xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision 55bce0c1203e70d8b62a3dedc9235ab39660c6f4)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_runreg.h>
75 #include <dev/usb/wlan/if_runvar.h>
76 
77 #define	N(_a) ((int)(sizeof((_a)) / sizeof((_a)[0])))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const STRUCT_USB_HOST_ID run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS,		USB_N53),
140     RUN_DEV(ASUS2,		USBN11),
141     RUN_DEV(AZUREWAVE,		RT2870_1),
142     RUN_DEV(AZUREWAVE,		RT2870_2),
143     RUN_DEV(AZUREWAVE,		RT3070_1),
144     RUN_DEV(AZUREWAVE,		RT3070_2),
145     RUN_DEV(AZUREWAVE,		RT3070_3),
146     RUN_DEV(BELKIN,		F5D8053V3),
147     RUN_DEV(BELKIN,		F5D8055),
148     RUN_DEV(BELKIN,		F5D8055V2),
149     RUN_DEV(BELKIN,		F6D4050V1),
150     RUN_DEV(BELKIN,		RT2870_1),
151     RUN_DEV(BELKIN,		RT2870_2),
152     RUN_DEV(CISCOLINKSYS,	AE1000),
153     RUN_DEV(CISCOLINKSYS2,	RT3070),
154     RUN_DEV(CISCOLINKSYS3,	RT3070),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
162     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
163     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
164     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
165     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
166     RUN_DEV(COREGA,		CGWLUSB300GNM),
167     RUN_DEV(COREGA,		RT2870_1),
168     RUN_DEV(COREGA,		RT2870_2),
169     RUN_DEV(COREGA,		RT2870_3),
170     RUN_DEV(COREGA,		RT3070),
171     RUN_DEV(CYBERTAN,		RT2870),
172     RUN_DEV(DLINK,		RT2870),
173     RUN_DEV(DLINK,		RT3072),
174     RUN_DEV(DLINK2,		DWA130),
175     RUN_DEV(DLINK2,		RT2870_1),
176     RUN_DEV(DLINK2,		RT2870_2),
177     RUN_DEV(DLINK2,		RT3070_1),
178     RUN_DEV(DLINK2,		RT3070_2),
179     RUN_DEV(DLINK2,		RT3070_3),
180     RUN_DEV(DLINK2,		RT3070_4),
181     RUN_DEV(DLINK2,		RT3070_5),
182     RUN_DEV(DLINK2,		RT3072),
183     RUN_DEV(DLINK2,		RT3072_1),
184     RUN_DEV(EDIMAX,		EW7717),
185     RUN_DEV(EDIMAX,		EW7718),
186     RUN_DEV(EDIMAX,		RT2870_1),
187     RUN_DEV(ENCORE,		RT3070_1),
188     RUN_DEV(ENCORE,		RT3070_2),
189     RUN_DEV(ENCORE,		RT3070_3),
190     RUN_DEV(GIGABYTE,		GNWB31N),
191     RUN_DEV(GIGABYTE,		GNWB32L),
192     RUN_DEV(GIGABYTE,		RT2870_1),
193     RUN_DEV(GIGASET,		RT3070_1),
194     RUN_DEV(GIGASET,		RT3070_2),
195     RUN_DEV(GUILLEMOT,		HWNU300),
196     RUN_DEV(HAWKING,		HWUN2),
197     RUN_DEV(HAWKING,		RT2870_1),
198     RUN_DEV(HAWKING,		RT2870_2),
199     RUN_DEV(HAWKING,		RT3070),
200     RUN_DEV(IODATA,		RT3072_1),
201     RUN_DEV(IODATA,		RT3072_2),
202     RUN_DEV(IODATA,		RT3072_3),
203     RUN_DEV(IODATA,		RT3072_4),
204     RUN_DEV(LINKSYS4,		RT3070),
205     RUN_DEV(LINKSYS4,		WUSB100),
206     RUN_DEV(LINKSYS4,		WUSB54GCV3),
207     RUN_DEV(LINKSYS4,		WUSB600N),
208     RUN_DEV(LINKSYS4,		WUSB600NV2),
209     RUN_DEV(LOGITEC,		RT2870_1),
210     RUN_DEV(LOGITEC,		RT2870_2),
211     RUN_DEV(LOGITEC,		RT2870_3),
212     RUN_DEV(LOGITEC,		LANW300NU2),
213     RUN_DEV(LOGITEC,		LANW150NU2),
214     RUN_DEV(LOGITEC,		LANW300NU2S),
215     RUN_DEV(MELCO,		RT2870_1),
216     RUN_DEV(MELCO,		RT2870_2),
217     RUN_DEV(MELCO,		WLIUCAG300N),
218     RUN_DEV(MELCO,		WLIUCG300N),
219     RUN_DEV(MELCO,		WLIUCG301N),
220     RUN_DEV(MELCO,		WLIUCGN),
221     RUN_DEV(MELCO,		WLIUCGNM),
222     RUN_DEV(MELCO,		WLIUCGNM2),
223     RUN_DEV(MOTOROLA4,		RT2770),
224     RUN_DEV(MOTOROLA4,		RT3070),
225     RUN_DEV(MSI,		RT3070_1),
226     RUN_DEV(MSI,		RT3070_2),
227     RUN_DEV(MSI,		RT3070_3),
228     RUN_DEV(MSI,		RT3070_4),
229     RUN_DEV(MSI,		RT3070_5),
230     RUN_DEV(MSI,		RT3070_6),
231     RUN_DEV(MSI,		RT3070_7),
232     RUN_DEV(MSI,		RT3070_8),
233     RUN_DEV(MSI,		RT3070_9),
234     RUN_DEV(MSI,		RT3070_10),
235     RUN_DEV(MSI,		RT3070_11),
236     RUN_DEV(OVISLINK,		RT3072),
237     RUN_DEV(PARA,		RT3070),
238     RUN_DEV(PEGATRON,		RT2870),
239     RUN_DEV(PEGATRON,		RT3070),
240     RUN_DEV(PEGATRON,		RT3070_2),
241     RUN_DEV(PEGATRON,		RT3070_3),
242     RUN_DEV(PHILIPS,		RT2870),
243     RUN_DEV(PLANEX2,		GWUS300MINIS),
244     RUN_DEV(PLANEX2,		GWUSMICRON),
245     RUN_DEV(PLANEX2,		RT2870),
246     RUN_DEV(PLANEX2,		RT3070),
247     RUN_DEV(QCOM,		RT2870),
248     RUN_DEV(QUANTA,		RT3070),
249     RUN_DEV(RALINK,		RT2070),
250     RUN_DEV(RALINK,		RT2770),
251     RUN_DEV(RALINK,		RT2870),
252     RUN_DEV(RALINK,		RT3070),
253     RUN_DEV(RALINK,		RT3071),
254     RUN_DEV(RALINK,		RT3072),
255     RUN_DEV(RALINK,		RT3370),
256     RUN_DEV(RALINK,		RT3572),
257     RUN_DEV(RALINK,		RT8070),
258     RUN_DEV(SAMSUNG,		WIS09ABGN),
259     RUN_DEV(SAMSUNG2,		RT2870_1),
260     RUN_DEV(SENAO,		RT2870_1),
261     RUN_DEV(SENAO,		RT2870_2),
262     RUN_DEV(SENAO,		RT2870_3),
263     RUN_DEV(SENAO,		RT2870_4),
264     RUN_DEV(SENAO,		RT3070),
265     RUN_DEV(SENAO,		RT3071),
266     RUN_DEV(SENAO,		RT3072_1),
267     RUN_DEV(SENAO,		RT3072_2),
268     RUN_DEV(SENAO,		RT3072_3),
269     RUN_DEV(SENAO,		RT3072_4),
270     RUN_DEV(SENAO,		RT3072_5),
271     RUN_DEV(SITECOMEU,		RT2770),
272     RUN_DEV(SITECOMEU,		RT2870_1),
273     RUN_DEV(SITECOMEU,		RT2870_2),
274     RUN_DEV(SITECOMEU,		RT2870_3),
275     RUN_DEV(SITECOMEU,		RT2870_4),
276     RUN_DEV(SITECOMEU,		RT3070),
277     RUN_DEV(SITECOMEU,		RT3070_2),
278     RUN_DEV(SITECOMEU,		RT3070_3),
279     RUN_DEV(SITECOMEU,		RT3070_4),
280     RUN_DEV(SITECOMEU,		RT3071),
281     RUN_DEV(SITECOMEU,		RT3072_1),
282     RUN_DEV(SITECOMEU,		RT3072_2),
283     RUN_DEV(SITECOMEU,		RT3072_3),
284     RUN_DEV(SITECOMEU,		RT3072_4),
285     RUN_DEV(SITECOMEU,		RT3072_5),
286     RUN_DEV(SITECOMEU,		RT3072_6),
287     RUN_DEV(SITECOMEU,		WL608),
288     RUN_DEV(SPARKLAN,		RT2870_1),
289     RUN_DEV(SPARKLAN,		RT3070),
290     RUN_DEV(SWEEX2,		LW153),
291     RUN_DEV(SWEEX2,		LW303),
292     RUN_DEV(SWEEX2,		LW313),
293     RUN_DEV(TOSHIBA,		RT3070),
294     RUN_DEV(UMEDIA,		RT2870_1),
295     RUN_DEV(ZCOM,		RT2870_1),
296     RUN_DEV(ZCOM,		RT2870_2),
297     RUN_DEV(ZINWELL,		RT2870_1),
298     RUN_DEV(ZINWELL,		RT2870_2),
299     RUN_DEV(ZINWELL,		RT3070),
300     RUN_DEV(ZINWELL,		RT3072_1),
301     RUN_DEV(ZINWELL,		RT3072_2),
302     RUN_DEV(ZYXEL,		RT2870_1),
303     RUN_DEV(ZYXEL,		RT2870_2),
304 #undef RUN_DEV
305 };
306 
307 static device_probe_t	run_match;
308 static device_attach_t	run_attach;
309 static device_detach_t	run_detach;
310 
311 static usb_callback_t	run_bulk_rx_callback;
312 static usb_callback_t	run_bulk_tx_callback0;
313 static usb_callback_t	run_bulk_tx_callback1;
314 static usb_callback_t	run_bulk_tx_callback2;
315 static usb_callback_t	run_bulk_tx_callback3;
316 static usb_callback_t	run_bulk_tx_callback4;
317 static usb_callback_t	run_bulk_tx_callback5;
318 
319 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
320 		    usb_error_t error, unsigned int index);
321 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
322 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
323 		    const uint8_t [IEEE80211_ADDR_LEN],
324 		    const uint8_t [IEEE80211_ADDR_LEN]);
325 static void	run_vap_delete(struct ieee80211vap *);
326 static void	run_cmdq_cb(void *, int);
327 static void	run_setup_tx_list(struct run_softc *,
328 		    struct run_endpoint_queue *);
329 static void	run_unsetup_tx_list(struct run_softc *,
330 		    struct run_endpoint_queue *);
331 static int	run_load_microcode(struct run_softc *);
332 static int	run_reset(struct run_softc *);
333 static usb_error_t run_do_request(struct run_softc *,
334 		    struct usb_device_request *, void *);
335 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
336 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
337 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
338 static int	run_write(struct run_softc *, uint16_t, uint32_t);
339 static int	run_write_region_1(struct run_softc *, uint16_t,
340 		    const uint8_t *, int);
341 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
342 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
343 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
344 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
345 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
346 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
347 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
348 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
349 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
350 static const char *run_get_rf(int);
351 static int	run_read_eeprom(struct run_softc *);
352 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
353 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
354 static int	run_media_change(struct ifnet *);
355 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
356 static int	run_wme_update(struct ieee80211com *);
357 static void	run_wme_update_cb(void *);
358 static void	run_key_update_begin(struct ieee80211vap *);
359 static void	run_key_update_end(struct ieee80211vap *);
360 static void	run_key_set_cb(void *);
361 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
362 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
363 static void	run_key_delete_cb(void *);
364 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
365 static void	run_ratectl_to(void *);
366 static void	run_ratectl_cb(void *, int);
367 static void	run_drain_fifo(void *);
368 static void	run_iter_func(void *, struct ieee80211_node *);
369 static void	run_newassoc_cb(void *);
370 static void	run_newassoc(struct ieee80211_node *, int);
371 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
