xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_regdomain.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_ratectl.h>
67 
68 #include <dev/usb/usb.h>
69 #include <dev/usb/usbdi.h>
70 #include "usbdevs.h"
71 
72 #define USB_DEBUG_VAR run_debug
73 #include <dev/usb/usb_debug.h>
74 
75 #include <dev/usb/wlan/if_runreg.h>
76 #include <dev/usb/wlan/if_runvar.h>
77 
78 #define	N(_a) ((int)(sizeof((_a)) / sizeof((_a)[0])))
79 
80 #ifdef	USB_DEBUG
81 #define RUN_DEBUG
82 #endif
83 
84 #ifdef	RUN_DEBUG
85 int run_debug = 0;
86 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
87 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
88     "run debug level");
89 #endif
90 
91 #define IEEE80211_HAS_ADDR4(wh) \
92 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
93 
94 /*
95  * Because of LOR in run_key_delete(), use atomic instead.
96  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
97  */
98 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
99 
100 static const STRUCT_USB_HOST_ID run_devs[] = {
101 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
102     RUN_DEV(ABOCOM,		RT2770),
103     RUN_DEV(ABOCOM,		RT2870),
104     RUN_DEV(ABOCOM,		RT3070),
105     RUN_DEV(ABOCOM,		RT3071),
106     RUN_DEV(ABOCOM,		RT3072),
107     RUN_DEV(ABOCOM2,		RT2870_1),
108     RUN_DEV(ACCTON,		RT2770),
109     RUN_DEV(ACCTON,		RT2870_1),
110     RUN_DEV(ACCTON,		RT2870_2),
111     RUN_DEV(ACCTON,		RT2870_3),
112     RUN_DEV(ACCTON,		RT2870_4),
113     RUN_DEV(ACCTON,		RT2870_5),
114     RUN_DEV(ACCTON,		RT3070),
115     RUN_DEV(ACCTON,		RT3070_1),
116     RUN_DEV(ACCTON,		RT3070_2),
117     RUN_DEV(ACCTON,		RT3070_3),
118     RUN_DEV(ACCTON,		RT3070_4),
119     RUN_DEV(ACCTON,		RT3070_5),
120     RUN_DEV(AIRTIES,		RT3070),
121     RUN_DEV(ALLWIN,		RT2070),
122     RUN_DEV(ALLWIN,		RT2770),
123     RUN_DEV(ALLWIN,		RT2870),
124     RUN_DEV(ALLWIN,		RT3070),
125     RUN_DEV(ALLWIN,		RT3071),
126     RUN_DEV(ALLWIN,		RT3072),
127     RUN_DEV(ALLWIN,		RT3572),
128     RUN_DEV(AMIGO,		RT2870_1),
129     RUN_DEV(AMIGO,		RT2870_2),
130     RUN_DEV(AMIT,		CGWLUSB2GNR),
131     RUN_DEV(AMIT,		RT2870_1),
132     RUN_DEV(AMIT2,		RT2870),
133     RUN_DEV(ASUS,		RT2870_1),
134     RUN_DEV(ASUS,		RT2870_2),
135     RUN_DEV(ASUS,		RT2870_3),
136     RUN_DEV(ASUS,		RT2870_4),
137     RUN_DEV(ASUS,		RT2870_5),
138     RUN_DEV(ASUS,		USBN13),
139     RUN_DEV(ASUS,		RT3070_1),
140     RUN_DEV(ASUS,		USB_N53),
141     RUN_DEV(ASUS2,		USBN11),
142     RUN_DEV(AZUREWAVE,		RT2870_1),
143     RUN_DEV(AZUREWAVE,		RT2870_2),
144     RUN_DEV(AZUREWAVE,		RT3070_1),
145     RUN_DEV(AZUREWAVE,		RT3070_2),
146     RUN_DEV(AZUREWAVE,		RT3070_3),
147     RUN_DEV(BELKIN,		F5D8053V3),
148     RUN_DEV(BELKIN,		F5D8055),
149     RUN_DEV(BELKIN,		F5D8055V2),
150     RUN_DEV(BELKIN,		F6D4050V1),
151     RUN_DEV(BELKIN,		F6D4050V2),
152     RUN_DEV(BELKIN,		RT2870_1),
153     RUN_DEV(BELKIN,		RT2870_2),
154     RUN_DEV(CISCOLINKSYS,	AE1000),
155     RUN_DEV(CISCOLINKSYS2,	RT3070),
156     RUN_DEV(CISCOLINKSYS3,	RT3070),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
162     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
163     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
164     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
165     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
166     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
167     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
168     RUN_DEV(COREGA,		CGWLUSB300GNM),
169     RUN_DEV(COREGA,		RT2870_1),
170     RUN_DEV(COREGA,		RT2870_2),
171     RUN_DEV(COREGA,		RT2870_3),
172     RUN_DEV(COREGA,		RT3070),
173     RUN_DEV(CYBERTAN,		RT2870),
174     RUN_DEV(DLINK,		RT2870),
175     RUN_DEV(DLINK,		RT3072),
176     RUN_DEV(DLINK,		DWA127),
177     RUN_DEV(DLINK2,		DWA130),
178     RUN_DEV(DLINK2,		RT2870_1),
179     RUN_DEV(DLINK2,		RT2870_2),
180     RUN_DEV(DLINK2,		RT3070_1),
181     RUN_DEV(DLINK2,		RT3070_2),
182     RUN_DEV(DLINK2,		RT3070_3),
183     RUN_DEV(DLINK2,		RT3070_4),
184     RUN_DEV(DLINK2,		RT3070_5),
185     RUN_DEV(DLINK2,		RT3072),
186     RUN_DEV(DLINK2,		RT3072_1),
187     RUN_DEV(EDIMAX,		EW7717),
188     RUN_DEV(EDIMAX,		EW7718),
189     RUN_DEV(EDIMAX,		RT2870_1),
190     RUN_DEV(ENCORE,		RT3070_1),
191     RUN_DEV(ENCORE,		RT3070_2),
192     RUN_DEV(ENCORE,		RT3070_3),
193     RUN_DEV(GIGABYTE,		GNWB31N),
194     RUN_DEV(GIGABYTE,		GNWB32L),
195     RUN_DEV(GIGABYTE,		RT2870_1),
196     RUN_DEV(GIGASET,		RT3070_1),
197     RUN_DEV(GIGASET,		RT3070_2),
198     RUN_DEV(GUILLEMOT,		HWNU300),
199     RUN_DEV(HAWKING,		HWUN2),
200     RUN_DEV(HAWKING,		RT2870_1),
201     RUN_DEV(HAWKING,		RT2870_2),
202     RUN_DEV(HAWKING,		RT3070),
203     RUN_DEV(IODATA,		RT3072_1),
204     RUN_DEV(IODATA,		RT3072_2),
205     RUN_DEV(IODATA,		RT3072_3),
206     RUN_DEV(IODATA,		RT3072_4),
207     RUN_DEV(LINKSYS4,		RT3070),
208     RUN_DEV(LINKSYS4,		WUSB100),
209     RUN_DEV(LINKSYS4,		WUSB54GCV3),
210     RUN_DEV(LINKSYS4,		WUSB600N),
211     RUN_DEV(LINKSYS4,		WUSB600NV2),
212     RUN_DEV(LOGITEC,		RT2870_1),
213     RUN_DEV(LOGITEC,		RT2870_2),
214     RUN_DEV(LOGITEC,		RT2870_3),
215     RUN_DEV(LOGITEC,		LANW300NU2),
216     RUN_DEV(LOGITEC,		LANW150NU2),
217     RUN_DEV(LOGITEC,		LANW300NU2S),
218     RUN_DEV(MELCO,		RT2870_1),
219     RUN_DEV(MELCO,		RT2870_2),
220     RUN_DEV(MELCO,		WLIUCAG300N),
221     RUN_DEV(MELCO,		WLIUCG300N),
222     RUN_DEV(MELCO,		WLIUCG301N),
223     RUN_DEV(MELCO,		WLIUCGN),
224     RUN_DEV(MELCO,		WLIUCGNM),
225     RUN_DEV(MELCO,		WLIUCGNM2),
226     RUN_DEV(MOTOROLA4,		RT2770),
227     RUN_DEV(MOTOROLA4,		RT3070),
228     RUN_DEV(MSI,		RT3070_1),
229     RUN_DEV(MSI,		RT3070_2),
230     RUN_DEV(MSI,		RT3070_3),
231     RUN_DEV(MSI,		RT3070_4),
232     RUN_DEV(MSI,		RT3070_5),
233     RUN_DEV(MSI,		RT3070_6),
234     RUN_DEV(MSI,		RT3070_7),
235     RUN_DEV(MSI,		RT3070_8),
236     RUN_DEV(MSI,		RT3070_9),
237     RUN_DEV(MSI,		RT3070_10),
238     RUN_DEV(MSI,		RT3070_11),
239     RUN_DEV(OVISLINK,		RT3072),
240     RUN_DEV(PARA,		RT3070),
241     RUN_DEV(PEGATRON,		RT2870),
242     RUN_DEV(PEGATRON,		RT3070),
243     RUN_DEV(PEGATRON,		RT3070_2),
244     RUN_DEV(PEGATRON,		RT3070_3),
245     RUN_DEV(PHILIPS,		RT2870),
246     RUN_DEV(PLANEX2,		GWUS300MINIS),
247     RUN_DEV(PLANEX2,		GWUSMICRON),
248     RUN_DEV(PLANEX2,		RT2870),
249     RUN_DEV(PLANEX2,		RT3070),
250     RUN_DEV(QCOM,		RT2870),
251     RUN_DEV(QUANTA,		RT3070),
252     RUN_DEV(RALINK,		RT2070),
253     RUN_DEV(RALINK,		RT2770),
254     RUN_DEV(RALINK,		RT2870),
255     RUN_DEV(RALINK,		RT3070),
256     RUN_DEV(RALINK,		RT3071),
257     RUN_DEV(RALINK,		RT3072),
258     RUN_DEV(RALINK,		RT3370),
259     RUN_DEV(RALINK,		RT3572),
260     RUN_DEV(RALINK,		RT8070),
261     RUN_DEV(SAMSUNG,		WIS09ABGN),
262     RUN_DEV(SAMSUNG2,		RT2870_1),
263     RUN_DEV(SENAO,		RT2870_1),
264     RUN_DEV(SENAO,		RT2870_2),
265     RUN_DEV(SENAO,		RT2870_3),
266     RUN_DEV(SENAO,		RT2870_4),
267     RUN_DEV(SENAO,		RT3070),
268     RUN_DEV(SENAO,		RT3071),
269     RUN_DEV(SENAO,		RT3072_1),
270     RUN_DEV(SENAO,		RT3072_2),
271     RUN_DEV(SENAO,		RT3072_3),
272     RUN_DEV(SENAO,		RT3072_4),
273     RUN_DEV(SENAO,		RT3072_5),
274     RUN_DEV(SITECOMEU,		RT2770),
275     RUN_DEV(SITECOMEU,		RT2870_1),
276     RUN_DEV(SITECOMEU,		RT2870_2),
277     RUN_DEV(SITECOMEU,		RT2870_3),
278     RUN_DEV(SITECOMEU,		RT2870_4),
279     RUN_DEV(SITECOMEU,		RT3070),
280     RUN_DEV(SITECOMEU,		RT3070_2),
281     RUN_DEV(SITECOMEU,		RT3070_3),
282     RUN_DEV(SITECOMEU,		RT3070_4),
283     RUN_DEV(SITECOMEU,		RT3071),
284     RUN_DEV(SITECOMEU,		RT3072_1),
285     RUN_DEV(SITECOMEU,		RT3072_2),
286     RUN_DEV(SITECOMEU,		RT3072_3),
287     RUN_DEV(SITECOMEU,		RT3072_4),
288     RUN_DEV(SITECOMEU,		RT3072_5),
289     RUN_DEV(SITECOMEU,		RT3072_6),
290     RUN_DEV(SITECOMEU,		WL608),
291     RUN_DEV(SPARKLAN,		RT2870_1),
292     RUN_DEV(SPARKLAN,		RT3070),
293     RUN_DEV(SWEEX2,		LW153),
294     RUN_DEV(SWEEX2,		LW303),
295     RUN_DEV(SWEEX2,		LW313),
296     RUN_DEV(TOSHIBA,		RT3070),
297     RUN_DEV(UMEDIA,		RT2870_1),
298     RUN_DEV(ZCOM,		RT2870_1),
299     RUN_DEV(ZCOM,		RT2870_2),
300     RUN_DEV(ZINWELL,		RT2870_1),
301     RUN_DEV(ZINWELL,		RT2870_2),
302     RUN_DEV(ZINWELL,		RT3070),
303     RUN_DEV(ZINWELL,		RT3072_1),
304     RUN_DEV(ZINWELL,		RT3072_2),
305     RUN_DEV(ZYXEL,		RT2870_1),
306     RUN_DEV(ZYXEL,		RT2870_2),
307 #undef RUN_DEV
308 };
309 
310 static device_probe_t	run_match;
311 static device_attach_t	run_attach;
312 static device_detach_t	run_detach;
313 
314 static usb_callback_t	run_bulk_rx_callback;
315 static usb_callback_t	run_bulk_tx_callback0;
316 static usb_callback_t	run_bulk_tx_callback1;
317 static usb_callback_t	run_bulk_tx_callback2;
318 static usb_callback_t	run_bulk_tx_callback3;
319 static usb_callback_t	run_bulk_tx_callback4;
320 static usb_callback_t	run_bulk_tx_callback5;
321 
322 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
323 		    usb_error_t error, unsigned int index);
324 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
325 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
326 		    const uint8_t [IEEE80211_ADDR_LEN],
327 		    const uint8_t [IEEE80211_ADDR_LEN]);
328 static void	run_vap_delete(struct ieee80211vap *);
329 static void	run_cmdq_cb(void *, int);
330 static void	run_setup_tx_list(struct run_softc *,
331 		    struct run_endpoint_queue *);
332 static void	run_unsetup_tx_list(struct run_softc *,
333 		    struct run_endpoint_queue *);
334 static int	run_load_microcode(struct run_softc *);
335 static int	run_reset(struct run_softc *);
336 static usb_error_t run_do_request(struct run_softc *,
337 		    struct usb_device_request *, void *);
338 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
339 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
340 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
341 static int	run_write(struct run_softc *, uint16_t, uint32_t);
342 static int	run_write_region_1(struct run_softc *, uint16_t,
343 		    const uint8_t *, int);
344 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
345 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
346 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
347 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
348 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
349 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
350 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
351 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
352 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
353 static const char *run_get_rf(int);
354 static int	run_read_eeprom(struct run_softc *);
355 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
356 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
357 static int	run_media_change(struct ifnet *);
358 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
359 static int	run_wme_update(struct ieee80211com *);
360 static void	run_wme_update_cb(void *);
361 static void	run_key_update_begin(struct ieee80211vap *);
362 static void	run_key_update_end(struct ieee80211vap *);
363 static void	run_key_set_cb(void *);
364 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
365 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
366 static void	run_key_delete_cb(void *);
367 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
368 static void	run_ratectl_to(void *);
369 static void	run_ratectl_cb(void *, int);
370 static void	run_drain_fifo(void *);
371 static void	run_iter_func(void *, struct ieee80211_node *);
372 static void	run_newassoc_cb(void *);
373 static void	run_newassoc(struct ieee80211_node *, int);
374 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
375 static void	run_tx_free(struct run_endpoint_queue *pq,
376 		    struct run_tx_data *, int);
377 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
378 static int	run_tx(struct run_softc *, struct mbuf *,
379 		    struct ieee80211_node *);
380 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
381 		    struct ieee80211_node *);
382 static int	run_sendprot(struct run_softc *, const struct mbuf *,
383 		    struct ieee80211_node *, int, int);
384 static int	run_tx_param(struct run_softc *, struct mbuf *,
385 		    struct ieee80211_node *,
386 		    const struct ieee80211_bpf_params *);
387 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
388 		    const struct ieee80211_bpf_params *);
389 static void	run_start(struct ifnet *);
390 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
391 static void	run_set_agc(struct run_softc *, uint8_t);
392 static void	run_select_chan_group(struct run_softc *, int);
393 static void	run_set_rx_antenna(struct run_softc *, int);
394 static void	run_rt2870_set_chan(struct run_softc *, u_int);
395 static void	run_rt3070_set_chan(struct run_softc *, u_int);
396 static void	run_rt3572_set_chan(struct run_softc *, u_int);
397 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
398 static void	run_set_channel(struct ieee80211com *);
399 static void	run_scan_start(struct ieee80211com *);
400 static void	run_scan_end(struct ieee80211com *);
401 static void	run_update_beacon(struct ieee80211vap *, int);
402 static void	run_update_beacon_cb(void *);
403 static void	run_updateprot(struct ieee80211com *);
404 static void	run_updateprot_cb(void *);
405 static void	run_usb_timeout_cb(void *);
406 static void	run_reset_livelock(struct run_softc *);
407 static void	run_enable_tsf_sync(struct run_softc *);
408 static void	run_enable_mrr(struct run_softc *);
409 static void	run_set_txpreamble(struct run_softc *);
410 static void	run_set_basicrates(struct run_softc *);
411 static void	run_set_leds(struct run_softc *, uint16_t);
412 static void	run_set_bssid(struct run_softc *, const uint8_t *);
413 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
414 static void	run_updateslot(struct ifnet *);
415 static void	run_updateslot_cb(void *);
416 static void	run_update_mcast(struct ifnet *);
417 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
418 static void	run_update_promisc_locked(struct ifnet *);
419 static void	run_update_promisc(struct ifnet *);
420 static int	run_bbp_init(struct run_softc *);
421 static int	run_rt3070_rf_init(struct run_softc *);
422 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
423 		    uint8_t *);
424 static void	run_rt3070_rf_setup(struct run_softc *);
425 static int	run_txrx_enable(struct run_softc *);
426 static void	run_init(void *);
427 static void	run_init_locked(struct run_softc *);
428 static void	run_stop(void *);
429 static void	run_delay(struct run_softc *, unsigned int);
430 
431 static const struct {
432 	uint16_t	reg;
433 	uint32_t	val;
434 } rt2870_def_mac[] = {
435 	RT2870_DEF_MAC
436 };
437 
438 static const struct {
439 	uint8_t	reg;
440 	uint8_t	val;
441 } rt2860_def_bbp[] = {
442 	RT2860_DEF_BBP
443 };
444 
445 static const struct rfprog {
446 	uint8_t		chan;
447 	uint32_t	r1, r2, r3, r4;
448 } rt2860_rf2850[] = {
449 	RT2860_RF2850
450 };
451 
452 struct {
453 	uint8_t	n, r, k;
454 } rt3070_freqs[] = {
455 	RT3070_RF3052
456 };
457 
458 static const struct {
459 	uint8_t	reg;
460 	uint8_t	val;
461 } rt3070_def_rf[] = {
462 	RT3070_DEF_RF
463 },rt3572_def_rf[] = {
464 	RT3572_DEF_RF
465 };
466 
467 static const struct usb_config run_config[RUN_N_XFER] = {
468     [RUN_BULK_TX_BE] = {
469 	.type = UE_BULK,
470 	.endpoint = UE_ADDR_ANY,
471 	.ep_index = 0,
472 	.direction = UE_DIR_OUT,
473 	.bufsize = RUN_MAX_TXSZ,
474 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
475 	.callback = run_bulk_tx_callback0,
476 	.timeout = 5000,	/* ms */
477     },
478     [RUN_BULK_TX_BK] = {
479 	.type = UE_BULK,
480 	.endpoint = UE_ADDR_ANY,
481 	.direction = UE_DIR_OUT,
482 	.ep_index = 1,
483 	.bufsize = RUN_MAX_TXSZ,
484 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
485 	.callback = run_bulk_tx_callback1,
486 	.timeout = 5000,	/* ms */
487     },
488     [RUN_BULK_TX_VI] = {
489 	.type = UE_BULK,
490 	.endpoint = UE_ADDR_ANY,
491 	.direction = UE_DIR_OUT,
492 	.ep_index = 2,
493 	.bufsize = RUN_MAX_TXSZ,
494 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
495 	.callback = run_bulk_tx_callback2,
496 	.timeout = 5000,	/* ms */
497     },
498     [RUN_BULK_TX_VO] = {
499 	.type = UE_BULK,
500 	.endpoint = UE_ADDR_ANY,
501 	.direction = UE_DIR_OUT,
502 	.ep_index = 3,
503 	.bufsize = RUN_MAX_TXSZ,
504 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
505 	.callback = run_bulk_tx_callback3,
506 	.timeout = 5000,	/* ms */
507     },
508     [RUN_BULK_TX_HCCA] = {
509 	.type = UE_BULK,
510 	.endpoint = UE_ADDR_ANY,
511 	.direction = UE_DIR_OUT,
512 	.ep_index = 4,
513 	.bufsize = RUN_MAX_TXSZ,
514 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
515 	.callback = run_bulk_tx_callback4,
516 	.timeout = 5000,	/* ms */
517     },
518     [RUN_BULK_TX_PRIO] = {
519 	.type = UE_BULK,
520 	.endpoint = UE_ADDR_ANY,
521 	.direction = UE_DIR_OUT,
522 	.ep_index = 5,
523 	.bufsize = RUN_MAX_TXSZ,
524 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
525 	.callback = run_bulk_tx_callback5,
526 	.timeout = 5000,	/* ms */
527     },
528     [RUN_BULK_RX] = {
529 	.type = UE_BULK,
530 	.endpoint = UE_ADDR_ANY,
531 	.direction = UE_DIR_IN,
532 	.bufsize = RUN_MAX_RXSZ,
533 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
534 	.callback = run_bulk_rx_callback,
535     }
536 };
537 
538 static int
539 run_match(device_t self)
540 {
541 	struct usb_attach_arg *uaa = device_get_ivars(self);
542 
543 	if (uaa->usb_mode != USB_MODE_HOST)
544 		return (ENXIO);
545 	if (uaa->info.bConfigIndex != 0)
