1 /*- 2 * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr> 3 * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca> 4 * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/cdefs.h> 20 __FBSDID("$FreeBSD$"); 21 22 /*- 23 * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver. 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/sysctl.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/bus.h> 39 #include <sys/endian.h> 40 #include <sys/linker.h> 41 #include <sys/firmware.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/if_ether.h> 60 #include <netinet/ip.h> 61 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_regdomain.h> 64 #include <net80211/ieee80211_radiotap.h> 65 #include <net80211/ieee80211_ratectl.h> 66 67 #include <dev/usb/usb.h> 68 #include <dev/usb/usbdi.h> 69 #include "usbdevs.h" 70 71 #define USB_DEBUG_VAR run_debug 72 #include <dev/usb/usb_debug.h> 73 74 #include <dev/usb/wlan/if_runreg.h> 75 #include <dev/usb/wlan/if_runvar.h> 76 77 #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) 78 79 #ifdef USB_DEBUG 80 #define RUN_DEBUG 81 #endif 82 83 #ifdef RUN_DEBUG 84 int run_debug = 0; 85 SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run"); 86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0, 87 "run debug level"); 88 #endif 89 90 #define IEEE80211_HAS_ADDR4(wh) \ 91 (((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) 92 93 /* 94 * Because of LOR in run_key_delete(), use atomic instead. 95 * '& RUN_CMDQ_MASQ' is to loop cmdq[]. 96 */ 97 #define RUN_CMDQ_GET(c) (atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ) 98 99 static const struct usb_device_id run_devs[] = { 100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 101 RUN_DEV(ABOCOM, RT2770), 102 RUN_DEV(ABOCOM, RT2870), 103 RUN_DEV(ABOCOM, RT3070), 104 RUN_DEV(ABOCOM, RT3071), 105 RUN_DEV(ABOCOM, RT3072), 106 RUN_DEV(ABOCOM2, RT2870_1), 107 RUN_DEV(ACCTON, RT2770), 108 RUN_DEV(ACCTON, RT2870_1), 109 RUN_DEV(ACCTON, RT2870_2), 110 RUN_DEV(ACCTON, RT2870_3), 111 RUN_DEV(ACCTON, RT2870_4), 112 RUN_DEV(ACCTON, RT2870_5), 113 RUN_DEV(ACCTON, RT3070), 114 RUN_DEV(ACCTON, RT3070_1), 115 RUN_DEV(ACCTON, RT3070_2), 116 RUN_DEV(ACCTON, RT3070_3), 117 RUN_DEV(ACCTON, RT3070_4), 118 RUN_DEV(ACCTON, RT3070_5), 119 RUN_DEV(AIRTIES, RT3070), 120 RUN_DEV(ALLWIN, RT2070), 121 RUN_DEV(ALLWIN, RT2770), 122 RUN_DEV(ALLWIN, RT2870), 123 RUN_DEV(ALLWIN, RT3070), 124 RUN_DEV(ALLWIN, RT3071), 125 RUN_DEV(ALLWIN, RT3072), 126 RUN_DEV(ALLWIN, RT3572), 127 RUN_DEV(AMIGO, RT2870_1), 128 RUN_DEV(AMIGO, RT2870_2), 129 RUN_DEV(AMIT, CGWLUSB2GNR), 130 RUN_DEV(AMIT, RT2870_1), 131 RUN_DEV(AMIT2, RT2870), 132 RUN_DEV(ASUS, RT2870_1), 133 RUN_DEV(ASUS, RT2870_2), 134 RUN_DEV(ASUS, RT2870_3), 135 RUN_DEV(ASUS, RT2870_4), 136 RUN_DEV(ASUS, RT2870_5), 137 RUN_DEV(ASUS, USBN13), 138 RUN_DEV(ASUS, RT3070_1), 139 RUN_DEV(ASUS2, USBN11), 140 RUN_DEV(AZUREWAVE, RT2870_1), 141 RUN_DEV(AZUREWAVE, RT2870_2), 142 RUN_DEV(AZUREWAVE, RT3070_1), 143 RUN_DEV(AZUREWAVE, RT3070_2), 144 RUN_DEV(AZUREWAVE, RT3070_3), 145 RUN_DEV(BELKIN, F5D8053V3), 146 RUN_DEV(BELKIN, F5D8055), 147 RUN_DEV(BELKIN, F6D4050V1), 148 RUN_DEV(BELKIN, RT2870_1), 149 RUN_DEV(BELKIN, RT2870_2), 150 RUN_DEV(CISCOLINKSYS2, RT3070), 151 RUN_DEV(CISCOLINKSYS3, RT3070), 152 RUN_DEV(CONCEPTRONIC2, RT2870_1), 153 RUN_DEV(CONCEPTRONIC2, RT2870_2), 154 RUN_DEV(CONCEPTRONIC2, RT2870_3), 155 RUN_DEV(CONCEPTRONIC2, RT2870_4), 156 RUN_DEV(CONCEPTRONIC2, RT2870_5), 157 RUN_DEV(CONCEPTRONIC2, RT2870_6), 158 RUN_DEV(CONCEPTRONIC2, RT2870_7), 159 RUN_DEV(CONCEPTRONIC2, RT2870_8), 160 RUN_DEV(CONCEPTRONIC2, RT3070_1), 161 RUN_DEV(CONCEPTRONIC2, RT3070_2), 162 RUN_DEV(CONCEPTRONIC2, VIGORN61), 163 RUN_DEV(COREGA, CGWLUSB300GNM), 164 RUN_DEV(COREGA, RT2870_1), 165 RUN_DEV(COREGA, RT2870_2), 166 RUN_DEV(COREGA, RT2870_3), 167 RUN_DEV(COREGA, RT3070), 168 RUN_DEV(CYBERTAN, RT2870), 169 RUN_DEV(DLINK, RT2870), 170 RUN_DEV(DLINK, RT3072), 171 RUN_DEV(DLINK2, DWA130), 172 RUN_DEV(DLINK2, RT2870_1), 173 RUN_DEV(DLINK2, RT2870_2), 174 RUN_DEV(DLINK2, RT3070_1), 175 RUN_DEV(DLINK2, RT3070_2), 176 RUN_DEV(DLINK2, RT3070_3), 177 RUN_DEV(DLINK2, RT3070_4), 178 RUN_DEV(DLINK2, RT3070_5), 179 RUN_DEV(DLINK2, RT3072), 180 RUN_DEV(DLINK2, RT3072_1), 181 RUN_DEV(EDIMAX, EW7717), 182 RUN_DEV(EDIMAX, EW7718), 183 RUN_DEV(EDIMAX, RT2870_1), 184 RUN_DEV(ENCORE, RT3070_1), 185 RUN_DEV(ENCORE, RT3070_2), 186 RUN_DEV(ENCORE, RT3070_3), 187 RUN_DEV(GIGABYTE, GNWB31N), 188 RUN_DEV(GIGABYTE, GNWB32L), 189 RUN_DEV(GIGABYTE, RT2870_1), 190 RUN_DEV(GIGASET, RT3070_1), 191 RUN_DEV(GIGASET, RT3070_2), 192 RUN_DEV(GUILLEMOT, HWNU300), 193 RUN_DEV(HAWKING, HWUN2), 194 RUN_DEV(HAWKING, RT2870_1), 195 RUN_DEV(HAWKING, RT2870_2), 196 RUN_DEV(HAWKING, RT3070), 197 RUN_DEV(IODATA, RT3072_1), 198 RUN_DEV(IODATA, RT3072_2), 199 RUN_DEV(IODATA, RT3072_3), 200 RUN_DEV(IODATA, RT3072_4), 201 RUN_DEV(LINKSYS4, RT3070), 202 RUN_DEV(LINKSYS4, WUSB100), 203 RUN_DEV(LINKSYS4, WUSB54GCV3), 204 RUN_DEV(LINKSYS4, WUSB600N), 205 RUN_DEV(LINKSYS4, WUSB600NV2), 206 RUN_DEV(LOGITEC, RT2870_1), 207 RUN_DEV(LOGITEC, RT2870_2), 208 RUN_DEV(LOGITEC, RT2870_3), 209 RUN_DEV(MELCO, RT2870_1), 210 RUN_DEV(MELCO, RT2870_2), 211 RUN_DEV(MELCO, WLIUCAG300N), 212 RUN_DEV(MELCO, WLIUCG300N), 213 RUN_DEV(MELCO, WLIUCG301N), 214 RUN_DEV(MELCO, WLIUCGN), 215 RUN_DEV(MOTOROLA4, RT2770), 216 RUN_DEV(MOTOROLA4, RT3070), 217 RUN_DEV(MSI, RT3070_1), 218 RUN_DEV(MSI, RT3070_2), 219 RUN_DEV(MSI, RT3070_3), 220 RUN_DEV(MSI, RT3070_4), 221 RUN_DEV(MSI, RT3070_5), 222 RUN_DEV(MSI, RT3070_6), 223 RUN_DEV(MSI, RT3070_7), 224 RUN_DEV(MSI, RT3070_8), 225 RUN_DEV(MSI, RT3070_9), 226 RUN_DEV(MSI, RT3070_10), 227 RUN_DEV(MSI, RT3070_11), 228 RUN_DEV(OVISLINK, RT3072), 229 RUN_DEV(PARA, RT3070), 230 RUN_DEV(PEGATRON, RT2870), 231 RUN_DEV(PEGATRON, RT3070), 232 RUN_DEV(PEGATRON, RT3070_2), 233 RUN_DEV(PEGATRON, RT3070_3), 234 RUN_DEV(PHILIPS, RT2870), 235 RUN_DEV(PLANEX2, GWUS300MINIS), 236 RUN_DEV(PLANEX2, GWUSMICRON), 237 RUN_DEV(PLANEX2, RT2870), 238 RUN_DEV(PLANEX2, RT3070), 239 RUN_DEV(QCOM, RT2870), 240 RUN_DEV(QUANTA, RT3070), 241 RUN_DEV(RALINK, RT2070), 242 RUN_DEV(RALINK, RT2770), 243 RUN_DEV(RALINK, RT2870), 244 RUN_DEV(RALINK, RT3070), 245 RUN_DEV(RALINK, RT3071), 246 RUN_DEV(RALINK, RT3072), 247 RUN_DEV(RALINK, RT3370), 248 RUN_DEV(RALINK, RT3572), 249 RUN_DEV(RALINK, RT8070), 250 RUN_DEV(SAMSUNG2, RT2870_1), 251 RUN_DEV(SENAO, RT2870_1), 252 RUN_DEV(SENAO, RT2870_2), 253 RUN_DEV(SENAO, RT2870_3), 254 RUN_DEV(SENAO, RT2870_4), 255 RUN_DEV(SENAO, RT3070), 256 RUN_DEV(SENAO, RT3071), 257 RUN_DEV(SENAO, RT3072_1), 258 RUN_DEV(SENAO, RT3072_2), 259 RUN_DEV(SENAO, RT3072_3), 260 RUN_DEV(SENAO, RT3072_4), 261 RUN_DEV(SENAO, RT3072_5), 262 RUN_DEV(SITECOMEU, RT2770), 263 RUN_DEV(SITECOMEU, RT2870_1), 264 RUN_DEV(SITECOMEU, RT2870_2), 265 RUN_DEV(SITECOMEU, RT2870_3), 266 RUN_DEV(SITECOMEU, RT2870_4), 267 RUN_DEV(SITECOMEU, RT3070), 268 RUN_DEV(SITECOMEU, RT3070_2), 269 RUN_DEV(SITECOMEU, RT3070_3), 270 RUN_DEV(SITECOMEU, RT3070_4), 271 RUN_DEV(SITECOMEU, RT3071), 272 RUN_DEV(SITECOMEU, RT3072_1), 273 RUN_DEV(SITECOMEU, RT3072_2), 274 RUN_DEV(SITECOMEU, RT3072_3), 275 RUN_DEV(SITECOMEU, RT3072_4), 276 RUN_DEV(SITECOMEU, RT3072_5), 277 RUN_DEV(SITECOMEU, RT3072_6), 278 RUN_DEV(SITECOMEU, WL608), 279 RUN_DEV(SPARKLAN, RT2870_1), 280 RUN_DEV(SPARKLAN, RT3070), 281 RUN_DEV(SWEEX2, LW153), 282 RUN_DEV(SWEEX2, LW303), 283 RUN_DEV(SWEEX2, LW313), 284 RUN_DEV(TOSHIBA, RT3070), 285 RUN_DEV(UMEDIA, RT2870_1), 286 RUN_DEV(ZCOM, RT2870_1), 287 RUN_DEV(ZCOM, RT2870_2), 288 RUN_DEV(ZINWELL, RT2870_1), 289 RUN_DEV(ZINWELL, RT2870_2), 290 RUN_DEV(ZINWELL, RT3070), 291 RUN_DEV(ZINWELL, RT3072_1), 292 RUN_DEV(ZINWELL, RT3072_2), 293 RUN_DEV(ZYXEL, RT2870_1), 294 RUN_DEV(ZYXEL, RT2870_2), 295 #undef RUN_DEV 296 }; 297 298 static device_probe_t run_match; 299 static device_attach_t run_attach; 300 static device_detach_t run_detach; 301 302 static usb_callback_t run_bulk_rx_callback; 303 static usb_callback_t run_bulk_tx_callback0; 304 static usb_callback_t run_bulk_tx_callback1; 305 static usb_callback_t run_bulk_tx_callback2; 306 static usb_callback_t run_bulk_tx_callback3; 307 static usb_callback_t run_bulk_tx_callback4; 308 static usb_callback_t run_bulk_tx_callback5; 309 310 static void run_bulk_tx_callbackN(struct usb_xfer *xfer, 311 usb_error_t error, unsigned int index); 312 static struct ieee80211vap *run_vap_create(struct ieee80211com *, 313 const char name[IFNAMSIZ], int unit, int opmode, int flags, 314 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t 315 mac[IEEE80211_ADDR_LEN]); 316 static void run_vap_delete(struct ieee80211vap *); 317 static void run_cmdq_cb(void *, int); 318 static void run_setup_tx_list(struct run_softc *, 319 struct run_endpoint_queue *); 320 static void run_unsetup_tx_list(struct run_softc *, 321 struct run_endpoint_queue *); 322 static int run_load_microcode(struct run_softc *); 323 static int run_reset(struct run_softc *); 324 static usb_error_t run_do_request(struct run_softc *, 325 struct usb_device_request *, void *); 326 static int run_read(struct run_softc *, uint16_t, uint32_t *); 327 static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int); 328 static int run_write_2(struct run_softc *, uint16_t, uint16_t); 329 static int run_write(struct run_softc *, uint16_t, uint32_t); 330 static int run_write_region_1(struct run_softc *, uint16_t, 331 const uint8_t *, int); 332 static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int); 333 static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *); 334 static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *); 335 static int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t); 336 static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *); 337 static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t); 338 static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *); 339 static int run_bbp_write(struct run_softc *, uint8_t, uint8_t); 340 static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t); 341 static const char *run_get_rf(int); 342 static int run_read_eeprom(struct run_softc *); 343 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *, 344 const uint8_t mac[IEEE80211_ADDR_LEN]); 345 static int run_media_change(struct ifnet *); 346 static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int); 347 static int run_wme_update(struct ieee80211com *); 348 static void run_wme_update_cb(void *); 349 static void run_key_update_begin(struct ieee80211vap *); 350 static void run_key_update_end(struct ieee80211vap *); 351 static void run_key_set_cb(void *); 352 static int run_key_set(struct ieee80211vap *, struct ieee80211_key *, 353 const uint8_t mac[IEEE80211_ADDR_LEN]); 354 static void run_key_delete_cb(void *); 355 static int run_key_delete(struct ieee80211vap *, struct ieee80211_key *); 356 static void run_ratectl_to(void *); 357 static void run_ratectl_cb(void *, int); 358 static void run_drain_fifo(void *); 359 static void run_iter_func(void *, struct ieee80211_node *); 360 static void run_newassoc_cb(void *); 361 static void run_newassoc(struct ieee80211_node *, int); 362 static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t); 363 static void run_tx_free(struct run_endpoint_queue *pq, 364 struct run_tx_data *, int); 365 static void run_set_tx_desc(struct run_softc *, struct run_tx_data *); 366 static int run_tx(struct run_softc *, struct mbuf *, 367 struct ieee80211_node *); 368 static int run_tx_mgt(struct run_softc *, struct mbuf *, 369 struct ieee80211_node *); 370 static int run_sendprot(struct run_softc *, const struct mbuf *, 371 struct ieee80211_node *, int, int); 372 static int run_tx_param(struct run_softc *, struct mbuf *, 373 struct ieee80211_node *, 374 const struct ieee80211_bpf_params *); 375 static int run_raw_xmit(struct ieee80211_node *, struct mbuf *, 376 const struct ieee80211_bpf_params *); 377 static void run_start(struct ifnet *); 378 static int run_ioctl(struct ifnet *, u_long, caddr_t); 379 static void run_set_agc(struct run_softc *, uint8_t); 380 static void run_select_chan_group(struct run_softc *, int); 381 static void run_set_rx_antenna(struct run_softc *, int); 382 static void run_rt2870_set_chan(struct run_softc *, u_int); 383 static void run_rt3070_set_chan(struct run_softc *, u_int); 384 static void run_rt3572_set_chan(struct run_softc *, u_int); 385 static int run_set_chan(struct run_softc *, struct ieee80211_channel *); 386 static void run_set_channel(struct ieee80211com *); 387 static void run_scan_start(struct ieee80211com *); 388 static void run_scan_end(struct ieee80211com *); 389 static void run_update_beacon(struct ieee80211vap *, int); 390 static void run_update_beacon_cb(void *); 391 static void run_updateprot(struct ieee80211com *); 392 static void run_updateprot_cb(void *); 393 static void run_usb_timeout_cb(void *); 394 static void run_reset_livelock(struct run_softc *); 395 static void run_enable_tsf_sync(struct run_softc *); 396 static void run_enable_mrr(struct run_softc *); 397 static void run_set_txpreamble(struct run_softc *); 398 static void run_set_basicrates(struct run_softc *); 399 static void run_set_leds(struct run_softc *, uint16_t); 400 static void run_set_bssid(struct run_softc *, const uint8_t *); 401 static void run_set_macaddr(struct run_softc *, const uint8_t *); 402 static void run_updateslot(struct ifnet *); 403 static void run_updateslot_cb(void *); 404 static void run_update_mcast(struct ifnet *); 405 static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t); 406 static void run_update_promisc_locked(struct ifnet *); 407 static void run_update_promisc(struct ifnet *); 408 static int run_bbp_init(struct run_softc *); 409 static int run_rt3070_rf_init(struct run_softc *); 410 static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t, 411 uint8_t *); 412 static void run_rt3070_rf_setup(struct run_softc *); 413 static int run_txrx_enable(struct run_softc *); 414 static void run_init(void *); 415 static void run_init_locked(struct run_softc *); 416 static void run_stop(void *); 417 static void run_delay(struct run_softc *, unsigned int); 418 419 static const struct { 420 uint16_t reg; 421 uint32_t val; 422 } rt2870_def_mac[] = { 423 RT2870_DEF_MAC 424 }; 425 426 static const struct { 427 uint8_t reg; 428 uint8_t val; 429 } rt2860_def_bbp[] = { 430 RT2860_DEF_BBP 431 }; 432 433 static const struct rfprog { 434 uint8_t chan; 435 uint32_t r1, r2, r3, r4; 436 } rt2860_rf2850[] = { 437 RT2860_RF2850 438 }; 439 440 struct { 441 uint8_t n, r, k; 442 } rt3070_freqs[] = { 443 RT3070_RF3052 444 }; 445 446 static const struct { 447 uint8_t reg; 448 uint8_t val; 449 } rt3070_def_rf[] = { 450 RT3070_DEF_RF 451 },rt3572_def_rf[] = { 452 RT3572_DEF_RF 453 }; 454 455 static const struct usb_config run_config[RUN_N_XFER] = { 456 [RUN_BULK_TX_BE] = { 457 .type = UE_BULK, 458 .endpoint = UE_ADDR_ANY, 459 .ep_index = 0, 460 .direction = UE_DIR_OUT, 461 .bufsize = RUN_MAX_TXSZ, 462 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 463 .callback = run_bulk_tx_callback0, 464 .timeout = 5000, /* ms */ 465 }, 466 [RUN_BULK_TX_BK] = { 467 .type = UE_BULK, 468 .endpoint = UE_ADDR_ANY, 469 .direction = UE_DIR_OUT, 470 .ep_index = 1, 471 .bufsize = RUN_MAX_TXSZ, 472 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 473 .callback = run_bulk_tx_callback1, 474 .timeout = 5000, /* ms */ 475 }, 476 [RUN_BULK_TX_VI] = { 477 .type = UE_BULK, 478 .endpoint = UE_ADDR_ANY, 479 .direction = UE_DIR_OUT, 480 .ep_index = 2, 481 .bufsize = RUN_MAX_TXSZ, 482 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 483 .callback = run_bulk_tx_callback2, 484 .timeout = 5000, /* ms */ 485 }, 486 [RUN_BULK_TX_VO] = { 487 .type = UE_BULK, 488 .endpoint = UE_ADDR_ANY, 489 .direction = UE_DIR_OUT, 490 .ep_index = 3, 491 .bufsize = RUN_MAX_TXSZ, 492 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 493 .callback = run_bulk_tx_callback3, 494 .timeout = 5000, /* ms */ 495 }, 496 [RUN_BULK_TX_HCCA] = { 497 .type = UE_BULK, 498 .endpoint = UE_ADDR_ANY, 499 .direction = UE_DIR_OUT, 500 .ep_index = 4, 501 .bufsize = RUN_MAX_TXSZ, 502 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, 503 .callback = run_bulk_tx_callback4, 504 .timeout = 5000, /* ms */ 505 }, 506 [RUN_BULK_TX_PRIO] = { 507 .type = UE_BULK, 508 .endpoint = UE_ADDR_ANY, 509 .direction = UE_DIR_OUT, 510 .ep_index = 5, 511 .bufsize = RUN_MAX_TXSZ, 512 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, 513 .callback = run_bulk_tx_callback5, 514 .timeout = 5000, /* ms */ 515 }, 516 [RUN_BULK_RX] = { 517 .type = UE_BULK, 518 .endpoint = UE_ADDR_ANY, 519 .direction = UE_DIR_IN, 520 .bufsize = RUN_MAX_RXSZ, 521 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 522 .callback = run_bulk_rx_callback, 523 } 524 }; 525 526 static int 527 run_match(device_t self) 528 { 529 struct usb_attach_arg *uaa = device_get_ivars(self); 530 531 if (uaa->usb_mode != USB_MODE_HOST) 532 return (ENXIO); 533 if (uaa->info.bConfigIndex != 0) 534 return (ENXIO); 535 if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX) 536 return (ENXIO); 537 538 return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa)); 539 } 540 541 static int 542 run_attach(device_t self) 543 { 544 struct run_softc *sc = device_get_softc(self); 545 struct usb_attach_arg *uaa = device_get_ivars(self); 546 struct ieee80211com *ic; 547 struct ifnet *ifp; 548 uint32_t ver; 549 int i, ntries, error; 550 uint8_t iface_index, bands; 551 552 device_set_usb_desc(self); 553 sc->sc_udev = uaa->device; 554 sc->sc_dev = self; 555 556 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 557 MTX_NETWORK_LOCK, MTX_DEF); 558 559 iface_index = RT2860_IFACE_INDEX; 560 561 error = usbd_transfer_setup(uaa->device, &iface_index, 562 sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx); 563 if (error) { 564 device_printf(self, "could not allocate USB transfers, " 565 "err=%s\n", usbd_errstr(error)); 566 goto detach; 567 } 568 569 RUN_LOCK(sc); 570 571 /* wait for the chip to settle */ 572 for (ntries = 0; ntries < 100; ntries++) { 573 if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) { 574 RUN_UNLOCK(sc); 575 goto detach; 576 } 577 if (ver != 0 && ver != 0xffffffff) 578 break; 579 run_delay(sc, 10); 580 } 581 if (ntries == 100) { 582 device_printf(sc->sc_dev, 