372 static void	run_tx_free(struct run_endpoint_queue *pq,
373 		    struct run_tx_data *, int);
374 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
375 static int	run_tx(struct run_softc *, struct mbuf *,
376 		    struct ieee80211_node *);
377 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
378 		    struct ieee80211_node *);
379 static int	run_sendprot(struct run_softc *, const struct mbuf *,
380 		    struct ieee80211_node *, int, int);
381 static int	run_tx_param(struct run_softc *, struct mbuf *,
382 		    struct ieee80211_node *,
383 		    const struct ieee80211_bpf_params *);
384 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
385 		    const struct ieee80211_bpf_params *);
386 static void	run_start(struct ifnet *);
387 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
388 static void	run_set_agc(struct run_softc *, uint8_t);
389 static void	run_select_chan_group(struct run_softc *, int);
390 static void	run_set_rx_antenna(struct run_softc *, int);
391 static void	run_rt2870_set_chan(struct run_softc *, u_int);
392 static void	run_rt3070_set_chan(struct run_softc *, u_int);
393 static void	run_rt3572_set_chan(struct run_softc *, u_int);
394 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
395 static void	run_set_channel(struct ieee80211com *);
396 static void	run_scan_start(struct ieee80211com *);
397 static void	run_scan_end(struct ieee80211com *);
398 static void	run_update_beacon(struct ieee80211vap *, int);
399 static void	run_update_beacon_cb(void *);
400 static void	run_updateprot(struct ieee80211com *);
401 static void	run_updateprot_cb(void *);
402 static void	run_usb_timeout_cb(void *);
403 static void	run_reset_livelock(struct run_softc *);
404 static void	run_enable_tsf_sync(struct run_softc *);
405 static void	run_enable_mrr(struct run_softc *);
406 static void	run_set_txpreamble(struct run_softc *);
407 static void	run_set_basicrates(struct run_softc *);
408 static void	run_set_leds(struct run_softc *, uint16_t);
409 static void	run_set_bssid(struct run_softc *, const uint8_t *);
410 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
411 static void	run_updateslot(struct ifnet *);
412 static void	run_updateslot_cb(void *);
413 static void	run_update_mcast(struct ifnet *);
414 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
415 static void	run_update_promisc_locked(struct ifnet *);
416 static void	run_update_promisc(struct ifnet *);
417 static int	run_bbp_init(struct run_softc *);
418 static int	run_rt3070_rf_init(struct run_softc *);
419 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
420 		    uint8_t *);
421 static void	run_rt3070_rf_setup(struct run_softc *);
422 static int	run_txrx_enable(struct run_softc *);
423 static void	run_init(void *);
424 static void	run_init_locked(struct run_softc *);
425 static void	run_stop(void *);
426 static void	run_delay(struct run_softc *, unsigned int);
427 
428 static const struct {
429 	uint16_t	reg;
430 	uint32_t	val;
431 } rt2870_def_mac[] = {
432 	RT2870_DEF_MAC
433 };
434 
435 static const struct {
436 	uint8_t	reg;
437 	uint8_t	val;
438 } rt2860_def_bbp[] = {
439 	RT2860_DEF_BBP
440 };
441 
442 static const struct rfprog {
443 	uint8_t		chan;
444 	uint32_t	r1, r2, r3, r4;
445 } rt2860_rf2850[] = {
446 	RT2860_RF2850
447 };
448 
449 struct {
450 	uint8_t	n, r, k;
451 } rt3070_freqs[] = {
452 	RT3070_RF3052
453 };
454 
455 static const struct {
456 	uint8_t	reg;
457 	uint8_t	val;
458 } rt3070_def_rf[] = {
459 	RT3070_DEF_RF
460 },rt3572_def_rf[] = {
461 	RT3572_DEF_RF
462 };
463 
464 static const struct usb_config run_config[RUN_N_XFER] = {
465     [RUN_BULK_TX_BE] = {
466 	.type = UE_BULK,
467 	.endpoint = UE_ADDR_ANY,
468 	.ep_index = 0,
469 	.direction = UE_DIR_OUT,
470 	.bufsize = RUN_MAX_TXSZ,
471 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
472 	.callback = run_bulk_tx_callback0,
473 	.timeout = 5000,	/* ms */
474     },
475     [RUN_BULK_TX_BK] = {
476 	.type = UE_BULK,
477 	.endpoint = UE_ADDR_ANY,
478 	.direction = UE_DIR_OUT,
479 	.ep_index = 1,
480 	.bufsize = RUN_MAX_TXSZ,
481 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
482 	.callback = run_bulk_tx_callback1,
483 	.timeout = 5000,	/* ms */
484     },
485     [RUN_BULK_TX_VI] = {
486 	.type = UE_BULK,
487 	.endpoint = UE_ADDR_ANY,
488 	.direction = UE_DIR_OUT,
489 	.ep_index = 2,
490 	.bufsize = RUN_MAX_TXSZ,
491 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
492 	.callback = run_bulk_tx_callback2,
493 	.timeout = 5000,	/* ms */
494     },
495     [RUN_BULK_TX_VO] = {
496 	.type = UE_BULK,
497 	.endpoint = UE_ADDR_ANY,
498 	.direction = UE_DIR_OUT,
499 	.ep_index = 3,
500 	.bufsize = RUN_MAX_TXSZ,
501 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
502 	.callback = run_bulk_tx_callback3,
503 	.timeout = 5000,	/* ms */
504     },
505     [RUN_BULK_TX_HCCA] = {
506 	.type = UE_BULK,
507 	.endpoint = UE_ADDR_ANY,
508 	.direction = UE_DIR_OUT,
509 	.ep_index = 4,
510 	.bufsize = RUN_MAX_TXSZ,
511 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
512 	.callback = run_bulk_tx_callback4,
513 	.timeout = 5000,	/* ms */
514     },
515     [RUN_BULK_TX_PRIO] = {
516 	.type = UE_BULK,
517 	.endpoint = UE_ADDR_ANY,
518 	.direction = UE_DIR_OUT,
519 	.ep_index = 5,
520 	.bufsize = RUN_MAX_TXSZ,
521 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
522 	.callback = run_bulk_tx_callback5,
523 	.timeout = 5000,	/* ms */
524     },
525     [RUN_BULK_RX] = {
526 	.type = UE_BULK,
527 	.endpoint = UE_ADDR_ANY,
528 	.direction = UE_DIR_IN,
529 	.bufsize = RUN_MAX_RXSZ,
530 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
531 	.callback = run_bulk_rx_callback,
532     }
533 };
534 
535 static int
536 run_match(device_t self)
537 {
538 	struct usb_attach_arg *uaa = device_get_ivars(self);
539 
540 	if (uaa->usb_mode != USB_MODE_HOST)
541 		return (ENXIO);
542 	if (uaa->info.bConfigIndex != 0)
543 		return (ENXIO);
544 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
545 		return (ENXIO);
546 
547 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
548 }
549 
550 static int
551 run_attach(device_t self)
552 {
553 	struct run_softc *sc = device_get_softc(self);
554 	struct usb_attach_arg *uaa = device_get_ivars(self);
555 	struct ieee80211com *ic;
556 	struct ifnet *ifp;
557 	uint32_t ver;
558 	int i, ntries, error;
559 	uint8_t iface_index, bands;
560 
561 	device_set_usb_desc(self);
562 	sc->sc_udev = uaa->device;
563 	sc->sc_dev = self;
564 
565 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
566 	    MTX_NETWORK_LOCK, MTX_DEF);
567 
568 	iface_index = RT2860_IFACE_INDEX;
569 
570 	error = usbd_transfer_setup(uaa->device, &iface_index,
571 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
572 	if (error) {
573 		device_printf(self, "could not allocate USB transfers, "
574 		    "err=%s\n", usbd_errstr(error));
575 		goto detach;
576 	}
577 
578 	RUN_LOCK(sc);
579 
580 	/* wait for the chip to settle */
581 	for (ntries = 0; ntries < 100; ntries++) {
582 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
583 			RUN_UNLOCK(sc);
584 			goto detach;
585 		}
586 		if (ver != 0 && ver != 0xffffffff)
587 			break;
588 		run_delay(sc, 10);
589 	}
590 	if (ntries == 100) {
591 		device_printf(sc->sc_dev,
592 		    "timeout waiting for NIC to initialize\n");
593 		RUN_UNLOCK(sc);
594 		goto detach;
595 	}
596 	sc->mac_ver = ver >> 16;
597 	sc->mac_rev = ver & 0xffff;
598 
599 	/* retrieve RF rev. no and various other things from EEPROM */
600 	run_read_eeprom(sc);
601 
602 	device_printf(sc->sc_dev,
603 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
604 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
605 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
606 
607 	RUN_UNLOCK(sc);
608 
609 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
610 	if (ifp == NULL) {
611 		device_printf(sc->sc_dev, "can not if_alloc()\n");
612 		goto detach;
613 	}
614 	ic = ifp->if_l2com;
615 
616 	ifp->if_softc = sc;
617 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
619 	ifp->if_init = run_init;
620 	ifp->if_ioctl = run_ioctl;
621 	ifp->if_start = run_start;
622 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
623 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
624 	IFQ_SET_READY(&ifp->if_snd);
625 
626 	ic->ic_ifp = ifp;
627 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
628 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
629 
630 	/* set device capabilities */
631 	ic->ic_caps =
632 	    IEEE80211_C_STA |		/* station mode supported */
633 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
634 	    IEEE80211_C_IBSS |
635 	    IEEE80211_C_HOSTAP |
636 	    IEEE80211_C_WDS |		/* 4-address traffic works */
637 	    IEEE80211_C_MBSS |
638 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
639 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
640 	    IEEE80211_C_WME |		/* WME */
641 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
642 
643 	ic->ic_cryptocaps =
644 	    IEEE80211_CRYPTO_WEP |
645 	    IEEE80211_CRYPTO_AES_CCM |
646 	    IEEE80211_CRYPTO_TKIPMIC |
647 	    IEEE80211_CRYPTO_TKIP;
648 
649 	ic->ic_flags |= IEEE80211_F_DATAPAD;
650 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
651 
652 	bands = 0;
653 	setbit(&bands, IEEE80211_MODE_11B);
654 	setbit(&bands, IEEE80211_MODE_11G);
655 	ieee80211_init_channels(ic, NULL, &bands);
656 
657 	/*
658 	 * Do this by own because h/w supports
659 	 * more channels than ieee80211_init_channels()
660 	 */
661 	if (sc->rf_rev == RT2860_RF_2750 ||
662 	    sc->rf_rev == RT2860_RF_2850 ||