546 		return (ENXIO);
547 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
548 		return (ENXIO);
549 
550 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
551 }
552 
553 static int
554 run_attach(device_t self)
555 {
556 	struct run_softc *sc = device_get_softc(self);
557 	struct usb_attach_arg *uaa = device_get_ivars(self);
558 	struct ieee80211com *ic;
559 	struct ifnet *ifp;
560 	uint32_t ver;
561 	int i, ntries, error;
562 	uint8_t iface_index, bands;
563 
564 	device_set_usb_desc(self);
565 	sc->sc_udev = uaa->device;
566 	sc->sc_dev = self;
567 
568 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
569 	    MTX_NETWORK_LOCK, MTX_DEF);
570 
571 	iface_index = RT2860_IFACE_INDEX;
572 
573 	error = usbd_transfer_setup(uaa->device, &iface_index,
574 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
575 	if (error) {
576 		device_printf(self, "could not allocate USB transfers, "
577 		    "err=%s\n", usbd_errstr(error));
578 		goto detach;
579 	}
580 
581 	RUN_LOCK(sc);
582 
583 	/* wait for the chip to settle */
584 	for (ntries = 0; ntries < 100; ntries++) {
585 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
586 			RUN_UNLOCK(sc);
587 			goto detach;
588 		}
589 		if (ver != 0 && ver != 0xffffffff)
590 			break;
591 		run_delay(sc, 10);
592 	}
593 	if (ntries == 100) {
594 		device_printf(sc->sc_dev,
595 		    "timeout waiting for NIC to initialize\n");
596 		RUN_UNLOCK(sc);
597 		goto detach;
598 	}
599 	sc->mac_ver = ver >> 16;
600 	sc->mac_rev = ver & 0xffff;
601 
602 	/* retrieve RF rev. no and various other things from EEPROM */
603 	run_read_eeprom(sc);
604 
605 	device_printf(sc->sc_dev,
606 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
607 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
608 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
609 
610 	RUN_UNLOCK(sc);
611 
612 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
613 	if (ifp == NULL) {
614 		device_printf(sc->sc_dev, "can not if_alloc()\n");
615 		goto detach;
616 	}
617 	ic = ifp->if_l2com;
618 
619 	ifp->if_softc = sc;
620 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
621 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
622 	ifp->if_init = run_init;
623 	ifp->if_ioctl = run_ioctl;
624 	ifp->if_start = run_start;
625 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
626 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
627 	IFQ_SET_READY(&ifp->if_snd);
628 
629 	ic->ic_ifp = ifp;
630 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
631 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
632 
633 	/* set device capabilities */
634 	ic->ic_caps =
635 	    IEEE80211_C_STA |		/* station mode supported */
636 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
637 	    IEEE80211_C_IBSS |
638 	    IEEE80211_C_HOSTAP |
639 	    IEEE80211_C_WDS |		/* 4-address traffic works */
640 	    IEEE80211_C_MBSS |
641 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
642 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
643 	    IEEE80211_C_WME |		/* WME */
644 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
645 
646 	ic->ic_cryptocaps =
647 	    IEEE80211_CRYPTO_WEP |
648 	    IEEE80211_CRYPTO_AES_CCM |
649 	    IEEE80211_CRYPTO_TKIPMIC |
650 	    IEEE80211_CRYPTO_TKIP;
651 
652 	ic->ic_flags |= IEEE80211_F_DATAPAD;
653 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
654 
655 	bands = 0;
656 	setbit(&bands, IEEE80211_MODE_11B);
657 	setbit(&bands, IEEE80211_MODE_11G);
658 	ieee80211_init_channels(ic, NULL, &bands);
659 
660 	/*
661 	 * Do this by own because h/w supports
662 	 * more channels than ieee80211_init_channels()
663 	 */
664 	if (sc->rf_rev == RT2860_RF_2750 ||
665 	    sc->rf_rev == RT2860_RF_2850 ||
666 	    sc->rf_rev == RT3070_RF_3052) {
667 		/* set supported .11a rates */
668 		for (i = 14; i < N(rt2860_rf2850); i++) {
669 			uint8_t chan = rt2860_rf2850[i].chan;
670 			ic->ic_channels[ic->ic_nchans].ic_freq =
671 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
672 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
673 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
674 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
675 			ic->ic_nchans++;
676 		}
677 	}
678 
679 	ieee80211_ifattach(ic, sc->sc_bssid);
680 
681 	ic->ic_scan_start = run_scan_start;
682 	ic->ic_scan_end = run_scan_end;
683 	ic->ic_set_channel = run_set_channel;
684 	ic->ic_node_alloc = run_node_alloc;
685 	ic->ic_newassoc = run_newassoc;
686 	ic->ic_updateslot = run_updateslot;
687 	ic->ic_update_mcast = run_update_mcast;
688 	ic->ic_wme.wme_update = run_wme_update;
689 	ic->ic_raw_xmit = run_raw_xmit;
690 	ic->ic_update_promisc = run_update_promisc;
691 
692 	ic->ic_vap_create = run_vap_create;
693 	ic->ic_vap_delete = run_vap_delete;
694 
695 	ieee80211_radiotap_attach(ic,
696 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
697 		RUN_TX_RADIOTAP_PRESENT,
698 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
699 		RUN_RX_RADIOTAP_PRESENT);
700 
701 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
702 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
703 	callout_init((struct callout *)&sc->ratectl_ch, 1);
704 
705 	if (bootverbose)
706 		ieee80211_announce(ic);
707 
708 	return (0);
709 
710 detach:
711 	run_detach(self);
712 	return (ENXIO);
713 }
714 
715 static int
716 run_detach(device_t self)
717 {
718 	struct run_softc *sc = device_get_softc(self);
719 	struct ifnet *ifp = sc->sc_ifp;
720 	struct ieee80211com *ic;
721 	int i;
722 
723 	RUN_LOCK(sc);
724 	sc->sc_detached = 1;
725 	RUN_UNLOCK(sc);
726 
727 	/* stop all USB transfers */
728 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
729 
730 	RUN_LOCK(sc);
731 	sc->ratectl_run = RUN_RATECTL_OFF;
732 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
733 
734 	/* free TX list, if any */
735 	for (i = 0; i != RUN_EP_QUEUES; i++)
736 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
737 	RUN_UNLOCK(sc);
738 
739 	if (ifp) {
740 		ic = ifp->if_l2com;
741 		/* drain tasks */
742 		usb_callout_drain(&sc->ratectl_ch);
743 		ieee80211_draintask(ic, &sc->cmdq_task);
744 		ieee80211_draintask(ic, &sc->ratectl_task);
745 		ieee80211_ifdetach(ic);
746 		if_free(ifp);
747 	}
748 
749 	mtx_destroy(&sc->sc_mtx);
750 
751 	return (0);
752 }
753 
754 static struct ieee80211vap *
755 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
756     enum ieee80211_opmode opmode, int flags,
757     const uint8_t bssid[IEEE80211_ADDR_LEN],
758     const uint8_t mac[IEEE80211_ADDR_LEN])
759 {
760 	struct ifnet *ifp = ic->ic_ifp;
761 	struct run_softc *sc = ifp->if_softc;
762 	struct run_vap *rvp;
763 	struct ieee80211vap *vap;
764 	int i;
765 
766 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
767 		if_printf(ifp, "number of VAPs maxed out\n");
768 		return (NULL);
769 	}
770 
771 	switch (opmode) {
772 	case IEEE80211_M_STA:
773 		/* enable s/w bmiss handling for sta mode */
774 		flags |= IEEE80211_CLONE_NOBEACONS;
775 		/* fall though */
776 	case IEEE80211_M_IBSS:
777 	case IEEE80211_M_MONITOR:
778 	case IEEE80211_M_HOSTAP:
779 	case IEEE80211_M_MBSS:
780 		/* other than WDS vaps, only one at a time */
781 		if (!TAILQ_EMPTY(&ic->ic_vaps))
782 			return (NULL);
783 		break;
784 	case IEEE80211_M_WDS:
785 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
786 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
787 				continue;
788 			/* WDS vap's always share the local mac address. */
789 			flags &= ~IEEE80211_CLONE_BSSID;
790 			break;
791 		}
792 		if (vap == NULL) {
793 			if_printf(ifp, "wds only supported in ap mode\n");
794 			return (NULL);
795 		}
796 		break;
797 	default:
798 		if_printf(ifp, "unknown opmode %d\n", opmode);
799 		return (NULL);
800 	}
801 
802 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
803 	    M_80211_VAP, M_NOWAIT | M_ZERO);
804 	if (rvp == NULL)
805 		return (NULL);
806 	vap = &rvp->vap;
807 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
808 
809 	vap->iv_key_update_begin = run_key_update_begin;
810 	vap->iv_key_update_end = run_key_update_end;
811 	vap->iv_update_beacon = run_update_beacon;
812 	vap->iv_max_aid = RT2870_WCID_MAX;
813 	/*
814 	 * To delete the right key from h/w, we need wcid.
815 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
816 	 * and matching wcid will be written into there. So, cast
817 	 * some spells to remove 'const' from ieee80211_key{}
818 	 */
819 	vap->iv_key_delete = (void *)run_key_delete;
820 	vap->iv_key_set = (void *)run_key_set;
821 
822 	/* override state transition machine */
823 	rvp->newstate = vap->iv_newstate;
824 	vap->iv_newstate = run_newstate;
825 
826 	ieee80211_ratectl_init(vap);
827 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
828 
829 	/* complete setup */
830 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
831 
832 	/* make sure id is always unique */
833 	for (i = 0; i < RUN_VAP_MAX; i++) {
834 		if((sc->rvp_bmap & 1 << i) == 0){
835 			sc->rvp_bmap |= 1 << i;
836 			rvp->rvp_id = i;
837 			break;
838 		}
839 	}
840 	if (sc->rvp_cnt++ == 0)
841 		ic->ic_opmode = opmode;
842 
843 	if (opmode == IEEE80211_M_HOSTAP)
844 		sc->cmdq_run = RUN_CMDQ_GO;
845 
846 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
847 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
848 
849 	return (vap);
850 }
851 
852 static void
853 run_vap_delete(struct ieee80211vap *vap)
854 {
855 	struct run_vap *rvp = RUN_VAP(vap);
856 	struct ifnet *ifp;
857 	struct ieee80211com *ic;
858 	struct run_softc *sc;
859 	uint8_t rvp_id;
860 
861 	if (vap == NULL)
862 		return;
863 
864 	ic = vap->iv_ic;
865 	ifp = ic->ic_ifp;
866 
867 	sc = ifp->if_softc;
868 
869 	RUN_LOCK(sc);
870 
871 	m_freem(rvp->beacon_mbuf);
872 	rvp->beacon_mbuf = NULL;
873 
874 	rvp_id = rvp->rvp_id;
875 	sc->ratectl_run &= ~(1 << rvp_id);
876 	sc->rvp_bmap &= ~(1 << rvp_id);
877 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
878 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
879 	--sc->rvp_cnt;
880 
881 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
882 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
883 
884 	RUN_UNLOCK(sc);
885 
886 	ieee80211_ratectl_deinit(vap);
887 	ieee80211_vap_detach(vap);
888 	free(rvp, M_80211_VAP);
889 }
890 
891 /*
892  * There are numbers of functions need to be called in context thread.
893  * Rather than creating taskqueue event for each of those functions,
894  * here is all-for-one taskqueue callback function. This function
895  * gurantees deferred functions are executed in the same order they
896  * were enqueued.
897  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
898  */
899 static void
900 run_cmdq_cb(void *arg, int pending)
901 {
902 	struct run_softc *sc = arg;
903 	uint8_t i;
904 
905 	/* call cmdq[].func locked */
906 	RUN_LOCK(sc);
907 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
908 	    i = sc->cmdq_exec, pending--) {
909 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
910 		if (sc->cmdq_run == RUN_CMDQ_GO) {
911 			/*
912 			 * If arg0 is NULL, callback func needs more
913 			 * than one arg. So, pass ptr to cmdq struct.
914 			 */
915 			if (sc->cmdq[i].arg0)
916 				sc->cmdq[i].func(sc->cmdq[i].arg0);
917 			else
918 				sc->cmdq[i].func(&sc->cmdq[i]);
919 		}
920 		sc->cmdq[i].arg0 = NULL;
921 		sc->cmdq[i].func = NULL;
922 		sc->cmdq_exec++;
923 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
924 	}
925 	RUN_UNLOCK(sc);
926 }
927 
928 static void
929 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
930 {
931 	struct run_tx_data *data;
932 
933 	memset(pq, 0, sizeof(*pq));
934 
935 	STAILQ_INIT(&pq->tx_qh);
936 	STAILQ_INIT(&pq->tx_fh);
937 
938 	for (data = &pq->tx_data[0];
939 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
940 		data->sc = sc;
941 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
942 	}
943 	pq->tx_nfree = RUN_TX_RING_COUNT;
944 }
945 
946 static void
947 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
948 {
949 	struct run_tx_data *data;
950 
951 	/* make sure any subsequent use of the queues will fail */
952 	pq->tx_nfree = 0;
953 	STAILQ_INIT(&pq->tx_fh);
954 	STAILQ_INIT(&pq->tx_qh);
955 
956 	/* free up all node references and mbufs */
957 	for (data = &pq->tx_data[0];
958 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
959 		if (data->m != NULL) {
960 			m_freem(data->m);
961 			data->m = NULL;
962 		}
963 		if (data->ni != NULL) {
964 			ieee80211_free_node(data->ni);
965 			data->ni = NULL;
966 		}
967 	}
968 }
969 
970 static int
971 run_load_microcode(struct run_softc *sc)
972 {
973 	usb_device_request_t req;
974 	const struct firmware *fw;
975 	const u_char *base;
976 	uint32_t tmp;
977 	int ntries, error;
978 	const uint64_t *temp;
979 	uint64_t bytes;
980 
981 	RUN_UNLOCK(sc);
982 	fw = firmware_get("runfw");
983 	RUN_LOCK(sc);
984 	if (fw == NULL) {
985 		device_printf(sc->sc_dev,
986 		    "failed loadfirmware of file %s\n", "runfw");
987 		return ENOENT;
988 	}
989 
990 	if (fw->datasize != 8192) {
991 		device_printf(sc->sc_dev,
992 		    "invalid firmware size (should be 8KB)\n");
993 		error = EINVAL;
994 		goto fail;
995 	}
996 
997 	/*
998 	 * RT3071/RT3072 use a different firmware
999 	 * run-rt2870 (8KB) contains both,
1000 	 * first half (4KB) is for rt2870,
1001 	 * last half is for rt3071.
1002 	 */
1003 	base = fw->data;
1004 	if ((sc->mac_ver) != 0x2860 &&
1005 	    (sc->mac_ver) != 0x2872 &&
1006 	    (sc->mac_ver) != 0x3070) {
1007 		base += 4096;
1008 	}
1009 
1010 	/* cheap sanity check */
1011 	temp = fw->data;
1012 	bytes = *temp;
1013 	if (bytes != be64toh(0xffffff0210280210)) {
1014 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1015 		error = EINVAL;
1016 		goto fail;
1017 	}
1018 
1019 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1020 	/* write microcode image */
1021 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1022 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1023 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1024 
1025 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1026 	req.bRequest = RT2870_RESET;
1027 	USETW(req.wValue, 8);
1028 	USETW(req.wIndex, 0);
1029 	USETW(req.wLength, 0);
1030 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1031 	    != 0) {
1032 		device_printf(sc->sc_dev, "firmware reset failed\n");
1033 		goto fail;
1034 	}
1035 
1036 	run_delay(sc, 10);
1037 
1038 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1039 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1040 		goto fail;
1041 
1042 	/* wait until microcontroller is ready */
1043 	for (ntries = 0; ntries < 1000; ntries++) {
1044 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1045 			goto fail;
1046 		}
1047 		if (tmp & RT2860_MCU_READY)
1048 			break;
1049 		run_delay(sc, 10);
1050 	}
1051 	if (ntries == 1000) {
1052 		device_printf(sc->sc_dev,
1053 		    "timeout waiting for MCU to initialize\n");
1054 		error = ETIMEDOUT;
1055 		goto fail;
1056 	}
1057 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1058 	    (base == fw->data) ? "RT2870" : "RT3071",
1059 	    *(base + 4092), *(base + 4093));
1060 
1061 fail:
1062 	firmware_put(fw, FIRMWARE_UNLOAD);
1063 	return (error);
1064 }
1065 
1066 int
1067 run_reset(struct run_softc *sc)
1068 {
1069 	usb_device_request_t req;
1070 
1071 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1072 	req.bRequest = RT2870_RESET;
1073 	USETW(req.wValue, 1);
1074 	USETW(req.wIndex, 0);
1075 	USETW(req.wLength, 0);
1076 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1077 }
1078 
1079 static usb_error_t
1080 run_do_request(struct run_softc *sc,
1081     struct usb_device_request *req, void *data)
1082 {
1083 	usb_error_t err;
1084 	int ntries = 10;
1085 
1086 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1087 
1088 	while (ntries--) {
1089 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1090 		    req, data, 0, NULL, 250 /* ms */);
1091 		if (err == 0)
1092 			break;
1093 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1094 		    usbd_errstr(err));
1095 		run_delay(sc, 10);
1096 	}
1097 	return (err);
1098 }
1099 
1100 static int
1101 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1102 {
1103 	uint32_t tmp;
1104 	int error;
1105 
1106 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1107 	if (error == 0)
1108 		*val = le32toh(tmp);
1109 	else
1110 		*val = 0xffffffff;
1111 	return (error);
1112 }
1113 
1114 static int
1115 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1116 {
1117 	usb_device_request_t req;
1118 
1119 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1120 	req.bRequest = RT2870_READ_REGION_1;
1121 	USETW(req.wValue, 0);
1122 	USETW(req.wIndex, reg);
1123 	USETW(req.wLength, len);
1124 
1125 	return (run_do_request(sc, &req, buf));
1126 }
1127 
1128 static int
1129 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1130 {
1131 	usb_device_request_t req;
1132 
1133 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1134 	req.bRequest = RT2870_WRITE_2;
1135 	USETW(req.wValue, val);
1136 	USETW(req.wIndex, reg);
1137 	USETW(req.wLength, 0);
1138 
1139 	return (run_do_request(sc, &req, NULL));
1140 }
1141 
1142 static int
1143 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1144 {
1145 	int error;
1146 
1147 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1148 		error = run_write_2(sc, reg + 2, val >> 16);
1149 	return (error);
1150 }
1151 
1152 static int
1153 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1154     int len)
1155 {
1156 #if 1
1157 	int i, error = 0;
1158 	/*
1159 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1160 	 * We thus issue multiple WRITE_2 commands instead.