583 "timeout waiting for NIC to initialize\n"); 584 RUN_UNLOCK(sc); 585 goto detach; 586 } 587 sc->mac_ver = ver >> 16; 588 sc->mac_rev = ver & 0xffff; 589 590 /* retrieve RF rev. no and various other things from EEPROM */ 591 run_read_eeprom(sc); 592 593 device_printf(sc->sc_dev, 594 "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n", 595 sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev), 596 sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid)); 597 598 if ((error = run_load_microcode(sc)) != 0) { 599 device_printf(sc->sc_dev, "could not load 8051 microcode\n"); 600 RUN_UNLOCK(sc); 601 goto detach; 602 } 603 604 RUN_UNLOCK(sc); 605 606 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 607 if (ifp == NULL) { 608 device_printf(sc->sc_dev, "can not if_alloc()\n"); 609 goto detach; 610 } 611 ic = ifp->if_l2com; 612 613 ifp->if_softc = sc; 614 if_initname(ifp, "run", device_get_unit(sc->sc_dev)); 615 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 616 ifp->if_init = run_init; 617 ifp->if_ioctl = run_ioctl; 618 ifp->if_start = run_start; 619 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 620 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 621 IFQ_SET_READY(&ifp->if_snd); 622 623 ic->ic_ifp = ifp; 624 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 625 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 626 627 /* set device capabilities */ 628 ic->ic_caps = 629 IEEE80211_C_STA | /* station mode supported */ 630 IEEE80211_C_MONITOR | /* monitor mode supported */ 631 IEEE80211_C_IBSS | 632 IEEE80211_C_HOSTAP | 633 IEEE80211_C_WDS | /* 4-address traffic works */ 634 IEEE80211_C_MBSS | 635 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 636 IEEE80211_C_SHSLOT | /* short slot time supported */ 637 IEEE80211_C_WME | /* WME */ 638 IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */ 639 640 ic->ic_cryptocaps = 641 IEEE80211_CRYPTO_WEP | 642 IEEE80211_CRYPTO_AES_CCM | 643 IEEE80211_CRYPTO_TKIPMIC | 644 IEEE80211_CRYPTO_TKIP; 645 646 ic->ic_flags |= IEEE80211_F_DATAPAD; 647 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 648 649 bands = 0; 650 setbit(&bands, IEEE80211_MODE_11B); 651 setbit(&bands, IEEE80211_MODE_11G); 652 ieee80211_init_channels(ic, NULL, &bands); 653 654 /* 655 * Do this by own because h/w supports 656 * more channels than ieee80211_init_channels() 657 */ 658 if (sc->rf_rev == RT2860_RF_2750 || 659 sc->rf_rev == RT2860_RF_2850 || 660 sc->rf_rev == RT3070_RF_3052) { 661 /* set supported .11a rates */ 662 for (i = 14; i < nitems(rt2860_rf2850); i++) { 663 uint8_t chan = rt2860_rf2850[i].chan; 664 ic->ic_channels[ic->ic_nchans].ic_freq = 665 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 666 ic->ic_channels[ic->ic_nchans].ic_ieee = chan; 667 ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A; 668 ic->ic_channels[ic->ic_nchans].ic_extieee = 0; 669 ic->ic_nchans++; 670 } 671 } 672 673 ieee80211_ifattach(ic, sc->sc_bssid); 674 675 ic->ic_scan_start = run_scan_start; 676 ic->ic_scan_end = run_scan_end; 677 ic->ic_set_channel = run_set_channel; 678 ic->ic_node_alloc = run_node_alloc; 679 ic->ic_newassoc = run_newassoc; 680 ic->ic_updateslot = run_updateslot; 681 ic->ic_update_mcast = run_update_mcast; 682 ic->ic_wme.wme_update = run_wme_update; 683 ic->ic_raw_xmit = run_raw_xmit; 684 ic->ic_update_promisc = run_update_promisc; 685 686 ic->ic_vap_create = run_vap_create; 687 ic->ic_vap_delete = run_vap_delete; 688 689 ieee80211_radiotap_attach(ic, 690 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 691 RUN_TX_RADIOTAP_PRESENT, 692 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 693 RUN_RX_RADIOTAP_PRESENT); 694 695 TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc); 696 TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc); 697 callout_init((struct callout *)&sc->ratectl_ch, 1); 698 699 if (bootverbose) 700 ieee80211_announce(ic); 701 702 return (0); 703 704 detach: 705 run_detach(self); 706 return (ENXIO); 707 } 708 709 static int 710 run_detach(device_t self) 711 { 712 struct run_softc *sc = device_get_softc(self); 713 struct ifnet *ifp = sc->sc_ifp; 714 struct ieee80211com *ic; 715 int i; 716 717 /* stop all USB transfers */ 718 usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER); 719 720 RUN_LOCK(sc); 721 722 sc->ratectl_run = RUN_RATECTL_OFF; 723 sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT; 724 725 /* free TX list, if any */ 726 for (i = 0; i != RUN_EP_QUEUES; i++) 727 run_unsetup_tx_list(sc, &sc->sc_epq[i]); 728 RUN_UNLOCK(sc); 729 730 if (ifp) { 731 ic = ifp->if_l2com; 732 /* drain tasks */ 733 usb_callout_drain(&sc->ratectl_ch); 734 ieee80211_draintask(ic, &sc->cmdq_task); 735 ieee80211_draintask(ic, &sc->ratectl_task); 736 ieee80211_ifdetach(ic); 737 if_free(ifp); 738 } 739 740 mtx_destroy(&sc->sc_mtx); 741 742 return (0); 743 } 744 745 static struct ieee80211vap * 746 run_vap_create(struct ieee80211com *ic, 747 const char name[IFNAMSIZ], int unit, int opmode, int flags, 748 const uint8_t bssid[IEEE80211_ADDR_LEN], 749 const uint8_t mac[IEEE80211_ADDR_LEN]) 750 { 751 struct ifnet *ifp = ic->ic_ifp; 752 struct run_softc *sc = ifp->if_softc; 753 struct run_vap *rvp; 754 struct ieee80211vap *vap; 755 int i; 756 757 if (sc->rvp_cnt >= RUN_VAP_MAX) { 758 if_printf(ifp, "number of VAPs maxed out\n"); 759 return (NULL); 760 } 761 762 switch (opmode) { 763 case IEEE80211_M_STA: 764 /* enable s/w bmiss handling for sta mode */ 765 flags |= IEEE80211_CLONE_NOBEACONS; 766 /* fall though */ 767 case IEEE80211_M_IBSS: 768 case IEEE80211_M_MONITOR: 769 case IEEE80211_M_HOSTAP: 770 case IEEE80211_M_MBSS: 771 /* other than WDS vaps, only one at a time */ 772 if (!TAILQ_EMPTY(&ic->ic_vaps)) 773 return (NULL); 774 break; 775 case IEEE80211_M_WDS: 776 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){ 777 if(vap->iv_opmode != IEEE80211_M_HOSTAP) 778 continue; 779 /* WDS vap's always share the local mac address. */ 780 flags &= ~IEEE80211_CLONE_BSSID; 781 break; 782 } 783 if (vap == NULL) { 784 if_printf(ifp, "wds only supported in ap mode\n"); 785 return (NULL); 786 } 787 break; 788 default: 789 if_printf(ifp, "unknown opmode %d\n", opmode); 790 return (NULL); 791 } 792 793 rvp = (struct run_vap *) malloc(sizeof(struct run_vap), 794 M_80211_VAP, M_NOWAIT | M_ZERO); 795 if (rvp == NULL) 796 return (NULL); 797 vap = &rvp->vap; 798 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 799 800 vap->iv_key_update_begin = run_key_update_begin; 801 vap->iv_key_update_end = run_key_update_end; 802 vap->iv_update_beacon = run_update_beacon; 803 vap->iv_max_aid = RT2870_WCID_MAX; 804 /* 805 * To delete the right key from h/w, we need wcid. 806 * Luckily, there is unused space in ieee80211_key{}, wk_pad, 807 * and matching wcid will be written into there. So, cast 808 * some spells to remove 'const' from ieee80211_key{} 809 */ 810 vap->iv_key_delete = (void *)run_key_delete; 811 vap->iv_key_set = (void *)run_key_set; 812 813 /* override state transition machine */ 814 rvp->newstate = vap->iv_newstate; 815 vap->iv_newstate = run_newstate; 816 817 ieee80211_ratectl_init(vap); 818 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 819 820 /* complete setup */ 821 ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status); 822 823 /* make sure id is always unique */ 824 for (i = 0; i < RUN_VAP_MAX; i++) { 825 if((sc->rvp_bmap & 1 << i) == 0){ 826 sc->rvp_bmap |= 1 << i; 827 rvp->rvp_id = i; 828 break; 829 } 830 } 831 if (sc->rvp_cnt++ == 0) 832 ic->ic_opmode = opmode; 833 834 if (opmode == IEEE80211_M_HOSTAP) 835 sc->cmdq_run = RUN_CMDQ_GO; 836 837 DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n", 838 rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt); 839 840 return (vap); 841 } 842 843 static void 844 run_vap_delete(struct ieee80211vap *vap) 845 { 846 struct run_vap *rvp = RUN_VAP(vap); 847 struct ifnet *ifp; 848 struct ieee80211com *ic; 849 struct run_softc *sc; 850 uint8_t rvp_id; 851 852 if (vap == NULL) 853 return; 854 855 ic = vap->iv_ic; 856 ifp = ic->ic_ifp; 857 858 sc = ifp->if_softc; 859 860 RUN_LOCK(sc); 861 862 m_freem(rvp->beacon_mbuf); 863 rvp->beacon_mbuf = NULL; 864 865 rvp_id = rvp->rvp_id; 866 sc->ratectl_run &= ~(1 << rvp_id); 867 sc->rvp_bmap &= ~(1 << rvp_id); 868 run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128); 869 run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512); 870 --sc->rvp_cnt; 871 872 DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n", 873 vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt); 874 875 RUN_UNLOCK(sc); 876 877 ieee80211_ratectl_deinit(vap); 878 ieee80211_vap_detach(vap); 879 free(rvp, M_80211_VAP); 880 } 881 882 /* 883 * There are numbers of functions need to be called in context thread. 884 * Rather than creating taskqueue event for each of those functions, 885 * here is all-for-one taskqueue callback function. This function 886 * gurantees deferred functions are executed in the same order they 887 * were enqueued. 888 * '& RUN_CMDQ_MASQ' is to loop cmdq[]. 889 */ 890 static void 891 run_cmdq_cb(void *arg, int pending) 892 { 893 struct run_softc *sc = arg; 894 uint8_t i; 895 896 /* call cmdq[].func locked */ 897 RUN_LOCK(sc); 898 for (i = sc->cmdq_exec; sc->cmdq[i].func && pending; 899 i = sc->cmdq_exec, pending--) { 900 DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending); 901 if (sc->cmdq_run == RUN_CMDQ_GO) { 902 /* 903 * If arg0 is NULL, callback func needs more 904 * than one arg. So, pass ptr to cmdq struct. 905 */ 906 if (sc->cmdq[i].arg0) 907 sc->cmdq[i].func(sc->cmdq[i].arg0); 908 else 909 sc->cmdq[i].func(&sc->cmdq[i]); 910 } 911 sc->cmdq[i].arg0 = NULL; 912 sc->cmdq[i].func = NULL; 913 sc->cmdq_exec++; 914 sc->cmdq_exec &= RUN_CMDQ_MASQ; 915 } 916 RUN_UNLOCK(sc); 917 } 918 919 static void 920 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) 921 { 922 struct run_tx_data *data; 923 924 memset(pq, 0, sizeof(*pq)); 925 926 STAILQ_INIT(&pq->tx_qh); 927 STAILQ_INIT(&pq->tx_fh); 928 929 for (data = &pq->tx_data[0]; 930 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { 931 data->sc = sc; 932 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); 933 } 934 pq->tx_nfree = RUN_TX_RING_COUNT; 935 } 936 937 static void 938 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) 939 { 940 struct run_tx_data *data; 941 942 /* make sure any subsequent use of the queues will fail */ 943 pq->tx_nfree = 0; 944 STAILQ_INIT(&pq->tx_fh); 945 STAILQ_INIT(&pq->tx_qh); 946 947 /* free up all node references and mbufs */ 948 for (data = &pq->tx_data[0]; 949 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { 950 if (data->m != NULL) { 951 m_freem(data->m); 952 data->m = NULL; 953 } 954 if (data->ni != NULL) { 955 ieee80211_free_node(data->ni); 956 data->ni = NULL; 957 } 958 } 959 } 960 961 static int 962 run_load_microcode(struct run_softc *sc) 963 { 964 usb_device_request_t req; 965 const struct firmware *fw; 966 const u_char *base; 967 uint32_t tmp; 968 int ntries, error; 969 const uint64_t *temp; 970 uint64_t bytes; 971 972 RUN_UNLOCK(sc); 973 fw = firmware_get("runfw"); 974 RUN_LOCK(sc); 975 if (fw == NULL) { 976 device_printf(sc->sc_dev, 977 "failed loadfirmware of file %s\n", "runfw"); 978 return ENOENT; 979 } 980 981 if (fw->datasize != 8192) { 982 device_printf(sc->sc_dev, 983 "invalid firmware size (should be 8KB)\n"); 984 error = EINVAL; 985 goto fail; 986 } 987 988 /* 989 * RT3071/RT3072 use a different firmware 990 * run-rt2870 (8KB) contains both, 991 * first half (4KB) is for rt2870, 992 * last half is for rt3071. 993 */ 994 base = fw->data; 995 if ((sc->mac_ver) != 0x2860 && 996 (sc->mac_ver) != 0x2872 && 997 (sc->mac_ver) != 0x3070) { 998 base += 4096; 999 } 1000 1001 /* cheap sanity check */ 1002 temp = fw->data; 1003 bytes = *temp; 1004 if (bytes != be64toh(0xffffff0210280210)) { 1005 device_printf(sc->sc_dev, "firmware checksum failed\n"); 1006 error = EINVAL; 1007 goto fail; 1008 } 1009 1010 run_read(sc, RT2860_ASIC_VER_ID, &tmp); 1011 /* write microcode image */ 1012 run_write_region_1(sc, RT2870_FW_BASE, base, 4096); 1013 run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); 1014 run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); 1015 1016 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1017 req.bRequest = RT2870_RESET; 1018 USETW(req.wValue, 8); 1019 USETW(req.wIndex, 0); 1020 USETW(req.wLength, 0); 1021 if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)) 1022 != 0) { 1023 device_printf(sc->sc_dev, "firmware reset failed\n"); 1024 goto fail; 1025 } 1026 1027 run_delay(sc, 10); 1028 1029 run_write(sc, RT2860_H2M_MAILBOX, 0); 1030 if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0) 1031 goto fail; 1032 1033 /* wait until microcontroller is ready */ 1034 for (ntries = 0; ntries < 1000; ntries++) { 1035 if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) { 1036 goto fail; 1037 } 1038 if (tmp & RT2860_MCU_READY) 1039 break; 1040 run_delay(sc, 10); 1041 } 1042 if (ntries == 1000) { 1043 device_printf(sc->sc_dev, 1044 "timeout waiting for MCU to initialize\n"); 1045 error = ETIMEDOUT; 1046 goto fail; 1047 } 1048 device_printf(sc->sc_dev, "firmware %s loaded\n", 1049 (base == fw->data) ? "RT2870" : "RT3071"); 1050 1051 fail: 1052 firmware_put(fw, FIRMWARE_UNLOAD); 1053 return (error); 1054 } 1055 1056 int 1057 run_reset(struct run_softc *sc) 1058 { 1059 usb_device_request_t req; 1060 1061 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1062 req.bRequest = RT2870_RESET; 1063 USETW(req.wValue, 1); 1064 USETW(req.wIndex, 0); 1065 USETW(req.wLength, 0); 1066 return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)); 1067 } 1068 1069 static usb_error_t 1070 run_do_request(struct run_softc *sc, 1071 struct usb_device_request *req, void *data) 1072 { 1073 usb_error_t err; 1074 int ntries = 10; 1075 1076 RUN_LOCK_ASSERT(sc, MA_OWNED); 1077 1078 while (ntries--) { 1079 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 1080 req, data, 0, NULL, 250 /* ms */); 1081 if (err == 0) 1082 break; 1083 DPRINTFN(1, "Control request failed, %s (retrying)\n", 1084 usbd_errstr(err)); 1085 run_delay(sc, 10); 1086 } 1087 return (err); 1088 } 1089 1090 static int 1091 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val) 1092 { 1093 uint32_t tmp; 1094 int error; 1095 1096 error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); 1097 if (error == 0) 1098 *val = le32toh(tmp); 1099 else 1100 *val = 0xffffffff; 1101 return (error); 1102 } 1103 1104 static int 1105 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len) 1106 { 1107 usb_device_request_t req; 1108 1109 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1110 req.bRequest = RT2870_READ_REGION_1; 1111 USETW(req.wValue, 0); 1112 USETW(req.wIndex, reg); 1113 USETW(req.wLength, len); 1114 1115 return (run_do_request(sc, &req, buf)); 1116 } 1117 1118 static int 1119 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val) 1120 { 1121 usb_device_request_t req; 1122 1123 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1124 req.bRequest = RT2870_WRITE_2; 1125 USETW(req.wValue, val); 1126 USETW(req.wIndex, reg); 1127 USETW(req.wLength, 0); 1128 1129 return (run_do_request(sc, &req, NULL)); 1130 } 1131 1132 static int 1133 run_write(struct run_softc *sc, uint16_t reg, uint32_t val) 1134 { 1135 int error; 1136 1137 if ((error = run_write_2(sc, reg, val & 0xffff)) == 0) 1138 error = run_write_2(sc, reg + 2, val >> 16); 1139 return (error); 1140 } 1141 1142 static int 1143 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf, 1144 int len) 1145 { 1146 #if 1 1147 int i, error = 0; 1148 /* 1149 * NB: the WRITE_REGION_1 command is not stable on RT2860. 1150 * We thus issue multiple WRITE_2 commands instead. 1151 */ 1152 KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n")); 1153 for (i = 0; i < len && error == 0; i += 2) 1154 error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8); 1155 return (error); 1156 #else 1157 usb_device_request_t req; 1158 1159 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1160 req.bRequest = RT2870_WRITE_REGION_1; 1161 USETW(req.wValue, 0); 1162 USETW(req.wIndex, reg); 1163 USETW(req.wLength, len); 1164 return (run_do_request(sc, &req, buf)); 1165 #endif 1166 } 1167 1168 static int 1169 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len) 1170 { 1171 int i, error = 0; 1172 1173 KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n")); 1174 for (i = 0; i < len && error == 0; i += 4) 1175 error = run_write(sc, reg + i, val); 1176 return (error); 1177 } 1178 1179 /* Read 16-bit from eFUSE ROM (RT3070 only.) */ 1180 static int 1181 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) 1182 { 1183 uint32_t tmp; 1184 uint16_t reg; 1185 int error, ntries; 1186 1187 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) 1188 return (error); 1189 1190 addr *= 2; 1191 /*- 1192 * Read one 16-byte block into registers EFUSE_DATA[0-3]: 1193 * DATA0: F E D C 1194 * DATA1: B A 9 8 1195 * DATA2: 7 6 5 4 1196 * DATA3: 3 2 1 0 1197 */ 1198 tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK); 1199 tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; 1200 run_write(sc, RT3070_EFUSE_CTRL, tmp); 1201 for (ntries = 0; ntries < 100; ntries++) { 1202 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) 1203 return (error); 1204 if (!(tmp & RT3070_EFSROM_KICK)) 1205 break; 1206 run_delay(sc, 2); 1207 } 1208 if (ntries == 100) 1209 return (ETIMEDOUT); 1210 1211 if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) { 1212 *val = 0xffff; /* address not found */ 1213 return (0); 1214 } 1215 /* determine to which 32-bit register our 16-bit word belongs */ 1216 reg = RT3070_EFUSE_DATA3 - (addr & 0xc); 1217 if ((error = run_read(sc, reg, &tmp)) != 0) 1218 return (error); 1219 1220 *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff; 1221 return (0); 1222 } 1223 1224 static int 1225 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) 1226 { 1227 usb_device_request_t req; 1228 uint16_t tmp; 1229 int error; 1230 1231 addr *= 2; 1232 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1233 req.bRequest = RT2870_EEPROM_READ; 1234 USETW(req.wValue, 0); 1235 USETW(req.wIndex, addr); 1236 USETW(req.wLength, sizeof tmp); 1237 1238 error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp); 1239 if (error == 0) 1240 *val = le16toh(tmp); 1241 else 1242 *val = 0xffff; 1243 return (error); 1244 } 1245 1246 static __inline int 1247 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val) 1248 { 1249 /* either eFUSE ROM or EEPROM */ 1250 return sc->sc_srom_read(sc, addr, val); 1251 } 1252 1253 static int 1254 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val) 1255 { 1256 uint32_t tmp; 1257 int error, ntries; 1258 1259 for (ntries = 0; ntries < 10; ntries++) { 1260 if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0) 1261 return (error); 1262 if (!