xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_runreg.h>
75 #include <dev/usb/wlan/if_runvar.h>
76 
77 #define nitems(_a)      (sizeof((_a)) / sizeof((_a)[0]))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const STRUCT_USB_HOST_ID run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS2,		USBN11),
140     RUN_DEV(AZUREWAVE,		RT2870_1),
141     RUN_DEV(AZUREWAVE,		RT2870_2),
142     RUN_DEV(AZUREWAVE,		RT3070_1),
143     RUN_DEV(AZUREWAVE,		RT3070_2),
144     RUN_DEV(AZUREWAVE,		RT3070_3),
145     RUN_DEV(BELKIN,		F5D8053V3),
146     RUN_DEV(BELKIN,		F5D8055),
147     RUN_DEV(BELKIN,		F5D8055V2),
148     RUN_DEV(BELKIN,		F6D4050V1),
149     RUN_DEV(BELKIN,		RT2870_1),
150     RUN_DEV(BELKIN,		RT2870_2),
151     RUN_DEV(CISCOLINKSYS,	AE1000),
152     RUN_DEV(CISCOLINKSYS2,	RT3070),
153     RUN_DEV(CISCOLINKSYS3,	RT3070),
154     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
162     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
163     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
164     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
165     RUN_DEV(COREGA,		CGWLUSB300GNM),
166     RUN_DEV(COREGA,		RT2870_1),
167     RUN_DEV(COREGA,		RT2870_2),
168     RUN_DEV(COREGA,		RT2870_3),
169     RUN_DEV(COREGA,		RT3070),
170     RUN_DEV(CYBERTAN,		RT2870),
171     RUN_DEV(DLINK,		RT2870),
172     RUN_DEV(DLINK,		RT3072),
173     RUN_DEV(DLINK2,		DWA130),
174     RUN_DEV(DLINK2,		RT2870_1),
175     RUN_DEV(DLINK2,		RT2870_2),
176     RUN_DEV(DLINK2,		RT3070_1),
177     RUN_DEV(DLINK2,		RT3070_2),
178     RUN_DEV(DLINK2,		RT3070_3),
179     RUN_DEV(DLINK2,		RT3070_4),
180     RUN_DEV(DLINK2,		RT3070_5),
181     RUN_DEV(DLINK2,		RT3072),
182     RUN_DEV(DLINK2,		RT3072_1),
183     RUN_DEV(EDIMAX,		EW7717),
184     RUN_DEV(EDIMAX,		EW7718),
185     RUN_DEV(EDIMAX,		RT2870_1),
186     RUN_DEV(ENCORE,		RT3070_1),
187     RUN_DEV(ENCORE,		RT3070_2),
188     RUN_DEV(ENCORE,		RT3070_3),
189     RUN_DEV(GIGABYTE,		GNWB31N),
190     RUN_DEV(GIGABYTE,		GNWB32L),
191     RUN_DEV(GIGABYTE,		RT2870_1),
192     RUN_DEV(GIGASET,		RT3070_1),
193     RUN_DEV(GIGASET,		RT3070_2),
194     RUN_DEV(GUILLEMOT,		HWNU300),
195     RUN_DEV(HAWKING,		HWUN2),
196     RUN_DEV(HAWKING,		RT2870_1),
197     RUN_DEV(HAWKING,		RT2870_2),
198     RUN_DEV(HAWKING,		RT3070),
199     RUN_DEV(IODATA,		RT3072_1),
200     RUN_DEV(IODATA,		RT3072_2),
201     RUN_DEV(IODATA,		RT3072_3),
202     RUN_DEV(IODATA,		RT3072_4),
203     RUN_DEV(LINKSYS4,		RT3070),
204     RUN_DEV(LINKSYS4,		WUSB100),
205     RUN_DEV(LINKSYS4,		WUSB54GCV3),
206     RUN_DEV(LINKSYS4,		WUSB600N),
207     RUN_DEV(LINKSYS4,		WUSB600NV2),
208     RUN_DEV(LOGITEC,		RT2870_1),
209     RUN_DEV(LOGITEC,		RT2870_2),
210     RUN_DEV(LOGITEC,		RT2870_3),
211     RUN_DEV(LOGITECH,		LANW300NU2),
212     RUN_DEV(MELCO,		RT2870_1),
213     RUN_DEV(MELCO,		RT2870_2),
214     RUN_DEV(MELCO,		WLIUCAG300N),
215     RUN_DEV(MELCO,		WLIUCG300N),
216     RUN_DEV(MELCO,		WLIUCG301N),
217     RUN_DEV(MELCO,		WLIUCGN),
218     RUN_DEV(MELCO,		WLIUCGNM),
219     RUN_DEV(MOTOROLA4,		RT2770),
220     RUN_DEV(MOTOROLA4,		RT3070),
221     RUN_DEV(MSI,		RT3070_1),
222     RUN_DEV(MSI,		RT3070_2),
223     RUN_DEV(MSI,		RT3070_3),
224     RUN_DEV(MSI,		RT3070_4),
225     RUN_DEV(MSI,		RT3070_5),
226     RUN_DEV(MSI,		RT3070_6),
227     RUN_DEV(MSI,		RT3070_7),
228     RUN_DEV(MSI,		RT3070_8),
229     RUN_DEV(MSI,		RT3070_9),
230     RUN_DEV(MSI,		RT3070_10),
231     RUN_DEV(MSI,		RT3070_11),
232     RUN_DEV(OVISLINK,		RT3072),
233     RUN_DEV(PARA,		RT3070),
234     RUN_DEV(PEGATRON,		RT2870),
235     RUN_DEV(PEGATRON,		RT3070),
236     RUN_DEV(PEGATRON,		RT3070_2),
237     RUN_DEV(PEGATRON,		RT3070_3),
238     RUN_DEV(PHILIPS,		RT2870),
239     RUN_DEV(PLANEX2,		GWUS300MINIS),
240     RUN_DEV(PLANEX2,		GWUSMICRON),
241     RUN_DEV(PLANEX2,		RT2870),
242     RUN_DEV(PLANEX2,		RT3070),
243     RUN_DEV(QCOM,		RT2870),
244     RUN_DEV(QUANTA,		RT3070),
245     RUN_DEV(RALINK,		RT2070),
246     RUN_DEV(RALINK,		RT2770),
247     RUN_DEV(RALINK,		RT2870),
248     RUN_DEV(RALINK,		RT3070),
249     RUN_DEV(RALINK,		RT3071),
250     RUN_DEV(RALINK,		RT3072),
251     RUN_DEV(RALINK,		RT3370),
252     RUN_DEV(RALINK,		RT3572),
253     RUN_DEV(RALINK,		RT8070),
254     RUN_DEV(SAMSUNG,		WIS09ABGN),
255     RUN_DEV(SAMSUNG2,		RT2870_1),
256     RUN_DEV(SENAO,		RT2870_1),
257     RUN_DEV(SENAO,		RT2870_2),
258     RUN_DEV(SENAO,		RT2870_3),
259     RUN_DEV(SENAO,		RT2870_4),
260     RUN_DEV(SENAO,		RT3070),
261     RUN_DEV(SENAO,		RT3071),
262     RUN_DEV(SENAO,		RT3072_1),
263     RUN_DEV(SENAO,		RT3072_2),
264     RUN_DEV(SENAO,		RT3072_3),
265     RUN_DEV(SENAO,		RT3072_4),
266     RUN_DEV(SENAO,		RT3072_5),
267     RUN_DEV(SITECOMEU,		RT2770),
268     RUN_DEV(SITECOMEU,		RT2870_1),
269     RUN_DEV(SITECOMEU,		RT2870_2),
270     RUN_DEV(SITECOMEU,		RT2870_3),
271     RUN_DEV(SITECOMEU,		RT2870_4),
272     RUN_DEV(SITECOMEU,		RT3070),
273     RUN_DEV(SITECOMEU,		RT3070_2),
274     RUN_DEV(SITECOMEU,		RT3070_3),
275     RUN_DEV(SITECOMEU,		RT3070_4),
276     RUN_DEV(SITECOMEU,		RT3071),
277     RUN_DEV(SITECOMEU,		RT3072_1),
278     RUN_DEV(SITECOMEU,		RT3072_2),
279     RUN_DEV(SITECOMEU,		RT3072_3),
280     RUN_DEV(SITECOMEU,		RT3072_4),
281     RUN_DEV(SITECOMEU,		RT3072_5),
282     RUN_DEV(SITECOMEU,		RT3072_6),
283     RUN_DEV(SITECOMEU,		WL608),
284     RUN_DEV(SPARKLAN,		RT2870_1),
285     RUN_DEV(SPARKLAN,		RT3070),
286     RUN_DEV(SWEEX2,		LW153),
287     RUN_DEV(SWEEX2,		LW303),
288     RUN_DEV(SWEEX2,		LW313),
289     RUN_DEV(TOSHIBA,		RT3070),
290     RUN_DEV(UMEDIA,		RT2870_1),
291     RUN_DEV(ZCOM,		RT2870_1),
292     RUN_DEV(ZCOM,		RT2870_2),
293     RUN_DEV(ZINWELL,		RT2870_1),
294     RUN_DEV(ZINWELL,		RT2870_2),
295     RUN_DEV(ZINWELL,		RT3070),
296     RUN_DEV(ZINWELL,		RT3072_1),
297     RUN_DEV(ZINWELL,		RT3072_2),
298     RUN_DEV(ZYXEL,		RT2870_1),
299     RUN_DEV(ZYXEL,		RT2870_2),
300 #undef RUN_DEV
301 };
302 
303 static device_probe_t	run_match;
304 static device_attach_t	run_attach;
305 static device_detach_t	run_detach;
306 
307 static usb_callback_t	run_bulk_rx_callback;
308 static usb_callback_t	run_bulk_tx_callback0;
309 static usb_callback_t	run_bulk_tx_callback1;
310 static usb_callback_t	run_bulk_tx_callback2;
311 static usb_callback_t	run_bulk_tx_callback3;
312 static usb_callback_t	run_bulk_tx_callback4;
313 static usb_callback_t	run_bulk_tx_callback5;
314 
315 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
316 		    usb_error_t error, unsigned int index);
317 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
318 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
319 		    const uint8_t [IEEE80211_ADDR_LEN],
320 		    const uint8_t [IEEE80211_ADDR_LEN]);
321 static void	run_vap_delete(struct ieee80211vap *);
322 static void	run_cmdq_cb(void *, int);
323 static void	run_setup_tx_list(struct run_softc *,
324 		    struct run_endpoint_queue *);
325 static void	run_unsetup_tx_list(struct run_softc *,
326 		    struct run_endpoint_queue *);
327 static int	run_load_microcode(struct run_softc *);
328 static int	run_reset(struct run_softc *);
329 static usb_error_t run_do_request(struct run_softc *,
330 		    struct usb_device_request *, void *);
331 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
332 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
333 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
334 static int	run_write(struct run_softc *, uint16_t, uint32_t);
335 static int	run_write_region_1(struct run_softc *, uint16_t,
336 		    const uint8_t *, int);
337 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
338 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
339 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
340 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
341 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
342 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
343 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
344 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
345 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
346 static const char *run_get_rf(int);
347 static int	run_read_eeprom(struct run_softc *);
348 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
349 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
350 static int	run_media_change(struct ifnet *);
351 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
352 static int	run_wme_update(struct ieee80211com *);
353 static void	run_wme_update_cb(void *);
354 static void	run_key_update_begin(struct ieee80211vap *);
355 static void	run_key_update_end(struct ieee80211vap *);
356 static void	run_key_set_cb(void *);
357 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
358 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
359 static void	run_key_delete_cb(void *);
360 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
361 static void	run_ratectl_to(void *);
362 static void	run_ratectl_cb(void *, int);
363 static void	run_drain_fifo(void *);
364 static void	run_iter_func(void *, struct ieee80211_node *);
365 static void	run_newassoc_cb(void *);
366 static void	run_newassoc(struct ieee80211_node *, int);
367 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
368 static void	run_tx_free(struct run_endpoint_queue *pq,
369 		    struct run_tx_data *, int);
370 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
371 static int	run_tx(struct run_softc *, struct mbuf *,
372 		    struct ieee80211_node *);
373 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
374 		    struct ieee80211_node *);
375 static int	run_sendprot(struct run_softc *, const struct mbuf *,
376 		    struct ieee80211_node *, int, int);
377 static int	run_tx_param(struct run_softc *, struct mbuf *,
378 		    struct ieee80211_node *,
379 		    const struct ieee80211_bpf_params *);
380 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
381 		    const struct ieee80211_bpf_params *);
382 static void	run_start(struct ifnet *);
383 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
384 static void	run_set_agc(struct run_softc *, uint8_t);
385 static void	run_select_chan_group(struct run_softc *, int);
386 static void	run_set_rx_antenna(struct run_softc *, int);
387 static void	run_rt2870_set_chan(struct run_softc *, u_int);
388 static void	run_rt3070_set_chan(struct run_softc *, u_int);
389 static void	run_rt3572_set_chan(struct run_softc *, u_int);
390 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
391 static void	run_set_channel(struct ieee80211com *);
392 static void	run_scan_start(struct ieee80211com *);
393 static void	run_scan_end(struct ieee80211com *);
394 static void	run_update_beacon(struct ieee80211vap *, int);
395 static void	run_update_beacon_cb(void *);
396 static void	run_updateprot(struct ieee80211com *);
397 static void	run_updateprot_cb(void *);
398 static void	run_usb_timeout_cb(void *);
399 static void	run_reset_livelock(struct run_softc *);
400 static void	run_enable_tsf_sync(struct run_softc *);
401 static void	run_enable_mrr(struct run_softc *);
402 static void	run_set_txpreamble(struct run_softc *);
403 static void	run_set_basicrates(struct run_softc *);
404 static void	run_set_leds(struct run_softc *, uint16_t);
405 static void	run_set_bssid(struct run_softc *, const uint8_t *);
406 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
407 static void	run_updateslot(struct ifnet *);
408 static void	run_updateslot_cb(void *);
409 static void	run_update_mcast(struct ifnet *);
410 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
411 static void	run_update_promisc_locked(struct ifnet *);
412 static void	run_update_promisc(struct ifnet *);
413 static int	run_bbp_init(struct run_softc *);
414 static int	run_rt3070_rf_init(struct run_softc *);
415 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
416 		    uint8_t *);
417 static void	run_rt3070_rf_setup(struct run_softc *);
418 static int	run_txrx_enable(struct run_softc *);
419 static void	run_init(void *);
420 static void	run_init_locked(struct run_softc *);
421 static void	run_stop(void *);
422 static void	run_delay(struct run_softc *, unsigned int);
423 
424 static const struct {
425 	uint16_t	reg;
426 	uint32_t	val;
427 } rt2870_def_mac[] = {
428 	RT2870_DEF_MAC
429 };
430 
431 static const struct {
432 	uint8_t	reg;
433 	uint8_t	val;
434 } rt2860_def_bbp[] = {
435 	RT2860_DEF_BBP
436 };
437 
438 static const struct rfprog {
439 	uint8_t		chan;
440 	uint32_t	r1, r2, r3, r4;
441 } rt2860_rf2850[] = {
442 	RT2860_RF2850
443 };
444 
445 struct {
446 	uint8_t	n, r, k;
447 } rt3070_freqs[] = {
448 	RT3070_RF3052
449 };
450 
451 static const struct {
452 	uint8_t	reg;
453 	uint8_t	val;
454 } rt3070_def_rf[] = {
455 	RT3070_DEF_RF
456 },rt3572_def_rf[] = {
457 	RT3572_DEF_RF
458 };
459 
460 static const struct usb_config run_config[RUN_N_XFER] = {
461     [RUN_BULK_TX_BE] = {
462 	.type = UE_BULK,
463 	.endpoint = UE_ADDR_ANY,
464 	.ep_index = 0,
465 	.direction = UE_DIR_OUT,
466 	.bufsize = RUN_MAX_TXSZ,
467 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
468 	.callback = run_bulk_tx_callback0,
469 	.timeout = 5000,	/* ms */
470     },
471     [RUN_BULK_TX_BK] = {
472 	.type = UE_BULK,
473 	.endpoint = UE_ADDR_ANY,
474 	.direction = UE_DIR_OUT,
475 	.ep_index = 1,
476 	.bufsize = RUN_MAX_TXSZ,
477 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
478 	.callback = run_bulk_tx_callback1,
479 	.timeout = 5000,	/* ms */
480     },
481     [RUN_BULK_TX_VI] = {
482 	.type = UE_BULK,
483 	.endpoint = UE_ADDR_ANY,
484 	.direction = UE_DIR_OUT,
485 	.ep_index = 2,
486 	.bufsize = RUN_MAX_TXSZ,
487 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
488 	.callback = run_bulk_tx_callback2,
489 	.timeout = 5000,	/* ms */
490     },
491     [RUN_BULK_TX_VO] = {
492 	.type = UE_BULK,
493 	.endpoint = UE_ADDR_ANY,
494 	.direction = UE_DIR_OUT,
495 	.ep_index = 3,
496 	.bufsize = RUN_MAX_TXSZ,
497 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
498 	.callback = run_bulk_tx_callback3,
499 	.timeout = 5000,	/* ms */
500     },
501     [RUN_BULK_TX_HCCA] = {
502 	.type = UE_BULK,
503 	.endpoint = UE_ADDR_ANY,
504 	.direction = UE_DIR_OUT,
505 	.ep_index = 4,
506 	.bufsize = RUN_MAX_TXSZ,
507 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
508 	.callback = run_bulk_tx_callback4,
509 	.timeout = 5000,	/* ms */
510     },
511     [RUN_BULK_TX_PRIO] = {
512 	.type = UE_BULK,
513 	.endpoint = UE_ADDR_ANY,
514 	.direction = UE_DIR_OUT,
515 	.ep_index = 5,
516 	.bufsize = RUN_MAX_TXSZ,
517 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
518 	.callback = run_bulk_tx_callback5,
519 	.timeout = 5000,	/* ms */
520     },
521     [RUN_BULK_RX] = {
522 	.type = UE_BULK,
523 	.endpoint = UE_ADDR_ANY,
524 	.direction = UE_DIR_IN,
525 	.bufsize = RUN_MAX_RXSZ,
526 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
527 	.callback = run_bulk_rx_callback,
528     }
529 };
530 
531 static int
532 run_match(device_t self)
533 {
534 	struct usb_attach_arg *uaa = device_get_ivars(self);
535 
536 	if (uaa->usb_mode != USB_MODE_HOST)
537 		return (ENXIO);
538 	if (uaa->info.bConfigIndex != 0)
539 		return (ENXIO);
540 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
541 		return (ENXIO);
542 
543 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
544 }
545 
546 static int
547 run_attach(device_t self)
548 {
549 	struct run_softc *sc = device_get_softc(self);
550 	struct usb_attach_arg *uaa = device_get_ivars(self);
551 	struct ieee80211com *ic;
552 	struct ifnet *ifp;
553 	uint32_t ver;
554 	int i, ntries, error;
555 	uint8_t iface_index, bands;
556 
557 	device_set_usb_desc(self);
558 	sc->sc_udev = uaa->device;
559 	sc->sc_dev = self;
560 
561 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
562 	    MTX_NETWORK_LOCK, MTX_DEF);
563 
564 	iface_index = RT2860_IFACE_INDEX;
565 
566 	error = usbd_transfer_setup(uaa->device, &iface_index,
567 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
568 	if (error) {
569 		device_printf(self, "could not allocate USB transfers, "
570 		    "err=%s\n", usbd_errstr(error));
571 		goto detach;
572 	}
573 
574 	RUN_LOCK(sc);
575 
576 	/* wait for the chip to settle */
577 	for (ntries = 0; ntries < 100; ntries++) {
578 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
579 			RUN_UNLOCK(sc);
580 			goto detach;
581 		}
582 		if (ver != 0 && ver != 0xffffffff)