1161 	 */
1162 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1163 	for (i = 0; i < len && error == 0; i += 2)
1164 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1165 	return (error);
1166 #else
1167 	usb_device_request_t req;
1168 
1169 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1170 	req.bRequest = RT2870_WRITE_REGION_1;
1171 	USETW(req.wValue, 0);
1172 	USETW(req.wIndex, reg);
1173 	USETW(req.wLength, len);
1174 	return (run_do_request(sc, &req, buf));
1175 #endif
1176 }
1177 
1178 static int
1179 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1180 {
1181 	int i, error = 0;
1182 
1183 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1184 	for (i = 0; i < len && error == 0; i += 4)
1185 		error = run_write(sc, reg + i, val);
1186 	return (error);
1187 }
1188 
1189 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1190 static int
1191 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1192 {
1193 	uint32_t tmp;
1194 	uint16_t reg;
1195 	int error, ntries;
1196 
1197 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1198 		return (error);
1199 
1200 	addr *= 2;
1201 	/*-
1202 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1203 	 * DATA0: F E D C
1204 	 * DATA1: B A 9 8
1205 	 * DATA2: 7 6 5 4
1206 	 * DATA3: 3 2 1 0
1207 	 */
1208 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1209 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1210 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1211 	for (ntries = 0; ntries < 100; ntries++) {
1212 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1213 			return (error);
1214 		if (!(tmp & RT3070_EFSROM_KICK))
1215 			break;
1216 		run_delay(sc, 2);
1217 	}
1218 	if (ntries == 100)
1219 		return (ETIMEDOUT);
1220 
1221 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1222 		*val = 0xffff;	/* address not found */
1223 		return (0);
1224 	}
1225 	/* determine to which 32-bit register our 16-bit word belongs */
1226 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1227 	if ((error = run_read(sc, reg, &tmp)) != 0)
1228 		return (error);
1229 
1230 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1231 	return (0);
1232 }
1233 
1234 static int
1235 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1236 {
1237 	usb_device_request_t req;
1238 	uint16_t tmp;
1239 	int error;
1240 
1241 	addr *= 2;
1242 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1243 	req.bRequest = RT2870_EEPROM_READ;
1244 	USETW(req.wValue, 0);
1245 	USETW(req.wIndex, addr);
1246 	USETW(req.wLength, sizeof tmp);
1247 
1248 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1249 	if (error == 0)
1250 		*val = le16toh(tmp);
1251 	else
1252 		*val = 0xffff;
1253 	return (error);
1254 }
1255 
1256 static __inline int
1257 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1258 {
1259 	/* either eFUSE ROM or EEPROM */
1260 	return sc->sc_srom_read(sc, addr, val);
1261 }
1262 
1263 static int
1264 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1265 {
1266 	uint32_t tmp;
1267 	int error, ntries;
1268 
1269 	for (ntries = 0; ntries < 10; ntries++) {
1270 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1271 			return (error);
1272 		if (!(tmp & RT2860_RF_REG_CTRL))
1273 			break;
1274 	}
1275 	if (ntries == 10)
1276 		return (ETIMEDOUT);
1277 
1278 	/* RF registers are 24-bit on the RT2860 */
1279 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1280 	    (val & 0x3fffff) << 2 | (reg & 3);
1281 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1282 }
1283 
1284 static int
1285 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1286 {
1287 	uint32_t tmp;
1288 	int error, ntries;
1289 
1290 	for (ntries = 0; ntries < 100; ntries++) {
1291 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1292 			return (error);
1293 		if (!(tmp & RT3070_RF_KICK))
1294 			break;
1295 	}
1296 	if (ntries == 100)
1297 		return (ETIMEDOUT);
1298 
1299 	tmp = RT3070_RF_KICK | reg << 8;
1300 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1301 		return (error);
1302 
1303 	for (ntries = 0; ntries < 100; ntries++) {
1304 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1305 			return (error);
1306 		if (!(tmp & RT3070_RF_KICK))
1307 			break;
1308 	}
1309 	if (ntries == 100)
1310 		return (ETIMEDOUT);
1311 
1312 	*val = tmp & 0xff;
1313 	return (0);
1314 }
1315 
1316 static int
1317 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1318 {
1319 	uint32_t tmp;
1320 	int error, ntries;
1321 
1322 	for (ntries = 0; ntries < 10; ntries++) {
1323 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1324 			return (error);
1325 		if (!(tmp & RT3070_RF_KICK))
1326 			break;
1327 	}
1328 	if (ntries == 10)
1329 		return (ETIMEDOUT);
1330 
1331 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1332 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1333 }
1334 
1335 static int
1336 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1337 {
1338 	uint32_t tmp;
1339 	int ntries, error;
1340 
1341 	for (ntries = 0; ntries < 10; ntries++) {
1342 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1343 			return (error);
1344 		if (!(tmp & RT2860_BBP_CSR_KICK))
1345 			break;
1346 	}
1347 	if (ntries == 10)
1348 		return (ETIMEDOUT);
1349 
1350 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1351 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1352 		return (error);
1353 
1354 	for (ntries = 0; ntries < 10; ntries++) {
1355 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1356 			return (error);
1357 		if (!(tmp & RT2860_BBP_CSR_KICK))
1358 			break;
1359 	}
1360 	if (ntries == 10)
1361 		return (ETIMEDOUT);
1362 
1363 	*val = tmp & 0xff;
1364 	return (0);
1365 }
1366 
1367 static int
1368 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1369 {
1370 	uint32_t tmp;
1371 	int ntries, error;
1372 
1373 	for (ntries = 0; ntries < 10; ntries++) {
1374 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1375 			return (error);
1376 		if (!(tmp & RT2860_BBP_CSR_KICK))
1377 			break;
1378 	}
1379 	if (ntries == 10)
1380 		return (ETIMEDOUT);
1381 
1382 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1383 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1384 }
1385 
1386 /*
1387  * Send a command to the 8051 microcontroller unit.
1388  */
1389 static int
1390 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1391 {
1392 	uint32_t tmp;
1393 	int error, ntries;
1394 
1395 	for (ntries = 0; ntries < 100; ntries++) {
1396 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1397 			return error;
1398 		if (!(tmp & RT2860_H2M_BUSY))
1399 			break;
1400 	}
1401 	if (ntries == 100)
1402 		return ETIMEDOUT;
1403 
1404 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1405 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1406 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1407 	return (error);
1408 }
1409 
1410 /*
1411  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1412  * Used to adjust per-rate Tx power registers.
1413  */
1414 static __inline uint32_t
1415 b4inc(uint32_t b32, int8_t delta)
1416 {
1417 	int8_t i, b4;
1418 
1419 	for (i = 0; i < 8; i++) {
1420 		b4 = b32 & 0xf;
1421 		b4 += delta;
1422 		if (b4 < 0)
1423 			b4 = 0;
1424 		else if (b4 > 0xf)
1425 			b4 = 0xf;
1426 		b32 = b32 >> 4 | b4 << 28;
1427 	}
1428 	return (b32);
1429 }
1430 
1431 static const char *
1432 run_get_rf(int rev)
1433 {
1434 	switch (rev) {
1435 	case RT2860_RF_2820:	return "RT2820";
1436 	case RT2860_RF_2850:	return "RT2850";
1437 	case RT2860_RF_2720:	return "RT2720";
1438 	case RT2860_RF_2750:	return "RT2750";
1439 	case RT3070_RF_3020:	return "RT3020";
1440 	case RT3070_RF_2020:	return "RT2020";
1441 	case RT3070_RF_3021:	return "RT3021";
1442 	case RT3070_RF_3022:	return "RT3022";
1443 	case RT3070_RF_3052:	return "RT3052";
1444 	}
1445 	return ("unknown");
1446 }
1447 
1448 int
1449 run_read_eeprom(struct run_softc *sc)
1450 {
1451 	int8_t delta_2ghz, delta_5ghz;
1452 	uint32_t tmp;
1453 	uint16_t val;
1454 	int ridx, ant, i;
1455 
1456 	/* check whether the ROM is eFUSE ROM or EEPROM */
1457 	sc->sc_srom_read = run_eeprom_read_2;
1458 	if (sc->mac_ver >= 0x3070) {
1459 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1460 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1461 		if (tmp & RT3070_SEL_EFUSE)
1462 			sc->sc_srom_read = run_efuse_read_2;
1463 	}
1464 
1465 	/* read ROM version */
1466 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1467 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1468 
1469 	/* read MAC address */
1470 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1471 	sc->sc_bssid[0] = val & 0xff;
1472 	sc->sc_bssid[1] = val >> 8;
1473 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1474 	sc->sc_bssid[2] = val & 0xff;
1475 	sc->sc_bssid[3] = val >> 8;
1476 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1477 	sc->sc_bssid[4] = val & 0xff;
1478 	sc->sc_bssid[5] = val >> 8;
1479 
1480 	/* read vender BBP settings */
1481 	for (i = 0; i < 10; i++) {
1482 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1483 		sc->bbp[i].val = val & 0xff;
1484 		sc->bbp[i].reg = val >> 8;
1485 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1486 	}
1487 	if (sc->mac_ver >= 0x3071) {
1488 		/* read vendor RF settings */
1489 		for (i = 0; i < 10; i++) {
1490 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1491 			sc->rf[i].val = val & 0xff;
1492 			sc->rf[i].reg = val >> 8;
1493 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1494 			    sc->rf[i].val);
1495 		}
1496 	}
1497 
1498 	/* read RF frequency offset from EEPROM */
1499 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1500 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1501 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1502 
1503 	if (val >> 8 != 0xff) {
1504 		/* read LEDs operating mode */
1505 		sc->leds = val >> 8;
1506 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1507 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1508 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1509 	} else {
1510 		/* broken EEPROM, use default settings */
1511 		sc->leds = 0x01;
1512 		sc->led[0] = 0x5555;
1513 		sc->led[1] = 0x2221;
1514 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1515 	}
1516 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1517 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1518 
1519 	/* read RF information */
1520 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1521 	if (val == 0xffff) {
1522 		DPRINTF("invalid EEPROM antenna info, using default\n");
1523 		if (sc->mac_ver == 0x3572) {
1524 			/* default to RF3052 2T2R */
1525 			sc->rf_rev = RT3070_RF_3052;
1526 			sc->ntxchains = 2;
1527 			sc->nrxchains = 2;
1528 		} else if (sc->mac_ver >= 0x3070) {
1529 			/* default to RF3020 1T1R */
1530 			sc->rf_rev = RT3070_RF_3020;
1531 			sc->ntxchains = 1;
1532 			sc->nrxchains = 1;
1533 		} else {
1534 			/* default to RF2820 1T2R */
1535 			sc->rf_rev = RT2860_RF_2820;
1536 			sc->ntxchains = 1;
1537 			sc->nrxchains = 2;
1538 		}
1539 	} else {
1540 		sc->rf_rev = (val >> 8) & 0xf;
1541 		sc->ntxchains = (val >> 4) & 0xf;
1542 		sc->nrxchains = val & 0xf;
1543 	}
1544 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1545 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1546 
1547 	/* check if RF supports automatic Tx access gain control */
1548 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1549 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1550 	/* check if driver should patch the DAC issue */
1551 	if ((val >> 8) != 0xff)
1552 		sc->patch_dac = (val >> 15) & 1;
1553 	if ((val & 0xff) != 0xff) {
1554 		sc->ext_5ghz_lna = (val >> 3) & 1;
1555 		sc->ext_2ghz_lna = (val >> 2) & 1;
1556 		/* check if RF supports automatic Tx access gain control */
1557 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1558 		/* check if we have a hardware radio switch */
1559 		sc->rfswitch = val & 1;
1560 	}
1561 
1562 	/* read power settings for 2GHz channels */
1563 	for (i = 0; i < 14; i += 2) {
1564 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1565 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1566 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1567 
1568 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1569 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1570 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1571 	}
1572 	/* fix broken Tx power entries */
1573 	for (i = 0; i < 14; i++) {
1574 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1575 			sc->txpow1[i] = 5;
1576 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1577 			sc->txpow2[i] = 5;
1578 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1579 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1580 	}
1581 	/* read power settings for 5GHz channels */
1582 	for (i = 0; i < 40; i += 2) {
1583 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1584 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1585 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1586 
1587 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1588 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1589 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1590 	}
1591 	/* fix broken Tx power entries */
1592 	for (i = 0; i < 40; i++) {
1593 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1594 			sc->txpow1[14 + i] = 5;
1595 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1596 			sc->txpow2[14 + i] = 5;
1597 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1598 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1599 		    sc->txpow2[14 + i]);
1600 	}
1601 
1602 	/* read Tx power compensation for each Tx rate */
1603 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1604 	delta_2ghz = delta_5ghz = 0;
1605 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1606 		delta_2ghz = val & 0xf;
1607 		if (!(val & 0x40))	/* negative number */
1608 			delta_2ghz = -delta_2ghz;
1609 	}
1610 	val >>= 8;
1611 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1612 		delta_5ghz = val & 0xf;
1613 		if (!(val & 0x40))	/* negative number */
1614 			delta_5ghz = -delta_5ghz;
1615 	}
1616 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1617 	    delta_2ghz, delta_5ghz);
1618 
1619 	for (ridx = 0; ridx < 5; ridx++) {
1620 		uint32_t reg;
1621 
1622 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1623 		reg = val;
1624 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1625 		reg |= (uint32_t)val << 16;
1626 
1627 		sc->txpow20mhz[ridx] = reg;
1628 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1629 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1630 
1631 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1632 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1633 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1634 	}
1635 
1636 	/* read RSSI offsets and LNA gains from EEPROM */
1637 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1638 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1639 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1640 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1641 	if (sc->mac_ver >= 0x3070) {
1642 		/*
1643 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1644 		 * field contains the Tx mixer gain for the 2GHz band.
1645 		 */
1646 		if ((val & 0xff) != 0xff)
1647 			sc->txmixgain_2ghz = val & 0x7;
1648 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1649 	} else
1650 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1651 	sc->lna[2] = val >> 8;		/* channel group 2 */
1652 
1653 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1654 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1655 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1656 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1657 	if (sc->mac_ver == 0x3572) {
1658 		/*
1659 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1660 		 * field contains the Tx mixer gain for the 5GHz band.
1661 		 */
1662 		if ((val & 0xff) != 0xff)
1663 			sc->txmixgain_5ghz = val & 0x7;
1664 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1665 	} else
1666 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1667 	sc->lna[3] = val >> 8;		/* channel group 3 */
1668 
1669 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1670 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1671 	sc->lna[1] = val >> 8;		/* channel group 1 */
1672 
1673 	/* fix broken 5GHz LNA entries */
1674 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1675 		DPRINTF("invalid LNA for channel group %d\n", 2);
1676 		sc->lna[2] = sc->lna[1];
1677 	}
1678 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1679 		DPRINTF("invalid LNA for channel group %d\n", 3);
1680 		sc->lna[3] = sc->lna[1];
1681 	}
1682 
1683 	/* fix broken RSSI offset entries */
1684 	for (ant = 0; ant < 3; ant++) {
1685 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1686 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1687 			    ant + 1, sc->rssi_2ghz[ant]);
1688 			sc->rssi_2ghz[ant] = 0;
1689 		}
1690 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1691 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1692 			    ant + 1, sc->rssi_5ghz[ant]);
1693 			sc->rssi_5ghz[ant] = 0;
1694 		}
1695 	}
1696 	return (0);
1697 }
1698 
1699 static struct ieee80211_node *
1700 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1701 {
1702 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1703 }
1704 
1705 static int
1706 run_media_change(struct ifnet *ifp)
1707 {
1708 	struct ieee80211vap *vap = ifp->if_softc;
1709 	struct ieee80211com *ic = vap->iv_ic;
1710 	const struct ieee80211_txparam *tp;
1711 	struct run_softc *sc = ic->ic_ifp->if_softc;
1712 	uint8_t rate, ridx;
1713 	int error;
1714 
1715 	RUN_LOCK(sc);
1716 
1717 	error = ieee80211_media_change(ifp);
1718 	if (error != ENETRESET) {
1719 		RUN_UNLOCK(sc);
1720 		return (error);
1721 	}
1722 
1723 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1724 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1725 		struct ieee80211_node *ni;
1726 		struct run_node	*rn;
1727 
1728 		rate = ic->ic_sup_rates[ic->ic_curmode].