(tmp & RT2860_RF_REG_CTRL)) 1263 break; 1264 } 1265 if (ntries == 10) 1266 return (ETIMEDOUT); 1267 1268 /* RF registers are 24-bit on the RT2860 */ 1269 tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | 1270 (val & 0x3fffff) << 2 | (reg & 3); 1271 return (run_write(sc, RT2860_RF_CSR_CFG0, tmp)); 1272 } 1273 1274 static int 1275 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val) 1276 { 1277 uint32_t tmp; 1278 int error, ntries; 1279 1280 for (ntries = 0; ntries < 100; ntries++) { 1281 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1282 return (error); 1283 if (!(tmp & RT3070_RF_KICK)) 1284 break; 1285 } 1286 if (ntries == 100) 1287 return (ETIMEDOUT); 1288 1289 tmp = RT3070_RF_KICK | reg << 8; 1290 if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0) 1291 return (error); 1292 1293 for (ntries = 0; ntries < 100; ntries++) { 1294 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1295 return (error); 1296 if (!(tmp & RT3070_RF_KICK)) 1297 break; 1298 } 1299 if (ntries == 100) 1300 return (ETIMEDOUT); 1301 1302 *val = tmp & 0xff; 1303 return (0); 1304 } 1305 1306 static int 1307 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val) 1308 { 1309 uint32_t tmp; 1310 int error, ntries; 1311 1312 for (ntries = 0; ntries < 10; ntries++) { 1313 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1314 return (error); 1315 if (!(tmp & RT3070_RF_KICK)) 1316 break; 1317 } 1318 if (ntries == 10) 1319 return (ETIMEDOUT); 1320 1321 tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; 1322 return (run_write(sc, RT3070_RF_CSR_CFG, tmp)); 1323 } 1324 1325 static int 1326 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val) 1327 { 1328 uint32_t tmp; 1329 int ntries, error; 1330 1331 for (ntries = 0; ntries < 10; ntries++) { 1332 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1333 return (error); 1334 if (!(tmp & RT2860_BBP_CSR_KICK)) 1335 break; 1336 } 1337 if (ntries == 10) 1338 return (ETIMEDOUT); 1339 1340 tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8; 1341 if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0) 1342 return (error); 1343 1344 for (ntries = 0; ntries < 10; ntries++) { 1345 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1346 return (error); 1347 if (!(tmp & RT2860_BBP_CSR_KICK)) 1348 break; 1349 } 1350 if (ntries == 10) 1351 return (ETIMEDOUT); 1352 1353 *val = tmp & 0xff; 1354 return (0); 1355 } 1356 1357 static int 1358 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val) 1359 { 1360 uint32_t tmp; 1361 int ntries, error; 1362 1363 for (ntries = 0; ntries < 10; ntries++) { 1364 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1365 return (error); 1366 if (!(tmp & RT2860_BBP_CSR_KICK)) 1367 break; 1368 } 1369 if (ntries == 10) 1370 return (ETIMEDOUT); 1371 1372 tmp = RT2860_BBP_CSR_KICK | reg << 8 | val; 1373 return (run_write(sc, RT2860_BBP_CSR_CFG, tmp)); 1374 } 1375 1376 /* 1377 * Send a command to the 8051 microcontroller unit. 1378 */ 1379 static int 1380 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg) 1381 { 1382 uint32_t tmp; 1383 int error, ntries; 1384 1385 for (ntries = 0; ntries < 100; ntries++) { 1386 if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0) 1387 return error; 1388 if (!(tmp & RT2860_H2M_BUSY)) 1389 break; 1390 } 1391 if (ntries == 100) 1392 return ETIMEDOUT; 1393 1394 tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg; 1395 if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0) 1396 error = run_write(sc, RT2860_HOST_CMD, cmd); 1397 return (error); 1398 } 1399 1400 /* 1401 * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. 1402 * Used to adjust per-rate Tx power registers. 1403 */ 1404 static __inline uint32_t 1405 b4inc(uint32_t b32, int8_t delta) 1406 { 1407 int8_t i, b4; 1408 1409 for (i = 0; i < 8; i++) { 1410 b4 = b32 & 0xf; 1411 b4 += delta; 1412 if (b4 < 0) 1413 b4 = 0; 1414 else if (b4 > 0xf) 1415 b4 = 0xf; 1416 b32 = b32 >> 4 | b4 << 28; 1417 } 1418 return (b32); 1419 } 1420 1421 static const char * 1422 run_get_rf(int rev) 1423 { 1424 switch (rev) { 1425 case RT2860_RF_2820: return "RT2820"; 1426 case RT2860_RF_2850: return "RT2850"; 1427 case RT2860_RF_2720: return "RT2720"; 1428 case RT2860_RF_2750: return "RT2750"; 1429 case RT3070_RF_3020: return "RT3020"; 1430 case RT3070_RF_2020: return "RT2020"; 1431 case RT3070_RF_3021: return "RT3021"; 1432 case RT3070_RF_3022: return "RT3022"; 1433 case RT3070_RF_3052: return "RT3052"; 1434 } 1435 return ("unknown"); 1436 } 1437 1438 int 1439 run_read_eeprom(struct run_softc *sc) 1440 { 1441 int8_t delta_2ghz, delta_5ghz; 1442 uint32_t tmp; 1443 uint16_t val; 1444 int ridx, ant, i; 1445 1446 /* check whether the ROM is eFUSE ROM or EEPROM */ 1447 sc->sc_srom_read = run_eeprom_read_2; 1448 if (sc->mac_ver >= 0x3070) { 1449 run_read(sc, RT3070_EFUSE_CTRL, &tmp); 1450 DPRINTF("EFUSE_CTRL=0x%08x\n", tmp); 1451 if (tmp & RT3070_SEL_EFUSE) 1452 sc->sc_srom_read = run_efuse_read_2; 1453 } 1454 1455 /* read ROM version */ 1456 run_srom_read(sc, RT2860_EEPROM_VERSION, &val); 1457 DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8); 1458 1459 /* read MAC address */ 1460 run_srom_read(sc, RT2860_EEPROM_MAC01, &val); 1461 sc->sc_bssid[0] = val & 0xff; 1462 sc->sc_bssid[1] = val >> 8; 1463 run_srom_read(sc, RT2860_EEPROM_MAC23, &val); 1464 sc->sc_bssid[2] = val & 0xff; 1465 sc->sc_bssid[3] = val >> 8; 1466 run_srom_read(sc, RT2860_EEPROM_MAC45, &val); 1467 sc->sc_bssid[4] = val & 0xff; 1468 sc->sc_bssid[5] = val >> 8; 1469 1470 /* read vender BBP settings */ 1471 for (i = 0; i < 10; i++) { 1472 run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val); 1473 sc->bbp[i].val = val & 0xff; 1474 sc->bbp[i].reg = val >> 8; 1475 DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val); 1476 } 1477 if (sc->mac_ver >= 0x3071) { 1478 /* read vendor RF settings */ 1479 for (i = 0; i < 10; i++) { 1480 run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val); 1481 sc->rf[i].val = val & 0xff; 1482 sc->rf[i].reg = val >> 8; 1483 DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg, 1484 sc->rf[i].val); 1485 } 1486 } 1487 1488 /* read RF frequency offset from EEPROM */ 1489 run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val); 1490 sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; 1491 DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff); 1492 1493 if (val >> 8 != 0xff) { 1494 /* read LEDs operating mode */ 1495 sc->leds = val >> 8; 1496 run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]); 1497 run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]); 1498 run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]); 1499 } else { 1500 /* broken EEPROM, use default settings */ 1501 sc->leds = 0x01; 1502 sc->led[0] = 0x5555; 1503 sc->led[1] = 0x2221; 1504 sc->led[2] = 0x5627; /* differs from RT2860 */ 1505 } 1506 DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", 1507 sc->leds, sc->led[0], sc->led[1], sc->led[2]); 1508 1509 /* read RF information */ 1510 run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); 1511 if (val == 0xffff) { 1512 DPRINTF("invalid EEPROM antenna info, using default\n"); 1513 if (sc->mac_ver == 0x3572) { 1514 /* default to RF3052 2T2R */ 1515 sc->rf_rev = RT3070_RF_3052; 1516 sc->ntxchains = 2; 1517 sc->nrxchains = 2; 1518 } else if (sc->mac_ver >= 0x3070) { 1519 /* default to RF3020 1T1R */ 1520 sc->rf_rev = RT3070_RF_3020; 1521 sc->ntxchains = 1; 1522 sc->nrxchains = 1; 1523 } else { 1524 /* default to RF2820 1T2R */ 1525 sc->rf_rev = RT2860_RF_2820; 1526 sc->ntxchains = 1; 1527 sc->nrxchains = 2; 1528 } 1529 } else { 1530 sc->rf_rev = (val >> 8) & 0xf; 1531 sc->ntxchains = (val >> 4) & 0xf; 1532 sc->nrxchains = val & 0xf; 1533 } 1534 DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n", 1535 sc->rf_rev, sc->ntxchains, sc->nrxchains); 1536 1537 /* check if RF supports automatic Tx access gain control */ 1538 run_srom_read(sc, RT2860_EEPROM_CONFIG, &val); 1539 DPRINTF("EEPROM CFG 0x%04x\n", val); 1540 /* check if driver should patch the DAC issue */ 1541 if ((val >> 8) != 0xff) 1542 sc->patch_dac = (val >> 15) & 1; 1543 if ((val & 0xff) != 0xff) { 1544 sc->ext_5ghz_lna = (val >> 3) & 1; 1545 sc->ext_2ghz_lna = (val >> 2) & 1; 1546 /* check if RF supports automatic Tx access gain control */ 1547 sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; 1548 /* check if we have a hardware radio switch */ 1549 sc->rfswitch = val & 1; 1550 } 1551 1552 /* read power settings for 2GHz channels */ 1553 for (i = 0; i < 14; i += 2) { 1554 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); 1555 sc->txpow1[i + 0] = (int8_t)(val & 0xff); 1556 sc->txpow1[i + 1] = (int8_t)(val >> 8); 1557 1558 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); 1559 sc->txpow2[i + 0] = (int8_t)(val & 0xff); 1560 sc->txpow2[i + 1] = (int8_t)(val >> 8); 1561 } 1562 /* fix broken Tx power entries */ 1563 for (i = 0; i < 14; i++) { 1564 if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) 1565 sc->txpow1[i] = 5; 1566 if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) 1567 sc->txpow2[i] = 5; 1568 DPRINTF("chan %d: power1=%d, power2=%d\n", 1569 rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]); 1570 } 1571 /* read power settings for 5GHz channels */ 1572 for (i = 0; i < 40; i += 2) { 1573 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); 1574 sc->txpow1[i + 14] = (int8_t)(val & 0xff); 1575 sc->txpow1[i + 15] = (int8_t)(val >> 8); 1576 1577 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); 1578 sc->txpow2[i + 14] = (int8_t)(val & 0xff); 1579 sc->txpow2[i + 15] = (int8_t)(val >> 8); 1580 } 1581 /* fix broken Tx power entries */ 1582 for (i = 0; i < 40; i++) { 1583 if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) 1584 sc->txpow1[14 + i] = 5; 1585 if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) 1586 sc->txpow2[14 + i] = 5; 1587 DPRINTF("chan %d: power1=%d, power2=%d\n", 1588 rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], 1589 sc->txpow2[14 + i]); 1590 } 1591 1592 /* read Tx power compensation for each Tx rate */ 1593 run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val); 1594 delta_2ghz = delta_5ghz = 0; 1595 if ((val & 0xff) != 0xff && (val & 0x80)) { 1596 delta_2ghz = val & 0xf; 1597 if (!(val & 0x40)) /* negative number */ 1598 delta_2ghz = -delta_2ghz; 1599 } 1600 val >>= 8; 1601 if ((val & 0xff) != 0xff && (val & 0x80)) { 1602 delta_5ghz = val & 0xf; 1603 if (!(val & 0x40)) /* negative number */ 1604 delta_5ghz = -delta_5ghz; 1605 } 1606 DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n", 1607 delta_2ghz, delta_5ghz); 1608 1609 for (ridx = 0; ridx < 5; ridx++) { 1610 uint32_t reg; 1611 1612 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val); 1613 reg = val; 1614 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val); 1615 reg |= (uint32_t)val << 16; 1616 1617 sc->txpow20mhz[ridx] = reg; 1618 sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); 1619 sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); 1620 1621 DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " 1622 "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], 1623 sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]); 1624 } 1625 1626 /* read RSSI offsets and LNA gains from EEPROM */ 1627 run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val); 1628 sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ 1629 sc->rssi_2ghz[1] = val >> 8; /* Ant B */ 1630 run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val); 1631 if (sc->mac_ver >= 0x3070) { 1632 /* 1633 * On RT3070 chips (limited to 2 Rx chains), this ROM 1634 * field contains the Tx mixer gain for the 2GHz band. 1635 */ 1636 if ((val & 0xff) != 0xff) 1637 sc->txmixgain_2ghz = val & 0x7; 1638 DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz); 1639 } else 1640 sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ 1641 sc->lna[2] = val >> 8; /* channel group 2 */ 1642 1643 run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val); 1644 sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ 1645 sc->rssi_5ghz[1] = val >> 8; /* Ant B */ 1646 run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val); 1647 if (sc->mac_ver == 0x3572) { 1648 /* 1649 * On RT3572 chips (limited to 2 Rx chains), this ROM 1650 * field contains the Tx mixer gain for the 5GHz band. 1651 */ 1652 if ((val & 0xff) != 0xff) 1653 sc->txmixgain_5ghz = val & 0x7; 1654 DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz); 1655 } else 1656 sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ 1657 sc->lna[3] = val >> 8; /* channel group 3 */ 1658 1659 run_srom_read(sc, RT2860_EEPROM_LNA, &val); 1660 sc->lna[0] = val & 0xff; /* channel group 0 */ 1661 sc->lna[1] = val >> 8; /* channel group 1 */ 1662 1663 /* fix broken 5GHz LNA entries */ 1664 if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { 1665 DPRINTF("invalid LNA for channel group %d\n", 2); 1666 sc->lna[2] = sc->lna[1]; 1667 } 1668 if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { 1669 DPRINTF("invalid LNA for channel group %d\n", 3); 1670 sc->lna[3] = sc->lna[1]; 1671 } 1672 1673 /* fix broken RSSI offset entries */ 1674 for (ant = 0; ant < 3; ant++) { 1675 if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { 1676 DPRINTF("invalid RSSI%d offset: %d (2GHz)\n", 1677 ant + 1, sc->rssi_2ghz[ant]); 1678 sc->rssi_2ghz[ant] = 0; 1679 } 1680 if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { 1681 DPRINTF("invalid RSSI%d offset: %d (5GHz)\n", 1682 ant + 1, sc->rssi_5ghz[ant]); 1683 sc->rssi_5ghz[ant] = 0; 1684 } 1685 } 1686 return (0); 1687 } 1688 1689 static struct ieee80211_node * 1690 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1691 { 1692 return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1693 } 1694 1695 static int 1696 run_media_change(struct ifnet *ifp) 1697 { 1698 struct ieee80211vap *vap = ifp->if_softc; 1699 struct ieee80211com *ic = vap->iv_ic; 1700 const struct ieee80211_txparam *tp; 1701 struct run_softc *sc = ic->ic_ifp->if_softc; 1702 uint8_t rate, ridx; 1703 int error; 1704 1705 RUN_LOCK(sc); 1706 1707 error = ieee80211_media_change(ifp); 1708 if (error != ENETRESET) { 1709 RUN_UNLOCK(sc); 1710 return (error); 1711 } 1712 1713 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1714 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1715 struct ieee80211_node *ni; 1716 struct run_node *rn; 1717 1718 rate = ic->ic_sup_rates[ic->ic_curmode]. 1719 rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL; 1720 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 1721 if (rt2860_rates[ridx].rate == rate) 1722 break; 1723 ni = ieee80211_ref_node(vap->iv_bss); 1724 rn = (struct run_node *)ni; 1725 rn->fix_ridx = ridx; 1726 DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx); 1727 ieee80211_free_node(ni); 1728 } 1729 1730 #if 0 1731 if ((ifp->if_flags & IFF_UP) && 1732 (ifp->if_drv_flags & IFF_DRV_RUNNING)){ 1733 run_init_locked(sc); 1734 } 1735 #endif 1736 1737 RUN_UNLOCK(sc); 1738 1739 return (0); 1740 } 1741 1742 static int 1743 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1744 { 1745 const struct ieee80211_txparam *tp; 1746 struct ieee80211com *ic = vap->iv_ic; 1747 struct run_softc *sc = ic->ic_ifp->if_softc; 1748 struct run_vap *rvp = RUN_VAP(vap); 1749 enum ieee80211_state ostate; 1750 uint32_t sta[3]; 1751 uint32_t tmp; 1752 uint8_t ratectl; 1753 uint8_t restart_ratectl = 0; 1754 uint8_t bid = 1 << rvp->rvp_id; 1755 1756 ostate = vap->iv_state; 1757 DPRINTF("%s -> %s\n", 1758 ieee80211_state_name[ostate], 1759 ieee80211_state_name[nstate]); 1760 1761 IEEE80211_UNLOCK(ic); 1762 RUN_LOCK(sc); 1763 1764 ratectl = sc->ratectl_run; /* remember current state */ 1765 sc->ratectl_run = RUN_RATECTL_OFF; 1766 usb_callout_stop(&sc->ratectl_ch); 1767 1768 if (ostate == IEEE80211_S_RUN) { 1769 /* turn link LED off */ 1770 run_set_leds(sc, RT2860_LED_RADIO); 1771 } 1772 1773 switch (nstate) { 1774 case IEEE80211_S_INIT: 1775 restart_ratectl = 1; 1776 1777 if (ostate != IEEE80211_S_RUN) 1778 break; 1779 1780 ratectl &= ~bid; 1781 sc->runbmap &= ~bid; 1782 1783 /* abort TSF synchronization if there is no vap running */ 1784 if (--sc->running == 0) { 1785 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 1786 run_write(sc, RT2860_BCN_TIME_CFG, 1787 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 1788 RT2860_TBTT_TIMER_EN)); 1789 } 1790 break; 1791 1792 case IEEE80211_S_RUN: 1793 if (!(sc->runbmap & bid)) { 1794 if(sc->running++) 1795 restart_ratectl = 1; 1796 sc->runbmap |= bid; 1797 } 1798 1799 m_freem(rvp->beacon_mbuf); 1800 rvp->beacon_mbuf = NULL; 1801 1802 switch (vap->iv_opmode) { 1803 case IEEE80211_M_HOSTAP: 1804 case IEEE80211_M_MBSS: 1805 sc->ap_running |= bid; 1806 ic->ic_opmode = vap->iv_opmode; 1807 run_update_beacon_cb(vap); 1808 break; 1809 case IEEE80211_M_IBSS: 1810 sc->adhoc_running |= bid; 1811 if (!sc->ap_running) 1812 ic->ic_opmode = vap->iv_opmode; 1813 run_update_beacon_cb(vap); 1814 break; 1815 case IEEE80211_M_STA: 1816 sc->sta_running |= bid; 1817 if (!sc->ap_running && !sc->adhoc_running) 1818 ic->ic_opmode = vap->iv_opmode; 1819 1820 /* read statistic counters (clear on read) */ 1821 run_read_region_1(sc, RT2860_TX_STA_CNT0, 1822 (uint8_t *)sta, sizeof sta); 1823 1824 break; 1825 default: 1826 ic->ic_opmode = vap->iv_opmode; 1827 break; 1828 } 1829 1830 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1831 struct ieee80211_node *ni; 1832 1833 run_updateslot(ic->ic_ifp); 1834 run_enable_mrr(sc); 1835 run_set_txpreamble(sc); 1836 run_set_basicrates(sc); 1837 ni = ieee80211_ref_node(vap->iv_bss); 1838 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1839 run_set_bssid(sc, ni->ni_bssid); 1840 ieee80211_free_node(ni); 1841 run_enable_tsf_sync(sc); 1842 1843 /* enable automatic rate adaptation */ 1844 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1845 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1846 ratectl |= bid; 1847 } 1848 1849 /* turn link LED on */ 1850 run_set_leds(sc, RT2860_LED_RADIO | 1851 (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ? 