xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision ad30f8e79bd1007cc2476e491bd21b4f5e389e0a)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include "if_runreg.h"
75 #include "if_runvar.h"
76 
77 #define nitems(_a)      (sizeof((_a)) / sizeof((_a)[0]))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const struct usb_device_id run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS2,		USBN11),
140     RUN_DEV(AZUREWAVE,		RT2870_1),
141     RUN_DEV(AZUREWAVE,		RT2870_2),
142     RUN_DEV(AZUREWAVE,		RT3070_1),
143     RUN_DEV(AZUREWAVE,		RT3070_2),
144     RUN_DEV(AZUREWAVE,		RT3070_3),
145     RUN_DEV(BELKIN,		F5D8053V3),
146     RUN_DEV(BELKIN,		F5D8055),
147     RUN_DEV(BELKIN,		F6D4050V1),
148     RUN_DEV(BELKIN,		RT2870_1),
149     RUN_DEV(BELKIN,		RT2870_2),
150     RUN_DEV(CISCOLINKSYS2,	RT3070),
151     RUN_DEV(CISCOLINKSYS3,	RT3070),
152     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
153     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
154     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
160     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
161     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
162     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
163     RUN_DEV(COREGA,		CGWLUSB300GNM),
164     RUN_DEV(COREGA,		RT2870_1),
165     RUN_DEV(COREGA,		RT2870_2),
166     RUN_DEV(COREGA,		RT2870_3),
167     RUN_DEV(COREGA,		RT3070),
168     RUN_DEV(CYBERTAN,		RT2870),
169     RUN_DEV(DLINK,		RT2870),
170     RUN_DEV(DLINK,		RT3072),
171     RUN_DEV(DLINK2,		DWA130),
172     RUN_DEV(DLINK2,		RT2870_1),
173     RUN_DEV(DLINK2,		RT2870_2),
174     RUN_DEV(DLINK2,		RT3070_1),
175     RUN_DEV(DLINK2,		RT3070_2),
176     RUN_DEV(DLINK2,		RT3070_3),
177     RUN_DEV(DLINK2,		RT3070_4),
178     RUN_DEV(DLINK2,		RT3070_5),
179     RUN_DEV(DLINK2,		RT3072),
180     RUN_DEV(DLINK2,		RT3072_1),
181     RUN_DEV(EDIMAX,		EW7717),
182     RUN_DEV(EDIMAX,		EW7718),
183     RUN_DEV(EDIMAX,		RT2870_1),
184     RUN_DEV(ENCORE,		RT3070_1),
185     RUN_DEV(ENCORE,		RT3070_2),
186     RUN_DEV(ENCORE,		RT3070_3),
187     RUN_DEV(GIGABYTE,		GNWB31N),
188     RUN_DEV(GIGABYTE,		GNWB32L),
189     RUN_DEV(GIGABYTE,		RT2870_1),
190     RUN_DEV(GIGASET,		RT3070_1),
191     RUN_DEV(GIGASET,		RT3070_2),
192     RUN_DEV(GUILLEMOT,		HWNU300),
193     RUN_DEV(HAWKING,		HWUN2),
194     RUN_DEV(HAWKING,		RT2870_1),
195     RUN_DEV(HAWKING,		RT2870_2),
196     RUN_DEV(HAWKING,		RT3070),
197     RUN_DEV(IODATA,		RT3072_1),
198     RUN_DEV(IODATA,		RT3072_2),
199     RUN_DEV(IODATA,		RT3072_3),
200     RUN_DEV(IODATA,		RT3072_4),
201     RUN_DEV(LINKSYS4,		RT3070),
202     RUN_DEV(LINKSYS4,		WUSB100),
203     RUN_DEV(LINKSYS4,		WUSB54GCV3),
204     RUN_DEV(LINKSYS4,		WUSB600N),
205     RUN_DEV(LINKSYS4,		WUSB600NV2),
206     RUN_DEV(LOGITEC,		RT2870_1),
207     RUN_DEV(LOGITEC,		RT2870_2),
208     RUN_DEV(LOGITEC,		RT2870_3),
209     RUN_DEV(MELCO,		RT2870_1),
210     RUN_DEV(MELCO,		RT2870_2),
211     RUN_DEV(MELCO,		WLIUCAG300N),
212     RUN_DEV(MELCO,		WLIUCG300N),
213     RUN_DEV(MELCO,		WLIUCGN),
214     RUN_DEV(MOTOROLA4,		RT2770),
215     RUN_DEV(MOTOROLA4,		RT3070),
216     RUN_DEV(MSI,		RT3070_1),
217     RUN_DEV(MSI,		RT3070_2),
218     RUN_DEV(MSI,		RT3070_3),
219     RUN_DEV(MSI,		RT3070_4),
220     RUN_DEV(MSI,		RT3070_5),
221     RUN_DEV(MSI,		RT3070_6),
222     RUN_DEV(MSI,		RT3070_7),
223     RUN_DEV(MSI,		RT3070_8),
224     RUN_DEV(MSI,		RT3070_9),
225     RUN_DEV(MSI,		RT3070_10),
226     RUN_DEV(MSI,		RT3070_11),
227     RUN_DEV(OVISLINK,		RT3072),
228     RUN_DEV(PARA,		RT3070),
229     RUN_DEV(PEGATRON,		RT2870),
230     RUN_DEV(PEGATRON,		RT3070),
231     RUN_DEV(PEGATRON,		RT3070_2),
232     RUN_DEV(PEGATRON,		RT3070_3),
233     RUN_DEV(PHILIPS,		RT2870),
234     RUN_DEV(PLANEX2,		GWUS300MINIS),
235     RUN_DEV(PLANEX2,		GWUSMICRON),
236     RUN_DEV(PLANEX2,		RT2870),
237     RUN_DEV(PLANEX2,		RT3070),
238     RUN_DEV(QCOM,		RT2870),
239     RUN_DEV(QUANTA,		RT3070),
240     RUN_DEV(RALINK,		RT2070),
241     RUN_DEV(RALINK,		RT2770),
242     RUN_DEV(RALINK,		RT2870),
243     RUN_DEV(RALINK,		RT3070),
244     RUN_DEV(RALINK,		RT3071),
245     RUN_DEV(RALINK,		RT3072),
246     RUN_DEV(RALINK,		RT3370),
247     RUN_DEV(RALINK,		RT3572),
248     RUN_DEV(RALINK,		RT8070),
249     RUN_DEV(SAMSUNG2,		RT2870_1),
250     RUN_DEV(SENAO,		RT2870_1),
251     RUN_DEV(SENAO,		RT2870_2),
252     RUN_DEV(SENAO,		RT2870_3),
253     RUN_DEV(SENAO,		RT2870_4),
254     RUN_DEV(SENAO,		RT3070),
255     RUN_DEV(SENAO,		RT3071),
256     RUN_DEV(SENAO,		RT3072_1),
257     RUN_DEV(SENAO,		RT3072_2),
258     RUN_DEV(SENAO,		RT3072_3),
259     RUN_DEV(SENAO,		RT3072_4),
260     RUN_DEV(SENAO,		RT3072_5),
261     RUN_DEV(SITECOMEU,		RT2770),
262     RUN_DEV(SITECOMEU,		RT2870_1),
263     RUN_DEV(SITECOMEU,		RT2870_2),
264     RUN_DEV(SITECOMEU,		RT2870_3),
265     RUN_DEV(SITECOMEU,		RT2870_4),
266     RUN_DEV(SITECOMEU,		RT3070),
267     RUN_DEV(SITECOMEU,		RT3070_2),
268     RUN_DEV(SITECOMEU,		RT3070_3),
269     RUN_DEV(SITECOMEU,		RT3070_4),
270     RUN_DEV(SITECOMEU,		RT3071),
271     RUN_DEV(SITECOMEU,		RT3072_1),
272     RUN_DEV(SITECOMEU,		RT3072_2),
273     RUN_DEV(SITECOMEU,		RT3072_3),
274     RUN_DEV(SITECOMEU,		RT3072_4),
275     RUN_DEV(SITECOMEU,		RT3072_5),
276     RUN_DEV(SITECOMEU,		RT3072_6),
277     RUN_DEV(SITECOMEU,		WL608),
278     RUN_DEV(SPARKLAN,		RT2870_1),
279     RUN_DEV(SPARKLAN,		RT3070),
280     RUN_DEV(SWEEX2,		LW153),
281     RUN_DEV(SWEEX2,		LW303),
282     RUN_DEV(SWEEX2,		LW313),
283     RUN_DEV(TOSHIBA,		RT3070),
284     RUN_DEV(UMEDIA,		RT2870_1),
285     RUN_DEV(ZCOM,		RT2870_1),
286     RUN_DEV(ZCOM,		RT2870_2),
287     RUN_DEV(ZINWELL,		RT2870_1),
288     RUN_DEV(ZINWELL,		RT2870_2),
289     RUN_DEV(ZINWELL,		RT3070),
290     RUN_DEV(ZINWELL,		RT3072_1),
291     RUN_DEV(ZINWELL,		RT3072_2),
292     RUN_DEV(ZYXEL,		RT2870_1),
293     RUN_DEV(ZYXEL,		RT2870_2),
294 #undef RUN_DEV
295 };
296 
297 static device_probe_t	run_match;
298 static device_attach_t	run_attach;
299 static device_detach_t	run_detach;
300 
301 static usb_callback_t	run_bulk_rx_callback;
302 static usb_callback_t	run_bulk_tx_callback0;
303 static usb_callback_t	run_bulk_tx_callback1;
304 static usb_callback_t	run_bulk_tx_callback2;
305 static usb_callback_t	run_bulk_tx_callback3;
306 static usb_callback_t	run_bulk_tx_callback4;
307 static usb_callback_t	run_bulk_tx_callback5;
308 
309 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
310 		    usb_error_t error, unsigned int index);
311 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
312 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
313 		    const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t
314 		    mac[IEEE80211_ADDR_LEN]);
315 static void	run_vap_delete(struct ieee80211vap *);
316 static void	run_cmdq_cb(void *, int);
317 static void	run_setup_tx_list(struct run_softc *,
318 		    struct run_endpoint_queue *);
319 static void	run_unsetup_tx_list(struct run_softc *,
320 		    struct run_endpoint_queue *);
321 static int	run_load_microcode(struct run_softc *);
322 static int	run_reset(struct run_softc *);
323 static usb_error_t run_do_request(struct run_softc *,
324 		    struct usb_device_request *, void *);
325 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
326 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
327 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
328 static int	run_write(struct run_softc *, uint16_t, uint32_t);
329 static int	run_write_region_1(struct run_softc *, uint16_t,
330 		    const uint8_t *, int);
331 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
332 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
333 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
334 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
335 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
336 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
337 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
338 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
339 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
340 static const char *run_get_rf(int);
341 static int	run_read_eeprom(struct run_softc *);
342 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
343 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
344 static int	run_media_change(struct ifnet *);
345 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
346 static int	run_wme_update(struct ieee80211com *);
347 static void	run_wme_update_cb(void *);
348 static void	run_key_update_begin(struct ieee80211vap *);
349 static void	run_key_update_end(struct ieee80211vap *);
350 static void	run_key_set_cb(void *);
351 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
352 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
353 static void	run_key_delete_cb(void *);
354 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
355 static void	run_ratectl_to(void *);
356 static void	run_ratectl_cb(void *, int);
357 static void	run_drain_fifo(void *);
358 static void	run_iter_func(void *, struct ieee80211_node *);
359 static void	run_newassoc_cb(void *);
360 static void	run_newassoc(struct ieee80211_node *, int);
361 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
362 static void	run_tx_free(struct run_endpoint_queue *pq,
363 		    struct run_tx_data *, int);
364 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
365 static int	run_tx(struct run_softc *, struct mbuf *,
366 		    struct ieee80211_node *);
367 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
368 		    struct ieee80211_node *);
369 static int	run_sendprot(struct run_softc *, const struct mbuf *,
370 		    struct ieee80211_node *, int, int);
371 static int	run_tx_param(struct run_softc *, struct mbuf *,
372 		    struct ieee80211_node *,
373 		    const struct ieee80211_bpf_params *);
374 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
375 		    const struct ieee80211_bpf_params *);
376 static void	run_start(struct ifnet *);
377 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
378 static void	run_set_agc(struct run_softc *, uint8_t);
379 static void	run_select_chan_group(struct run_softc *, int);
380 static void	run_set_rx_antenna(struct run_softc *, int);
381 static void	run_rt2870_set_chan(struct run_softc *, u_int);
382 static void	run_rt3070_set_chan(struct run_softc *, u_int);
383 static void	run_rt3572_set_chan(struct run_softc *, u_int);
384 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
385 static void	run_set_channel(struct ieee80211com *);
386 static void	run_scan_start(struct ieee80211com *);
387 static void	run_scan_end(struct ieee80211com *);
388 static void	run_update_beacon(struct ieee80211vap *, int);
389 static void	run_update_beacon_cb(void *);
390 static void	run_updateprot(struct ieee80211com *);
391 static void	run_updateprot_cb(void *);
392 static void	run_usb_timeout_cb(void *);
393 static void	run_reset_livelock(struct run_softc *);
394 static void	run_enable_tsf_sync(struct run_softc *);
395 static void	run_enable_mrr(struct run_softc *);
396 static void	run_set_txpreamble(struct run_softc *);
397 static void	run_set_basicrates(struct run_softc *);
398 static void	run_set_leds(struct run_softc *, uint16_t);
399 static void	run_set_bssid(struct run_softc *, const uint8_t *);
400 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
401 static void	run_updateslot(struct ifnet *);
402 static void	run_updateslot_cb(void *);
403 static void	run_update_mcast(struct ifnet *);
404 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
405 static void	run_update_promisc_locked(struct ifnet *);
406 static void	run_update_promisc(struct ifnet *);
407 static int	run_bbp_init(struct run_softc *);
408 static int	run_rt3070_rf_init(struct run_softc *);
409 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
410 		    uint8_t *);
411 static void	run_rt3070_rf_setup(struct run_softc *);
412 static int	run_txrx_enable(struct run_softc *);
413 static void	run_init(void *);
414 static void	run_init_locked(struct run_softc *);
415 static void	run_stop(void *);
416 static void	run_delay(struct run_softc *, unsigned int);
417 
418 static const struct {
419 	uint16_t	reg;
420 	uint32_t	val;
421 } rt2870_def_mac[] = {
422 	RT2870_DEF_MAC
423 };
424 
425 static const struct {
426 	uint8_t	reg;
427 	uint8_t	val;
428 } rt2860_def_bbp[] = {
429 	RT2860_DEF_BBP
430 };
431 
432 static const struct rfprog {
433 	uint8_t		chan;
434 	uint32_t	r1, r2, r3, r4;
435 } rt2860_rf2850[] = {
436 	RT2860_RF2850
437 };
438 
439 struct {
440 	uint8_t	n, r, k;
441 } rt3070_freqs[] = {
442 	RT3070_RF3052
443 };
444 
445 static const struct {
446 	uint8_t	reg;
447 	uint8_t	val;
448 } rt3070_def_rf[] = {
449 	RT3070_DEF_RF
450 },rt3572_def_rf[] = {
451 	RT3572_DEF_RF
452 };
453 
454 static const struct usb_config run_config[RUN_N_XFER] = {
455     [RUN_BULK_TX_BE] = {
456 	.type = UE_BULK,
457 	.endpoint = UE_ADDR_ANY,
458 	.ep_index = 0,
459 	.direction = UE_DIR_OUT,
460 	.bufsize = RUN_MAX_TXSZ,
461 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
462 	.callback = run_bulk_tx_callback0,
463 	.timeout = 5000,	/* ms */
464     },
465     [RUN_BULK_TX_BK] = {
466 	.type = UE_BULK,
467 	.endpoint = UE_ADDR_ANY,
468 	.direction = UE_DIR_OUT,
469 	.ep_index = 1,
470 	.bufsize = RUN_MAX_TXSZ,
471 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
472 	.callback = run_bulk_tx_callback1,
473 	.timeout = 5000,	/* ms */
474     },
475     [RUN_BULK_TX_VI] = {
476 	.type = UE_BULK,
477 	.endpoint = UE_ADDR_ANY,
478 	.direction = UE_DIR_OUT,
479 	.ep_index = 2,
480 	.bufsize = RUN_MAX_TXSZ,
481 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
482 	.callback = run_bulk_tx_callback2,
483 	.timeout = 5000,	/* ms */
484     },
485     [RUN_BULK_TX_VO] = {
486 	.type = UE_BULK,
487 	.endpoint = UE_ADDR_ANY,
488 	.direction = UE_DIR_OUT,
489 	.ep_index = 3,
490 	.bufsize = RUN_MAX_TXSZ,
491 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
492 	.callback = run_bulk_tx_callback3,
493 	.timeout = 5000,	/* ms */
494     },
495     [RUN_BULK_TX_HCCA] = {
496 	.type = UE_BULK,
497 	.endpoint = UE_ADDR_ANY,
498 	.direction = UE_DIR_OUT,
499 	.ep_index = 4,
500 	.bufsize = RUN_MAX_TXSZ,
501 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
502 	.callback = run_bulk_tx_callback4,
503 	.timeout = 5000,	/* ms */
504     },
505     [RUN_BULK_TX_PRIO] = {
506 	.type = UE_BULK,
507 	.endpoint = UE_ADDR_ANY,
508 	.direction = UE_DIR_OUT,
509 	.ep_index = 5,
510 	.bufsize = RUN_MAX_TXSZ,
511 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
512 	.callback = run_bulk_tx_callback5,
513 	.timeout = 5000,	/* ms */
514     },
515     [RUN_BULK_RX] = {
516 	.type = UE_BULK,
517 	.endpoint = UE_ADDR_ANY,
518 	.direction = UE_DIR_IN,
519 	.bufsize = RUN_MAX_RXSZ,
520 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
521 	.callback = run_bulk_rx_callback,
522     }
523 };
524 
525 int
526 run_match(device_t self)
527 {
528 	struct usb_attach_arg *uaa = device_get_ivars(self);
529 
530 	if (uaa->usb_mode != USB_MODE_HOST)
531 		return (ENXIO);
532 	if (uaa->info.bConfigIndex != 0)
533 		return (ENXIO);
534 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
535 		return (ENXIO);
536 
537 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
538 }
539 
540 static int
541 run_attach(device_t self)
542 {
543 	struct run_softc *sc = device_get_softc(self);
544 	struct usb_attach_arg *uaa = device_get_ivars(self);
545 	struct ieee80211com *ic;
546 	struct ifnet *ifp;
547 	uint32_t ver;
548 	int i, ntries, error;
549 	uint8_t iface_index, bands;
550 
551 	device_set_usb_desc(self);
552 	sc->sc_udev = uaa->device;
553 	sc->sc_dev = self;
554 
555 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
556 	    MTX_NETWORK_LOCK, MTX_DEF);
557 
558 	iface_index = RT2860_IFACE_INDEX;
559 
560 	error = usbd_transfer_setup(uaa->device, &iface_index,
561 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
562 	if (error) {
563 		device_printf(self, "could not allocate USB transfers, "
564 		    "err=%s\n", usbd_errstr(error));
565 		goto detach;
566 	}
567 
568 	RUN_LOCK(sc);
569 
570 	/* wait for the chip to settle */
571 	for (ntries = 0; ntries < 100; ntries++) {
572 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
573 			RUN_UNLOCK(sc);
574 			goto detach;
575 		}
576 		if (ver != 0 && ver != 0xffffffff)
577 			break;
578 		run_delay(sc, 10);