1729 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1730 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1731 			if (rt2860_rates[ridx].rate == rate)
1732 				break;
1733 		ni = ieee80211_ref_node(vap->iv_bss);
1734 		rn = (struct run_node *)ni;
1735 		rn->fix_ridx = ridx;
1736 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1737 		ieee80211_free_node(ni);
1738 	}
1739 
1740 #if 0
1741 	if ((ifp->if_flags & IFF_UP) &&
1742 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1743 		run_init_locked(sc);
1744 	}
1745 #endif
1746 
1747 	RUN_UNLOCK(sc);
1748 
1749 	return (0);
1750 }
1751 
1752 static int
1753 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1754 {
1755 	const struct ieee80211_txparam *tp;
1756 	struct ieee80211com *ic = vap->iv_ic;
1757 	struct run_softc *sc = ic->ic_ifp->if_softc;
1758 	struct run_vap *rvp = RUN_VAP(vap);
1759 	enum ieee80211_state ostate;
1760 	uint32_t sta[3];
1761 	uint32_t tmp;
1762 	uint8_t ratectl;
1763 	uint8_t restart_ratectl = 0;
1764 	uint8_t bid = 1 << rvp->rvp_id;
1765 
1766 	ostate = vap->iv_state;
1767 	DPRINTF("%s -> %s\n",
1768 		ieee80211_state_name[ostate],
1769 		ieee80211_state_name[nstate]);
1770 
1771 	IEEE80211_UNLOCK(ic);
1772 	RUN_LOCK(sc);
1773 
1774 	ratectl = sc->ratectl_run; /* remember current state */
1775 	sc->ratectl_run = RUN_RATECTL_OFF;
1776 	usb_callout_stop(&sc->ratectl_ch);
1777 
1778 	if (ostate == IEEE80211_S_RUN) {
1779 		/* turn link LED off */
1780 		run_set_leds(sc, RT2860_LED_RADIO);
1781 	}
1782 
1783 	switch (nstate) {
1784 	case IEEE80211_S_INIT:
1785 		restart_ratectl = 1;
1786 
1787 		if (ostate != IEEE80211_S_RUN)
1788 			break;
1789 
1790 		ratectl &= ~bid;
1791 		sc->runbmap &= ~bid;
1792 
1793 		/* abort TSF synchronization if there is no vap running */
1794 		if (--sc->running == 0) {
1795 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1796 			run_write(sc, RT2860_BCN_TIME_CFG,
1797 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1798 			    RT2860_TBTT_TIMER_EN));
1799 		}
1800 		break;
1801 
1802 	case IEEE80211_S_RUN:
1803 		if (!(sc->runbmap & bid)) {
1804 			if(sc->running++)
1805 				restart_ratectl = 1;
1806 			sc->runbmap |= bid;
1807 		}
1808 
1809 		m_freem(rvp->beacon_mbuf);
1810 		rvp->beacon_mbuf = NULL;
1811 
1812 		switch (vap->iv_opmode) {
1813 		case IEEE80211_M_HOSTAP:
1814 		case IEEE80211_M_MBSS:
1815 			sc->ap_running |= bid;
1816 			ic->ic_opmode = vap->iv_opmode;
1817 			run_update_beacon_cb(vap);
1818 			break;
1819 		case IEEE80211_M_IBSS:
1820 			sc->adhoc_running |= bid;
1821 			if (!sc->ap_running)
1822 				ic->ic_opmode = vap->iv_opmode;
1823 			run_update_beacon_cb(vap);
1824 			break;
1825 		case IEEE80211_M_STA:
1826 			sc->sta_running |= bid;
1827 			if (!sc->ap_running && !sc->adhoc_running)
1828 				ic->ic_opmode = vap->iv_opmode;
1829 
1830 			/* read statistic counters (clear on read) */
1831 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1832 			    (uint8_t *)sta, sizeof sta);
1833 
1834 			break;
1835 		default:
1836 			ic->ic_opmode = vap->iv_opmode;
1837 			break;
1838 		}
1839 
1840 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1841 			struct ieee80211_node *ni;
1842 
1843 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1844 				RUN_UNLOCK(sc);
1845 				IEEE80211_LOCK(ic);
1846 				return (-1);
1847 			}
1848 			run_updateslot(ic->ic_ifp);
1849 			run_enable_mrr(sc);
1850 			run_set_txpreamble(sc);
1851 			run_set_basicrates(sc);
1852 			ni = ieee80211_ref_node(vap->iv_bss);
1853 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1854 			run_set_bssid(sc, ni->ni_bssid);
1855 			ieee80211_free_node(ni);
1856 			run_enable_tsf_sync(sc);
1857 
1858 			/* enable automatic rate adaptation */
1859 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1860 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1861 				ratectl |= bid;
1862 		}
1863 
1864 		/* turn link LED on */
1865 		run_set_leds(sc, RT2860_LED_RADIO |
1866 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1867 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1868 
1869 		break;
1870 	default:
1871 		DPRINTFN(6, "undefined case\n");
1872 		break;
1873 	}
1874 
1875 	/* restart amrr for running VAPs */
1876 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1877 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1878 
1879 	RUN_UNLOCK(sc);
1880 	IEEE80211_LOCK(ic);
1881 
1882 	return(rvp->newstate(vap, nstate, arg));
1883 }
1884 
1885 /* ARGSUSED */
1886 static void
1887 run_wme_update_cb(void *arg)
1888 {
1889 	struct ieee80211com *ic = arg;
1890 	struct run_softc *sc = ic->ic_ifp->if_softc;
1891 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1892 	int aci, error = 0;
1893 
1894 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1895 
1896 	/* update MAC TX configuration registers */
1897 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1898 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1899 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1900 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1901 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1902 		    wmesp->wme_params[aci].wmep_txopLimit);
1903 		if (error) goto err;
1904 	}
1905 
1906 	/* update SCH/DMA registers too */
1907 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1908 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1909 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1910 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1911 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1912 	if (error) goto err;
1913 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1914 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1915 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1916 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1917 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1918 	if (error) goto err;
1919 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1920 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1921 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1922 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1923 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1924 	if (error) goto err;
1925 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1926 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1927 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1928 	if (error) goto err;
1929 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1930 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1931 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1932 
1933 err:
1934 	if (error)
1935 		DPRINTF("WME update failed\n");
1936 
1937 	return;
1938 }
1939 
1940 static int
1941 run_wme_update(struct ieee80211com *ic)
1942 {
1943 	struct run_softc *sc = ic->ic_ifp->if_softc;
1944 
1945 	/* sometime called wothout lock */
1946 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1947 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1948 		DPRINTF("cmdq_store=%d\n", i);
1949 		sc->cmdq[i].func = run_wme_update_cb;
1950 		sc->cmdq[i].arg0 = ic;
1951 		ieee80211_runtask(ic, &sc->cmdq_task);
1952 		return (0);
1953 	}
1954 
1955 	RUN_LOCK(sc);
1956 	run_wme_update_cb(ic);
1957 	RUN_UNLOCK(sc);
1958 
1959 	/* return whatever, upper layer desn't care anyway */
1960 	return (0);
1961 }
1962 
1963 static void
1964 run_key_update_begin(struct ieee80211vap *vap)
1965 {
1966 	/*
1967 	 * To avoid out-of-order events, both run_key_set() and
1968 	 * _delete() are deferred and handled by run_cmdq_cb().
1969 	 * So, there is nothing we need to do here.
1970 	 */
1971 }
1972 
1973 static void
1974 run_key_update_end(struct ieee80211vap *vap)
1975 {
1976 	/* null */
1977 }
1978 
1979 static void
1980 run_key_set_cb(void *arg)
1981 {
1982 	struct run_cmdq *cmdq = arg;
1983 	struct ieee80211vap *vap = cmdq->arg1;
1984 	struct ieee80211_key *k = cmdq->k;
1985 	struct ieee80211com *ic = vap->iv_ic;
1986 	struct run_softc *sc = ic->ic_ifp->if_softc;
1987 	struct ieee80211_node *ni;
1988 	uint32_t attr;
1989 	uint16_t base, associd;
1990 	uint8_t mode, wcid, iv[8];
1991 
1992 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1993 
1994 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1995 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1996 	else
1997 		ni = vap->iv_bss;
1998 	associd = (ni != NULL) ? ni->ni_associd : 0;
1999 
2000 	/* map net80211 cipher to RT2860 security mode */
2001 	switch (k->wk_cipher->ic_cipher) {
2002 	case IEEE80211_CIPHER_WEP:
2003 		if(k->wk_keylen < 8)
2004 			mode = RT2860_MODE_WEP40;
2005 		else
2006 			mode = RT2860_MODE_WEP104;
2007 		break;
2008 	case IEEE80211_CIPHER_TKIP:
2009 		mode = RT2860_MODE_TKIP;
2010 		break;
2011 	case IEEE80211_CIPHER_AES_CCM:
2012 		mode = RT2860_MODE_AES_CCMP;
2013 		break;
2014 	default:
2015 		DPRINTF("undefined case\n");
2016 		return;
2017 	}
2018 
2019 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2020 	    associd, k->wk_keyix, mode,
2021 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2022 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2023 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2024 
2025 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2026 		wcid = 0;	/* NB: update WCID0 for group keys */
2027 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2028 	} else {
2029 		wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2030 		    1 : RUN_AID2WCID(associd);
2031 		base = RT2860_PKEY(wcid);
2032 	}
2033 
2034 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2035 		if(run_write_region_1(sc, base, k->wk_key, 16))
2036 			return;
2037 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2038 			return;
2039 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2040 			return;
2041 	} else {
2042 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2043 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2044 			return;
2045 	}
2046 
2047 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2048 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2049 		/* set initial packet number in IV+EIV */
2050 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2051 			memset(iv, 0, sizeof iv);
2052 			iv[3] = vap->iv_def_txkey << 6;
2053 		} else {
2054 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2055 				iv[0] = k->wk_keytsc >> 8;
2056 				iv[1] = (iv[0] | 0x20) & 0x7f;
2057 				iv[2] = k->wk_keytsc;
2058 			} else /* CCMP */ {
2059 				iv[0] = k->wk_keytsc;
2060 				iv[1] = k->wk_keytsc >> 8;
2061 				iv[2] = 0;
2062 			}
2063 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2064 			iv[4] = k->wk_keytsc >> 16;
2065 			iv[5] = k->wk_keytsc >> 24;
2066 			iv[6] = k->wk_keytsc >> 32;
2067 			iv[7] = k->wk_keytsc >> 40;
2068 		}
2069 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2070 			return;
2071 	}
2072 
2073 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2074 		/* install group key */
2075 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2076 			return;
2077 		attr &= ~(0xf << (k->wk_keyix * 4));
2078 		attr |= mode << (k->wk_keyix * 4);
2079 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2080 			return;
2081 	} else {
2082 		/* install pairwise key */
2083 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2084 			return;
2085 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2086 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2087 			return;
2088 	}
2089 
2090 	/* TODO create a pass-thru key entry? */
2091 
2092 	/* need wcid to delete the right key later */
2093 	k->wk_pad = wcid;
2094 }
2095 
2096 /*
2097  * Don't have to be deferred, but in order to keep order of
2098  * execution, i.e. with run_key_delete(), defer this and let
2099  * run_cmdq_cb() maintain the order.
2100  *
2101  * return 0 on error
2102  */
2103 static int
2104 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2105 		const uint8_t mac[IEEE80211_ADDR_LEN])
2106 {
2107 	struct ieee80211com *ic = vap->iv_ic;
2108 	struct run_softc *sc = ic->ic_ifp->if_softc;
2109 	uint32_t i;
2110 
2111 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2112 	DPRINTF("cmdq_store=%d\n", i);
2113 	sc->cmdq[i].func = run_key_set_cb;
2114 	sc->cmdq[i].arg0 = NULL;
2115 	sc->cmdq[i].arg1 = vap;
2116 	sc->cmdq[i].k = k;
2117 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2118 	ieee80211_runtask(ic, &sc->cmdq_task);
2119 
2120 	/*
2121 	 * To make sure key will be set when hostapd
2122 	 * calls iv_key_set() before if_init().
2123 	 */
2124 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2125 		RUN_LOCK(sc);
2126 		sc->cmdq_key_set = RUN_CMDQ_GO;
2127 		RUN_UNLOCK(sc);
2128 	}
2129 
2130 	return (1);
2131 }
2132 
2133 /*
2134  * If wlan is destroyed without being brought down i.e. without
2135  * wlan down or wpa_cli terminate, this function is called after
2136  * vap is gone. Don't refer it.
2137  */
2138 static void
2139 run_key_delete_cb(void *arg)
2140 {
2141 	struct run_cmdq *cmdq = arg;
2142 	struct run_softc *sc = cmdq->arg1;
2143 	struct ieee80211_key *k = &cmdq->key;
2144 	uint32_t attr;
2145 	uint8_t wcid;
2146 
2147 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2148 
2149 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2150 		/* remove group key */
2151 		DPRINTF("removing group key\n");
2152 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2153 		attr &= ~(0xf << (k->wk_keyix * 4));
2154 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2155 	} else {
2156 		/* remove pairwise key */
2157 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2158 		/* matching wcid was written to wk_pad in run_key_set() */
2159 		wcid = k->wk_pad;
2160 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2161 		attr &= ~0xf;
2162 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2163 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2164 	}
2165 
2166 	k->wk_pad = 0;
2167 }
2168 
2169 /*
2170  * return 0 on error
2171  */
2172 static int
2173 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2174 {
2175 	struct ieee80211com *ic = vap->iv_ic;
2176 	struct run_softc *sc = ic->ic_ifp->if_softc;
2177 	struct ieee80211_key *k0;
2178 	uint32_t i;
2179 
2180 	/*
2181 	 * When called back, key might be gone. So, make a copy
2182 	 * of some values need to delete keys before deferring.
2183 	 * But, because of LOR with node lock, cannot use lock here.
2184 	 * So, use atomic instead.
2185 	 */
2186 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2187 	DPRINTF("cmdq_store=%d\n", i);
2188 	sc->cmdq[i].func = run_key_delete_cb;
2189 	sc->cmdq[i].arg0 = NULL;
2190 	sc->cmdq[i].arg1 = sc;
2191 	k0 = &sc->cmdq[i].key;
2192 	k0->wk_flags = k->wk_flags;
2193 	k0->wk_keyix = k->wk_keyix;
2194 	/* matching wcid was written to wk_pad in run_key_set() */
2195 	k0->wk_pad = k->wk_pad;
2196 	ieee80211_runtask(ic, &sc->cmdq_task);
2197 	return (1);	/* return fake success */
2198 
2199 }
2200 
2201 static void
2202 run_ratectl_to(void *arg)
2203 {
2204 	struct run_softc *sc = arg;
2205 
2206 	/* do it in a process context, so it can go sleep */
2207 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2208 	/* next timeout will be rescheduled in the callback task */
2209 }
2210 
2211 /* ARGSUSED */
2212 static void
2213 run_ratectl_cb(void *arg, int pending)
2214 {
2215 	struct run_softc *sc = arg;
2216 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2217 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2218 
2219 	if (vap == NULL)
2220 		return;
2221 
2222 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2223 		run_iter_func(sc, vap->iv_bss);
2224 	else {
2225 		/*
2226 		 * run_reset_livelock() doesn't do anything with AMRR,
2227 		 * but Ralink wants us to call it every 1 sec. So, we
2228 		 * piggyback here rather than creating another callout.
2229 		 * Livelock may occur only in HOSTAP or IBSS mode
2230 		 * (when h/w is sending beacons).
2231 		 */
2232 		RUN_LOCK(sc);
2233 		run_reset_livelock(sc);
2234 		/* just in case, there are some stats to drain */
2235 		run_drain_fifo(sc);
2236 		RUN_UNLOCK(sc);
2237 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2238 	}
2239 
2240 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2241 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2242 }
2243 
2244 static void
2245 run_drain_fifo(void *arg)
2246 {
2247 	struct run_softc *sc = arg;
2248 	struct ifnet *ifp = sc->sc_ifp;
2249 	uint32_t stat;
2250 	uint16_t (*wstat)[3];
2251 	uint8_t wcid, mcs, pid;
2252 	int8_t retry;
2253 
2254 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2255 
2256 	for (;;) {
2257 		/* drain Tx status FIFO (maxsize = 16) */
2258 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2259 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2260 		if (!(stat & RT2860_TXQ_VLD))
2261 			break;
2262 
2263 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2264 
2265 		/* if no ACK was requested, no feedback is available */
2266 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2267 		    wcid == 0)
2268 			continue;
2269 
2270 		/*
2271 		 * Even though each stat is Tx-complete-status like format,
2272 		 * the device can poll stats. Because there is no guarantee
2273 		 * that the referring node is still around when read the stats.
2274 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2275 		 * have hard time not to refer already freed node.
2276 		 *
2277 		 * To eliminate such page faults, we poll stats in softc.
2278 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2279 		 */
2280 		wstat = &(sc->wcid_stats[wcid]);
2281 		(*wstat)[RUN_TXCNT]++;
2282 		if (stat & RT2860_TXQ_OK)
2283 			(*wstat)[RUN_SUCCESS]++;
2284 		else
2285 			ifp->if_oerrors++;
2286 		/*
2287 		 * Check if there were retries, ie if the Tx success rate is
2288 		 * different from the requested rate. Note that it works only
2289 		 * because we do not allow rate fallback from OFDM to CCK.
2290 		 */
2291 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2292 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2293 		if ((retry = pid -1 - mcs) > 0) {
2294 			(*wstat)[RUN_TXCNT] += retry;
2295 			(*wstat)[RUN_RETRY] += retry;
2296 		}
2297 	}
2298 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2299 
2300 	sc->fifo_cnt = 0;
2301 }
2302 
2303 static void
2304 run_iter_func(void *arg, struct ieee80211_node *ni)
2305 {
2306 	struct run_softc *sc = arg;
2307 	struct ieee80211vap *vap = ni->ni_vap;
2308 	struct ieee80211com *ic = ni->ni_ic;
2309 	struct ifnet *ifp = ic->ic_ifp;
2310 	struct run_node *rn = (void *)ni;
2311 	union run_stats sta[2];
2312 	uint16_t (*wstat)[3];
2313 	int txcnt, success, retrycnt, error;
2314 
2315 	RUN_LOCK(sc);
2316 
2317 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2318 	    vap->iv_opmode == IEEE80211_M_STA)) {
2319 		/* read statistic counters (clear on read) and update AMRR state */
2320 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2321 		    sizeof sta);
2322 		if (error != 0)
2323 			goto fail;
2324 
2325 		/* count failed TX as errors */
2326 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2327 
2328 		retrycnt = le16toh(sta[1].tx.retry);
2329 		success = le16toh(sta[1].tx.success);
2330 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2331 
2332 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2333 			retrycnt, success, le16toh(sta[0].error.fail));
2334 	} else {
2335 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2336 
2337 		if (wstat == &(sc->wcid_stats[0]) ||
2338 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2339 			goto fail;
2340 
2341 		txcnt = (*wstat)[RUN_TXCNT];
2342 		success = (*wstat)[RUN_SUCCESS];
2343 		retrycnt = (*wstat)[RUN_RETRY];
2344 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2345 		    retrycnt, txcnt, success);
2346 
2347 		memset(wstat, 0, sizeof(*wstat));
2348 	}
2349 
2350 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2351 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2352 
2353 fail:
2354 	RUN_UNLOCK(sc);
2355 
2356 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2357 }
2358 
2359 static void
2360 run_newassoc_cb(void *arg)
2361 {
2362 	struct run_cmdq *cmdq = arg;
2363 	struct ieee80211_node *ni = cmdq->arg1;
2364 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2365 	uint8_t wcid = cmdq->wcid;
2366 
2367 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2368 
2369 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2370 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2371 
2372 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2373 }
2374 
2375 static void
2376 run_newassoc(struct ieee80211_node *ni, int isnew)
2377 {
2378 	struct run_node *rn = (void *)ni;
2379 	struct ieee80211_rateset *rs = &ni->ni_rates;
2380 	struct ieee80211vap *vap = ni->ni_vap;
2381 	struct ieee80211com *ic = vap->iv_ic;
2382 	struct run_softc *sc = ic->ic_ifp->if_softc;
2383 	uint8_t rate;
2384 	uint8_t ridx;
2385 	uint8_t wcid;
2386 	int i, j;
2387 
2388 	wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2389 	    1 : RUN_AID2WCID(ni->ni_associd);
2390 
2391 	if (wcid > RT2870_WCID_MAX) {
2392 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2393 		return;
2394 	}
2395 
2396 	/* only interested in true associations */
2397 	if (isnew && ni->ni_associd != 0) {
2398 
2399 		/*
2400 		 * This function could is called though timeout function.
2401 		 * Need to defer.
2402 		 */
2403 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2404 		DPRINTF("cmdq_store=%d\n", cnt);
2405 		sc->cmdq[cnt].func = run_newassoc_cb;
2406 		sc->cmdq[cnt].arg0 = NULL;
2407 		sc->cmdq[cnt].arg1 = ni;
2408 		sc->cmdq[cnt].wcid = wcid;
2409 		ieee80211_runtask(ic, &sc->cmdq_task);
2410 	}
2411 
2412 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2413 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2414 
2415 	for (i = 0; i < rs->rs_nrates; i++) {
2416 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2417 		/* convert 802.11 rate to hardware rate index */
2418 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2419 			if (rt2860_rates[ridx].rate == rate)
2420 				break;
2421 		rn->ridx[i] = ridx;
2422 		/* determine rate of control response frames */
2423 		for (j = i; j >= 0; j--) {
2424 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2425 			    rt2860_rates[rn->ridx[i]].phy ==
2426 			    rt2860_rates[rn->ridx[j]].phy)
2427 				break;
2428 		}
2429 		if (j >= 0) {
2430 			rn->ctl_ridx[i] = rn->ridx[j];
2431 		} else {
2432 			/* no basic rate found, use mandatory one */
2433 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2434 		}
2435 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2436 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2437 	}
2438 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2439 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2440 		if (rt2860_rates[ridx].rate == rate)
2441 			break;
2442 	rn->mgt_ridx = ridx;
2443 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2444 
2445 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2446 }
2447 
2448 /*
2449  * Return the Rx chain with the highest RSSI for a given frame.