1852 RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); 1853 1854 break; 1855 default: 1856 DPRINTFN(6, "undefined case\n"); 1857 break; 1858 } 1859 1860 /* restart amrr for running VAPs */ 1861 if ((sc->ratectl_run = ratectl) && restart_ratectl) 1862 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 1863 1864 RUN_UNLOCK(sc); 1865 IEEE80211_LOCK(ic); 1866 1867 return(rvp->newstate(vap, nstate, arg)); 1868 } 1869 1870 /* ARGSUSED */ 1871 static void 1872 run_wme_update_cb(void *arg) 1873 { 1874 struct ieee80211com *ic = arg; 1875 struct run_softc *sc = ic->ic_ifp->if_softc; 1876 struct ieee80211_wme_state *wmesp = &ic->ic_wme; 1877 int aci, error = 0; 1878 1879 RUN_LOCK_ASSERT(sc, MA_OWNED); 1880 1881 /* update MAC TX configuration registers */ 1882 for (aci = 0; aci < WME_NUM_AC; aci++) { 1883 error = run_write(sc, RT2860_EDCA_AC_CFG(aci), 1884 wmesp->wme_params[aci].wmep_logcwmax << 16 | 1885 wmesp->wme_params[aci].wmep_logcwmin << 12 | 1886 wmesp->wme_params[aci].wmep_aifsn << 8 | 1887 wmesp->wme_params[aci].wmep_txopLimit); 1888 if (error) goto err; 1889 } 1890 1891 /* update SCH/DMA registers too */ 1892 error = run_write(sc, RT2860_WMM_AIFSN_CFG, 1893 wmesp->wme_params[WME_AC_VO].wmep_aifsn << 12 | 1894 wmesp->wme_params[WME_AC_VI].wmep_aifsn << 8 | 1895 wmesp->wme_params[WME_AC_BK].wmep_aifsn << 4 | 1896 wmesp->wme_params[WME_AC_BE].wmep_aifsn); 1897 if (error) goto err; 1898 error = run_write(sc, RT2860_WMM_CWMIN_CFG, 1899 wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 | 1900 wmesp->wme_params[WME_AC_VI].wmep_logcwmin << 8 | 1901 wmesp->wme_params[WME_AC_BK].wmep_logcwmin << 4 | 1902 wmesp->wme_params[WME_AC_BE].wmep_logcwmin); 1903 if (error) goto err; 1904 error = run_write(sc, RT2860_WMM_CWMAX_CFG, 1905 wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 | 1906 wmesp->wme_params[WME_AC_VI].wmep_logcwmax << 8 | 1907 wmesp->wme_params[WME_AC_BK].wmep_logcwmax << 4 | 1908 wmesp->wme_params[WME_AC_BE].wmep_logcwmax); 1909 if (error) goto err; 1910 error = run_write(sc, RT2860_WMM_TXOP0_CFG, 1911 wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 | 1912 wmesp->wme_params[WME_AC_BE].wmep_txopLimit); 1913 if (error) goto err; 1914 error = run_write(sc, RT2860_WMM_TXOP1_CFG, 1915 wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 | 1916 wmesp->wme_params[WME_AC_VI].wmep_txopLimit); 1917 1918 err: 1919 if (error) 1920 DPRINTF("WME update failed\n"); 1921 1922 return; 1923 } 1924 1925 static int 1926 run_wme_update(struct ieee80211com *ic) 1927 { 1928 struct run_softc *sc = ic->ic_ifp->if_softc; 1929 1930 /* sometime called wothout lock */ 1931 if (mtx_owned(&ic->ic_comlock.mtx)) { 1932 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 1933 DPRINTF("cmdq_store=%d\n", i); 1934 sc->cmdq[i].func = run_wme_update_cb; 1935 sc->cmdq[i].arg0 = ic; 1936 ieee80211_runtask(ic, &sc->cmdq_task); 1937 return (0); 1938 } 1939 1940 RUN_LOCK(sc); 1941 run_wme_update_cb(ic); 1942 RUN_UNLOCK(sc); 1943 1944 /* return whatever, upper layer desn't care anyway */ 1945 return (0); 1946 } 1947 1948 static void 1949 run_key_update_begin(struct ieee80211vap *vap) 1950 { 1951 /* 1952 * To avoid out-of-order events, both run_key_set() and 1953 * _delete() are deferred and handled by run_cmdq_cb(). 1954 * So, there is nothing we need to do here. 1955 */ 1956 } 1957 1958 static void 1959 run_key_update_end(struct ieee80211vap *vap) 1960 { 1961 /* null */ 1962 } 1963 1964 static void 1965 run_key_set_cb(void *arg) 1966 { 1967 struct run_cmdq *cmdq = arg; 1968 struct ieee80211vap *vap = cmdq->arg1; 1969 struct ieee80211_key *k = cmdq->k; 1970 struct ieee80211com *ic = vap->iv_ic; 1971 struct run_softc *sc = ic->ic_ifp->if_softc; 1972 struct ieee80211_node *ni; 1973 uint32_t attr; 1974 uint16_t base, associd; 1975 uint8_t mode, wcid, iv[8]; 1976 1977 RUN_LOCK_ASSERT(sc, MA_OWNED); 1978 1979 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 1980 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac); 1981 else 1982 ni = vap->iv_bss; 1983 associd = (ni != NULL) ? ni->ni_associd : 0; 1984 1985 /* map net80211 cipher to RT2860 security mode */ 1986 switch (k->wk_cipher->ic_cipher) { 1987 case IEEE80211_CIPHER_WEP: 1988 if(k->wk_keylen < 8) 1989 mode = RT2860_MODE_WEP40; 1990 else 1991 mode = RT2860_MODE_WEP104; 1992 break; 1993 case IEEE80211_CIPHER_TKIP: 1994 mode = RT2860_MODE_TKIP; 1995 break; 1996 case IEEE80211_CIPHER_AES_CCM: 1997 mode = RT2860_MODE_AES_CCMP; 1998 break; 1999 default: 2000 DPRINTF("undefined case\n"); 2001 return; 2002 } 2003 2004 DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n", 2005 associd, k->wk_keyix, mode, 2006 (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise", 2007 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2008 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2009 2010 if (k->wk_flags & IEEE80211_KEY_GROUP) { 2011 wcid = 0; /* NB: update WCID0 for group keys */ 2012 base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix); 2013 } else { 2014 wcid = RUN_AID2WCID(associd); 2015 base = RT2860_PKEY(wcid); 2016 } 2017 2018 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2019 if(run_write_region_1(sc, base, k->wk_key, 16)) 2020 return; 2021 if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8)) /* wk_txmic */ 2022 return; 2023 if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8)) /* wk_rxmic */ 2024 return; 2025 } else { 2026 /* roundup len to 16-bit: XXX fix write_region_1() instead */ 2027 if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1)) 2028 return; 2029 } 2030 2031 if (!(k->wk_flags & IEEE80211_KEY_GROUP) || 2032 (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) { 2033 /* set initial packet number in IV+EIV */ 2034 if (k->wk_cipher == IEEE80211_CIPHER_WEP) { 2035 memset(iv, 0, sizeof iv); 2036 iv[3] = vap->iv_def_txkey << 6; 2037 } else { 2038 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2039 iv[0] = k->wk_keytsc >> 8; 2040 iv[1] = (iv[0] | 0x20) & 0x7f; 2041 iv[2] = k->wk_keytsc; 2042 } else /* CCMP */ { 2043 iv[0] = k->wk_keytsc; 2044 iv[1] = k->wk_keytsc >> 8; 2045 iv[2] = 0; 2046 } 2047 iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV; 2048 iv[4] = k->wk_keytsc >> 16; 2049 iv[5] = k->wk_keytsc >> 24; 2050 iv[6] = k->wk_keytsc >> 32; 2051 iv[7] = k->wk_keytsc >> 40; 2052 } 2053 if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8)) 2054 return; 2055 } 2056 2057 if (k->wk_flags & IEEE80211_KEY_GROUP) { 2058 /* install group key */ 2059 if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr)) 2060 return; 2061 attr &= ~(0xf << (k->wk_keyix * 4)); 2062 attr |= mode << (k->wk_keyix * 4); 2063 if (run_write(sc, RT2860_SKEY_MODE_0_7, attr)) 2064 return; 2065 } else { 2066 /* install pairwise key */ 2067 if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr)) 2068 return; 2069 attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; 2070 if (run_write(sc, RT2860_WCID_ATTR(wcid), attr)) 2071 return; 2072 } 2073 2074 /* TODO create a pass-thru key entry? */ 2075 2076 /* need wcid to delete the right key later */ 2077 k->wk_pad = wcid; 2078 } 2079 2080 /* 2081 * Don't have to be deferred, but in order to keep order of 2082 * execution, i.e. with run_key_delete(), defer this and let 2083 * run_cmdq_cb() maintain the order. 2084 * 2085 * return 0 on error 2086 */ 2087 static int 2088 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k, 2089 const uint8_t mac[IEEE80211_ADDR_LEN]) 2090 { 2091 struct ieee80211com *ic = vap->iv_ic; 2092 struct run_softc *sc = ic->ic_ifp->if_softc; 2093 uint32_t i; 2094 2095 i = RUN_CMDQ_GET(&sc->cmdq_store); 2096 DPRINTF("cmdq_store=%d\n", i); 2097 sc->cmdq[i].func = run_key_set_cb; 2098 sc->cmdq[i].arg0 = NULL; 2099 sc->cmdq[i].arg1 = vap; 2100 sc->cmdq[i].k = k; 2101 IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac); 2102 ieee80211_runtask(ic, &sc->cmdq_task); 2103 2104 /* 2105 * To make sure key will be set when hostapd 2106 * calls iv_key_set() before if_init(). 2107 */ 2108 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 2109 RUN_LOCK(sc); 2110 sc->cmdq_key_set = RUN_CMDQ_GO; 2111 RUN_UNLOCK(sc); 2112 } 2113 2114 return (1); 2115 } 2116 2117 /* 2118 * If wlan is destroyed without being brought down i.e. without 2119 * wlan down or wpa_cli terminate, this function is called after 2120 * vap is gone. Don't refer it. 2121 */ 2122 static void 2123 run_key_delete_cb(void *arg) 2124 { 2125 struct run_cmdq *cmdq = arg; 2126 struct run_softc *sc = cmdq->arg1; 2127 struct ieee80211_key *k = &cmdq->key; 2128 uint32_t attr; 2129 uint8_t wcid; 2130 2131 RUN_LOCK_ASSERT(sc, MA_OWNED); 2132 2133 if (k->wk_flags & IEEE80211_KEY_GROUP) { 2134 /* remove group key */ 2135 DPRINTF("removing group key\n"); 2136 run_read(sc, RT2860_SKEY_MODE_0_7, &attr); 2137 attr &= ~(0xf << (k->wk_keyix * 4)); 2138 run_write(sc, RT2860_SKEY_MODE_0_7, attr); 2139 } else { 2140 /* remove pairwise key */ 2141 DPRINTF("removing key for wcid %x\n", k->wk_pad); 2142 /* matching wcid was written to wk_pad in run_key_set() */ 2143 wcid = k->wk_pad; 2144 run_read(sc, RT2860_WCID_ATTR(wcid), &attr); 2145 attr &= ~0xf; 2146 run_write(sc, RT2860_WCID_ATTR(wcid), attr); 2147 run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8); 2148 } 2149 2150 k->wk_pad = 0; 2151 } 2152 2153 /* 2154 * return 0 on error 2155 */ 2156 static int 2157 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k) 2158 { 2159 struct ieee80211com *ic = vap->iv_ic; 2160 struct run_softc *sc = ic->ic_ifp->if_softc; 2161 struct ieee80211_key *k0; 2162 uint32_t i; 2163 2164 /* 2165 * When called back, key might be gone. So, make a copy 2166 * of some values need to delete keys before deferring. 2167 * But, because of LOR with node lock, cannot use lock here. 2168 * So, use atomic instead. 2169 */ 2170 i = RUN_CMDQ_GET(&sc->cmdq_store); 2171 DPRINTF("cmdq_store=%d\n", i); 2172 sc->cmdq[i].func = run_key_delete_cb; 2173 sc->cmdq[i].arg0 = NULL; 2174 sc->cmdq[i].arg1 = sc; 2175 k0 = &sc->cmdq[i].key; 2176 k0->wk_flags = k->wk_flags; 2177 k0->wk_keyix = k->wk_keyix; 2178 /* matching wcid was written to wk_pad in run_key_set() */ 2179 k0->wk_pad = k->wk_pad; 2180 ieee80211_runtask(ic, &sc->cmdq_task); 2181 return (1); /* return fake success */ 2182 2183 } 2184 2185 static void 2186 run_ratectl_to(void *arg) 2187 { 2188 struct run_softc *sc = arg; 2189 2190 /* do it in a process context, so it can go sleep */ 2191 ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task); 2192 /* next timeout will be rescheduled in the callback task */ 2193 } 2194 2195 /* ARGSUSED */ 2196 static void 2197 run_ratectl_cb(void *arg, int pending) 2198 { 2199 struct run_softc *sc = arg; 2200 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2201 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2202 2203 if (vap == NULL) 2204 return; 2205 2206 if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA) 2207 run_iter_func(sc, vap->iv_bss); 2208 else { 2209 /* 2210 * run_reset_livelock() doesn't do anything with AMRR, 2211 * but Ralink wants us to call it every 1 sec. So, we 2212 * piggyback here rather than creating another callout. 2213 * Livelock may occur only in HOSTAP or IBSS mode 2214 * (when h/w is sending beacons). 2215 */ 2216 RUN_LOCK(sc); 2217 run_reset_livelock(sc); 2218 /* just in case, there are some stats to drain */ 2219 run_drain_fifo(sc); 2220 RUN_UNLOCK(sc); 2221 ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc); 2222 } 2223 2224 if(sc->ratectl_run != RUN_RATECTL_OFF) 2225 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 2226 } 2227 2228 static void 2229 run_drain_fifo(void *arg) 2230 { 2231 struct run_softc *sc = arg; 2232 struct ifnet *ifp = sc->sc_ifp; 2233 uint32_t stat; 2234 uint16_t (*wstat)[3]; 2235 uint8_t wcid, mcs, pid; 2236 int8_t retry; 2237 2238 RUN_LOCK_ASSERT(sc, MA_OWNED); 2239 2240 for (;;) { 2241 /* drain Tx status FIFO (maxsize = 16) */ 2242 run_read(sc, RT2860_TX_STAT_FIFO, &stat); 2243 DPRINTFN(4, "tx stat 0x%08x\n", stat); 2244 if (!(stat & RT2860_TXQ_VLD)) 2245 break; 2246 2247 wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; 2248 2249 /* if no ACK was requested, no feedback is available */ 2250 if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX || 2251 wcid == 0) 2252 continue; 2253 2254 /* 2255 * Even though each stat is Tx-complete-status like format, 2256 * the device can poll stats. Because there is no guarantee 2257 * that the referring node is still around when read the stats. 2258 * So that, if we use ieee80211_ratectl_tx_update(), we will 2259 * have hard time not to refer already freed node. 2260 * 2261 * To eliminate such page faults, we poll stats in softc. 2262 * Then, update the rates later with ieee80211_ratectl_tx_update(). 2263 */ 2264 wstat = &(sc->wcid_stats[wcid]); 2265 (*wstat)[RUN_TXCNT]++; 2266 if (stat & RT2860_TXQ_OK) 2267 (*wstat)[RUN_SUCCESS]++; 2268 else 2269 ifp->if_oerrors++; 2270 /* 2271 * Check if there were retries, ie if the Tx success rate is 2272 * different from the requested rate. Note that it works only 2273 * because we do not allow rate fallback from OFDM to CCK. 2274 */ 2275 mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; 2276 pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; 2277 if ((retry = pid -1 - mcs) > 0) { 2278 (*wstat)[RUN_TXCNT] += retry; 2279 (*wstat)[RUN_RETRY] += retry; 2280 } 2281 } 2282 DPRINTFN(3, "count=%d\n", sc->fifo_cnt); 2283 2284 sc->fifo_cnt = 0; 2285 } 2286 2287 static void 2288 run_iter_func(void *arg, struct ieee80211_node *ni) 2289 { 2290 struct run_softc *sc = arg; 2291 struct ieee80211vap *vap = ni->ni_vap; 2292 struct ieee80211com *ic = ni->ni_ic; 2293 struct ifnet *ifp = ic->ic_ifp; 2294 struct run_node *rn = (void *)ni; 2295 union run_stats sta[2]; 2296 uint16_t (*wstat)[3]; 2297 int txcnt, success, retrycnt, error; 2298 2299 RUN_LOCK(sc); 2300 2301 if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS || 2302 vap->iv_opmode == IEEE80211_M_STA)) { 2303 /* read statistic counters (clear on read) and update AMRR state */ 2304 error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, 2305 sizeof sta); 2306 if (error != 0) 2307 goto fail; 2308 2309 /* count failed TX as errors */ 2310 ifp->if_oerrors += le16toh(sta[0].error.fail); 2311 2312 retrycnt = le16toh(sta[1].tx.retry); 2313 success = le16toh(sta[1].tx.success); 2314 txcnt = retrycnt + success + le16toh(sta[0].error.fail); 2315 2316 DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n", 2317 retrycnt, success, le16toh(sta[0].error.fail)); 2318 } else { 2319 wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]); 2320 2321 if (wstat == &(sc->wcid_stats[0]) || 2322 wstat > &(sc->wcid_stats[RT2870_WCID_MAX])) 2323 goto fail; 2324 2325 txcnt = (*wstat)[RUN_TXCNT]; 2326 success = (*wstat)[RUN_SUCCESS]; 2327 retrycnt = (*wstat)[RUN_RETRY]; 2328 DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n", 2329 retrycnt, txcnt, success); 2330 2331 memset(wstat, 0, sizeof(*wstat)); 2332 } 2333 2334 ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt); 2335 rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0); 2336 2337 fail: 2338 RUN_UNLOCK(sc); 2339 2340 DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx); 2341 } 2342 2343 static void 2344 run_newassoc_cb(void *arg) 2345 { 2346 struct run_cmdq *cmdq = arg; 2347 struct ieee80211_node *ni = cmdq->arg1; 2348 struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc; 2349 uint8_t wcid = cmdq->wcid; 2350 2351 RUN_LOCK_ASSERT(sc, MA_OWNED); 2352 2353 run_write_region_1(sc, RT2860_WCID_ENTRY(wcid), 2354 ni->ni_macaddr, IEEE80211_ADDR_LEN); 2355 2356 memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid])); 2357 } 2358 2359 static void 2360 run_newassoc(struct ieee80211_node *ni, int isnew) 2361 { 2362 struct run_node *rn = (void *)ni; 2363 struct ieee80211_rateset *rs = &ni->ni_rates; 2364 struct ieee80211vap *vap = ni->ni_vap; 2365 struct ieee80211com *ic = vap->iv_ic; 2366 struct run_softc *sc = ic->ic_ifp->if_softc; 2367 uint8_t rate; 2368 uint8_t ridx; 2369 uint8_t wcid = RUN_AID2WCID(ni->ni_associd); 2370 int i, j; 2371 2372 if (wcid > RT2870_WCID_MAX) { 2373 device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid); 2374 return; 2375 } 2376 2377 /* only interested in true associations */ 2378 if (isnew && ni->ni_associd != 0) { 2379 2380 /* 2381 * This function could is called though timeout function. 2382 * Need to defer. 2383 */ 2384 uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store); 2385 DPRINTF("cmdq_store=%d\n", cnt); 2386 sc->cmdq[cnt].func = run_newassoc_cb; 2387 sc->cmdq[cnt].arg0 = NULL; 2388 sc->cmdq[cnt].arg1 = ni; 2389 sc->cmdq[cnt].wcid = wcid; 2390 ieee80211_runtask(ic, &sc->cmdq_task); 2391 } 2392 2393 DPRINTF("new assoc isnew=%d associd=%x addr=%s\n", 2394 isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr)); 2395 2396 for (i = 0; i < rs->rs_nrates; i++) { 2397 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2398 /* convert 802.11 rate to hardware rate index */ 2399 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 2400 if (rt2860_rates[ridx].rate == rate) 2401 break; 2402 rn->ridx[i] = ridx; 2403 /* determine rate of control response frames */ 2404 for (j = i; j >= 0; j--) { 2405 if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && 2406 rt2860_rates[rn->ridx[i]].phy == 2407 rt2860_rates[rn->ridx[j]].phy) 2408 break; 2409 } 2410 if (j >= 0) { 2411 rn->ctl_ridx[i] = rn->ridx[j]; 2412 } else { 2413 /* no basic rate found, use mandatory one */ 2414 rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; 2415 } 2416 DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n", 2417 rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]); 2418 } 2419 rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; 2420 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 2421 if (rt2860_rates[ridx].rate == rate) 2422 break; 2423 rn->mgt_ridx = ridx; 2424 DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx); 2425 2426 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 2427 } 2428 2429 /* 2430 * Return the Rx chain with the highest RSSI for a given frame. 