579 	}
580 	if (ntries == 100) {
581 		device_printf(sc->sc_dev,
582 		    "timeout waiting for NIC to initialize\n");
583 		RUN_UNLOCK(sc);
584 		goto detach;
585 	}
586 	sc->mac_ver = ver >> 16;
587 	sc->mac_rev = ver & 0xffff;
588 
589 	/* retrieve RF rev. no and various other things from EEPROM */
590 	run_read_eeprom(sc);
591 
592 	device_printf(sc->sc_dev,
593 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
594 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
595 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
596 
597 	if ((error = run_load_microcode(sc)) != 0) {
598 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
599 		RUN_UNLOCK(sc);
600 		goto detach;
601 	}
602 
603 	RUN_UNLOCK(sc);
604 
605 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
606 	if(ifp == NULL){
607 		device_printf(sc->sc_dev, "can not if_alloc()\n");
608 		goto detach;
609 	}
610 	ic = ifp->if_l2com;
611 
612 	ifp->if_softc = sc;
613 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
614 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
615 	ifp->if_init = run_init;
616 	ifp->if_ioctl = run_ioctl;
617 	ifp->if_start = run_start;
618 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
619 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
620 	IFQ_SET_READY(&ifp->if_snd);
621 
622 	ic->ic_ifp = ifp;
623 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
624 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
625 
626 	/* set device capabilities */
627 	ic->ic_caps =
628 	    IEEE80211_C_STA |		/* station mode supported */
629 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
630 	    IEEE80211_C_IBSS |
631 	    IEEE80211_C_HOSTAP |
632 	    IEEE80211_C_WDS |		/* 4-address traffic works */
633 	    IEEE80211_C_MBSS |
634 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
635 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
636 	    IEEE80211_C_WME |		/* WME */
637 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
638 
639 	ic->ic_cryptocaps =
640 	    IEEE80211_CRYPTO_WEP |
641 	    IEEE80211_CRYPTO_AES_CCM |
642 	    IEEE80211_CRYPTO_TKIPMIC |
643 	    IEEE80211_CRYPTO_TKIP;
644 
645 	ic->ic_flags |= IEEE80211_F_DATAPAD;
646 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
647 
648 	bands = 0;
649 	setbit(&bands, IEEE80211_MODE_11B);
650 	setbit(&bands, IEEE80211_MODE_11G);
651 	ieee80211_init_channels(ic, NULL, &bands);
652 
653 	/*
654 	 * Do this by own because h/w supports
655 	 * more channels than ieee80211_init_channels()
656 	 */
657 	if (sc->rf_rev == RT2860_RF_2750 ||
658 	    sc->rf_rev == RT2860_RF_2850 ||
659 	    sc->rf_rev == RT3070_RF_3052) {
660 		/* set supported .11a rates */
661 		for (i = 14; i < nitems(rt2860_rf2850); i++) {
662 			uint8_t chan = rt2860_rf2850[i].chan;
663 			ic->ic_channels[ic->ic_nchans].ic_freq =
664 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
665 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
666 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
667 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
668 			ic->ic_nchans++;
669 		}
670 	}
671 
672 	ieee80211_ifattach(ic, sc->sc_bssid);
673 
674 	ic->ic_scan_start = run_scan_start;
675 	ic->ic_scan_end = run_scan_end;
676 	ic->ic_set_channel = run_set_channel;
677 	ic->ic_node_alloc = run_node_alloc;
678 	ic->ic_newassoc = run_newassoc;
679 	ic->ic_updateslot = run_updateslot;
680 	ic->ic_update_mcast = run_update_mcast;
681 	ic->ic_wme.wme_update = run_wme_update;
682 	ic->ic_raw_xmit = run_raw_xmit;
683 	ic->ic_update_promisc = run_update_promisc;
684 
685 	ic->ic_vap_create = run_vap_create;
686 	ic->ic_vap_delete = run_vap_delete;
687 
688 	ieee80211_radiotap_attach(ic,
689 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
690 		RUN_TX_RADIOTAP_PRESENT,
691 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
692 		RUN_RX_RADIOTAP_PRESENT);
693 
694 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
695 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
696 	callout_init((struct callout *)&sc->ratectl_ch, 1);
697 
698 	if (bootverbose)
699 		ieee80211_announce(ic);
700 
701 	return (0);
702 
703 detach:
704 	run_detach(self);
705 	return (ENXIO);
706 }
707 
708 static int
709 run_detach(device_t self)
710 {
711 	struct run_softc *sc = device_get_softc(self);
712 	struct ifnet *ifp = sc->sc_ifp;
713 	struct ieee80211com *ic;
714 	int i;
715 
716 	/* stop all USB transfers */
717 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
718 
719 	RUN_LOCK(sc);
720 
721 	sc->ratectl_run = RUN_RATECTL_OFF;
722 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
723 
724 	/* free TX list, if any */
725 	for (i = 0; i != RUN_EP_QUEUES; i++)
726 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
727 	RUN_UNLOCK(sc);
728 
729 	if (ifp) {
730 		ic = ifp->if_l2com;
731 		/* drain tasks */
732 		usb_callout_drain(&sc->ratectl_ch);
733 		ieee80211_draintask(ic, &sc->cmdq_task);
734 		ieee80211_draintask(ic, &sc->ratectl_task);
735 		ieee80211_ifdetach(ic);
736 		if_free(ifp);
737 	}
738 
739 	mtx_destroy(&sc->sc_mtx);
740 
741 	return (0);
742 }
743 
744 static struct ieee80211vap *
745 run_vap_create(struct ieee80211com *ic,
746     const char name[IFNAMSIZ], int unit, int opmode, int flags,
747     const uint8_t bssid[IEEE80211_ADDR_LEN],
748     const uint8_t mac[IEEE80211_ADDR_LEN])
749 {
750 	struct ifnet *ifp = ic->ic_ifp;
751 	struct run_softc *sc = ifp->if_softc;
752 	struct run_vap *rvp;
753 	struct ieee80211vap *vap;
754 	int i;
755 
756 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
757 		if_printf(ifp, "number of VAPs maxed out\n");
758 		return (NULL);
759 	}
760 
761 	switch (opmode) {
762 	case IEEE80211_M_STA:
763 		/* enable s/w bmiss handling for sta mode */
764 		flags |= IEEE80211_CLONE_NOBEACONS;
765 		/* fall though */
766 	case IEEE80211_M_IBSS:
767 	case IEEE80211_M_MONITOR:
768 	case IEEE80211_M_HOSTAP:
769 	case IEEE80211_M_MBSS:
770 		/* other than WDS vaps, only one at a time */
771 		if (!TAILQ_EMPTY(&ic->ic_vaps))
772 			return (NULL);
773 		break;
774 	case IEEE80211_M_WDS:
775 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
776 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
777 				continue;
778 			/* WDS vap's always share the local mac address. */
779 			flags &= ~IEEE80211_CLONE_BSSID;
780 			break;
781 		}
782 		if (vap == NULL) {
783 			if_printf(ifp, "wds only supported in ap mode\n");
784 			return (NULL);
785 		}
786 		break;
787 	default:
788 		if_printf(ifp, "unknown opmode %d\n", opmode);
789 		return (NULL);
790 	}
791 
792 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
793 	    M_80211_VAP, M_NOWAIT | M_ZERO);
794 	if (rvp == NULL)
795 		return (NULL);
796 	vap = &rvp->vap;
797 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
798 
799 	vap->iv_key_update_begin = run_key_update_begin;
800 	vap->iv_key_update_end = run_key_update_end;
801 	vap->iv_update_beacon = run_update_beacon;
802 	vap->iv_max_aid = RT2870_WCID_MAX;
803 	/*
804 	 * To delete the right key from h/w, we need wcid.
805 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
806 	 * and matching wcid will be written into there. So, cast
807 	 * some spells to remove 'const' from ieee80211_key{}
808 	 */
809 	vap->iv_key_delete = (void *)run_key_delete;
810 	vap->iv_key_set = (void *)run_key_set;
811 
812 	/* override state transition machine */
813 	rvp->newstate = vap->iv_newstate;
814 	vap->iv_newstate = run_newstate;
815 
816 	ieee80211_ratectl_init(vap);
817 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
818 
819 	/* complete setup */
820 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
821 
822 	/* make sure id is always unique */
823 	for (i = 0; i < RUN_VAP_MAX; i++) {
824 		if((sc->rvp_bmap & 1 << i) == 0){
825 			sc->rvp_bmap |= 1 << i;
826 			rvp->rvp_id = i;
827 			break;
828 		}
829 	}
830 	if (sc->rvp_cnt++ == 0)
831 		ic->ic_opmode = opmode;
832 
833 	if (opmode == IEEE80211_M_HOSTAP)
834 		sc->cmdq_run = RUN_CMDQ_GO;
835 
836 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
837 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
838 
839 	return (vap);
840 }
841 
842 static void
843 run_vap_delete(struct ieee80211vap *vap)
844 {
845 	struct run_vap *rvp = RUN_VAP(vap);
846 	struct ifnet *ifp;
847 	struct ieee80211com *ic;
848 	struct run_softc *sc;
849 	uint8_t rvp_id;
850 
851 	if (vap == NULL)
852 		return;
853 
854 	ic = vap->iv_ic;
855 	ifp = ic->ic_ifp;
856 
857 	sc = ifp->if_softc;
858 
859 	RUN_LOCK(sc);
860 
861 	m_freem(rvp->beacon_mbuf);
862 	rvp->beacon_mbuf = NULL;
863 
864 	rvp_id = rvp->rvp_id;
865 	sc->ratectl_run &= ~(1 << rvp_id);
866 	sc->rvp_bmap &= ~(1 << rvp_id);
867 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
868 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
869 	--sc->rvp_cnt;
870 
871 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
872 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
873 
874 	RUN_UNLOCK(sc);
875 
876 	ieee80211_ratectl_deinit(vap);
877 	ieee80211_vap_detach(vap);
878 	free(rvp, M_80211_VAP);
879 }
880 
881 /*
882  * There are numbers of functions need to be called in context thread.
883  * Rather than creating taskqueue event for each of those functions,
884  * here is all-for-one taskqueue callback function. This function
885  * gurantees deferred functions are executed in the same order they
886  * were enqueued.
887  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
888  */
889 static void
890 run_cmdq_cb(void *arg, int pending)
891 {
892 	struct run_softc *sc = arg;
893 	uint8_t i;
894 
895 	/* call cmdq[].func locked */
896 	RUN_LOCK(sc);
897 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
898 	    i = sc->cmdq_exec, pending--) {
899 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
900 		if (sc->cmdq_run == RUN_CMDQ_GO) {
901 			/*
902 			 * If arg0 is NULL, callback func needs more
903 			 * than one arg. So, pass ptr to cmdq struct.
904 			 */
905 			if (sc->cmdq[i].arg0)
906 				sc->cmdq[i].func(sc->cmdq[i].arg0);
907 			else
908 				sc->cmdq[i].func(&sc->cmdq[i]);
909 		}
910 		sc->cmdq[i].arg0 = NULL;
911 		sc->cmdq[i].func = NULL;
912 		sc->cmdq_exec++;
913 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
914 	}
915 	RUN_UNLOCK(sc);
916 }
917 
918 static void
919 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
920 {
921 	struct run_tx_data *data;
922 
923 	memset(pq, 0, sizeof(*pq));
924 
925 	STAILQ_INIT(&pq->tx_qh);
926 	STAILQ_INIT(&pq->tx_fh);
927 
928 	for (data = &pq->tx_data[0];
929 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
930 		data->sc = sc;
931 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
932 	}
933 	pq->tx_nfree = RUN_TX_RING_COUNT;
934 }
935 
936 static void
937 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
938 {
939 	struct run_tx_data *data;
940 
941 	/* make sure any subsequent use of the queues will fail */
942 	pq->tx_nfree = 0;
943 	STAILQ_INIT(&pq->tx_fh);
944 	STAILQ_INIT(&pq->tx_qh);
945 
946 	/* free up all node references and mbufs */
947 	for (data = &pq->tx_data[0];
948 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
949 		if (data->m != NULL) {
950 			m_freem(data->m);
951 			data->m = NULL;
952 		}
953 		if (data->ni != NULL) {
954 			ieee80211_free_node(data->ni);
955 			data->ni = NULL;
956 		}
957 	}
958 }
959 
960 int
961 run_load_microcode(struct run_softc *sc)
962 {
963 	usb_device_request_t req;
964 	const struct firmware *fw;
965 	const u_char *base;
966 	uint32_t tmp;
967 	int ntries, error;
968 	const uint64_t *temp;
969 	uint64_t bytes;
970 
971 	RUN_UNLOCK(sc);
972 	fw = firmware_get("runfw");
973 	RUN_LOCK(sc);
974 	if (fw == NULL) {
975 		device_printf(sc->sc_dev,
976 		    "failed loadfirmware of file %s\n", "runfw");
977 		return ENOENT;
978 	}
979 
980 	if (fw->datasize != 8192) {
981 		device_printf(sc->sc_dev,
982 		    "invalid firmware size (should be 8KB)\n");
983 		error = EINVAL;
984 		goto fail;
985 	}
986 
987 	/*
988 	 * RT3071/RT3072 use a different firmware
989 	 * run-rt2870 (8KB) contains both,
990 	 * first half (4KB) is for rt2870,
991 	 * last half is for rt3071.
992 	 */
993 	base = fw->data;
994 	if ((sc->mac_ver) != 0x2860 &&
995 	    (sc->mac_ver) != 0x2872 &&
996 	    (sc->mac_ver) != 0x3070) {
997 		base += 4096;
998 	}
999 
1000 	/* cheap sanity check */
1001 	temp = fw->data;
1002 	bytes = *temp;
1003 	if (bytes != be64toh(0xffffff0210280210)) {
1004 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1005 		error = EINVAL;
1006 		goto fail;
1007 	}
1008 
1009 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1010 	/* write microcode image */
1011 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1012 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1013 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1014 
1015 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1016 	req.bRequest = RT2870_RESET;
1017 	USETW(req.wValue, 8);
1018 	USETW(req.wIndex, 0);
1019 	USETW(req.wLength, 0);
1020 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)) != 0) {
1021 		device_printf(sc->sc_dev, "firmware reset failed\n");
1022 		goto fail;
1023 	}
1024 
1025 	run_delay(sc, 10);
1026 
1027 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1028 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1029 		goto fail;
1030 
1031 	/* wait until microcontroller is ready */
1032 	for (ntries = 0; ntries < 1000; ntries++) {
1033 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1034 			goto fail;
1035 		}
1036 		if (tmp & RT2860_MCU_READY)
1037 			break;
1038 		run_delay(sc, 10);
1039 	}
1040 	if (ntries == 1000) {
1041 		device_printf(sc->sc_dev,
1042 		    "timeout waiting for MCU to initialize\n");
1043 		error = ETIMEDOUT;
1044 		goto fail;
1045 	}
1046 	device_printf(sc->sc_dev, "firmware %s loaded\n",
1047 	    (base == fw->data) ? "RT2870" : "RT3071");
1048 
1049 fail:
1050 	firmware_put(fw, FIRMWARE_UNLOAD);
1051 	return (error);
1052 }
1053 
1054 int
1055 run_reset(struct run_softc *sc)
1056 {
1057 	usb_device_request_t req;
1058 
1059 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1060 	req.bRequest = RT2870_RESET;
1061 	USETW(req.wValue, 1);
1062 	USETW(req.wIndex, 0);
1063 	USETW(req.wLength, 0);
1064 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1065 }
1066 
1067 static usb_error_t
1068 run_do_request(struct run_softc *sc,
1069     struct usb_device_request *req, void *data)
1070 {
1071 	usb_error_t err;
1072 	int ntries = 10;
1073 
1074 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1075 
1076 	while (ntries--) {
1077 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1078 		    req, data, 0, NULL, 250 /* ms */);
1079 		if (err == 0)
1080 			break;
1081 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1082 		    usbd_errstr(err));
1083 		run_delay(sc, 10);
1084 	}
1085 	return (err);
1086 }
1087 
1088 static int
1089 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1090 {
1091 	uint32_t tmp;
1092 	int error;
1093 
1094 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1095 	if (error == 0)
1096 		*val = le32toh(tmp);
1097 	else
1098 		*val = 0xffffffff;
1099 	return (error);
1100 }
1101 
1102 static int
1103 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1104 {
1105 	usb_device_request_t req;
1106 
1107 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1108 	req.bRequest = RT2870_READ_REGION_1;
1109 	USETW(req.wValue, 0);
1110 	USETW(req.wIndex, reg);
1111 	USETW(req.wLength, len);
1112 
1113 	return (run_do_request(sc, &req, buf));
1114 }
1115 
1116 static int
1117 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1118 {
1119 	usb_device_request_t req;
1120 
1121 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1122 	req.bRequest = RT2870_WRITE_2;
1123 	USETW(req.wValue, val);
1124 	USETW(req.wIndex, reg);
1125 	USETW(req.wLength, 0);
1126 
1127 	return (run_do_request(sc, &req, NULL));
1128 }
1129 
1130 static int
1131 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1132 {
1133 	int error;
1134 
1135 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1136 		error = run_write_2(sc, reg + 2, val >> 16);
1137 	return (error);
1138 }
1139 
1140 static int
1141 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1142     int len)
1143 {
1144 #if 1
1145 	int i, error = 0;
1146 	/*
1147 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1148 	 * We thus issue multiple WRITE_2 commands instead.