2450  */
2451 static __inline uint8_t
2452 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2453 {
2454 	uint8_t rxchain = 0;
2455 
2456 	if (sc->nrxchains > 1) {
2457 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2458 			rxchain = 1;
2459 		if (sc->nrxchains > 2)
2460 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2461 				rxchain = 2;
2462 	}
2463 	return (rxchain);
2464 }
2465 
2466 static void
2467 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2468 {
2469 	struct ifnet *ifp = sc->sc_ifp;
2470 	struct ieee80211com *ic = ifp->if_l2com;
2471 	struct ieee80211_frame *wh;
2472 	struct ieee80211_node *ni;
2473 	struct rt2870_rxd *rxd;
2474 	struct rt2860_rxwi *rxwi;
2475 	uint32_t flags;
2476 	uint16_t len, phy;
2477 	uint8_t ant, rssi;
2478 	int8_t nf;
2479 
2480 	rxwi = mtod(m, struct rt2860_rxwi *);
2481 	len = le16toh(rxwi->len) & 0xfff;
2482 	if (__predict_false(len > dmalen)) {
2483 		m_freem(m);
2484 		ifp->if_ierrors++;
2485 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2486 		return;
2487 	}
2488 	/* Rx descriptor is located at the end */
2489 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2490 	flags = le32toh(rxd->flags);
2491 
2492 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2493 		m_freem(m);
2494 		ifp->if_ierrors++;
2495 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2496 		return;
2497 	}
2498 
2499 	m->m_data += sizeof(struct rt2860_rxwi);
2500 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2501 
2502 	wh = mtod(m, struct ieee80211_frame *);
2503 
2504 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2505 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2506 		m->m_flags |= M_WEP;
2507 	}
2508 
2509 	if (flags & RT2860_RX_L2PAD) {
2510 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2511 		len += 2;
2512 	}
2513 
2514 	ni = ieee80211_find_rxnode(ic,
2515 	    mtod(m, struct ieee80211_frame_min *));
2516 
2517 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2518 		/* report MIC failures to net80211 for TKIP */
2519 		if (ni != NULL)
2520 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2521 		m_freem(m);
2522 		ifp->if_ierrors++;
2523 		DPRINTF("MIC error. Someone is lying.\n");
2524 		return;
2525 	}
2526 
2527 	ant = run_maxrssi_chain(sc, rxwi);
2528 	rssi = rxwi->rssi[ant];
2529 	nf = run_rssi2dbm(sc, rssi, ant);
2530 
2531 	m->m_pkthdr.rcvif = ifp;
2532 	m->m_pkthdr.len = m->m_len = len;
2533 
2534 	if (ni != NULL) {
2535 		(void)ieee80211_input(ni, m, rssi, nf);
2536 		ieee80211_free_node(ni);
2537 	} else {
2538 		(void)ieee80211_input_all(ic, m, rssi, nf);
2539 	}
2540 
2541 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2542 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2543 
2544 		tap->wr_flags = 0;
2545 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2546 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2547 		tap->wr_antsignal = rssi;
2548 		tap->wr_antenna = ant;
2549 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2550 		tap->wr_rate = 2;	/* in case it can't be found below */
2551 		phy = le16toh(rxwi->phy);
2552 		switch (phy & RT2860_PHY_MODE) {
2553 		case RT2860_PHY_CCK:
2554 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2555 			case 0:	tap->wr_rate =   2; break;
2556 			case 1:	tap->wr_rate =   4; break;
2557 			case 2:	tap->wr_rate =  11; break;
2558 			case 3:	tap->wr_rate =  22; break;
2559 			}
2560 			if (phy & RT2860_PHY_SHPRE)
2561 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2562 			break;
2563 		case RT2860_PHY_OFDM:
2564 			switch (phy & RT2860_PHY_MCS) {
2565 			case 0:	tap->wr_rate =  12; break;
2566 			case 1:	tap->wr_rate =  18; break;
2567 			case 2:	tap->wr_rate =  24; break;
2568 			case 3:	tap->wr_rate =  36; break;
2569 			case 4:	tap->wr_rate =  48; break;
2570 			case 5:	tap->wr_rate =  72; break;
2571 			case 6:	tap->wr_rate =  96; break;
2572 			case 7:	tap->wr_rate = 108; break;
2573 			}
2574 			break;
2575 		}
2576 	}
2577 }
2578 
2579 static void
2580 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2581 {
2582 	struct run_softc *sc = usbd_xfer_softc(xfer);
2583 	struct ifnet *ifp = sc->sc_ifp;
2584 	struct mbuf *m = NULL;
2585 	struct mbuf *m0;
2586 	uint32_t dmalen;
2587 	int xferlen;
2588 
2589 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2590 
2591 	switch (USB_GET_STATE(xfer)) {
2592 	case USB_ST_TRANSFERRED:
2593 
2594 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2595 
2596 		if (xferlen < (int)(sizeof(uint32_t) +
2597 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2598 			DPRINTF("xfer too short %d\n", xferlen);
2599 			goto tr_setup;
2600 		}
2601 
2602 		m = sc->rx_m;
2603 		sc->rx_m = NULL;
2604 
2605 		/* FALLTHROUGH */
2606 	case USB_ST_SETUP:
2607 tr_setup:
2608 		if (sc->rx_m == NULL) {
2609 			sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
2610 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2611 		}
2612 		if (sc->rx_m == NULL) {
2613 			DPRINTF("could not allocate mbuf - idle with stall\n");
2614 			ifp->if_ierrors++;
2615 			usbd_xfer_set_stall(xfer);
2616 			usbd_xfer_set_frames(xfer, 0);
2617 		} else {
2618 			/*
2619 			 * Directly loading a mbuf cluster into DMA to
2620 			 * save some data copying. This works because
2621 			 * there is only one cluster.
2622 			 */
2623 			usbd_xfer_set_frame_data(xfer, 0,
2624 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2625 			usbd_xfer_set_frames(xfer, 1);
2626 		}
2627 		usbd_transfer_submit(xfer);
2628 		break;
2629 
2630 	default:	/* Error */
2631 		if (error != USB_ERR_CANCELLED) {
2632 			/* try to clear stall first */
2633 			usbd_xfer_set_stall(xfer);
2634 
2635 			if (error == USB_ERR_TIMEOUT)
2636 				device_printf(sc->sc_dev, "device timeout\n");
2637 
2638 			ifp->if_ierrors++;
2639 
2640 			goto tr_setup;
2641 		}
2642 		if (sc->rx_m != NULL) {
2643 			m_freem(sc->rx_m);
2644 			sc->rx_m = NULL;
2645 		}
2646 		break;
2647 	}
2648 
2649 	if (m == NULL)
2650 		return;
2651 
2652 	/* inputting all the frames must be last */
2653 
2654 	RUN_UNLOCK(sc);
2655 
2656 	m->m_pkthdr.len = m->m_len = xferlen;
2657 
2658 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2659 	for(;;) {
2660 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2661 
2662 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2663 		    ((dmalen & 3) != 0)) {
2664 			DPRINTF("bad DMA length %u\n", dmalen);
2665 			break;
2666 		}
2667 		if ((dmalen + 8) > (uint32_t)xferlen) {
2668 			DPRINTF("bad DMA length %u > %d\n",
2669 			dmalen + 8, xferlen);
2670 			break;
2671 		}
2672 
2673 		/* If it is the last one or a single frame, we won't copy. */
2674 		if ((xferlen -= dmalen + 8) <= 8) {
2675 			/* trim 32-bit DMA-len header */
2676 			m->m_data += 4;
2677 			m->m_pkthdr.len = m->m_len -= 4;
2678 			run_rx_frame(sc, m, dmalen);
2679 			break;
2680 		}
2681 
2682 		/* copy aggregated frames to another mbuf */
2683 		m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2684 		if (__predict_false(m0 == NULL)) {
2685 			DPRINTF("could not allocate mbuf\n");
2686 			ifp->if_ierrors++;
2687 			break;
2688 		}
2689 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2690 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2691 		m0->m_pkthdr.len = m0->m_len =
2692 		    dmalen + sizeof(struct rt2870_rxd);
2693 		run_rx_frame(sc, m0, dmalen);
2694 
2695 		/* update data ptr */
2696 		m->m_data += dmalen + 8;
2697 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2698 	}
2699 
2700 	RUN_LOCK(sc);
2701 }
2702 
2703 static void
2704 run_tx_free(struct run_endpoint_queue *pq,
2705     struct run_tx_data *data, int txerr)
2706 {
2707 	if (data->m != NULL) {
2708 		if (data->m->m_flags & M_TXCB)
2709 			ieee80211_process_callback(data->ni, data->m,
2710 			    txerr ? ETIMEDOUT : 0);
2711 		m_freem(data->m);
2712 		data->m = NULL;
2713 
2714 		if (data->ni == NULL) {
2715 			DPRINTF("no node\n");
2716 		} else {
2717 			ieee80211_free_node(data->ni);
2718 			data->ni = NULL;
2719 		}
2720 	}
2721 
2722 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2723 	pq->tx_nfree++;
2724 }
2725 
2726 static void
2727 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2728 {
2729 	struct run_softc *sc = usbd_xfer_softc(xfer);
2730 	struct ifnet *ifp = sc->sc_ifp;
2731 	struct ieee80211com *ic = ifp->if_l2com;
2732 	struct run_tx_data *data;
2733 	struct ieee80211vap *vap = NULL;
2734 	struct usb_page_cache *pc;
2735 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2736 	struct mbuf *m;
2737 	usb_frlength_t size;
2738 	int actlen;
2739 	int sumlen;
2740 
2741 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2742 
2743 	switch (USB_GET_STATE(xfer)) {
2744 	case USB_ST_TRANSFERRED:
2745 		DPRINTFN(11, "transfer complete: %d "
2746 		    "bytes @ index %d\n", actlen, index);
2747 
2748 		data = usbd_xfer_get_priv(xfer);
2749 
2750 		run_tx_free(pq, data, 0);
2751 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2752 
2753 		usbd_xfer_set_priv(xfer, NULL);
2754 
2755 		ifp->if_opackets++;
2756 
2757 		/* FALLTHROUGH */
2758 	case USB_ST_SETUP:
2759 tr_setup:
2760 		data = STAILQ_FIRST(&pq->tx_qh);
2761 		if (data == NULL)
2762 			break;
2763 
2764 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2765 
2766 		m = data->m;
2767 		if ((m->m_pkthdr.len +
2768 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2769 			DPRINTF("data overflow, %u bytes\n",
2770 			    m->m_pkthdr.len);
2771 
2772 			ifp->if_oerrors++;
2773 
2774 			run_tx_free(pq, data, 1);
2775 
2776 			goto tr_setup;
2777 		}
2778 
2779 		pc = usbd_xfer_get_frame(xfer, 0);
2780 		size = sizeof(data->desc);
2781 		usbd_copy_in(pc, 0, &data->desc, size);
2782 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2783 		size += m->m_pkthdr.len;
2784 		/*
2785 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2786 		 * 4-byte padding), and be sure to zero those trailing
2787 		 * bytes:
2788 		 */
2789 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2790 		size += ((-size) & 3) + 8;
2791 
2792 		vap = data->ni->ni_vap;
2793 		if (ieee80211_radiotap_active_vap(vap)) {
2794 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2795 			struct rt2860_txwi *txwi =
2796 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2797 
2798 			tap->wt_flags = 0;
2799 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2800 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2801 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2802 			tap->wt_hwqueue = index;
2803 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2804 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2805 
2806 			ieee80211_radiotap_tx(vap, m);
2807 		}
2808 
2809 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2810 		    m->m_pkthdr.len, size, index);
2811 
2812 		usbd_xfer_set_frame_len(xfer, 0, size);
2813 		usbd_xfer_set_priv(xfer, data);
2814 
2815 		usbd_transfer_submit(xfer);
2816 
2817 		RUN_UNLOCK(sc);
2818 		run_start(ifp);
2819 		RUN_LOCK(sc);
2820 
2821 		break;
2822 
2823 	default:
2824 		DPRINTF("USB transfer error, %s\n",
2825 		    usbd_errstr(error));
2826 
2827 		data = usbd_xfer_get_priv(xfer);
2828 
2829 		ifp->if_oerrors++;
2830 
2831 		if (data != NULL) {
2832 			if(data->ni != NULL)
2833 				vap = data->ni->ni_vap;
2834 			run_tx_free(pq, data, error);
2835 			usbd_xfer_set_priv(xfer, NULL);
2836 		}
2837 		if (vap == NULL)
2838 			vap = TAILQ_FIRST(&ic->ic_vaps);
2839 
2840 		if (error != USB_ERR_CANCELLED) {
2841 			if (error == USB_ERR_TIMEOUT) {
2842 				device_printf(sc->sc_dev, "device timeout\n");
2843 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2844 				DPRINTF("cmdq_store=%d\n", i);
2845 				sc->cmdq[i].func = run_usb_timeout_cb;
2846 				sc->cmdq[i].arg0 = vap;
2847 				ieee80211_runtask(ic, &sc->cmdq_task);
2848 			}
2849 
2850 			/*
2851 			 * Try to clear stall first, also if other
2852 			 * errors occur, hence clearing stall
2853 			 * introduces a 50 ms delay:
2854 			 */
2855 			usbd_xfer_set_stall(xfer);
2856 			goto tr_setup;
2857 		}
2858 		break;
2859 	}
2860 }
2861 
2862 static void
2863 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2864 {
2865 	run_bulk_tx_callbackN(xfer, error, 0);
2866 }
2867 
2868 static void
2869 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2870 {
2871 	run_bulk_tx_callbackN(xfer, error, 1);
2872 }
2873 
2874 static void
2875 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2876 {
2877 	run_bulk_tx_callbackN(xfer, error, 2);
2878 }
2879 
2880 static void
2881 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2882 {
2883 	run_bulk_tx_callbackN(xfer, error, 3);
2884 }
2885 
2886 static void
2887 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2888 {
2889 	run_bulk_tx_callbackN(xfer, error, 4);
2890 }
2891 
2892 static void
2893 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2894 {
2895 	run_bulk_tx_callbackN(xfer, error, 5);
2896 }
2897 
2898 static void
2899 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2900 {
2901 	struct mbuf *m = data->m;
2902 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2903 	struct ieee80211vap *vap = data->ni->ni_vap;
2904 	struct ieee80211_frame *wh;
2905 	struct rt2870_txd *txd;
2906 	struct rt2860_txwi *txwi;
2907 	uint16_t xferlen;
2908 	uint16_t mcs;
2909 	uint8_t ridx = data->ridx;
2910 	uint8_t pad;
2911 
2912 	/* get MCS code from rate index */
2913 	mcs = rt2860_rates[ridx].mcs;
2914 
2915 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2916 
2917 	/* roundup to 32-bit alignment */
2918 	xferlen = (xferlen + 3) & ~3;
2919 
2920 	txd = (struct rt2870_txd *)&data->desc;
2921 	txd->len = htole16(xferlen);
2922 
2923 	wh = mtod(m, struct ieee80211_frame *);
2924 
2925 	/*
2926 	 * Ether both are true or both are false, the header
2927 	 * are nicely aligned to 32-bit. So, no L2 padding.
2928 	 */
2929 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2930 		pad = 0;
2931 	else
2932 		pad = 2;
2933 
2934 	/* setup TX Wireless Information */
2935 	txwi = (struct rt2860_txwi *)(txd + 1);
2936 	txwi->len = htole16(m->m_pkthdr.len - pad);
2937 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2938 		txwi->phy = htole16(RT2860_PHY_CCK);
2939 		if (ridx != RT2860_RIDX_CCK1 &&
2940 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2941 			mcs |= RT2860_PHY_SHPRE;
2942 	} else
2943 		txwi->phy = htole16(RT2860_PHY_OFDM);
2944 	txwi->phy |= htole16(mcs);
2945 
2946 	/* check if RTS/CTS or CTS-to-self protection is required */
2947 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2948 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2949 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2950 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2951 		txwi->txop |= RT2860_TX_TXOP_HT;
2952 	else
2953 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2954 
2955 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2956 		txwi->xflags |= RT2860_TX_NSEQ;
2957 }
2958 
2959 /* This function must be called locked */
2960 static int
2961 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2962 {
2963 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2964 	struct ieee80211vap *vap = ni->ni_vap;
2965 	struct ieee80211_frame *wh;
2966 	struct ieee80211_channel *chan;
2967 	const struct ieee80211_txparam *tp;
2968 	struct run_node *rn = (void *)ni;
2969 	struct run_tx_data *data;
2970 	struct rt2870_txd *txd;
2971 	struct rt2860_txwi *txwi;
2972 	uint16_t qos;
2973 	uint16_t dur;
2974 	uint16_t qid;
2975 	uint8_t type;
2976 	uint8_t tid;
2977 	uint8_t ridx;
2978 	uint8_t ctl_ridx;
2979 	uint8_t qflags;
2980 	uint8_t xflags = 0;
2981 	int hasqos;
2982 
2983 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2984 
2985 	wh = mtod(m, struct ieee80211_frame *);
2986 
2987 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2988 
2989 	/*
2990 	 * There are 7 bulk endpoints: 1 for RX
2991 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2992 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2993 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2994 	 */
2995 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2996 		uint8_t *frm;
2997 
2998 		if(IEEE80211_HAS_ADDR4(wh))
2999 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
3000 		else
3001 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
3002 
3003 		qos = le16toh(*(const uint16_t *)frm);
3004 		tid = qos & IEEE80211_QOS_TID;
3005 		qid = TID_TO_WME_AC(tid);
3006 	} else {
3007 		qos = 0;
3008 		tid = 0;
3009 		qid = WME_AC_BE;
3010 	}
3011 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3012 
3013 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3014 	    qos, qid, tid, qflags);
3015 
3016 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3017 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3018 
3019 	/* pickup a rate index */
3020 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3021 	    type != IEEE80211_FC0_TYPE_DATA) {
3022 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3023 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3024 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3025 	} else {
3026 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3027 			ridx = rn->fix_ridx;
3028 		else
3029 			ridx = rn->amrr_ridx;
3030 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3031 	}
3032 
3033 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3034 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3035 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3036 		xflags |= RT2860_TX_ACK;
3037 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3038 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3039 		else
3040 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3041 		*(uint16_t *)wh->i_dur = htole16(dur);
3042 	}
3043 
3044 	/* reserve slots for mgmt packets, just in case */
3045 	if (sc->sc_epq[qid].tx_nfree < 3) {
3046 		DPRINTFN(10, "tx ring %d is full\n", qid);
3047 		return (-1);
3048 	}
3049 
3050 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3051 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3052 	sc->sc_epq[qid].tx_nfree--;
3053 
3054 	txd = (struct rt2870_txd *)&data->desc;
3055 	txd->flags = qflags;
3056 	txwi = (struct rt2860_txwi *)(txd + 1);
3057 	txwi->xflags = xflags;
3058 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3059 		txwi->wcid = 0;
3060 	} else {
3061 		txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
3062 		    1 : RUN_AID2WCID(ni->ni_associd);
3063 	}
3064 	/* clear leftover garbage bits */
3065 	txwi->flags = 0;
3066 	txwi->txop = 0;
3067 
3068 	data->m = m;
3069 	data->ni = ni;
3070 	data->ridx = ridx;
3071 
3072 	run_set_tx_desc(sc, data);
3073 
3074 	/*
3075 	 * The chip keeps track of 2 kind of Tx stats,
3076 	 *  * TX_STAT_FIFO, for per WCID stats, and
3077 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3078 	 *
3079 	 * To use FIFO stats, we need to store MCS into the driver-private
3080  	 * PacketID field. So that, we can tell whose stats when we read them.