583 			break;
584 		run_delay(sc, 10);
585 	}
586 	if (ntries == 100) {
587 		device_printf(sc->sc_dev,
588 		    "timeout waiting for NIC to initialize\n");
589 		RUN_UNLOCK(sc);
590 		goto detach;
591 	}
592 	sc->mac_ver = ver >> 16;
593 	sc->mac_rev = ver & 0xffff;
594 
595 	/* retrieve RF rev. no and various other things from EEPROM */
596 	run_read_eeprom(sc);
597 
598 	device_printf(sc->sc_dev,
599 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
600 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
601 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
602 
603 	if ((error = run_load_microcode(sc)) != 0) {
604 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
605 		RUN_UNLOCK(sc);
606 		goto detach;
607 	}
608 
609 	RUN_UNLOCK(sc);
610 
611 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 	if (ifp == NULL) {
613 		device_printf(sc->sc_dev, "can not if_alloc()\n");
614 		goto detach;
615 	}
616 	ic = ifp->if_l2com;
617 
618 	ifp->if_softc = sc;
619 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 	ifp->if_init = run_init;
622 	ifp->if_ioctl = run_ioctl;
623 	ifp->if_start = run_start;
624 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
625 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
626 	IFQ_SET_READY(&ifp->if_snd);
627 
628 	ic->ic_ifp = ifp;
629 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631 
632 	/* set device capabilities */
633 	ic->ic_caps =
634 	    IEEE80211_C_STA |		/* station mode supported */
635 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
636 	    IEEE80211_C_IBSS |
637 	    IEEE80211_C_HOSTAP |
638 	    IEEE80211_C_WDS |		/* 4-address traffic works */
639 	    IEEE80211_C_MBSS |
640 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
641 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
642 	    IEEE80211_C_WME |		/* WME */
643 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
644 
645 	ic->ic_cryptocaps =
646 	    IEEE80211_CRYPTO_WEP |
647 	    IEEE80211_CRYPTO_AES_CCM |
648 	    IEEE80211_CRYPTO_TKIPMIC |
649 	    IEEE80211_CRYPTO_TKIP;
650 
651 	ic->ic_flags |= IEEE80211_F_DATAPAD;
652 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
653 
654 	bands = 0;
655 	setbit(&bands, IEEE80211_MODE_11B);
656 	setbit(&bands, IEEE80211_MODE_11G);
657 	ieee80211_init_channels(ic, NULL, &bands);
658 
659 	/*
660 	 * Do this by own because h/w supports
661 	 * more channels than ieee80211_init_channels()
662 	 */
663 	if (sc->rf_rev == RT2860_RF_2750 ||
664 	    sc->rf_rev == RT2860_RF_2850 ||
665 	    sc->rf_rev == RT3070_RF_3052) {
666 		/* set supported .11a rates */
667 		for (i = 14; i < nitems(rt2860_rf2850); i++) {
668 			uint8_t chan = rt2860_rf2850[i].chan;
669 			ic->ic_channels[ic->ic_nchans].ic_freq =
670 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
671 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
672 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
673 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
674 			ic->ic_nchans++;
675 		}
676 	}
677 
678 	ieee80211_ifattach(ic, sc->sc_bssid);
679 
680 	ic->ic_scan_start = run_scan_start;
681 	ic->ic_scan_end = run_scan_end;
682 	ic->ic_set_channel = run_set_channel;
683 	ic->ic_node_alloc = run_node_alloc;
684 	ic->ic_newassoc = run_newassoc;
685 	ic->ic_updateslot = run_updateslot;
686 	ic->ic_update_mcast = run_update_mcast;
687 	ic->ic_wme.wme_update = run_wme_update;
688 	ic->ic_raw_xmit = run_raw_xmit;
689 	ic->ic_update_promisc = run_update_promisc;
690 
691 	ic->ic_vap_create = run_vap_create;
692 	ic->ic_vap_delete = run_vap_delete;
693 
694 	ieee80211_radiotap_attach(ic,
695 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
696 		RUN_TX_RADIOTAP_PRESENT,
697 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
698 		RUN_RX_RADIOTAP_PRESENT);
699 
700 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
701 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
702 	callout_init((struct callout *)&sc->ratectl_ch, 1);
703 
704 	if (bootverbose)
705 		ieee80211_announce(ic);
706 
707 	return (0);
708 
709 detach:
710 	run_detach(self);
711 	return (ENXIO);
712 }
713 
714 static int
715 run_detach(device_t self)
716 {
717 	struct run_softc *sc = device_get_softc(self);
718 	struct ifnet *ifp = sc->sc_ifp;
719 	struct ieee80211com *ic;
720 	int i;
721 
722 	/* stop all USB transfers */
723 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
724 
725 	RUN_LOCK(sc);
726 
727 	sc->ratectl_run = RUN_RATECTL_OFF;
728 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
729 
730 	/* free TX list, if any */
731 	for (i = 0; i != RUN_EP_QUEUES; i++)
732 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
733 	RUN_UNLOCK(sc);
734 
735 	if (ifp) {
736 		ic = ifp->if_l2com;
737 		/* drain tasks */
738 		usb_callout_drain(&sc->ratectl_ch);
739 		ieee80211_draintask(ic, &sc->cmdq_task);
740 		ieee80211_draintask(ic, &sc->ratectl_task);
741 		ieee80211_ifdetach(ic);
742 		if_free(ifp);
743 	}
744 
745 	mtx_destroy(&sc->sc_mtx);
746 
747 	return (0);
748 }
749 
750 static struct ieee80211vap *
751 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
752     enum ieee80211_opmode opmode, int flags,
753     const uint8_t bssid[IEEE80211_ADDR_LEN],
754     const uint8_t mac[IEEE80211_ADDR_LEN])
755 {
756 	struct ifnet *ifp = ic->ic_ifp;
757 	struct run_softc *sc = ifp->if_softc;
758 	struct run_vap *rvp;
759 	struct ieee80211vap *vap;
760 	int i;
761 
762 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
763 		if_printf(ifp, "number of VAPs maxed out\n");
764 		return (NULL);
765 	}
766 
767 	switch (opmode) {
768 	case IEEE80211_M_STA:
769 		/* enable s/w bmiss handling for sta mode */
770 		flags |= IEEE80211_CLONE_NOBEACONS;
771 		/* fall though */
772 	case IEEE80211_M_IBSS:
773 	case IEEE80211_M_MONITOR:
774 	case IEEE80211_M_HOSTAP:
775 	case IEEE80211_M_MBSS:
776 		/* other than WDS vaps, only one at a time */
777 		if (!TAILQ_EMPTY(&ic->ic_vaps))
778 			return (NULL);
779 		break;
780 	case IEEE80211_M_WDS:
781 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
782 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
783 				continue;
784 			/* WDS vap's always share the local mac address. */
785 			flags &= ~IEEE80211_CLONE_BSSID;
786 			break;
787 		}
788 		if (vap == NULL) {
789 			if_printf(ifp, "wds only supported in ap mode\n");
790 			return (NULL);
791 		}
792 		break;
793 	default:
794 		if_printf(ifp, "unknown opmode %d\n", opmode);
795 		return (NULL);
796 	}
797 
798 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
799 	    M_80211_VAP, M_NOWAIT | M_ZERO);
800 	if (rvp == NULL)
801 		return (NULL);
802 	vap = &rvp->vap;
803 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
804 
805 	vap->iv_key_update_begin = run_key_update_begin;
806 	vap->iv_key_update_end = run_key_update_end;
807 	vap->iv_update_beacon = run_update_beacon;
808 	vap->iv_max_aid = RT2870_WCID_MAX;
809 	/*
810 	 * To delete the right key from h/w, we need wcid.
811 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
812 	 * and matching wcid will be written into there. So, cast
813 	 * some spells to remove 'const' from ieee80211_key{}
814 	 */
815 	vap->iv_key_delete = (void *)run_key_delete;
816 	vap->iv_key_set = (void *)run_key_set;
817 
818 	/* override state transition machine */
819 	rvp->newstate = vap->iv_newstate;
820 	vap->iv_newstate = run_newstate;
821 
822 	ieee80211_ratectl_init(vap);
823 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
824 
825 	/* complete setup */
826 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
827 
828 	/* make sure id is always unique */
829 	for (i = 0; i < RUN_VAP_MAX; i++) {
830 		if((sc->rvp_bmap & 1 << i) == 0){
831 			sc->rvp_bmap |= 1 << i;
832 			rvp->rvp_id = i;
833 			break;
834 		}
835 	}
836 	if (sc->rvp_cnt++ == 0)
837 		ic->ic_opmode = opmode;
838 
839 	if (opmode == IEEE80211_M_HOSTAP)
840 		sc->cmdq_run = RUN_CMDQ_GO;
841 
842 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
843 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
844 
845 	return (vap);
846 }
847 
848 static void
849 run_vap_delete(struct ieee80211vap *vap)
850 {
851 	struct run_vap *rvp = RUN_VAP(vap);
852 	struct ifnet *ifp;
853 	struct ieee80211com *ic;
854 	struct run_softc *sc;
855 	uint8_t rvp_id;
856 
857 	if (vap == NULL)
858 		return;
859 
860 	ic = vap->iv_ic;
861 	ifp = ic->ic_ifp;
862 
863 	sc = ifp->if_softc;
864 
865 	RUN_LOCK(sc);
866 
867 	m_freem(rvp->beacon_mbuf);
868 	rvp->beacon_mbuf = NULL;
869 
870 	rvp_id = rvp->rvp_id;
871 	sc->ratectl_run &= ~(1 << rvp_id);
872 	sc->rvp_bmap &= ~(1 << rvp_id);
873 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
874 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
875 	--sc->rvp_cnt;
876 
877 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
878 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
879 
880 	RUN_UNLOCK(sc);
881 
882 	ieee80211_ratectl_deinit(vap);
883 	ieee80211_vap_detach(vap);
884 	free(rvp, M_80211_VAP);
885 }
886 
887 /*
888  * There are numbers of functions need to be called in context thread.
889  * Rather than creating taskqueue event for each of those functions,
890  * here is all-for-one taskqueue callback function. This function
891  * gurantees deferred functions are executed in the same order they
892  * were enqueued.
893  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
894  */
895 static void
896 run_cmdq_cb(void *arg, int pending)
897 {
898 	struct run_softc *sc = arg;
899 	uint8_t i;
900 
901 	/* call cmdq[].func locked */
902 	RUN_LOCK(sc);
903 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
904 	    i = sc->cmdq_exec, pending--) {
905 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
906 		if (sc->cmdq_run == RUN_CMDQ_GO) {
907 			/*
908 			 * If arg0 is NULL, callback func needs more
909 			 * than one arg. So, pass ptr to cmdq struct.
910 			 */
911 			if (sc->cmdq[i].arg0)
912 				sc->cmdq[i].func(sc->cmdq[i].arg0);
913 			else
914 				sc->cmdq[i].func(&sc->cmdq[i]);
915 		}
916 		sc->cmdq[i].arg0 = NULL;
917 		sc->cmdq[i].func = NULL;
918 		sc->cmdq_exec++;
919 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
920 	}
921 	RUN_UNLOCK(sc);
922 }
923 
924 static void
925 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
926 {
927 	struct run_tx_data *data;
928 
929 	memset(pq, 0, sizeof(*pq));
930 
931 	STAILQ_INIT(&pq->tx_qh);
932 	STAILQ_INIT(&pq->tx_fh);
933 
934 	for (data = &pq->tx_data[0];
935 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
936 		data->sc = sc;
937 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
938 	}
939 	pq->tx_nfree = RUN_TX_RING_COUNT;
940 }
941 
942 static void
943 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
944 {
945 	struct run_tx_data *data;
946 
947 	/* make sure any subsequent use of the queues will fail */
948 	pq->tx_nfree = 0;
949 	STAILQ_INIT(&pq->tx_fh);
950 	STAILQ_INIT(&pq->tx_qh);
951 
952 	/* free up all node references and mbufs */
953 	for (data = &pq->tx_data[0];
954 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
955 		if (data->m != NULL) {
956 			m_freem(data->m);
957 			data->m = NULL;
958 		}
959 		if (data->ni != NULL) {
960 			ieee80211_free_node(data->ni);
961 			data->ni = NULL;
962 		}
963 	}
964 }
965 
966 static int
967 run_load_microcode(struct run_softc *sc)
968 {
969 	usb_device_request_t req;
970 	const struct firmware *fw;
971 	const u_char *base;
972 	uint32_t tmp;
973 	int ntries, error;
974 	const uint64_t *temp;
975 	uint64_t bytes;
976 
977 	RUN_UNLOCK(sc);
978 	fw = firmware_get("runfw");
979 	RUN_LOCK(sc);
980 	if (fw == NULL) {
981 		device_printf(sc->sc_dev,
982 		    "failed loadfirmware of file %s\n", "runfw");
983 		return ENOENT;
984 	}
985 
986 	if (fw->datasize != 8192) {
987 		device_printf(sc->sc_dev,
988 		    "invalid firmware size (should be 8KB)\n");
989 		error = EINVAL;
990 		goto fail;
991 	}
992 
993 	/*
994 	 * RT3071/RT3072 use a different firmware
995 	 * run-rt2870 (8KB) contains both,
996 	 * first half (4KB) is for rt2870,
997 	 * last half is for rt3071.
998 	 */
999 	base = fw->data;
1000 	if ((sc->mac_ver) != 0x2860 &&
1001 	    (sc->mac_ver) != 0x2872 &&
1002 	    (sc->mac_ver) != 0x3070) {
1003 		base += 4096;
1004 	}
1005 
1006 	/* cheap sanity check */
1007 	temp = fw->data;
1008 	bytes = *temp;
1009 	if (bytes != be64toh(0xffffff0210280210)) {
1010 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1011 		error = EINVAL;
1012 		goto fail;
1013 	}
1014 
1015 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1016 	/* write microcode image */
1017 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1018 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1019 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1020 
1021 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1022 	req.bRequest = RT2870_RESET;
1023 	USETW(req.wValue, 8);
1024 	USETW(req.wIndex, 0);
1025 	USETW(req.wLength, 0);
1026 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1027 	    != 0) {
1028 		device_printf(sc->sc_dev, "firmware reset failed\n");
1029 		goto fail;
1030 	}
1031 
1032 	run_delay(sc, 10);
1033 
1034 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1035 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1036 		goto fail;
1037 
1038 	/* wait until microcontroller is ready */
1039 	for (ntries = 0; ntries < 1000; ntries++) {
1040 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1041 			goto fail;
1042 		}
1043 		if (tmp & RT2860_MCU_READY)
1044 			break;
1045 		run_delay(sc, 10);
1046 	}
1047 	if (ntries == 1000) {
1048 		device_printf(sc->sc_dev,
1049 		    "timeout waiting for MCU to initialize\n");
1050 		error = ETIMEDOUT;
1051 		goto fail;
1052 	}
1053 	device_printf(sc->sc_dev, "firmware %s loaded\n",
1054 	    (base == fw->data) ? "RT2870" : "RT3071");
1055 
1056 fail:
1057 	firmware_put(fw, FIRMWARE_UNLOAD);
1058 	return (error);
1059 }
1060 
1061 int
1062 run_reset(struct run_softc *sc)
1063 {
1064 	usb_device_request_t req;
1065 
1066 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1067 	req.bRequest = RT2870_RESET;
1068 	USETW(req.wValue, 1);
1069 	USETW(req.wIndex, 0);
1070 	USETW(req.wLength, 0);
1071 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1072 }
1073 
1074 static usb_error_t
1075 run_do_request(struct run_softc *sc,
1076     struct usb_device_request *req, void *data)
1077 {
1078 	usb_error_t err;
1079 	int ntries = 10;
1080 
1081 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1082 
1083 	while (ntries--) {
1084 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1085 		    req, data, 0, NULL, 250 /* ms */);
1086 		if (err == 0)
1087 			break;
1088 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1089 		    usbd_errstr(err));
1090 		run_delay(sc, 10);
1091 	}
1092 	return (err);
1093 }
1094 
1095 static int
1096 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1097 {
1098 	uint32_t tmp;
1099 	int error;
1100 
1101 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1102 	if (error == 0)
1103 		*val = le32toh(tmp);
1104 	else
1105 		*val = 0xffffffff;
1106 	return (error);
1107 }
1108 
1109 static int
1110 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1111 {
1112 	usb_device_request_t req;
1113 
1114 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1115 	req.bRequest = RT2870_READ_REGION_1;
1116 	USETW(req.wValue, 0);
1117 	USETW(req.wIndex, reg);
1118 	USETW(req.wLength, len);
1119 
1120 	return (run_do_request(sc, &req, buf));
1121 }
1122 
1123 static int
1124 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1125 {
1126 	usb_device_request_t req;
1127 
1128 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1129 	req.bRequest = RT2870_WRITE_2;
1130 	USETW(req.wValue, val);
1131 	USETW(req.wIndex, reg);
1132 	USETW(req.wLength, 0);
1133 
1134 	return (run_do_request(sc, &req, NULL));
1135 }
1136 
1137 static int
1138 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1139 {
1140 	int error;
1141 
1142 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1143 		error = run_write_2(sc, reg + 2, val >> 16);
1144 	return (error);
1145 }
1146 
1147 static int
1148 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1149     int len)
1150 {
1151 #if 1
1152 	int i, error = 0;
1153 	/*
1154 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1155 	 * We thus issue multiple WRITE_2 commands instead.