1149 	 */
1150 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1151 	for (i = 0; i < len && error == 0; i += 2)
1152 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1153 	return (error);
1154 #else
1155 	usb_device_request_t req;
1156 
1157 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1158 	req.bRequest = RT2870_WRITE_REGION_1;
1159 	USETW(req.wValue, 0);
1160 	USETW(req.wIndex, reg);
1161 	USETW(req.wLength, len);
1162 	return (run_do_request(sc, &req, buf));
1163 #endif
1164 }
1165 
1166 static int
1167 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1168 {
1169 	int i, error = 0;
1170 
1171 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1172 	for (i = 0; i < len && error == 0; i += 4)
1173 		error = run_write(sc, reg + i, val);
1174 	return (error);
1175 }
1176 
1177 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1178 static int
1179 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1180 {
1181 	uint32_t tmp;
1182 	uint16_t reg;
1183 	int error, ntries;
1184 
1185 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1186 		return (error);
1187 
1188 	addr *= 2;
1189 	/*-
1190 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1191 	 * DATA0: F E D C
1192 	 * DATA1: B A 9 8
1193 	 * DATA2: 7 6 5 4
1194 	 * DATA3: 3 2 1 0
1195 	 */
1196 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1197 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1198 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1199 	for (ntries = 0; ntries < 100; ntries++) {
1200 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1201 			return (error);
1202 		if (!(tmp & RT3070_EFSROM_KICK))
1203 			break;
1204 		run_delay(sc, 2);
1205 	}
1206 	if (ntries == 100)
1207 		return (ETIMEDOUT);
1208 
1209 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1210 		*val = 0xffff;	/* address not found */
1211 		return (0);
1212 	}
1213 	/* determine to which 32-bit register our 16-bit word belongs */
1214 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1215 	if ((error = run_read(sc, reg, &tmp)) != 0)
1216 		return (error);
1217 
1218 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1219 	return (0);
1220 }
1221 
1222 static int
1223 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1224 {
1225 	usb_device_request_t req;
1226 	uint16_t tmp;
1227 	int error;
1228 
1229 	addr *= 2;
1230 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1231 	req.bRequest = RT2870_EEPROM_READ;
1232 	USETW(req.wValue, 0);
1233 	USETW(req.wIndex, addr);
1234 	USETW(req.wLength, sizeof tmp);
1235 
1236 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1237 	if (error == 0)
1238 		*val = le16toh(tmp);
1239 	else
1240 		*val = 0xffff;
1241 	return (error);
1242 }
1243 
1244 static __inline int
1245 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1246 {
1247 	/* either eFUSE ROM or EEPROM */
1248 	return sc->sc_srom_read(sc, addr, val);
1249 }
1250 
1251 static int
1252 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1253 {
1254 	uint32_t tmp;
1255 	int error, ntries;
1256 
1257 	for (ntries = 0; ntries < 10; ntries++) {
1258 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1259 			return (error);
1260 		if (!(tmp & RT2860_RF_REG_CTRL))
1261 			break;
1262 	}
1263 	if (ntries == 10)
1264 		return (ETIMEDOUT);
1265 
1266 	/* RF registers are 24-bit on the RT2860 */
1267 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1268 	    (val & 0x3fffff) << 2 | (reg & 3);
1269 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1270 }
1271 
1272 static int
1273 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1274 {
1275 	uint32_t tmp;
1276 	int error, ntries;
1277 
1278 	for (ntries = 0; ntries < 100; ntries++) {
1279 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1280 			return (error);
1281 		if (!(tmp & RT3070_RF_KICK))
1282 			break;
1283 	}
1284 	if (ntries == 100)
1285 		return (ETIMEDOUT);
1286 
1287 	tmp = RT3070_RF_KICK | reg << 8;
1288 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1289 		return (error);
1290 
1291 	for (ntries = 0; ntries < 100; ntries++) {
1292 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1293 			return (error);
1294 		if (!(tmp & RT3070_RF_KICK))
1295 			break;
1296 	}
1297 	if (ntries == 100)
1298 		return (ETIMEDOUT);
1299 
1300 	*val = tmp & 0xff;
1301 	return (0);
1302 }
1303 
1304 static int
1305 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1306 {
1307 	uint32_t tmp;
1308 	int error, ntries;
1309 
1310 	for (ntries = 0; ntries < 10; ntries++) {
1311 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1312 			return (error);
1313 		if (!(tmp & RT3070_RF_KICK))
1314 			break;
1315 	}
1316 	if (ntries == 10)
1317 		return (ETIMEDOUT);
1318 
1319 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1320 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1321 }
1322 
1323 static int
1324 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1325 {
1326 	uint32_t tmp;
1327 	int ntries, error;
1328 
1329 	for (ntries = 0; ntries < 10; ntries++) {
1330 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1331 			return (error);
1332 		if (!(tmp & RT2860_BBP_CSR_KICK))
1333 			break;
1334 	}
1335 	if (ntries == 10)
1336 		return (ETIMEDOUT);
1337 
1338 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1339 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1340 		return (error);
1341 
1342 	for (ntries = 0; ntries < 10; ntries++) {
1343 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1344 			return (error);
1345 		if (!(tmp & RT2860_BBP_CSR_KICK))
1346 			break;
1347 	}
1348 	if (ntries == 10)
1349 		return (ETIMEDOUT);
1350 
1351 	*val = tmp & 0xff;
1352 	return (0);
1353 }
1354 
1355 static int
1356 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1357 {
1358 	uint32_t tmp;
1359 	int ntries, error;
1360 
1361 	for (ntries = 0; ntries < 10; ntries++) {
1362 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1363 			return (error);
1364 		if (!(tmp & RT2860_BBP_CSR_KICK))
1365 			break;
1366 	}
1367 	if (ntries == 10)
1368 		return (ETIMEDOUT);
1369 
1370 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1371 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1372 }
1373 
1374 /*
1375  * Send a command to the 8051 microcontroller unit.
1376  */
1377 static int
1378 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1379 {
1380 	uint32_t tmp;
1381 	int error, ntries;
1382 
1383 	for (ntries = 0; ntries < 100; ntries++) {
1384 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1385 			return error;
1386 		if (!(tmp & RT2860_H2M_BUSY))
1387 			break;
1388 	}
1389 	if (ntries == 100)
1390 		return ETIMEDOUT;
1391 
1392 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1393 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1394 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1395 	return (error);
1396 }
1397 
1398 /*
1399  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1400  * Used to adjust per-rate Tx power registers.
1401  */
1402 static __inline uint32_t
1403 b4inc(uint32_t b32, int8_t delta)
1404 {
1405 	int8_t i, b4;
1406 
1407 	for (i = 0; i < 8; i++) {
1408 		b4 = b32 & 0xf;
1409 		b4 += delta;
1410 		if (b4 < 0)
1411 			b4 = 0;
1412 		else if (b4 > 0xf)
1413 			b4 = 0xf;
1414 		b32 = b32 >> 4 | b4 << 28;
1415 	}
1416 	return (b32);
1417 }
1418 
1419 static const char *
1420 run_get_rf(int rev)
1421 {
1422 	switch (rev) {
1423 	case RT2860_RF_2820:	return "RT2820";
1424 	case RT2860_RF_2850:	return "RT2850";
1425 	case RT2860_RF_2720:	return "RT2720";
1426 	case RT2860_RF_2750:	return "RT2750";
1427 	case RT3070_RF_3020:	return "RT3020";
1428 	case RT3070_RF_2020:	return "RT2020";
1429 	case RT3070_RF_3021:	return "RT3021";
1430 	case RT3070_RF_3022:	return "RT3022";
1431 	case RT3070_RF_3052:	return "RT3052";
1432 	}
1433 	return ("unknown");
1434 }
1435 
1436 int
1437 run_read_eeprom(struct run_softc *sc)
1438 {
1439 	int8_t delta_2ghz, delta_5ghz;
1440 	uint32_t tmp;
1441 	uint16_t val;
1442 	int ridx, ant, i;
1443 
1444 	/* check whether the ROM is eFUSE ROM or EEPROM */
1445 	sc->sc_srom_read = run_eeprom_read_2;
1446 	if (sc->mac_ver >= 0x3070) {
1447 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1448 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1449 		if (tmp & RT3070_SEL_EFUSE)
1450 			sc->sc_srom_read = run_efuse_read_2;
1451 	}
1452 
1453 	/* read ROM version */
1454 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1455 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1456 
1457 	/* read MAC address */
1458 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1459 	sc->sc_bssid[0] = val & 0xff;
1460 	sc->sc_bssid[1] = val >> 8;
1461 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1462 	sc->sc_bssid[2] = val & 0xff;
1463 	sc->sc_bssid[3] = val >> 8;
1464 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1465 	sc->sc_bssid[4] = val & 0xff;
1466 	sc->sc_bssid[5] = val >> 8;
1467 
1468 	/* read vender BBP settings */
1469 	for (i = 0; i < 10; i++) {
1470 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1471 		sc->bbp[i].val = val & 0xff;
1472 		sc->bbp[i].reg = val >> 8;
1473 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1474 	}
1475 	if (sc->mac_ver >= 0x3071) {
1476 		/* read vendor RF settings */
1477 		for (i = 0; i < 10; i++) {
1478 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1479 			sc->rf[i].val = val & 0xff;
1480 			sc->rf[i].reg = val >> 8;
1481 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1482 			    sc->rf[i].val);
1483 		}
1484 	}
1485 
1486 	/* read RF frequency offset from EEPROM */
1487 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1488 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1489 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1490 
1491 	if (val >> 8 != 0xff) {
1492 		/* read LEDs operating mode */
1493 		sc->leds = val >> 8;
1494 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1495 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1496 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1497 	} else {
1498 		/* broken EEPROM, use default settings */
1499 		sc->leds = 0x01;
1500 		sc->led[0] = 0x5555;
1501 		sc->led[1] = 0x2221;
1502 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1503 	}
1504 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1505 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1506 
1507 	/* read RF information */
1508 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1509 	if (val == 0xffff) {
1510 		DPRINTF("invalid EEPROM antenna info, using default\n");
1511 		if (sc->mac_ver == 0x3572) {
1512 			/* default to RF3052 2T2R */
1513 			sc->rf_rev = RT3070_RF_3052;
1514 			sc->ntxchains = 2;
1515 			sc->nrxchains = 2;
1516 		} else if (sc->mac_ver >= 0x3070) {
1517 			/* default to RF3020 1T1R */
1518 			sc->rf_rev = RT3070_RF_3020;
1519 			sc->ntxchains = 1;
1520 			sc->nrxchains = 1;
1521 		} else {
1522 			/* default to RF2820 1T2R */
1523 			sc->rf_rev = RT2860_RF_2820;
1524 			sc->ntxchains = 1;
1525 			sc->nrxchains = 2;
1526 		}
1527 	} else {
1528 		sc->rf_rev = (val >> 8) & 0xf;
1529 		sc->ntxchains = (val >> 4) & 0xf;
1530 		sc->nrxchains = val & 0xf;
1531 	}
1532 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1533 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1534 
1535 	/* check if RF supports automatic Tx access gain control */
1536 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1537 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1538 	/* check if driver should patch the DAC issue */
1539 	if ((val >> 8) != 0xff)
1540 		sc->patch_dac = (val >> 15) & 1;
1541 	if ((val & 0xff) != 0xff) {
1542 		sc->ext_5ghz_lna = (val >> 3) & 1;
1543 		sc->ext_2ghz_lna = (val >> 2) & 1;
1544 		/* check if RF supports automatic Tx access gain control */
1545 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1546 		/* check if we have a hardware radio switch */
1547 		sc->rfswitch = val & 1;
1548 	}
1549 
1550 	/* read power settings for 2GHz channels */
1551 	for (i = 0; i < 14; i += 2) {
1552 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1553 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1554 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1555 
1556 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1557 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1558 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1559 	}
1560 	/* fix broken Tx power entries */
1561 	for (i = 0; i < 14; i++) {
1562 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1563 			sc->txpow1[i] = 5;
1564 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1565 			sc->txpow2[i] = 5;
1566 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1567 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1568 	}
1569 	/* read power settings for 5GHz channels */
1570 	for (i = 0; i < 40; i += 2) {
1571 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1572 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1573 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1574 
1575 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1576 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1577 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1578 	}
1579 	/* fix broken Tx power entries */
1580 	for (i = 0; i < 40; i++) {
1581 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1582 			sc->txpow1[14 + i] = 5;
1583 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1584 			sc->txpow2[14 + i] = 5;
1585 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1586 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1587 		    sc->txpow2[14 + i]);
1588 	}
1589 
1590 	/* read Tx power compensation for each Tx rate */
1591 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1592 	delta_2ghz = delta_5ghz = 0;
1593 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1594 		delta_2ghz = val & 0xf;
1595 		if (!(val & 0x40))	/* negative number */
1596 			delta_2ghz = -delta_2ghz;
1597 	}
1598 	val >>= 8;
1599 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1600 		delta_5ghz = val & 0xf;
1601 		if (!(val & 0x40))	/* negative number */
1602 			delta_5ghz = -delta_5ghz;
1603 	}
1604 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1605 	    delta_2ghz, delta_5ghz);
1606 
1607 	for (ridx = 0; ridx < 5; ridx++) {
1608 		uint32_t reg;
1609 
1610 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1611 		reg = val;
1612 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1613 		reg |= (uint32_t)val << 16;
1614 
1615 		sc->txpow20mhz[ridx] = reg;
1616 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1617 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1618 
1619 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1620 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1621 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1622 	}
1623 
1624 	/* read RSSI offsets and LNA gains from EEPROM */
1625 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1626 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1627 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1628 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1629 	if (sc->mac_ver >= 0x3070) {
1630 		/*
1631 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1632 		 * field contains the Tx mixer gain for the 2GHz band.
1633 		 */
1634 		if ((val & 0xff) != 0xff)
1635 			sc->txmixgain_2ghz = val & 0x7;
1636 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1637 	} else
1638 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1639 	sc->lna[2] = val >> 8;		/* channel group 2 */
1640 
1641 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1642 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1643 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1644 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1645 	if (sc->mac_ver == 0x3572) {
1646 		/*
1647 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1648 		 * field contains the Tx mixer gain for the 5GHz band.
1649 		 */
1650 		if ((val & 0xff) != 0xff)
1651 			sc->txmixgain_5ghz = val & 0x7;
1652 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1653 	} else
1654 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1655 	sc->lna[3] = val >> 8;		/* channel group 3 */
1656 
1657 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1658 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1659 	sc->lna[1] = val >> 8;		/* channel group 1 */
1660 
1661 	/* fix broken 5GHz LNA entries */
1662 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1663 		DPRINTF("invalid LNA for channel group %d\n", 2);
1664 		sc->lna[2] = sc->lna[1];
1665 	}
1666 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1667 		DPRINTF("invalid LNA for channel group %d\n", 3);
1668 		sc->lna[3] = sc->lna[1];
1669 	}
1670 
1671 	/* fix broken RSSI offset entries */
1672 	for (ant = 0; ant < 3; ant++) {
1673 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1674 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1675 			    ant + 1, sc->rssi_2ghz[ant]);
1676 			sc->rssi_2ghz[ant] = 0;
1677 		}
1678 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1679 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1680 			    ant + 1, sc->rssi_5ghz[ant]);
1681 			sc->rssi_5ghz[ant] = 0;
1682 		}
1683 	}
1684 	return (0);
1685 }
1686 
1687 static struct ieee80211_node *
1688 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1689 {
1690 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1691 }
1692 
1693 static int
1694 run_media_change(struct ifnet *ifp)
1695 {
1696 	struct ieee80211vap *vap = ifp->if_softc;
1697 	struct ieee80211com *ic = vap->iv_ic;
1698 	const struct ieee80211_txparam *tp;
1699 	struct run_softc *sc = ic->ic_ifp->if_softc;
1700 	uint8_t rate, ridx;
1701 	int error;
1702 
1703 	RUN_LOCK(sc);
1704 
1705 	error = ieee80211_media_change(ifp);
1706 	if (error != ENETRESET) {
1707 		RUN_UNLOCK(sc);
1708 		return (error);
1709 	}
1710 
1711 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1712 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1713 		struct ieee80211_node *ni;
1714 		struct run_node	*rn;
1715 
1716 		rate = ic->ic_sup_rates[ic->ic_curmode].
1717 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1718 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1719 			if (rt2860_rates[ridx].rate == rate)
1720 				break;
1721 		ni = ieee80211_ref_node(vap->iv_bss);
1722 		rn = (struct run_node *)ni;
1723 		rn->fix_ridx = ridx;
1724 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1725 		ieee80211_free_node(ni);
1726 	}
1727 
1728 #if 0
1729 	if ((ifp->if_flags & IFF_UP) &&
1730 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1731 		run_init_locked(sc);
1732 	}
1733 #endif
1734 
1735 	RUN_UNLOCK(sc);
1736 
1737 	return (0);
1738 }
1739 
1740 static int
1741 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1742 {
1743 	const struct ieee80211_txparam *tp;
1744 	struct ieee80211com *ic = vap->iv_ic;
1745 	struct run_softc *sc = ic->ic_ifp->if_softc;
1746 	struct run_vap *rvp = RUN_VAP(vap);
1747 	enum ieee80211_state ostate;
1748 	uint32_t sta[3];
1749 	uint32_t tmp;
1750 	uint8_t ratectl;
1751 	uint8_t restart_ratectl = 0;
1752 	uint8_t bid = 1 << rvp->rvp_id;
1753 
1754 	ostate = vap->iv_state;
1755 	DPRINTF("%s -> %s\n",
1756 		ieee80211_state_name[ostate],
1757 		ieee80211_state_name[nstate]);
1758 
1759 	IEEE80211_UNLOCK(ic);
1760 	RUN_LOCK(sc);
1761 
1762 	ratectl = sc->ratectl_run; /* remember current state */
1763 	sc->ratectl_run = RUN_RATECTL_OFF;
1764 	usb_callout_stop(&sc->ratectl_ch);
1765 
1766 	if (ostate == IEEE80211_S_RUN) {
1767 		/* turn link LED off */
1768 		run_set_leds(sc, RT2860_LED_RADIO);
1769 	}
1770 
1771 	switch (nstate) {
1772 	case IEEE80211_S_INIT:
1773 		restart_ratectl = 1;
1774 
1775 		if (ostate != IEEE80211_S_RUN)
1776 			break;
1777 
1778 		ratectl &= ~bid;
1779 		sc->runbmap &= ~bid;
1780 
1781 		/* abort TSF synchronization if there is no vap running */
1782 		if (--sc->running == 0) {
1783 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1784 			run_write(sc, RT2860_BCN_TIME_CFG,
1785 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1786 			    RT2860_TBTT_TIMER_EN));
1787 		}
1788 		break;
1789 
1790 	case IEEE80211_S_RUN:
1791 		if (!(sc->runbmap & bid)) {
1792 			if(sc->running++)
1793 				restart_ratectl = 1;
1794 			sc->runbmap |= bid;
1795 		}
1796 
1797 		m_freem(rvp->beacon_mbuf);
1798 		rvp->beacon_mbuf = NULL;
1799 
1800 		switch (vap->iv_opmode) {
1801 		case IEEE80211_M_HOSTAP:
1802 		case IEEE80211_M_MBSS:
1803 			sc->ap_running |= bid;
1804 			ic->ic_opmode = vap->iv_opmode;
1805 			run_update_beacon_cb(vap);
1806 			break;
1807 		case IEEE80211_M_IBSS:
1808 			sc->adhoc_running |= bid;
1809 			if (!sc->ap_running)
1810 				ic->ic_opmode = vap->iv_opmode;
1811 			run_update_beacon_cb(vap);
1812 			break;
1813 		case IEEE80211_M_STA:
1814 			sc->sta_running |= bid;
1815 			if (!sc->ap_running && !sc->adhoc_running)
1816 				ic->ic_opmode = vap->iv_opmode;
1817 
1818 			/* read statistic counters (clear on read) */
1819 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1820 			    (uint8_t *)sta, sizeof sta);
1821 
1822 			break;
1823 		default:
1824 			ic->ic_opmode = vap->iv_opmode;
1825 			break;
1826 		}
1827 
1828 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1829 			struct ieee80211_node *ni;
1830 
1831 			run_updateslot(ic->ic_ifp);
1832 			run_enable_mrr(sc);
1833 			run_set_txpreamble(sc);
1834 			run_set_basicrates(sc);
1835 			ni = ieee80211_ref_node(vap->iv_bss);
1836 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1837 			run_set_bssid(sc, ni->ni_bssid);
1838 			ieee80211_free_node(ni);
1839 			run_enable_tsf_sync(sc);
1840 
1841 			/* enable automatic rate adaptation */
1842 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1843 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1844 				ratectl |= bid;
1845 		}
1846 
1847 		/* turn link LED on */
1848 		run_set_leds(sc, RT2860_LED_RADIO |
1849 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1850 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1851 
1852 		break;
1853 	default:
1854 		DPRINTFN(6, "undefined case\n");
1855 		break;
1856 	}
1857 
1858 	/* restart amrr for running VAPs */
1859 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1860 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1861 
1862 	RUN_UNLOCK(sc);
1863 	IEEE80211_LOCK(ic);
1864 
1865 	return(rvp->newstate(vap, nstate, arg));
1866 }
1867 
1868 /* ARGSUSED */
1869 static void
1870 run_wme_update_cb(void *arg)
1871 {
1872 	struct ieee80211com *ic = arg;
1873 	struct run_softc *sc = ic->ic_ifp->if_softc;
1874 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1875 	int aci, error = 0;
1876 
1877 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1878 
1879 	/* update MAC TX configuration registers */
1880 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1881 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1882 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1883 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1884 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1885 		    wmesp->wme_params[aci].wmep_txopLimit);
1886 		if (error) goto err;
1887 	}
1888 
1889 	/* update SCH/DMA registers too */
1890 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1891 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1892 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1893 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1894 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1895 	if (error) goto err;
1896 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1897 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1898 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1899 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1900 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1901 	if (error) goto err;
1902 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1903 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1904 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1905 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1906 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1907 	if (error) goto err;
1908 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1909 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1910 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1911 	if (error) goto err;
1912 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1913 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1914 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1915 
1916 err:
1917 	if (error)
1918 		DPRINTF("WME update failed\n");
1919 
1920 	return;
1921 }
1922 
1923 static int
1924 run_wme_update(struct ieee80211com *ic)
1925 {
1926 	struct run_softc *sc = ic->ic_ifp->if_softc;
1927 
1928 	/* sometime called wothout lock */
1929 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1930 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1931 		DPRINTF("cmdq_store=%d\n", i);
1932 		sc->cmdq[i].func = run_wme_update_cb;
1933 		sc->cmdq[i].arg0 = ic;
1934 		ieee80211_runtask(ic, &sc->cmdq_task);
1935 		return (0);
1936 	}
1937 
1938 	RUN_LOCK(sc);
1939 	run_wme_update_cb(ic);
1940 	RUN_UNLOCK(sc);
1941 
1942 	/* return whatever, upper layer desn't care anyway */
1943 	return (0);
1944 }
1945 
1946 static void
1947 run_key_update_begin(struct ieee80211vap *vap)
1948 {
1949 	/*
1950 	 * To avoid out-of-order events, both run_key_set() and
1951 	 * _delete() are deferred and handled by run_cmdq_cb().