3081  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3082  	 * that we don't want feedback in TX_STAT_FIFO.
3083  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3084  	 *
3085  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3086  	 */
3087 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3088 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3089 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3090 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3091 
3092 		/*
3093 		 * Unlike PCI based devices, we don't get any interrupt from
3094 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3095 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3096 		 * quickly get fulled. To prevent overflow, increment a counter on
3097 		 * every FIFO stat request, so we know how many slots are left.
3098 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3099 		 * are used only in those modes.
3100 		 * We just drain stats. AMRR gets updated every 1 sec by
3101 		 * run_ratectl_cb() via callout.
3102 		 * Call it early. Otherwise overflow.
3103 		 */
3104 		if (sc->fifo_cnt++ == 10) {
3105 			/*
3106 			 * With multiple vaps or if_bridge, if_start() is called
3107 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3108 			 */
3109 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3110 			DPRINTFN(6, "cmdq_store=%d\n", i);
3111 			sc->cmdq[i].func = run_drain_fifo;
3112 			sc->cmdq[i].arg0 = sc;
3113 			ieee80211_runtask(ic, &sc->cmdq_task);
3114 		}
3115 	}
3116 
3117         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3118 
3119 	usbd_transfer_start(sc->sc_xfer[qid]);
3120 
3121 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3122 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3123 	    rt2860_rates[ridx].rate, qid);
3124 
3125 	return (0);
3126 }
3127 
3128 static int
3129 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3130 {
3131 	struct ifnet *ifp = sc->sc_ifp;
3132 	struct ieee80211com *ic = ifp->if_l2com;
3133 	struct run_node *rn = (void *)ni;
3134 	struct run_tx_data *data;
3135 	struct ieee80211_frame *wh;
3136 	struct rt2870_txd *txd;
3137 	struct rt2860_txwi *txwi;
3138 	uint16_t dur;
3139 	uint8_t ridx = rn->mgt_ridx;
3140 	uint8_t type;
3141 	uint8_t xflags = 0;
3142 	uint8_t wflags = 0;
3143 
3144 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3145 
3146 	wh = mtod(m, struct ieee80211_frame *);
3147 
3148 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3149 
3150 	/* tell hardware to add timestamp for probe responses */
3151 	if ((wh->i_fc[0] &
3152 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3153 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3154 		wflags |= RT2860_TX_TS;
3155 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3156 		xflags |= RT2860_TX_ACK;
3157 
3158 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3159 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3160 		*(uint16_t *)wh->i_dur = htole16(dur);
3161 	}
3162 
3163 	if (sc->sc_epq[0].tx_nfree == 0) {
3164 		/* let caller free mbuf */
3165 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3166 		return (EIO);
3167 	}
3168 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3169 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3170 	sc->sc_epq[0].tx_nfree--;
3171 
3172 	txd = (struct rt2870_txd *)&data->desc;
3173 	txd->flags = RT2860_TX_QSEL_EDCA;
3174 	txwi = (struct rt2860_txwi *)(txd + 1);
3175 	txwi->wcid = 0xff;
3176 	txwi->flags = wflags;
3177 	txwi->xflags = xflags;
3178 	txwi->txop = 0;	/* clear leftover garbage bits */
3179 
3180 	data->m = m;
3181 	data->ni = ni;
3182 	data->ridx = ridx;
3183 
3184 	run_set_tx_desc(sc, data);
3185 
3186 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3187 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3188 	    rt2860_rates[ridx].rate);
3189 
3190 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3191 
3192 	usbd_transfer_start(sc->sc_xfer[0]);
3193 
3194 	return (0);
3195 }
3196 
3197 static int
3198 run_sendprot(struct run_softc *sc,
3199     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3200 {
3201 	struct ieee80211com *ic = ni->ni_ic;
3202 	struct ieee80211_frame *wh;
3203 	struct run_tx_data *data;
3204 	struct rt2870_txd *txd;
3205 	struct rt2860_txwi *txwi;
3206 	struct mbuf *mprot;
3207 	int ridx;
3208 	int protrate;
3209 	int ackrate;
3210 	int pktlen;
3211 	int isshort;
3212 	uint16_t dur;
3213 	uint8_t type;
3214 	uint8_t wflags = 0;
3215 	uint8_t xflags = 0;
3216 
3217 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3218 
3219 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3220 	    ("protection %d", prot));
3221 
3222 	wh = mtod(m, struct ieee80211_frame *);
3223 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3224 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3225 
3226 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3227 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3228 
3229 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3230 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3231 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3232 	wflags = RT2860_TX_FRAG;
3233 
3234 	/* check that there are free slots before allocating the mbuf */
3235 	if (sc->sc_epq[0].tx_nfree == 0) {
3236 		/* let caller free mbuf */
3237 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3238 		return (ENOBUFS);
3239 	}
3240 
3241 	if (prot == IEEE80211_PROT_RTSCTS) {
3242 		/* NB: CTS is the same size as an ACK */
3243 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3244 		xflags |= RT2860_TX_ACK;
3245 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3246 	} else {
3247 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3248 	}
3249 	if (mprot == NULL) {
3250 		sc->sc_ifp->if_oerrors++;
3251 		DPRINTF("could not allocate mbuf\n");
3252 		return (ENOBUFS);
3253 	}
3254 
3255         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3256         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3257         sc->sc_epq[0].tx_nfree--;
3258 
3259 	txd = (struct rt2870_txd *)&data->desc;
3260 	txd->flags = RT2860_TX_QSEL_EDCA;
3261 	txwi = (struct rt2860_txwi *)(txd + 1);
3262 	txwi->wcid = 0xff;
3263 	txwi->flags = wflags;
3264 	txwi->xflags = xflags;
3265 	txwi->txop = 0;	/* clear leftover garbage bits */
3266 
3267 	data->m = mprot;
3268 	data->ni = ieee80211_ref_node(ni);
3269 
3270 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3271 		if (rt2860_rates[ridx].rate == protrate)
3272 			break;
3273 	data->ridx = ridx;
3274 
3275 	run_set_tx_desc(sc, data);
3276 
3277         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3278             m->m_pkthdr.len, rate);
3279 
3280         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3281 
3282 	usbd_transfer_start(sc->sc_xfer[0]);
3283 
3284 	return (0);
3285 }
3286 
3287 static int
3288 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3289     const struct ieee80211_bpf_params *params)
3290 {
3291 	struct ieee80211com *ic = ni->ni_ic;
3292 	struct ieee80211_frame *wh;
3293 	struct run_tx_data *data;
3294 	struct rt2870_txd *txd;
3295 	struct rt2860_txwi *txwi;
3296 	uint8_t type;
3297 	uint8_t ridx;
3298 	uint8_t rate;
3299 	uint8_t opflags = 0;
3300 	uint8_t xflags = 0;
3301 	int error;
3302 
3303 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3304 
3305 	KASSERT(params != NULL, ("no raw xmit params"));
3306 
3307 	wh = mtod(m, struct ieee80211_frame *);
3308 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3309 
3310 	rate = params->ibp_rate0;
3311 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3312 		/* let caller free mbuf */
3313 		return (EINVAL);
3314 	}
3315 
3316 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3317 		xflags |= RT2860_TX_ACK;
3318 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3319 		error = run_sendprot(sc, m, ni,
3320 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3321 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3322 		    rate);
3323 		if (error) {
3324 			/* let caller free mbuf */
3325 			return error;
3326 		}
3327 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3328 	}
3329 
3330 	if (sc->sc_epq[0].tx_nfree == 0) {
3331 		/* let caller free mbuf */
3332 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3333 		DPRINTF("sending raw frame, but tx ring is full\n");
3334 		return (EIO);
3335 	}
3336         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3337         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3338         sc->sc_epq[0].tx_nfree--;
3339 
3340 	txd = (struct rt2870_txd *)&data->desc;
3341 	txd->flags = RT2860_TX_QSEL_EDCA;
3342 	txwi = (struct rt2860_txwi *)(txd + 1);
3343 	txwi->wcid = 0xff;
3344 	txwi->xflags = xflags;
3345 	txwi->txop = opflags;
3346 	txwi->flags = 0;	/* clear leftover garbage bits */
3347 
3348         data->m = m;
3349         data->ni = ni;
3350 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3351 		if (rt2860_rates[ridx].rate == rate)
3352 			break;
3353 	data->ridx = ridx;
3354 
3355         run_set_tx_desc(sc, data);
3356 
3357         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3358             m->m_pkthdr.len, rate);
3359 
3360         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3361 
3362 	usbd_transfer_start(sc->sc_xfer[0]);
3363 
3364         return (0);
3365 }
3366 
3367 static int
3368 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3369     const struct ieee80211_bpf_params *params)
3370 {
3371 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3372 	struct run_softc *sc = ifp->if_softc;
3373 	int error = 0;
3374 
3375 	RUN_LOCK(sc);
3376 
3377 	/* prevent management frames from being sent if we're not ready */
3378 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3379 		error =  ENETDOWN;
3380 		goto done;
3381 	}
3382 
3383 	if (params == NULL) {
3384 		/* tx mgt packet */
3385 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3386 			ifp->if_oerrors++;
3387 			DPRINTF("mgt tx failed\n");
3388 			goto done;
3389 		}
3390 	} else {
3391 		/* tx raw packet with param */
3392 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3393 			ifp->if_oerrors++;
3394 			DPRINTF("tx with param failed\n");
3395 			goto done;
3396 		}
3397 	}
3398 
3399 	ifp->if_opackets++;
3400 
3401 done:
3402 	RUN_UNLOCK(sc);
3403 
3404 	if (error != 0) {
3405 		if(m != NULL)
3406 			m_freem(m);
3407 		ieee80211_free_node(ni);
3408 	}
3409 
3410 	return (error);
3411 }
3412 
3413 static void
3414 run_start(struct ifnet *ifp)
3415 {
3416 	struct run_softc *sc = ifp->if_softc;
3417 	struct ieee80211_node *ni;
3418 	struct mbuf *m;
3419 
3420 	RUN_LOCK(sc);
3421 
3422 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3423 		RUN_UNLOCK(sc);
3424 		return;
3425 	}
3426 
3427 	for (;;) {
3428 		/* send data frames */
3429 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3430 		if (m == NULL)
3431 			break;
3432 
3433 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3434 		if (run_tx(sc, m, ni) != 0) {
3435 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3436 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3437 			break;
3438 		}
3439 	}
3440 
3441 	RUN_UNLOCK(sc);
3442 }
3443 
3444 static int
3445 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3446 {
3447 	struct run_softc *sc = ifp->if_softc;
3448 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3449 	struct ifreq *ifr = (struct ifreq *) data;
3450 	int startall = 0;
3451 	int error;
3452 
3453 	RUN_LOCK(sc);
3454 	error = sc->sc_detached ? ENXIO : 0;
3455 	RUN_UNLOCK(sc);
3456 	if (error)
3457 		return (error);
3458 
3459 	switch (cmd) {
3460 	case SIOCSIFFLAGS:
3461 		RUN_LOCK(sc);
3462 		if (ifp->if_flags & IFF_UP) {
3463 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3464 				startall = 1;
3465 				run_init_locked(sc);
3466 			} else
3467 				run_update_promisc_locked(ifp);
3468 		} else {
3469 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3470 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3471 					run_stop(sc);
3472 			}
3473 		}
3474 		RUN_UNLOCK(sc);
3475 		if (startall)
3476 			ieee80211_start_all(ic);
3477 		break;
3478 	case SIOCGIFMEDIA:
3479 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3480 		break;
3481 	case SIOCGIFADDR:
3482 		error = ether_ioctl(ifp, cmd, data);
3483 		break;
3484 	default:
3485 		error = EINVAL;
3486 		break;
3487 	}
3488 
3489 	return (error);
3490 }
3491 
3492 static void
3493 run_set_agc(struct run_softc *sc, uint8_t agc)
3494 {
3495 	uint8_t bbp;
3496 
3497 	if (sc->mac_ver == 0x3572) {
3498 		run_bbp_read(sc, 27, &bbp);
3499 		bbp &= ~(0x3 << 5);
3500 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3501 		run_bbp_write(sc, 66, agc);
3502 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3503 		run_bbp_write(sc, 66, agc);
3504 	} else
3505 		run_bbp_write(sc, 66, agc);
3506 }
3507 
3508 static void
3509 run_select_chan_group(struct run_softc *sc, int group)
3510 {
3511 	uint32_t tmp;
3512 	uint8_t agc;
3513 
3514 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3515 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3516 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3517 	run_bbp_write(sc, 86, 0x00);
3518 
3519 	if (group == 0) {
3520 		if (sc->ext_2ghz_lna) {
3521 			run_bbp_write(sc, 82, 0x62);
3522 			run_bbp_write(sc, 75, 0x46);
3523 		} else {
3524 			run_bbp_write(sc, 82, 0x84);
3525 			run_bbp_write(sc, 75, 0x50);
3526 		}
3527 	} else {
3528 		if (sc->mac_ver == 0x3572)
3529 			run_bbp_write(sc, 82, 0x94);
3530 		else
3531 			run_bbp_write(sc, 82, 0xf2);
3532 		if (sc->ext_5ghz_lna)
3533 			run_bbp_write(sc, 75, 0x46);
3534 		else
3535 			run_bbp_write(sc, 75, 0x50);
3536 	}
3537 
3538 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3539 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3540 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3541 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3542 
3543 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3544 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3545 	if (sc->nrxchains > 1)
3546 		tmp |= RT2860_LNA_PE1_EN;
3547 	if (group == 0) {	/* 2GHz */
3548 		tmp |= RT2860_PA_PE_G0_EN;
3549 		if (sc->ntxchains > 1)
3550 			tmp |= RT2860_PA_PE_G1_EN;
3551 	} else {		/* 5GHz */
3552 		tmp |= RT2860_PA_PE_A0_EN;
3553 		if (sc->ntxchains > 1)
3554 			tmp |= RT2860_PA_PE_A1_EN;
3555 	}
3556 	if (sc->mac_ver == 0x3572) {
3557 		run_rt3070_rf_write(sc, 8, 0x00);
3558 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3559 		run_rt3070_rf_write(sc, 8, 0x80);
3560 	} else
3561 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3562 
3563 	/* set initial AGC value */
3564 	if (group == 0) {	/* 2GHz band */
3565 		if (sc->mac_ver >= 0x3070)
3566 			agc = 0x1c + sc->lna[0] * 2;
3567 		else
3568 			agc = 0x2e + sc->lna[0];
3569 	} else {		/* 5GHz band */
3570 		if (sc->mac_ver == 0x3572)
3571 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3572 		else
3573 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3574 	}
3575 	run_set_agc(sc, agc);
3576 }
3577 
3578 static void
3579 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3580 {
3581 	const struct rfprog *rfprog = rt2860_rf2850;
3582 	uint32_t r2, r3, r4;
3583 	int8_t txpow1, txpow2;
3584 	int i;
3585 
3586 	/* find the settings for this channel (we know it exists) */
3587 	for (i = 0; rfprog[i].chan != chan; i++);
3588 
3589 	r2 = rfprog[i].r2;
3590 	if (sc->ntxchains == 1)
3591 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3592 	if (sc->nrxchains == 1)
3593 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3594 	else if (sc->nrxchains == 2)
3595 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3596 
3597 	/* use Tx power values from EEPROM */
3598 	txpow1 = sc->txpow1[i];
3599 	txpow2 = sc->txpow2[i];
3600 	if (chan > 14) {
3601 		if (txpow1 >= 0)
3602 			txpow1 = txpow1 << 1 | 1;
3603 		else
3604 			txpow1 = (7 + txpow1) << 1;
3605 		if (txpow2 >= 0)
3606 			txpow2 = txpow2 << 1 | 1;
3607 		else
3608 			txpow2 = (7 + txpow2) << 1;
3609 	}
3610 	r3 = rfprog[i].r3 | txpow1 << 7;
3611 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3612 
3613 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3614 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3615 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3616 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3617 
3618 	run_delay(sc, 10);
3619 
3620 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3621 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3622 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3623 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3624 
3625 	run_delay(sc, 10);
3626 
3627 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3628 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3629 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3630 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3631 }
3632 
3633 static void
3634 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3635 {
3636 	int8_t txpow1, txpow2;
3637 	uint8_t rf;
3638 	int i;
3639 
3640 	/* RT3070 is 2GHz only */
3641 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3642 
3643 	/* find the settings for this channel (we know it exists) */
3644 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3645 
3646 	/* use Tx power values from EEPROM */
3647 	txpow1 = sc->txpow1[i];
3648 	txpow2 = sc->txpow2[i];
3649 
3650 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3651 
3652 	/* RT3370/RT3390: RF R3 [7:4] is not reserved bits. */
3653 	run_rt3070_rf_read(sc, 3, &rf);
3654 	rf = (rf & ~0x0f) | rt3070_freqs[i].k;
3655 	run_rt3070_rf_write(sc, 3, rf);
3656 
3657 	run_rt3070_rf_read(sc, 6, &rf);
3658 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3659 	run_rt3070_rf_write(sc, 6, rf);
3660 
3661 	/* set Tx0 power */
3662 	run_rt3070_rf_read(sc, 12, &rf);
3663 	rf = (rf & ~0x1f) | txpow1;
3664 	run_rt3070_rf_write(sc, 12, rf);
3665 
3666 	/* set Tx1 power */
3667 	run_rt3070_rf_read(sc, 13, &rf);
3668 	rf = (rf & ~0x1f) | txpow2;
3669 	run_rt3070_rf_write(sc, 13, rf);
3670 
3671 	run_rt3070_rf_read(sc, 1, &rf);
3672 	rf &= ~0xfc;
3673 	if (sc->ntxchains == 1)
3674 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3675 	else if (sc->ntxchains == 2)
3676 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3677 	if (sc->nrxchains == 1)
3678 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3679 	else if (sc->nrxchains == 2)
3680 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3681 	run_rt3070_rf_write(sc, 1, rf);
3682 
3683 	/* set RF offset */
3684 	run_rt3070_rf_read(sc, 23, &rf);
3685 	rf = (rf & ~0x7f) | sc->freq;
3686 	run_rt3070_rf_write(sc, 23, rf);
3687 
3688 	/* program RF filter */
3689 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3690 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3691 	run_rt3070_rf_write(sc, 24, rf);
3692 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3693 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3694 	run_rt3070_rf_write(sc, 31, rf);
3695 
3696 	/* enable RF tuning */
3697 	run_rt3070_rf_read(sc, 7, &rf);
3698 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3699 }
3700 
3701 static void
3702 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3703 {
3704 	int8_t txpow1, txpow2;
3705 	uint32_t tmp;
3706 	uint8_t rf;
3707 	int i;
3708 
3709 	/* find the settings for this channel (we know it exists) */
3710 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3711 
3712 	/* use Tx power values from EEPROM */
3713 	txpow1 = sc->txpow1[i];
3714 	txpow2 = sc->txpow2[i];
3715 
3716 	if (chan <= 14) {
3717 		run_bbp_write(sc, 25, sc->bbp25);
3718 		run_bbp_write(sc, 26, sc->bbp26);
3719 	} else {
3720 		/* enable IQ phase correction */
3721 		run_bbp_write(sc, 25, 0x09);
3722 		run_bbp_write(sc, 26, 0xff);