1156 	 */
1157 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1158 	for (i = 0; i < len && error == 0; i += 2)
1159 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1160 	return (error);
1161 #else
1162 	usb_device_request_t req;
1163 
1164 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1165 	req.bRequest = RT2870_WRITE_REGION_1;
1166 	USETW(req.wValue, 0);
1167 	USETW(req.wIndex, reg);
1168 	USETW(req.wLength, len);
1169 	return (run_do_request(sc, &req, buf));
1170 #endif
1171 }
1172 
1173 static int
1174 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1175 {
1176 	int i, error = 0;
1177 
1178 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1179 	for (i = 0; i < len && error == 0; i += 4)
1180 		error = run_write(sc, reg + i, val);
1181 	return (error);
1182 }
1183 
1184 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1185 static int
1186 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1187 {
1188 	uint32_t tmp;
1189 	uint16_t reg;
1190 	int error, ntries;
1191 
1192 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1193 		return (error);
1194 
1195 	addr *= 2;
1196 	/*-
1197 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1198 	 * DATA0: F E D C
1199 	 * DATA1: B A 9 8
1200 	 * DATA2: 7 6 5 4
1201 	 * DATA3: 3 2 1 0
1202 	 */
1203 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1204 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1205 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1206 	for (ntries = 0; ntries < 100; ntries++) {
1207 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1208 			return (error);
1209 		if (!(tmp & RT3070_EFSROM_KICK))
1210 			break;
1211 		run_delay(sc, 2);
1212 	}
1213 	if (ntries == 100)
1214 		return (ETIMEDOUT);
1215 
1216 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1217 		*val = 0xffff;	/* address not found */
1218 		return (0);
1219 	}
1220 	/* determine to which 32-bit register our 16-bit word belongs */
1221 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1222 	if ((error = run_read(sc, reg, &tmp)) != 0)
1223 		return (error);
1224 
1225 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1226 	return (0);
1227 }
1228 
1229 static int
1230 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1231 {
1232 	usb_device_request_t req;
1233 	uint16_t tmp;
1234 	int error;
1235 
1236 	addr *= 2;
1237 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1238 	req.bRequest = RT2870_EEPROM_READ;
1239 	USETW(req.wValue, 0);
1240 	USETW(req.wIndex, addr);
1241 	USETW(req.wLength, sizeof tmp);
1242 
1243 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1244 	if (error == 0)
1245 		*val = le16toh(tmp);
1246 	else
1247 		*val = 0xffff;
1248 	return (error);
1249 }
1250 
1251 static __inline int
1252 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1253 {
1254 	/* either eFUSE ROM or EEPROM */
1255 	return sc->sc_srom_read(sc, addr, val);
1256 }
1257 
1258 static int
1259 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1260 {
1261 	uint32_t tmp;
1262 	int error, ntries;
1263 
1264 	for (ntries = 0; ntries < 10; ntries++) {
1265 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1266 			return (error);
1267 		if (!(tmp & RT2860_RF_REG_CTRL))
1268 			break;
1269 	}
1270 	if (ntries == 10)
1271 		return (ETIMEDOUT);
1272 
1273 	/* RF registers are 24-bit on the RT2860 */
1274 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1275 	    (val & 0x3fffff) << 2 | (reg & 3);
1276 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1277 }
1278 
1279 static int
1280 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1281 {
1282 	uint32_t tmp;
1283 	int error, ntries;
1284 
1285 	for (ntries = 0; ntries < 100; ntries++) {
1286 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1287 			return (error);
1288 		if (!(tmp & RT3070_RF_KICK))
1289 			break;
1290 	}
1291 	if (ntries == 100)
1292 		return (ETIMEDOUT);
1293 
1294 	tmp = RT3070_RF_KICK | reg << 8;
1295 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1296 		return (error);
1297 
1298 	for (ntries = 0; ntries < 100; ntries++) {
1299 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1300 			return (error);
1301 		if (!(tmp & RT3070_RF_KICK))
1302 			break;
1303 	}
1304 	if (ntries == 100)
1305 		return (ETIMEDOUT);
1306 
1307 	*val = tmp & 0xff;
1308 	return (0);
1309 }
1310 
1311 static int
1312 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1313 {
1314 	uint32_t tmp;
1315 	int error, ntries;
1316 
1317 	for (ntries = 0; ntries < 10; ntries++) {
1318 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1319 			return (error);
1320 		if (!(tmp & RT3070_RF_KICK))
1321 			break;
1322 	}
1323 	if (ntries == 10)
1324 		return (ETIMEDOUT);
1325 
1326 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1327 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1328 }
1329 
1330 static int
1331 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1332 {
1333 	uint32_t tmp;
1334 	int ntries, error;
1335 
1336 	for (ntries = 0; ntries < 10; ntries++) {
1337 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1338 			return (error);
1339 		if (!(tmp & RT2860_BBP_CSR_KICK))
1340 			break;
1341 	}
1342 	if (ntries == 10)
1343 		return (ETIMEDOUT);
1344 
1345 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1346 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1347 		return (error);
1348 
1349 	for (ntries = 0; ntries < 10; ntries++) {
1350 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1351 			return (error);
1352 		if (!(tmp & RT2860_BBP_CSR_KICK))
1353 			break;
1354 	}
1355 	if (ntries == 10)
1356 		return (ETIMEDOUT);
1357 
1358 	*val = tmp & 0xff;
1359 	return (0);
1360 }
1361 
1362 static int
1363 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1364 {
1365 	uint32_t tmp;
1366 	int ntries, error;
1367 
1368 	for (ntries = 0; ntries < 10; ntries++) {
1369 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1370 			return (error);
1371 		if (!(tmp & RT2860_BBP_CSR_KICK))
1372 			break;
1373 	}
1374 	if (ntries == 10)
1375 		return (ETIMEDOUT);
1376 
1377 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1378 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1379 }
1380 
1381 /*
1382  * Send a command to the 8051 microcontroller unit.
1383  */
1384 static int
1385 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1386 {
1387 	uint32_t tmp;
1388 	int error, ntries;
1389 
1390 	for (ntries = 0; ntries < 100; ntries++) {
1391 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1392 			return error;
1393 		if (!(tmp & RT2860_H2M_BUSY))
1394 			break;
1395 	}
1396 	if (ntries == 100)
1397 		return ETIMEDOUT;
1398 
1399 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1400 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1401 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1402 	return (error);
1403 }
1404 
1405 /*
1406  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1407  * Used to adjust per-rate Tx power registers.
1408  */
1409 static __inline uint32_t
1410 b4inc(uint32_t b32, int8_t delta)
1411 {
1412 	int8_t i, b4;
1413 
1414 	for (i = 0; i < 8; i++) {
1415 		b4 = b32 & 0xf;
1416 		b4 += delta;
1417 		if (b4 < 0)
1418 			b4 = 0;
1419 		else if (b4 > 0xf)
1420 			b4 = 0xf;
1421 		b32 = b32 >> 4 | b4 << 28;
1422 	}
1423 	return (b32);
1424 }
1425 
1426 static const char *
1427 run_get_rf(int rev)
1428 {
1429 	switch (rev) {
1430 	case RT2860_RF_2820:	return "RT2820";
1431 	case RT2860_RF_2850:	return "RT2850";
1432 	case RT2860_RF_2720:	return "RT2720";
1433 	case RT2860_RF_2750:	return "RT2750";
1434 	case RT3070_RF_3020:	return "RT3020";
1435 	case RT3070_RF_2020:	return "RT2020";
1436 	case RT3070_RF_3021:	return "RT3021";
1437 	case RT3070_RF_3022:	return "RT3022";
1438 	case RT3070_RF_3052:	return "RT3052";
1439 	}
1440 	return ("unknown");
1441 }
1442 
1443 int
1444 run_read_eeprom(struct run_softc *sc)
1445 {
1446 	int8_t delta_2ghz, delta_5ghz;
1447 	uint32_t tmp;
1448 	uint16_t val;
1449 	int ridx, ant, i;
1450 
1451 	/* check whether the ROM is eFUSE ROM or EEPROM */
1452 	sc->sc_srom_read = run_eeprom_read_2;
1453 	if (sc->mac_ver >= 0x3070) {
1454 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1455 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1456 		if (tmp & RT3070_SEL_EFUSE)
1457 			sc->sc_srom_read = run_efuse_read_2;
1458 	}
1459 
1460 	/* read ROM version */
1461 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1462 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1463 
1464 	/* read MAC address */
1465 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1466 	sc->sc_bssid[0] = val & 0xff;
1467 	sc->sc_bssid[1] = val >> 8;
1468 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1469 	sc->sc_bssid[2] = val & 0xff;
1470 	sc->sc_bssid[3] = val >> 8;
1471 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1472 	sc->sc_bssid[4] = val & 0xff;
1473 	sc->sc_bssid[5] = val >> 8;
1474 
1475 	/* read vender BBP settings */
1476 	for (i = 0; i < 10; i++) {
1477 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1478 		sc->bbp[i].val = val & 0xff;
1479 		sc->bbp[i].reg = val >> 8;
1480 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1481 	}
1482 	if (sc->mac_ver >= 0x3071) {
1483 		/* read vendor RF settings */
1484 		for (i = 0; i < 10; i++) {
1485 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1486 			sc->rf[i].val = val & 0xff;
1487 			sc->rf[i].reg = val >> 8;
1488 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1489 			    sc->rf[i].val);
1490 		}
1491 	}
1492 
1493 	/* read RF frequency offset from EEPROM */
1494 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1495 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1496 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1497 
1498 	if (val >> 8 != 0xff) {
1499 		/* read LEDs operating mode */
1500 		sc->leds = val >> 8;
1501 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1502 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1503 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1504 	} else {
1505 		/* broken EEPROM, use default settings */
1506 		sc->leds = 0x01;
1507 		sc->led[0] = 0x5555;
1508 		sc->led[1] = 0x2221;
1509 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1510 	}
1511 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1512 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1513 
1514 	/* read RF information */
1515 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1516 	if (val == 0xffff) {
1517 		DPRINTF("invalid EEPROM antenna info, using default\n");
1518 		if (sc->mac_ver == 0x3572) {
1519 			/* default to RF3052 2T2R */
1520 			sc->rf_rev = RT3070_RF_3052;
1521 			sc->ntxchains = 2;
1522 			sc->nrxchains = 2;
1523 		} else if (sc->mac_ver >= 0x3070) {
1524 			/* default to RF3020 1T1R */
1525 			sc->rf_rev = RT3070_RF_3020;
1526 			sc->ntxchains = 1;
1527 			sc->nrxchains = 1;
1528 		} else {
1529 			/* default to RF2820 1T2R */
1530 			sc->rf_rev = RT2860_RF_2820;
1531 			sc->ntxchains = 1;
1532 			sc->nrxchains = 2;
1533 		}
1534 	} else {
1535 		sc->rf_rev = (val >> 8) & 0xf;
1536 		sc->ntxchains = (val >> 4) & 0xf;
1537 		sc->nrxchains = val & 0xf;
1538 	}
1539 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1540 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1541 
1542 	/* check if RF supports automatic Tx access gain control */
1543 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1544 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1545 	/* check if driver should patch the DAC issue */
1546 	if ((val >> 8) != 0xff)
1547 		sc->patch_dac = (val >> 15) & 1;
1548 	if ((val & 0xff) != 0xff) {
1549 		sc->ext_5ghz_lna = (val >> 3) & 1;
1550 		sc->ext_2ghz_lna = (val >> 2) & 1;
1551 		/* check if RF supports automatic Tx access gain control */
1552 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1553 		/* check if we have a hardware radio switch */
1554 		sc->rfswitch = val & 1;
1555 	}
1556 
1557 	/* read power settings for 2GHz channels */
1558 	for (i = 0; i < 14; i += 2) {
1559 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1560 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1561 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1562 
1563 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1564 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1565 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1566 	}
1567 	/* fix broken Tx power entries */
1568 	for (i = 0; i < 14; i++) {
1569 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1570 			sc->txpow1[i] = 5;
1571 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1572 			sc->txpow2[i] = 5;
1573 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1574 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1575 	}
1576 	/* read power settings for 5GHz channels */
1577 	for (i = 0; i < 40; i += 2) {
1578 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1579 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1580 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1581 
1582 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1583 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1584 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1585 	}
1586 	/* fix broken Tx power entries */
1587 	for (i = 0; i < 40; i++) {
1588 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1589 			sc->txpow1[14 + i] = 5;
1590 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1591 			sc->txpow2[14 + i] = 5;
1592 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1593 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1594 		    sc->txpow2[14 + i]);
1595 	}
1596 
1597 	/* read Tx power compensation for each Tx rate */
1598 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1599 	delta_2ghz = delta_5ghz = 0;
1600 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1601 		delta_2ghz = val & 0xf;
1602 		if (!(val & 0x40))	/* negative number */
1603 			delta_2ghz = -delta_2ghz;
1604 	}
1605 	val >>= 8;
1606 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1607 		delta_5ghz = val & 0xf;
1608 		if (!(val & 0x40))	/* negative number */
1609 			delta_5ghz = -delta_5ghz;
1610 	}
1611 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1612 	    delta_2ghz, delta_5ghz);
1613 
1614 	for (ridx = 0; ridx < 5; ridx++) {
1615 		uint32_t reg;
1616 
1617 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1618 		reg = val;
1619 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1620 		reg |= (uint32_t)val << 16;
1621 
1622 		sc->txpow20mhz[ridx] = reg;
1623 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1624 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1625 
1626 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1627 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1628 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1629 	}
1630 
1631 	/* read RSSI offsets and LNA gains from EEPROM */
1632 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1633 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1634 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1635 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1636 	if (sc->mac_ver >= 0x3070) {
1637 		/*
1638 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1639 		 * field contains the Tx mixer gain for the 2GHz band.
1640 		 */
1641 		if ((val & 0xff) != 0xff)
1642 			sc->txmixgain_2ghz = val & 0x7;
1643 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1644 	} else
1645 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1646 	sc->lna[2] = val >> 8;		/* channel group 2 */
1647 
1648 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1649 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1650 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1651 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1652 	if (sc->mac_ver == 0x3572) {
1653 		/*
1654 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1655 		 * field contains the Tx mixer gain for the 5GHz band.
1656 		 */
1657 		if ((val & 0xff) != 0xff)
1658 			sc->txmixgain_5ghz = val & 0x7;
1659 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1660 	} else
1661 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1662 	sc->lna[3] = val >> 8;		/* channel group 3 */
1663 
1664 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1665 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1666 	sc->lna[1] = val >> 8;		/* channel group 1 */
1667 
1668 	/* fix broken 5GHz LNA entries */
1669 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1670 		DPRINTF("invalid LNA for channel group %d\n", 2);
1671 		sc->lna[2] = sc->lna[1];
1672 	}
1673 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1674 		DPRINTF("invalid LNA for channel group %d\n", 3);
1675 		sc->lna[3] = sc->lna[1];
1676 	}
1677 
1678 	/* fix broken RSSI offset entries */
1679 	for (ant = 0; ant < 3; ant++) {
1680 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1681 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1682 			    ant + 1, sc->rssi_2ghz[ant]);
1683 			sc->rssi_2ghz[ant] = 0;
1684 		}
1685 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1686 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1687 			    ant + 1, sc->rssi_5ghz[ant]);
1688 			sc->rssi_5ghz[ant] = 0;
1689 		}
1690 	}
1691 	return (0);
1692 }
1693 
1694 static struct ieee80211_node *
1695 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1696 {
1697 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1698 }
1699 
1700 static int
1701 run_media_change(struct ifnet *ifp)
1702 {
1703 	struct ieee80211vap *vap = ifp->if_softc;
1704 	struct ieee80211com *ic = vap->iv_ic;
1705 	const struct ieee80211_txparam *tp;
1706 	struct run_softc *sc = ic->ic_ifp->if_softc;
1707 	uint8_t rate, ridx;
1708 	int error;
1709 
1710 	RUN_LOCK(sc);
1711 
1712 	error = ieee80211_media_change(ifp);
1713 	if (error != ENETRESET) {
1714 		RUN_UNLOCK(sc);
1715 		return (error);
1716 	}
1717 
1718 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1719 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1720 		struct ieee80211_node *ni;
1721 		struct run_node	*rn;
1722 
1723 		rate = ic->ic_sup_rates[ic->ic_curmode].
1724 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1725 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1726 			if (rt2860_rates[ridx].rate == rate)
1727 				break;
1728 		ni = ieee80211_ref_node(vap->iv_bss);
1729 		rn = (struct run_node *)ni;
1730 		rn->fix_ridx = ridx;
1731 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1732 		ieee80211_free_node(ni);
1733 	}
1734 
1735 #if 0
1736 	if ((ifp->if_flags & IFF_UP) &&
1737 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1738 		run_init_locked(sc);
1739 	}
1740 #endif
1741 
1742 	RUN_UNLOCK(sc);
1743 
1744 	return (0);
1745 }
1746 
1747 static int
1748 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1749 {
1750 	const struct ieee80211_txparam *tp;
1751 	struct ieee80211com *ic = vap->iv_ic;
1752 	struct run_softc *sc = ic->ic_ifp->if_softc;
1753 	struct run_vap *rvp = RUN_VAP(vap);
1754 	enum ieee80211_state ostate;
1755 	uint32_t sta[3];
1756 	uint32_t tmp;
1757 	uint8_t ratectl;
1758 	uint8_t restart_ratectl = 0;
1759 	uint8_t bid = 1 << rvp->rvp_id;
1760 
1761 	ostate = vap->iv_state;
1762 	DPRINTF("%s -> %s\n",
1763 		ieee80211_state_name[ostate],
1764 		ieee80211_state_name[nstate]);
1765 
1766 	IEEE80211_UNLOCK(ic);
1767 	RUN_LOCK(sc);
1768 
1769 	ratectl = sc->ratectl_run; /* remember current state */
1770 	sc->ratectl_run = RUN_RATECTL_OFF;
1771 	usb_callout_stop(&sc->ratectl_ch);
1772 
1773 	if (ostate == IEEE80211_S_RUN) {
1774 		/* turn link LED off */
1775 		run_set_leds(sc, RT2860_LED_RADIO);
1776 	}
1777 
1778 	switch (nstate) {
1779 	case IEEE80211_S_INIT:
1780 		restart_ratectl = 1;
1781 
1782 		if (ostate != IEEE80211_S_RUN)
1783 			break;
1784 
1785 		ratectl &= ~bid;
1786 		sc->runbmap &= ~bid;
1787 
1788 		/* abort TSF synchronization if there is no vap running */
1789 		if (--sc->running == 0) {
1790 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1791 			run_write(sc, RT2860_BCN_TIME_CFG,
1792 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1793 			    RT2860_TBTT_TIMER_EN));
1794 		}
1795 		break;
1796 
1797 	case IEEE80211_S_RUN:
1798 		if (!(sc->runbmap & bid)) {
1799 			if(sc->running++)
1800 				restart_ratectl = 1;
1801 			sc->runbmap |= bid;
1802 		}
1803 
1804 		m_freem(rvp->beacon_mbuf);
1805 		rvp->beacon_mbuf = NULL;
1806 
1807 		switch (vap->iv_opmode) {
1808 		case IEEE80211_M_HOSTAP:
1809 		case IEEE80211_M_MBSS:
1810 			sc->ap_running |= bid;
1811 			ic->ic_opmode = vap->iv_opmode;
1812 			run_update_beacon_cb(vap);
1813 			break;
1814 		case IEEE80211_M_IBSS:
1815 			sc->adhoc_running |= bid;
1816 			if (!sc->ap_running)
1817 				ic->ic_opmode = vap->iv_opmode;
1818 			run_update_beacon_cb(vap);
1819 			break;
1820 		case IEEE80211_M_STA:
1821 			sc->sta_running |= bid;
1822 			if (!sc->ap_running && !sc->adhoc_running)
1823 				ic->ic_opmode = vap->iv_opmode;
1824 
1825 			/* read statistic counters (clear on read) */
1826 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1827 			    (uint8_t *)sta, sizeof sta);
1828 
1829 			break;
1830 		default:
1831 			ic->ic_opmode = vap->iv_opmode;
1832 			break;
1833 		}
1834 
1835 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1836 			struct ieee80211_node *ni;
1837 
1838 			run_updateslot(ic->ic_ifp);
1839 			run_enable_mrr(sc);
1840 			run_set_txpreamble(sc);
1841 			run_set_basicrates(sc);
1842 			ni = ieee80211_ref_node(vap->iv_bss);
1843 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1844 			run_set_bssid(sc, ni->ni_bssid);
1845 			ieee80211_free_node(ni);
1846 			run_enable_tsf_sync(sc);
1847 
1848 			/* enable automatic rate adaptation */
1849 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1850 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1851 				ratectl |= bid;
1852 		}
1853 
1854 		/* turn link LED on */
1855 		run_set_leds(sc, RT2860_LED_RADIO |
1856 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1857 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1858 
1859 		break;
1860 	default:
1861 		DPRINTFN(6, "undefined case\n");
1862 		break;
1863 	}
1864 
1865 	/* restart amrr for running VAPs */
1866 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1867 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1868 
1869 	RUN_UNLOCK(sc);
1870 	IEEE80211_LOCK(ic);
1871 
1872 	return(rvp->newstate(vap, nstate, arg));
1873 }
1874 
1875 /* ARGSUSED */
1876 static void
1877 run_wme_update_cb(void *arg)
1878 {
1879 	struct ieee80211com *ic = arg;
1880 	struct run_softc *sc = ic->ic_ifp->if_softc;
1881 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1882 	int aci, error = 0;
1883 
1884 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1885 
1886 	/* update MAC TX configuration registers */
1887 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1888 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1889 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1890 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1891 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1892 		    wmesp->wme_params[aci].wmep_txopLimit);
1893 		if (error) goto err;
1894 	}
1895 
1896 	/* update SCH/DMA registers too */
1897 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1898 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1899 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1900 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1901 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1902 	if (error) goto err;
1903 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1904 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1905 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1906 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1907 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1908 	if (error) goto err;
1909 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1910 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1911 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1912 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1913 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1914 	if (error) goto err;
1915 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1916 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1917 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1918 	if (error) goto err;
1919 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1920 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1921 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1922 
1923 err:
1924 	if (error)
1925 		DPRINTF("WME update failed\n");
1926 
1927 	return;
1928 }
1929 
1930 static int
1931 run_wme_update(struct ieee80211com *ic)
1932 {
1933 	struct run_softc *sc = ic->ic_ifp->if_softc;
1934 
1935 	/* sometime called wothout lock */
1936 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1937 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1938 		DPRINTF("cmdq_store=%d\n", i);
1939 		sc->cmdq[i].func = run_wme_update_cb;
1940 		sc->cmdq[i].arg0 = ic;
1941 		ieee80211_runtask(ic, &sc->cmdq_task);
1942 		return (0);
1943 	}
1944 
1945 	RUN_LOCK(sc);
1946 	run_wme_update_cb(ic);
1947 	RUN_UNLOCK(sc);
1948 
1949 	/* return whatever, upper layer desn't care anyway */
1950 	return (0);
1951 }
1952 
1953 static void
1954 run_key_update_begin(struct ieee80211vap *vap)
1955 {
1956 	/*
1957 	 * To avoid out-of-order events, both run_key_set() and
1958 	 * _delete() are deferred and handled by run_cmdq_cb().