1952 	 * So, there is nothing we need to do here.
1953 	 */
1954 }
1955 
1956 static void
1957 run_key_update_end(struct ieee80211vap *vap)
1958 {
1959 	/* null */
1960 }
1961 
1962 static void
1963 run_key_set_cb(void *arg)
1964 {
1965 	struct run_cmdq *cmdq = arg;
1966 	struct ieee80211vap *vap = cmdq->arg1;
1967 	struct ieee80211_key *k = cmdq->k;
1968 	struct ieee80211com *ic = vap->iv_ic;
1969 	struct run_softc *sc = ic->ic_ifp->if_softc;
1970 	struct ieee80211_node *ni;
1971 	uint32_t attr;
1972 	uint16_t base, associd;
1973 	uint8_t mode, wcid, iv[8];
1974 
1975 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1976 
1977 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1978 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1979 	else
1980 		ni = vap->iv_bss;
1981 	associd = (ni != NULL) ? ni->ni_associd : 0;
1982 
1983 	/* map net80211 cipher to RT2860 security mode */
1984 	switch (k->wk_cipher->ic_cipher) {
1985 	case IEEE80211_CIPHER_WEP:
1986 		if(k->wk_keylen < 8)
1987 			mode = RT2860_MODE_WEP40;
1988 		else
1989 			mode = RT2860_MODE_WEP104;
1990 		break;
1991 	case IEEE80211_CIPHER_TKIP:
1992 		mode = RT2860_MODE_TKIP;
1993 		break;
1994 	case IEEE80211_CIPHER_AES_CCM:
1995 		mode = RT2860_MODE_AES_CCMP;
1996 		break;
1997 	default:
1998 		DPRINTF("undefined case\n");
1999 		return;
2000 	}
2001 
2002 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2003 	    associd, k->wk_keyix, mode,
2004 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2005 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2006 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2007 
2008 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2009 		wcid = 0;	/* NB: update WCID0 for group keys */
2010 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2011 	} else {
2012 		wcid = RUN_AID2WCID(associd);
2013 		base = RT2860_PKEY(wcid);
2014 	}
2015 
2016 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2017 		if(run_write_region_1(sc, base, k->wk_key, 16))
2018 			return;
2019 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2020 			return;
2021 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2022 			return;
2023 	} else {
2024 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2025 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2026 			return;
2027 	}
2028 
2029 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2030 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2031 		/* set initial packet number in IV+EIV */
2032 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2033 			memset(iv, 0, sizeof iv);
2034 			iv[3] = vap->iv_def_txkey << 6;
2035 		} else {
2036 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2037 				iv[0] = k->wk_keytsc >> 8;
2038 				iv[1] = (iv[0] | 0x20) & 0x7f;
2039 				iv[2] = k->wk_keytsc;
2040 			} else /* CCMP */ {
2041 				iv[0] = k->wk_keytsc;
2042 				iv[1] = k->wk_keytsc >> 8;
2043 				iv[2] = 0;
2044 			}
2045 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2046 			iv[4] = k->wk_keytsc >> 16;
2047 			iv[5] = k->wk_keytsc >> 24;
2048 			iv[6] = k->wk_keytsc >> 32;
2049 			iv[7] = k->wk_keytsc >> 40;
2050 		}
2051 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2052 			return;
2053 	}
2054 
2055 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2056 		/* install group key */
2057 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2058 			return;
2059 		attr &= ~(0xf << (k->wk_keyix * 4));
2060 		attr |= mode << (k->wk_keyix * 4);
2061 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2062 			return;
2063 	} else {
2064 		/* install pairwise key */
2065 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2066 			return;
2067 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2068 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2069 			return;
2070 	}
2071 
2072 	/* TODO create a pass-thru key entry? */
2073 
2074 	/* need wcid to delete the right key later */
2075 	k->wk_pad = wcid;
2076 }
2077 
2078 /*
2079  * Don't have to be deferred, but in order to keep order of
2080  * execution, i.e. with run_key_delete(), defer this and let
2081  * run_cmdq_cb() maintain the order.
2082  *
2083  * return 0 on error
2084  */
2085 static int
2086 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2087 		const uint8_t mac[IEEE80211_ADDR_LEN])
2088 {
2089 	struct ieee80211com *ic = vap->iv_ic;
2090 	struct run_softc *sc = ic->ic_ifp->if_softc;
2091 	uint32_t i;
2092 
2093 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2094 	DPRINTF("cmdq_store=%d\n", i);
2095 	sc->cmdq[i].func = run_key_set_cb;
2096 	sc->cmdq[i].arg0 = NULL;
2097 	sc->cmdq[i].arg1 = vap;
2098 	sc->cmdq[i].k = k;
2099 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2100 	ieee80211_runtask(ic, &sc->cmdq_task);
2101 
2102 	/*
2103 	 * To make sure key will be set when hostapd
2104 	 * calls iv_key_set() before if_init().
2105 	 */
2106 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2107 		RUN_LOCK(sc);
2108 		sc->cmdq_key_set = RUN_CMDQ_GO;
2109 		RUN_UNLOCK(sc);
2110 	}
2111 
2112 	return (1);
2113 }
2114 
2115 /*
2116  * If wlan is destroyed without being brought down i.e. without
2117  * wlan down or wpa_cli terminate, this function is called after
2118  * vap is gone. Don't refer it.
2119  */
2120 static void
2121 run_key_delete_cb(void *arg)
2122 {
2123 	struct run_cmdq *cmdq = arg;
2124 	struct run_softc *sc = cmdq->arg1;
2125 	struct ieee80211_key *k = &cmdq->key;
2126 	uint32_t attr;
2127 	uint8_t wcid;
2128 
2129 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2130 
2131 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2132 		/* remove group key */
2133 		DPRINTF("removing group key\n");
2134 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2135 		attr &= ~(0xf << (k->wk_keyix * 4));
2136 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2137 	} else {
2138 		/* remove pairwise key */
2139 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2140 		/* matching wcid was written to wk_pad in run_key_set() */
2141 		wcid = k->wk_pad;
2142 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2143 		attr &= ~0xf;
2144 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2145 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2146 	}
2147 
2148 	k->wk_pad = 0;
2149 }
2150 
2151 /*
2152  * return 0 on error
2153  */
2154 static int
2155 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2156 {
2157 	struct ieee80211com *ic = vap->iv_ic;
2158 	struct run_softc *sc = ic->ic_ifp->if_softc;
2159 	struct ieee80211_key *k0;
2160 	uint32_t i;
2161 
2162 	/*
2163 	 * When called back, key might be gone. So, make a copy
2164 	 * of some values need to delete keys before deferring.
2165 	 * But, because of LOR with node lock, cannot use lock here.
2166 	 * So, use atomic instead.
2167 	 */
2168 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2169 	DPRINTF("cmdq_store=%d\n", i);
2170 	sc->cmdq[i].func = run_key_delete_cb;
2171 	sc->cmdq[i].arg0 = NULL;
2172 	sc->cmdq[i].arg1 = sc;
2173 	k0 = &sc->cmdq[i].key;
2174 	k0->wk_flags = k->wk_flags;
2175 	k0->wk_keyix = k->wk_keyix;
2176 	/* matching wcid was written to wk_pad in run_key_set() */
2177 	k0->wk_pad = k->wk_pad;
2178 	ieee80211_runtask(ic, &sc->cmdq_task);
2179 	return (1);	/* return fake success */
2180 
2181 }
2182 
2183 static void
2184 run_ratectl_to(void *arg)
2185 {
2186 	struct run_softc *sc = arg;
2187 
2188 	/* do it in a process context, so it can go sleep */
2189 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2190 	/* next timeout will be rescheduled in the callback task */
2191 }
2192 
2193 /* ARGSUSED */
2194 static void
2195 run_ratectl_cb(void *arg, int pending)
2196 {
2197 	struct run_softc *sc = arg;
2198 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2199 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2200 
2201 	if (vap == NULL)
2202 		return;
2203 
2204 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2205 		run_iter_func(sc, vap->iv_bss);
2206 	else {
2207 		/*
2208 		 * run_reset_livelock() doesn't do anything with AMRR,
2209 		 * but Ralink wants us to call it every 1 sec. So, we
2210 		 * piggyback here rather than creating another callout.
2211 		 * Livelock may occur only in HOSTAP or IBSS mode
2212 		 * (when h/w is sending beacons).
2213 		 */
2214 		RUN_LOCK(sc);
2215 		run_reset_livelock(sc);
2216 		/* just in case, there are some stats to drain */
2217 		run_drain_fifo(sc);
2218 		RUN_UNLOCK(sc);
2219 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2220 	}
2221 
2222 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2223 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2224 }
2225 
2226 static void
2227 run_drain_fifo(void *arg)
2228 {
2229 	struct run_softc *sc = arg;
2230 	struct ifnet *ifp = sc->sc_ifp;
2231 	uint32_t stat;
2232 	uint16_t (*wstat)[3];
2233 	uint8_t wcid, mcs, pid;
2234 	int8_t retry;
2235 
2236 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2237 
2238 	for (;;) {
2239 		/* drain Tx status FIFO (maxsize = 16) */
2240 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2241 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2242 		if (!(stat & RT2860_TXQ_VLD))
2243 			break;
2244 
2245 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2246 
2247 		/* if no ACK was requested, no feedback is available */
2248 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2249 		    wcid == 0)
2250 			continue;
2251 
2252 		/*
2253 		 * Even though each stat is Tx-complete-status like format,
2254 		 * the device can poll stats. Because there is no guarantee
2255 		 * that the referring node is still around when read the stats.
2256 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2257 		 * have hard time not to refer already freed node.
2258 		 *
2259 		 * To eliminate such page faults, we poll stats in softc.
2260 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2261 		 */
2262 		wstat = &(sc->wcid_stats[wcid]);
2263 		(*wstat)[RUN_TXCNT]++;
2264 		if (stat & RT2860_TXQ_OK)
2265 			(*wstat)[RUN_SUCCESS]++;
2266 		else
2267 			ifp->if_oerrors++;
2268 		/*
2269 		 * Check if there were retries, ie if the Tx success rate is
2270 		 * different from the requested rate. Note that it works only
2271 		 * because we do not allow rate fallback from OFDM to CCK.
2272 		 */
2273 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2274 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2275 		if ((retry = pid -1 - mcs) > 0) {
2276 			(*wstat)[RUN_TXCNT] += retry;
2277 			(*wstat)[RUN_RETRY] += retry;
2278 		}
2279 	}
2280 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2281 
2282 	sc->fifo_cnt = 0;
2283 }
2284 
2285 static void
2286 run_iter_func(void *arg, struct ieee80211_node *ni)
2287 {
2288 	struct run_softc *sc = arg;
2289 	struct ieee80211vap *vap = ni->ni_vap;
2290 	struct ieee80211com *ic = ni->ni_ic;
2291 	struct ifnet *ifp = ic->ic_ifp;
2292 	struct run_node *rn = (void *)ni;
2293 	union run_stats sta[2];
2294 	uint16_t (*wstat)[3];
2295 	int txcnt, success, retrycnt, error;
2296 
2297 	RUN_LOCK(sc);
2298 
2299 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2300 	    vap->iv_opmode == IEEE80211_M_STA)) {
2301 		/* read statistic counters (clear on read) and update AMRR state */
2302 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2303 		    sizeof sta);
2304 		if (error != 0)
2305 			goto fail;
2306 
2307 		/* count failed TX as errors */
2308 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2309 
2310 		retrycnt = le16toh(sta[1].tx.retry);
2311 		success = le16toh(sta[1].tx.success);
2312 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2313 
2314 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2315 			retrycnt, success, le16toh(sta[0].error.fail));
2316 	} else {
2317 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2318 
2319 		if (wstat == &(sc->wcid_stats[0]) ||
2320 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2321 			goto fail;
2322 
2323 		txcnt = (*wstat)[RUN_TXCNT];
2324 		success = (*wstat)[RUN_SUCCESS];
2325 		retrycnt = (*wstat)[RUN_RETRY];
2326 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2327 		    retrycnt, txcnt, success);
2328 
2329 		memset(wstat, 0, sizeof(*wstat));
2330 	}
2331 
2332 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2333 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2334 
2335 fail:
2336 	RUN_UNLOCK(sc);
2337 
2338 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2339 }
2340 
2341 static void
2342 run_newassoc_cb(void *arg)
2343 {
2344 	struct run_cmdq *cmdq = arg;
2345 	struct ieee80211_node *ni = cmdq->arg1;
2346 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2347 	uint8_t wcid = cmdq->wcid;
2348 
2349 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2350 
2351 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2352 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2353 
2354 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2355 }
2356 
2357 static void
2358 run_newassoc(struct ieee80211_node *ni, int isnew)
2359 {
2360 	struct run_node *rn = (void *)ni;
2361 	struct ieee80211_rateset *rs = &ni->ni_rates;
2362 	struct ieee80211vap *vap = ni->ni_vap;
2363 	struct ieee80211com *ic = vap->iv_ic;
2364 	struct run_softc *sc = ic->ic_ifp->if_softc;
2365 	uint8_t rate;
2366 	uint8_t ridx;
2367 	uint8_t wcid = RUN_AID2WCID(ni->ni_associd);
2368 	int i, j;
2369 
2370 	if (wcid > RT2870_WCID_MAX) {
2371 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2372 		return;
2373 	}
2374 
2375 	/* only interested in true associations */
2376 	if (isnew && ni->ni_associd != 0) {
2377 
2378 		/*
2379 		 * This function could is called though timeout function.
2380 		 * Need to defer.
2381 		 */
2382 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2383 		DPRINTF("cmdq_store=%d\n", cnt);
2384 		sc->cmdq[cnt].func = run_newassoc_cb;
2385 		sc->cmdq[cnt].arg0 = NULL;
2386 		sc->cmdq[cnt].arg1 = ni;
2387 		sc->cmdq[cnt].wcid = wcid;
2388 		ieee80211_runtask(ic, &sc->cmdq_task);
2389 	}
2390 
2391 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2392 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2393 
2394 	for (i = 0; i < rs->rs_nrates; i++) {
2395 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2396 		/* convert 802.11 rate to hardware rate index */
2397 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2398 			if (rt2860_rates[ridx].rate == rate)
2399 				break;
2400 		rn->ridx[i] = ridx;
2401 		/* determine rate of control response frames */
2402 		for (j = i; j >= 0; j--) {
2403 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2404 			    rt2860_rates[rn->ridx[i]].phy ==
2405 			    rt2860_rates[rn->ridx[j]].phy)
2406 				break;
2407 		}
2408 		if (j >= 0) {
2409 			rn->ctl_ridx[i] = rn->ridx[j];
2410 		} else {
2411 			/* no basic rate found, use mandatory one */
2412 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2413 		}
2414 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2415 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2416 	}
2417 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2418 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2419 		if (rt2860_rates[ridx].rate == rate)
2420 			break;
2421 	rn->mgt_ridx = ridx;
2422 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2423 
2424 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2425 }
2426 
2427 /*
2428  * Return the Rx chain with the highest RSSI for a given frame.