663 	    sc->rf_rev == RT3070_RF_3052) {
664 		/* set supported .11a rates */
665 		for (i = 14; i < N(rt2860_rf2850); i++) {
666 			uint8_t chan = rt2860_rf2850[i].chan;
667 			ic->ic_channels[ic->ic_nchans].ic_freq =
668 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
669 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
670 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
671 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
672 			ic->ic_nchans++;
673 		}
674 	}
675 
676 	ieee80211_ifattach(ic, sc->sc_bssid);
677 
678 	ic->ic_scan_start = run_scan_start;
679 	ic->ic_scan_end = run_scan_end;
680 	ic->ic_set_channel = run_set_channel;
681 	ic->ic_node_alloc = run_node_alloc;
682 	ic->ic_newassoc = run_newassoc;
683 	ic->ic_updateslot = run_updateslot;
684 	ic->ic_update_mcast = run_update_mcast;
685 	ic->ic_wme.wme_update = run_wme_update;
686 	ic->ic_raw_xmit = run_raw_xmit;
687 	ic->ic_update_promisc = run_update_promisc;
688 
689 	ic->ic_vap_create = run_vap_create;
690 	ic->ic_vap_delete = run_vap_delete;
691 
692 	ieee80211_radiotap_attach(ic,
693 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694 		RUN_TX_RADIOTAP_PRESENT,
695 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696 		RUN_RX_RADIOTAP_PRESENT);
697 
698 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
699 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
700 	callout_init((struct callout *)&sc->ratectl_ch, 1);
701 
702 	if (bootverbose)
703 		ieee80211_announce(ic);
704 
705 	return (0);
706 
707 detach:
708 	run_detach(self);
709 	return (ENXIO);
710 }
711 
712 static int
713 run_detach(device_t self)
714 {
715 	struct run_softc *sc = device_get_softc(self);
716 	struct ifnet *ifp = sc->sc_ifp;
717 	struct ieee80211com *ic;
718 	int i;
719 
720 	RUN_LOCK(sc);
721 	sc->sc_detached = 1;
722 	RUN_UNLOCK(sc);
723 
724 	/* stop all USB transfers */
725 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
726 
727 	RUN_LOCK(sc);
728 	sc->ratectl_run = RUN_RATECTL_OFF;
729 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
730 
731 	/* free TX list, if any */
732 	for (i = 0; i != RUN_EP_QUEUES; i++)
733 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
734 	RUN_UNLOCK(sc);
735 
736 	if (ifp) {
737 		ic = ifp->if_l2com;
738 		/* drain tasks */
739 		usb_callout_drain(&sc->ratectl_ch);
740 		ieee80211_draintask(ic, &sc->cmdq_task);
741 		ieee80211_draintask(ic, &sc->ratectl_task);
742 		ieee80211_ifdetach(ic);
743 		if_free(ifp);
744 	}
745 
746 	mtx_destroy(&sc->sc_mtx);
747 
748 	return (0);
749 }
750 
751 static struct ieee80211vap *
752 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
753     enum ieee80211_opmode opmode, int flags,
754     const uint8_t bssid[IEEE80211_ADDR_LEN],
755     const uint8_t mac[IEEE80211_ADDR_LEN])
756 {
757 	struct ifnet *ifp = ic->ic_ifp;
758 	struct run_softc *sc = ifp->if_softc;
759 	struct run_vap *rvp;
760 	struct ieee80211vap *vap;
761 	int i;
762 
763 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
764 		if_printf(ifp, "number of VAPs maxed out\n");
765 		return (NULL);
766 	}
767 
768 	switch (opmode) {
769 	case IEEE80211_M_STA:
770 		/* enable s/w bmiss handling for sta mode */
771 		flags |= IEEE80211_CLONE_NOBEACONS;
772 		/* fall though */
773 	case IEEE80211_M_IBSS:
774 	case IEEE80211_M_MONITOR:
775 	case IEEE80211_M_HOSTAP:
776 	case IEEE80211_M_MBSS:
777 		/* other than WDS vaps, only one at a time */
778 		if (!TAILQ_EMPTY(&ic->ic_vaps))
779 			return (NULL);
780 		break;
781 	case IEEE80211_M_WDS:
782 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
783 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
784 				continue;
785 			/* WDS vap's always share the local mac address. */
786 			flags &= ~IEEE80211_CLONE_BSSID;
787 			break;
788 		}
789 		if (vap == NULL) {
790 			if_printf(ifp, "wds only supported in ap mode\n");
791 			return (NULL);
792 		}
793 		break;
794 	default:
795 		if_printf(ifp, "unknown opmode %d\n", opmode);
796 		return (NULL);
797 	}
798 
799 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
800 	    M_80211_VAP, M_NOWAIT | M_ZERO);
801 	if (rvp == NULL)
802 		return (NULL);
803 	vap = &rvp->vap;
804 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
805 
806 	vap->iv_key_update_begin = run_key_update_begin;
807 	vap->iv_key_update_end = run_key_update_end;
808 	vap->iv_update_beacon = run_update_beacon;
809 	vap->iv_max_aid = RT2870_WCID_MAX;
810 	/*
811 	 * To delete the right key from h/w, we need wcid.
812 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
813 	 * and matching wcid will be written into there. So, cast
814 	 * some spells to remove 'const' from ieee80211_key{}
815 	 */
816 	vap->iv_key_delete = (void *)run_key_delete;
817 	vap->iv_key_set = (void *)run_key_set;
818 
819 	/* override state transition machine */
820 	rvp->newstate = vap->iv_newstate;
821 	vap->iv_newstate = run_newstate;
822 
823 	ieee80211_ratectl_init(vap);
824 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
825 
826 	/* complete setup */
827 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
828 
829 	/* make sure id is always unique */
830 	for (i = 0; i < RUN_VAP_MAX; i++) {
831 		if((sc->rvp_bmap & 1 << i) == 0){
832 			sc->rvp_bmap |= 1 << i;
833 			rvp->rvp_id = i;
834 			break;
835 		}
836 	}
837 	if (sc->rvp_cnt++ == 0)
838 		ic->ic_opmode = opmode;
839 
840 	if (opmode == IEEE80211_M_HOSTAP)
841 		sc->cmdq_run = RUN_CMDQ_GO;
842 
843 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
844 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
845 
846 	return (vap);
847 }
848 
849 static void
850 run_vap_delete(struct ieee80211vap *vap)
851 {
852 	struct run_vap *rvp = RUN_VAP(vap);
853 	struct ifnet *ifp;
854 	struct ieee80211com *ic;
855 	struct run_softc *sc;
856 	uint8_t rvp_id;
857 
858 	if (vap == NULL)
859 		return;
860 
861 	ic = vap->iv_ic;
862 	ifp = ic->ic_ifp;
863 
864 	sc = ifp->if_softc;
865 
866 	RUN_LOCK(sc);
867 
868 	m_freem(rvp->beacon_mbuf);
869 	rvp->beacon_mbuf = NULL;
870 
871 	rvp_id = rvp->rvp_id;
872 	sc->ratectl_run &= ~(1 << rvp_id);
873 	sc->rvp_bmap &= ~(1 << rvp_id);
874 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
875 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
876 	--sc->rvp_cnt;
877 
878 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
879 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
880 
881 	RUN_UNLOCK(sc);
882 
883 	ieee80211_ratectl_deinit(vap);
884 	ieee80211_vap_detach(vap);
885 	free(rvp, M_80211_VAP);
886 }
887 
888 /*
889  * There are numbers of functions need to be called in context thread.
890  * Rather than creating taskqueue event for each of those functions,
891  * here is all-for-one taskqueue callback function. This function
892  * gurantees deferred functions are executed in the same order they
893  * were enqueued.
894  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
895  */
896 static void
897 run_cmdq_cb(void *arg, int pending)
898 {
899 	struct run_softc *sc = arg;
900 	uint8_t i;
901 
902 	/* call cmdq[].func locked */
903 	RUN_LOCK(sc);
904 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
905 	    i = sc->cmdq_exec, pending--) {
906 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
907 		if (sc->cmdq_run == RUN_CMDQ_GO) {
908 			/*
909 			 * If arg0 is NULL, callback func needs more
910 			 * than one arg. So, pass ptr to cmdq struct.
911 			 */
912 			if (sc->cmdq[i].arg0)
913 				sc->cmdq[i].func(sc->cmdq[i].arg0);
914 			else
915 				sc->cmdq[i].func(&sc->cmdq[i]);
916 		}
917 		sc->cmdq[i].arg0 = NULL;
918 		sc->cmdq[i].func = NULL;
919 		sc->cmdq_exec++;
920 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
921 	}
922 	RUN_UNLOCK(sc);
923 }
924 
925 static void
926 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
927 {
928 	struct run_tx_data *data;
929 
930 	memset(pq, 0, sizeof(*pq));
931 
932 	STAILQ_INIT(&pq->tx_qh);
933 	STAILQ_INIT(&pq->tx_fh);
934 
935 	for (data = &pq->tx_data[0];
936 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
937 		data->sc = sc;
938 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
939 	}
940 	pq->tx_nfree = RUN_TX_RING_COUNT;
941 }
942 
943 static void
944 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
945 {
946 	struct run_tx_data *data;
947 
948 	/* make sure any subsequent use of the queues will fail */
949 	pq->tx_nfree = 0;
950 	STAILQ_INIT(&pq->tx_fh);
951 	STAILQ_INIT(&pq->tx_qh);
952 
953 	/* free up all node references and mbufs */
954 	for (data = &pq->tx_data[0];
955 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
956 		if (data->m != NULL) {
957 			m_freem(data->m);
958 			data->m = NULL;
959 		}
960 		if (data->ni != NULL) {
961 			ieee80211_free_node(data->ni);
962 			data->ni = NULL;
963 		}
964 	}
965 }
966 
967 static int
968 run_load_microcode(struct run_softc *sc)
969 {
970 	usb_device_request_t req;
971 	const struct firmware *fw;
972 	const u_char *base;
973 	uint32_t tmp;
974 	int ntries, error;
975 	const uint64_t *temp;
976 	uint64_t bytes;
977 
978 	RUN_UNLOCK(sc);
979 	fw = firmware_get("runfw");
980 	RUN_LOCK(sc);
981 	if (fw == NULL) {
982 		device_printf(sc->sc_dev,
983 		    "failed loadfirmware of file %s\n", "runfw");
984 		return ENOENT;
985 	}
986 
987 	if (fw->datasize != 8192) {
988 		device_printf(sc->sc_dev,
989 		    "invalid firmware size (should be 8KB)\n");
990 		error = EINVAL;
991 		goto fail;
992 	}
993 
994 	/*
995 	 * RT3071/RT3072 use a different firmware
996 	 * run-rt2870 (8KB) contains both,
997 	 * first half (4KB) is for rt2870,
998 	 * last half is for rt3071.