1959 	 * So, there is nothing we need to do here.
1960 	 */
1961 }
1962 
1963 static void
1964 run_key_update_end(struct ieee80211vap *vap)
1965 {
1966 	/* null */
1967 }
1968 
1969 static void
1970 run_key_set_cb(void *arg)
1971 {
1972 	struct run_cmdq *cmdq = arg;
1973 	struct ieee80211vap *vap = cmdq->arg1;
1974 	struct ieee80211_key *k = cmdq->k;
1975 	struct ieee80211com *ic = vap->iv_ic;
1976 	struct run_softc *sc = ic->ic_ifp->if_softc;
1977 	struct ieee80211_node *ni;
1978 	uint32_t attr;
1979 	uint16_t base, associd;
1980 	uint8_t mode, wcid, iv[8];
1981 
1982 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1983 
1984 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1985 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1986 	else
1987 		ni = vap->iv_bss;
1988 	associd = (ni != NULL) ? ni->ni_associd : 0;
1989 
1990 	/* map net80211 cipher to RT2860 security mode */
1991 	switch (k->wk_cipher->ic_cipher) {
1992 	case IEEE80211_CIPHER_WEP:
1993 		if(k->wk_keylen < 8)
1994 			mode = RT2860_MODE_WEP40;
1995 		else
1996 			mode = RT2860_MODE_WEP104;
1997 		break;
1998 	case IEEE80211_CIPHER_TKIP:
1999 		mode = RT2860_MODE_TKIP;
2000 		break;
2001 	case IEEE80211_CIPHER_AES_CCM:
2002 		mode = RT2860_MODE_AES_CCMP;
2003 		break;
2004 	default:
2005 		DPRINTF("undefined case\n");
2006 		return;
2007 	}
2008 
2009 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2010 	    associd, k->wk_keyix, mode,
2011 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2012 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2013 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2014 
2015 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2016 		wcid = 0;	/* NB: update WCID0 for group keys */
2017 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2018 	} else {
2019 		wcid = RUN_AID2WCID(associd);
2020 		base = RT2860_PKEY(wcid);
2021 	}
2022 
2023 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2024 		if(run_write_region_1(sc, base, k->wk_key, 16))
2025 			return;
2026 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2027 			return;
2028 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2029 			return;
2030 	} else {
2031 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2032 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2033 			return;
2034 	}
2035 
2036 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2037 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2038 		/* set initial packet number in IV+EIV */
2039 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2040 			memset(iv, 0, sizeof iv);
2041 			iv[3] = vap->iv_def_txkey << 6;
2042 		} else {
2043 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2044 				iv[0] = k->wk_keytsc >> 8;
2045 				iv[1] = (iv[0] | 0x20) & 0x7f;
2046 				iv[2] = k->wk_keytsc;
2047 			} else /* CCMP */ {
2048 				iv[0] = k->wk_keytsc;
2049 				iv[1] = k->wk_keytsc >> 8;
2050 				iv[2] = 0;
2051 			}
2052 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2053 			iv[4] = k->wk_keytsc >> 16;
2054 			iv[5] = k->wk_keytsc >> 24;
2055 			iv[6] = k->wk_keytsc >> 32;
2056 			iv[7] = k->wk_keytsc >> 40;
2057 		}
2058 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2059 			return;
2060 	}
2061 
2062 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2063 		/* install group key */
2064 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2065 			return;
2066 		attr &= ~(0xf << (k->wk_keyix * 4));
2067 		attr |= mode << (k->wk_keyix * 4);
2068 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2069 			return;
2070 	} else {
2071 		/* install pairwise key */
2072 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2073 			return;
2074 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2075 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2076 			return;
2077 	}
2078 
2079 	/* TODO create a pass-thru key entry? */
2080 
2081 	/* need wcid to delete the right key later */
2082 	k->wk_pad = wcid;
2083 }
2084 
2085 /*
2086  * Don't have to be deferred, but in order to keep order of
2087  * execution, i.e. with run_key_delete(), defer this and let
2088  * run_cmdq_cb() maintain the order.
2089  *
2090  * return 0 on error
2091  */
2092 static int
2093 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2094 		const uint8_t mac[IEEE80211_ADDR_LEN])
2095 {
2096 	struct ieee80211com *ic = vap->iv_ic;
2097 	struct run_softc *sc = ic->ic_ifp->if_softc;
2098 	uint32_t i;
2099 
2100 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2101 	DPRINTF("cmdq_store=%d\n", i);
2102 	sc->cmdq[i].func = run_key_set_cb;
2103 	sc->cmdq[i].arg0 = NULL;
2104 	sc->cmdq[i].arg1 = vap;
2105 	sc->cmdq[i].k = k;
2106 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2107 	ieee80211_runtask(ic, &sc->cmdq_task);
2108 
2109 	/*
2110 	 * To make sure key will be set when hostapd
2111 	 * calls iv_key_set() before if_init().
2112 	 */
2113 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2114 		RUN_LOCK(sc);
2115 		sc->cmdq_key_set = RUN_CMDQ_GO;
2116 		RUN_UNLOCK(sc);
2117 	}
2118 
2119 	return (1);
2120 }
2121 
2122 /*
2123  * If wlan is destroyed without being brought down i.e. without
2124  * wlan down or wpa_cli terminate, this function is called after
2125  * vap is gone. Don't refer it.
2126  */
2127 static void
2128 run_key_delete_cb(void *arg)
2129 {
2130 	struct run_cmdq *cmdq = arg;
2131 	struct run_softc *sc = cmdq->arg1;
2132 	struct ieee80211_key *k = &cmdq->key;
2133 	uint32_t attr;
2134 	uint8_t wcid;
2135 
2136 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2137 
2138 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2139 		/* remove group key */
2140 		DPRINTF("removing group key\n");
2141 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2142 		attr &= ~(0xf << (k->wk_keyix * 4));
2143 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2144 	} else {
2145 		/* remove pairwise key */
2146 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2147 		/* matching wcid was written to wk_pad in run_key_set() */
2148 		wcid = k->wk_pad;
2149 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2150 		attr &= ~0xf;
2151 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2152 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2153 	}
2154 
2155 	k->wk_pad = 0;
2156 }
2157 
2158 /*
2159  * return 0 on error
2160  */
2161 static int
2162 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2163 {
2164 	struct ieee80211com *ic = vap->iv_ic;
2165 	struct run_softc *sc = ic->ic_ifp->if_softc;
2166 	struct ieee80211_key *k0;
2167 	uint32_t i;
2168 
2169 	/*
2170 	 * When called back, key might be gone. So, make a copy
2171 	 * of some values need to delete keys before deferring.
2172 	 * But, because of LOR with node lock, cannot use lock here.
2173 	 * So, use atomic instead.
2174 	 */
2175 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2176 	DPRINTF("cmdq_store=%d\n", i);
2177 	sc->cmdq[i].func = run_key_delete_cb;
2178 	sc->cmdq[i].arg0 = NULL;
2179 	sc->cmdq[i].arg1 = sc;
2180 	k0 = &sc->cmdq[i].key;
2181 	k0->wk_flags = k->wk_flags;
2182 	k0->wk_keyix = k->wk_keyix;
2183 	/* matching wcid was written to wk_pad in run_key_set() */
2184 	k0->wk_pad = k->wk_pad;
2185 	ieee80211_runtask(ic, &sc->cmdq_task);
2186 	return (1);	/* return fake success */
2187 
2188 }
2189 
2190 static void
2191 run_ratectl_to(void *arg)
2192 {
2193 	struct run_softc *sc = arg;
2194 
2195 	/* do it in a process context, so it can go sleep */
2196 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2197 	/* next timeout will be rescheduled in the callback task */
2198 }
2199 
2200 /* ARGSUSED */
2201 static void
2202 run_ratectl_cb(void *arg, int pending)
2203 {
2204 	struct run_softc *sc = arg;
2205 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2206 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2207 
2208 	if (vap == NULL)
2209 		return;
2210 
2211 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2212 		run_iter_func(sc, vap->iv_bss);
2213 	else {
2214 		/*
2215 		 * run_reset_livelock() doesn't do anything with AMRR,
2216 		 * but Ralink wants us to call it every 1 sec. So, we
2217 		 * piggyback here rather than creating another callout.
2218 		 * Livelock may occur only in HOSTAP or IBSS mode
2219 		 * (when h/w is sending beacons).
2220 		 */
2221 		RUN_LOCK(sc);
2222 		run_reset_livelock(sc);
2223 		/* just in case, there are some stats to drain */
2224 		run_drain_fifo(sc);
2225 		RUN_UNLOCK(sc);
2226 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2227 	}
2228 
2229 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2230 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2231 }
2232 
2233 static void
2234 run_drain_fifo(void *arg)
2235 {
2236 	struct run_softc *sc = arg;
2237 	struct ifnet *ifp = sc->sc_ifp;
2238 	uint32_t stat;
2239 	uint16_t (*wstat)[3];
2240 	uint8_t wcid, mcs, pid;
2241 	int8_t retry;
2242 
2243 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2244 
2245 	for (;;) {
2246 		/* drain Tx status FIFO (maxsize = 16) */
2247 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2248 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2249 		if (!(stat & RT2860_TXQ_VLD))
2250 			break;
2251 
2252 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2253 
2254 		/* if no ACK was requested, no feedback is available */
2255 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2256 		    wcid == 0)
2257 			continue;
2258 
2259 		/*
2260 		 * Even though each stat is Tx-complete-status like format,
2261 		 * the device can poll stats. Because there is no guarantee
2262 		 * that the referring node is still around when read the stats.
2263 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2264 		 * have hard time not to refer already freed node.
2265 		 *
2266 		 * To eliminate such page faults, we poll stats in softc.
2267 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2268 		 */
2269 		wstat = &(sc->wcid_stats[wcid]);
2270 		(*wstat)[RUN_TXCNT]++;
2271 		if (stat & RT2860_TXQ_OK)
2272 			(*wstat)[RUN_SUCCESS]++;
2273 		else
2274 			ifp->if_oerrors++;
2275 		/*
2276 		 * Check if there were retries, ie if the Tx success rate is
2277 		 * different from the requested rate. Note that it works only
2278 		 * because we do not allow rate fallback from OFDM to CCK.
2279 		 */
2280 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2281 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2282 		if ((retry = pid -1 - mcs) > 0) {
2283 			(*wstat)[RUN_TXCNT] += retry;
2284 			(*wstat)[RUN_RETRY] += retry;
2285 		}
2286 	}
2287 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2288 
2289 	sc->fifo_cnt = 0;
2290 }
2291 
2292 static void
2293 run_iter_func(void *arg, struct ieee80211_node *ni)
2294 {
2295 	struct run_softc *sc = arg;
2296 	struct ieee80211vap *vap = ni->ni_vap;
2297 	struct ieee80211com *ic = ni->ni_ic;
2298 	struct ifnet *ifp = ic->ic_ifp;
2299 	struct run_node *rn = (void *)ni;
2300 	union run_stats sta[2];
2301 	uint16_t (*wstat)[3];
2302 	int txcnt, success, retrycnt, error;
2303 
2304 	RUN_LOCK(sc);
2305 
2306 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2307 	    vap->iv_opmode == IEEE80211_M_STA)) {
2308 		/* read statistic counters (clear on read) and update AMRR state */
2309 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2310 		    sizeof sta);
2311 		if (error != 0)
2312 			goto fail;
2313 
2314 		/* count failed TX as errors */
2315 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2316 
2317 		retrycnt = le16toh(sta[1].tx.retry);
2318 		success = le16toh(sta[1].tx.success);
2319 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2320 
2321 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2322 			retrycnt, success, le16toh(sta[0].error.fail));
2323 	} else {
2324 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2325 
2326 		if (wstat == &(sc->wcid_stats[0]) ||
2327 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2328 			goto fail;
2329 
2330 		txcnt = (*wstat)[RUN_TXCNT];
2331 		success = (*wstat)[RUN_SUCCESS];
2332 		retrycnt = (*wstat)[RUN_RETRY];
2333 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2334 		    retrycnt, txcnt, success);
2335 
2336 		memset(wstat, 0, sizeof(*wstat));
2337 	}
2338 
2339 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2340 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2341 
2342 fail:
2343 	RUN_UNLOCK(sc);
2344 
2345 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2346 }
2347 
2348 static void
2349 run_newassoc_cb(void *arg)
2350 {
2351 	struct run_cmdq *cmdq = arg;
2352 	struct ieee80211_node *ni = cmdq->arg1;
2353 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2354 	uint8_t wcid = cmdq->wcid;
2355 
2356 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2357 
2358 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2359 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2360 
2361 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2362 }
2363 
2364 static void
2365 run_newassoc(struct ieee80211_node *ni, int isnew)
2366 {
2367 	struct run_node *rn = (void *)ni;
2368 	struct ieee80211_rateset *rs = &ni->ni_rates;
2369 	struct ieee80211vap *vap = ni->ni_vap;
2370 	struct ieee80211com *ic = vap->iv_ic;
2371 	struct run_softc *sc = ic->ic_ifp->if_softc;
2372 	uint8_t rate;
2373 	uint8_t ridx;
2374 	uint8_t wcid = RUN_AID2WCID(ni->ni_associd);
2375 	int i, j;
2376 
2377 	if (wcid > RT2870_WCID_MAX) {
2378 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2379 		return;
2380 	}
2381 
2382 	/* only interested in true associations */
2383 	if (isnew && ni->ni_associd != 0) {
2384 
2385 		/*
2386 		 * This function could is called though timeout function.
2387 		 * Need to defer.
2388 		 */
2389 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2390 		DPRINTF("cmdq_store=%d\n", cnt);
2391 		sc->cmdq[cnt].func = run_newassoc_cb;
2392 		sc->cmdq[cnt].arg0 = NULL;
2393 		sc->cmdq[cnt].arg1 = ni;
2394 		sc->cmdq[cnt].wcid = wcid;
2395 		ieee80211_runtask(ic, &sc->cmdq_task);
2396 	}
2397 
2398 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2399 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2400 
2401 	for (i = 0; i < rs->rs_nrates; i++) {
2402 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2403 		/* convert 802.11 rate to hardware rate index */
2404 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2405 			if (rt2860_rates[ridx].rate == rate)
2406 				break;
2407 		rn->ridx[i] = ridx;
2408 		/* determine rate of control response frames */
2409 		for (j = i; j >= 0; j--) {
2410 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2411 			    rt2860_rates[rn->ridx[i]].phy ==
2412 			    rt2860_rates[rn->ridx[j]].phy)
2413 				break;
2414 		}
2415 		if (j >= 0) {
2416 			rn->ctl_ridx[i] = rn->ridx[j];
2417 		} else {
2418 			/* no basic rate found, use mandatory one */
2419 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2420 		}
2421 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2422 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2423 	}
2424 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2425 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2426 		if (rt2860_rates[ridx].rate == rate)
2427 			break;
2428 	rn->mgt_ridx = ridx;
2429 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2430 
2431 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2432 }
2433 
2434 /*
2435  * Return the Rx chain with the highest RSSI for a given frame.