2429  */
2430 static __inline uint8_t
2431 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2432 {
2433 	uint8_t rxchain = 0;
2434 
2435 	if (sc->nrxchains > 1) {
2436 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2437 			rxchain = 1;
2438 		if (sc->nrxchains > 2)
2439 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2440 				rxchain = 2;
2441 	}
2442 	return (rxchain);
2443 }
2444 
2445 static void
2446 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2447 {
2448 	struct ifnet *ifp = sc->sc_ifp;
2449 	struct ieee80211com *ic = ifp->if_l2com;
2450 	struct ieee80211_frame *wh;
2451 	struct ieee80211_node *ni;
2452 	struct rt2870_rxd *rxd;
2453 	struct rt2860_rxwi *rxwi;
2454 	uint32_t flags;
2455 	uint16_t len, phy;
2456 	uint8_t ant, rssi;
2457 	int8_t nf;
2458 
2459 	rxwi = mtod(m, struct rt2860_rxwi *);
2460 	len = le16toh(rxwi->len) & 0xfff;
2461 	if (__predict_false(len > dmalen)) {
2462 		m_freem(m);
2463 		ifp->if_ierrors++;
2464 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2465 		return;
2466 	}
2467 	/* Rx descriptor is located at the end */
2468 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2469 	flags = le32toh(rxd->flags);
2470 
2471 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2472 		m_freem(m);
2473 		ifp->if_ierrors++;
2474 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2475 		return;
2476 	}
2477 
2478 	m->m_data += sizeof(struct rt2860_rxwi);
2479 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2480 
2481 	wh = mtod(m, struct ieee80211_frame *);
2482 
2483 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2484 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2485 		m->m_flags |= M_WEP;
2486 	}
2487 
2488 	if (flags & RT2860_RX_L2PAD) {
2489 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2490 		len += 2;
2491 	}
2492 
2493 	ni = ieee80211_find_rxnode(ic,
2494 	    mtod(m, struct ieee80211_frame_min *));
2495 
2496 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2497 		/* report MIC failures to net80211 for TKIP */
2498 		if (ni != NULL)
2499 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2500 		m_freem(m);
2501 		ifp->if_ierrors++;
2502 		DPRINTF("MIC error. Someone is lying.\n");
2503 		return;
2504 	}
2505 
2506 	ant = run_maxrssi_chain(sc, rxwi);
2507 	rssi = rxwi->rssi[ant];
2508 	nf = run_rssi2dbm(sc, rssi, ant);
2509 
2510 	m->m_pkthdr.rcvif = ifp;
2511 	m->m_pkthdr.len = m->m_len = len;
2512 
2513 	if (ni != NULL) {
2514 		(void)ieee80211_input(ni, m, rssi, nf);
2515 		ieee80211_free_node(ni);
2516 	} else {
2517 		(void)ieee80211_input_all(ic, m, rssi, nf);
2518 	}
2519 
2520 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2521 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2522 
2523 		tap->wr_flags = 0;
2524 		tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq);
2525 		tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags);
2526 		tap->wr_antsignal = rssi;
2527 		tap->wr_antenna = ant;
2528 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2529 		tap->wr_rate = 2;	/* in case it can't be found below */
2530 		phy = le16toh(rxwi->phy);
2531 		switch (phy & RT2860_PHY_MODE) {
2532 		case RT2860_PHY_CCK:
2533 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2534 			case 0:	tap->wr_rate =   2; break;
2535 			case 1:	tap->wr_rate =   4; break;
2536 			case 2:	tap->wr_rate =  11; break;
2537 			case 3:	tap->wr_rate =  22; break;
2538 			}
2539 			if (phy & RT2860_PHY_SHPRE)
2540 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2541 			break;
2542 		case RT2860_PHY_OFDM:
2543 			switch (phy & RT2860_PHY_MCS) {
2544 			case 0:	tap->wr_rate =  12; break;
2545 			case 1:	tap->wr_rate =  18; break;
2546 			case 2:	tap->wr_rate =  24; break;
2547 			case 3:	tap->wr_rate =  36; break;
2548 			case 4:	tap->wr_rate =  48; break;
2549 			case 5:	tap->wr_rate =  72; break;
2550 			case 6:	tap->wr_rate =  96; break;
2551 			case 7:	tap->wr_rate = 108; break;
2552 			}
2553 			break;
2554 		}
2555 	}
2556 }
2557 
2558 static void
2559 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2560 {
2561 	struct run_softc *sc = usbd_xfer_softc(xfer);
2562 	struct ifnet *ifp = sc->sc_ifp;
2563 	struct mbuf *m = NULL;
2564 	struct mbuf *m0;
2565 	uint32_t dmalen;
2566 	int xferlen;
2567 
2568 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2569 
2570 	switch (USB_GET_STATE(xfer)) {
2571 	case USB_ST_TRANSFERRED:
2572 
2573 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2574 
2575 		if (xferlen < sizeof (uint32_t) +
2576 		    sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) {
2577 			DPRINTF("xfer too short %d\n", xferlen);
2578 			goto tr_setup;
2579 		}
2580 
2581 		m = sc->rx_m;
2582 		sc->rx_m = NULL;
2583 
2584 		/* FALLTHROUGH */
2585 	case USB_ST_SETUP:
2586 tr_setup:
2587 		if (sc->rx_m == NULL) {
2588 			sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
2589 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2590 		}
2591 		if (sc->rx_m == NULL) {
2592 			DPRINTF("could not allocate mbuf - idle with stall\n");
2593 			ifp->if_ierrors++;
2594 			usbd_xfer_set_stall(xfer);
2595 			usbd_xfer_set_frames(xfer, 0);
2596 		} else {
2597 			/*
2598 			 * Directly loading a mbuf cluster into DMA to
2599 			 * save some data copying. This works because
2600 			 * there is only one cluster.
2601 			 */
2602 			usbd_xfer_set_frame_data(xfer, 0,
2603 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2604 			usbd_xfer_set_frames(xfer, 1);
2605 		}
2606 		usbd_transfer_submit(xfer);
2607 		break;
2608 
2609 	default:	/* Error */
2610 		if (error != USB_ERR_CANCELLED) {
2611 			/* try to clear stall first */
2612 			usbd_xfer_set_stall(xfer);
2613 
2614 			if (error == USB_ERR_TIMEOUT)
2615 				device_printf(sc->sc_dev, "device timeout\n");
2616 
2617 			ifp->if_ierrors++;
2618 
2619 			goto tr_setup;
2620 		}
2621 		if (sc->rx_m != NULL) {
2622 			m_freem(sc->rx_m);
2623 			sc->rx_m = NULL;
2624 		}
2625 		break;
2626 	}
2627 
2628 	if (m == NULL)
2629 		return;
2630 
2631 	/* inputting all the frames must be last */
2632 
2633 	RUN_UNLOCK(sc);
2634 
2635 	m->m_pkthdr.len = m->m_len = xferlen;
2636 
2637 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2638 	for(;;) {
2639 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2640 
2641 		if ((dmalen == 0) || ((dmalen & 3) != 0)) {
2642 			DPRINTF("bad DMA length %u\n", dmalen);
2643 			break;
2644 		}
2645 		if ((dmalen + 8) > xferlen) {
2646 			DPRINTF("bad DMA length %u > %d\n",
2647 			dmalen + 8, xferlen);
2648 			break;
2649 		}
2650 
2651 		/* If it is the last one or a single frame, we won't copy. */
2652 		if ((xferlen -= dmalen + 8) <= 8) {
2653 			/* trim 32-bit DMA-len header */
2654 			m->m_data += 4;
2655 			m->m_pkthdr.len = m->m_len -= 4;
2656 			run_rx_frame(sc, m, dmalen);
2657 			break;
2658 		}
2659 
2660 		/* copy aggregated frames to another mbuf */
2661 		m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2662 		if (__predict_false(m0 == NULL)) {
2663 			DPRINTF("could not allocate mbuf\n");
2664 			ifp->if_ierrors++;
2665 			break;
2666 		}
2667 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2668 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2669 		m0->m_pkthdr.len = m0->m_len =
2670 		    dmalen + sizeof(struct rt2870_rxd);
2671 		run_rx_frame(sc, m0, dmalen);
2672 
2673 		/* update data ptr */
2674 		m->m_data += dmalen + 8;
2675 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2676 	}
2677 
2678 	RUN_LOCK(sc);
2679 }
2680 
2681 static void
2682 run_tx_free(struct run_endpoint_queue *pq,
2683     struct run_tx_data *data, int txerr)
2684 {
2685 	if (data->m != NULL) {
2686 		if (data->m->m_flags & M_TXCB)
2687 			ieee80211_process_callback(data->ni, data->m,
2688 			    txerr ? ETIMEDOUT : 0);
2689 		m_freem(data->m);
2690 		data->m = NULL;
2691 
2692 		if (data->ni == NULL) {
2693 			DPRINTF("no node\n");
2694 		} else {
2695 			ieee80211_free_node(data->ni);
2696 			data->ni = NULL;
2697 		}
2698 	}
2699 
2700 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2701 	pq->tx_nfree++;
2702 }
2703 
2704 static void
2705 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2706 {
2707 	struct run_softc *sc = usbd_xfer_softc(xfer);
2708 	struct ifnet *ifp = sc->sc_ifp;
2709 	struct ieee80211com *ic = ifp->if_l2com;
2710 	struct run_tx_data *data;
2711 	struct ieee80211vap *vap = NULL;
2712 	struct usb_page_cache *pc;
2713 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2714 	struct mbuf *m;
2715 	usb_frlength_t size;
2716 	unsigned int len;
2717 	int actlen;
2718 	int sumlen;
2719 
2720 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2721 
2722 	switch (USB_GET_STATE(xfer)) {
2723 	case USB_ST_TRANSFERRED:
2724 		DPRINTFN(11, "transfer complete: %d "
2725 		    "bytes @ index %d\n", actlen, index);
2726 
2727 		data = usbd_xfer_get_priv(xfer);
2728 
2729 		run_tx_free(pq, data, 0);
2730 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2731 
2732 		usbd_xfer_set_priv(xfer, NULL);
2733 
2734 		ifp->if_opackets++;
2735 
2736 		/* FALLTHROUGH */
2737 	case USB_ST_SETUP:
2738 tr_setup:
2739 		data = STAILQ_FIRST(&pq->tx_qh);
2740 		if (data == NULL)
2741 			break;
2742 
2743 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2744 
2745 		m = data->m;
2746 		if (m->m_pkthdr.len > RUN_MAX_TXSZ) {
2747 			DPRINTF("data overflow, %u bytes\n",
2748 			    m->m_pkthdr.len);
2749 
2750 			ifp->if_oerrors++;
2751 
2752 			run_tx_free(pq, data, 1);
2753 
2754 			goto tr_setup;
2755 		}
2756 
2757 		pc = usbd_xfer_get_frame(xfer, 0);
2758 		size = sizeof(data->desc);
2759 		usbd_copy_in(pc, 0, &data->desc, size);
2760 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2761 
2762 		vap = data->ni->ni_vap;
2763 		if (ieee80211_radiotap_active_vap(vap)) {
2764 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2765 			struct rt2860_txwi *txwi =
2766 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2767 
2768 			tap->wt_flags = 0;
2769 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2770 			tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq);
2771 			tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags);
2772 			tap->wt_hwqueue = index;
2773 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2774 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2775 
2776 			ieee80211_radiotap_tx(vap, m);
2777 		}
2778 
2779 		/* align end on a 4-bytes boundary */
2780 		len = (size + IEEE80211_CRC_LEN + m->m_pkthdr.len + 3) & ~3;
2781 
2782 		DPRINTFN(11, "sending frame len=%u xferlen=%u @ index %d\n",
2783 			m->m_pkthdr.len, len, index);
2784 
2785 		usbd_xfer_set_frame_len(xfer, 0, len);
2786 		usbd_xfer_set_priv(xfer, data);
2787 
2788 		usbd_transfer_submit(xfer);
2789 
2790 		RUN_UNLOCK(sc);
2791 		run_start(ifp);
2792 		RUN_LOCK(sc);
2793 
2794 		break;
2795 
2796 	default:
2797 		DPRINTF("USB transfer error, %s\n",
2798 		    usbd_errstr(error));
2799 
2800 		data = usbd_xfer_get_priv(xfer);
2801 
2802 		ifp->if_oerrors++;
2803 
2804 		if (data != NULL) {
2805 			if(data->ni != NULL)
2806 				vap = data->ni->ni_vap;
2807 			run_tx_free(pq, data, error);
2808 			usbd_xfer_set_priv(xfer, NULL);
2809 		}
2810 		if (vap == NULL)
2811 			vap = TAILQ_FIRST(&ic->ic_vaps);
2812 
2813 		if (error != USB_ERR_CANCELLED) {
2814 			if (error == USB_ERR_TIMEOUT) {
2815 				device_printf(sc->sc_dev, "device timeout\n");
2816 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2817 				DPRINTF("cmdq_store=%d\n", i);
2818 				sc->cmdq[i].func = run_usb_timeout_cb;
2819 				sc->cmdq[i].arg0 = vap;
2820 				ieee80211_runtask(ic, &sc->cmdq_task);
2821 			}
2822 
2823 			/*
2824 			 * Try to clear stall first, also if other
2825 			 * errors occur, hence clearing stall
2826 			 * introduces a 50 ms delay:
2827 			 */
2828 			usbd_xfer_set_stall(xfer);
2829 			goto tr_setup;
2830 		}
2831 		break;
2832 	}
2833 }
2834 
2835 static void
2836 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2837 {
2838 	run_bulk_tx_callbackN(xfer, error, 0);
2839 }
2840 
2841 static void
2842 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2843 {
2844 	run_bulk_tx_callbackN(xfer, error, 1);
2845 }
2846 
2847 static void
2848 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2849 {
2850 	run_bulk_tx_callbackN(xfer, error, 2);
2851 }
2852 
2853 static void
2854 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2855 {
2856 	run_bulk_tx_callbackN(xfer, error, 3);
2857 }
2858 
2859 static void
2860 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2861 {
2862 	run_bulk_tx_callbackN(xfer, error, 4);
2863 }
2864 
2865 static void
2866 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2867 {
2868 	run_bulk_tx_callbackN(xfer, error, 5);
2869 }
2870 
2871 static void
2872 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2873 {
2874 	struct mbuf *m = data->m;
2875 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2876 	struct ieee80211vap *vap = data->ni->ni_vap;
2877 	struct ieee80211_frame *wh;
2878 	struct rt2870_txd *txd;
2879 	struct rt2860_txwi *txwi;
2880 	uint16_t xferlen;
2881 	uint16_t mcs;
2882 	uint8_t ridx = data->ridx;
2883 	uint8_t pad;
2884 
2885 	/* get MCS code from rate index */
2886 	mcs = rt2860_rates[ridx].mcs;
2887 
2888 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2889 
2890 	/* roundup to 32-bit alignment */
2891 	xferlen = (xferlen + 3) & ~3;
2892 
2893 	txd = (struct rt2870_txd *)&data->desc;
2894 	txd->len = htole16(xferlen);
2895 
2896 	wh = mtod(m, struct ieee80211_frame *);
2897 
2898 	/*
2899 	 * Ether both are true or both are false, the header
2900 	 * are nicely aligned to 32-bit. So, no L2 padding.
2901 	 */
2902 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2903 		pad = 0;
2904 	else
2905 		pad = 2;
2906 
2907 	/* setup TX Wireless Information */
2908 	txwi = (struct rt2860_txwi *)(txd + 1);
2909 	txwi->len = htole16(m->m_pkthdr.len - pad);
2910 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2911 		txwi->phy = htole16(RT2860_PHY_CCK);
2912 		if (ridx != RT2860_RIDX_CCK1 &&
2913 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2914 			mcs |= RT2860_PHY_SHPRE;
2915 	} else
2916 		txwi->phy = htole16(RT2860_PHY_OFDM);
2917 	txwi->phy |= htole16(mcs);
2918 
2919 	/* check if RTS/CTS or CTS-to-self protection is required */
2920 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2921 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2922 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2923 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2924 		txwi->txop |= RT2860_TX_TXOP_HT;
2925 	else
2926 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2927 
2928 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2929 		txwi->xflags |= RT2860_TX_NSEQ;
2930 }
2931 
2932 /* This function must be called locked */
2933 static int
2934 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2935 {
2936 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2937 	struct ieee80211vap *vap = ni->ni_vap;
2938 	struct ieee80211_frame *wh;
2939 	struct ieee80211_channel *chan;
2940 	const struct ieee80211_txparam *tp;
2941 	struct run_node *rn = (void *)ni;
2942 	struct run_tx_data *data;
2943 	struct rt2870_txd *txd;
2944 	struct rt2860_txwi *txwi;
2945 	uint16_t qos;
2946 	uint16_t dur;
2947 	uint16_t qid;
2948 	uint8_t type;
2949 	uint8_t tid;
2950 	uint8_t ridx;
2951 	uint8_t ctl_ridx;
2952 	uint8_t qflags;
2953 	uint8_t xflags = 0;
2954 	int hasqos;
2955 
2956 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2957 
2958 	wh = mtod(m, struct ieee80211_frame *);
2959 
2960 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2961 
2962 	/*
2963 	 * There are 7 bulk endpoints: 1 for RX
2964 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2965 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2966 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2967 	 */
2968 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2969 		uint8_t *frm;
2970 
2971 		if(IEEE80211_HAS_ADDR4(wh))
2972 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2973 		else
2974 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
2975 
2976 		qos = le16toh(*(const uint16_t *)frm);
2977 		tid = qos & IEEE80211_QOS_TID;
2978 		qid = TID_TO_WME_AC(tid);
2979 	} else {
2980 		qos = 0;
2981 		tid = 0;
2982 		qid = WME_AC_BE;
2983 	}
2984 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
2985 
2986 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
2987 	    qos, qid, tid, qflags);
2988 
2989 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
2990 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2991 
2992 	/* pickup a rate index */
2993 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2994 	    type != IEEE80211_FC0_TYPE_DATA) {
2995 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2996 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
2997 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
2998 	} else {
2999 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3000 			ridx = rn->fix_ridx;
3001 		else
3002 			ridx = rn->amrr_ridx;
3003 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3004 	}
3005 
3006 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3007 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3008 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3009 		xflags |= RT2860_TX_ACK;
3010 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3011 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3012 		else
3013 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3014 		*(uint16_t *)wh->i_dur = htole16(dur);
3015 	}
3016 
3017 	/* reserve slots for mgmt packets, just in case */
3018 	if (sc->sc_epq[qid].tx_nfree < 3) {
3019 		DPRINTFN(10, "tx ring %d is full\n", qid);
3020 		return (-1);
3021 	}
3022 
3023 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3024 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3025 	sc->sc_epq[qid].tx_nfree--;
3026 
3027 	txd = (struct rt2870_txd *)&data->desc;
3028 	txd->flags = qflags;
3029 	txwi = (struct rt2860_txwi *)(txd + 1);
3030 	txwi->xflags = xflags;
3031 	txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ?
3032 	    0 : RUN_AID2WCID(ni->ni_associd);
3033 	/* clear leftover garbage bits */
3034 	txwi->flags = 0;
3035 	txwi->txop = 0;
3036 
3037 	data->m = m;
3038 	data->ni = ni;
3039 	data->ridx = ridx;
3040 
3041 	run_set_tx_desc(sc, data);
3042 
3043 	/*
3044 	 * The chip keeps track of 2 kind of Tx stats,
3045 	 *  * TX_STAT_FIFO, for per WCID stats, and
3046 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3047 	 *
3048 	 * To use FIFO stats, we need to store MCS into the driver-private
3049  	 * PacketID field. So that, we can tell whose stats when we read them.
3050  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3051  	 * that we don't want feedback in TX_STAT_FIFO.
3052  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3053  	 *
3054  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3055  	 */
3056 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3057 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3058 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3059 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3060 
3061 		/*
3062 		 * Unlike PCI based devices, we don't get any interrupt from
3063 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3064 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3065 		 * quickly get fulled. To prevent overflow, increment a counter on
3066 		 * every FIFO stat request, so we know how many slots are left.
3067 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3068 		 * are used only in those modes.
3069 		 * We just drain stats. AMRR gets updated every 1 sec by
3070 		 * run_ratectl_cb() via callout.