999 	 */
1000 	base = fw->data;
1001 	if ((sc->mac_ver) != 0x2860 &&
1002 	    (sc->mac_ver) != 0x2872 &&
1003 	    (sc->mac_ver) != 0x3070) {
1004 		base += 4096;
1005 	}
1006 
1007 	/* cheap sanity check */
1008 	temp = fw->data;
1009 	bytes = *temp;
1010 	if (bytes != be64toh(0xffffff0210280210)) {
1011 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1012 		error = EINVAL;
1013 		goto fail;
1014 	}
1015 
1016 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1017 	/* write microcode image */
1018 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1019 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1020 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1021 
1022 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1023 	req.bRequest = RT2870_RESET;
1024 	USETW(req.wValue, 8);
1025 	USETW(req.wIndex, 0);
1026 	USETW(req.wLength, 0);
1027 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1028 	    != 0) {
1029 		device_printf(sc->sc_dev, "firmware reset failed\n");
1030 		goto fail;
1031 	}
1032 
1033 	run_delay(sc, 10);
1034 
1035 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1036 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1037 		goto fail;
1038 
1039 	/* wait until microcontroller is ready */
1040 	for (ntries = 0; ntries < 1000; ntries++) {
1041 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1042 			goto fail;
1043 		}
1044 		if (tmp & RT2860_MCU_READY)
1045 			break;
1046 		run_delay(sc, 10);
1047 	}
1048 	if (ntries == 1000) {
1049 		device_printf(sc->sc_dev,
1050 		    "timeout waiting for MCU to initialize\n");
1051 		error = ETIMEDOUT;
1052 		goto fail;
1053 	}
1054 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1055 	    (base == fw->data) ? "RT2870" : "RT3071",
1056 	    *(base + 4092), *(base + 4093));
1057 
1058 fail:
1059 	firmware_put(fw, FIRMWARE_UNLOAD);
1060 	return (error);
1061 }
1062 
1063 int
1064 run_reset(struct run_softc *sc)
1065 {
1066 	usb_device_request_t req;
1067 
1068 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1069 	req.bRequest = RT2870_RESET;
1070 	USETW(req.wValue, 1);
1071 	USETW(req.wIndex, 0);
1072 	USETW(req.wLength, 0);
1073 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1074 }
1075 
1076 static usb_error_t
1077 run_do_request(struct run_softc *sc,
1078     struct usb_device_request *req, void *data)
1079 {
1080 	usb_error_t err;
1081 	int ntries = 10;
1082 
1083 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1084 
1085 	while (ntries--) {
1086 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1087 		    req, data, 0, NULL, 250 /* ms */);
1088 		if (err == 0)
1089 			break;
1090 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1091 		    usbd_errstr(err));
1092 		run_delay(sc, 10);
1093 	}
1094 	return (err);
1095 }
1096 
1097 static int
1098 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1099 {
1100 	uint32_t tmp;
1101 	int error;
1102 
1103 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1104 	if (error == 0)
1105 		*val = le32toh(tmp);
1106 	else
1107 		*val = 0xffffffff;
1108 	return (error);
1109 }
1110 
1111 static int
1112 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1113 {
1114 	usb_device_request_t req;
1115 
1116 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1117 	req.bRequest = RT2870_READ_REGION_1;
1118 	USETW(req.wValue, 0);
1119 	USETW(req.wIndex, reg);
1120 	USETW(req.wLength, len);
1121 
1122 	return (run_do_request(sc, &req, buf));
1123 }
1124 
1125 static int
1126 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1127 {
1128 	usb_device_request_t req;
1129 
1130 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1131 	req.bRequest = RT2870_WRITE_2;
1132 	USETW(req.wValue, val);
1133 	USETW(req.wIndex, reg);
1134 	USETW(req.wLength, 0);
1135 
1136 	return (run_do_request(sc, &req, NULL));
1137 }
1138 
1139 static int
1140 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1141 {
1142 	int error;
1143 
1144 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1145 		error = run_write_2(sc, reg + 2, val >> 16);
1146 	return (error);
1147 }
1148 
1149 static int
1150 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1151     int len)
1152 {
1153 #if 1
1154 	int i, error = 0;
1155 	/*
1156 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1157 	 * We thus issue multiple WRITE_2 commands instead.
1158 	 */
1159 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1160 	for (i = 0; i < len && error == 0; i += 2)
1161 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1162 	return (error);
1163 #else
1164 	usb_device_request_t req;
1165 
1166 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1167 	req.bRequest = RT2870_WRITE_REGION_1;
1168 	USETW(req.wValue, 0);
1169 	USETW(req.wIndex, reg);
1170 	USETW(req.wLength, len);
1171 	return (run_do_request(sc, &req, buf));
1172 #endif
1173 }
1174 
1175 static int
1176 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1177 {
1178 	int i, error = 0;
1179 
1180 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1181 	for (i = 0; i < len && error == 0; i += 4)
1182 		error = run_write(sc, reg + i, val);
1183 	return (error);
1184 }
1185 
1186 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1187 static int
1188 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1189 {
1190 	uint32_t tmp;
1191 	uint16_t reg;
1192 	int error, ntries;
1193 
1194 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1195 		return (error);
1196 
1197 	addr *= 2;
1198 	/*-
1199 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1200 	 * DATA0: F E D C
1201 	 * DATA1: B A 9 8
1202 	 * DATA2: 7 6 5 4
1203 	 * DATA3: 3 2 1 0
1204 	 */
1205 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1206 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1207 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1208 	for (ntries = 0; ntries < 100; ntries++) {
1209 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1210 			return (error);
1211 		if (!(tmp & RT3070_EFSROM_KICK))
1212 			break;
1213 		run_delay(sc, 2);
1214 	}
1215 	if (ntries == 100)
1216 		return (ETIMEDOUT);
1217 
1218 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1219 		*val = 0xffff;	/* address not found */
1220 		return (0);
1221 	}
1222 	/* determine to which 32-bit register our 16-bit word belongs */
1223 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1224 	if ((error = run_read(sc, reg, &tmp)) != 0)
1225 		return (error);
1226 
1227 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1228 	return (0);
1229 }
1230 
1231 static int
1232 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1233 {
1234 	usb_device_request_t req;
1235 	uint16_t tmp;
1236 	int error;
1237 
1238 	addr *= 2;
1239 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1240 	req.bRequest = RT2870_EEPROM_READ;
1241 	USETW(req.wValue, 0);
1242 	USETW(req.wIndex, addr);
1243 	USETW(req.wLength, sizeof tmp);
1244 
1245 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1246 	if (error == 0)
1247 		*val = le16toh(tmp);
1248 	else
1249 		*val = 0xffff;
1250 	return (error);
1251 }
1252 
1253 static __inline int
1254 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1255 {
1256 	/* either eFUSE ROM or EEPROM */
1257 	return sc->sc_srom_read(sc, addr, val);
1258 }
1259 
1260 static int
1261 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1262 {
1263 	uint32_t tmp;
1264 	int error, ntries;
1265 
1266 	for (ntries = 0; ntries < 10; ntries++) {
1267 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1268 			return (error);
1269 		if (!(tmp & RT2860_RF_REG_CTRL))
1270 			break;
1271 	}
1272 	if (ntries == 10)
1273 		return (ETIMEDOUT);
1274 
1275 	/* RF registers are 24-bit on the RT2860 */
1276 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1277 	    (val & 0x3fffff) << 2 | (reg & 3);
1278 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1279 }
1280 
1281 static int
1282 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1283 {
1284 	uint32_t tmp;
1285 	int error, ntries;
1286 
1287 	for (ntries = 0; ntries < 100; ntries++) {
1288 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1289 			return (error);
1290 		if (!(tmp & RT3070_RF_KICK))
1291 			break;
1292 	}
1293 	if (ntries == 100)
1294 		return (ETIMEDOUT);
1295 
1296 	tmp = RT3070_RF_KICK | reg << 8;
1297 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1298 		return (error);
1299 
1300 	for (ntries = 0; ntries < 100; ntries++) {
1301 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1302 			return (error);
1303 		if (!(tmp & RT3070_RF_KICK))
1304 			break;
1305 	}
1306 	if (ntries == 100)
1307 		return (ETIMEDOUT);
1308 
1309 	*val = tmp & 0xff;
1310 	return (0);
1311 }
1312 
1313 static int
1314 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1315 {
1316 	uint32_t tmp;
1317 	int error, ntries;
1318 
1319 	for (ntries = 0; ntries < 10; ntries++) {
1320 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1321 			return (error);
1322 		if (!(tmp & RT3070_RF_KICK))
1323 			break;
1324 	}
1325 	if (ntries == 10)
1326 		return (ETIMEDOUT);
1327 
1328 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1329 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1330 }
1331 
1332 static int
1333 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1334 {
1335 	uint32_t tmp;
1336 	int ntries, error;
1337 
1338 	for (ntries = 0; ntries < 10; ntries++) {
1339 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1340 			return (error);
1341 		if (!(tmp & RT2860_BBP_CSR_KICK))
1342 			break;
1343 	}
1344 	if (ntries == 10)
1345 		return (ETIMEDOUT);
1346 
1347 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1348 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1349 		return (error);
1350 
1351 	for (ntries = 0; ntries < 10; ntries++) {
1352 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1353 			return (error);
1354 		if (!(tmp & RT2860_BBP_CSR_KICK))
1355 			break;
1356 	}
1357 	if (ntries == 10)
1358 		return (ETIMEDOUT);
1359 
1360 	*val = tmp & 0xff;
1361 	return (0);
1362 }
1363 
1364 static int
1365 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1366 {
1367 	uint32_t tmp;
1368 	int ntries, error;
1369 
1370 	for (ntries = 0; ntries < 10; ntries++) {
1371 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1372 			return (error);
1373 		if (!(tmp & RT2860_BBP_CSR_KICK))
1374 			break;
1375 	}
1376 	if (ntries == 10)
1377 		return (ETIMEDOUT);
1378 
1379 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1380 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1381 }
1382 
1383 /*
1384  * Send a command to the 8051 microcontroller unit.