2436  */
2437 static __inline uint8_t
2438 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2439 {
2440 	uint8_t rxchain = 0;
2441 
2442 	if (sc->nrxchains > 1) {
2443 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2444 			rxchain = 1;
2445 		if (sc->nrxchains > 2)
2446 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2447 				rxchain = 2;
2448 	}
2449 	return (rxchain);
2450 }
2451 
2452 static void
2453 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2454 {
2455 	struct ifnet *ifp = sc->sc_ifp;
2456 	struct ieee80211com *ic = ifp->if_l2com;
2457 	struct ieee80211_frame *wh;
2458 	struct ieee80211_node *ni;
2459 	struct rt2870_rxd *rxd;
2460 	struct rt2860_rxwi *rxwi;
2461 	uint32_t flags;
2462 	uint16_t len, phy;
2463 	uint8_t ant, rssi;
2464 	int8_t nf;
2465 
2466 	rxwi = mtod(m, struct rt2860_rxwi *);
2467 	len = le16toh(rxwi->len) & 0xfff;
2468 	if (__predict_false(len > dmalen)) {
2469 		m_freem(m);
2470 		ifp->if_ierrors++;
2471 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2472 		return;
2473 	}
2474 	/* Rx descriptor is located at the end */
2475 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2476 	flags = le32toh(rxd->flags);
2477 
2478 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2479 		m_freem(m);
2480 		ifp->if_ierrors++;
2481 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2482 		return;
2483 	}
2484 
2485 	m->m_data += sizeof(struct rt2860_rxwi);
2486 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2487 
2488 	wh = mtod(m, struct ieee80211_frame *);
2489 
2490 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2491 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2492 		m->m_flags |= M_WEP;
2493 	}
2494 
2495 	if (flags & RT2860_RX_L2PAD) {
2496 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2497 		len += 2;
2498 	}
2499 
2500 	ni = ieee80211_find_rxnode(ic,
2501 	    mtod(m, struct ieee80211_frame_min *));
2502 
2503 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2504 		/* report MIC failures to net80211 for TKIP */
2505 		if (ni != NULL)
2506 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2507 		m_freem(m);
2508 		ifp->if_ierrors++;
2509 		DPRINTF("MIC error. Someone is lying.\n");
2510 		return;
2511 	}
2512 
2513 	ant = run_maxrssi_chain(sc, rxwi);
2514 	rssi = rxwi->rssi[ant];
2515 	nf = run_rssi2dbm(sc, rssi, ant);
2516 
2517 	m->m_pkthdr.rcvif = ifp;
2518 	m->m_pkthdr.len = m->m_len = len;
2519 
2520 	if (ni != NULL) {
2521 		(void)ieee80211_input(ni, m, rssi, nf);
2522 		ieee80211_free_node(ni);
2523 	} else {
2524 		(void)ieee80211_input_all(ic, m, rssi, nf);
2525 	}
2526 
2527 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2528 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2529 
2530 		tap->wr_flags = 0;
2531 		tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq);
2532 		tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags);
2533 		tap->wr_antsignal = rssi;
2534 		tap->wr_antenna = ant;
2535 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2536 		tap->wr_rate = 2;	/* in case it can't be found below */
2537 		phy = le16toh(rxwi->phy);
2538 		switch (phy & RT2860_PHY_MODE) {
2539 		case RT2860_PHY_CCK:
2540 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2541 			case 0:	tap->wr_rate =   2; break;
2542 			case 1:	tap->wr_rate =   4; break;
2543 			case 2:	tap->wr_rate =  11; break;
2544 			case 3:	tap->wr_rate =  22; break;
2545 			}
2546 			if (phy & RT2860_PHY_SHPRE)
2547 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2548 			break;
2549 		case RT2860_PHY_OFDM:
2550 			switch (phy & RT2860_PHY_MCS) {
2551 			case 0:	tap->wr_rate =  12; break;
2552 			case 1:	tap->wr_rate =  18; break;
2553 			case 2:	tap->wr_rate =  24; break;
2554 			case 3:	tap->wr_rate =  36; break;
2555 			case 4:	tap->wr_rate =  48; break;
2556 			case 5:	tap->wr_rate =  72; break;
2557 			case 6:	tap->wr_rate =  96; break;
2558 			case 7:	tap->wr_rate = 108; break;
2559 			}
2560 			break;
2561 		}
2562 	}
2563 }
2564 
2565 static void
2566 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2567 {
2568 	struct run_softc *sc = usbd_xfer_softc(xfer);
2569 	struct ifnet *ifp = sc->sc_ifp;
2570 	struct mbuf *m = NULL;
2571 	struct mbuf *m0;
2572 	uint32_t dmalen;
2573 	int xferlen;
2574 
2575 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2576 
2577 	switch (USB_GET_STATE(xfer)) {
2578 	case USB_ST_TRANSFERRED:
2579 
2580 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2581 
2582 		if (xferlen < sizeof (uint32_t) +
2583 		    sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) {
2584 			DPRINTF("xfer too short %d\n", xferlen);
2585 			goto tr_setup;
2586 		}
2587 
2588 		m = sc->rx_m;
2589 		sc->rx_m = NULL;
2590 
2591 		/* FALLTHROUGH */
2592 	case USB_ST_SETUP:
2593 tr_setup:
2594 		if (sc->rx_m == NULL) {
2595 			sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
2596 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2597 		}
2598 		if (sc->rx_m == NULL) {
2599 			DPRINTF("could not allocate mbuf - idle with stall\n");
2600 			ifp->if_ierrors++;
2601 			usbd_xfer_set_stall(xfer);
2602 			usbd_xfer_set_frames(xfer, 0);
2603 		} else {
2604 			/*
2605 			 * Directly loading a mbuf cluster into DMA to
2606 			 * save some data copying. This works because
2607 			 * there is only one cluster.
2608 			 */
2609 			usbd_xfer_set_frame_data(xfer, 0,
2610 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2611 			usbd_xfer_set_frames(xfer, 1);
2612 		}
2613 		usbd_transfer_submit(xfer);
2614 		break;
2615 
2616 	default:	/* Error */
2617 		if (error != USB_ERR_CANCELLED) {
2618 			/* try to clear stall first */
2619 			usbd_xfer_set_stall(xfer);
2620 
2621 			if (error == USB_ERR_TIMEOUT)
2622 				device_printf(sc->sc_dev, "device timeout\n");
2623 
2624 			ifp->if_ierrors++;
2625 
2626 			goto tr_setup;
2627 		}
2628 		if (sc->rx_m != NULL) {
2629 			m_freem(sc->rx_m);
2630 			sc->rx_m = NULL;
2631 		}
2632 		break;
2633 	}
2634 
2635 	if (m == NULL)
2636 		return;
2637 
2638 	/* inputting all the frames must be last */
2639 
2640 	RUN_UNLOCK(sc);
2641 
2642 	m->m_pkthdr.len = m->m_len = xferlen;
2643 
2644 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2645 	for(;;) {
2646 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2647 
2648 		if ((dmalen == 0) || ((dmalen & 3) != 0)) {
2649 			DPRINTF("bad DMA length %u\n", dmalen);
2650 			break;
2651 		}
2652 		if ((dmalen + 8) > xferlen) {
2653 			DPRINTF("bad DMA length %u > %d\n",
2654 			dmalen + 8, xferlen);
2655 			break;
2656 		}
2657 
2658 		/* If it is the last one or a single frame, we won't copy. */
2659 		if ((xferlen -= dmalen + 8) <= 8) {
2660 			/* trim 32-bit DMA-len header */
2661 			m->m_data += 4;
2662 			m->m_pkthdr.len = m->m_len -= 4;
2663 			run_rx_frame(sc, m, dmalen);
2664 			break;
2665 		}
2666 
2667 		/* copy aggregated frames to another mbuf */
2668 		m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2669 		if (__predict_false(m0 == NULL)) {
2670 			DPRINTF("could not allocate mbuf\n");
2671 			ifp->if_ierrors++;
2672 			break;
2673 		}
2674 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2675 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2676 		m0->m_pkthdr.len = m0->m_len =
2677 		    dmalen + sizeof(struct rt2870_rxd);
2678 		run_rx_frame(sc, m0, dmalen);
2679 
2680 		/* update data ptr */
2681 		m->m_data += dmalen + 8;
2682 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2683 	}
2684 
2685 	RUN_LOCK(sc);
2686 }
2687 
2688 static void
2689 run_tx_free(struct run_endpoint_queue *pq,
2690     struct run_tx_data *data, int txerr)
2691 {
2692 	if (data->m != NULL) {
2693 		if (data->m->m_flags & M_TXCB)
2694 			ieee80211_process_callback(data->ni, data->m,
2695 			    txerr ? ETIMEDOUT : 0);
2696 		m_freem(data->m);
2697 		data->m = NULL;
2698 
2699 		if (data->ni == NULL) {
2700 			DPRINTF("no node\n");
2701 		} else {
2702 			ieee80211_free_node(data->ni);
2703 			data->ni = NULL;
2704 		}
2705 	}
2706 
2707 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2708 	pq->tx_nfree++;
2709 }
2710 
2711 static void
2712 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2713 {
2714 	struct run_softc *sc = usbd_xfer_softc(xfer);
2715 	struct ifnet *ifp = sc->sc_ifp;
2716 	struct ieee80211com *ic = ifp->if_l2com;
2717 	struct run_tx_data *data;
2718 	struct ieee80211vap *vap = NULL;
2719 	struct usb_page_cache *pc;
2720 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2721 	struct mbuf *m;
2722 	usb_frlength_t size;
2723 	int actlen;
2724 	int sumlen;
2725 
2726 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2727 
2728 	switch (USB_GET_STATE(xfer)) {
2729 	case USB_ST_TRANSFERRED:
2730 		DPRINTFN(11, "transfer complete: %d "
2731 		    "bytes @ index %d\n", actlen, index);
2732 
2733 		data = usbd_xfer_get_priv(xfer);
2734 
2735 		run_tx_free(pq, data, 0);
2736 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2737 
2738 		usbd_xfer_set_priv(xfer, NULL);
2739 
2740 		ifp->if_opackets++;
2741 
2742 		/* FALLTHROUGH */
2743 	case USB_ST_SETUP:
2744 tr_setup:
2745 		data = STAILQ_FIRST(&pq->tx_qh);
2746 		if (data == NULL)
2747 			break;
2748 
2749 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2750 
2751 		m = data->m;
2752 		if ((m->m_pkthdr.len +
2753 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2754 			DPRINTF("data overflow, %u bytes\n",
2755 			    m->m_pkthdr.len);
2756 
2757 			ifp->if_oerrors++;
2758 
2759 			run_tx_free(pq, data, 1);
2760 
2761 			goto tr_setup;
2762 		}
2763 
2764 		pc = usbd_xfer_get_frame(xfer, 0);
2765 		size = sizeof(data->desc);
2766 		usbd_copy_in(pc, 0, &data->desc, size);
2767 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2768 		size += m->m_pkthdr.len;
2769 		/*
2770 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2771 		 * 4-byte padding), and be sure to zero those trailing
2772 		 * bytes:
2773 		 */
2774 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2775 		size += ((-size) & 3) + 8;
2776 
2777 		vap = data->ni->ni_vap;
2778 		if (ieee80211_radiotap_active_vap(vap)) {
2779 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2780 			struct rt2860_txwi *txwi =
2781 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2782 
2783 			tap->wt_flags = 0;
2784 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2785 			tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq);
2786 			tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags);
2787 			tap->wt_hwqueue = index;
2788 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2789 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2790 
2791 			ieee80211_radiotap_tx(vap, m);
2792 		}
2793 
2794 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2795 		    m->m_pkthdr.len, size, index);
2796 
2797 		usbd_xfer_set_frame_len(xfer, 0, size);
2798 		usbd_xfer_set_priv(xfer, data);
2799 
2800 		usbd_transfer_submit(xfer);
2801 
2802 		RUN_UNLOCK(sc);
2803 		run_start(ifp);
2804 		RUN_LOCK(sc);
2805 
2806 		break;
2807 
2808 	default:
2809 		DPRINTF("USB transfer error, %s\n",
2810 		    usbd_errstr(error));
2811 
2812 		data = usbd_xfer_get_priv(xfer);
2813 
2814 		ifp->if_oerrors++;
2815 
2816 		if (data != NULL) {
2817 			if(data->ni != NULL)
2818 				vap = data->ni->ni_vap;
2819 			run_tx_free(pq, data, error);
2820 			usbd_xfer_set_priv(xfer, NULL);
2821 		}
2822 		if (vap == NULL)
2823 			vap = TAILQ_FIRST(&ic->ic_vaps);
2824 
2825 		if (error != USB_ERR_CANCELLED) {
2826 			if (error == USB_ERR_TIMEOUT) {
2827 				device_printf(sc->sc_dev, "device timeout\n");
2828 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2829 				DPRINTF("cmdq_store=%d\n", i);
2830 				sc->cmdq[i].func = run_usb_timeout_cb;
2831 				sc->cmdq[i].arg0 = vap;
2832 				ieee80211_runtask(ic, &sc->cmdq_task);
2833 			}
2834 
2835 			/*
2836 			 * Try to clear stall first, also if other
2837 			 * errors occur, hence clearing stall
2838 			 * introduces a 50 ms delay:
2839 			 */
2840 			usbd_xfer_set_stall(xfer);
2841 			goto tr_setup;
2842 		}
2843 		break;
2844 	}
2845 }
2846 
2847 static void
2848 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2849 {
2850 	run_bulk_tx_callbackN(xfer, error, 0);
2851 }
2852 
2853 static void
2854 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2855 {
2856 	run_bulk_tx_callbackN(xfer, error, 1);
2857 }
2858 
2859 static void
2860 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2861 {
2862 	run_bulk_tx_callbackN(xfer, error, 2);
2863 }
2864 
2865 static void
2866 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2867 {
2868 	run_bulk_tx_callbackN(xfer, error, 3);
2869 }
2870 
2871 static void
2872 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2873 {
2874 	run_bulk_tx_callbackN(xfer, error, 4);
2875 }
2876 
2877 static void
2878 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2879 {
2880 	run_bulk_tx_callbackN(xfer, error, 5);
2881 }
2882 
2883 static void
2884 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2885 {
2886 	struct mbuf *m = data->m;
2887 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2888 	struct ieee80211vap *vap = data->ni->ni_vap;
2889 	struct ieee80211_frame *wh;
2890 	struct rt2870_txd *txd;
2891 	struct rt2860_txwi *txwi;
2892 	uint16_t xferlen;
2893 	uint16_t mcs;
2894 	uint8_t ridx = data->ridx;
2895 	uint8_t pad;
2896 
2897 	/* get MCS code from rate index */
2898 	mcs = rt2860_rates[ridx].mcs;
2899 
2900 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2901 
2902 	/* roundup to 32-bit alignment */
2903 	xferlen = (xferlen + 3) & ~3;
2904 
2905 	txd = (struct rt2870_txd *)&data->desc;
2906 	txd->len = htole16(xferlen);
2907 
2908 	wh = mtod(m, struct ieee80211_frame *);
2909 
2910 	/*
2911 	 * Ether both are true or both are false, the header
2912 	 * are nicely aligned to 32-bit. So, no L2 padding.
2913 	 */
2914 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2915 		pad = 0;
2916 	else
2917 		pad = 2;
2918 
2919 	/* setup TX Wireless Information */
2920 	txwi = (struct rt2860_txwi *)(txd + 1);
2921 	txwi->len = htole16(m->m_pkthdr.len - pad);
2922 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2923 		txwi->phy = htole16(RT2860_PHY_CCK);
2924 		if (ridx != RT2860_RIDX_CCK1 &&
2925 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2926 			mcs |= RT2860_PHY_SHPRE;
2927 	} else
2928 		txwi->phy = htole16(RT2860_PHY_OFDM);
2929 	txwi->phy |= htole16(mcs);
2930 
2931 	/* check if RTS/CTS or CTS-to-self protection is required */
2932 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2933 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2934 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2935 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2936 		txwi->txop |= RT2860_TX_TXOP_HT;
2937 	else
2938 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2939 
2940 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2941 		txwi->xflags |= RT2860_TX_NSEQ;
2942 }
2943 
2944 /* This function must be called locked */
2945 static int
2946 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2947 {
2948 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2949 	struct ieee80211vap *vap = ni->ni_vap;
2950 	struct ieee80211_frame *wh;
2951 	struct ieee80211_channel *chan;
2952 	const struct ieee80211_txparam *tp;
2953 	struct run_node *rn = (void *)ni;
2954 	struct run_tx_data *data;
2955 	struct rt2870_txd *txd;
2956 	struct rt2860_txwi *txwi;
2957 	uint16_t qos;
2958 	uint16_t dur;
2959 	uint16_t qid;
2960 	uint8_t type;
2961 	uint8_t tid;
2962 	uint8_t ridx;
2963 	uint8_t ctl_ridx;
2964 	uint8_t qflags;
2965 	uint8_t xflags = 0;
2966 	int hasqos;
2967 
2968 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2969 
2970 	wh = mtod(m, struct ieee80211_frame *);
2971 
2972 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2973 
2974 	/*
2975 	 * There are 7 bulk endpoints: 1 for RX
2976 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2977 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2978 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2979 	 */
2980 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2981 		uint8_t *frm;
2982 
2983 		if(IEEE80211_HAS_ADDR4(wh))
2984 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2985 		else
2986 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
2987 
2988 		qos = le16toh(*(const uint16_t *)frm);
2989 		tid = qos & IEEE80211_QOS_TID;
2990 		qid = TID_TO_WME_AC(tid);
2991 	} else {
2992 		qos = 0;
2993 		tid = 0;
2994 		qid = WME_AC_BE;
2995 	}
2996 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
2997 
2998 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
2999 	    qos, qid, tid, qflags);
3000 
3001 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3002 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3003 
3004 	/* pickup a rate index */
3005 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3006 	    type != IEEE80211_FC0_TYPE_DATA) {
3007 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3008 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3009 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3010 	} else {
3011 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3012 			ridx = rn->fix_ridx;
3013 		else
3014 			ridx = rn->amrr_ridx;
3015 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3016 	}
3017 
3018 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3019 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3020 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3021 		xflags |= RT2860_TX_ACK;
3022 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3023 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3024 		else
3025 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3026 		*(uint16_t *)wh->i_dur = htole16(dur);
3027 	}
3028 
3029 	/* reserve slots for mgmt packets, just in case */
3030 	if (sc->sc_epq[qid].tx_nfree < 3) {
3031 		DPRINTFN(10, "tx ring %d is full\n", qid);
3032 		return (-1);
3033 	}
3034 
3035 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3036 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3037 	sc->sc_epq[qid].tx_nfree--;
3038 
3039 	txd = (struct rt2870_txd *)&data->desc;
3040 	txd->flags = qflags;
3041 	txwi = (struct rt2860_txwi *)(txd + 1);
3042 	txwi->xflags = xflags;
3043 	txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ?
3044 	    0 : RUN_AID2WCID(ni->ni_associd);
3045 	/* clear leftover garbage bits */
3046 	txwi->flags = 0;
3047 	txwi->txop = 0;
3048 
3049 	data->m = m;
3050 	data->ni = ni;
3051 	data->ridx = ridx;
3052 
3053 	run_set_tx_desc(sc, data);
3054 
3055 	/*
3056 	 * The chip keeps track of 2 kind of Tx stats,
3057 	 *  * TX_STAT_FIFO, for per WCID stats, and
3058 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3059 	 *
3060 	 * To use FIFO stats, we need to store MCS into the driver-private
3061  	 * PacketID field. So that, we can tell whose stats when we read them.
3062  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3063  	 * that we don't want feedback in TX_STAT_FIFO.
3064  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3065  	 *
3066  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3067  	 */
3068 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3069 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3070 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3071 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3072 
3073 		/*
3074 		 * Unlike PCI based devices, we don't get any interrupt from
3075 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3076 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3077 		 * quickly get fulled. To prevent overflow, increment a counter on
3078 		 * every FIFO stat request, so we know how many slots are left.
3079 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3080 		 * are used only in those modes.