3723 	}
3724 
3725 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3726 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3727 	run_rt3070_rf_read(sc, 6, &rf);
3728 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3729 	rf |= (chan <= 14) ? 0x08 : 0x04;
3730 	run_rt3070_rf_write(sc, 6, rf);
3731 
3732 	/* set PLL mode */
3733 	run_rt3070_rf_read(sc, 5, &rf);
3734 	rf &= ~(0x08 | 0x04);
3735 	rf |= (chan <= 14) ? 0x04 : 0x08;
3736 	run_rt3070_rf_write(sc, 5, rf);
3737 
3738 	/* set Tx power for chain 0 */
3739 	if (chan <= 14)
3740 		rf = 0x60 | txpow1;
3741 	else
3742 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3743 	run_rt3070_rf_write(sc, 12, rf);
3744 
3745 	/* set Tx power for chain 1 */
3746 	if (chan <= 14)
3747 		rf = 0x60 | txpow2;
3748 	else
3749 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3750 	run_rt3070_rf_write(sc, 13, rf);
3751 
3752 	/* set Tx/Rx streams */
3753 	run_rt3070_rf_read(sc, 1, &rf);
3754 	rf &= ~0xfc;
3755 	if (sc->ntxchains == 1)
3756 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3757 	else if (sc->ntxchains == 2)
3758 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3759 	if (sc->nrxchains == 1)
3760 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3761 	else if (sc->nrxchains == 2)
3762 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3763 	run_rt3070_rf_write(sc, 1, rf);
3764 
3765 	/* set RF offset */
3766 	run_rt3070_rf_read(sc, 23, &rf);
3767 	rf = (rf & ~0x7f) | sc->freq;
3768 	run_rt3070_rf_write(sc, 23, rf);
3769 
3770 	/* program RF filter */
3771 	rf = sc->rf24_20mhz;
3772 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3773 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3774 
3775 	/* enable RF tuning */
3776 	run_rt3070_rf_read(sc, 7, &rf);
3777 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3778 	run_rt3070_rf_write(sc, 7, rf);
3779 
3780 	/* TSSI */
3781 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3782 	run_rt3070_rf_write(sc, 9, rf);
3783 
3784 	/* set loop filter 1 */
3785 	run_rt3070_rf_write(sc, 10, 0xf1);
3786 	/* set loop filter 2 */
3787 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3788 
3789 	/* set tx_mx2_ic */
3790 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3791 	/* set tx_mx1_ic */
3792 	if (chan <= 14)
3793 		rf = 0x48 | sc->txmixgain_2ghz;
3794 	else
3795 		rf = 0x78 | sc->txmixgain_5ghz;
3796 	run_rt3070_rf_write(sc, 16, rf);
3797 
3798 	/* set tx_lo1 */
3799 	run_rt3070_rf_write(sc, 17, 0x23);
3800 	/* set tx_lo2 */
3801 	if (chan <= 14)
3802 		rf = 0x93;
3803 	else if (chan <= 64)
3804 		rf = 0xb7;
3805 	else if (chan <= 128)
3806 		rf = 0x74;
3807 	else
3808 		rf = 0x72;
3809 	run_rt3070_rf_write(sc, 19, rf);
3810 
3811 	/* set rx_lo1 */
3812 	if (chan <= 14)
3813 		rf = 0xb3;
3814 	else if (chan <= 64)
3815 		rf = 0xf6;
3816 	else if (chan <= 128)
3817 		rf = 0xf4;
3818 	else
3819 		rf = 0xf3;
3820 	run_rt3070_rf_write(sc, 20, rf);
3821 
3822 	/* set pfd_delay */
3823 	if (chan <= 14)
3824 		rf = 0x15;
3825 	else if (chan <= 64)
3826 		rf = 0x3d;
3827 	else
3828 		rf = 0x01;
3829 	run_rt3070_rf_write(sc, 25, rf);
3830 
3831 	/* set rx_lo2 */
3832 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3833 	/* set ldo_rf_vc */
3834 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3835 	/* set drv_cc */
3836 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3837 
3838 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3839 	tmp &= ~0x8080;
3840 	if (chan <= 14)
3841 		tmp |= 0x80;
3842 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3843 
3844 	/* enable RF tuning */
3845 	run_rt3070_rf_read(sc, 7, &rf);
3846 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3847 
3848 	run_delay(sc, 2);
3849 }
3850 
3851 static void
3852 run_set_rx_antenna(struct run_softc *sc, int aux)
3853 {
3854 	uint32_t tmp;
3855 
3856 	if (aux) {
3857 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3858 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3859 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3860 	} else {
3861 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3862 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3863 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3864 	}
3865 }
3866 
3867 static int
3868 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3869 {
3870 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3871 	uint32_t chan, group;
3872 
3873 	chan = ieee80211_chan2ieee(ic, c);
3874 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3875 		return (EINVAL);
3876 
3877 	if (sc->mac_ver == 0x3572)
3878 		run_rt3572_set_chan(sc, chan);
3879 	else if (sc->mac_ver >= 0x3070)
3880 		run_rt3070_set_chan(sc, chan);
3881 	else
3882 		run_rt2870_set_chan(sc, chan);
3883 
3884 	/* determine channel group */
3885 	if (chan <= 14)
3886 		group = 0;
3887 	else if (chan <= 64)
3888 		group = 1;
3889 	else if (chan <= 128)
3890 		group = 2;
3891 	else
3892 		group = 3;
3893 
3894 	/* XXX necessary only when group has changed! */
3895 	run_select_chan_group(sc, group);
3896 
3897 	run_delay(sc, 10);
3898 
3899 	return (0);
3900 }
3901 
3902 static void
3903 run_set_channel(struct ieee80211com *ic)
3904 {
3905 	struct run_softc *sc = ic->ic_ifp->if_softc;
3906 
3907 	RUN_LOCK(sc);
3908 	run_set_chan(sc, ic->ic_curchan);
3909 	RUN_UNLOCK(sc);
3910 
3911 	return;
3912 }
3913 
3914 static void
3915 run_scan_start(struct ieee80211com *ic)
3916 {
3917 	struct run_softc *sc = ic->ic_ifp->if_softc;
3918 	uint32_t tmp;
3919 
3920 	RUN_LOCK(sc);
3921 
3922 	/* abort TSF synchronization */
3923 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3924 	run_write(sc, RT2860_BCN_TIME_CFG,
3925 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3926 	    RT2860_TBTT_TIMER_EN));
3927 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3928 
3929 	RUN_UNLOCK(sc);
3930 
3931 	return;
3932 }
3933 
3934 static void
3935 run_scan_end(struct ieee80211com *ic)
3936 {
3937 	struct run_softc *sc = ic->ic_ifp->if_softc;
3938 
3939 	RUN_LOCK(sc);
3940 
3941 	run_enable_tsf_sync(sc);
3942 	/* XXX keep local copy */
3943 	run_set_bssid(sc, sc->sc_bssid);
3944 
3945 	RUN_UNLOCK(sc);
3946 
3947 	return;
3948 }
3949 
3950 /*
3951  * Could be called from ieee80211_node_timeout()
3952  * (non-sleepable thread)
3953  */
3954 static void
3955 run_update_beacon(struct ieee80211vap *vap, int item)
3956 {
3957 	struct ieee80211com *ic = vap->iv_ic;
3958 	struct run_softc *sc = ic->ic_ifp->if_softc;
3959 	struct run_vap *rvp = RUN_VAP(vap);
3960 	int mcast = 0;
3961 	uint32_t i;
3962 
3963 	KASSERT(vap != NULL, ("no beacon"));
3964 
3965 	switch (item) {
3966 	case IEEE80211_BEACON_ERP:
3967 		run_updateslot(ic->ic_ifp);
3968 		break;
3969 	case IEEE80211_BEACON_HTINFO:
3970 		run_updateprot(ic);
3971 		break;
3972 	case IEEE80211_BEACON_TIM:
3973 		mcast = 1;	/*TODO*/
3974 		break;
3975 	default:
3976 		break;
3977 	}
3978 
3979 	setbit(rvp->bo.bo_flags, item);
3980 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3981 
3982 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3983 	DPRINTF("cmdq_store=%d\n", i);
3984 	sc->cmdq[i].func = run_update_beacon_cb;
3985 	sc->cmdq[i].arg0 = vap;
3986 	ieee80211_runtask(ic, &sc->cmdq_task);
3987 
3988 	return;
3989 }
3990 
3991 static void
3992 run_update_beacon_cb(void *arg)
3993 {
3994 	struct ieee80211vap *vap = arg;
3995 	struct run_vap *rvp = RUN_VAP(vap);
3996 	struct ieee80211com *ic = vap->iv_ic;
3997 	struct run_softc *sc = ic->ic_ifp->if_softc;
3998 	struct rt2860_txwi txwi;
3999 	struct mbuf *m;
4000 	uint8_t ridx;
4001 
4002 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
4003 		return;
4004 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
4005 		return;
4006 
4007 	/*
4008 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
4009 	 * is taking care of apropriate calls.
4010 	 */
4011 	if (rvp->beacon_mbuf == NULL) {
4012 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
4013 		    &rvp->bo);
4014 		if (rvp->beacon_mbuf == NULL)
4015 			return;
4016 	}
4017 	m = rvp->beacon_mbuf;
4018 
4019 	memset(&txwi, 0, sizeof txwi);
4020 	txwi.wcid = 0xff;
4021 	txwi.len = htole16(m->m_pkthdr.len);
4022 	/* send beacons at the lowest available rate */
4023 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4024 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
4025 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4026 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4027 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4028 	txwi.txop = RT2860_TX_TXOP_HT;
4029 	txwi.flags = RT2860_TX_TS;
4030 	txwi.xflags = RT2860_TX_NSEQ;
4031 
4032 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4033 	    (uint8_t *)&txwi, sizeof txwi);
4034 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4035 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4036 
4037 	return;
4038 }
4039 
4040 static void
4041 run_updateprot(struct ieee80211com *ic)
4042 {
4043 	struct run_softc *sc = ic->ic_ifp->if_softc;
4044 	uint32_t i;
4045 
4046 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4047 	DPRINTF("cmdq_store=%d\n", i);
4048 	sc->cmdq[i].func = run_updateprot_cb;
4049 	sc->cmdq[i].arg0 = ic;
4050 	ieee80211_runtask(ic, &sc->cmdq_task);
4051 }
4052 
4053 static void
4054 run_updateprot_cb(void *arg)
4055 {
4056 	struct ieee80211com *ic = arg;
4057 	struct run_softc *sc = ic->ic_ifp->if_softc;
4058 	uint32_t tmp;
4059 
4060 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4061 	/* setup protection frame rate (MCS code) */
4062 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4063 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4064 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4065 
4066 	/* CCK frames don't require protection */
4067 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4068 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4069 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4070 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4071 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4072 			tmp |= RT2860_PROT_CTRL_CTS;
4073 	}
4074 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4075 }
4076 
4077 static void
4078 run_usb_timeout_cb(void *arg)
4079 {
4080 	struct ieee80211vap *vap = arg;
4081 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4082 
4083 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4084 
4085 	if(vap->iv_state == IEEE80211_S_RUN &&
4086 	    vap->iv_opmode != IEEE80211_M_STA)
4087 		run_reset_livelock(sc);
4088 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4089 		DPRINTF("timeout caused by scan\n");
4090 		/* cancel bgscan */
4091 		ieee80211_cancel_scan(vap);
4092 	} else
4093 		DPRINTF("timeout by unknown cause\n");
4094 }
4095 
4096 static void
4097 run_reset_livelock(struct run_softc *sc)
4098 {
4099 	uint32_t tmp;
4100 
4101 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4102 
4103 	/*
4104 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4105 	 * can run into a livelock and start sending CTS-to-self frames like
4106 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4107 	 */
4108 	run_read(sc, RT2860_DEBUG, &tmp);
4109 	DPRINTFN(3, "debug reg %08x\n", tmp);
4110 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4111 		DPRINTF("CTS-to-self livelock detected\n");
4112 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4113 		run_delay(sc, 1);
4114 		run_write(sc, RT2860_MAC_SYS_CTRL,
4115 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4116 	}
4117 }
4118 
4119 static void
4120 run_update_promisc_locked(struct ifnet *ifp)
4121 {
4122 	struct run_softc *sc = ifp->if_softc;
4123         uint32_t tmp;
4124 
4125 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4126 
4127 	tmp |= RT2860_DROP_UC_NOME;
4128         if (ifp->if_flags & IFF_PROMISC)
4129 		tmp &= ~RT2860_DROP_UC_NOME;
4130 
4131 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4132 
4133         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4134             "entering" : "leaving");
4135 }
4136 
4137 static void
4138 run_update_promisc(struct ifnet *ifp)
4139 {
4140 	struct run_softc *sc = ifp->if_softc;
4141 
4142 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4143 		return;
4144 
4145 	RUN_LOCK(sc);
4146 	run_update_promisc_locked(ifp);
4147 	RUN_UNLOCK(sc);
4148 }
4149 
4150 static void
4151 run_enable_tsf_sync(struct run_softc *sc)
4152 {
4153 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4154 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4155 	uint32_t tmp;
4156 
4157 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4158 
4159 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4160 	tmp &= ~0x1fffff;
4161 	tmp |= vap->iv_bss->ni_intval * 16;
4162 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4163 
4164 	if (ic->ic_opmode == IEEE80211_M_STA) {
4165 		/*
4166 		 * Local TSF is always updated with remote TSF on beacon
4167 		 * reception.
4168 		 */
4169 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4170 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4171 	        tmp |= RT2860_BCN_TX_EN;
4172 	        /*
4173 	         * Local TSF is updated with remote TSF on beacon reception
4174 	         * only if the remote TSF is greater than local TSF.
4175 	         */
4176 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4177 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4178 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4179 	        tmp |= RT2860_BCN_TX_EN;
4180 	        /* SYNC with nobody */
4181 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4182 	} else {
4183 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4184 		return;
4185 	}
4186 
4187 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4188 }
4189 
4190 static void
4191 run_enable_mrr(struct run_softc *sc)
4192 {
4193 #define CCK(mcs)	(mcs)
4194 #define OFDM(mcs)	(1 << 3 | (mcs))
4195 	run_write(sc, RT2860_LG_FBK_CFG0,
4196 	    OFDM(6) << 28 |	/* 54->48 */
4197 	    OFDM(5) << 24 |	/* 48->36 */
4198 	    OFDM(4) << 20 |	/* 36->24 */
4199 	    OFDM(3) << 16 |	/* 24->18 */
4200 	    OFDM(2) << 12 |	/* 18->12 */
4201 	    OFDM(1) <<  8 |	/* 12-> 9 */
4202 	    OFDM(0) <<  4 |	/*  9-> 6 */
4203 	    OFDM(0));		/*  6-> 6 */
4204 
4205 	run_write(sc, RT2860_LG_FBK_CFG1,
4206 	    CCK(2) << 12 |	/* 11->5.5 */
4207 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4208 	    CCK(0) <<  4 |	/*   2-> 1 */
4209 	    CCK(0));		/*   1-> 1 */
4210 #undef OFDM
4211 #undef CCK
4212 }
4213 
4214 static void
4215 run_set_txpreamble(struct run_softc *sc)
4216 {
4217 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4218 	uint32_t tmp;
4219 
4220 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4221 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4222 		tmp |= RT2860_CCK_SHORT_EN;
4223 	else
4224 		tmp &= ~RT2860_CCK_SHORT_EN;
4225 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4226 }
4227 
4228 static void
4229 run_set_basicrates(struct run_softc *sc)
4230 {
4231 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4232 
4233 	/* set basic rates mask */
4234 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4235 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4236 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4237 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4238 	else	/* 11g */
4239 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4240 }
4241 
4242 static void
4243 run_set_leds(struct run_softc *sc, uint16_t which)
4244 {
4245 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4246 	    which | (sc->leds & 0x7f));
4247 }
4248 
4249 static void
4250 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4251 {
4252 	run_write(sc, RT2860_MAC_BSSID_DW0,
4253 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4254 	run_write(sc, RT2860_MAC_BSSID_DW1,
4255 	    bssid[4] | bssid[5] << 8);
4256 }
4257 
4258 static void
4259 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4260 {
4261 	run_write(sc, RT2860_MAC_ADDR_DW0,
4262 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4263 	run_write(sc, RT2860_MAC_ADDR_DW1,
4264 	    addr[4] | addr[5] << 8 | 0xff << 16);
4265 }
4266 
4267 static void
4268 run_updateslot(struct ifnet *ifp)
4269 {
4270 	struct run_softc *sc = ifp->if_softc;
4271 	struct ieee80211com *ic = ifp->if_l2com;
4272 	uint32_t i;
4273 
4274 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4275 	DPRINTF("cmdq_store=%d\n", i);
4276 	sc->cmdq[i].func = run_updateslot_cb;
4277 	sc->cmdq[i].arg0 = ifp;
4278 	ieee80211_runtask(ic, &sc->cmdq_task);
4279 
4280 	return;
4281 }
4282 
4283 /* ARGSUSED */
4284 static void
4285 run_updateslot_cb(void *arg)
4286 {
4287 	struct ifnet *ifp = arg;
4288 	struct run_softc *sc = ifp->if_softc;
4289 	struct ieee80211com *ic = ifp->if_l2com;
4290 	uint32_t tmp;
4291 
4292 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4293 	tmp &= ~0xff;
4294 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4295 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4296 }
4297 
4298 static void
4299 run_update_mcast(struct ifnet *ifp)
4300 {
4301 	/* h/w filter supports getting everything or nothing */
4302 	ifp->if_flags |= IFF_ALLMULTI;
4303 }
4304 
4305 static int8_t
4306 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4307 {
4308 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4309 	struct ieee80211_channel *c = ic->ic_curchan;
4310 	int delta;
4311 
4312 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4313 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4314 		delta = sc->rssi_5ghz[rxchain];
4315 
4316 		/* determine channel group */
4317 		if (chan <= 64)
4318 			delta -= sc->lna[1];
4319 		else if (chan <= 128)
4320 			delta -= sc->lna[2];
4321 		else
4322 			delta -= sc->lna[3];
4323 	} else
4324 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4325 
4326 	return (-12 - delta - rssi);
4327 }
4328 
4329 static int
4330 run_bbp_init(struct run_softc *sc)
4331 {
4332 	int i, error, ntries;
4333 	uint8_t bbp0;
4334 
4335 	/* wait for BBP to wake up */
4336 	for (ntries = 0; ntries < 20; ntries++) {
4337 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4338 			return error;
4339 		if (bbp0 != 0 && bbp0 != 0xff)
4340 			break;
4341 	}
4342 	if (ntries == 20)
4343 		return (ETIMEDOUT);
4344 
4345 	/* initialize BBP registers to default values */
4346 	for (i = 0; i < N(rt2860_def_bbp); i++) {
4347 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4348 		    rt2860_def_bbp[i].val);
4349 	}
4350 
4351 	/* fix BBP84 for RT2860E */
4352 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4353 		run_bbp_write(sc, 84, 0x19);
4354 
4355 	if (sc->mac_ver >= 0x3070) {
4356 		run_bbp_write(sc, 79, 0x13);
4357 		run_bbp_write(sc, 80, 0x05);
4358 		run_bbp_write(sc, 81, 0x33);
4359 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4360 		run_bbp_write(sc, 69, 0x16);
4361 		run_bbp_write(sc, 73, 0x12);
4362 	}
4363 	return (0);
4364 }
4365 
4366 static int
4367 run_rt3070_rf_init(struct run_softc *sc)
4368 {
4369 	uint32_t tmp;
4370 	uint8_t bbp4, mingain, rf, target;
4371 	int i;
4372 
4373 	run_rt3070_rf_read(sc, 30, &rf);
4374 	/* toggle RF R30 bit 7 */
4375 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4376 	run_delay(sc, 10);
4377 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4378 
4379 	/* initialize RF registers to default value */
4380 	if (sc->mac_ver == 0x3572) {
4381 		for (i = 0; i < N(rt3572_def_rf); i++) {
4382 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4383 			    rt3572_def_rf[i].val);
4384 		}
4385 	} else {
4386 		for (i = 0; i < N(rt3070_def_rf); i++) {
4387 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4388 			    rt3070_def_rf[i].val);
4389 		}
4390 	}
4391 
4392 	if (sc->mac_ver == 0x3070 && sc->mac_rev < 0x0201) {
4393 		/*
4394 		 * Change voltage from 1.2V to 1.35V for RT3070.