2431 */ 2432 static __inline uint8_t 2433 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi) 2434 { 2435 uint8_t rxchain = 0; 2436 2437 if (sc->nrxchains > 1) { 2438 if (rxwi->rssi[1] > rxwi->rssi[rxchain]) 2439 rxchain = 1; 2440 if (sc->nrxchains > 2) 2441 if (rxwi->rssi[2] > rxwi->rssi[rxchain]) 2442 rxchain = 2; 2443 } 2444 return (rxchain); 2445 } 2446 2447 static void 2448 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen) 2449 { 2450 struct ifnet *ifp = sc->sc_ifp; 2451 struct ieee80211com *ic = ifp->if_l2com; 2452 struct ieee80211_frame *wh; 2453 struct ieee80211_node *ni; 2454 struct rt2870_rxd *rxd; 2455 struct rt2860_rxwi *rxwi; 2456 uint32_t flags; 2457 uint16_t len, phy; 2458 uint8_t ant, rssi; 2459 int8_t nf; 2460 2461 rxwi = mtod(m, struct rt2860_rxwi *); 2462 len = le16toh(rxwi->len) & 0xfff; 2463 if (__predict_false(len > dmalen)) { 2464 m_freem(m); 2465 ifp->if_ierrors++; 2466 DPRINTF("bad RXWI length %u > %u\n", len, dmalen); 2467 return; 2468 } 2469 /* Rx descriptor is located at the end */ 2470 rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen); 2471 flags = le32toh(rxd->flags); 2472 2473 if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { 2474 m_freem(m); 2475 ifp->if_ierrors++; 2476 DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV"); 2477 return; 2478 } 2479 2480 m->m_data += sizeof(struct rt2860_rxwi); 2481 m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi); 2482 2483 wh = mtod(m, struct ieee80211_frame *); 2484 2485 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2486 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 2487 m->m_flags |= M_WEP; 2488 } 2489 2490 if (flags & RT2860_RX_L2PAD) { 2491 DPRINTFN(8, "received RT2860_RX_L2PAD frame\n"); 2492 len += 2; 2493 } 2494 2495 ni = ieee80211_find_rxnode(ic, 2496 mtod(m, struct ieee80211_frame_min *)); 2497 2498 if (__predict_false(flags & RT2860_RX_MICERR)) { 2499 /* report MIC failures to net80211 for TKIP */ 2500 if (ni != NULL) 2501 ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx); 2502 m_freem(m); 2503 ifp->if_ierrors++; 2504 DPRINTF("MIC error. Someone is lying.\n"); 2505 return; 2506 } 2507 2508 ant = run_maxrssi_chain(sc, rxwi); 2509 rssi = rxwi->rssi[ant]; 2510 nf = run_rssi2dbm(sc, rssi, ant); 2511 2512 m->m_pkthdr.rcvif = ifp; 2513 m->m_pkthdr.len = m->m_len = len; 2514 2515 if (ni != NULL) { 2516 (void)ieee80211_input(ni, m, rssi, nf); 2517 ieee80211_free_node(ni); 2518 } else { 2519 (void)ieee80211_input_all(ic, m, rssi, nf); 2520 } 2521 2522 if (__predict_false(ieee80211_radiotap_active(ic))) { 2523 struct run_rx_radiotap_header *tap = &sc->sc_rxtap; 2524 2525 tap->wr_flags = 0; 2526 tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq); 2527 tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags); 2528 tap->wr_antsignal = rssi; 2529 tap->wr_antenna = ant; 2530 tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant); 2531 tap->wr_rate = 2; /* in case it can't be found below */ 2532 phy = le16toh(rxwi->phy); 2533 switch (phy & RT2860_PHY_MODE) { 2534 case RT2860_PHY_CCK: 2535 switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { 2536 case 0: tap->wr_rate = 2; break; 2537 case 1: tap->wr_rate = 4; break; 2538 case 2: tap->wr_rate = 11; break; 2539 case 3: tap->wr_rate = 22; break; 2540 } 2541 if (phy & RT2860_PHY_SHPRE) 2542 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2543 break; 2544 case RT2860_PHY_OFDM: 2545 switch (phy & RT2860_PHY_MCS) { 2546 case 0: tap->wr_rate = 12; break; 2547 case 1: tap->wr_rate = 18; break; 2548 case 2: tap->wr_rate = 24; break; 2549 case 3: tap->wr_rate = 36; break; 2550 case 4: tap->wr_rate = 48; break; 2551 case 5: tap->wr_rate = 72; break; 2552 case 6: tap->wr_rate = 96; break; 2553 case 7: tap->wr_rate = 108; break; 2554 } 2555 break; 2556 } 2557 } 2558 } 2559 2560 static void 2561 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2562 { 2563 struct run_softc *sc = usbd_xfer_softc(xfer); 2564 struct ifnet *ifp = sc->sc_ifp; 2565 struct mbuf *m = NULL; 2566 struct mbuf *m0; 2567 uint32_t dmalen; 2568 int xferlen; 2569 2570 usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL); 2571 2572 switch (USB_GET_STATE(xfer)) { 2573 case USB_ST_TRANSFERRED: 2574 2575 DPRINTFN(15, "rx done, actlen=%d\n", xferlen); 2576 2577 if (xferlen < sizeof (uint32_t) + 2578 sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) { 2579 DPRINTF("xfer too short %d\n", xferlen); 2580 goto tr_setup; 2581 } 2582 2583 m = sc->rx_m; 2584 sc->rx_m = NULL; 2585 2586 /* FALLTHROUGH */ 2587 case USB_ST_SETUP: 2588 tr_setup: 2589 if (sc->rx_m == NULL) { 2590 sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, 2591 MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */); 2592 } 2593 if (sc->rx_m == NULL) { 2594 DPRINTF("could not allocate mbuf - idle with stall\n"); 2595 ifp->if_ierrors++; 2596 usbd_xfer_set_stall(xfer); 2597 usbd_xfer_set_frames(xfer, 0); 2598 } else { 2599 /* 2600 * Directly loading a mbuf cluster into DMA to 2601 * save some data copying. This works because 2602 * there is only one cluster. 2603 */ 2604 usbd_xfer_set_frame_data(xfer, 0, 2605 mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ); 2606 usbd_xfer_set_frames(xfer, 1); 2607 } 2608 usbd_transfer_submit(xfer); 2609 break; 2610 2611 default: /* Error */ 2612 if (error != USB_ERR_CANCELLED) { 2613 /* try to clear stall first */ 2614 usbd_xfer_set_stall(xfer); 2615 2616 if (error == USB_ERR_TIMEOUT) 2617 device_printf(sc->sc_dev, "device timeout\n"); 2618 2619 ifp->if_ierrors++; 2620 2621 goto tr_setup; 2622 } 2623 if (sc->rx_m != NULL) { 2624 m_freem(sc->rx_m); 2625 sc->rx_m = NULL; 2626 } 2627 break; 2628 } 2629 2630 if (m == NULL) 2631 return; 2632 2633 /* inputting all the frames must be last */ 2634 2635 RUN_UNLOCK(sc); 2636 2637 m->m_pkthdr.len = m->m_len = xferlen; 2638 2639 /* HW can aggregate multiple 802.11 frames in a single USB xfer */ 2640 for(;;) { 2641 dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff; 2642 2643 if ((dmalen == 0) || ((dmalen & 3) != 0)) { 2644 DPRINTF("bad DMA length %u\n", dmalen); 2645 break; 2646 } 2647 if ((dmalen + 8) > xferlen) { 2648 DPRINTF("bad DMA length %u > %d\n", 2649 dmalen + 8, xferlen); 2650 break; 2651 } 2652 2653 /* If it is the last one or a single frame, we won't copy. */ 2654 if ((xferlen -= dmalen + 8) <= 8) { 2655 /* trim 32-bit DMA-len header */ 2656 m->m_data += 4; 2657 m->m_pkthdr.len = m->m_len -= 4; 2658 run_rx_frame(sc, m, dmalen); 2659 break; 2660 } 2661 2662 /* copy aggregated frames to another mbuf */ 2663 m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2664 if (__predict_false(m0 == NULL)) { 2665 DPRINTF("could not allocate mbuf\n"); 2666 ifp->if_ierrors++; 2667 break; 2668 } 2669 m_copydata(m, 4 /* skip 32-bit DMA-len header */, 2670 dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t)); 2671 m0->m_pkthdr.len = m0->m_len = 2672 dmalen + sizeof(struct rt2870_rxd); 2673 run_rx_frame(sc, m0, dmalen); 2674 2675 /* update data ptr */ 2676 m->m_data += dmalen + 8; 2677 m->m_pkthdr.len = m->m_len -= dmalen + 8; 2678 } 2679 2680 RUN_LOCK(sc); 2681 } 2682 2683 static void 2684 run_tx_free(struct run_endpoint_queue *pq, 2685 struct run_tx_data *data, int txerr) 2686 { 2687 if (data->m != NULL) { 2688 if (data->m->m_flags & M_TXCB) 2689 ieee80211_process_callback(data->ni, data->m, 2690 txerr ? ETIMEDOUT : 0); 2691 m_freem(data->m); 2692 data->m = NULL; 2693 2694 if (data->ni == NULL) { 2695 DPRINTF("no node\n"); 2696 } else { 2697 ieee80211_free_node(data->ni); 2698 data->ni = NULL; 2699 } 2700 } 2701 2702 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); 2703 pq->tx_nfree++; 2704 } 2705 2706 static void 2707 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index) 2708 { 2709 struct run_softc *sc = usbd_xfer_softc(xfer); 2710 struct ifnet *ifp = sc->sc_ifp; 2711 struct ieee80211com *ic = ifp->if_l2com; 2712 struct run_tx_data *data; 2713 struct ieee80211vap *vap = NULL; 2714 struct usb_page_cache *pc; 2715 struct run_endpoint_queue *pq = &sc->sc_epq[index]; 2716 struct mbuf *m; 2717 usb_frlength_t size; 2718 unsigned int len; 2719 int actlen; 2720 int sumlen; 2721 2722 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 2723 2724 switch (USB_GET_STATE(xfer)) { 2725 case USB_ST_TRANSFERRED: 2726 DPRINTFN(11, "transfer complete: %d " 2727 "bytes @ index %d\n", actlen, index); 2728 2729 data = usbd_xfer_get_priv(xfer); 2730 2731 run_tx_free(pq, data, 0); 2732 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2733 2734 usbd_xfer_set_priv(xfer, NULL); 2735 2736 ifp->if_opackets++; 2737 2738 /* FALLTHROUGH */ 2739 case USB_ST_SETUP: 2740 tr_setup: 2741 data = STAILQ_FIRST(&pq->tx_qh); 2742 if (data == NULL) 2743 break; 2744 2745 STAILQ_REMOVE_HEAD(&pq->tx_qh, next); 2746 2747 m = data->m; 2748 if (m->m_pkthdr.len > RUN_MAX_TXSZ) { 2749 DPRINTF("data overflow, %u bytes\n", 2750 m->m_pkthdr.len); 2751 2752 ifp->if_oerrors++; 2753 2754 run_tx_free(pq, data, 1); 2755 2756 goto tr_setup; 2757 } 2758 2759 pc = usbd_xfer_get_frame(xfer, 0); 2760 size = sizeof(data->desc); 2761 usbd_copy_in(pc, 0, &data->desc, size); 2762 usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len); 2763 2764 vap = data->ni->ni_vap; 2765 if (ieee80211_radiotap_active_vap(vap)) { 2766 struct run_tx_radiotap_header *tap = &sc->sc_txtap; 2767 struct rt2860_txwi *txwi = 2768 (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd)); 2769 2770 tap->wt_flags = 0; 2771 tap->wt_rate = rt2860_rates[data->ridx].rate; 2772 tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq); 2773 tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags); 2774 tap->wt_hwqueue = index; 2775 if (le16toh(txwi->phy) & RT2860_PHY_SHPRE) 2776 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2777 2778 ieee80211_radiotap_tx(vap, m); 2779 } 2780 2781 /* align end on a 4-bytes boundary */ 2782 len = (size + IEEE80211_CRC_LEN + m->m_pkthdr.len + 3) & ~3; 2783 2784 DPRINTFN(11, "sending frame len=%u xferlen=%u @ index %d\n", 2785 m->m_pkthdr.len, len, index); 2786 2787 usbd_xfer_set_frame_len(xfer, 0, len); 2788 usbd_xfer_set_priv(xfer, data); 2789 2790 usbd_transfer_submit(xfer); 2791 2792 RUN_UNLOCK(sc); 2793 run_start(ifp); 2794 RUN_LOCK(sc); 2795 2796 break; 2797 2798 default: 2799 DPRINTF("USB transfer error, %s\n", 2800 usbd_errstr(error)); 2801 2802 data = usbd_xfer_get_priv(xfer); 2803 2804 ifp->if_oerrors++; 2805 2806 if (data != NULL) { 2807 if(data->ni != NULL) 2808 vap = data->ni->ni_vap; 2809 run_tx_free(pq, data, error); 2810 usbd_xfer_set_priv(xfer, NULL); 2811 } 2812 if (vap == NULL) 2813 vap = TAILQ_FIRST(&ic->ic_vaps); 2814 2815 if (error != USB_ERR_CANCELLED) { 2816 if (error == USB_ERR_TIMEOUT) { 2817 device_printf(sc->sc_dev, "device timeout\n"); 2818 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 2819 DPRINTF("cmdq_store=%d\n", i); 2820 sc->cmdq[i].func = run_usb_timeout_cb; 2821 sc->cmdq[i].arg0 = vap; 2822 ieee80211_runtask(ic, &sc->cmdq_task); 2823 } 2824 2825 /* 2826 * Try to clear stall first, also if other 2827 * errors occur, hence clearing stall 2828 * introduces a 50 ms delay: 2829 */ 2830 usbd_xfer_set_stall(xfer); 2831 goto tr_setup; 2832 } 2833 break; 2834 } 2835 } 2836 2837 static void 2838 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error) 2839 { 2840 run_bulk_tx_callbackN(xfer, error, 0); 2841 } 2842 2843 static void 2844 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error) 2845 { 2846 run_bulk_tx_callbackN(xfer, error, 1); 2847 } 2848 2849 static void 2850 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error) 2851 { 2852 run_bulk_tx_callbackN(xfer, error, 2); 2853 } 2854 2855 static void 2856 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error) 2857 { 2858 run_bulk_tx_callbackN(xfer, error, 3); 2859 } 2860 2861 static void 2862 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error) 2863 { 2864 run_bulk_tx_callbackN(xfer, error, 4); 2865 } 2866 2867 static void 2868 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error) 2869 { 2870 run_bulk_tx_callbackN(xfer, error, 5); 2871 } 2872 2873 static void 2874 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data) 2875 { 2876 struct mbuf *m = data->m; 2877 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2878 struct ieee80211vap *vap = data->ni->ni_vap; 2879 struct ieee80211_frame *wh; 2880 struct rt2870_txd *txd; 2881 struct rt2860_txwi *txwi; 2882 uint16_t xferlen; 2883 uint16_t mcs; 2884 uint8_t ridx = data->ridx; 2885 uint8_t pad; 2886 2887 /* get MCS code from rate index */ 2888 mcs = rt2860_rates[ridx].mcs; 2889 2890 xferlen = sizeof(*txwi) + m->m_pkthdr.len; 2891 2892 /* roundup to 32-bit alignment */ 2893 xferlen = (xferlen + 3) & ~3; 2894 2895 txd = (struct rt2870_txd *)&data->desc; 2896 txd->len = htole16(xferlen); 2897 2898 wh = mtod(m, struct ieee80211_frame *); 2899 2900 /* 2901 * Ether both are true or both are false, the header 2902 * are nicely aligned to 32-bit. So, no L2 padding. 2903 */ 2904 if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh)) 2905 pad = 0; 2906 else 2907 pad = 2; 2908 2909 /* setup TX Wireless Information */ 2910 txwi = (struct rt2860_txwi *)(txd + 1); 2911 txwi->len = htole16(m->m_pkthdr.len - pad); 2912 if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { 2913 txwi->phy = htole16(RT2860_PHY_CCK); 2914 if (ridx != RT2860_RIDX_CCK1 && 2915 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2916 mcs |= RT2860_PHY_SHPRE; 2917 } else 2918 txwi->phy = htole16(RT2860_PHY_OFDM); 2919 txwi->phy |= htole16(mcs); 2920 2921 /* check if RTS/CTS or CTS-to-self protection is required */ 2922 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 2923 (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold || 2924 ((ic->ic_flags & IEEE80211_F_USEPROT) && 2925 rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) 2926 txwi->txop |= RT2860_TX_TXOP_HT; 2927 else 2928 txwi->txop |= RT2860_TX_TXOP_BACKOFF; 2929 2930 if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh)) 2931 txwi->xflags |= RT2860_TX_NSEQ; 2932 } 2933 2934 /* This function must be called locked */ 2935 static int 2936 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2937 { 2938 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2939 struct ieee80211vap *vap = ni->ni_vap; 2940 struct ieee80211_frame *wh; 2941 struct ieee80211_channel *chan; 2942 const struct ieee80211_txparam *tp; 2943 struct run_node *rn = (void *)ni; 2944 struct run_tx_data *data; 2945 struct rt2870_txd *txd; 2946 struct rt2860_txwi *txwi; 2947 uint16_t qos; 2948 uint16_t dur; 2949 uint16_t qid; 2950 uint8_t type; 2951 uint8_t tid; 2952 uint8_t ridx; 2953 uint8_t ctl_ridx; 2954 uint8_t qflags; 2955 uint8_t xflags = 0; 2956 int hasqos; 2957 2958 RUN_LOCK_ASSERT(sc, MA_OWNED); 2959 2960 wh = mtod(m, struct ieee80211_frame *); 2961 2962 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2963 2964 /* 2965 * There are 7 bulk endpoints: 1 for RX 2966 * and 6 for TX (4 EDCAs + HCCA + Prio). 2967 * Update 03-14-2009: some devices like the Planex GW-US300MiniS 2968 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki). 2969 */ 2970 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) { 2971 uint8_t *frm; 2972 2973 if(IEEE80211_HAS_ADDR4(wh)) 2974 frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos; 2975 else 2976 frm =((struct ieee80211_qosframe *)wh)->i_qos; 2977 2978 qos = le16toh(*(const uint16_t *)frm); 2979 tid = qos & IEEE80211_QOS_TID; 2980 qid = TID_TO_WME_AC(tid); 2981 } else { 2982 qos = 0; 2983 tid = 0; 2984 qid = WME_AC_BE; 2985 } 2986 qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA; 2987 2988 DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n", 2989 qos, qid, tid, qflags); 2990 2991 chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan; 2992 tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; 2993 2994 /* pickup a rate index */ 2995 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2996 type != IEEE80211_FC0_TYPE_DATA) { 2997 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2998 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; 2999 ctl_ridx = rt2860_rates[ridx].ctl_ridx; 3000 } else { 3001 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 3002 ridx = rn->fix_ridx; 3003 else 3004 ridx = rn->amrr_ridx; 3005 ctl_ridx = rt2860_rates[ridx].ctl_ridx; 3006 } 3007 3008 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 3009 (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) != 3010 IEEE80211_QOS_ACKPOLICY_NOACK)) { 3011 xflags |= RT2860_TX_ACK; 3012 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 3013 dur = rt2860_rates[ctl_ridx].sp_ack_dur; 3014 else 3015 dur = rt2860_rates[ctl_ridx].lp_ack_dur; 3016 *(uint16_t *)wh->i_dur = htole16(dur); 3017 } 3018 3019 /* reserve slots for mgmt packets, just in case */ 3020 if (sc->sc_epq[qid].tx_nfree < 3) { 3021 DPRINTFN(10, "tx ring %d is full\n", qid); 3022 return (-1); 3023 } 3024 3025 data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh); 3026 STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next); 3027 sc->sc_epq[qid].tx_nfree--; 3028 3029 txd = (struct rt2870_txd *)&data->desc; 3030 txd->flags = qflags; 3031 txwi = (struct rt2860_txwi *)(txd + 1); 3032 txwi->xflags = xflags; 3033 txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 3034 0 : RUN_AID2WCID(ni->ni_associd); 3035 /* clear leftover garbage bits */ 3036 txwi->flags = 0; 3037 txwi->txop = 0; 3038 3039 data->m = m; 3040 data->ni = ni; 3041 data->ridx = ridx; 3042 3043 run_set_tx_desc(sc, data); 3044 3045 /* 3046 * The chip keeps track of 2 kind of Tx stats, 3047 * * TX_STAT_FIFO, for per WCID stats, and 3048 * * TX_STA_CNT0 for all-TX-in-one stats. 3049 * 3050 * To use FIFO stats, we need to store MCS into the driver-private 3051 * PacketID field. So that, we can tell whose stats when we read them. 3052 * We add 1 to the MCS because setting the PacketID field to 0 means 3053 * that we don't want feedback in TX_STAT_FIFO. 3054 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job. 3055 * 3056 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx(). 