3081 		 * We just drain stats. AMRR gets updated every 1 sec by
3082 		 * run_ratectl_cb() via callout.
3083 		 * Call it early. Otherwise overflow.
3084 		 */
3085 		if (sc->fifo_cnt++ == 10) {
3086 			/*
3087 			 * With multiple vaps or if_bridge, if_start() is called
3088 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3089 			 */
3090 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3091 			DPRINTFN(6, "cmdq_store=%d\n", i);
3092 			sc->cmdq[i].func = run_drain_fifo;
3093 			sc->cmdq[i].arg0 = sc;
3094 			ieee80211_runtask(ic, &sc->cmdq_task);
3095 		}
3096 	}
3097 
3098         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3099 
3100 	usbd_transfer_start(sc->sc_xfer[qid]);
3101 
3102 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3103 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3104 	    rt2860_rates[ridx].rate, qid);
3105 
3106 	return (0);
3107 }
3108 
3109 static int
3110 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3111 {
3112 	struct ifnet *ifp = sc->sc_ifp;
3113 	struct ieee80211com *ic = ifp->if_l2com;
3114 	struct run_node *rn = (void *)ni;
3115 	struct run_tx_data *data;
3116 	struct ieee80211_frame *wh;
3117 	struct rt2870_txd *txd;
3118 	struct rt2860_txwi *txwi;
3119 	uint16_t dur;
3120 	uint8_t ridx = rn->mgt_ridx;
3121 	uint8_t type;
3122 	uint8_t xflags = 0;
3123 	uint8_t wflags = 0;
3124 
3125 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3126 
3127 	wh = mtod(m, struct ieee80211_frame *);
3128 
3129 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3130 
3131 	/* tell hardware to add timestamp for probe responses */
3132 	if ((wh->i_fc[0] &
3133 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3134 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3135 		wflags |= RT2860_TX_TS;
3136 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3137 		xflags |= RT2860_TX_ACK;
3138 
3139 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3140 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3141 		*(uint16_t *)wh->i_dur = htole16(dur);
3142 	}
3143 
3144 	if (sc->sc_epq[0].tx_nfree == 0) {
3145 		/* let caller free mbuf */
3146 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3147 		return (EIO);
3148 	}
3149 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3150 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3151 	sc->sc_epq[0].tx_nfree--;
3152 
3153 	txd = (struct rt2870_txd *)&data->desc;
3154 	txd->flags = RT2860_TX_QSEL_EDCA;
3155 	txwi = (struct rt2860_txwi *)(txd + 1);
3156 	txwi->wcid = 0xff;
3157 	txwi->flags = wflags;
3158 	txwi->xflags = xflags;
3159 	txwi->txop = 0;	/* clear leftover garbage bits */
3160 
3161 	data->m = m;
3162 	data->ni = ni;
3163 	data->ridx = ridx;
3164 
3165 	run_set_tx_desc(sc, data);
3166 
3167 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3168 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3169 	    rt2860_rates[ridx].rate);
3170 
3171 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3172 
3173 	usbd_transfer_start(sc->sc_xfer[0]);
3174 
3175 	return (0);
3176 }
3177 
3178 static int
3179 run_sendprot(struct run_softc *sc,
3180     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3181 {
3182 	struct ieee80211com *ic = ni->ni_ic;
3183 	struct ieee80211_frame *wh;
3184 	struct run_tx_data *data;
3185 	struct rt2870_txd *txd;
3186 	struct rt2860_txwi *txwi;
3187 	struct mbuf *mprot;
3188 	int ridx;
3189 	int protrate;
3190 	int ackrate;
3191 	int pktlen;
3192 	int isshort;
3193 	uint16_t dur;
3194 	uint8_t type;
3195 	uint8_t wflags = 0;
3196 	uint8_t xflags = 0;
3197 
3198 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3199 
3200 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3201 	    ("protection %d", prot));
3202 
3203 	wh = mtod(m, struct ieee80211_frame *);
3204 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3205 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3206 
3207 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3208 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3209 
3210 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3211 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3212 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3213 	wflags = RT2860_TX_FRAG;
3214 
3215 	/* check that there are free slots before allocating the mbuf */
3216 	if (sc->sc_epq[0].tx_nfree == 0) {
3217 		/* let caller free mbuf */
3218 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3219 		return (ENOBUFS);
3220 	}
3221 
3222 	if (prot == IEEE80211_PROT_RTSCTS) {
3223 		/* NB: CTS is the same size as an ACK */
3224 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3225 		xflags |= RT2860_TX_ACK;
3226 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3227 	} else {
3228 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3229 	}
3230 	if (mprot == NULL) {
3231 		sc->sc_ifp->if_oerrors++;
3232 		DPRINTF("could not allocate mbuf\n");
3233 		return (ENOBUFS);
3234 	}
3235 
3236         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3237         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3238         sc->sc_epq[0].tx_nfree--;
3239 
3240 	txd = (struct rt2870_txd *)&data->desc;
3241 	txd->flags = RT2860_TX_QSEL_EDCA;
3242 	txwi = (struct rt2860_txwi *)(txd + 1);
3243 	txwi->wcid = 0xff;
3244 	txwi->flags = wflags;
3245 	txwi->xflags = xflags;
3246 	txwi->txop = 0;	/* clear leftover garbage bits */
3247 
3248 	data->m = mprot;
3249 	data->ni = ieee80211_ref_node(ni);
3250 
3251 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3252 		if (rt2860_rates[ridx].rate == protrate)
3253 			break;
3254 	data->ridx = ridx;
3255 
3256 	run_set_tx_desc(sc, data);
3257 
3258         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3259             m->m_pkthdr.len, rate);
3260 
3261         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3262 
3263 	usbd_transfer_start(sc->sc_xfer[0]);
3264 
3265 	return (0);
3266 }
3267 
3268 static int
3269 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3270     const struct ieee80211_bpf_params *params)
3271 {
3272 	struct ieee80211com *ic = ni->ni_ic;
3273 	struct ieee80211_frame *wh;
3274 	struct run_tx_data *data;
3275 	struct rt2870_txd *txd;
3276 	struct rt2860_txwi *txwi;
3277 	uint8_t type;
3278 	uint8_t ridx;
3279 	uint8_t rate;
3280 	uint8_t opflags = 0;
3281 	uint8_t xflags = 0;
3282 	int error;
3283 
3284 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3285 
3286 	KASSERT(params != NULL, ("no raw xmit params"));
3287 
3288 	wh = mtod(m, struct ieee80211_frame *);
3289 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3290 
3291 	rate = params->ibp_rate0;
3292 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3293 		/* let caller free mbuf */
3294 		return (EINVAL);
3295 	}
3296 
3297 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3298 		xflags |= RT2860_TX_ACK;
3299 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3300 		error = run_sendprot(sc, m, ni,
3301 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3302 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3303 		    rate);
3304 		if (error) {
3305 			/* let caller free mbuf */
3306 			return error;
3307 		}
3308 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3309 	}
3310 
3311 	if (sc->sc_epq[0].tx_nfree == 0) {
3312 		/* let caller free mbuf */
3313 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3314 		DPRINTF("sending raw frame, but tx ring is full\n");
3315 		return (EIO);
3316 	}
3317         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3318         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3319         sc->sc_epq[0].tx_nfree--;
3320 
3321 	txd = (struct rt2870_txd *)&data->desc;
3322 	txd->flags = RT2860_TX_QSEL_EDCA;
3323 	txwi = (struct rt2860_txwi *)(txd + 1);
3324 	txwi->wcid = 0xff;
3325 	txwi->xflags = xflags;
3326 	txwi->txop = opflags;
3327 	txwi->flags = 0;	/* clear leftover garbage bits */
3328 
3329         data->m = m;
3330         data->ni = ni;
3331 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3332 		if (rt2860_rates[ridx].rate == rate)
3333 			break;
3334 	data->ridx = ridx;
3335 
3336         run_set_tx_desc(sc, data);
3337 
3338         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3339             m->m_pkthdr.len, rate);
3340 
3341         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3342 
3343 	usbd_transfer_start(sc->sc_xfer[0]);
3344 
3345         return (0);
3346 }
3347 
3348 static int
3349 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3350     const struct ieee80211_bpf_params *params)
3351 {
3352 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3353 	struct run_softc *sc = ifp->if_softc;
3354 	int error = 0;
3355 
3356 	RUN_LOCK(sc);
3357 
3358 	/* prevent management frames from being sent if we're not ready */
3359 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3360 		error =  ENETDOWN;
3361 		goto done;
3362 	}
3363 
3364 	if (params == NULL) {
3365 		/* tx mgt packet */
3366 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3367 			ifp->if_oerrors++;
3368 			DPRINTF("mgt tx failed\n");
3369 			goto done;
3370 		}
3371 	} else {
3372 		/* tx raw packet with param */
3373 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3374 			ifp->if_oerrors++;
3375 			DPRINTF("tx with param failed\n");
3376 			goto done;
3377 		}
3378 	}
3379 
3380 	ifp->if_opackets++;
3381 
3382 done:
3383 	RUN_UNLOCK(sc);
3384 
3385 	if (error != 0) {
3386 		if(m != NULL)
3387 			m_freem(m);
3388 		ieee80211_free_node(ni);
3389 	}
3390 
3391 	return (error);
3392 }
3393 
3394 static void
3395 run_start(struct ifnet *ifp)
3396 {
3397 	struct run_softc *sc = ifp->if_softc;
3398 	struct ieee80211_node *ni;
3399 	struct mbuf *m;
3400 
3401 	RUN_LOCK(sc);
3402 
3403 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3404 		RUN_UNLOCK(sc);
3405 		return;
3406 	}
3407 
3408 	for (;;) {
3409 		/* send data frames */
3410 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3411 		if (m == NULL)
3412 			break;
3413 
3414 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3415 		if (run_tx(sc, m, ni) != 0) {
3416 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3417 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3418 			break;
3419 		}
3420 	}
3421 
3422 	RUN_UNLOCK(sc);
3423 }
3424 
3425 static int
3426 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3427 {
3428 	struct run_softc *sc = ifp->if_softc;
3429 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3430 	struct ifreq *ifr = (struct ifreq *) data;
3431 	int startall = 0;
3432 	int error = 0;
3433 
3434 	switch (cmd) {
3435 	case SIOCSIFFLAGS:
3436 		RUN_LOCK(sc);
3437 		if (ifp->if_flags & IFF_UP) {
3438 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3439 				startall = 1;
3440 				run_init_locked(sc);
3441 			} else
3442 				run_update_promisc_locked(ifp);
3443 		} else {
3444 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3445 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3446 					run_stop(sc);
3447 			}
3448 		}
3449 		RUN_UNLOCK(sc);
3450 		if (startall)
3451 			ieee80211_start_all(ic);
3452 		break;
3453 	case SIOCGIFMEDIA:
3454 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3455 		break;
3456 	case SIOCGIFADDR:
3457 		error = ether_ioctl(ifp, cmd, data);
3458 		break;
3459 	default:
3460 		error = EINVAL;
3461 		break;
3462 	}
3463 
3464 	return (error);
3465 }
3466 
3467 static void
3468 run_set_agc(struct run_softc *sc, uint8_t agc)
3469 {
3470 	uint8_t bbp;
3471 
3472 	if (sc->mac_ver == 0x3572) {
3473 		run_bbp_read(sc, 27, &bbp);
3474 		bbp &= ~(0x3 << 5);
3475 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3476 		run_bbp_write(sc, 66, agc);
3477 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3478 		run_bbp_write(sc, 66, agc);
3479 	} else
3480 		run_bbp_write(sc, 66, agc);
3481 }
3482 
3483 static void
3484 run_select_chan_group(struct run_softc *sc, int group)
3485 {
3486 	uint32_t tmp;
3487 	uint8_t agc;
3488 
3489 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3490 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3491 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3492 	run_bbp_write(sc, 86, 0x00);
3493 
3494 	if (group == 0) {
3495 		if (sc->ext_2ghz_lna) {
3496 			run_bbp_write(sc, 82, 0x62);
3497 			run_bbp_write(sc, 75, 0x46);
3498 		} else {
3499 			run_bbp_write(sc, 82, 0x84);
3500 			run_bbp_write(sc, 75, 0x50);
3501 		}
3502 	} else {
3503 		if (sc->mac_ver == 0x3572)
3504 			run_bbp_write(sc, 82, 0x94);
3505 		else
3506 			run_bbp_write(sc, 82, 0xf2);
3507 		if (sc->ext_5ghz_lna)
3508 			run_bbp_write(sc, 75, 0x46);
3509 		else
3510 			run_bbp_write(sc, 75, 0x50);
3511 	}
3512 
3513 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3514 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3515 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3516 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3517 
3518 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3519 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3520 	if (sc->nrxchains > 1)
3521 		tmp |= RT2860_LNA_PE1_EN;
3522 	if (group == 0) {	/* 2GHz */
3523 		tmp |= RT2860_PA_PE_G0_EN;
3524 		if (sc->ntxchains > 1)
3525 			tmp |= RT2860_PA_PE_G1_EN;
3526 	} else {		/* 5GHz */
3527 		tmp |= RT2860_PA_PE_A0_EN;
3528 		if (sc->ntxchains > 1)
3529 			tmp |= RT2860_PA_PE_A1_EN;
3530 	}
3531 	if (sc->mac_ver == 0x3572) {
3532 		run_rt3070_rf_write(sc, 8, 0x00);
3533 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3534 		run_rt3070_rf_write(sc, 8, 0x80);
3535 	} else
3536 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3537 
3538 	/* set initial AGC value */
3539 	if (group == 0) {	/* 2GHz band */
3540 		if (sc->mac_ver >= 0x3070)
3541 			agc = 0x1c + sc->lna[0] * 2;
3542 		else
3543 			agc = 0x2e + sc->lna[0];
3544 	} else {		/* 5GHz band */
3545 		if (sc->mac_ver == 0x3572)
3546 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3547 		else
3548 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3549 	}
3550 	run_set_agc(sc, agc);
3551 }
3552 
3553 static void
3554 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3555 {
3556 	const struct rfprog *rfprog = rt2860_rf2850;
3557 	uint32_t r2, r3, r4;
3558 	int8_t txpow1, txpow2;
3559 	int i;
3560 
3561 	/* find the settings for this channel (we know it exists) */
3562 	for (i = 0; rfprog[i].chan != chan; i++);
3563 
3564 	r2 = rfprog[i].r2;
3565 	if (sc->ntxchains == 1)
3566 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3567 	if (sc->nrxchains == 1)
3568 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3569 	else if (sc->nrxchains == 2)
3570 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3571 
3572 	/* use Tx power values from EEPROM */
3573 	txpow1 = sc->txpow1[i];
3574 	txpow2 = sc->txpow2[i];
3575 	if (chan > 14) {
3576 		if (txpow1 >= 0)
3577 			txpow1 = txpow1 << 1 | 1;
3578 		else
3579 			txpow1 = (7 + txpow1) << 1;
3580 		if (txpow2 >= 0)
3581 			txpow2 = txpow2 << 1 | 1;
3582 		else
3583 			txpow2 = (7 + txpow2) << 1;
3584 	}
3585 	r3 = rfprog[i].r3 | txpow1 << 7;
3586 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3587 
3588 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3589 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3590 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3591 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3592 
3593 	run_delay(sc, 10);
3594 
3595 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3596 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3597 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3598 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3599 
3600 	run_delay(sc, 10);
3601 
3602 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3603 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3604 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3605 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3606 }
3607 
3608 static void
3609 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3610 {
3611 	int8_t txpow1, txpow2;
3612 	uint8_t rf;
3613 	int i;
3614 
3615 	/* RT3070 is 2GHz only */
3616 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3617 
3618 	/* find the settings for this channel (we know it exists) */
3619 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3620 
3621 	/* use Tx power values from EEPROM */
3622 	txpow1 = sc->txpow1[i];
3623 	txpow2 = sc->txpow2[i];
3624 
3625 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3626 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3627 	run_rt3070_rf_read(sc, 6, &rf);
3628 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3629 	run_rt3070_rf_write(sc, 6, rf);
3630 
3631 	/* set Tx0 power */
3632 	run_rt3070_rf_read(sc, 12, &rf);
3633 	rf = (rf & ~0x1f) | txpow1;
3634 	run_rt3070_rf_write(sc, 12, rf);
3635 
3636 	/* set Tx1 power */
3637 	run_rt3070_rf_read(sc, 13, &rf);
3638 	rf = (rf & ~0x1f) | txpow2;
3639 	run_rt3070_rf_write(sc, 13, rf);
3640 
3641 	run_rt3070_rf_read(sc, 1, &rf);
3642 	rf &= ~0xfc;
3643 	if (sc->ntxchains == 1)
3644 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3645 	else if (sc->ntxchains == 2)
3646 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3647 	if (sc->nrxchains == 1)
3648 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3649 	else if (sc->nrxchains == 2)
3650 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3651 	run_rt3070_rf_write(sc, 1, rf);
3652 
3653 	/* set RF offset */
3654 	run_rt3070_rf_read(sc, 23, &rf);
3655 	rf = (rf & ~0x7f) | sc->freq;
3656 	run_rt3070_rf_write(sc, 23, rf);
3657 
3658 	/* program RF filter */
3659 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3660 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3661 	run_rt3070_rf_write(sc, 24, rf);
3662 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3663 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3664 	run_rt3070_rf_write(sc, 31, rf);
3665 
3666 	/* enable RF tuning */
3667 	run_rt3070_rf_read(sc, 7, &rf);
3668 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3669 }
3670 
3671 static void
3672 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3673 {
3674 	int8_t txpow1, txpow2;
3675 	uint32_t tmp;
3676 	uint8_t rf;
3677 	int i;
3678 
3679 	/* find the settings for this channel (we know it exists) */
3680 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3681 
3682 	/* use Tx power values from EEPROM */
3683 	txpow1 = sc->txpow1[i];
3684 	txpow2 = sc->txpow2[i];
3685 
3686 	if (chan <= 14) {
3687 		run_bbp_write(sc, 25, sc->bbp25);
3688 		run_bbp_write(sc, 26, sc->bbp26);
3689 	} else {
3690 		/* enable IQ phase correction */
3691 		run_bbp_write(sc, 25, 0x09);
3692 		run_bbp_write(sc, 26, 0xff);
3693 	}
3694 
3695 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3696 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3697 	run_rt3070_rf_read(sc, 6, &rf);
3698 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3699 	rf |= (chan <= 14) ? 0x08 : 0x04;
3700 	run_rt3070_rf_write(sc, 6, rf);
3701 
3702 	/* set PLL mode */
3703 	run_rt3070_rf_read(sc, 5, &rf);
3704 	rf &= ~(0x08 | 0x04);
3705 	rf |= (chan <= 14) ? 0x04 : 0x08;
