != 0) {
4772 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4773 		goto fail;
4774 	}
4775 
4776 	/* abort TSF synchronization */
4777 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4778 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4779 	    RT2860_TBTT_TIMER_EN);
4780 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4781 
4782 	/* clear RX WCID search table */
4783 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4784 	/* clear WCID attribute table */
4785 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4786 
4787 	/* hostapd sets a key before init. So, don't clear it. */
4788 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4789 		/* clear shared key table */
4790 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4791 		/* clear shared key mode */
4792 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4793 	}
4794 
4795 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4796 	tmp = (tmp & ~0xff) | 0x1e;
4797 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4798 
4799 	if (sc->mac_rev != 0x0101)
4800 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4801 
4802 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4803 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4804 
4805 	/* write vendor-specific BBP values (from EEPROM) */
4806 	for (i = 0; i < 10; i++) {
4807 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4808 			continue;
4809 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4810 	}
4811 
4812 	/* select Main antenna for 1T1R devices */
4813 	if (sc->rf_rev == RT3070_RF_3020)
4814 		run_set_rx_antenna(sc, 0);
4815 
4816 	/* send LEDs operating mode to microcontroller */
4817 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4818 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4819 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4820 
4821 	if (sc->mac_ver >= 0x3070)
4822 		run_rt3070_rf_init(sc);
4823 
4824 	/* disable non-existing Rx chains */
4825 	run_bbp_read(sc, 3, &bbp3);
4826 	bbp3 &= ~(1 << 3 | 1 << 4);
4827 	if (sc->nrxchains == 2)
4828 		bbp3 |= 1 << 3;
4829 	else if (sc->nrxchains == 3)
4830 		bbp3 |= 1 << 4;
4831 	run_bbp_write(sc, 3, bbp3);
4832 
4833 	/* disable non-existing Tx chains */
4834 	run_bbp_read(sc, 1, &bbp1);
4835 	if (sc->ntxchains == 1)
4836 		bbp1 &= ~(1 << 3 | 1 << 4);
4837 	run_bbp_write(sc, 1, bbp1);
4838 
4839 	if (sc->mac_ver >= 0x3070)
4840 		run_rt3070_rf_setup(sc);
4841 
4842 	/* select default channel */
4843 	run_set_chan(sc, ic->ic_curchan);
4844 
4845 	/* setup initial protection mode */
4846 	run_updateprot_cb(ic);
4847 
4848 	/* turn radio LED on */
4849 	run_set_leds(sc, RT2860_LED_RADIO);
4850 
4851 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4852 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4853 	sc->cmdq_run = RUN_CMDQ_GO;
4854 
4855 	for (i = 0; i != RUN_N_XFER; i++)
4856 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4857 
4858 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4859 
4860 	if (run_txrx_enable(sc) != 0)
4861 		goto fail;
4862 
4863 	return;
4864 
4865 fail:
4866 	run_stop(sc);
4867 }
4868 
4869 static void
4870 run_init(void *arg)
4871 {
4872 	struct run_softc *sc = arg;
4873 	struct ifnet *ifp = sc->sc_ifp;
4874 	struct ieee80211com *ic = ifp->if_l2com;
4875 
4876 	RUN_LOCK(sc);
4877 	run_init_locked(sc);
4878 	RUN_UNLOCK(sc);
4879 
4880 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4881 		ieee80211_start_all(ic);
4882 }
4883 
4884 static void
4885 run_stop(void *arg)
4886 {
4887 	struct run_softc *sc = (struct run_softc *)arg;
4888 	struct ifnet *ifp = sc->sc_ifp;
4889 	uint32_t tmp;
4890 	int i;
4891 	int ntries;
4892 
4893 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4894 
4895 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4896 		run_set_leds(sc, 0);	/* turn all LEDs off */
4897 
4898 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4899 
4900 	sc->ratectl_run = RUN_RATECTL_OFF;
4901 	sc->cmdq_run = sc->cmdq_key_set;
4902 
4903 	RUN_UNLOCK(sc);
4904 
4905 	for(i = 0; i < RUN_N_XFER; i++)
4906 		usbd_transfer_drain(sc->sc_xfer[i]);
4907 
4908 	RUN_LOCK(sc);
4909 
4910 	if (sc->rx_m != NULL) {
4911 		m_free(sc->rx_m);
4912 		sc->rx_m = NULL;
4913 	}
4914 
4915 	/* disable Tx/Rx */
4916 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4917 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4918 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4919 
4920 	/* wait for pending Tx to complete */
4921 	for (ntries = 0; ntries < 100; ntries++) {
4922 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4923 			DPRINTF("Cannot read Tx queue count\n");
4924 			break;
4925 		}
4926 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4927 			DPRINTF("All Tx cleared\n");
4928 			break;
4929 		}
4930 		run_delay(sc, 10);
4931 	}
4932 	if (ntries >= 100)
4933 		DPRINTF("There are still pending Tx\n");
4934 	run_delay(sc, 10);
4935 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4936 
4937 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4938 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4939 
4940 	for (i = 0; i != RUN_EP_QUEUES; i++)
4941 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4942 
4943 	return;
4944 }
4945 
4946 static void
4947 run_delay(struct run_softc *sc, unsigned int ms)
4948 {
4949 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4950 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4951 }
4952 
4953 static device_method_t run_methods[] = {
4954 	/* Device interface */
4955 	DEVMETHOD(device_probe,		run_match),
4956 	DEVMETHOD(device_attach,	run_attach),
4957 	DEVMETHOD(device_detach,	run_detach),
4958 
4959 	{ 0, 0 }
4960 };
4961 
4962 static driver_t run_driver = {
4963 	.name = "run",
4964 	.methods = run_methods,
4965 	.size = sizeof(struct run_softc)
4966 };
4967 
4968 static devclass_t run_devclass;
4969 
4970 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4971 MODULE_DEPEND(run, wlan, 1, 1, 1);
4972 MODULE_DEPEND(run, usb, 1, 1, 1);
4973 MODULE_DEPEND(run, firmware, 1, 1, 1);
4974 MODULE_VERSION(run, 1);
4975