1385  */
1386 static int
1387 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1388 {
1389 	uint32_t tmp;
1390 	int error, ntries;
1391 
1392 	for (ntries = 0; ntries < 100; ntries++) {
1393 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1394 			return error;
1395 		if (!(tmp & RT2860_H2M_BUSY))
1396 			break;
1397 	}
1398 	if (ntries == 100)
1399 		return ETIMEDOUT;
1400 
1401 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1402 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1403 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1404 	return (error);
1405 }
1406 
1407 /*
1408  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1409  * Used to adjust per-rate Tx power registers.
1410  */
1411 static __inline uint32_t
1412 b4inc(uint32_t b32, int8_t delta)
1413 {
1414 	int8_t i, b4;
1415 
1416 	for (i = 0; i < 8; i++) {
1417 		b4 = b32 & 0xf;
1418 		b4 += delta;
1419 		if (b4 < 0)
1420 			b4 = 0;
1421 		else if (b4 > 0xf)
1422 			b4 = 0xf;
1423 		b32 = b32 >> 4 | b4 << 28;
1424 	}
1425 	return (b32);
1426 }
1427 
1428 static const char *
1429 run_get_rf(int rev)
1430 {
1431 	switch (rev) {
1432 	case RT2860_RF_2820:	return "RT2820";
1433 	case RT2860_RF_2850:	return "RT2850";
1434 	case RT2860_RF_2720:	return "RT2720";
1435 	case RT2860_RF_2750:	return "RT2750";
1436 	case RT3070_RF_3020:	return "RT3020";
1437 	case RT3070_RF_2020:	return "RT2020";
1438 	case RT3070_RF_3021:	return "RT3021";
1439 	case RT3070_RF_3022:	return "RT3022";
1440 	case RT3070_RF_3052:	return "RT3052";
1441 	}
1442 	return ("unknown");
1443 }
1444 
1445 int
1446 run_read_eeprom(struct run_softc *sc)
1447 {
1448 	int8_t delta_2ghz, delta_5ghz;
1449 	uint32_t tmp;
1450 	uint16_t val;
1451 	int ridx, ant, i;
1452 
1453 	/* check whether the ROM is eFUSE ROM or EEPROM */
1454 	sc->sc_srom_read = run_eeprom_read_2;
1455 	if (sc->mac_ver >= 0x3070) {
1456 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1457 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1458 		if (tmp & RT3070_SEL_EFUSE)
1459 			sc->sc_srom_read = run_efuse_read_2;
1460 	}
1461 
1462 	/* read ROM version */
1463 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1464 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1465 
1466 	/* read MAC address */
1467 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1468 	sc->sc_bssid[0] = val & 0xff;
1469 	sc->sc_bssid[1] = val >> 8;
1470 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1471 	sc->sc_bssid[2] = val & 0xff;
1472 	sc->sc_bssid[3] = val >> 8;
1473 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1474 	sc->sc_bssid[4] = val & 0xff;
1475 	sc->sc_bssid[5] = val >> 8;
1476 
1477 	/* read vender BBP settings */
1478 	for (i = 0; i < 10; i++) {
1479 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1480 		sc->bbp[i].val = val & 0xff;
1481 		sc->bbp[i].reg = val >> 8;
1482 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1483 	}
1484 	if (sc->mac_ver >= 0x3071) {
1485 		/* read vendor RF settings */
1486 		for (i = 0; i < 10; i++) {
1487 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1488 			sc->rf[i].val = val & 0xff;
1489 			sc->rf[i].reg = val >> 8;
1490 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1491 			    sc->rf[i].val);
1492 		}
1493 	}
1494 
1495 	/* read RF frequency offset from EEPROM */
1496 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1497 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1498 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1499 
1500 	if (val >> 8 != 0xff) {
1501 		/* read LEDs operating mode */
1502 		sc->leds = val >> 8;
1503 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1504 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1505 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1506 	} else {
1507 		/* broken EEPROM, use default settings */
1508 		sc->leds = 0x01;
1509 		sc->led[0] = 0x5555;
1510 		sc->led[1] = 0x2221;
1511 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1512 	}
1513 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1514 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1515 
1516 	/* read RF information */
1517 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1518 	if (val == 0xffff) {
1519 		DPRINTF("invalid EEPROM antenna info, using default\n");
1520 		if (sc->mac_ver == 0x3572) {
1521 			/* default to RF3052 2T2R */
1522 			sc->rf_rev = RT3070_RF_3052;
1523 			sc->ntxchains = 2;
1524 			sc->nrxchains = 2;
1525 		} else if (sc->mac_ver >= 0x3070) {
1526 			/* default to RF3020 1T1R */
1527 			sc->rf_rev = RT3070_RF_3020;
1528 			sc->ntxchains = 1;
1529 			sc->nrxchains = 1;
1530 		} else {
1531 			/* default to RF2820 1T2R */
1532 			sc->rf_rev = RT2860_RF_2820;
1533 			sc->ntxchains = 1;
1534 			sc->nrxchains = 2;
1535 		}
1536 	} else {
1537 		sc->rf_rev = (val >> 8) & 0xf;
1538 		sc->ntxchains = (val >> 4) & 0xf;
1539 		sc->nrxchains = val & 0xf;
1540 	}
1541 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1542 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1543 
1544 	/* check if RF supports automatic Tx access gain control */
1545 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1546 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1547 	/* check if driver should patch the DAC issue */
1548 	if ((val >> 8) != 0xff)
1549 		sc->patch_dac = (val >> 15) & 1;
1550 	if ((val & 0xff) != 0xff) {
1551 		sc->ext_5ghz_lna = (val >> 3) & 1;
1552 		sc->ext_2ghz_lna = (val >> 2) & 1;
1553 		/* check if RF supports automatic Tx access gain control */
1554 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1555 		/* check if we have a hardware radio switch */
1556 		sc->rfswitch = val & 1;
1557 	}
1558 
1559 	/* read power settings for 2GHz channels */
1560 	for (i = 0; i < 14; i += 2) {
1561 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1562 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1563 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1564 
1565 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1566 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1567 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1568 	}
1569 	/* fix broken Tx power entries */
1570 	for (i = 0; i < 14; i++) {
1571 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1572 			sc->txpow1[i] = 5;
1573 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1574 			sc->txpow2[i] = 5;
1575 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1576 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1577 	}
1578 	/* read power settings for 5GHz channels */
1579 	for (i = 0; i < 40; i += 2) {
1580 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1581 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1582 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1583 
1584 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1585 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1586 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1587 	}
1588 	/* fix broken Tx power entries */
1589 	for (i = 0; i < 40; i++) {
1590 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1591 			sc->txpow1[14 + i] = 5;
1592 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1593 			sc->txpow2[14 + i] = 5;
1594 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1595 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1596 		    sc->txpow2[14 + i]);
1597 	}
1598 
1599 	/* read Tx power compensation for each Tx rate */
1600 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1601 	delta_2ghz = delta_5ghz = 0;
1602 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1603 		delta_2ghz = val & 0xf;
1604 		if (!(val & 0x40))	/* negative number */
1605 			delta_2ghz = -delta_2ghz;
1606 	}
1607 	val >>= 8;
1608 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1609 		delta_5ghz = val & 0xf;
1610 		if (!(val & 0x40))	/* negative number */
1611 			delta_5ghz = -delta_5ghz;
1612 	}
1613 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1614 	    delta_2ghz, delta_5ghz);
1615 
1616 	for (ridx = 0; ridx < 5; ridx++) {
1617 		uint32_t reg;
1618 
1619 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1620 		reg = val;
1621 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1622 		reg |= (uint32_t)val << 16;
1623 
1624 		sc->txpow20mhz[ridx] = reg;
1625 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1626 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1627 
1628 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1629 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1630 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1631 	}
1632 
1633 	/* read RSSI offsets and LNA gains from EEPROM */
1634 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1635 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1636 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1637 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1638 	if (sc->mac_ver >= 0x3070) {
1639 		/*
1640 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1641 		 * field contains the Tx mixer gain for the 2GHz band.
1642 		 */
1643 		if ((val & 0xff) != 0xff)
1644 			sc->txmixgain_2ghz = val & 0x7;
1645 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1646 	} else
1647 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1648 	sc->lna[2] = val >> 8;		/* channel group 2 */
1649 
1650 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1651 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1652 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1653 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1654 	if (sc->mac_ver == 0x3572) {
1655 		/*
1656 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1657 		 * field contains the Tx mixer gain for the 5GHz band.
1658 		 */
1659 		if ((val & 0xff) != 0xff)
1660 			sc->txmixgain_5ghz = val & 0x7;
1661 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1662 	} else
1663 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1664 	sc->lna[3] = val >> 8;		/* channel group 3 */
1665 
1666 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1667 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1668 	sc->lna[1] = val >> 8;		/* channel group 1 */
1669 
1670 	/* fix broken 5GHz LNA entries */
1671 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1672 		DPRINTF("invalid LNA for channel group %d\n", 2);
1673 		sc->lna[2] = sc->lna[1];
1674 	}
1675 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1676 		DPRINTF("invalid LNA for channel group %d\n", 3);
1677 		sc->lna[3] = sc->lna[1];
1678 	}
1679 
1680 	/* fix broken RSSI offset entries */
1681 	for (ant = 0; ant < 3; ant++) {
1682 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1683 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1684 			    ant + 1, sc->rssi_2ghz[ant]);
1685 			sc->rssi_2ghz[ant] = 0;
1686 		}
1687 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1688 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1689 			    ant + 1, sc->rssi_5ghz[ant]);
1690 			sc->rssi_5ghz[ant] = 0;
1691 		}
1692 	}
1693 	return (0);
1694 }
1695 
1696 static struct ieee80211_node *
1697 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1698 {
1699 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1700 }
1701 
1702 static int
1703 run_media_change(struct ifnet *ifp)
1704 {
1705 	struct ieee80211vap *vap = ifp->if_softc;
1706 	struct ieee80211com *ic = vap->iv_ic;
1707 	const struct ieee80211_txparam *tp;
1708 	struct run_softc *sc = ic->ic_ifp->if_softc;
1709 	uint8_t rate, ridx;
1710 	int error;
1711 
1712 	RUN_LOCK(sc);
1713 
1714 	error = ieee80211_media_change(ifp);
1715 	if (error != ENETRESET) {
1716 		RUN_UNLOCK(sc);
1717 		return (error);
1718 	}
1719 
1720 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1721 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1722 		struct ieee80211_node *ni;
1723 		struct run_node	*rn;
1724 
1725 		rate = ic->ic_sup_rates[ic->ic_curmode].