3071 		 * Call it early. Otherwise overflow.
3072 		 */
3073 		if (sc->fifo_cnt++ == 10) {
3074 			/*
3075 			 * With multiple vaps or if_bridge, if_start() is called
3076 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3077 			 */
3078 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3079 			DPRINTFN(6, "cmdq_store=%d\n", i);
3080 			sc->cmdq[i].func = run_drain_fifo;
3081 			sc->cmdq[i].arg0 = sc;
3082 			ieee80211_runtask(ic, &sc->cmdq_task);
3083 		}
3084 	}
3085 
3086         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3087 
3088 	usbd_transfer_start(sc->sc_xfer[qid]);
3089 
3090 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3091 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3092 	    rt2860_rates[ridx].rate, qid);
3093 
3094 	return (0);
3095 }
3096 
3097 static int
3098 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3099 {
3100 	struct ifnet *ifp = sc->sc_ifp;
3101 	struct ieee80211com *ic = ifp->if_l2com;
3102 	struct run_node *rn = (void *)ni;
3103 	struct run_tx_data *data;
3104 	struct ieee80211_frame *wh;
3105 	struct rt2870_txd *txd;
3106 	struct rt2860_txwi *txwi;
3107 	uint16_t dur;
3108 	uint8_t ridx = rn->mgt_ridx;
3109 	uint8_t type;
3110 	uint8_t xflags = 0;
3111 	uint8_t wflags = 0;
3112 
3113 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3114 
3115 	wh = mtod(m, struct ieee80211_frame *);
3116 
3117 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3118 
3119 	/* tell hardware to add timestamp for probe responses */
3120 	if ((wh->i_fc[0] &
3121 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3122 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3123 		wflags |= RT2860_TX_TS;
3124 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3125 		xflags |= RT2860_TX_ACK;
3126 
3127 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3128 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3129 		*(uint16_t *)wh->i_dur = htole16(dur);
3130 	}
3131 
3132 	if (sc->sc_epq[0].tx_nfree == 0) {
3133 		/* let caller free mbuf */
3134 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3135 		return (EIO);
3136 	}
3137 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3138 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3139 	sc->sc_epq[0].tx_nfree--;
3140 
3141 	txd = (struct rt2870_txd *)&data->desc;
3142 	txd->flags = RT2860_TX_QSEL_EDCA;
3143 	txwi = (struct rt2860_txwi *)(txd + 1);
3144 	txwi->wcid = 0xff;
3145 	txwi->flags = wflags;
3146 	txwi->xflags = xflags;
3147 	txwi->txop = 0;	/* clear leftover garbage bits */
3148 
3149 	data->m = m;
3150 	data->ni = ni;
3151 	data->ridx = ridx;
3152 
3153 	run_set_tx_desc(sc, data);
3154 
3155 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3156 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3157 	    rt2860_rates[ridx].rate);
3158 
3159 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3160 
3161 	usbd_transfer_start(sc->sc_xfer[0]);
3162 
3163 	return (0);
3164 }
3165 
3166 static int
3167 run_sendprot(struct run_softc *sc,
3168     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3169 {
3170 	struct ieee80211com *ic = ni->ni_ic;
3171 	struct ieee80211_frame *wh;
3172 	struct run_tx_data *data;
3173 	struct rt2870_txd *txd;
3174 	struct rt2860_txwi *txwi;
3175 	struct mbuf *mprot;
3176 	int ridx;
3177 	int protrate;
3178 	int ackrate;
3179 	int pktlen;
3180 	int isshort;
3181 	uint16_t dur;
3182 	uint8_t type;
3183 	uint8_t wflags = 0;
3184 	uint8_t xflags = 0;
3185 
3186 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3187 
3188 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3189 	    ("protection %d", prot));
3190 
3191 	wh = mtod(m, struct ieee80211_frame *);
3192 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3193 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3194 
3195 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3196 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3197 
3198 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3199 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3200 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3201 	wflags = RT2860_TX_FRAG;
3202 
3203 	/* check that there are free slots before allocating the mbuf */
3204 	if (sc->sc_epq[0].tx_nfree == 0) {
3205 		/* let caller free mbuf */
3206 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3207 		return (ENOBUFS);
3208 	}
3209 
3210 	if (prot == IEEE80211_PROT_RTSCTS) {
3211 		/* NB: CTS is the same size as an ACK */
3212 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3213 		xflags |= RT2860_TX_ACK;
3214 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3215 	} else {
3216 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3217 	}
3218 	if (mprot == NULL) {
3219 		sc->sc_ifp->if_oerrors++;
3220 		DPRINTF("could not allocate mbuf\n");
3221 		return (ENOBUFS);
3222 	}
3223 
3224         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3225         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3226         sc->sc_epq[0].tx_nfree--;
3227 
3228 	txd = (struct rt2870_txd *)&data->desc;
3229 	txd->flags = RT2860_TX_QSEL_EDCA;
3230 	txwi = (struct rt2860_txwi *)(txd + 1);
3231 	txwi->wcid = 0xff;
3232 	txwi->flags = wflags;
3233 	txwi->xflags = xflags;
3234 	txwi->txop = 0;	/* clear leftover garbage bits */
3235 
3236 	data->m = mprot;
3237 	data->ni = ieee80211_ref_node(ni);
3238 
3239 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3240 		if (rt2860_rates[ridx].rate == protrate)
3241 			break;
3242 	data->ridx = ridx;
3243 
3244 	run_set_tx_desc(sc, data);
3245 
3246         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3247             m->m_pkthdr.len, rate);
3248 
3249         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3250 
3251 	usbd_transfer_start(sc->sc_xfer[0]);
3252 
3253 	return (0);
3254 }
3255 
3256 static int
3257 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3258     const struct ieee80211_bpf_params *params)
3259 {
3260 	struct ieee80211com *ic = ni->ni_ic;
3261 	struct ieee80211_frame *wh;
3262 	struct run_tx_data *data;
3263 	struct rt2870_txd *txd;
3264 	struct rt2860_txwi *txwi;
3265 	uint8_t type;
3266 	uint8_t ridx;
3267 	uint8_t rate;
3268 	uint8_t opflags = 0;
3269 	uint8_t xflags = 0;
3270 	int error;
3271 
3272 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3273 
3274 	KASSERT(params != NULL, ("no raw xmit params"));
3275 
3276 	wh = mtod(m, struct ieee80211_frame *);
3277 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3278 
3279 	rate = params->ibp_rate0;
3280 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3281 		/* let caller free mbuf */
3282 		return (EINVAL);
3283 	}
3284 
3285 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3286 		xflags |= RT2860_TX_ACK;
3287 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3288 		error = run_sendprot(sc, m, ni,
3289 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3290 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3291 		    rate);
3292 		if (error) {
3293 			/* let caller free mbuf */
3294 			return error;
3295 		}
3296 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3297 	}
3298 
3299 	if (sc->sc_epq[0].tx_nfree == 0) {
3300 		/* let caller free mbuf */
3301 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3302 		DPRINTF("sending raw frame, but tx ring is full\n");
3303 		return (EIO);
3304 	}
3305         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3306         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3307         sc->sc_epq[0].tx_nfree--;
3308 
3309 	txd = (struct rt2870_txd *)&data->desc;
3310 	txd->flags = RT2860_TX_QSEL_EDCA;
3311 	txwi = (struct rt2860_txwi *)(txd + 1);
3312 	txwi->wcid = 0xff;
3313 	txwi->xflags = xflags;
3314 	txwi->txop = opflags;
3315 	txwi->flags = 0;	/* clear leftover garbage bits */
3316 
3317         data->m = m;
3318         data->ni = ni;
3319 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3320 		if (rt2860_rates[ridx].rate == rate)
3321 			break;
3322 	data->ridx = ridx;
3323 
3324         run_set_tx_desc(sc, data);
3325 
3326         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3327             m->m_pkthdr.len, rate);
3328 
3329         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3330 
3331 	usbd_transfer_start(sc->sc_xfer[0]);
3332 
3333         return (0);
3334 }
3335 
3336 static int
3337 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3338     const struct ieee80211_bpf_params *params)
3339 {
3340 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3341 	struct run_softc *sc = ifp->if_softc;
3342 	int error = 0;
3343 
3344 	RUN_LOCK(sc);
3345 
3346 	/* prevent management frames from being sent if we're not ready */
3347 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3348 		error =  ENETDOWN;
3349 		goto done;
3350 	}
3351 
3352 	if (params == NULL) {
3353 		/* tx mgt packet */
3354 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3355 			ifp->if_oerrors++;
3356 			DPRINTF("mgt tx failed\n");
3357 			goto done;
3358 		}
3359 	} else {
3360 		/* tx raw packet with param */
3361 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3362 			ifp->if_oerrors++;
3363 			DPRINTF("tx with param failed\n");
3364 			goto done;
3365 		}
3366 	}
3367 
3368 	ifp->if_opackets++;
3369 
3370 done:
3371 	RUN_UNLOCK(sc);
3372 
3373 	if (error != 0) {
3374 		if(m != NULL)
3375 			m_freem(m);
3376 		ieee80211_free_node(ni);
3377 	}
3378 
3379 	return (error);
3380 }
3381 
3382 static void
3383 run_start(struct ifnet *ifp)
3384 {
3385 	struct run_softc *sc = ifp->if_softc;
3386 	struct ieee80211_node *ni;
3387 	struct mbuf *m;
3388 
3389 	RUN_LOCK(sc);
3390 
3391 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3392 		RUN_UNLOCK(sc);
3393 		return;
3394 	}
3395 
3396 	for (;;) {
3397 		/* send data frames */
3398 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3399 		if (m == NULL)
3400 			break;
3401 
3402 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3403 		if (run_tx(sc, m, ni) != 0) {
3404 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3405 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3406 			break;
3407 		}
3408 	}
3409 
3410 	RUN_UNLOCK(sc);
3411 }
3412 
3413 static int
3414 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3415 {
3416 	struct run_softc *sc = ifp->if_softc;
3417 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3418 	struct ifreq *ifr = (struct ifreq *) data;
3419 	int startall = 0;
3420 	int error = 0;
3421 
3422 	switch (cmd) {
3423 	case SIOCSIFFLAGS:
3424 		RUN_LOCK(sc);
3425 		if (ifp->if_flags & IFF_UP) {
3426 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3427 				startall = 1;
3428 				run_init_locked(sc);
3429 			} else
3430 				run_update_promisc_locked(ifp);
3431 		} else {
3432 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3433 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3434 					run_stop(sc);
3435 			}
3436 		}
3437 		RUN_UNLOCK(sc);
3438 		if (startall)
3439 			ieee80211_start_all(ic);
3440 		break;
3441 	case SIOCGIFMEDIA:
3442 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3443 		break;
3444 	case SIOCGIFADDR:
3445 		error = ether_ioctl(ifp, cmd, data);
3446 		break;
3447 	default:
3448 		error = EINVAL;
3449 		break;
3450 	}
3451 
3452 	return (error);
3453 }
3454 
3455 static void
3456 run_set_agc(struct run_softc *sc, uint8_t agc)
3457 {
3458 	uint8_t bbp;
3459 
3460 	if (sc->mac_ver == 0x3572) {
3461 		run_bbp_read(sc, 27, &bbp);
3462 		bbp &= ~(0x3 << 5);
3463 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3464 		run_bbp_write(sc, 66, agc);
3465 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3466 		run_bbp_write(sc, 66, agc);
3467 	} else
3468 		run_bbp_write(sc, 66, agc);
3469 }
3470 
3471 static void
3472 run_select_chan_group(struct run_softc *sc, int group)
3473 {
3474 	uint32_t tmp;
3475 	uint8_t agc;
3476 
3477 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3478 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3479 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3480 	run_bbp_write(sc, 86, 0x00);
3481 
3482 	if (group == 0) {
3483 		if (sc->ext_2ghz_lna) {
3484 			run_bbp_write(sc, 82, 0x62);
3485 			run_bbp_write(sc, 75, 0x46);
3486 		} else {
3487 			run_bbp_write(sc, 82, 0x84);
3488 			run_bbp_write(sc, 75, 0x50);
3489 		}
3490 	} else {
3491 		if (sc->mac_ver == 0x3572)
3492 			run_bbp_write(sc, 82, 0x94);
3493 		else
3494 			run_bbp_write(sc, 82, 0xf2);
3495 		if (sc->ext_5ghz_lna)
3496 			run_bbp_write(sc, 75, 0x46);
3497 		else
3498 			run_bbp_write(sc, 75, 0x50);
3499 	}
3500 
3501 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3502 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3503 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3504 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3505 
3506 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3507 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3508 	if (sc->nrxchains > 1)
3509 		tmp |= RT2860_LNA_PE1_EN;
3510 	if (group == 0) {	/* 2GHz */
3511 		tmp |= RT2860_PA_PE_G0_EN;
3512 		if (sc->ntxchains > 1)
3513 			tmp |= RT2860_PA_PE_G1_EN;
3514 	} else {		/* 5GHz */
3515 		tmp |= RT2860_PA_PE_A0_EN;
3516 		if (sc->ntxchains > 1)
3517 			tmp |= RT2860_PA_PE_A1_EN;
3518 	}
3519 	if (sc->mac_ver == 0x3572) {
3520 		run_rt3070_rf_write(sc, 8, 0x00);
3521 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3522 		run_rt3070_rf_write(sc, 8, 0x80);
3523 	} else
3524 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3525 
3526 	/* set initial AGC value */
3527 	if (group == 0) {	/* 2GHz band */
3528 		if (sc->mac_ver >= 0x3070)
3529 			agc = 0x1c + sc->lna[0] * 2;
3530 		else
3531 			agc = 0x2e + sc->lna[0];
3532 	} else {		/* 5GHz band */
3533 		if (sc->mac_ver == 0x3572)
3534 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3535 		else
3536 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3537 	}
3538 	run_set_agc(sc, agc);
3539 }
3540 
3541 static void
3542 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3543 {
3544 	const struct rfprog *rfprog = rt2860_rf2850;
3545 	uint32_t r2, r3, r4;
3546 	int8_t txpow1, txpow2;
3547 	int i;
3548 
3549 	/* find the settings for this channel (we know it exists) */
3550 	for (i = 0; rfprog[i].chan != chan; i++);
3551 
3552 	r2 = rfprog[i].r2;
3553 	if (sc->ntxchains == 1)
3554 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3555 	if (sc->nrxchains == 1)
3556 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3557 	else if (sc->nrxchains == 2)
3558 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3559 
3560 	/* use Tx power values from EEPROM */
3561 	txpow1 = sc->txpow1[i];
3562 	txpow2 = sc->txpow2[i];
3563 	if (chan > 14) {
3564 		if (txpow1 >= 0)
3565 			txpow1 = txpow1 << 1 | 1;
3566 		else
3567 			txpow1 = (7 + txpow1) << 1;
3568 		if (txpow2 >= 0)
3569 			txpow2 = txpow2 << 1 | 1;
3570 		else
3571 			txpow2 = (7 + txpow2) << 1;
3572 	}
3573 	r3 = rfprog[i].r3 | txpow1 << 7;
3574 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3575 
3576 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3577 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3578 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3579 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3580 
3581 	run_delay(sc, 10);
3582 
3583 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3584 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3585 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3586 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3587 
3588 	run_delay(sc, 10);
3589 
3590 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3591 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3592 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3593 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3594 }
3595 
3596 static void
3597 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3598 {
3599 	int8_t txpow1, txpow2;
3600 	uint8_t rf;
3601 	int i;
3602 
3603 	/* RT3070 is 2GHz only */
3604 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3605 
3606 	/* find the settings for this channel (we know it exists) */
3607 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3608 
3609 	/* use Tx power values from EEPROM */
3610 	txpow1 = sc->txpow1[i];
3611 	txpow2 = sc->txpow2[i];
3612 
3613 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3614 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3615 	run_rt3070_rf_read(sc, 6, &rf);
3616 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3617 	run_rt3070_rf_write(sc, 6, rf);
3618 
3619 	/* set Tx0 power */
3620 	run_rt3070_rf_read(sc, 12, &rf);
3621 	rf = (rf & ~0x1f) | txpow1;
3622 	run_rt3070_rf_write(sc, 12, rf);
3623 
3624 	/* set Tx1 power */
3625 	run_rt3070_rf_read(sc, 13, &rf);
3626 	rf = (rf & ~0x1f) | txpow2;
3627 	run_rt3070_rf_write(sc, 13, rf);
3628 
3629 	run_rt3070_rf_read(sc, 1, &rf);
3630 	rf &= ~0xfc;
3631 	if (sc->ntxchains == 1)
3632 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3633 	else if (sc->ntxchains == 2)
3634 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3635 	if (sc->nrxchains == 1)
3636 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3637 	else if (sc->nrxchains == 2)
3638 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3639 	run_rt3070_rf_write(sc, 1, rf);
3640 
3641 	/* set RF offset */
3642 	run_rt3070_rf_read(sc, 23, &rf);
3643 	rf = (rf & ~0x7f) | sc->freq;
3644 	run_rt3070_rf_write(sc, 23, rf);
3645 
3646 	/* program RF filter */
3647 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3648 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3649 	run_rt3070_rf_write(sc, 24, rf);
3650 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3651 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3652 	run_rt3070_rf_write(sc, 31, rf);
3653 
3654 	/* enable RF tuning */
3655 	run_rt3070_rf_read(sc, 7, &rf);
3656 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3657 }
3658 
3659 static void
3660 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3661 {
3662 	int8_t txpow1, txpow2;
3663 	uint32_t tmp;
3664 	uint8_t rf;
3665 	int i;
3666 
3667 	/* find the settings for this channel (we know it exists) */
3668 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3669 
3670 	/* use Tx power values from EEPROM */
3671 	txpow1 = sc->txpow1[i];
3672 	txpow2 = sc->txpow2[i];
3673 
3674 	if (chan <= 14) {
3675 		run_bbp_write(sc, 25, sc->bbp25);
3676 		run_bbp_write(sc, 26, sc->bbp26);
3677 	} else {
3678 		/* enable IQ phase correction */
3679 		run_bbp_write(sc, 25, 0x09);
3680 		run_bbp_write(sc, 26, 0xff);
3681 	}
3682 
3683 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3684 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3685 	run_rt3070_rf_read(sc, 6, &rf);
3686 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3687 	rf |= (chan <= 14) ? 0x08 : 0x04;
3688 	run_rt3070_rf_write(sc, 6, rf);
3689 
3690 	/* set PLL mode */
3691 	run_rt3070_rf_read(sc, 5, &rf);
3692 	rf &= ~(0x08 | 0x04);
3693 	rf |= (chan <= 14) ? 0x04 : 0x08;
3694 	run_rt3070_rf_write(sc, 5, rf);
3695 
3696 	/* set Tx power for chain 0 */