3057 */ 3058 if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP || 3059 vap->iv_opmode == IEEE80211_M_MBSS) { 3060 uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf; 3061 txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); 3062 3063 /* 3064 * Unlike PCI based devices, we don't get any interrupt from 3065 * USB devices, so we simulate FIFO-is-full interrupt here. 3066 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots 3067 * quickly get fulled. To prevent overflow, increment a counter on 3068 * every FIFO stat request, so we know how many slots are left. 3069 * We do this only in HOSTAP or multiple vap mode since FIFO stats 3070 * are used only in those modes. 3071 * We just drain stats. AMRR gets updated every 1 sec by 3072 * run_ratectl_cb() via callout. 3073 * Call it early. Otherwise overflow. 3074 */ 3075 if (sc->fifo_cnt++ == 10) { 3076 /* 3077 * With multiple vaps or if_bridge, if_start() is called 3078 * with a non-sleepable lock, tcpinp. So, need to defer. 3079 */ 3080 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 3081 DPRINTFN(6, "cmdq_store=%d\n", i); 3082 sc->cmdq[i].func = run_drain_fifo; 3083 sc->cmdq[i].arg0 = sc; 3084 ieee80211_runtask(ic, &sc->cmdq_task); 3085 } 3086 } 3087 3088 STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next); 3089 3090 usbd_transfer_start(sc->sc_xfer[qid]); 3091 3092 DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len + 3093 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), 3094 rt2860_rates[ridx].rate, qid); 3095 3096 return (0); 3097 } 3098 3099 static int 3100 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 3101 { 3102 struct ifnet *ifp = sc->sc_ifp; 3103 struct ieee80211com *ic = ifp->if_l2com; 3104 struct run_node *rn = (void *)ni; 3105 struct run_tx_data *data; 3106 struct ieee80211_frame *wh; 3107 struct rt2870_txd *txd; 3108 struct rt2860_txwi *txwi; 3109 uint16_t dur; 3110 uint8_t ridx = rn->mgt_ridx; 3111 uint8_t type; 3112 uint8_t xflags = 0; 3113 uint8_t wflags = 0; 3114 3115 RUN_LOCK_ASSERT(sc, MA_OWNED); 3116 3117 wh = mtod(m, struct ieee80211_frame *); 3118 3119 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3120 3121 /* tell hardware to add timestamp for probe responses */ 3122 if ((wh->i_fc[0] & 3123 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3124 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 3125 wflags |= RT2860_TX_TS; 3126 else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3127 xflags |= RT2860_TX_ACK; 3128 3129 dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate, 3130 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 3131 *(uint16_t *)wh->i_dur = htole16(dur); 3132 } 3133 3134 if (sc->sc_epq[0].tx_nfree == 0) { 3135 /* let caller free mbuf */ 3136 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3137 return (EIO); 3138 } 3139 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3140 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3141 sc->sc_epq[0].tx_nfree--; 3142 3143 txd = (struct rt2870_txd *)&data->desc; 3144 txd->flags = RT2860_TX_QSEL_EDCA; 3145 txwi = (struct rt2860_txwi *)(txd + 1); 3146 txwi->wcid = 0xff; 3147 txwi->flags = wflags; 3148 txwi->xflags = xflags; 3149 txwi->txop = 0; /* clear leftover garbage bits */ 3150 3151 data->m = m; 3152 data->ni = ni; 3153 data->ridx = ridx; 3154 3155 run_set_tx_desc(sc, data); 3156 3157 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len + 3158 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), 3159 rt2860_rates[ridx].rate); 3160 3161 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3162 3163 usbd_transfer_start(sc->sc_xfer[0]); 3164 3165 return (0); 3166 } 3167 3168 static int 3169 run_sendprot(struct run_softc *sc, 3170 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 3171 { 3172 struct ieee80211com *ic = ni->ni_ic; 3173 struct ieee80211_frame *wh; 3174 struct run_tx_data *data; 3175 struct rt2870_txd *txd; 3176 struct rt2860_txwi *txwi; 3177 struct mbuf *mprot; 3178 int ridx; 3179 int protrate; 3180 int ackrate; 3181 int pktlen; 3182 int isshort; 3183 uint16_t dur; 3184 uint8_t type; 3185 uint8_t wflags = 0; 3186 uint8_t xflags = 0; 3187 3188 RUN_LOCK_ASSERT(sc, MA_OWNED); 3189 3190 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 3191 ("protection %d", prot)); 3192 3193 wh = mtod(m, struct ieee80211_frame *); 3194 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3195 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3196 3197 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 3198 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 3199 3200 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3201 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3202 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3203 wflags = RT2860_TX_FRAG; 3204 3205 /* check that there are free slots before allocating the mbuf */ 3206 if (sc->sc_epq[0].tx_nfree == 0) { 3207 /* let caller free mbuf */ 3208 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3209 return (ENOBUFS); 3210 } 3211 3212 if (prot == IEEE80211_PROT_RTSCTS) { 3213 /* NB: CTS is the same size as an ACK */ 3214 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3215 xflags |= RT2860_TX_ACK; 3216 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3217 } else { 3218 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3219 } 3220 if (mprot == NULL) { 3221 sc->sc_ifp->if_oerrors++; 3222 DPRINTF("could not allocate mbuf\n"); 3223 return (ENOBUFS); 3224 } 3225 3226 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3227 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3228 sc->sc_epq[0].tx_nfree--; 3229 3230 txd = (struct rt2870_txd *)&data->desc; 3231 txd->flags = RT2860_TX_QSEL_EDCA; 3232 txwi = (struct rt2860_txwi *)(txd + 1); 3233 txwi->wcid = 0xff; 3234 txwi->flags = wflags; 3235 txwi->xflags = xflags; 3236 txwi->txop = 0; /* clear leftover garbage bits */ 3237 3238 data->m = mprot; 3239 data->ni = ieee80211_ref_node(ni); 3240 3241 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 3242 if (rt2860_rates[ridx].rate == protrate) 3243 break; 3244 data->ridx = ridx; 3245 3246 run_set_tx_desc(sc, data); 3247 3248 DPRINTFN(1, "sending prot len=%u rate=%u\n", 3249 m->m_pkthdr.len, rate); 3250 3251 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3252 3253 usbd_transfer_start(sc->sc_xfer[0]); 3254 3255 return (0); 3256 } 3257 3258 static int 3259 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 3260 const struct ieee80211_bpf_params *params) 3261 { 3262 struct ieee80211com *ic = ni->ni_ic; 3263 struct ieee80211_frame *wh; 3264 struct run_tx_data *data; 3265 struct rt2870_txd *txd; 3266 struct rt2860_txwi *txwi; 3267 uint8_t type; 3268 uint8_t ridx; 3269 uint8_t rate; 3270 uint8_t opflags = 0; 3271 uint8_t xflags = 0; 3272 int error; 3273 3274 RUN_LOCK_ASSERT(sc, MA_OWNED); 3275 3276 KASSERT(params != NULL, ("no raw xmit params")); 3277 3278 wh = mtod(m, struct ieee80211_frame *); 3279 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3280 3281 rate = params->ibp_rate0; 3282 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3283 /* let caller free mbuf */ 3284 return (EINVAL); 3285 } 3286 3287 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 3288 xflags |= RT2860_TX_ACK; 3289 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 3290 error = run_sendprot(sc, m, ni, 3291 params->ibp_flags & IEEE80211_BPF_RTS ? 3292 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 3293 rate); 3294 if (error) { 3295 /* let caller free mbuf */ 3296 return error; 3297 } 3298 opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS; 3299 } 3300 3301 if (sc->sc_epq[0].tx_nfree == 0) { 3302 /* let caller free mbuf */ 3303 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3304 DPRINTF("sending raw frame, but tx ring is full\n"); 3305 return (EIO); 3306 } 3307 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3308 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3309 sc->sc_epq[0].tx_nfree--; 3310 3311 txd = (struct rt2870_txd *)&data->desc; 3312 txd->flags = RT2860_TX_QSEL_EDCA; 3313 txwi = (struct rt2860_txwi *)(txd + 1); 3314 txwi->wcid = 0xff; 3315 txwi->xflags = xflags; 3316 txwi->txop = opflags; 3317 txwi->flags = 0; /* clear leftover garbage bits */ 3318 3319 data->m = m; 3320 data->ni = ni; 3321 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 3322 if (rt2860_rates[ridx].rate == rate) 3323 break; 3324 data->ridx = ridx; 3325 3326 run_set_tx_desc(sc, data); 3327 3328 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 3329 m->m_pkthdr.len, rate); 3330 3331 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3332 3333 usbd_transfer_start(sc->sc_xfer[0]); 3334 3335 return (0); 3336 } 3337 3338 static int 3339 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3340 const struct ieee80211_bpf_params *params) 3341 { 3342 struct ifnet *ifp = ni->ni_ic->ic_ifp; 3343 struct run_softc *sc = ifp->if_softc; 3344 int error = 0; 3345 3346 RUN_LOCK(sc); 3347 3348 /* prevent management frames from being sent if we're not ready */ 3349 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3350 error = ENETDOWN; 3351 goto done; 3352 } 3353 3354 if (params == NULL) { 3355 /* tx mgt packet */ 3356 if ((error = run_tx_mgt(sc, m, ni)) != 0) { 3357 ifp->if_oerrors++; 3358 DPRINTF("mgt tx failed\n"); 3359 goto done; 3360 } 3361 } else { 3362 /* tx raw packet with param */ 3363 if ((error = run_tx_param(sc, m, ni, params)) != 0) { 3364 ifp->if_oerrors++; 3365 DPRINTF("tx with param failed\n"); 3366 goto done; 3367 } 3368 } 3369 3370 ifp->if_opackets++; 3371 3372 done: 3373 RUN_UNLOCK(sc); 3374 3375 if (error != 0) { 3376 if(m != NULL) 3377 m_freem(m); 3378 ieee80211_free_node(ni); 3379 } 3380 3381 return (error); 3382 } 3383 3384 static void 3385 run_start(struct ifnet *ifp) 3386 { 3387 struct run_softc *sc = ifp->if_softc; 3388 struct ieee80211_node *ni; 3389 struct mbuf *m; 3390 3391 RUN_LOCK(sc); 3392 3393 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3394 RUN_UNLOCK(sc); 3395 return; 3396 } 3397 3398 for (;;) { 3399 /* send data frames */ 3400 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 3401 if (m == NULL) 3402 break; 3403 3404 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3405 if (run_tx(sc, m, ni) != 0) { 3406 IFQ_DRV_PREPEND(&ifp->if_snd, m); 3407 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3408 break; 3409 } 3410 } 3411 3412 RUN_UNLOCK(sc); 3413 } 3414 3415 static int 3416 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 3417 { 3418 struct run_softc *sc = ifp->if_softc; 3419 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3420 struct ifreq *ifr = (struct ifreq *) data; 3421 int startall = 0; 3422 int error = 0; 3423 3424 switch (cmd) { 3425 case SIOCSIFFLAGS: 3426 RUN_LOCK(sc); 3427 if (ifp->if_flags & IFF_UP) { 3428 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){ 3429 startall = 1; 3430 run_init_locked(sc); 3431 } else 3432 run_update_promisc_locked(ifp); 3433 } else { 3434 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3435 (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) { 3436 run_stop(sc); 3437 } 3438 } 3439 RUN_UNLOCK(sc); 3440 if (startall) 3441 ieee80211_start_all(ic); 3442 break; 3443 case SIOCGIFMEDIA: 3444 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 3445 break; 3446 case SIOCGIFADDR: 3447 error = ether_ioctl(ifp, cmd, data); 3448 break; 3449 default: 3450 error = EINVAL; 3451 break; 3452 } 3453 3454 return (error); 3455 } 3456 3457 static void 3458 run_set_agc(struct run_softc *sc, uint8_t agc) 3459 { 3460 uint8_t bbp; 3461 3462 if (sc->mac_ver == 0x3572) { 3463 run_bbp_read(sc, 27, &bbp); 3464 bbp &= ~(0x3 << 5); 3465 run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */ 3466 run_bbp_write(sc, 66, agc); 3467 run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */ 3468 run_bbp_write(sc, 66, agc); 3469 } else 3470 run_bbp_write(sc, 66, agc); 3471 } 3472 3473 static void 3474 run_select_chan_group(struct run_softc *sc, int group) 3475 { 3476 uint32_t tmp; 3477 uint8_t agc; 3478 3479 run_bbp_write(sc, 62, 0x37 - sc->lna[group]); 3480 run_bbp_write(sc, 63, 0x37 - sc->lna[group]); 3481 run_bbp_write(sc, 64, 0x37 - sc->lna[group]); 3482 run_bbp_write(sc, 86, 0x00); 3483 3484 if (group == 0) { 3485 if (sc->ext_2ghz_lna) { 3486 run_bbp_write(sc, 82, 0x62); 3487 run_bbp_write(sc, 75, 0x46); 3488 } else { 3489 run_bbp_write(sc, 82, 0x84); 3490 run_bbp_write(sc, 75, 0x50); 3491 } 3492 } else { 3493 if (sc->mac_ver == 0x3572) 3494 run_bbp_write(sc, 82, 0x94); 3495 else 3496 run_bbp_write(sc, 82, 0xf2); 3497 if (sc->ext_5ghz_lna) 3498 run_bbp_write(sc, 75, 0x46); 3499 else 3500 run_bbp_write(sc, 75, 0x50); 3501 } 3502 3503 run_read(sc, RT2860_TX_BAND_CFG, &tmp); 3504 tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); 3505 tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; 3506 run_write(sc, RT2860_TX_BAND_CFG, tmp); 3507 3508 /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ 3509 tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN; 3510 if (sc->nrxchains > 1) 3511 tmp |= RT2860_LNA_PE1_EN; 3512 if (group == 0) { /* 2GHz */ 3513 tmp |= RT2860_PA_PE_G0_EN; 3514 if (sc->ntxchains > 1) 3515 tmp |= RT2860_PA_PE_G1_EN; 3516 } else { /* 5GHz */ 3517 tmp |= RT2860_PA_PE_A0_EN; 3518 if (sc->ntxchains > 1) 3519 tmp |= RT2860_PA_PE_A1_EN; 3520 } 3521 if (sc->mac_ver == 0x3572) { 3522 run_rt3070_rf_write(sc, 8, 0x00); 3523 run_write(sc, RT2860_TX_PIN_CFG, tmp); 3524 run_rt3070_rf_write(sc, 8, 0x80); 3525 } else 3526 run_write(sc, RT2860_TX_PIN_CFG, tmp); 3527 3528 /* set initial AGC value */ 3529 if (group == 0) { /* 2GHz band */ 3530 if (sc->mac_ver >= 0x3070) 3531 agc = 0x1c + sc->lna[0] * 2; 3532 else 3533 agc = 0x2e + sc->lna[0]; 3534 } else { /* 5GHz band */ 3535 if (sc->mac_ver == 0x3572) 3536 agc = 0x22 + (sc->lna[group] * 5) / 3; 3537 else 3538 agc = 0x32 + (sc->lna[group] * 5) / 3; 3539 } 3540 run_set_agc(sc, agc); 3541 } 3542 3543 static void 3544 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan) 3545 { 3546 const struct rfprog *rfprog = rt2860_rf2850; 3547 uint32_t r2, r3, r4; 3548 int8_t txpow1, txpow2; 3549 int i; 3550 3551 /* find the settings for this channel (we know it exists) */ 3552 for (i = 0; rfprog[i].chan != chan; i++); 3553 3554 r2 = rfprog[i].r2; 3555 if (sc->ntxchains == 1) 3556 r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ 3557 if (sc->nrxchains == 1) 3558 r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3559 else if (sc->nrxchains == 2) 3560 r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ 3561 3562 /* use Tx power values from EEPROM */ 3563 txpow1 = sc->txpow1[i]; 3564 txpow2 = sc->txpow2[i]; 3565 if (chan > 14) { 3566 if (txpow1 >= 0) 3567 txpow1 = txpow1 << 1 | 1; 3568 else 3569 txpow1 = (7 + txpow1) << 1; 3570 if (txpow2 >= 0) 3571 txpow2 = txpow2 << 1 | 1; 3572 else 3573 txpow2 = (7 + txpow2) << 1; 3574 } 3575 r3 = rfprog[i].r3 | txpow1 << 7; 3576 r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; 3577 3578 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3579 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3580 run_rt2870_rf_write(sc, RT2860_RF3, r3); 3581 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3582 3583 run_delay(sc, 10); 3584 3585 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3586 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3587 run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1); 3588 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3589 3590 run_delay(sc, 10); 3591 3592 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3593 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3594 run_rt2870_rf_write(sc, RT2860_RF3, r3); 3595 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3596 } 3597 3598 static void 3599 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan) 3600 { 3601 int8_t txpow1, txpow2; 3602 uint8_t rf; 3603 int i; 3604 3605 /* RT3070 is 2GHz only */ 3606 KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n")); 3607 3608 /* find the settings for this channel (we know it exists) */ 3609 for (i = 0; rt2860_rf2850[i].chan != chan; i++); 3610 3611 /* use Tx power values from EEPROM */ 3612 txpow1 = sc->txpow1[i]; 3613 txpow2 = sc->txpow2[i]; 3614 3615 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); 3616 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k); 3617 run_rt3070_rf_read(sc, 6, &rf); 3618 rf = (rf & ~0x03) | rt3070_freqs[i].r; 3619 run_rt3070_rf_write(sc, 6, rf); 3620 3621 /* set Tx0 power */ 3622 run_rt3070_rf_read(sc, 12, &rf); 3623 rf = (rf & ~0x1f) | txpow1; 3624 run_rt3070_rf_write(sc, 12, rf); 3625 3626 /* set Tx1 power */ 3627 run_rt3070_rf_read(sc, 13, &rf); 3628 rf = (rf & ~0x1f) | txpow2; 3629 run_rt3070_rf_write(sc, 13, rf); 3630 3631 run_rt3070_rf_read(sc, 1, &rf); 3632 rf &= ~0xfc; 3633 if (sc->ntxchains == 1) 3634 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ 3635 else if (sc->ntxchains == 2) 3636 rf |= 1 << 7; /* 2T: disable Tx chain 3 */ 3637 if (sc->nrxchains == 1) 3638 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3639 else if (sc->nrxchains == 2) 3640 rf |= 1 << 6; /* 2R: disable Rx chain 3 */ 3641 run_rt3070_rf_write(sc, 1, rf); 3642 3643 /* set RF offset */ 3644 run_rt3070_rf_read(sc, 23, &rf); 3645 rf = (rf & ~0x7f) | sc->freq; 3646 run_rt3070_rf_write(sc, 23, rf); 3647 3648 /* program RF filter */ 3649 run_rt3070_rf_read(sc, 24, &rf); /* Tx */ 3650 rf = (rf & ~0x3f) | sc->rf24_20mhz; 3651 run_rt3070_rf_write(sc, 24, rf); 3652 run_rt3070_rf_read(sc, 31, &rf); /* Rx */ 3653 rf = (rf & ~0x3f) | sc->rf24_20mhz; 3654 run_rt3070_rf_write(sc, 31, rf); 3655 3656 /* enable RF tuning */ 3657 run_rt3070_rf_read(sc, 7, &rf); 3658 run_rt3070_rf_write(sc, 7, rf | 0x01); 3659 } 3660 3661 static void 3662 run_rt3572_set_chan(struct run_softc *sc, u_int chan) 3663 { 3664 int8_t txpow1, txpow2; 3665 uint32_t tmp; 3666 uint8_t rf; 3667 int i; 3668 3669 /* find the settings for this channel (we know it exists) */ 3670 for (i = 0; rt2860_rf2850[i].chan != chan; i++); 3671 3672 /* use Tx power values from EEPROM */ 3673 txpow1 = sc->txpow1[i]; 3674 txpow2 = sc->txpow2[i]; 3675 3676 if (chan <= 14) { 3677 run_bbp_write(sc, 25, sc->bbp25); 3678 run_bbp_write(sc, 26, sc->bbp26); 3679 } else { 3680 /* enable IQ phase correction */ 3681 run_bbp_write(sc, 25, 0x09); 3682 run_bbp_write(sc, 26, 0xff); 3683 } 3684 3685 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); 3686 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k); 3687 run_rt3070_rf_read(sc, 6, &rf); 3688 rf = (rf & ~0x0f) | rt3070_freqs[i].r; 3689 rf |= (chan <= 14) ? 