1726 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1727 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1728 			if (rt2860_rates[ridx].rate == rate)
1729 				break;
1730 		ni = ieee80211_ref_node(vap->iv_bss);
1731 		rn = (struct run_node *)ni;
1732 		rn->fix_ridx = ridx;
1733 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1734 		ieee80211_free_node(ni);
1735 	}
1736 
1737 #if 0
1738 	if ((ifp->if_flags & IFF_UP) &&
1739 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1740 		run_init_locked(sc);
1741 	}
1742 #endif
1743 
1744 	RUN_UNLOCK(sc);
1745 
1746 	return (0);
1747 }
1748 
1749 static int
1750 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1751 {
1752 	const struct ieee80211_txparam *tp;
1753 	struct ieee80211com *ic = vap->iv_ic;
1754 	struct run_softc *sc = ic->ic_ifp->if_softc;
1755 	struct run_vap *rvp = RUN_VAP(vap);
1756 	enum ieee80211_state ostate;
1757 	uint32_t sta[3];
1758 	uint32_t tmp;
1759 	uint8_t ratectl;
1760 	uint8_t restart_ratectl = 0;
1761 	uint8_t bid = 1 << rvp->rvp_id;
1762 
1763 	ostate = vap->iv_state;
1764 	DPRINTF("%s -> %s\n",
1765 		ieee80211_state_name[ostate],
1766 		ieee80211_state_name[nstate]);
1767 
1768 	IEEE80211_UNLOCK(ic);
1769 	RUN_LOCK(sc);
1770 
1771 	ratectl = sc->ratectl_run; /* remember current state */
1772 	sc->ratectl_run = RUN_RATECTL_OFF;
1773 	usb_callout_stop(&sc->ratectl_ch);
1774 
1775 	if (ostate == IEEE80211_S_RUN) {
1776 		/* turn link LED off */
1777 		run_set_leds(sc, RT2860_LED_RADIO);
1778 	}
1779 
1780 	switch (nstate) {
1781 	case IEEE80211_S_INIT:
1782 		restart_ratectl = 1;
1783 
1784 		if (ostate != IEEE80211_S_RUN)
1785 			break;
1786 
1787 		ratectl &= ~bid;
1788 		sc->runbmap &= ~bid;
1789 
1790 		/* abort TSF synchronization if there is no vap running */
1791 		if (--sc->running == 0) {
1792 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1793 			run_write(sc, RT2860_BCN_TIME_CFG,
1794 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1795 			    RT2860_TBTT_TIMER_EN));
1796 		}
1797 		break;
1798 
1799 	case IEEE80211_S_RUN:
1800 		if (!(sc->runbmap & bid)) {
1801 			if(sc->running++)
1802 				restart_ratectl = 1;
1803 			sc->runbmap |= bid;
1804 		}
1805 
1806 		m_freem(rvp->beacon_mbuf);
1807 		rvp->beacon_mbuf = NULL;
1808 
1809 		switch (vap->iv_opmode) {
1810 		case IEEE80211_M_HOSTAP:
1811 		case IEEE80211_M_MBSS:
1812 			sc->ap_running |= bid;
1813 			ic->ic_opmode = vap->iv_opmode;
1814 			run_update_beacon_cb(vap);
1815 			break;
1816 		case IEEE80211_M_IBSS:
1817 			sc->adhoc_running |= bid;
1818 			if (!sc->ap_running)
1819 				ic->ic_opmode = vap->iv_opmode;
1820 			run_update_beacon_cb(vap);
1821 			break;
1822 		case IEEE80211_M_STA:
1823 			sc->sta_running |= bid;
1824 			if (!sc->ap_running && !sc->adhoc_running)
1825 				ic->ic_opmode = vap->iv_opmode;
1826 
1827 			/* read statistic counters (clear on read) */
1828 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1829 			    (uint8_t *)sta, sizeof sta);
1830 
1831 			break;
1832 		default:
1833 			ic->ic_opmode = vap->iv_opmode;
1834 			break;
1835 		}
1836 
1837 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1838 			struct ieee80211_node *ni;
1839 
1840 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1841 				RUN_UNLOCK(sc);
1842 				IEEE80211_LOCK(ic);
1843 				return (-1);
1844 			}
1845 			run_updateslot(ic->ic_ifp);
1846 			run_enable_mrr(sc);
1847 			run_set_txpreamble(sc);
1848 			run_set_basicrates(sc);
1849 			ni = ieee80211_ref_node(vap->iv_bss);
1850 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1851 			run_set_bssid(sc, ni->ni_bssid);
1852 			ieee80211_free_node(ni);
1853 			run_enable_tsf_sync(sc);
1854 
1855 			/* enable automatic rate adaptation */
1856 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1857 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1858 				ratectl |= bid;
1859 		}
1860 
1861 		/* turn link LED on */
1862 		run_set_leds(sc, RT2860_LED_RADIO |
1863 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1864 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1865 
1866 		break;
1867 	default:
1868 		DPRINTFN(6, "undefined case\n");
1869 		break;
1870 	}
1871 
1872 	/* restart amrr for running VAPs */
1873 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1874 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1875 
1876 	RUN_UNLOCK(sc);
1877 	IEEE80211_LOCK(ic);
1878 
1879 	return(rvp->newstate(vap, nstate, arg));
1880 }
1881 
1882 /* ARGSUSED */
1883 static void
1884 run_wme_update_cb(void *arg)
1885 {
1886 	struct ieee80211com *ic = arg;
1887 	struct run_softc *sc = ic->ic_ifp->if_softc;
1888 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1889 	int aci, error = 0;
1890 
1891 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1892 
1893 	/* update MAC TX configuration registers */
1894 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1895 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1896 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1897 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1898 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1899 		    wmesp->wme_params[aci].wmep_txopLimit);
1900 		if (error) goto err;
1901 	}
1902 
1903 	/* update SCH/DMA registers too */
1904 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1905 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1906 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1907 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1908 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1909 	if (error) goto err;
1910 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1911 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1912 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1913 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1914 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1915 	if (error) goto err;
1916 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1917 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1918 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1919 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1920 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1921 	if (error) goto err;
1922 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1923 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1924 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1925 	if (error) goto err;
1926 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1927 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1928 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1929 
1930 err:
1931 	if (error)
1932 		DPRINTF("WME update failed\n");
1933 
1934 	return;
1935 }
1936 
1937 static int
1938 run_wme_update(struct ieee80211com *ic)
1939 {
1940 	struct run_softc *sc = ic->ic_ifp->if_softc;
1941 
1942 	/* sometime called wothout lock */
1943 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1944 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1945 		DPRINTF("cmdq_store=%d\n", i);
1946 		sc->cmdq[i].func = run_wme_update_cb;
1947 		sc->cmdq[i].arg0 = ic;
1948 		ieee80211_runtask(ic, &sc->cmdq_task);
1949 		return (0);
1950 	}
1951 
1952 	RUN_LOCK(sc);
1953 	run_wme_update_cb(ic);
1954 	RUN_UNLOCK(sc);
1955 
1956 	/* return whatever, upper layer desn't care anyway */
1957 	return (0);
1958 }
1959 
1960 static void
1961 run_key_update_begin(struct ieee80211vap *vap)
1962 {
1963 	/*
1964 	 * To avoid out-of-order events, both run_key_set() and
1965 	 * _delete() are deferred and handled by run_cmdq_cb().
1966 	 * So, there is nothing we need to do here.
1967 	 */
1968 }
1969 
1970 static void
1971 run_key_update_end(struct ieee80211vap *vap)
1972 {
1973 	/* null */
1974 }
1975 
1976 static void
1977 run_key_set_cb(void *arg)
1978 {
1979 	struct run_cmdq *cmdq = arg;
1980 	struct ieee80211vap *vap = cmdq->arg1;
1981 	struct ieee80211_key *k = cmdq->k;
1982 	struct ieee80211com *ic = vap->iv_ic;
1983 	struct run_softc *sc = ic->ic_ifp->if_softc;
1984 	struct ieee80211_node *ni;
1985 	uint32_t attr;
1986 	uint16_t base, associd;
1987 	uint8_t mode, wcid, iv[8];
1988 
1989 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1990 
1991 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1992 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1993 	else
1994 		ni = vap->iv_bss;
1995 	associd = (ni != NULL) ? ni->ni_associd : 0;
1996 
1997 	/* map net80211 cipher to RT2860 security mode */
1998 	switch (k->wk_cipher->ic_cipher) {
1999 	case IEEE80211_CIPHER_WEP:
2000 		if(k->wk_keylen < 8)
2001 			mode = RT2860_MODE_WEP40;
2002 		else
2003 			mode = RT2860_MODE_WEP104;
2004 		break;
2005 	case IEEE80211_CIPHER_TKIP:
2006 		mode = RT2860_MODE_TKIP;
2007 		break;
2008 	case IEEE80211_CIPHER_AES_CCM:
2009 		mode = RT2860_MODE_AES_CCMP;
2010 		break;
2011 	default:
2012 		DPRINTF("undefined case\n");
2013 		return;
2014 	}
2015 
2016 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2017 	    associd, k->wk_keyix, mode,
2018 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2019 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2020 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2021 
2022 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2023 		wcid = 0;	/* NB: update WCID0 for group keys */
2024 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2025 	} else {
2026 		wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2027 		    1 : RUN_AID2WCID(associd);
2028 		base = RT2860_PKEY(wcid);
2029 	}
2030 
2031 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2032 		if(run_write_region_1(sc, base, k->wk_key, 16))
2033 			return;
2034 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2035 			return;
2036 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2037 			return;
2038 	} else {
2039 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2040 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2041 			return;
2042 	}
2043 
2044 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2045 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2046 		/* set initial packet number in IV+EIV */
2047 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2048 			memset(iv, 0, sizeof iv);
2049 			iv[3] = vap->iv_def_txkey << 6;
2050 		} else {
2051 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2052 				iv[0] = k->wk_keytsc >> 8;
2053 				iv[1] = (iv[0] | 0x20) & 0x7f;
2054 				iv[2] = k->wk_keytsc;
2055 			} else /* CCMP */ {
2056 				iv[0] = k->wk_keytsc;
2057 				iv[1] = k->wk_keytsc >> 8;
2058 				iv[2] = 0;
2059 			}
2060 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2061 			iv[4] = k->wk_keytsc >> 16;
2062 			iv[5] = k->wk_keytsc >> 24;
2063 			iv[6] = k->wk_keytsc >> 32;
2064 			iv[7] = k->wk_keytsc >> 40;
2065 		}
2066 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2067 			return;
2068 	}
2069 
2070 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2071 		/* install group key */
2072 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2073 			return;
2074 		attr &= ~(0xf << (k->wk_keyix * 4));
2075 		attr |= mode << (k->wk_keyix * 4);
2076 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2077 			return;
2078 	} else {
2079 		/* install pairwise key */
2080 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2081 			return;
2082 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2083 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2084 			return;
2085 	}
2086 
2087 	/* TODO create a pass-thru key entry? */
2088 
2089 	/* need wcid to delete the right key later */
2090 	k->wk_pad = wcid;
2091 }
2092 
2093 /*
2094  * Don't have to be deferred, but in order to keep order of
2095  * execution, i.e. with run_key_delete(), defer this and let
2096  * run_cmdq_cb() maintain the order.