3697 	if (chan <= 14)
3698 		rf = 0x60 | txpow1;
3699 	else
3700 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3701 	run_rt3070_rf_write(sc, 12, rf);
3702 
3703 	/* set Tx power for chain 1 */
3704 	if (chan <= 14)
3705 		rf = 0x60 | txpow2;
3706 	else
3707 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3708 	run_rt3070_rf_write(sc, 13, rf);
3709 
3710 	/* set Tx/Rx streams */
3711 	run_rt3070_rf_read(sc, 1, &rf);
3712 	rf &= ~0xfc;
3713 	if (sc->ntxchains == 1)
3714 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3715 	else if (sc->ntxchains == 2)
3716 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3717 	if (sc->nrxchains == 1)
3718 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3719 	else if (sc->nrxchains == 2)
3720 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3721 	run_rt3070_rf_write(sc, 1, rf);
3722 
3723 	/* set RF offset */
3724 	run_rt3070_rf_read(sc, 23, &rf);
3725 	rf = (rf & ~0x7f) | sc->freq;
3726 	run_rt3070_rf_write(sc, 23, rf);
3727 
3728 	/* program RF filter */
3729 	rf = sc->rf24_20mhz;
3730 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3731 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3732 
3733 	/* enable RF tuning */
3734 	run_rt3070_rf_read(sc, 7, &rf);
3735 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3736 	run_rt3070_rf_write(sc, 7, rf);
3737 
3738 	/* TSSI */
3739 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3740 	run_rt3070_rf_write(sc, 9, rf);
3741 
3742 	/* set loop filter 1 */
3743 	run_rt3070_rf_write(sc, 10, 0xf1);
3744 	/* set loop filter 2 */
3745 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3746 
3747 	/* set tx_mx2_ic */
3748 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3749 	/* set tx_mx1_ic */
3750 	if (chan <= 14)
3751 		rf = 0x48 | sc->txmixgain_2ghz;
3752 	else
3753 		rf = 0x78 | sc->txmixgain_5ghz;
3754 	run_rt3070_rf_write(sc, 16, rf);
3755 
3756 	/* set tx_lo1 */
3757 	run_rt3070_rf_write(sc, 17, 0x23);
3758 	/* set tx_lo2 */
3759 	if (chan <= 14)
3760 		rf = 0x93;
3761 	else if (chan <= 64)
3762 		rf = 0xb7;
3763 	else if (chan <= 128)
3764 		rf = 0x74;
3765 	else
3766 		rf = 0x72;
3767 	run_rt3070_rf_write(sc, 19, rf);
3768 
3769 	/* set rx_lo1 */
3770 	if (chan <= 14)
3771 		rf = 0xb3;
3772 	else if (chan <= 64)
3773 		rf = 0xf6;
3774 	else if (chan <= 128)
3775 		rf = 0xf4;
3776 	else
3777 		rf = 0xf3;
3778 	run_rt3070_rf_write(sc, 20, rf);
3779 
3780 	/* set pfd_delay */
3781 	if (chan <= 14)
3782 		rf = 0x15;
3783 	else if (chan <= 64)
3784 		rf = 0x3d;
3785 	else
3786 		rf = 0x01;
3787 	run_rt3070_rf_write(sc, 25, rf);
3788 
3789 	/* set rx_lo2 */
3790 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3791 	/* set ldo_rf_vc */
3792 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3793 	/* set drv_cc */
3794 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3795 
3796 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3797 	tmp &= ~0x8080;
3798 	if (chan <= 14)
3799 		tmp |= 0x80;
3800 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3801 
3802 	/* enable RF tuning */
3803 	run_rt3070_rf_read(sc, 7, &rf);
3804 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3805 
3806 	run_delay(sc, 2);
3807 }
3808 
3809 static void
3810 run_set_rx_antenna(struct run_softc *sc, int aux)
3811 {
3812 	uint32_t tmp;
3813 
3814 	if (aux) {
3815 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3816 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3817 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3818 	} else {
3819 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3820 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3821 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3822 	}
3823 }
3824 
3825 static int
3826 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3827 {
3828 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3829 	uint32_t chan, group;
3830 
3831 	chan = ieee80211_chan2ieee(ic, c);
3832 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3833 		return (EINVAL);
3834 
3835 	if (sc->mac_ver == 0x3572)
3836 		run_rt3572_set_chan(sc, chan);
3837 	else if (sc->mac_ver >= 0x3070)
3838 		run_rt3070_set_chan(sc, chan);
3839 	else
3840 		run_rt2870_set_chan(sc, chan);
3841 
3842 	/* determine channel group */
3843 	if (chan <= 14)
3844 		group = 0;
3845 	else if (chan <= 64)
3846 		group = 1;
3847 	else if (chan <= 128)
3848 		group = 2;
3849 	else
3850 		group = 3;
3851 
3852 	/* XXX necessary only when group has changed! */
3853 	run_select_chan_group(sc, group);
3854 
3855 	run_delay(sc, 10);
3856 
3857 	return (0);
3858 }
3859 
3860 static void
3861 run_set_channel(struct ieee80211com *ic)
3862 {
3863 	struct run_softc *sc = ic->ic_ifp->if_softc;
3864 
3865 	RUN_LOCK(sc);
3866 	run_set_chan(sc, ic->ic_curchan);
3867 	RUN_UNLOCK(sc);
3868 
3869 	return;
3870 }
3871 
3872 static void
3873 run_scan_start(struct ieee80211com *ic)
3874 {
3875 	struct run_softc *sc = ic->ic_ifp->if_softc;
3876 	uint32_t tmp;
3877 
3878 	RUN_LOCK(sc);
3879 
3880 	/* abort TSF synchronization */
3881 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3882 	run_write(sc, RT2860_BCN_TIME_CFG,
3883 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3884 	    RT2860_TBTT_TIMER_EN));
3885 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3886 
3887 	RUN_UNLOCK(sc);
3888 
3889 	return;
3890 }
3891 
3892 static void
3893 run_scan_end(struct ieee80211com *ic)
3894 {
3895 	struct run_softc *sc = ic->ic_ifp->if_softc;
3896 
3897 	RUN_LOCK(sc);
3898 
3899 	run_enable_tsf_sync(sc);
3900 	/* XXX keep local copy */
3901 	run_set_bssid(sc, sc->sc_bssid);
3902 
3903 	RUN_UNLOCK(sc);
3904 
3905 	return;
3906 }
3907 
3908 /*
3909  * Could be called from ieee80211_node_timeout()
3910  * (non-sleepable thread)
3911  */
3912 static void
3913 run_update_beacon(struct ieee80211vap *vap, int item)
3914 {
3915 	struct ieee80211com *ic = vap->iv_ic;
3916 	struct run_softc *sc = ic->ic_ifp->if_softc;
3917 	struct run_vap *rvp = RUN_VAP(vap);
3918 	int mcast = 0;
3919 	uint32_t i;
3920 
3921 	KASSERT(vap != NULL, ("no beacon"));
3922 
3923 	switch (item) {
3924 	case IEEE80211_BEACON_ERP:
3925 		run_updateslot(ic->ic_ifp);
3926 		break;
3927 	case IEEE80211_BEACON_HTINFO:
3928 		run_updateprot(ic);
3929 		break;
3930 	case IEEE80211_BEACON_TIM:
3931 		mcast = 1;	/*TODO*/
3932 		break;
3933 	default:
3934 		break;
3935 	}
3936 
3937 	setbit(rvp->bo.bo_flags, item);
3938 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3939 
3940 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3941 	DPRINTF("cmdq_store=%d\n", i);
3942 	sc->cmdq[i].func = run_update_beacon_cb;
3943 	sc->cmdq[i].arg0 = vap;
3944 	ieee80211_runtask(ic, &sc->cmdq_task);
3945 
3946 	return;
3947 }
3948 
3949 static void
3950 run_update_beacon_cb(void *arg)
3951 {
3952 	struct ieee80211vap *vap = arg;
3953 	struct run_vap *rvp = RUN_VAP(vap);
3954 	struct ieee80211com *ic = vap->iv_ic;
3955 	struct run_softc *sc = ic->ic_ifp->if_softc;
3956 	struct rt2860_txwi txwi;
3957 	struct mbuf *m;
3958 	uint8_t ridx;
3959 
3960 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3961 		return;
3962 
3963 	/*
3964 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
3965 	 * is taking care of apropriate calls.
3966 	 */
3967 	if (rvp->beacon_mbuf == NULL) {
3968 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
3969 		    &rvp->bo);
3970 		if (rvp->beacon_mbuf == NULL)
3971 			return;
3972 	}
3973 	m = rvp->beacon_mbuf;
3974 
3975 	memset(&txwi, 0, sizeof txwi);
3976 	txwi.wcid = 0xff;
3977 	txwi.len = htole16(m->m_pkthdr.len);
3978 	/* send beacons at the lowest available rate */
3979 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3980 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3981 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
3982 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
3983 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
3984 	txwi.txop = RT2860_TX_TXOP_HT;
3985 	txwi.flags = RT2860_TX_TS;
3986 	txwi.xflags = RT2860_TX_NSEQ;
3987 
3988 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
3989 	    (uint8_t *)&txwi, sizeof txwi);
3990 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
3991 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
3992 
3993 	return;
3994 }
3995 
3996 static void
3997 run_updateprot(struct ieee80211com *ic)
3998 {
3999 	struct run_softc *sc = ic->ic_ifp->if_softc;
4000 	uint32_t i;
4001 
4002 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4003 	DPRINTF("cmdq_store=%d\n", i);
4004 	sc->cmdq[i].func = run_updateprot_cb;
4005 	sc->cmdq[i].arg0 = ic;
4006 	ieee80211_runtask(ic, &sc->cmdq_task);
4007 }
4008 
4009 static void
4010 run_updateprot_cb(void *arg)
4011 {
4012 	struct ieee80211com *ic = arg;
4013 	struct run_softc *sc = ic->ic_ifp->if_softc;
4014 	uint32_t tmp;
4015 
4016 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4017 	/* setup protection frame rate (MCS code) */
4018 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4019 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4020 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4021 
4022 	/* CCK frames don't require protection */
4023 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4024 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4025 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4026 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4027 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4028 			tmp |= RT2860_PROT_CTRL_CTS;
4029 	}
4030 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4031 }
4032 
4033 static void
4034 run_usb_timeout_cb(void *arg)
4035 {
4036 	struct ieee80211vap *vap = arg;
4037 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4038 
4039 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4040 
4041 	if(vap->iv_state == IEEE80211_S_RUN &&
4042 	    vap->iv_opmode != IEEE80211_M_STA)
4043 		run_reset_livelock(sc);
4044 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4045 		DPRINTF("timeout caused by scan\n");
4046 		/* cancel bgscan */
4047 		ieee80211_cancel_scan(vap);
4048 	} else
4049 		DPRINTF("timeout by unknown cause\n");
4050 }
4051 
4052 static void
4053 run_reset_livelock(struct run_softc *sc)
4054 {
4055 	uint32_t tmp;
4056 
4057 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4058 
4059 	/*
4060 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4061 	 * can run into a livelock and start sending CTS-to-self frames like
4062 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4063 	 */
4064 	run_read(sc, RT2860_DEBUG, &tmp);
4065 	DPRINTFN(3, "debug reg %08x\n", tmp);
4066 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4067 		DPRINTF("CTS-to-self livelock detected\n");
4068 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4069 		run_delay(sc, 1);
4070 		run_write(sc, RT2860_MAC_SYS_CTRL,
4071 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4072 	}
4073 }
4074 
4075 static void
4076 run_update_promisc_locked(struct ifnet *ifp)
4077 {
4078 	struct run_softc *sc = ifp->if_softc;
4079         uint32_t tmp;
4080 
4081 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4082 
4083 	tmp |= RT2860_DROP_UC_NOME;
4084         if (ifp->if_flags & IFF_PROMISC)
4085 		tmp &= ~RT2860_DROP_UC_NOME;
4086 
4087 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4088 
4089         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4090             "entering" : "leaving");
4091 }
4092 
4093 static void
4094 run_update_promisc(struct ifnet *ifp)
4095 {
4096 	struct run_softc *sc = ifp->if_softc;
4097 
4098 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4099 		return;
4100 
4101 	RUN_LOCK(sc);
4102 	run_update_promisc_locked(ifp);
4103 	RUN_UNLOCK(sc);
4104 }
4105 
4106 static void
4107 run_enable_tsf_sync(struct run_softc *sc)
4108 {
4109 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4110 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4111 	uint32_t tmp;
4112 
4113 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4114 
4115 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4116 	tmp &= ~0x1fffff;
4117 	tmp |= vap->iv_bss->ni_intval * 16;
4118 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4119 
4120 	if (ic->ic_opmode == IEEE80211_M_STA) {
4121 		/*
4122 		 * Local TSF is always updated with remote TSF on beacon
4123 		 * reception.
4124 		 */
4125 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4126 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4127 	        tmp |= RT2860_BCN_TX_EN;
4128 	        /*
4129 	         * Local TSF is updated with remote TSF on beacon reception
4130 	         * only if the remote TSF is greater than local TSF.
4131 	         */
4132 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4133 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4134 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4135 	        tmp |= RT2860_BCN_TX_EN;
4136 	        /* SYNC with nobody */
4137 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4138 	} else {
4139 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4140 		return;
4141 	}
4142 
4143 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4144 }
4145 
4146 static void
4147 run_enable_mrr(struct run_softc *sc)
4148 {
4149 #define CCK(mcs)	(mcs)
4150 #define OFDM(mcs)	(1 << 3 | (mcs))
4151 	run_write(sc, RT2860_LG_FBK_CFG0,
4152 	    OFDM(6) << 28 |	/* 54->48 */
4153 	    OFDM(5) << 24 |	/* 48->36 */
4154 	    OFDM(4) << 20 |	/* 36->24 */
4155 	    OFDM(3) << 16 |	/* 24->18 */
4156 	    OFDM(2) << 12 |	/* 18->12 */
4157 	    OFDM(1) <<  8 |	/* 12-> 9 */
4158 	    OFDM(0) <<  4 |	/*  9-> 6 */
4159 	    OFDM(0));		/*  6-> 6 */
4160 
4161 	run_write(sc, RT2860_LG_FBK_CFG1,
4162 	    CCK(2) << 12 |	/* 11->5.5 */
4163 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4164 	    CCK(0) <<  4 |	/*   2-> 1 */
4165 	    CCK(0));		/*   1-> 1 */
4166 #undef OFDM
4167 #undef CCK
4168 }
4169 
4170 static void
4171 run_set_txpreamble(struct run_softc *sc)
4172 {
4173 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4174 	uint32_t tmp;
4175 
4176 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4177 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4178 		tmp |= RT2860_CCK_SHORT_EN;
4179 	else
4180 		tmp &= ~RT2860_CCK_SHORT_EN;
4181 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4182 }
4183 
4184 static void
4185 run_set_basicrates(struct run_softc *sc)
4186 {
4187 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4188 
4189 	/* set basic rates mask */
4190 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4191 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4192 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4193 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4194 	else	/* 11g */
4195 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4196 }
4197 
4198 static void
4199 run_set_leds(struct run_softc *sc, uint16_t which)
4200 {
4201 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4202 	    which | (sc->leds & 0x7f));
4203 }
4204 
4205 static void
4206 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4207 {
4208 	run_write(sc, RT2860_MAC_BSSID_DW0,
4209 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4210 	run_write(sc, RT2860_MAC_BSSID_DW1,
4211 	    bssid[4] | bssid[5] << 8);
4212 }
4213 
4214 static void
4215 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4216 {
4217 	run_write(sc, RT2860_MAC_ADDR_DW0,
4218 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4219 	run_write(sc, RT2860_MAC_ADDR_DW1,
4220 	    addr[4] | addr[5] << 8 | 0xff << 16);
4221 }
4222 
4223 static void
4224 run_updateslot(struct ifnet *ifp)
4225 {
4226 	struct run_softc *sc = ifp->if_softc;
4227 	struct ieee80211com *ic = ifp->if_l2com;
4228 	uint32_t i;
4229 
4230 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4231 	DPRINTF("cmdq_store=%d\n", i);
4232 	sc->cmdq[i].func = run_updateslot_cb;
4233 	sc->cmdq[i].arg0 = ifp;
4234 	ieee80211_runtask(ic, &sc->cmdq_task);
4235 
4236 	return;
4237 }
4238 
4239 /* ARGSUSED */
4240 static void
4241 run_updateslot_cb(void *arg)
4242 {
4243 	struct ifnet *ifp = arg;
4244 	struct run_softc *sc = ifp->if_softc;
4245 	struct ieee80211com *ic = ifp->if_l2com;
4246 	uint32_t tmp;
4247 
4248 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4249 	tmp &= ~0xff;
4250 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4251 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4252 }
4253 
4254 static void
4255 run_update_mcast(struct ifnet *ifp)
4256 {
4257 	/* h/w filter supports getting everything or nothing */
4258 	ifp->if_flags |= IFF_ALLMULTI;
4259 }
4260 
4261 static int8_t
4262 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4263 {
4264 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4265 	struct ieee80211_channel *c = ic->ic_curchan;
4266 	int delta;
4267 
4268 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4269 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4270 		delta = sc->rssi_5ghz[rxchain];
4271 
4272 		/* determine channel group */
4273 		if (chan <= 64)
4274 			delta -= sc->lna[1];
4275 		else if (chan <= 128)
4276 			delta -= sc->lna[2];
4277 		else
4278 			delta -= sc->lna[3];
4279 	} else
4280 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4281 
4282 	return (-12 - delta - rssi);
4283 }
4284 
4285 static int
4286 run_bbp_init(struct run_softc *sc)
4287 {
4288 	int i, error, ntries;
4289 	uint8_t bbp0;
4290 
4291 	/* wait for BBP to wake up */
4292 	for (ntries = 0; ntries < 20; ntries++) {
4293 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4294 			return error;
4295 		if (bbp0 != 0 && bbp0 != 0xff)
4296 			break;
4297 	}
4298 	if (ntries == 20)
4299 		return (ETIMEDOUT);
4300 
4301 	/* initialize BBP registers to default values */
4302 	for (i = 0; i < nitems(rt2860_def_bbp); i++) {
4303 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4304 		    rt2860_def_bbp[i].val);
4305 	}
4306 
4307 	/* fix BBP84 for RT2860E */
4308 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4309 		run_bbp_write(sc, 84, 0x19);
4310 
4311 	if (sc->mac_ver >= 0x3070) {
4312 		run_bbp_write(sc, 79, 0x13);
4313 		run_bbp_write(sc, 80, 0x05);
4314 		run_bbp_write(sc, 81, 0x33);
4315 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4316 		run_bbp_write(sc, 69, 0x16);
4317 		run_bbp_write(sc, 73, 0x12);
4318 	}
4319 	return (0);
4320 }
4321 
4322 static int
4323 run_rt3070_rf_init(struct run_softc *sc)
4324 {
4325 	uint32_t tmp;
4326 	uint8_t rf, target, bbp4;
4327 	int i;
4328 
4329 	run_rt3070_rf_read(sc, 30, &rf);
4330 	/* toggle RF R30 bit 7 */
4331 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4332 	run_delay(sc, 10);
4333 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4334 
4335 	/* initialize RF registers to default value */
4336 	if (sc->mac_ver == 0x3572) {
4337 		for (i = 0; i < nitems(rt3572_def_rf); i++) {
4338 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4339 			    rt3572_def_rf[i].val);
4340 		}
4341 	} else {
4342 		for (i = 0; i < nitems(rt3070_def_rf); i++) {
4343 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4344 			    rt3070_def_rf[i].val);