4395 		 * The DAC issue (RT3070_LDO_CFG0) has been fixed
4396 		 * in RT3070(F).
4397 		 */
4398 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4399 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4400 		run_write(sc, RT3070_LDO_CFG0, tmp);
4401 
4402 	} else if (sc->mac_ver == 0x3071) {
4403 		run_rt3070_rf_read(sc, 6, &rf);
4404 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4405 		run_rt3070_rf_write(sc, 31, 0x14);
4406 
4407 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4408 		tmp &= ~0x1f000000;
4409 		if (sc->mac_rev < 0x0211)
4410 			tmp |= 0x0d000000;	/* 1.3V */
4411 		else
4412 			tmp |= 0x01000000;	/* 1.2V */
4413 		run_write(sc, RT3070_LDO_CFG0, tmp);
4414 
4415 		/* patch LNA_PE_G1 */
4416 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4417 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4418 
4419 	} else if (sc->mac_ver == 0x3572) {
4420 		run_rt3070_rf_read(sc, 6, &rf);
4421 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4422 
4423 		/* increase voltage from 1.2V to 1.35V */
4424 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4425 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4426 		run_write(sc, RT3070_LDO_CFG0, tmp);
4427 
4428 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4429 			run_delay(sc, 1);	/* wait for 1msec */
4430 			/* decrease voltage back to 1.2V */
4431 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4432 			run_write(sc, RT3070_LDO_CFG0, tmp);
4433 		}
4434 	}
4435 
4436 	/* select 20MHz bandwidth */
4437 	run_rt3070_rf_read(sc, 31, &rf);
4438 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4439 
4440 	/* calibrate filter for 20MHz bandwidth */
4441 	sc->rf24_20mhz = 0x1f;	/* default value */
4442 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4443 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4444 
4445 	/* select 40MHz bandwidth */
4446 	run_bbp_read(sc, 4, &bbp4);
4447 	run_bbp_write(sc, 4, (bbp4 & ~0x18) | 0x10);
4448 	run_rt3070_rf_read(sc, 31, &rf);
4449 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4450 
4451 	/* calibrate filter for 40MHz bandwidth */
4452 	sc->rf24_40mhz = 0x2f;	/* default value */
4453 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4454 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4455 
4456 	/* go back to 20MHz bandwidth */
4457 	run_bbp_read(sc, 4, &bbp4);
4458 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4459 
4460 	if (sc->mac_ver == 0x3572) {
4461 		/* save default BBP registers 25 and 26 values */
4462 		run_bbp_read(sc, 25, &sc->bbp25);
4463 		run_bbp_read(sc, 26, &sc->bbp26);
4464 	} else if (sc->mac_rev < 0x0201 || sc->mac_rev < 0x0211)
4465 		run_rt3070_rf_write(sc, 27, 0x03);
4466 
4467 	run_read(sc, RT3070_OPT_14, &tmp);
4468 	run_write(sc, RT3070_OPT_14, tmp | 1);
4469 
4470 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4471 		run_rt3070_rf_read(sc, 17, &rf);
4472 		rf &= ~RT3070_TX_LO1;
4473 		if ((sc->mac_ver == 0x3070 ||
4474 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4475 		    !sc->ext_2ghz_lna)
4476 			rf |= 0x20;	/* fix for long range Rx issue */
4477 		mingain = (sc->mac_ver == 0x3070) ? 1 : 2;
4478 		if (sc->txmixgain_2ghz >= mingain)
4479 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4480 		run_rt3070_rf_write(sc, 17, rf);
4481 	}
4482 
4483 	if (sc->mac_rev == 0x3071) {
4484 		run_rt3070_rf_read(sc, 1, &rf);
4485 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4486 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4487 		run_rt3070_rf_write(sc, 1, rf);
4488 
4489 		run_rt3070_rf_read(sc, 15, &rf);
4490 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4491 
4492 		run_rt3070_rf_read(sc, 20, &rf);
4493 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4494 
4495 		run_rt3070_rf_read(sc, 21, &rf);
4496 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4497 	}
4498 
4499 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4500 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4501 		run_rt3070_rf_read(sc, 27, &rf);
4502 		rf &= ~0x77;
4503 		if (sc->mac_rev < 0x0211)
4504 			rf |= 0x03;
4505 		run_rt3070_rf_write(sc, 27, rf);
4506 	}
4507 	return (0);
4508 }
4509 
4510 static int
4511 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4512     uint8_t *val)
4513 {
4514 	uint8_t rf22, rf24;
4515 	uint8_t bbp55_pb, bbp55_sb, delta;
4516 	int ntries;
4517 
4518 	/* program filter */
4519 	run_rt3070_rf_read(sc, 24, &rf24);
4520 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4521 	run_rt3070_rf_write(sc, 24, rf24);
4522 
4523 	/* enable baseband loopback mode */
4524 	run_rt3070_rf_read(sc, 22, &rf22);
4525 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4526 
4527 	/* set power and frequency of passband test tone */
4528 	run_bbp_write(sc, 24, 0x00);
4529 	for (ntries = 0; ntries < 100; ntries++) {
4530 		/* transmit test tone */
4531 		run_bbp_write(sc, 25, 0x90);
4532 		run_delay(sc, 10);
4533 		/* read received power */
4534 		run_bbp_read(sc, 55, &bbp55_pb);
4535 		if (bbp55_pb != 0)
4536 			break;
4537 	}
4538 	if (ntries == 100)
4539 		return ETIMEDOUT;
4540 
4541 	/* set power and frequency of stopband test tone */
4542 	run_bbp_write(sc, 24, 0x06);
4543 	for (ntries = 0; ntries < 100; ntries++) {
4544 		/* transmit test tone */
4545 		run_bbp_write(sc, 25, 0x90);
4546 		run_delay(sc, 10);
4547 		/* read received power */
4548 		run_bbp_read(sc, 55, &bbp55_sb);
4549 
4550 		delta = bbp55_pb - bbp55_sb;
4551 		if (delta > target)
4552 			break;
4553 
4554 		/* reprogram filter */
4555 		rf24++;
4556 		run_rt3070_rf_write(sc, 24, rf24);
4557 	}
4558 	if (ntries < 100) {
4559 		if (rf24 != init)
4560 			rf24--;	/* backtrack */
4561 		*val = rf24;
4562 		run_rt3070_rf_write(sc, 24, rf24);
4563 	}
4564 
4565 	/* restore initial state */
4566 	run_bbp_write(sc, 24, 0x00);
4567 
4568 	/* disable baseband loopback mode */
4569 	run_rt3070_rf_read(sc, 22, &rf22);
4570 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4571 
4572 	return (0);
4573 }
4574 
4575 static void
4576 run_rt3070_rf_setup(struct run_softc *sc)
4577 {
4578 	uint8_t bbp, rf;
4579 	int i;
4580 
4581 	if (sc->mac_ver == 0x3572) {
4582 		/* enable DC filter */
4583 		if (sc->mac_rev >= 0x0201)
4584 			run_bbp_write(sc, 103, 0xc0);
4585 
4586 		run_bbp_read(sc, 138, &bbp);
4587 		if (sc->ntxchains == 1)
4588 			bbp |= 0x20;	/* turn off DAC1 */
4589 		if (sc->nrxchains == 1)
4590 			bbp &= ~0x02;	/* turn off ADC1 */
4591 		run_bbp_write(sc, 138, bbp);
4592 
4593 		if (sc->mac_rev >= 0x0211) {
4594 			/* improve power consumption */
4595 			run_bbp_read(sc, 31, &bbp);
4596 			run_bbp_write(sc, 31, bbp & ~0x03);
4597 		}
4598 
4599 		run_rt3070_rf_read(sc, 16, &rf);
4600 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4601 		run_rt3070_rf_write(sc, 16, rf);
4602 
4603 	} else if (sc->mac_ver == 0x3071) {
4604 		/* enable DC filter */
4605 		if (sc->mac_rev >= 0x0201)
4606 			run_bbp_write(sc, 103, 0xc0);
4607 
4608 		run_bbp_read(sc, 138, &bbp);
4609 		if (sc->ntxchains == 1)
4610 			bbp |= 0x20;	/* turn off DAC1 */
4611 		if (sc->nrxchains == 1)
4612 			bbp &= ~0x02;	/* turn off ADC1 */
4613 		run_bbp_write(sc, 138, bbp);
4614 
4615 		if (sc->mac_rev >= 0x0211) {
4616 			/* improve power consumption */
4617 			run_bbp_read(sc, 31, &bbp);
4618 			run_bbp_write(sc, 31, bbp & ~0x03);
4619 		}
4620 
4621 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4622 		if (sc->mac_rev < 0x0211) {
4623 			run_write(sc, RT2860_TX_SW_CFG2,
4624 			    sc->patch_dac ? 0x2c : 0x0f);
4625 		} else
4626 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4627 
4628 	} else if (sc->mac_ver == 0x3070) {
4629 		if (sc->mac_rev >= 0x0201) {
4630 			/* enable DC filter */
4631 			run_bbp_write(sc, 103, 0xc0);
4632 
4633 			/* improve power consumption */
4634 			run_bbp_read(sc, 31, &bbp);
4635 			run_bbp_write(sc, 31, bbp & ~0x03);
4636 		}
4637 
4638 		if (sc->mac_rev < 0x0201) {
4639 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4640 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4641 		} else
4642 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4643 	}
4644 
4645 	/* initialize RF registers from ROM for >=RT3071*/
4646 	if (sc->mac_ver >= 0x3071) {
4647 		for (i = 0; i < 10; i++) {
4648 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4649 				continue;
4650 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4651 		}
4652 	}
4653 }
4654 
4655 static int
4656 run_txrx_enable(struct run_softc *sc)
4657 {
4658 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4659 	uint32_t tmp;
4660 	int error, ntries;
4661 
4662 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4663 	for (ntries = 0; ntries < 200; ntries++) {
4664 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4665 			return error;
4666 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4667 			break;
4668 		run_delay(sc, 50);
4669 	}
4670 	if (ntries == 200)
4671 		return ETIMEDOUT;
4672 
4673 	run_delay(sc, 50);
4674 
4675 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4676 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4677 
4678 	/* enable Rx bulk aggregation (set timeout and limit) */
4679 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4680 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4681 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4682 
4683 	/* set Rx filter */
4684 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4685 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4686 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4687 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4688 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4689 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4690 		if (ic->ic_opmode == IEEE80211_M_STA)
4691 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4692 	}
4693 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4694 
4695 	run_write(sc, RT2860_MAC_SYS_CTRL,
4696 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4697 
4698 	return (0);
4699 }
4700 
4701 static void
4702 run_init_locked(struct run_softc *sc)
4703 {
4704 	struct ifnet *ifp = sc->sc_ifp;
4705 	struct ieee80211com *ic = ifp->if_l2com;
4706 	uint32_t tmp;
4707 	uint8_t bbp1, bbp3;
4708 	int i;
4709 	int ridx;
4710 	int ntries;
4711 
4712 	if (ic->ic_nrunning > 1)
4713 		return;
4714 
4715 	run_stop(sc);
4716 
4717 	if (run_load_microcode(sc) != 0) {
4718 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4719 		goto fail;
4720 	}
4721 
4722 	for (ntries = 0; ntries < 100; ntries++) {
4723 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4724 			goto fail;
4725 		if (tmp != 0 && tmp != 0xffffffff)
4726 			break;
4727 		run_delay(sc, 10);
4728 	}
4729 	if (ntries == 100)
4730 		goto fail;
4731 
4732 	for (i = 0; i != RUN_EP_QUEUES; i++)
4733 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4734 
4735 	run_set_macaddr(sc, IF_LLADDR(ifp));
4736 
4737 	for (ntries = 0; ntries < 100; ntries++) {
4738 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4739 			goto fail;
4740 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4741 			break;
4742 		run_delay(sc, 10);
4743 	}
4744 	if (ntries == 100) {
4745 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4746 		goto fail;
4747 	}
4748 	tmp &= 0xff0;
4749 	tmp |= RT2860_TX_WB_DDONE;
4750 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4751 
4752 	/* turn off PME_OEN to solve high-current issue */
4753 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4754 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4755 
4756 	run_write(sc, RT2860_MAC_SYS_CTRL,
4757 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4758 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4759 
4760 	if (run_reset(sc) != 0) {
4761 		device_printf(sc->sc_dev, "could not reset chipset\n");
4762 		goto fail;
4763 	}
4764 
4765 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4766 
4767 	/* init Tx power for all Tx rates (from EEPROM) */
4768 	for (ridx = 0; ridx < 5; ridx++) {
4769 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4770 			continue;
4771 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4772 	}
4773 
4774 	for (i = 0; i < N(rt2870_def_mac); i++)
4775 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4776 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4777 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4778 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4779 
4780 	if (sc->mac_ver >= 0x3070) {
4781 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4782 		run_write(sc, RT2860_TX_SW_CFG0,
4783 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4784 	}
4785 
4786 	/* wait while MAC is busy */
4787 	for (ntries = 0; ntries < 100; ntries++) {
4788 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4789 			goto fail;
4790 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4791 			break;
4792 		run_delay(sc, 10);
4793 	}
4794 	if (ntries == 100)
4795 		goto fail;
4796 
4797 	/* clear Host to MCU mailbox */
4798 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4799 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4800 	run_delay(sc, 10);
4801 
4802 	if (run_bbp_init(sc) != 0) {
4803 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4804 		goto fail;
4805 	}
4806 
4807 	/* abort TSF synchronization */
4808 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4809 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4810 	    RT2860_TBTT_TIMER_EN);
4811 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4812 
4813 	/* clear RX WCID search table */
4814 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4815 	/* clear WCID attribute table */
4816 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4817 
4818 	/* hostapd sets a key before init. So, don't clear it. */
4819 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4820 		/* clear shared key table */
4821 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4822 		/* clear shared key mode */
4823 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4824 	}
4825 
4826 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4827 	tmp = (tmp & ~0xff) | 0x1e;
4828 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4829 
4830 	if (sc->mac_rev != 0x0101)
4831 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4832 
4833 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4834 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4835 
4836 	/* write vendor-specific BBP values (from EEPROM) */
4837 	for (i = 0; i < 10; i++) {
4838 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4839 			continue;
4840 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4841 	}
4842 
4843 	/* select Main antenna for 1T1R devices */
4844 	if (sc->rf_rev == RT3070_RF_3020)
4845 		run_set_rx_antenna(sc, 0);
4846 
4847 	/* send LEDs operating mode to microcontroller */
4848 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4849 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4850 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4851 
4852 	if (sc->mac_ver >= 0x3070)
4853 		run_rt3070_rf_init(sc);
4854 
4855 	/* disable non-existing Rx chains */
4856 	run_bbp_read(sc, 3, &bbp3);
4857 	bbp3 &= ~(1 << 3 | 1 << 4);
4858 	if (sc->nrxchains == 2)
4859 		bbp3 |= 1 << 3;
4860 	else if (sc->nrxchains == 3)
4861 		bbp3 |= 1 << 4;
4862 	run_bbp_write(sc, 3, bbp3);
4863 
4864 	/* disable non-existing Tx chains */
4865 	run_bbp_read(sc, 1, &bbp1);
4866 	if (sc->ntxchains == 1)
4867 		bbp1 &= ~(1 << 3 | 1 << 4);
4868 	run_bbp_write(sc, 1, bbp1);
4869 
4870 	if (sc->mac_ver >= 0x3070)
4871 		run_rt3070_rf_setup(sc);
4872 
4873 	/* select default channel */
4874 	run_set_chan(sc, ic->ic_curchan);
4875 
4876 	/* setup initial protection mode */
4877 	run_updateprot_cb(ic);
4878 
4879 	/* turn radio LED on */
4880 	run_set_leds(sc, RT2860_LED_RADIO);
4881 
4882 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4883 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4884 	sc->cmdq_run = RUN_CMDQ_GO;
4885 
4886 	for (i = 0; i != RUN_N_XFER; i++)
4887 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4888 
4889 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4890 
4891 	if (run_txrx_enable(sc) != 0)
4892 		goto fail;
4893 
4894 	return;
4895 
4896 fail:
4897 	run_stop(sc);
4898 }
4899 
4900 static void
4901 run_init(void *arg)
4902 {
4903 	struct run_softc *sc = arg;
4904 	struct ifnet *ifp = sc->sc_ifp;
4905 	struct ieee80211com *ic = ifp->if_l2com;
4906 
4907 	RUN_LOCK(sc);
4908 	run_init_locked(sc);
4909 	RUN_UNLOCK(sc);
4910 
4911 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4912 		ieee80211_start_all(ic);
4913 }
4914 
4915 static void
4916 run_stop(void *arg)
4917 {
4918 	struct run_softc *sc = (struct run_softc *)arg;
4919 	struct ifnet *ifp = sc->sc_ifp;
4920 	uint32_t tmp;
4921 	int i;
4922 	int ntries;
4923 
4924 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4925 
4926 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4927 		run_set_leds(sc, 0);	/* turn all LEDs off */
4928 
4929 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4930 
4931 	sc->ratectl_run = RUN_RATECTL_OFF;
4932 	sc->cmdq_run = sc->cmdq_key_set;
4933 
4934 	RUN_UNLOCK(sc);
4935 
4936 	for(i = 0; i < RUN_N_XFER; i++)
4937 		usbd_transfer_drain(sc->sc_xfer[i]);
4938 
4939 	RUN_LOCK(sc);
4940 
4941 	if (sc->rx_m != NULL) {
4942 		m_free(sc->rx_m);
4943 		sc->rx_m = NULL;
4944 	}
4945 
4946 	/* disable Tx/Rx */
4947 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4948 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4949 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4950 
4951 	/* wait for pending Tx to complete */
4952 	for (ntries = 0; ntries < 100; ntries++) {
4953 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4954 			DPRINTF("Cannot read Tx queue count\n");
4955 			break;
4956 		}
4957 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4958 			DPRINTF("All Tx cleared\n");
4959 			break;
4960 		}
4961 		run_delay(sc, 10);
4962 	}
4963 	if (ntries >= 100)
4964 		DPRINTF("There are still pending Tx\n");
4965 	run_delay(sc, 10);
4966 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4967 
4968 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4969 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4970 
4971 	for (i = 0; i != RUN_EP_QUEUES; i++)
4972 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4973 
4974 	return;
4975 }
4976 
4977 static void
4978 run_delay(struct run_softc *sc, unsigned int ms)
4979 {
4980 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4981 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4982 }
4983 
4984 static device_method_t run_methods[] = {
4985 	/* Device interface */
4986 	DEVMETHOD(device_probe,		run_match),
4987 	DEVMETHOD(device_attach,	run_attach),
4988 	DEVMETHOD(device_detach,	run_detach),
4989 	DEVMETHOD_END
4990 };
4991 
4992 static driver_t run_driver = {
4993 	.name = "run",
4994 	.methods = run_methods,
4995 	.size = sizeof(struct run_softc)
4996 };
4997 
4998 static devclass_t run_devclass;
4999 
5000 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
5001 MODULE_DEPEND(run, wlan, 1, 1, 1);
5002 MODULE_DEPEND(run, usb, 1, 1, 1);
5003 MODULE_DEPEND(run, firmware, 1, 1, 1);
5004 MODULE_VERSION(run, 1);
5005