2097  *
2098  * return 0 on error
2099  */
2100 static int
2101 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2102 		const uint8_t mac[IEEE80211_ADDR_LEN])
2103 {
2104 	struct ieee80211com *ic = vap->iv_ic;
2105 	struct run_softc *sc = ic->ic_ifp->if_softc;
2106 	uint32_t i;
2107 
2108 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2109 	DPRINTF("cmdq_store=%d\n", i);
2110 	sc->cmdq[i].func = run_key_set_cb;
2111 	sc->cmdq[i].arg0 = NULL;
2112 	sc->cmdq[i].arg1 = vap;
2113 	sc->cmdq[i].k = k;
2114 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2115 	ieee80211_runtask(ic, &sc->cmdq_task);
2116 
2117 	/*
2118 	 * To make sure key will be set when hostapd
2119 	 * calls iv_key_set() before if_init().
2120 	 */
2121 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2122 		RUN_LOCK(sc);
2123 		sc->cmdq_key_set = RUN_CMDQ_GO;
2124 		RUN_UNLOCK(sc);
2125 	}
2126 
2127 	return (1);
2128 }
2129 
2130 /*
2131  * If wlan is destroyed without being brought down i.e. without
2132  * wlan down or wpa_cli terminate, this function is called after
2133  * vap is gone. Don't refer it.
2134  */
2135 static void
2136 run_key_delete_cb(void *arg)
2137 {
2138 	struct run_cmdq *cmdq = arg;
2139 	struct run_softc *sc = cmdq->arg1;
2140 	struct ieee80211_key *k = &cmdq->key;
2141 	uint32_t attr;
2142 	uint8_t wcid;
2143 
2144 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2145 
2146 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2147 		/* remove group key */
2148 		DPRINTF("removing group key\n");
2149 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2150 		attr &= ~(0xf << (k->wk_keyix * 4));
2151 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2152 	} else {
2153 		/* remove pairwise key */
2154 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2155 		/* matching wcid was written to wk_pad in run_key_set() */
2156 		wcid = k->wk_pad;
2157 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2158 		attr &= ~0xf;
2159 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2160 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2161 	}
2162 
2163 	k->wk_pad = 0;
2164 }
2165 
2166 /*
2167  * return 0 on error
2168  */
2169 static int
2170 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2171 {
2172 	struct ieee80211com *ic = vap->iv_ic;
2173 	struct run_softc *sc = ic->ic_ifp->if_softc;
2174 	struct ieee80211_key *k0;
2175 	uint32_t i;
2176 
2177 	/*
2178 	 * When called back, key might be gone. So, make a copy
2179 	 * of some values need to delete keys before deferring.
2180 	 * But, because of LOR with node lock, cannot use lock here.
2181 	 * So, use atomic instead.
2182 	 */
2183 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2184 	DPRINTF("cmdq_store=%d\n", i);
2185 	sc->cmdq[i].func = run_key_delete_cb;
2186 	sc->cmdq[i].arg0 = NULL;
2187 	sc->cmdq[i].arg1 = sc;
2188 	k0 = &sc->cmdq[i].key;
2189 	k0->wk_flags = k->wk_flags;
2190 	k0->wk_keyix = k->wk_keyix;
2191 	/* matching wcid was written to wk_pad in run_key_set() */
2192 	k0->wk_pad = k->wk_pad;
2193 	ieee80211_runtask(ic, &sc->cmdq_task);
2194 	return (1);	/* return fake success */
2195 
2196 }
2197 
2198 static void
2199 run_ratectl_to(void *arg)
2200 {
2201 	struct run_softc *sc = arg;
2202 
2203 	/* do it in a process context, so it can go sleep */
2204 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2205 	/* next timeout will be rescheduled in the callback task */
2206 }
2207 
2208 /* ARGSUSED */
2209 static void
2210 run_ratectl_cb(void *arg, int pending)
2211 {
2212 	struct run_softc *sc = arg;
2213 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2214 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2215 
2216 	if (vap == NULL)
2217 		return;
2218 
2219 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2220 		run_iter_func(sc, vap->iv_bss);
2221 	else {
2222 		/*
2223 		 * run_reset_livelock() doesn't do anything with AMRR,
2224 		 * but Ralink wants us to call it every 1 sec. So, we
2225 		 * piggyback here rather than creating another callout.
2226 		 * Livelock may occur only in HOSTAP or IBSS mode
2227 		 * (when h/w is sending beacons).
2228 		 */
2229 		RUN_LOCK(sc);
2230 		run_reset_livelock(sc);
2231 		/* just in case, there are some stats to drain */
2232 		run_drain_fifo(sc);
2233 		RUN_UNLOCK(sc);
2234 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2235 	}
2236 
2237 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2238 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2239 }
2240 
2241 static void
2242 run_drain_fifo(void *arg)
2243 {
2244 	struct run_softc *sc = arg;
2245 	struct ifnet *ifp = sc->sc_ifp;
2246 	uint32_t stat;
2247 	uint16_t (*wstat)[3];
2248 	uint8_t wcid, mcs, pid;
2249 	int8_t retry;
2250 
2251 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2252 
2253 	for (;;) {
2254 		/* drain Tx status FIFO (maxsize = 16) */
2255 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2256 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2257 		if (!(stat & RT2860_TXQ_VLD))
2258 			break;
2259 
2260 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2261 
2262 		/* if no ACK was requested, no feedback is available */
2263 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2264 		    wcid == 0)
2265 			continue;
2266 
2267 		/*
2268 		 * Even though each stat is Tx-complete-status like format,
2269 		 * the device can poll stats. Because there is no guarantee
2270 		 * that the referring node is still around when read the stats.
2271 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2272 		 * have hard time not to refer already freed node.
2273 		 *
2274 		 * To eliminate such page faults, we poll stats in softc.
2275 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2276 		 */
2277 		wstat = &(sc->wcid_stats[wcid]);
2278 		(*wstat)[RUN_TXCNT]++;
2279 		if (stat & RT2860_TXQ_OK)
2280 			(*wstat)[RUN_SUCCESS]++;
2281 		else
2282 			ifp->if_oerrors++;
2283 		/*
2284 		 * Check if there were retries, ie if the Tx success rate is
2285 		 * different from the requested rate. Note that it works only
2286 		 * because we do not allow rate fallback from OFDM to CCK.
2287 		 */
2288 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2289 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2290 		if ((retry = pid -1 - mcs) > 0) {
2291 			(*wstat)[RUN_TXCNT] += retry;
2292 			(*wstat)[RUN_RETRY] += retry;
2293 		}
2294 	}
2295 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2296 
2297 	sc->fifo_cnt = 0;
2298 }
2299 
2300 static void
2301 run_iter_func(void *arg, struct ieee80211_node *ni)
2302 {
2303 	struct run_softc *sc = arg;
2304 	struct ieee80211vap *vap = ni->ni_vap;
2305 	struct ieee80211com *ic = ni->ni_ic;
2306 	struct ifnet *ifp = ic->ic_ifp;
2307 	struct run_node *rn = (void *)ni;
2308 	union run_stats sta[2];
2309 	uint16_t (*wstat)[3];
2310 	int txcnt, success, retrycnt, error;
2311 
2312 	RUN_LOCK(sc);
2313 
2314 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2315 	    vap->iv_opmode == IEEE80211_M_STA)) {
2316 		/* read statistic counters (clear on read) and update AMRR state */
2317 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2318 		    sizeof sta);
2319 		if (error != 0)
2320 			goto fail;
2321 
2322 		/* count failed TX as errors */
2323 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2324 
2325 		retrycnt = le16toh(sta[1].tx.retry);
2326 		success = le16toh(sta[1].tx.success);
2327 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2328 
2329 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2330 			retrycnt, success, le16toh(sta[0].error.fail));
2331 	} else {
2332 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2333 
2334 		if (wstat == &(sc->wcid_stats[0]) ||
2335 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2336 			goto fail;
2337 
2338 		txcnt = (*wstat)[RUN_TXCNT];
2339 		success = (*wstat)[RUN_SUCCESS];
2340 		retrycnt = (*wstat)[RUN_RETRY];
2341 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2342 		    retrycnt, txcnt, success);
2343 
2344 		memset(wstat, 0, sizeof(*wstat));
2345 	}
2346 
2347 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2348 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2349 
2350 fail:
2351 	RUN_UNLOCK(sc);
2352 
2353 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2354 }
2355 
2356 static void
2357 run_newassoc_cb(void *arg)
2358 {
2359 	struct run_cmdq *cmdq = arg;
2360 	struct ieee80211_node *ni = cmdq->arg1;
2361 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2362 	uint8_t wcid = cmdq->wcid;
2363 
2364 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2365 
2366 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2367 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2368 
2369 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2370 }
2371 
2372 static void
2373 run_newassoc(struct ieee80211_node *ni, int isnew)
2374 {
2375 	struct run_node *rn = (void *)ni;
2376 	struct ieee80211_rateset *rs = &ni->ni_rates;
2377 	struct ieee80211vap *vap = ni->ni_vap;
2378 	struct ieee80211com *ic = vap->iv_ic;
2379 	struct run_softc *sc = ic->ic_ifp->if_softc;
2380 	uint8_t rate;
2381 	uint8_t ridx;
2382 	uint8_t wcid;
2383 	int i, j;
2384 
2385 	wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2386 	    1 : RUN_AID2WCID(ni->ni_associd);
2387 
2388 	if (wcid > RT2870_WCID_MAX) {
2389 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2390 		return;
2391 	}
2392 
2393 	/* only interested in true associations */
2394 	if (isnew && ni->ni_associd != 0) {
2395 
2396 		/*
2397 		 * This function could is called though timeout function.
2398 		 * Need to defer.
2399 		 */
2400 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2401 		DPRINTF("cmdq_store=%d\n", cnt);
2402 		sc->cmdq[cnt].func = run_newassoc_cb;
2403 		sc->cmdq[cnt].arg0 = NULL;
2404 		sc->cmdq[cnt].arg1 = ni;
2405 		sc->cmdq[cnt].wcid = wcid;
2406 		ieee80211_runtask(ic, &sc->cmdq_task);
2407 	}
2408 
2409 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2410 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2411 
2412 	for (i = 0; i < rs->rs_nrates; i++) {
2413 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2414 		/* convert 802.11 rate to hardware rate index */
2415 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2416 			if (rt2860_rates[ridx].rate == rate)
2417 				break;
2418 		rn->ridx[i] = ridx;
2419 		/* determine rate of control response frames */
2420 		for (j = i; j >= 0; j--) {
2421 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2422 			    rt2860_rates[rn->ridx[i]].phy ==
2423 			    rt2860_rates[rn->ridx[j]].phy)
2424 				break;
2425 		}
2426 		if (j >= 0) {
2427 			rn->ctl_ridx[i] = rn->ridx[j];
2428 		} else {
2429 			/* no basic rate found, use mandatory one */
2430 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2431 		}
2432 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2433 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2434 	}
2435 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2436 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2437 		if (rt2860_rates[ridx].rate == rate)
2438 			break;
2439 	rn->mgt_ridx = ridx;
2440 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2441 
2442 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2443 }
2444 
2445 /*
2446  * Return the Rx chain with the highest RSSI for a given frame.