3706 	run_rt3070_rf_write(sc, 5, rf);
3707 
3708 	/* set Tx power for chain 0 */
3709 	if (chan <= 14)
3710 		rf = 0x60 | txpow1;
3711 	else
3712 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3713 	run_rt3070_rf_write(sc, 12, rf);
3714 
3715 	/* set Tx power for chain 1 */
3716 	if (chan <= 14)
3717 		rf = 0x60 | txpow2;
3718 	else
3719 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3720 	run_rt3070_rf_write(sc, 13, rf);
3721 
3722 	/* set Tx/Rx streams */
3723 	run_rt3070_rf_read(sc, 1, &rf);
3724 	rf &= ~0xfc;
3725 	if (sc->ntxchains == 1)
3726 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3727 	else if (sc->ntxchains == 2)
3728 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3729 	if (sc->nrxchains == 1)
3730 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3731 	else if (sc->nrxchains == 2)
3732 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3733 	run_rt3070_rf_write(sc, 1, rf);
3734 
3735 	/* set RF offset */
3736 	run_rt3070_rf_read(sc, 23, &rf);
3737 	rf = (rf & ~0x7f) | sc->freq;
3738 	run_rt3070_rf_write(sc, 23, rf);
3739 
3740 	/* program RF filter */
3741 	rf = sc->rf24_20mhz;
3742 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3743 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3744 
3745 	/* enable RF tuning */
3746 	run_rt3070_rf_read(sc, 7, &rf);
3747 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3748 	run_rt3070_rf_write(sc, 7, rf);
3749 
3750 	/* TSSI */
3751 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3752 	run_rt3070_rf_write(sc, 9, rf);
3753 
3754 	/* set loop filter 1 */
3755 	run_rt3070_rf_write(sc, 10, 0xf1);
3756 	/* set loop filter 2 */
3757 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3758 
3759 	/* set tx_mx2_ic */
3760 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3761 	/* set tx_mx1_ic */
3762 	if (chan <= 14)
3763 		rf = 0x48 | sc->txmixgain_2ghz;
3764 	else
3765 		rf = 0x78 | sc->txmixgain_5ghz;
3766 	run_rt3070_rf_write(sc, 16, rf);
3767 
3768 	/* set tx_lo1 */
3769 	run_rt3070_rf_write(sc, 17, 0x23);
3770 	/* set tx_lo2 */
3771 	if (chan <= 14)
3772 		rf = 0x93;
3773 	else if (chan <= 64)
3774 		rf = 0xb7;
3775 	else if (chan <= 128)
3776 		rf = 0x74;
3777 	else
3778 		rf = 0x72;
3779 	run_rt3070_rf_write(sc, 19, rf);
3780 
3781 	/* set rx_lo1 */
3782 	if (chan <= 14)
3783 		rf = 0xb3;
3784 	else if (chan <= 64)
3785 		rf = 0xf6;
3786 	else if (chan <= 128)
3787 		rf = 0xf4;
3788 	else
3789 		rf = 0xf3;
3790 	run_rt3070_rf_write(sc, 20, rf);
3791 
3792 	/* set pfd_delay */
3793 	if (chan <= 14)
3794 		rf = 0x15;
3795 	else if (chan <= 64)
3796 		rf = 0x3d;
3797 	else
3798 		rf = 0x01;
3799 	run_rt3070_rf_write(sc, 25, rf);
3800 
3801 	/* set rx_lo2 */
3802 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3803 	/* set ldo_rf_vc */
3804 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3805 	/* set drv_cc */
3806 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3807 
3808 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3809 	tmp &= ~0x8080;
3810 	if (chan <= 14)
3811 		tmp |= 0x80;
3812 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3813 
3814 	/* enable RF tuning */
3815 	run_rt3070_rf_read(sc, 7, &rf);
3816 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3817 
3818 	run_delay(sc, 2);
3819 }
3820 
3821 static void
3822 run_set_rx_antenna(struct run_softc *sc, int aux)
3823 {
3824 	uint32_t tmp;
3825 
3826 	if (aux) {
3827 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3828 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3829 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3830 	} else {
3831 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3832 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3833 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3834 	}
3835 }
3836 
3837 static int
3838 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3839 {
3840 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3841 	uint32_t chan, group;
3842 
3843 	chan = ieee80211_chan2ieee(ic, c);
3844 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3845 		return (EINVAL);
3846 
3847 	if (sc->mac_ver == 0x3572)
3848 		run_rt3572_set_chan(sc, chan);
3849 	else if (sc->mac_ver >= 0x3070)
3850 		run_rt3070_set_chan(sc, chan);
3851 	else
3852 		run_rt2870_set_chan(sc, chan);
3853 
3854 	/* determine channel group */
3855 	if (chan <= 14)
3856 		group = 0;
3857 	else if (chan <= 64)
3858 		group = 1;
3859 	else if (chan <= 128)
3860 		group = 2;
3861 	else
3862 		group = 3;
3863 
3864 	/* XXX necessary only when group has changed! */
3865 	run_select_chan_group(sc, group);
3866 
3867 	run_delay(sc, 10);
3868 
3869 	return (0);
3870 }
3871 
3872 static void
3873 run_set_channel(struct ieee80211com *ic)
3874 {
3875 	struct run_softc *sc = ic->ic_ifp->if_softc;
3876 
3877 	RUN_LOCK(sc);
3878 	run_set_chan(sc, ic->ic_curchan);
3879 	RUN_UNLOCK(sc);
3880 
3881 	return;
3882 }
3883 
3884 static void
3885 run_scan_start(struct ieee80211com *ic)
3886 {
3887 	struct run_softc *sc = ic->ic_ifp->if_softc;
3888 	uint32_t tmp;
3889 
3890 	RUN_LOCK(sc);
3891 
3892 	/* abort TSF synchronization */
3893 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3894 	run_write(sc, RT2860_BCN_TIME_CFG,
3895 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3896 	    RT2860_TBTT_TIMER_EN));
3897 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3898 
3899 	RUN_UNLOCK(sc);
3900 
3901 	return;
3902 }
3903 
3904 static void
3905 run_scan_end(struct ieee80211com *ic)
3906 {
3907 	struct run_softc *sc = ic->ic_ifp->if_softc;
3908 
3909 	RUN_LOCK(sc);
3910 
3911 	run_enable_tsf_sync(sc);
3912 	/* XXX keep local copy */
3913 	run_set_bssid(sc, sc->sc_bssid);
3914 
3915 	RUN_UNLOCK(sc);
3916 
3917 	return;
3918 }
3919 
3920 /*
3921  * Could be called from ieee80211_node_timeout()
3922  * (non-sleepable thread)
3923  */
3924 static void
3925 run_update_beacon(struct ieee80211vap *vap, int item)
3926 {
3927 	struct ieee80211com *ic = vap->iv_ic;
3928 	struct run_softc *sc = ic->ic_ifp->if_softc;
3929 	struct run_vap *rvp = RUN_VAP(vap);
3930 	int mcast = 0;
3931 	uint32_t i;
3932 
3933 	KASSERT(vap != NULL, ("no beacon"));
3934 
3935 	switch (item) {
3936 	case IEEE80211_BEACON_ERP:
3937 		run_updateslot(ic->ic_ifp);
3938 		break;
3939 	case IEEE80211_BEACON_HTINFO:
3940 		run_updateprot(ic);
3941 		break;
3942 	case IEEE80211_BEACON_TIM:
3943 		mcast = 1;	/*TODO*/
3944 		break;
3945 	default:
3946 		break;
3947 	}
3948 
3949 	setbit(rvp->bo.bo_flags, item);
3950 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3951 
3952 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3953 	DPRINTF("cmdq_store=%d\n", i);
3954 	sc->cmdq[i].func = run_update_beacon_cb;
3955 	sc->cmdq[i].arg0 = vap;
3956 	ieee80211_runtask(ic, &sc->cmdq_task);
3957 
3958 	return;
3959 }
3960 
3961 static void
3962 run_update_beacon_cb(void *arg)
3963 {
3964 	struct ieee80211vap *vap = arg;
3965 	struct run_vap *rvp = RUN_VAP(vap);
3966 	struct ieee80211com *ic = vap->iv_ic;
3967 	struct run_softc *sc = ic->ic_ifp->if_softc;
3968 	struct rt2860_txwi txwi;
3969 	struct mbuf *m;
3970 	uint8_t ridx;
3971 
3972 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3973 		return;
3974 
3975 	/*
3976 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
3977 	 * is taking care of apropriate calls.
3978 	 */
3979 	if (rvp->beacon_mbuf == NULL) {
3980 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
3981 		    &rvp->bo);
3982 		if (rvp->beacon_mbuf == NULL)
3983 			return;
3984 	}
3985 	m = rvp->beacon_mbuf;
3986 
3987 	memset(&txwi, 0, sizeof txwi);
3988 	txwi.wcid = 0xff;
3989 	txwi.len = htole16(m->m_pkthdr.len);
3990 	/* send beacons at the lowest available rate */
3991 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3992 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3993 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
3994 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
3995 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
3996 	txwi.txop = RT2860_TX_TXOP_HT;
3997 	txwi.flags = RT2860_TX_TS;
3998 	txwi.xflags = RT2860_TX_NSEQ;
3999 
4000 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4001 	    (uint8_t *)&txwi, sizeof txwi);
4002 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4003 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4004 
4005 	return;
4006 }
4007 
4008 static void
4009 run_updateprot(struct ieee80211com *ic)
4010 {
4011 	struct run_softc *sc = ic->ic_ifp->if_softc;
4012 	uint32_t i;
4013 
4014 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4015 	DPRINTF("cmdq_store=%d\n", i);
4016 	sc->cmdq[i].func = run_updateprot_cb;
4017 	sc->cmdq[i].arg0 = ic;
4018 	ieee80211_runtask(ic, &sc->cmdq_task);
4019 }
4020 
4021 static void
4022 run_updateprot_cb(void *arg)
4023 {
4024 	struct ieee80211com *ic = arg;
4025 	struct run_softc *sc = ic->ic_ifp->if_softc;
4026 	uint32_t tmp;
4027 
4028 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4029 	/* setup protection frame rate (MCS code) */
4030 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4031 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4032 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4033 
4034 	/* CCK frames don't require protection */
4035 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4036 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4037 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4038 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4039 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4040 			tmp |= RT2860_PROT_CTRL_CTS;
4041 	}
4042 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4043 }
4044 
4045 static void
4046 run_usb_timeout_cb(void *arg)
4047 {
4048 	struct ieee80211vap *vap = arg;
4049 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4050 
4051 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4052 
4053 	if(vap->iv_state == IEEE80211_S_RUN &&
4054 	    vap->iv_opmode != IEEE80211_M_STA)
4055 		run_reset_livelock(sc);
4056 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4057 		DPRINTF("timeout caused by scan\n");
4058 		/* cancel bgscan */
4059 		ieee80211_cancel_scan(vap);
4060 	} else
4061 		DPRINTF("timeout by unknown cause\n");
4062 }
4063 
4064 static void
4065 run_reset_livelock(struct run_softc *sc)
4066 {
4067 	uint32_t tmp;
4068 
4069 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4070 
4071 	/*
4072 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4073 	 * can run into a livelock and start sending CTS-to-self frames like
4074 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4075 	 */
4076 	run_read(sc, RT2860_DEBUG, &tmp);
4077 	DPRINTFN(3, "debug reg %08x\n", tmp);
4078 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4079 		DPRINTF("CTS-to-self livelock detected\n");
4080 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4081 		run_delay(sc, 1);
4082 		run_write(sc, RT2860_MAC_SYS_CTRL,
4083 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4084 	}
4085 }
4086 
4087 static void
4088 run_update_promisc_locked(struct ifnet *ifp)
4089 {
4090 	struct run_softc *sc = ifp->if_softc;
4091         uint32_t tmp;
4092 
4093 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4094 
4095 	tmp |= RT2860_DROP_UC_NOME;
4096         if (ifp->if_flags & IFF_PROMISC)
4097 		tmp &= ~RT2860_DROP_UC_NOME;
4098 
4099 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4100 
4101         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4102             "entering" : "leaving");
4103 }
4104 
4105 static void
4106 run_update_promisc(struct ifnet *ifp)
4107 {
4108 	struct run_softc *sc = ifp->if_softc;
4109 
4110 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4111 		return;
4112 
4113 	RUN_LOCK(sc);
4114 	run_update_promisc_locked(ifp);
4115 	RUN_UNLOCK(sc);
4116 }
4117 
4118 static void
4119 run_enable_tsf_sync(struct run_softc *sc)
4120 {
4121 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4122 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4123 	uint32_t tmp;
4124 
4125 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4126 
4127 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4128 	tmp &= ~0x1fffff;
4129 	tmp |= vap->iv_bss->ni_intval * 16;
4130 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4131 
4132 	if (ic->ic_opmode == IEEE80211_M_STA) {
4133 		/*
4134 		 * Local TSF is always updated with remote TSF on beacon
4135 		 * reception.
4136 		 */
4137 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4138 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4139 	        tmp |= RT2860_BCN_TX_EN;
4140 	        /*
4141 	         * Local TSF is updated with remote TSF on beacon reception
4142 	         * only if the remote TSF is greater than local TSF.
4143 	         */
4144 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4145 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4146 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4147 	        tmp |= RT2860_BCN_TX_EN;
4148 	        /* SYNC with nobody */
4149 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4150 	} else {
4151 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4152 		return;
4153 	}
4154 
4155 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4156 }
4157 
4158 static void
4159 run_enable_mrr(struct run_softc *sc)
4160 {
4161 #define CCK(mcs)	(mcs)
4162 #define OFDM(mcs)	(1 << 3 | (mcs))
4163 	run_write(sc, RT2860_LG_FBK_CFG0,
4164 	    OFDM(6) << 28 |	/* 54->48 */
4165 	    OFDM(5) << 24 |	/* 48->36 */
4166 	    OFDM(4) << 20 |	/* 36->24 */
4167 	    OFDM(3) << 16 |	/* 24->18 */
4168 	    OFDM(2) << 12 |	/* 18->12 */
4169 	    OFDM(1) <<  8 |	/* 12-> 9 */
4170 	    OFDM(0) <<  4 |	/*  9-> 6 */
4171 	    OFDM(0));		/*  6-> 6 */
4172 
4173 	run_write(sc, RT2860_LG_FBK_CFG1,
4174 	    CCK(2) << 12 |	/* 11->5.5 */
4175 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4176 	    CCK(0) <<  4 |	/*   2-> 1 */
4177 	    CCK(0));		/*   1-> 1 */
4178 #undef OFDM
4179 #undef CCK
4180 }
4181 
4182 static void
4183 run_set_txpreamble(struct run_softc *sc)
4184 {
4185 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4186 	uint32_t tmp;
4187 
4188 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4189 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4190 		tmp |= RT2860_CCK_SHORT_EN;
4191 	else
4192 		tmp &= ~RT2860_CCK_SHORT_EN;
4193 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4194 }
4195 
4196 static void
4197 run_set_basicrates(struct run_softc *sc)
4198 {
4199 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4200 
4201 	/* set basic rates mask */
4202 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4203 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4204 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4205 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4206 	else	/* 11g */
4207 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4208 }
4209 
4210 static void
4211 run_set_leds(struct run_softc *sc, uint16_t which)
4212 {
4213 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4214 	    which | (sc->leds & 0x7f));
4215 }
4216 
4217 static void
4218 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4219 {
4220 	run_write(sc, RT2860_MAC_BSSID_DW0,
4221 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4222 	run_write(sc, RT2860_MAC_BSSID_DW1,
4223 	    bssid[4] | bssid[5] << 8);
4224 }
4225 
4226 static void
4227 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4228 {
4229 	run_write(sc, RT2860_MAC_ADDR_DW0,
4230 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4231 	run_write(sc, RT2860_MAC_ADDR_DW1,
4232 	    addr[4] | addr[5] << 8 | 0xff << 16);
4233 }
4234 
4235 static void
4236 run_updateslot(struct ifnet *ifp)
4237 {
4238 	struct run_softc *sc = ifp->if_softc;
4239 	struct ieee80211com *ic = ifp->if_l2com;
4240 	uint32_t i;
4241 
4242 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4243 	DPRINTF("cmdq_store=%d\n", i);
4244 	sc->cmdq[i].func = run_updateslot_cb;
4245 	sc->cmdq[i].arg0 = ifp;
4246 	ieee80211_runtask(ic, &sc->cmdq_task);
4247 
4248 	return;
4249 }
4250 
4251 /* ARGSUSED */
4252 static void
4253 run_updateslot_cb(void *arg)
4254 {
4255 	struct ifnet *ifp = arg;
4256 	struct run_softc *sc = ifp->if_softc;
4257 	struct ieee80211com *ic = ifp->if_l2com;
4258 	uint32_t tmp;
4259 
4260 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4261 	tmp &= ~0xff;
4262 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4263 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4264 }
4265 
4266 static void
4267 run_update_mcast(struct ifnet *ifp)
4268 {
4269 	/* h/w filter supports getting everything or nothing */
4270 	ifp->if_flags |= IFF_ALLMULTI;
4271 }
4272 
4273 static int8_t
4274 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4275 {
4276 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4277 	struct ieee80211_channel *c = ic->ic_curchan;
4278 	int delta;
4279 
4280 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4281 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4282 		delta = sc->rssi_5ghz[rxchain];
4283 
4284 		/* determine channel group */
4285 		if (chan <= 64)
4286 			delta -= sc->lna[1];
4287 		else if (chan <= 128)
4288 			delta -= sc->lna[2];
4289 		else
4290 			delta -= sc->lna[3];
4291 	} else
4292 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4293 
4294 	return (-12 - delta - rssi);
4295 }
4296 
4297 static int
4298 run_bbp_init(struct run_softc *sc)
4299 {
4300 	int i, error, ntries;
4301 	uint8_t bbp0;
4302 
4303 	/* wait for BBP to wake up */
4304 	for (ntries = 0; ntries < 20; ntries++) {
4305 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4306 			return error;
4307 		if (bbp0 != 0 && bbp0 != 0xff)
4308 			break;
4309 	}
4310 	if (ntries == 20)
4311 		return (ETIMEDOUT);
4312 
4313 	/* initialize BBP registers to default values */
4314 	for (i = 0; i < nitems(rt2860_def_bbp); i++) {
4315 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4316 		    rt2860_def_bbp[i].val);
4317 	}
4318 
4319 	/* fix BBP84 for RT2860E */
4320 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4321 		run_bbp_write(sc, 84, 0x19);
4322 
4323 	if (sc->mac_ver >= 0x3070) {
4324 		run_bbp_write(sc, 79, 0x13);
4325 		run_bbp_write(sc, 80, 0x05);
4326 		run_bbp_write(sc, 81, 0x33);
4327 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4328 		run_bbp_write(sc, 69, 0x16);
4329 		run_bbp_write(sc, 73, 0x12);
4330 	}
4331 	return (0);
4332 }
4333 
4334 static int
4335 run_rt3070_rf_init(struct run_softc *sc)
4336 {
4337 	uint32_t tmp;
4338 	uint8_t rf, target, bbp4;
4339 	int i;
4340 
4341 	run_rt3070_rf_read(sc, 30, &rf);
4342 	/* toggle RF R30 bit 7 */
4343 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4344 	run_delay(sc, 10);
4345 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4346 
4347 	/* initialize RF registers to default value */
4348 	if (sc->mac_ver == 0x3572) {
4349 		for (i = 0; i < nitems(rt3572_def_rf); i++) {
4350 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4351 			    rt3572_def_rf[i].val);
4352 		}
4353 	} else {
4354 		for (i = 0; i < nitems(rt3070_def_rf); i++) {