0x08 : 0x04; 3690 run_rt3070_rf_write(sc, 6, rf); 3691 3692 /* set PLL mode */ 3693 run_rt3070_rf_read(sc, 5, &rf); 3694 rf &= ~(0x08 | 0x04); 3695 rf |= (chan <= 14) ? 0x04 : 0x08; 3696 run_rt3070_rf_write(sc, 5, rf); 3697 3698 /* set Tx power for chain 0 */ 3699 if (chan <= 14) 3700 rf = 0x60 | txpow1; 3701 else 3702 rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3); 3703 run_rt3070_rf_write(sc, 12, rf); 3704 3705 /* set Tx power for chain 1 */ 3706 if (chan <= 14) 3707 rf = 0x60 | txpow2; 3708 else 3709 rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3); 3710 run_rt3070_rf_write(sc, 13, rf); 3711 3712 /* set Tx/Rx streams */ 3713 run_rt3070_rf_read(sc, 1, &rf); 3714 rf &= ~0xfc; 3715 if (sc->ntxchains == 1) 3716 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ 3717 else if (sc->ntxchains == 2) 3718 rf |= 1 << 7; /* 2T: disable Tx chain 3 */ 3719 if (sc->nrxchains == 1) 3720 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3721 else if (sc->nrxchains == 2) 3722 rf |= 1 << 6; /* 2R: disable Rx chain 3 */ 3723 run_rt3070_rf_write(sc, 1, rf); 3724 3725 /* set RF offset */ 3726 run_rt3070_rf_read(sc, 23, &rf); 3727 rf = (rf & ~0x7f) | sc->freq; 3728 run_rt3070_rf_write(sc, 23, rf); 3729 3730 /* program RF filter */ 3731 rf = sc->rf24_20mhz; 3732 run_rt3070_rf_write(sc, 24, rf); /* Tx */ 3733 run_rt3070_rf_write(sc, 31, rf); /* Rx */ 3734 3735 /* enable RF tuning */ 3736 run_rt3070_rf_read(sc, 7, &rf); 3737 rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14); 3738 run_rt3070_rf_write(sc, 7, rf); 3739 3740 /* TSSI */ 3741 rf = (chan <= 14) ? 0xc3 : 0xc0; 3742 run_rt3070_rf_write(sc, 9, rf); 3743 3744 /* set loop filter 1 */ 3745 run_rt3070_rf_write(sc, 10, 0xf1); 3746 /* set loop filter 2 */ 3747 run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00); 3748 3749 /* set tx_mx2_ic */ 3750 run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43); 3751 /* set tx_mx1_ic */ 3752 if (chan <= 14) 3753 rf = 0x48 | sc->txmixgain_2ghz; 3754 else 3755 rf = 0x78 | sc->txmixgain_5ghz; 3756 run_rt3070_rf_write(sc, 16, rf); 3757 3758 /* set tx_lo1 */ 3759 run_rt3070_rf_write(sc, 17, 0x23); 3760 /* set tx_lo2 */ 3761 if (chan <= 14) 3762 rf = 0x93; 3763 else if (chan <= 64) 3764 rf = 0xb7; 3765 else if (chan <= 128) 3766 rf = 0x74; 3767 else 3768 rf = 0x72; 3769 run_rt3070_rf_write(sc, 19, rf); 3770 3771 /* set rx_lo1 */ 3772 if (chan <= 14) 3773 rf = 0xb3; 3774 else if (chan <= 64) 3775 rf = 0xf6; 3776 else if (chan <= 128) 3777 rf = 0xf4; 3778 else 3779 rf = 0xf3; 3780 run_rt3070_rf_write(sc, 20, rf); 3781 3782 /* set pfd_delay */ 3783 if (chan <= 14) 3784 rf = 0x15; 3785 else if (chan <= 64) 3786 rf = 0x3d; 3787 else 3788 rf = 0x01; 3789 run_rt3070_rf_write(sc, 25, rf); 3790 3791 /* set rx_lo2 */ 3792 run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87); 3793 /* set ldo_rf_vc */ 3794 run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01); 3795 /* set drv_cc */ 3796 run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f); 3797 3798 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3799 tmp &= ~0x8080; 3800 if (chan <= 14) 3801 tmp |= 0x80; 3802 run_write(sc, RT2860_GPIO_CTRL, tmp); 3803 3804 /* enable RF tuning */ 3805 run_rt3070_rf_read(sc, 7, &rf); 3806 run_rt3070_rf_write(sc, 7, rf | 0x01); 3807 3808 run_delay(sc, 2); 3809 } 3810 3811 static void 3812 run_set_rx_antenna(struct run_softc *sc, int aux) 3813 { 3814 uint32_t tmp; 3815 3816 if (aux) { 3817 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0); 3818 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3819 run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); 3820 } else { 3821 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1); 3822 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3823 run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); 3824 } 3825 } 3826 3827 static int 3828 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c) 3829 { 3830 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3831 uint32_t chan, group; 3832 3833 chan = ieee80211_chan2ieee(ic, c); 3834 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 3835 return (EINVAL); 3836 3837 if (sc->mac_ver == 0x3572) 3838 run_rt3572_set_chan(sc, chan); 3839 else if (sc->mac_ver >= 0x3070) 3840 run_rt3070_set_chan(sc, chan); 3841 else 3842 run_rt2870_set_chan(sc, chan); 3843 3844 /* determine channel group */ 3845 if (chan <= 14) 3846 group = 0; 3847 else if (chan <= 64) 3848 group = 1; 3849 else if (chan <= 128) 3850 group = 2; 3851 else 3852 group = 3; 3853 3854 /* XXX necessary only when group has changed! */ 3855 run_select_chan_group(sc, group); 3856 3857 run_delay(sc, 10); 3858 3859 return (0); 3860 } 3861 3862 static void 3863 run_set_channel(struct ieee80211com *ic) 3864 { 3865 struct run_softc *sc = ic->ic_ifp->if_softc; 3866 3867 RUN_LOCK(sc); 3868 run_set_chan(sc, ic->ic_curchan); 3869 RUN_UNLOCK(sc); 3870 3871 return; 3872 } 3873 3874 static void 3875 run_scan_start(struct ieee80211com *ic) 3876 { 3877 struct run_softc *sc = ic->ic_ifp->if_softc; 3878 uint32_t tmp; 3879 3880 RUN_LOCK(sc); 3881 3882 /* abort TSF synchronization */ 3883 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 3884 run_write(sc, RT2860_BCN_TIME_CFG, 3885 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 3886 RT2860_TBTT_TIMER_EN)); 3887 run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr); 3888 3889 RUN_UNLOCK(sc); 3890 3891 return; 3892 } 3893 3894 static void 3895 run_scan_end(struct ieee80211com *ic) 3896 { 3897 struct run_softc *sc = ic->ic_ifp->if_softc; 3898 3899 RUN_LOCK(sc); 3900 3901 run_enable_tsf_sync(sc); 3902 /* XXX keep local copy */ 3903 run_set_bssid(sc, sc->sc_bssid); 3904 3905 RUN_UNLOCK(sc); 3906 3907 return; 3908 } 3909 3910 /* 3911 * Could be called from ieee80211_node_timeout() 3912 * (non-sleepable thread) 3913 */ 3914 static void 3915 run_update_beacon(struct ieee80211vap *vap, int item) 3916 { 3917 struct ieee80211com *ic = vap->iv_ic; 3918 struct run_softc *sc = ic->ic_ifp->if_softc; 3919 struct run_vap *rvp = RUN_VAP(vap); 3920 int mcast = 0; 3921 uint32_t i; 3922 3923 KASSERT(vap != NULL, ("no beacon")); 3924 3925 switch (item) { 3926 case IEEE80211_BEACON_ERP: 3927 run_updateslot(ic->ic_ifp); 3928 break; 3929 case IEEE80211_BEACON_HTINFO: 3930 run_updateprot(ic); 3931 break; 3932 case IEEE80211_BEACON_TIM: 3933 mcast = 1; /*TODO*/ 3934 break; 3935 default: 3936 break; 3937 } 3938 3939 setbit(rvp->bo.bo_flags, item); 3940 ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast); 3941 3942 i = RUN_CMDQ_GET(&sc->cmdq_store); 3943 DPRINTF("cmdq_store=%d\n", i); 3944 sc->cmdq[i].func = run_update_beacon_cb; 3945 sc->cmdq[i].arg0 = vap; 3946 ieee80211_runtask(ic, &sc->cmdq_task); 3947 3948 return; 3949 } 3950 3951 static void 3952 run_update_beacon_cb(void *arg) 3953 { 3954 struct ieee80211vap *vap = arg; 3955 struct run_vap *rvp = RUN_VAP(vap); 3956 struct ieee80211com *ic = vap->iv_ic; 3957 struct run_softc *sc = ic->ic_ifp->if_softc; 3958 struct rt2860_txwi txwi; 3959 struct mbuf *m; 3960 uint8_t ridx; 3961 3962 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 3963 return; 3964 3965 /* 3966 * No need to call ieee80211_beacon_update(), run_update_beacon() 3967 * is taking care of apropriate calls. 3968 */ 3969 if (rvp->beacon_mbuf == NULL) { 3970 rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss, 3971 &rvp->bo); 3972 if (rvp->beacon_mbuf == NULL) 3973 return; 3974 } 3975 m = rvp->beacon_mbuf; 3976 3977 memset(&txwi, 0, sizeof txwi); 3978 txwi.wcid = 0xff; 3979 txwi.len = htole16(m->m_pkthdr.len); 3980 /* send beacons at the lowest available rate */ 3981 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3982 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; 3983 txwi.phy = htole16(rt2860_rates[ridx].mcs); 3984 if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) 3985 txwi.phy |= htole16(RT2860_PHY_OFDM); 3986 txwi.txop = RT2860_TX_TXOP_HT; 3987 txwi.flags = RT2860_TX_TS; 3988 txwi.xflags = RT2860_TX_NSEQ; 3989 3990 run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id), 3991 (uint8_t *)&txwi, sizeof txwi); 3992 run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi, 3993 mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1); /* roundup len */ 3994 3995 return; 3996 } 3997 3998 static void 3999 run_updateprot(struct ieee80211com *ic) 4000 { 4001 struct run_softc *sc = ic->ic_ifp->if_softc; 4002 uint32_t i; 4003 4004 i = RUN_CMDQ_GET(&sc->cmdq_store); 4005 DPRINTF("cmdq_store=%d\n", i); 4006 sc->cmdq[i].func = run_updateprot_cb; 4007 sc->cmdq[i].arg0 = ic; 4008 ieee80211_runtask(ic, &sc->cmdq_task); 4009 } 4010 4011 static void 4012 run_updateprot_cb(void *arg) 4013 { 4014 struct ieee80211com *ic = arg; 4015 struct run_softc *sc = ic->ic_ifp->if_softc; 4016 uint32_t tmp; 4017 4018 tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; 4019 /* setup protection frame rate (MCS code) */ 4020 tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ? 4021 rt2860_rates[RT2860_RIDX_OFDM6].mcs : 4022 rt2860_rates[RT2860_RIDX_CCK11].mcs; 4023 4024 /* CCK frames don't require protection */ 4025 run_write(sc, RT2860_CCK_PROT_CFG, tmp); 4026 if (ic->ic_flags & IEEE80211_F_USEPROT) { 4027 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4028 tmp |= RT2860_PROT_CTRL_RTS_CTS; 4029 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4030 tmp |= RT2860_PROT_CTRL_CTS; 4031 } 4032 run_write(sc, RT2860_OFDM_PROT_CFG, tmp); 4033 } 4034 4035 static void 4036 run_usb_timeout_cb(void *arg) 4037 { 4038 struct ieee80211vap *vap = arg; 4039 struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4040 4041 RUN_LOCK_ASSERT(sc, MA_OWNED); 4042 4043 if(vap->iv_state == IEEE80211_S_RUN && 4044 vap->iv_opmode != IEEE80211_M_STA) 4045 run_reset_livelock(sc); 4046 else if (vap->iv_state == IEEE80211_S_SCAN) { 4047 DPRINTF("timeout caused by scan\n"); 4048 /* cancel bgscan */ 4049 ieee80211_cancel_scan(vap); 4050 } else 4051 DPRINTF("timeout by unknown cause\n"); 4052 } 4053 4054 static void 4055 run_reset_livelock(struct run_softc *sc) 4056 { 4057 uint32_t tmp; 4058 4059 RUN_LOCK_ASSERT(sc, MA_OWNED); 4060 4061 /* 4062 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC 4063 * can run into a livelock and start sending CTS-to-self frames like 4064 * crazy if protection is enabled. Reset MAC/BBP for a while 4065 */ 4066 run_read(sc, RT2860_DEBUG, &tmp); 4067 DPRINTFN(3, "debug reg %08x\n", tmp); 4068 if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) { 4069 DPRINTF("CTS-to-self livelock detected\n"); 4070 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); 4071 run_delay(sc, 1); 4072 run_write(sc, RT2860_MAC_SYS_CTRL, 4073 RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4074 } 4075 } 4076 4077 static void 4078 run_update_promisc_locked(struct ifnet *ifp) 4079 { 4080 struct run_softc *sc = ifp->if_softc; 4081 uint32_t tmp; 4082 4083 run_read(sc, RT2860_RX_FILTR_CFG, &tmp); 4084 4085 tmp |= RT2860_DROP_UC_NOME; 4086 if (ifp->if_flags & IFF_PROMISC) 4087 tmp &= ~RT2860_DROP_UC_NOME; 4088 4089 run_write(sc, RT2860_RX_FILTR_CFG, tmp); 4090 4091 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 4092 "entering" : "leaving"); 4093 } 4094 4095 static void 4096 run_update_promisc(struct ifnet *ifp) 4097 { 4098 struct run_softc *sc = ifp->if_softc; 4099 4100 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 4101 return; 4102 4103 RUN_LOCK(sc); 4104 run_update_promisc_locked(ifp); 4105 RUN_UNLOCK(sc); 4106 } 4107 4108 static void 4109 run_enable_tsf_sync(struct run_softc *sc) 4110 { 4111 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4112 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4113 uint32_t tmp; 4114 4115 DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode); 4116 4117 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 4118 tmp &= ~0x1fffff; 4119 tmp |= vap->iv_bss->ni_intval * 16; 4120 tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; 4121 4122 if (ic->ic_opmode == IEEE80211_M_STA) { 4123 /* 4124 * Local TSF is always updated with remote TSF on beacon 4125 * reception. 4126 */ 4127 tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; 4128 } else if (ic->ic_opmode == IEEE80211_M_IBSS) { 4129 tmp |= RT2860_BCN_TX_EN; 4130 /* 4131 * Local TSF is updated with remote TSF on beacon reception 4132 * only if the remote TSF is greater than local TSF. 4133 */ 4134 tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; 4135 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 4136 ic->ic_opmode == IEEE80211_M_MBSS) { 4137 tmp |= RT2860_BCN_TX_EN; 4138 /* SYNC with nobody */ 4139 tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; 4140 } else { 4141 DPRINTF("Enabling TSF failed. undefined opmode\n"); 4142 return; 4143 } 4144 4145 run_write(sc, RT2860_BCN_TIME_CFG, tmp); 4146 } 4147 4148 static void 4149 run_enable_mrr(struct run_softc *sc) 4150 { 4151 #define CCK(mcs) (mcs) 4152 #define OFDM(mcs) (1 << 3 | (mcs)) 4153 run_write(sc, RT2860_LG_FBK_CFG0, 4154 OFDM(6) << 28 | /* 54->48 */ 4155 OFDM(5) << 24 | /* 48->36 */ 4156 OFDM(4) << 20 | /* 36->24 */ 4157 OFDM(3) << 16 | /* 24->18 */ 4158 OFDM(2) << 12 | /* 18->12 */ 4159 OFDM(1) << 8 | /* 12-> 9 */ 4160 OFDM(0) << 4 | /* 9-> 6 */ 4161 OFDM(0)); /* 6-> 6 */ 4162 4163 run_write(sc, RT2860_LG_FBK_CFG1, 4164 CCK(2) << 12 | /* 11->5.5 */ 4165 CCK(1) << 8 | /* 5.5-> 2 */ 4166 CCK(0) << 4 | /* 2-> 1 */ 4167 CCK(0)); /* 1-> 1 */ 4168 #undef OFDM 4169 #undef CCK 4170 } 4171 4172 static void 4173 run_set_txpreamble(struct run_softc *sc) 4174 { 4175 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4176 uint32_t tmp; 4177 4178 run_read(sc, RT2860_AUTO_RSP_CFG, &tmp); 4179 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4180 tmp |= RT2860_CCK_SHORT_EN; 4181 else 4182 tmp &= ~RT2860_CCK_SHORT_EN; 4183 run_write(sc, RT2860_AUTO_RSP_CFG, tmp); 4184 } 4185 4186 static void 4187 run_set_basicrates(struct run_softc *sc) 4188 { 4189 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4190 4191 /* set basic rates mask */ 4192 if (ic->ic_curmode == IEEE80211_MODE_11B) 4193 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003); 4194 else if (ic->ic_curmode == IEEE80211_MODE_11A) 4195 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150); 4196 else /* 11g */ 4197 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); 4198 } 4199 4200 static void 4201 run_set_leds(struct run_softc *sc, uint16_t which) 4202 { 4203 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, 4204 which | (sc->leds & 0x7f)); 4205 } 4206 4207 static void 4208 run_set_bssid(struct run_softc *sc, const uint8_t *bssid) 4209 { 4210 run_write(sc, RT2860_MAC_BSSID_DW0, 4211 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 4212 run_write(sc, RT2860_MAC_BSSID_DW1, 4213 bssid[4] | bssid[5] << 8); 4214 } 4215 4216 static void 4217 run_set_macaddr(struct run_softc *sc, const uint8_t *addr) 4218 { 4219 run_write(sc, RT2860_MAC_ADDR_DW0, 4220 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 4221 run_write(sc, RT2860_MAC_ADDR_DW1, 4222 addr[4] | addr[5] << 8 | 0xff << 16); 4223 } 4224 4225 static void 4226 run_updateslot(struct ifnet *ifp) 4227 { 4228 struct run_softc *sc = ifp->if_softc; 4229 struct ieee80211com *ic = ifp->if_l2com; 4230 uint32_t i; 4231 4232 i = RUN_CMDQ_GET(&sc->cmdq_store); 4233 DPRINTF("cmdq_store=%d\n", i); 4234 sc->cmdq[i].func = run_updateslot_cb; 4235 sc->cmdq[i].arg0 = ifp; 4236 ieee80211_runtask(ic, &sc->cmdq_task); 4237 4238 return; 4239 } 4240 4241 /* ARGSUSED */ 4242 static void 4243 run_updateslot_cb(void *arg) 4244 { 4245 struct ifnet *ifp = arg; 4246 struct run_softc *sc = ifp->if_softc; 4247 struct ieee80211com *ic = ifp->if_l2com; 4248 uint32_t tmp; 4249 4250 run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp); 4251 tmp &= ~0xff; 4252 tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 4253 run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp); 4254 } 4255 4256 static void 4257 run_update_mcast(struct ifnet *ifp) 4258 { 4259 /* h/w filter supports getting everything or nothing */ 4260 ifp->if_flags |= IFF_ALLMULTI; 4261 } 4262 4263 static int8_t 4264 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain) 4265 { 4266 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4267 struct ieee80211_channel *c = ic->ic_curchan; 4268 int delta; 4269 4270 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4271 uint32_t chan = ieee80211_chan2ieee(ic, c); 4272 delta = sc->rssi_5ghz[rxchain]; 4273 4274 /* determine channel group */ 4275 if (chan <= 64) 4276 delta -= sc->lna[1]; 4277 else if (chan <= 128) 4278 delta -= sc->lna[2]; 4279 else 4280 delta -= sc->lna[3]; 4281 } else 4282 delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; 4283 4284 return (-12 - delta - rssi); 4285 } 4286 4287 static int 4288 run_bbp_init(struct run_softc *sc) 4289 { 4290 int i, error, ntries; 4291 uint8_t bbp0; 4292 4293 /* wait for BBP to wake up */ 4294 for (ntries = 0; ntries < 20; ntries++) { 4295 if ((error = run_bbp_read(sc, 0, &bbp0)) != 0) 4296 return error; 4297 if (bbp0 != 0 && bbp0 != 0xff) 4298 break; 4299 } 4300 if (ntries == 20) 4301 return (ETIMEDOUT); 4302 4303 /* initialize BBP registers to default values */ 4304 for (i = 0; i < nitems(rt2860_def_bbp); i++) { 4305 run_bbp_write(sc, rt2860_def_bbp[i].reg, 4306 rt2860_def_bbp[i].val); 4307 } 4308 4309 /* fix BBP84 for RT2860E */ 4310 if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101) 4311 run_bbp_write(sc, 84, 0x19); 4312 4313 if (sc->mac_ver >= 0x3070) { 4314 run_bbp_write(sc, 79, 0x13); 4315 run_bbp_write(sc, 80, 0x05); 4316 run_bbp_write(sc, 81, 0x33); 4317 } else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) { 4318 run_bbp_write(sc, 69, 0x16); 4319 run_bbp_write(sc, 73, 0x12); 4320 } 4321 return (0); 4322 } 4323 4324 static int 4325 run_rt3070_rf_init(struct run_softc *sc) 4326 { 4327 uint32_t tmp; 4328 uint8_t rf, target, bbp4; 4329 int i; 4330 4331 run_rt3070_rf_read(sc, 30, &rf); 4332 /* toggle RF R30 bit 7 */ 4333 run_rt3070_rf_write(sc, 30, rf | 0x80); 4334 run_delay(sc, 10); 4335 run_rt3070_rf_write(sc, 30, rf & ~0x80); 4336 4337 /* initialize RF registers to default value */ 4338 if (sc->mac_ver == 0x3572) { 4339 for (i = 0; i < nitems(rt3572_def_rf); i++) { 