4345 		}
4346 	}
4347 
4348 	if (sc->mac_ver == 0x3070) {
4349 		/* change voltage from 1.2V to 1.35V for RT3070 */
4350 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4351 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4352 		run_write(sc, RT3070_LDO_CFG0, tmp);
4353 
4354 	} else if (sc->mac_ver == 0x3071) {
4355 		run_rt3070_rf_read(sc, 6, &rf);
4356 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4357 		run_rt3070_rf_write(sc, 31, 0x14);
4358 
4359 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4360 		tmp &= ~0x1f000000;
4361 		if (sc->mac_rev < 0x0211)
4362 			tmp |= 0x0d000000;	/* 1.3V */
4363 		else
4364 			tmp |= 0x01000000;	/* 1.2V */
4365 		run_write(sc, RT3070_LDO_CFG0, tmp);
4366 
4367 		/* patch LNA_PE_G1 */
4368 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4369 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4370 
4371 	} else if (sc->mac_ver == 0x3572) {
4372 		run_rt3070_rf_read(sc, 6, &rf);
4373 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4374 
4375 		/* increase voltage from 1.2V to 1.35V */
4376 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4377 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4378 		run_write(sc, RT3070_LDO_CFG0, tmp);
4379 
4380 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4381 			run_delay(sc, 1);	/* wait for 1msec */
4382 			/* decrease voltage back to 1.2V */
4383 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4384 			run_write(sc, RT3070_LDO_CFG0, tmp);
4385 		}
4386 	}
4387 
4388 	/* select 20MHz bandwidth */
4389 	run_rt3070_rf_read(sc, 31, &rf);
4390 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4391 
4392 	/* calibrate filter for 20MHz bandwidth */
4393 	sc->rf24_20mhz = 0x1f;	/* default value */
4394 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4395 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4396 
4397 	/* select 40MHz bandwidth */
4398 	run_bbp_read(sc, 4, &bbp4);
4399 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4400 	run_rt3070_rf_read(sc, 31, &rf);
4401 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4402 
4403 	/* calibrate filter for 40MHz bandwidth */
4404 	sc->rf24_40mhz = 0x2f;	/* default value */
4405 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4406 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4407 
4408 	/* go back to 20MHz bandwidth */
4409 	run_bbp_read(sc, 4, &bbp4);
4410 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4411 
4412 	if (sc->mac_ver == 0x3572) {
4413 		/* save default BBP registers 25 and 26 values */
4414 		run_bbp_read(sc, 25, &sc->bbp25);
4415 		run_bbp_read(sc, 26, &sc->bbp26);
4416 	} else if (sc->mac_rev < 0x0211)
4417 		run_rt3070_rf_write(sc, 27, 0x03);
4418 
4419 	run_read(sc, RT3070_OPT_14, &tmp);
4420 	run_write(sc, RT3070_OPT_14, tmp | 1);
4421 
4422 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4423 		run_rt3070_rf_read(sc, 17, &rf);
4424 		rf &= ~RT3070_TX_LO1;
4425 		if ((sc->mac_ver == 0x3070 ||
4426 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4427 		    !sc->ext_2ghz_lna)
4428 			rf |= 0x20;	/* fix for long range Rx issue */
4429 		if (sc->txmixgain_2ghz >= 1)
4430 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4431 		run_rt3070_rf_write(sc, 17, rf);
4432 	}
4433 
4434 	if (sc->mac_rev == 0x3071) {
4435 		run_rt3070_rf_read(sc, 1, &rf);
4436 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4437 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4438 		run_rt3070_rf_write(sc, 1, rf);
4439 
4440 		run_rt3070_rf_read(sc, 15, &rf);
4441 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4442 
4443 		run_rt3070_rf_read(sc, 20, &rf);
4444 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4445 
4446 		run_rt3070_rf_read(sc, 21, &rf);
4447 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4448 	}
4449 
4450 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4451 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4452 		run_rt3070_rf_read(sc, 27, &rf);
4453 		rf &= ~0x77;
4454 		if (sc->mac_rev < 0x0211)
4455 			rf |= 0x03;
4456 		run_rt3070_rf_write(sc, 27, rf);
4457 	}
4458 	return (0);
4459 }
4460 
4461 static int
4462 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4463     uint8_t *val)
4464 {
4465 	uint8_t rf22, rf24;
4466 	uint8_t bbp55_pb, bbp55_sb, delta;
4467 	int ntries;
4468 
4469 	/* program filter */
4470 	run_rt3070_rf_read(sc, 24, &rf24);
4471 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4472 	run_rt3070_rf_write(sc, 24, rf24);
4473 
4474 	/* enable baseband loopback mode */
4475 	run_rt3070_rf_read(sc, 22, &rf22);
4476 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4477 
4478 	/* set power and frequency of passband test tone */
4479 	run_bbp_write(sc, 24, 0x00);
4480 	for (ntries = 0; ntries < 100; ntries++) {
4481 		/* transmit test tone */
4482 		run_bbp_write(sc, 25, 0x90);
4483 		run_delay(sc, 10);
4484 		/* read received power */
4485 		run_bbp_read(sc, 55, &bbp55_pb);
4486 		if (bbp55_pb != 0)
4487 			break;
4488 	}
4489 	if (ntries == 100)
4490 		return ETIMEDOUT;
4491 
4492 	/* set power and frequency of stopband test tone */
4493 	run_bbp_write(sc, 24, 0x06);
4494 	for (ntries = 0; ntries < 100; ntries++) {
4495 		/* transmit test tone */
4496 		run_bbp_write(sc, 25, 0x90);
4497 		run_delay(sc, 10);
4498 		/* read received power */
4499 		run_bbp_read(sc, 55, &bbp55_sb);
4500 
4501 		delta = bbp55_pb - bbp55_sb;
4502 		if (delta > target)
4503 			break;
4504 
4505 		/* reprogram filter */
4506 		rf24++;
4507 		run_rt3070_rf_write(sc, 24, rf24);
4508 	}
4509 	if (ntries < 100) {
4510 		if (rf24 != init)
4511 			rf24--;	/* backtrack */
4512 		*val = rf24;
4513 		run_rt3070_rf_write(sc, 24, rf24);
4514 	}
4515 
4516 	/* restore initial state */
4517 	run_bbp_write(sc, 24, 0x00);
4518 
4519 	/* disable baseband loopback mode */
4520 	run_rt3070_rf_read(sc, 22, &rf22);
4521 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4522 
4523 	return (0);
4524 }
4525 
4526 static void
4527 run_rt3070_rf_setup(struct run_softc *sc)
4528 {
4529 	uint8_t bbp, rf;
4530 	int i;
4531 
4532 	if (sc->mac_ver == 0x3572) {
4533 		/* enable DC filter */
4534 		if (sc->mac_rev >= 0x0201)
4535 			run_bbp_write(sc, 103, 0xc0);
4536 
4537 		run_bbp_read(sc, 138, &bbp);
4538 		if (sc->ntxchains == 1)
4539 			bbp |= 0x20;	/* turn off DAC1 */
4540 		if (sc->nrxchains == 1)
4541 			bbp &= ~0x02;	/* turn off ADC1 */
4542 		run_bbp_write(sc, 138, bbp);
4543 
4544 		if (sc->mac_rev >= 0x0211) {
4545 			/* improve power consumption */
4546 			run_bbp_read(sc, 31, &bbp);
4547 			run_bbp_write(sc, 31, bbp & ~0x03);
4548 		}
4549 
4550 		run_rt3070_rf_read(sc, 16, &rf);
4551 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4552 		run_rt3070_rf_write(sc, 16, rf);
4553 
4554 	} else if (sc->mac_ver == 0x3071) {
4555 		/* enable DC filter */
4556 		if (sc->mac_rev >= 0x0201)
4557 			run_bbp_write(sc, 103, 0xc0);
4558 
4559 		run_bbp_read(sc, 138, &bbp);
4560 		if (sc->ntxchains == 1)
4561 			bbp |= 0x20;	/* turn off DAC1 */
4562 		if (sc->nrxchains == 1)
4563 			bbp &= ~0x02;	/* turn off ADC1 */
4564 		run_bbp_write(sc, 138, bbp);
4565 
4566 		if (sc->mac_rev >= 0x0211) {
4567 			/* improve power consumption */
4568 			run_bbp_read(sc, 31, &bbp);
4569 			run_bbp_write(sc, 31, bbp & ~0x03);
4570 		}
4571 
4572 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4573 		if (sc->mac_rev < 0x0211) {
4574 			run_write(sc, RT2860_TX_SW_CFG2,
4575 			    sc->patch_dac ? 0x2c : 0x0f);
4576 		} else
4577 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4578 
4579 	} else if (sc->mac_ver == 0x3070) {
4580 		if (sc->mac_rev >= 0x0201) {
4581 			/* enable DC filter */
4582 			run_bbp_write(sc, 103, 0xc0);
4583 
4584 			/* improve power consumption */
4585 			run_bbp_read(sc, 31, &bbp);
4586 			run_bbp_write(sc, 31, bbp & ~0x03);
4587 		}
4588 
4589 		if (sc->mac_rev < 0x0211) {
4590 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4591 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4592 		} else
4593 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4594 	}
4595 
4596 	/* initialize RF registers from ROM for >=RT3071*/
4597 	if (sc->mac_ver >= 0x3071) {
4598 		for (i = 0; i < 10; i++) {
4599 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4600 				continue;
4601 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4602 		}
4603 	}
4604 }
4605 
4606 static int
4607 run_txrx_enable(struct run_softc *sc)
4608 {
4609 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4610 	uint32_t tmp;
4611 	int error, ntries;
4612 
4613 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4614 	for (ntries = 0; ntries < 200; ntries++) {
4615 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4616 			return error;
4617 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4618 			break;
4619 		run_delay(sc, 50);
4620 	}
4621 	if (ntries == 200)
4622 		return ETIMEDOUT;
4623 
4624 	run_delay(sc, 50);
4625 
4626 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4627 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4628 
4629 	/* enable Rx bulk aggregation (set timeout and limit) */
4630 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4631 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4632 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4633 
4634 	/* set Rx filter */
4635 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4636 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4637 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4638 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4639 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4640 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4641 		if (ic->ic_opmode == IEEE80211_M_STA)
4642 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4643 	}
4644 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4645 
4646 	run_write(sc, RT2860_MAC_SYS_CTRL,
4647 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4648 
4649 	return (0);
4650 }
4651 
4652 static void
4653 run_init_locked(struct run_softc *sc)
4654 {
4655 	struct ifnet *ifp = sc->sc_ifp;
4656 	struct ieee80211com *ic = ifp->if_l2com;
4657 	uint32_t tmp;
4658 	uint8_t bbp1, bbp3;
4659 	int i;
4660 	int ridx;
4661 	int ntries;
4662 
4663 	if (ic->ic_nrunning > 1)
4664 		return;
4665 
4666 	run_stop(sc);
4667 
4668 	for (ntries = 0; ntries < 100; ntries++) {
4669 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4670 			goto fail;
4671 		if (tmp != 0 && tmp != 0xffffffff)
4672 			break;
4673 		run_delay(sc, 10);
4674 	}
4675 	if (ntries == 100)
4676 		goto fail;
4677 
4678 	for (i = 0; i != RUN_EP_QUEUES; i++)
4679 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4680 
4681 	run_set_macaddr(sc, IF_LLADDR(ifp));
4682 
4683 	for (ntries = 0; ntries < 100; ntries++) {
4684 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4685 			goto fail;
4686 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4687 			break;
4688 		run_delay(sc, 10);
4689 	}
4690 	if (ntries == 100) {
4691 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4692 		goto fail;
4693 	}
4694 	tmp &= 0xff0;
4695 	tmp |= RT2860_TX_WB_DDONE;
4696 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4697 
4698 	/* turn off PME_OEN to solve high-current issue */
4699 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4700 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4701 
4702 	run_write(sc, RT2860_MAC_SYS_CTRL,
4703 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4704 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4705 
4706 	if (run_reset(sc) != 0) {
4707 		device_printf(sc->sc_dev, "could not reset chipset\n");
4708 		goto fail;
4709 	}
4710 
4711 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4712 
4713 	/* init Tx power for all Tx rates (from EEPROM) */
4714 	for (ridx = 0; ridx < 5; ridx++) {
4715 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4716 			continue;
4717 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4718 	}
4719 
4720 	for (i = 0; i < nitems(rt2870_def_mac); i++)
4721 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4722 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4723 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4724 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4725 
4726 	if (sc->mac_ver >= 0x3070) {
4727 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4728 		run_write(sc, RT2860_TX_SW_CFG0,
4729 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4730 	}
4731 
4732 	/* wait while MAC is busy */
4733 	for (ntries = 0; ntries < 100; ntries++) {
4734 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4735 			goto fail;
4736 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4737 			break;
4738 		run_delay(sc, 10);
4739 	}
4740 	if (ntries == 100)
4741 		goto fail;
4742 
4743 	/* clear Host to MCU mailbox */
4744 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4745 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4746 	run_delay(sc, 10);
4747 
4748 	if (run_bbp_init(sc) != 0) {
4749 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4750 		goto fail;
4751 	}
4752 
4753 	/* abort TSF synchronization */
4754 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4755 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4756 	    RT2860_TBTT_TIMER_EN);
4757 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4758 
4759 	/* clear RX WCID search table */
4760 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4761 	/* clear WCID attribute table */
4762 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4763 
4764 	/* hostapd sets a key before init. So, don't clear it. */
4765 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4766 		/* clear shared key table */
4767 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4768 		/* clear shared key mode */
4769 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4770 	}
4771 
4772 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4773 	tmp = (tmp & ~0xff) | 0x1e;
4774 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4775 
4776 	if (sc->mac_rev != 0x0101)
4777 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4778 
4779 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4780 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4781 
4782 	/* write vendor-specific BBP values (from EEPROM) */
4783 	for (i = 0; i < 10; i++) {
4784 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4785 			continue;
4786 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4787 	}
4788 
4789 	/* select Main antenna for 1T1R devices */
4790 	if (sc->rf_rev == RT3070_RF_3020)
4791 		run_set_rx_antenna(sc, 0);
4792 
4793 	/* send LEDs operating mode to microcontroller */
4794 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4795 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4796 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4797 
4798 	if (sc->mac_ver >= 0x3070)
4799 		run_rt3070_rf_init(sc);
4800 
4801 	/* disable non-existing Rx chains */
4802 	run_bbp_read(sc, 3, &bbp3);
4803 	bbp3 &= ~(1 << 3 | 1 << 4);
4804 	if (sc->nrxchains == 2)
4805 		bbp3 |= 1 << 3;
4806 	else if (sc->nrxchains == 3)
4807 		bbp3 |= 1 << 4;
4808 	run_bbp_write(sc, 3, bbp3);
4809 
4810 	/* disable non-existing Tx chains */
4811 	run_bbp_read(sc, 1, &bbp1);
4812 	if (sc->ntxchains == 1)
4813 		bbp1 &= ~(1 << 3 | 1 << 4);
4814 	run_bbp_write(sc, 1, bbp1);
4815 
4816 	if (sc->mac_ver >= 0x3070)
4817 		run_rt3070_rf_setup(sc);
4818 
4819 	/* select default channel */
4820 	run_set_chan(sc, ic->ic_curchan);
4821 
4822 	/* setup initial protection mode */
4823 	run_updateprot_cb(ic);
4824 
4825 	/* turn radio LED on */
4826 	run_set_leds(sc, RT2860_LED_RADIO);
4827 
4828 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4829 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4830 	sc->cmdq_run = RUN_CMDQ_GO;
4831 
4832 	for (i = 0; i != RUN_N_XFER; i++)
4833 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4834 
4835 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4836 
4837 	if (run_txrx_enable(sc) != 0)
4838 		goto fail;
4839 
4840 	return;
4841 
4842 fail:
4843 	run_stop(sc);
4844 }
4845 
4846 static void
4847 run_init(void *arg)
4848 {
4849 	struct run_softc *sc = arg;
4850 	struct ifnet *ifp = sc->sc_ifp;
4851 	struct ieee80211com *ic = ifp->if_l2com;
4852 
4853 	RUN_LOCK(sc);
4854 	run_init_locked(sc);
4855 	RUN_UNLOCK(sc);
4856 
4857 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4858 		ieee80211_start_all(ic);
4859 }
4860 
4861 static void
4862 run_stop(void *arg)
4863 {
4864 	struct run_softc *sc = (struct run_softc *)arg;
4865 	struct ifnet *ifp = sc->sc_ifp;
4866 	uint32_t tmp;
4867 	int i;
4868 	int ntries;
4869 
4870 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4871 
4872 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4873 		run_set_leds(sc, 0);	/* turn all LEDs off */
4874 
4875 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4876 
4877 	sc->ratectl_run = RUN_RATECTL_OFF;
4878 	sc->cmdq_run = sc->cmdq_key_set;
4879 
4880 	RUN_UNLOCK(sc);
4881 
4882 	for(i = 0; i < RUN_N_XFER; i++)
4883 		usbd_transfer_drain(sc->sc_xfer[i]);
4884 
4885 	RUN_LOCK(sc);
4886 
4887 	if (sc->rx_m != NULL) {
4888 		m_free(sc->rx_m);
4889 		sc->rx_m = NULL;
4890 	}
4891 
4892 	/* disable Tx/Rx */
4893 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4894 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4895 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4896 
4897 	/* wait for pending Tx to complete */
4898 	for (ntries = 0; ntries < 100; ntries++) {
4899 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4900 			DPRINTF("Cannot read Tx queue count\n");
4901 			break;
4902 		}
4903 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4904 			DPRINTF("All Tx cleared\n");
4905 			break;
4906 		}
4907 		run_delay(sc, 10);
4908 	}
4909 	if (ntries >= 100)
4910 		DPRINTF("There are still pending Tx\n");
4911 	run_delay(sc, 10);
4912 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4913 
4914 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4915 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4916 
4917 	for (i = 0; i != RUN_EP_QUEUES; i++)
4918 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4919 
4920 	return;
4921 }
4922 
4923 static void
4924 run_delay(struct run_softc *sc, unsigned int ms)
4925 {
4926 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4927 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4928 }
4929 
4930 static device_method_t run_methods[] = {
4931 	/* Device interface */
4932 	DEVMETHOD(device_probe,		run_match),
4933 	DEVMETHOD(device_attach,	run_attach),
4934 	DEVMETHOD(device_detach,	run_detach),
4935 
4936 	{ 0, 0 }
4937 };
4938 
4939 static driver_t run_driver = {
4940 	"run",
4941 	run_methods,
4942 	sizeof(struct run_softc)
4943 };
4944 
4945 static devclass_t run_devclass;
4946 
4947 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4948 MODULE_DEPEND(run, wlan, 1, 1, 1);
4949 MODULE_DEPEND(run, usb, 1, 1, 1);
4950 MODULE_DEPEND(run, firmware, 1, 1, 1);
4951 MODULE_VERSION(run, 1);
4952