4355 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4356 			    rt3070_def_rf[i].val);
4357 		}
4358 	}
4359 
4360 	if (sc->mac_ver == 0x3070) {
4361 		/* change voltage from 1.2V to 1.35V for RT3070 */
4362 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4363 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4364 		run_write(sc, RT3070_LDO_CFG0, tmp);
4365 
4366 	} else if (sc->mac_ver == 0x3071) {
4367 		run_rt3070_rf_read(sc, 6, &rf);
4368 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4369 		run_rt3070_rf_write(sc, 31, 0x14);
4370 
4371 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4372 		tmp &= ~0x1f000000;
4373 		if (sc->mac_rev < 0x0211)
4374 			tmp |= 0x0d000000;	/* 1.3V */
4375 		else
4376 			tmp |= 0x01000000;	/* 1.2V */
4377 		run_write(sc, RT3070_LDO_CFG0, tmp);
4378 
4379 		/* patch LNA_PE_G1 */
4380 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4381 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4382 
4383 	} else if (sc->mac_ver == 0x3572) {
4384 		run_rt3070_rf_read(sc, 6, &rf);
4385 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4386 
4387 		/* increase voltage from 1.2V to 1.35V */
4388 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4389 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4390 		run_write(sc, RT3070_LDO_CFG0, tmp);
4391 
4392 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4393 			run_delay(sc, 1);	/* wait for 1msec */
4394 			/* decrease voltage back to 1.2V */
4395 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4396 			run_write(sc, RT3070_LDO_CFG0, tmp);
4397 		}
4398 	}
4399 
4400 	/* select 20MHz bandwidth */
4401 	run_rt3070_rf_read(sc, 31, &rf);
4402 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4403 
4404 	/* calibrate filter for 20MHz bandwidth */
4405 	sc->rf24_20mhz = 0x1f;	/* default value */
4406 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4407 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4408 
4409 	/* select 40MHz bandwidth */
4410 	run_bbp_read(sc, 4, &bbp4);
4411 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4412 	run_rt3070_rf_read(sc, 31, &rf);
4413 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4414 
4415 	/* calibrate filter for 40MHz bandwidth */
4416 	sc->rf24_40mhz = 0x2f;	/* default value */
4417 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4418 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4419 
4420 	/* go back to 20MHz bandwidth */
4421 	run_bbp_read(sc, 4, &bbp4);
4422 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4423 
4424 	if (sc->mac_ver == 0x3572) {
4425 		/* save default BBP registers 25 and 26 values */
4426 		run_bbp_read(sc, 25, &sc->bbp25);
4427 		run_bbp_read(sc, 26, &sc->bbp26);
4428 	} else if (sc->mac_rev < 0x0211)
4429 		run_rt3070_rf_write(sc, 27, 0x03);
4430 
4431 	run_read(sc, RT3070_OPT_14, &tmp);
4432 	run_write(sc, RT3070_OPT_14, tmp | 1);
4433 
4434 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4435 		run_rt3070_rf_read(sc, 17, &rf);
4436 		rf &= ~RT3070_TX_LO1;
4437 		if ((sc->mac_ver == 0x3070 ||
4438 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4439 		    !sc->ext_2ghz_lna)
4440 			rf |= 0x20;	/* fix for long range Rx issue */
4441 		if (sc->txmixgain_2ghz >= 1)
4442 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4443 		run_rt3070_rf_write(sc, 17, rf);
4444 	}
4445 
4446 	if (sc->mac_rev == 0x3071) {
4447 		run_rt3070_rf_read(sc, 1, &rf);
4448 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4449 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4450 		run_rt3070_rf_write(sc, 1, rf);
4451 
4452 		run_rt3070_rf_read(sc, 15, &rf);
4453 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4454 
4455 		run_rt3070_rf_read(sc, 20, &rf);
4456 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4457 
4458 		run_rt3070_rf_read(sc, 21, &rf);
4459 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4460 	}
4461 
4462 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4463 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4464 		run_rt3070_rf_read(sc, 27, &rf);
4465 		rf &= ~0x77;
4466 		if (sc->mac_rev < 0x0211)
4467 			rf |= 0x03;
4468 		run_rt3070_rf_write(sc, 27, rf);
4469 	}
4470 	return (0);
4471 }
4472 
4473 static int
4474 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4475     uint8_t *val)
4476 {
4477 	uint8_t rf22, rf24;
4478 	uint8_t bbp55_pb, bbp55_sb, delta;
4479 	int ntries;
4480 
4481 	/* program filter */
4482 	run_rt3070_rf_read(sc, 24, &rf24);
4483 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4484 	run_rt3070_rf_write(sc, 24, rf24);
4485 
4486 	/* enable baseband loopback mode */
4487 	run_rt3070_rf_read(sc, 22, &rf22);
4488 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4489 
4490 	/* set power and frequency of passband test tone */
4491 	run_bbp_write(sc, 24, 0x00);
4492 	for (ntries = 0; ntries < 100; ntries++) {
4493 		/* transmit test tone */
4494 		run_bbp_write(sc, 25, 0x90);
4495 		run_delay(sc, 10);
4496 		/* read received power */
4497 		run_bbp_read(sc, 55, &bbp55_pb);
4498 		if (bbp55_pb != 0)
4499 			break;
4500 	}
4501 	if (ntries == 100)
4502 		return ETIMEDOUT;
4503 
4504 	/* set power and frequency of stopband test tone */
4505 	run_bbp_write(sc, 24, 0x06);
4506 	for (ntries = 0; ntries < 100; ntries++) {
4507 		/* transmit test tone */
4508 		run_bbp_write(sc, 25, 0x90);
4509 		run_delay(sc, 10);
4510 		/* read received power */
4511 		run_bbp_read(sc, 55, &bbp55_sb);
4512 
4513 		delta = bbp55_pb - bbp55_sb;
4514 		if (delta > target)
4515 			break;
4516 
4517 		/* reprogram filter */
4518 		rf24++;
4519 		run_rt3070_rf_write(sc, 24, rf24);
4520 	}
4521 	if (ntries < 100) {
4522 		if (rf24 != init)
4523 			rf24--;	/* backtrack */
4524 		*val = rf24;
4525 		run_rt3070_rf_write(sc, 24, rf24);
4526 	}
4527 
4528 	/* restore initial state */
4529 	run_bbp_write(sc, 24, 0x00);
4530 
4531 	/* disable baseband loopback mode */
4532 	run_rt3070_rf_read(sc, 22, &rf22);
4533 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4534 
4535 	return (0);
4536 }
4537 
4538 static void
4539 run_rt3070_rf_setup(struct run_softc *sc)
4540 {
4541 	uint8_t bbp, rf;
4542 	int i;
4543 
4544 	if (sc->mac_ver == 0x3572) {
4545 		/* enable DC filter */
4546 		if (sc->mac_rev >= 0x0201)
4547 			run_bbp_write(sc, 103, 0xc0);
4548 
4549 		run_bbp_read(sc, 138, &bbp);
4550 		if (sc->ntxchains == 1)
4551 			bbp |= 0x20;	/* turn off DAC1 */
4552 		if (sc->nrxchains == 1)
4553 			bbp &= ~0x02;	/* turn off ADC1 */
4554 		run_bbp_write(sc, 138, bbp);
4555 
4556 		if (sc->mac_rev >= 0x0211) {
4557 			/* improve power consumption */
4558 			run_bbp_read(sc, 31, &bbp);
4559 			run_bbp_write(sc, 31, bbp & ~0x03);
4560 		}
4561 
4562 		run_rt3070_rf_read(sc, 16, &rf);
4563 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4564 		run_rt3070_rf_write(sc, 16, rf);
4565 
4566 	} else if (sc->mac_ver == 0x3071) {
4567 		/* enable DC filter */
4568 		if (sc->mac_rev >= 0x0201)
4569 			run_bbp_write(sc, 103, 0xc0);
4570 
4571 		run_bbp_read(sc, 138, &bbp);
4572 		if (sc->ntxchains == 1)
4573 			bbp |= 0x20;	/* turn off DAC1 */
4574 		if (sc->nrxchains == 1)
4575 			bbp &= ~0x02;	/* turn off ADC1 */
4576 		run_bbp_write(sc, 138, bbp);
4577 
4578 		if (sc->mac_rev >= 0x0211) {
4579 			/* improve power consumption */
4580 			run_bbp_read(sc, 31, &bbp);
4581 			run_bbp_write(sc, 31, bbp & ~0x03);
4582 		}
4583 
4584 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4585 		if (sc->mac_rev < 0x0211) {
4586 			run_write(sc, RT2860_TX_SW_CFG2,
4587 			    sc->patch_dac ? 0x2c : 0x0f);
4588 		} else
4589 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4590 
4591 	} else if (sc->mac_ver == 0x3070) {
4592 		if (sc->mac_rev >= 0x0201) {
4593 			/* enable DC filter */
4594 			run_bbp_write(sc, 103, 0xc0);
4595 
4596 			/* improve power consumption */
4597 			run_bbp_read(sc, 31, &bbp);
4598 			run_bbp_write(sc, 31, bbp & ~0x03);
4599 		}
4600 
4601 		if (sc->mac_rev < 0x0211) {
4602 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4603 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4604 		} else
4605 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4606 	}
4607 
4608 	/* initialize RF registers from ROM for >=RT3071*/
4609 	if (sc->mac_ver >= 0x3071) {
4610 		for (i = 0; i < 10; i++) {
4611 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4612 				continue;
4613 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4614 		}
4615 	}
4616 }
4617 
4618 static int
4619 run_txrx_enable(struct run_softc *sc)
4620 {
4621 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4622 	uint32_t tmp;
4623 	int error, ntries;
4624 
4625 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4626 	for (ntries = 0; ntries < 200; ntries++) {
4627 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4628 			return error;
4629 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4630 			break;
4631 		run_delay(sc, 50);
4632 	}
4633 	if (ntries == 200)
4634 		return ETIMEDOUT;
4635 
4636 	run_delay(sc, 50);
4637 
4638 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4639 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4640 
4641 	/* enable Rx bulk aggregation (set timeout and limit) */
4642 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4643 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4644 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4645 
4646 	/* set Rx filter */
4647 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4648 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4649 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4650 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4651 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4652 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4653 		if (ic->ic_opmode == IEEE80211_M_STA)
4654 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4655 	}
4656 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4657 
4658 	run_write(sc, RT2860_MAC_SYS_CTRL,
4659 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4660 
4661 	return (0);
4662 }
4663 
4664 static void
4665 run_init_locked(struct run_softc *sc)
4666 {
4667 	struct ifnet *ifp = sc->sc_ifp;
4668 	struct ieee80211com *ic = ifp->if_l2com;
4669 	uint32_t tmp;
4670 	uint8_t bbp1, bbp3;
4671 	int i;
4672 	int ridx;
4673 	int ntries;
4674 
4675 	if (ic->ic_nrunning > 1)
4676 		return;
4677 
4678 	run_stop(sc);
4679 
4680 	for (ntries = 0; ntries < 100; ntries++) {
4681 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4682 			goto fail;
4683 		if (tmp != 0 && tmp != 0xffffffff)
4684 			break;
4685 		run_delay(sc, 10);
4686 	}
4687 	if (ntries == 100)
4688 		goto fail;
4689 
4690 	for (i = 0; i != RUN_EP_QUEUES; i++)
4691 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4692 
4693 	run_set_macaddr(sc, IF_LLADDR(ifp));
4694 
4695 	for (ntries = 0; ntries < 100; ntries++) {
4696 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4697 			goto fail;
4698 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4699 			break;
4700 		run_delay(sc, 10);
4701 	}
4702 	if (ntries == 100) {
4703 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4704 		goto fail;
4705 	}
4706 	tmp &= 0xff0;
4707 	tmp |= RT2860_TX_WB_DDONE;
4708 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4709 
4710 	/* turn off PME_OEN to solve high-current issue */
4711 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4712 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4713 
4714 	run_write(sc, RT2860_MAC_SYS_CTRL,
4715 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4716 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4717 
4718 	if (run_reset(sc) != 0) {
4719 		device_printf(sc->sc_dev, "could not reset chipset\n");
4720 		goto fail;
4721 	}
4722 
4723 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4724 
4725 	/* init Tx power for all Tx rates (from EEPROM) */
4726 	for (ridx = 0; ridx < 5; ridx++) {
4727 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4728 			continue;
4729 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4730 	}
4731 
4732 	for (i = 0; i < nitems(rt2870_def_mac); i++)
4733 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4734 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4735 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4736 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4737 
4738 	if (sc->mac_ver >= 0x3070) {
4739 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4740 		run_write(sc, RT2860_TX_SW_CFG0,
4741 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4742 	}
4743 
4744 	/* wait while MAC is busy */
4745 	for (ntries = 0; ntries < 100; ntries++) {
4746 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4747 			goto fail;
4748 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4749 			break;
4750 		run_delay(sc, 10);
4751 	}
4752 	if (ntries == 100)
4753 		goto fail;
4754 
4755 	/* clear Host to MCU mailbox */
4756 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4757 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4758 	run_delay(sc, 10);
4759 
4760 	if (run_bbp_init(sc) != 0) {
4761 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4762 		goto fail;
4763 	}
4764 
4765 	/* abort TSF synchronization */
4766 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4767 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4768 	    RT2860_TBTT_TIMER_EN);
4769 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4770 
4771 	/* clear RX WCID search table */
4772 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4773 	/* clear WCID attribute table */
4774 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4775 
4776 	/* hostapd sets a key before init. So, don't clear it. */
4777 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4778 		/* clear shared key table */
4779 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4780 		/* clear shared key mode */
4781 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4782 	}
4783 
4784 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4785 	tmp = (tmp & ~0xff) | 0x1e;
4786 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4787 
4788 	if (sc->mac_rev != 0x0101)
4789 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4790 
4791 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4792 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4793 
4794 	/* write vendor-specific BBP values (from EEPROM) */
4795 	for (i = 0; i < 10; i++) {
4796 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4797 			continue;
4798 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4799 	}
4800 
4801 	/* select Main antenna for 1T1R devices */
4802 	if (sc->rf_rev == RT3070_RF_3020)
4803 		run_set_rx_antenna(sc, 0);
4804 
4805 	/* send LEDs operating mode to microcontroller */
4806 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4807 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4808 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4809 
4810 	if (sc->mac_ver >= 0x3070)
4811 		run_rt3070_rf_init(sc);
4812 
4813 	/* disable non-existing Rx chains */
4814 	run_bbp_read(sc, 3, &bbp3);
4815 	bbp3 &= ~(1 << 3 | 1 << 4);
4816 	if (sc->nrxchains == 2)
4817 		bbp3 |= 1 << 3;
4818 	else if (sc->nrxchains == 3)
4819 		bbp3 |= 1 << 4;
4820 	run_bbp_write(sc, 3, bbp3);
4821 
4822 	/* disable non-existing Tx chains */
4823 	run_bbp_read(sc, 1, &bbp1);
4824 	if (sc->ntxchains == 1)
4825 		bbp1 &= ~(1 << 3 | 1 << 4);
4826 	run_bbp_write(sc, 1, bbp1);
4827 
4828 	if (sc->mac_ver >= 0x3070)
4829 		run_rt3070_rf_setup(sc);
4830 
4831 	/* select default channel */
4832 	run_set_chan(sc, ic->ic_curchan);
4833 
4834 	/* setup initial protection mode */
4835 	run_updateprot_cb(ic);
4836 
4837 	/* turn radio LED on */
4838 	run_set_leds(sc, RT2860_LED_RADIO);
4839 
4840 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4841 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4842 	sc->cmdq_run = RUN_CMDQ_GO;
4843 
4844 	for (i = 0; i != RUN_N_XFER; i++)
4845 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4846 
4847 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4848 
4849 	if (run_txrx_enable(sc) != 0)
4850 		goto fail;
4851 
4852 	return;
4853 
4854 fail:
4855 	run_stop(sc);
4856 }
4857 
4858 static void
4859 run_init(void *arg)
4860 {
4861 	struct run_softc *sc = arg;
4862 	struct ifnet *ifp = sc->sc_ifp;
4863 	struct ieee80211com *ic = ifp->if_l2com;
4864 
4865 	RUN_LOCK(sc);
4866 	run_init_locked(sc);
4867 	RUN_UNLOCK(sc);
4868 
4869 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4870 		ieee80211_start_all(ic);
4871 }
4872 
4873 static void
4874 run_stop(void *arg)
4875 {
4876 	struct run_softc *sc = (struct run_softc *)arg;
4877 	struct ifnet *ifp = sc->sc_ifp;
4878 	uint32_t tmp;
4879 	int i;
4880 	int ntries;
4881 
4882 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4883 
4884 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4885 		run_set_leds(sc, 0);	/* turn all LEDs off */
4886 
4887 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4888 
4889 	sc->ratectl_run = RUN_RATECTL_OFF;
4890 	sc->cmdq_run = sc->cmdq_key_set;
4891 
4892 	RUN_UNLOCK(sc);
4893 
4894 	for(i = 0; i < RUN_N_XFER; i++)
4895 		usbd_transfer_drain(sc->sc_xfer[i]);
4896 
4897 	RUN_LOCK(sc);
4898 
4899 	if (sc->rx_m != NULL) {
4900 		m_free(sc->rx_m);
4901 		sc->rx_m = NULL;
4902 	}
4903 
4904 	/* disable Tx/Rx */
4905 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4906 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4907 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4908 
4909 	/* wait for pending Tx to complete */
4910 	for (ntries = 0; ntries < 100; ntries++) {
4911 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4912 			DPRINTF("Cannot read Tx queue count\n");
4913 			break;
4914 		}
4915 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4916 			DPRINTF("All Tx cleared\n");
4917 			break;
4918 		}
4919 		run_delay(sc, 10);
4920 	}
4921 	if (ntries >= 100)
4922 		DPRINTF("There are still pending Tx\n");
4923 	run_delay(sc, 10);
4924 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4925 
4926 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4927 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4928 
4929 	for (i = 0; i != RUN_EP_QUEUES; i++)
4930 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4931 
4932 	return;
4933 }
4934 
4935 static void
4936 run_delay(struct run_softc *sc, unsigned int ms)
4937 {
4938 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4939 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4940 }
4941 
4942 static device_method_t run_methods[] = {
4943 	/* Device interface */
4944 	DEVMETHOD(device_probe,		run_match),
4945 	DEVMETHOD(device_attach,	run_attach),
4946 	DEVMETHOD(device_detach,	run_detach),
4947 
4948 	{ 0, 0 }
4949 };
4950 
4951 static driver_t run_driver = {
4952 	"run",
4953 	run_methods,
4954 	sizeof(struct run_softc)
4955 };
4956 
4957 static devclass_t run_devclass;
4958 
4959 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4960 MODULE_DEPEND(run, wlan, 1, 1, 1);
4961 MODULE_DEPEND(run, usb, 1, 1, 1);
4962 MODULE_DEPEND(run, firmware, 1, 1, 1);
4963 MODULE_VERSION(run, 1);
4964