4340 run_rt3070_rf_write(sc, rt3572_def_rf[i].reg, 4341 rt3572_def_rf[i].val); 4342 } 4343 } else { 4344 for (i = 0; i < nitems(rt3070_def_rf); i++) { 4345 run_rt3070_rf_write(sc, rt3070_def_rf[i].reg, 4346 rt3070_def_rf[i].val); 4347 } 4348 } 4349 4350 if (sc->mac_ver == 0x3070) { 4351 /* change voltage from 1.2V to 1.35V for RT3070 */ 4352 run_read(sc, RT3070_LDO_CFG0, &tmp); 4353 tmp = (tmp & ~0x0f000000) | 0x0d000000; 4354 run_write(sc, RT3070_LDO_CFG0, tmp); 4355 4356 } else if (sc->mac_ver == 0x3071) { 4357 run_rt3070_rf_read(sc, 6, &rf); 4358 run_rt3070_rf_write(sc, 6, rf | 0x40); 4359 run_rt3070_rf_write(sc, 31, 0x14); 4360 4361 run_read(sc, RT3070_LDO_CFG0, &tmp); 4362 tmp &= ~0x1f000000; 4363 if (sc->mac_rev < 0x0211) 4364 tmp |= 0x0d000000; /* 1.3V */ 4365 else 4366 tmp |= 0x01000000; /* 1.2V */ 4367 run_write(sc, RT3070_LDO_CFG0, tmp); 4368 4369 /* patch LNA_PE_G1 */ 4370 run_read(sc, RT3070_GPIO_SWITCH, &tmp); 4371 run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); 4372 4373 } else if (sc->mac_ver == 0x3572) { 4374 run_rt3070_rf_read(sc, 6, &rf); 4375 run_rt3070_rf_write(sc, 6, rf | 0x40); 4376 4377 /* increase voltage from 1.2V to 1.35V */ 4378 run_read(sc, RT3070_LDO_CFG0, &tmp); 4379 tmp = (tmp & ~0x1f000000) | 0x0d000000; 4380 run_write(sc, RT3070_LDO_CFG0, tmp); 4381 4382 if (sc->mac_rev < 0x0211 || !sc->patch_dac) { 4383 run_delay(sc, 1); /* wait for 1msec */ 4384 /* decrease voltage back to 1.2V */ 4385 tmp = (tmp & ~0x1f000000) | 0x01000000; 4386 run_write(sc, RT3070_LDO_CFG0, tmp); 4387 } 4388 } 4389 4390 /* select 20MHz bandwidth */ 4391 run_rt3070_rf_read(sc, 31, &rf); 4392 run_rt3070_rf_write(sc, 31, rf & ~0x20); 4393 4394 /* calibrate filter for 20MHz bandwidth */ 4395 sc->rf24_20mhz = 0x1f; /* default value */ 4396 target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13; 4397 run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz); 4398 4399 /* select 40MHz bandwidth */ 4400 run_bbp_read(sc, 4, &bbp4); 4401 run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10); 4402 run_rt3070_rf_read(sc, 31, &rf); 4403 run_rt3070_rf_write(sc, 31, rf | 0x20); 4404 4405 /* calibrate filter for 40MHz bandwidth */ 4406 sc->rf24_40mhz = 0x2f; /* default value */ 4407 target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15; 4408 run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz); 4409 4410 /* go back to 20MHz bandwidth */ 4411 run_bbp_read(sc, 4, &bbp4); 4412 run_bbp_write(sc, 4, bbp4 & ~0x18); 4413 4414 if (sc->mac_ver == 0x3572) { 4415 /* save default BBP registers 25 and 26 values */ 4416 run_bbp_read(sc, 25, &sc->bbp25); 4417 run_bbp_read(sc, 26, &sc->bbp26); 4418 } else if (sc->mac_rev < 0x0211) 4419 run_rt3070_rf_write(sc, 27, 0x03); 4420 4421 run_read(sc, RT3070_OPT_14, &tmp); 4422 run_write(sc, RT3070_OPT_14, tmp | 1); 4423 4424 if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { 4425 run_rt3070_rf_read(sc, 17, &rf); 4426 rf &= ~RT3070_TX_LO1; 4427 if ((sc->mac_ver == 0x3070 || 4428 (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) && 4429 !sc->ext_2ghz_lna) 4430 rf |= 0x20; /* fix for long range Rx issue */ 4431 if (sc->txmixgain_2ghz >= 1) 4432 rf = (rf & ~0x7) | sc->txmixgain_2ghz; 4433 run_rt3070_rf_write(sc, 17, rf); 4434 } 4435 4436 if (sc->mac_rev == 0x3071) { 4437 run_rt3070_rf_read(sc, 1, &rf); 4438 rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); 4439 rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; 4440 run_rt3070_rf_write(sc, 1, rf); 4441 4442 run_rt3070_rf_read(sc, 15, &rf); 4443 run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2); 4444 4445 run_rt3070_rf_read(sc, 20, &rf); 4446 run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1); 4447 4448 run_rt3070_rf_read(sc, 21, &rf); 4449 run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2); 4450 } 4451 4452 if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { 4453 /* fix Tx to Rx IQ glitch by raising RF voltage */ 4454 run_rt3070_rf_read(sc, 27, &rf); 4455 rf &= ~0x77; 4456 if (sc->mac_rev < 0x0211) 4457 rf |= 0x03; 4458 run_rt3070_rf_write(sc, 27, rf); 4459 } 4460 return (0); 4461 } 4462 4463 static int 4464 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target, 4465 uint8_t *val) 4466 { 4467 uint8_t rf22, rf24; 4468 uint8_t bbp55_pb, bbp55_sb, delta; 4469 int ntries; 4470 4471 /* program filter */ 4472 run_rt3070_rf_read(sc, 24, &rf24); 4473 rf24 = (rf24 & 0xc0) | init; /* initial filter value */ 4474 run_rt3070_rf_write(sc, 24, rf24); 4475 4476 /* enable baseband loopback mode */ 4477 run_rt3070_rf_read(sc, 22, &rf22); 4478 run_rt3070_rf_write(sc, 22, rf22 | 0x01); 4479 4480 /* set power and frequency of passband test tone */ 4481 run_bbp_write(sc, 24, 0x00); 4482 for (ntries = 0; ntries < 100; ntries++) { 4483 /* transmit test tone */ 4484 run_bbp_write(sc, 25, 0x90); 4485 run_delay(sc, 10); 4486 /* read received power */ 4487 run_bbp_read(sc, 55, &bbp55_pb); 4488 if (bbp55_pb != 0) 4489 break; 4490 } 4491 if (ntries == 100) 4492 return ETIMEDOUT; 4493 4494 /* set power and frequency of stopband test tone */ 4495 run_bbp_write(sc, 24, 0x06); 4496 for (ntries = 0; ntries < 100; ntries++) { 4497 /* transmit test tone */ 4498 run_bbp_write(sc, 25, 0x90); 4499 run_delay(sc, 10); 4500 /* read received power */ 4501 run_bbp_read(sc, 55, &bbp55_sb); 4502 4503 delta = bbp55_pb - bbp55_sb; 4504 if (delta > target) 4505 break; 4506 4507 /* reprogram filter */ 4508 rf24++; 4509 run_rt3070_rf_write(sc, 24, rf24); 4510 } 4511 if (ntries < 100) { 4512 if (rf24 != init) 4513 rf24--; /* backtrack */ 4514 *val = rf24; 4515 run_rt3070_rf_write(sc, 24, rf24); 4516 } 4517 4518 /* restore initial state */ 4519 run_bbp_write(sc, 24, 0x00); 4520 4521 /* disable baseband loopback mode */ 4522 run_rt3070_rf_read(sc, 22, &rf22); 4523 run_rt3070_rf_write(sc, 22, rf22 & ~0x01); 4524 4525 return (0); 4526 } 4527 4528 static void 4529 run_rt3070_rf_setup(struct run_softc *sc) 4530 { 4531 uint8_t bbp, rf; 4532 int i; 4533 4534 if (sc->mac_ver == 0x3572) { 4535 /* enable DC filter */ 4536 if (sc->mac_rev >= 0x0201) 4537 run_bbp_write(sc, 103, 0xc0); 4538 4539 run_bbp_read(sc, 138, &bbp); 4540 if (sc->ntxchains == 1) 4541 bbp |= 0x20; /* turn off DAC1 */ 4542 if (sc->nrxchains == 1) 4543 bbp &= ~0x02; /* turn off ADC1 */ 4544 run_bbp_write(sc, 138, bbp); 4545 4546 if (sc->mac_rev >= 0x0211) { 4547 /* improve power consumption */ 4548 run_bbp_read(sc, 31, &bbp); 4549 run_bbp_write(sc, 31, bbp & ~0x03); 4550 } 4551 4552 run_rt3070_rf_read(sc, 16, &rf); 4553 rf = (rf & ~0x07) | sc->txmixgain_2ghz; 4554 run_rt3070_rf_write(sc, 16, rf); 4555 4556 } else if (sc->mac_ver == 0x3071) { 4557 /* enable DC filter */ 4558 if (sc->mac_rev >= 0x0201) 4559 run_bbp_write(sc, 103, 0xc0); 4560 4561 run_bbp_read(sc, 138, &bbp); 4562 if (sc->ntxchains == 1) 4563 bbp |= 0x20; /* turn off DAC1 */ 4564 if (sc->nrxchains == 1) 4565 bbp &= ~0x02; /* turn off ADC1 */ 4566 run_bbp_write(sc, 138, bbp); 4567 4568 if (sc->mac_rev >= 0x0211) { 4569 /* improve power consumption */ 4570 run_bbp_read(sc, 31, &bbp); 4571 run_bbp_write(sc, 31, bbp & ~0x03); 4572 } 4573 4574 run_write(sc, RT2860_TX_SW_CFG1, 0); 4575 if (sc->mac_rev < 0x0211) { 4576 run_write(sc, RT2860_TX_SW_CFG2, 4577 sc->patch_dac ? 0x2c : 0x0f); 4578 } else 4579 run_write(sc, RT2860_TX_SW_CFG2, 0); 4580 4581 } else if (sc->mac_ver == 0x3070) { 4582 if (sc->mac_rev >= 0x0201) { 4583 /* enable DC filter */ 4584 run_bbp_write(sc, 103, 0xc0); 4585 4586 /* improve power consumption */ 4587 run_bbp_read(sc, 31, &bbp); 4588 run_bbp_write(sc, 31, bbp & ~0x03); 4589 } 4590 4591 if (sc->mac_rev < 0x0211) { 4592 run_write(sc, RT2860_TX_SW_CFG1, 0); 4593 run_write(sc, RT2860_TX_SW_CFG2, 0x2c); 4594 } else 4595 run_write(sc, RT2860_TX_SW_CFG2, 0); 4596 } 4597 4598 /* initialize RF registers from ROM for >=RT3071*/ 4599 if (sc->mac_ver >= 0x3071) { 4600 for (i = 0; i < 10; i++) { 4601 if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff) 4602 continue; 4603 run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val); 4604 } 4605 } 4606 } 4607 4608 static int 4609 run_txrx_enable(struct run_softc *sc) 4610 { 4611 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4612 uint32_t tmp; 4613 int error, ntries; 4614 4615 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); 4616 for (ntries = 0; ntries < 200; ntries++) { 4617 if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) 4618 return error; 4619 if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) 4620 break; 4621 run_delay(sc, 50); 4622 } 4623 if (ntries == 200) 4624 return ETIMEDOUT; 4625 4626 run_delay(sc, 50); 4627 4628 tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE; 4629 run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); 4630 4631 /* enable Rx bulk aggregation (set timeout and limit) */ 4632 tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN | 4633 RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2); 4634 run_write(sc, RT2860_USB_DMA_CFG, tmp); 4635 4636 /* set Rx filter */ 4637 tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; 4638 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 4639 tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | 4640 RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | 4641 RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | 4642 RT2860_DROP_CFACK | RT2860_DROP_CFEND; 4643 if (ic->ic_opmode == IEEE80211_M_STA) 4644 tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; 4645 } 4646 run_write(sc, RT2860_RX_FILTR_CFG, tmp); 4647 4648 run_write(sc, RT2860_MAC_SYS_CTRL, 4649 RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4650 4651 return (0); 4652 } 4653 4654 static void 4655 run_init_locked(struct run_softc *sc) 4656 { 4657 struct ifnet *ifp = sc->sc_ifp; 4658 struct ieee80211com *ic = ifp->if_l2com; 4659 uint32_t tmp; 4660 uint8_t bbp1, bbp3; 4661 int i; 4662 int ridx; 4663 int ntries; 4664 4665 if (ic->ic_nrunning > 1) 4666 return; 4667 4668 run_stop(sc); 4669 4670 for (ntries = 0; ntries < 100; ntries++) { 4671 if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0) 4672 goto fail; 4673 if (tmp != 0 && tmp != 0xffffffff) 4674 break; 4675 run_delay(sc, 10); 4676 } 4677 if (ntries == 100) 4678 goto fail; 4679 4680 for (i = 0; i != RUN_EP_QUEUES; i++) 4681 run_setup_tx_list(sc, &sc->sc_epq[i]); 4682 4683 run_set_macaddr(sc, IF_LLADDR(ifp)); 4684 4685 for (ntries = 0; ntries < 100; ntries++) { 4686 if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) 4687 goto fail; 4688 if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) 4689 break; 4690 run_delay(sc, 10); 4691 } 4692 if (ntries == 100) { 4693 device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); 4694 goto fail; 4695 } 4696 tmp &= 0xff0; 4697 tmp |= RT2860_TX_WB_DDONE; 4698 run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); 4699 4700 /* turn off PME_OEN to solve high-current issue */ 4701 run_read(sc, RT2860_SYS_CTRL, &tmp); 4702 run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN); 4703 4704 run_write(sc, RT2860_MAC_SYS_CTRL, 4705 RT2860_BBP_HRST | RT2860_MAC_SRST); 4706 run_write(sc, RT2860_USB_DMA_CFG, 0); 4707 4708 if (run_reset(sc) != 0) { 4709 device_printf(sc->sc_dev, "could not reset chipset\n"); 4710 goto fail; 4711 } 4712 4713 run_write(sc, RT2860_MAC_SYS_CTRL, 0); 4714 4715 /* init Tx power for all Tx rates (from EEPROM) */ 4716 for (ridx = 0; ridx < 5; ridx++) { 4717 if (sc->txpow20mhz[ridx] == 0xffffffff) 4718 continue; 4719 run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); 4720 } 4721 4722 for (i = 0; i < nitems(rt2870_def_mac); i++) 4723 run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val); 4724 run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273); 4725 run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344); 4726 run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa); 4727 4728 if (sc->mac_ver >= 0x3070) { 4729 /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ 4730 run_write(sc, RT2860_TX_SW_CFG0, 4731 4 << RT2860_DLY_PAPE_EN_SHIFT); 4732 } 4733 4734 /* wait while MAC is busy */ 4735 for (ntries = 0; ntries < 100; ntries++) { 4736 if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0) 4737 goto fail; 4738 if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) 4739 break; 4740 run_delay(sc, 10); 4741 } 4742 if (ntries == 100) 4743 goto fail; 4744 4745 /* clear Host to MCU mailbox */ 4746 run_write(sc, RT2860_H2M_BBPAGENT, 0); 4747 run_write(sc, RT2860_H2M_MAILBOX, 0); 4748 run_delay(sc, 10); 4749 4750 if (run_bbp_init(sc) != 0) { 4751 device_printf(sc->sc_dev, "could not initialize BBP\n"); 4752 goto fail; 4753 } 4754 4755 /* abort TSF synchronization */ 4756 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 4757 tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 4758 RT2860_TBTT_TIMER_EN); 4759 run_write(sc, RT2860_BCN_TIME_CFG, tmp); 4760 4761 /* clear RX WCID search table */ 4762 run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512); 4763 /* clear WCID attribute table */ 4764 run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32); 4765 4766 /* hostapd sets a key before init. So, don't clear it. */ 4767 if (sc->cmdq_key_set != RUN_CMDQ_GO) { 4768 /* clear shared key table */ 4769 run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); 4770 /* clear shared key mode */ 4771 run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); 4772 } 4773 4774 run_read(sc, RT2860_US_CYC_CNT, &tmp); 4775 tmp = (tmp & ~0xff) | 0x1e; 4776 run_write(sc, RT2860_US_CYC_CNT, tmp); 4777 4778 if (sc->mac_rev != 0x0101) 4779 run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f); 4780 4781 run_write(sc, RT2860_WMM_TXOP0_CFG, 0); 4782 run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96); 4783 4784 /* write vendor-specific BBP values (from EEPROM) */ 4785 for (i = 0; i < 10; i++) { 4786 if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) 4787 continue; 4788 run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); 4789 } 4790 4791 /* select Main antenna for 1T1R devices */ 4792 if (sc->rf_rev == RT3070_RF_3020) 4793 run_set_rx_antenna(sc, 0); 4794 4795 /* send LEDs operating mode to microcontroller */ 4796 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); 4797 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); 4798 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); 4799 4800 if (sc->mac_ver >= 0x3070) 4801 run_rt3070_rf_init(sc); 4802 4803 /* disable non-existing Rx chains */ 4804 run_bbp_read(sc, 3, &bbp3); 4805 bbp3 &= ~(1 << 3 | 1 << 4); 4806 if (sc->nrxchains == 2) 4807 bbp3 |= 1 << 3; 4808 else if (sc->nrxchains == 3) 4809 bbp3 |= 1 << 4; 4810 run_bbp_write(sc, 3, bbp3); 4811 4812 /* disable non-existing Tx chains */ 4813 run_bbp_read(sc, 1, &bbp1); 4814 if (sc->ntxchains == 1) 4815 bbp1 &= ~(1 << 3 | 1 << 4); 4816 run_bbp_write(sc, 1, bbp1); 4817 4818 if (sc->mac_ver >= 0x3070) 4819 run_rt3070_rf_setup(sc); 4820 4821 /* select default channel */ 4822 run_set_chan(sc, ic->ic_curchan); 4823 4824 /* setup initial protection mode */ 4825 run_updateprot_cb(ic); 4826 4827 /* turn radio LED on */ 4828 run_set_leds(sc, RT2860_LED_RADIO); 4829 4830 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4831 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4832 sc->cmdq_run = RUN_CMDQ_GO; 4833 4834 for (i = 0; i != RUN_N_XFER; i++) 4835 usbd_xfer_set_stall(sc->sc_xfer[i]); 4836 4837 usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]); 4838 4839 if (run_txrx_enable(sc) != 0) 4840 goto fail; 4841 4842 return; 4843 4844 fail: 4845 run_stop(sc); 4846 } 4847 4848 static void 4849 run_init(void *arg) 4850 { 4851 struct run_softc *sc = arg; 4852 struct ifnet *ifp = sc->sc_ifp; 4853 struct ieee80211com *ic = ifp->if_l2com; 4854 4855 RUN_LOCK(sc); 4856 run_init_locked(sc); 4857 RUN_UNLOCK(sc); 4858 4859 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4860 ieee80211_start_all(ic); 4861 } 4862 4863 static void 4864 run_stop(void *arg) 4865 { 4866 struct run_softc *sc = (struct run_softc *)arg; 4867 struct ifnet *ifp = sc->sc_ifp; 4868 uint32_t tmp; 4869 int i; 4870 int ntries; 4871 4872 RUN_LOCK_ASSERT(sc, MA_OWNED); 4873 4874 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4875 run_set_leds(sc, 0); /* turn all LEDs off */ 4876 4877 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4878 4879 sc->ratectl_run = RUN_RATECTL_OFF; 4880 sc->cmdq_run = sc->cmdq_key_set; 4881 4882 RUN_UNLOCK(sc); 4883 4884 for(i = 0; i < RUN_N_XFER; i++) 4885 usbd_transfer_drain(sc->sc_xfer[i]); 4886 4887 RUN_LOCK(sc); 4888 4889 if (sc->rx_m != NULL) { 4890 m_free(sc->rx_m); 4891 sc->rx_m = NULL; 4892 } 4893 4894 /* disable Tx/Rx */ 4895 run_read(sc, RT2860_MAC_SYS_CTRL, &tmp); 4896 tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4897 run_write(sc, RT2860_MAC_SYS_CTRL, tmp); 4898 4899 /* wait for pending Tx to complete */ 4900 for (ntries = 0; ntries < 100; ntries++) { 4901 if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) { 4902 DPRINTF("Cannot read Tx queue count\n"); 4903 break; 4904 } 4905 if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) { 4906 DPRINTF("All Tx cleared\n"); 4907 break; 4908 } 4909 run_delay(sc, 10); 4910 } 4911 if (ntries >= 100) 4912 DPRINTF("There are still pending Tx\n"); 4913 run_delay(sc, 10); 4914 run_write(sc, RT2860_USB_DMA_CFG, 0); 4915 4916 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); 4917 run_write(sc, RT2860_MAC_SYS_CTRL, 0); 4918 4919 for (i = 0; i != RUN_EP_QUEUES; i++) 4920 run_unsetup_tx_list(sc, &sc->sc_epq[i]); 4921 4922 return; 4923 } 4924 4925 static void 4926 run_delay(struct run_softc *sc, unsigned int ms) 4927 { 4928 usb_pause_mtx(mtx_owned(&sc->sc_mtx) ? 4929 &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms)); 4930 } 4931 4932 static device_method_t run_methods[] = { 4933 /* Device interface */ 4934 DEVMETHOD(device_probe, run_match), 4935 DEVMETHOD(device_attach, run_attach), 4936 DEVMETHOD(device_detach, run_detach), 4937 4938 { 0, 0 } 4939 }; 4940 4941 static driver_t run_driver = { 4942 "run", 4943 run_methods, 4944 sizeof(struct run_softc) 4945 }; 4946 4947 static devclass_t run_devclass; 4948 4949 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0); 4950 MODULE_DEPEND(run, wlan, 1, 1, 1); 4951 MODULE_DEPEND(run, usb, 1, 1, 1); 4952 MODULE_DEPEND(run, firmware, 1, 1, 1); 4953 MODULE_VERSION(run, 1); 4954