2447  */
2448 static __inline uint8_t
2449 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2450 {
2451 	uint8_t rxchain = 0;
2452 
2453 	if (sc->nrxchains > 1) {
2454 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2455 			rxchain = 1;
2456 		if (sc->nrxchains > 2)
2457 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2458 				rxchain = 2;
2459 	}
2460 	return (rxchain);
2461 }
2462 
2463 static void
2464 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2465 {
2466 	struct ifnet *ifp = sc->sc_ifp;
2467 	struct ieee80211com *ic = ifp->if_l2com;
2468 	struct ieee80211_frame *wh;
2469 	struct ieee80211_node *ni;
2470 	struct rt2870_rxd *rxd;
2471 	struct rt2860_rxwi *rxwi;
2472 	uint32_t flags;
2473 	uint16_t len, phy;
2474 	uint8_t ant, rssi;
2475 	int8_t nf;
2476 
2477 	rxwi = mtod(m, struct rt2860_rxwi *);
2478 	len = le16toh(rxwi->len) & 0xfff;
2479 	if (__predict_false(len > dmalen)) {
2480 		m_freem(m);
2481 		ifp->if_ierrors++;
2482 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2483 		return;
2484 	}
2485 	/* Rx descriptor is located at the end */
2486 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2487 	flags = le32toh(rxd->flags);
2488 
2489 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2490 		m_freem(m);
2491 		ifp->if_ierrors++;
2492 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2493 		return;
2494 	}
2495 
2496 	m->m_data += sizeof(struct rt2860_rxwi);
2497 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2498 
2499 	wh = mtod(m, struct ieee80211_frame *);
2500 
2501 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2502 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2503 		m->m_flags |= M_WEP;
2504 	}
2505 
2506 	if (flags & RT2860_RX_L2PAD) {
2507 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2508 		len += 2;
2509 	}
2510 
2511 	ni = ieee80211_find_rxnode(ic,
2512 	    mtod(m, struct ieee80211_frame_min *));
2513 
2514 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2515 		/* report MIC failures to net80211 for TKIP */
2516 		if (ni != NULL)
2517 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2518 		m_freem(m);
2519 		ifp->if_ierrors++;
2520 		DPRINTF("MIC error. Someone is lying.\n");
2521 		return;
2522 	}
2523 
2524 	ant = run_maxrssi_chain(sc, rxwi);
2525 	rssi = rxwi->rssi[ant];
2526 	nf = run_rssi2dbm(sc, rssi, ant);
2527 
2528 	m->m_pkthdr.rcvif = ifp;
2529 	m->m_pkthdr.len = m->m_len = len;
2530 
2531 	if (ni != NULL) {
2532 		(void)ieee80211_input(ni, m, rssi, nf);
2533 		ieee80211_free_node(ni);
2534 	} else {
2535 		(void)ieee80211_input_all(ic, m, rssi, nf);
2536 	}
2537 
2538 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2539 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2540 
2541 		tap->wr_flags = 0;
2542 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2543 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2544 		tap->wr_antsignal = rssi;
2545 		tap->wr_antenna = ant;
2546 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2547 		tap->wr_rate = 2;	/* in case it can't be found below */
2548 		phy = le16toh(rxwi->phy);
2549 		switch (phy & RT2860_PHY_MODE) {
2550 		case RT2860_PHY_CCK:
2551 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2552 			case 0:	tap->wr_rate =   2; break;
2553 			case 1:	tap->wr_rate =   4; break;
2554 			case 2:	tap->wr_rate =  11; break;
2555 			case 3:	tap->wr_rate =  22; break;
2556 			}
2557 			if (phy & RT2860_PHY_SHPRE)
2558 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2559 			break;
2560 		case RT2860_PHY_OFDM:
2561 			switch (phy & RT2860_PHY_MCS) {
2562 			case 0:	tap->wr_rate =  12; break;
2563 			case 1:	tap->wr_rate =  18; break;
2564 			case 2:	tap->wr_rate =  24; break;
2565 			case 3:	tap->wr_rate =  36; break;
2566 			case 4:	tap->wr_rate =  48; break;
2567 			case 5:	tap->wr_rate =  72; break;
2568 			case 6:	tap->wr_rate =  96; break;
2569 			case 7:	tap->wr_rate = 108; break;
2570 			}
2571 			break;
2572 		}
2573 	}
2574 }
2575 
2576 static void
2577 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2578 {
2579 	struct run_softc *sc = usbd_xfer_softc(xfer);
2580 	struct ifnet *ifp = sc->sc_ifp;
2581 	struct mbuf *m = NULL;
2582 	struct mbuf *m0;
2583 	uint32_t dmalen;
2584 	int xferlen;
2585 
2586 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2587 
2588 	switch (USB_GET_STATE(xfer)) {
2589 	case USB_ST_TRANSFERRED:
2590 
2591 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2592 
2593 		if (xferlen < (int)(sizeof(uint32_t) +
2594 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2595 			DPRINTF("xfer too short %d\n", xferlen);
2596 			goto tr_setup;
2597 		}
2598 
2599 		m = sc->rx_m;
2600 		sc->rx_m = NULL;
2601 
2602 		/* FALLTHROUGH */
2603 	case USB_ST_SETUP:
2604 tr_setup:
2605 		if (sc->rx_m == NULL) {
2606 			sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
2607 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2608 		}
2609 		if (sc->rx_m == NULL) {
2610 			DPRINTF("could not allocate mbuf - idle with stall\n");
2611 			ifp->if_ierrors++;
2612 			usbd_xfer_set_stall(xfer);
2613 			usbd_xfer_set_frames(xfer, 0);
2614 		} else {
2615 			/*
2616 			 * Directly loading a mbuf cluster into DMA to
2617 			 * save some data copying. This works because
2618 			 * there is only one cluster.
2619 			 */
2620 			usbd_xfer_set_frame_data(xfer, 0,
2621 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2622 			usbd_xfer_set_frames(xfer, 1);
2623 		}
2624 		usbd_transfer_submit(xfer);
2625 		break;
2626 
2627 	default:	/* Error */
2628 		if (error != USB_ERR_CANCELLED) {
2629 			/* try to clear stall first */
2630 			usbd_xfer_set_stall(xfer);
2631 
2632 			if (error == USB_ERR_TIMEOUT)
2633 				device_printf(sc->sc_dev, "device timeout\n");
2634 
2635 			ifp->if_ierrors++;
2636 
2637 			goto tr_setup;
2638 		}
2639 		if (sc->rx_m != NULL) {
2640 			m_freem(sc->rx_m);
2641 			sc->rx_m = NULL;
2642 		}
2643 		break;
2644 	}
2645 
2646 	if (m == NULL)
2647 		return;
2648 
2649 	/* inputting all the frames must be last */
2650 
2651 	RUN_UNLOCK(sc);
2652 
2653 	m->m_pkthdr.len = m->m_len = xferlen;
2654 
2655 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2656 	for(;;) {
2657 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2658 
2659 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2660 		    ((dmalen & 3) != 0)) {
2661 			DPRINTF("bad DMA length %u\n", dmalen);
2662 			break;
2663 		}
2664 		if ((dmalen + 8) > (uint32_t)xferlen) {
2665 			DPRINTF("bad DMA length %u > %d\n",
2666 			dmalen + 8, xferlen);
2667 			break;
2668 		}
2669 
2670 		/* If it is the last one or a single frame, we won't copy. */
2671 		if ((xferlen -= dmalen + 8) <= 8) {
2672 			/* trim 32-bit DMA-len header */
2673 			m->m_data += 4;
2674 			m->m_pkthdr.len = m->m_len -= 4;
2675 			run_rx_frame(sc, m, dmalen);
2676 			break;
2677 		}
2678 
2679 		/* copy aggregated frames to another mbuf */
2680 		m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2681 		if (__predict_false(m0 == NULL)) {
2682 			DPRINTF("could not allocate mbuf\n");
2683 			ifp->if_ierrors++;
2684 			break;
2685 		}
2686 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2687 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2688 		m0->m_pkthdr.len = m0->m_len =
2689 		    dmalen + sizeof(struct rt2870_rxd);
2690 		run_rx_frame(sc, m0, dmalen);
2691 
2692 		/* update data ptr */
2693 		m->m_data += dmalen + 8;
2694 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2695 	}
2696 
2697 	RUN_LOCK(sc);
2698 }
2699 
2700 static void
2701 run_tx_free(struct run_endpoint_queue *pq,
2702     struct run_tx_data *data, int txerr)
2703 {
2704 	if (data->m != NULL) {
2705 		if (data->m->m_flags & M_TXCB)
2706 			ieee80211_process_callback(data->ni, data->m,
2707 			    txerr ? ETIMEDOUT : 0);
2708 		m_freem(data->m);
2709 		data->m = NULL;
2710 
2711 		if (data->ni == NULL) {
2712 			DPRINTF("no node\n");
2713 		} else {
2714 			ieee80211_free_node(data->ni);
2715 			data->ni = NULL;
2716 		}
2717 	}
2718 
2719 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2720 	pq->tx_nfree++;
2721 }
2722 
2723 static void
2724 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2725 {
2726 	struct run_softc *sc = usbd_xfer_softc(xfer);
2727 	struct ifnet *ifp = sc->sc_ifp;
2728 	struct ieee80211com *ic = ifp->if_l2com;
2729 	struct run_tx_data *data;
2730 	struct ieee80211vap *vap = NULL;
2731 	struct usb_page_cache *pc;
2732 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2733 	struct mbuf *m;
2734 	usb_frlength_t size;
2735 	int actlen;
2736 	int sumlen;
2737 
2738 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2739 
2740 	switch (USB_GET_STATE(xfer)) {
2741 	case USB_ST_TRANSFERRED:
2742 		DPRINTFN(11, "transfer complete: %d "
2743 		    "bytes @ index %d\n", actlen, index);
2744 
2745 		data = usbd_xfer_get_priv(xfer);
2746 
2747 		run_tx_free(pq, data, 0);
2748 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2749 
2750 		usbd_xfer_set_priv(xfer, NULL);
2751 
2752 		ifp->if_opackets++;
2753 
2754 		/* FALLTHROUGH */
2755 	case USB_ST_SETUP:
2756 tr_setup:
2757 		data = STAILQ_FIRST(&pq->tx_qh);
2758 		if (data == NULL)
2759 			break;
2760 
2761 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2762 
2763 		m = data->m;
2764 		if ((m->m_pkthdr.len +
2765 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2766 			DPRINTF("data overflow, %u bytes\n",
2767 			    m->m_pkthdr.len);
2768 
2769 			ifp->if_oerrors++;
2770 
2771 			run_tx_free(pq, data, 1);
2772 
2773 			goto tr_setup;
2774 		}
2775 
2776 		pc = usbd_xfer_get_frame(xfer, 0);
2777 		size = sizeof(data->desc);
2778 		usbd_copy_in(pc, 0, &data->desc, size);
2779 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2780 		size += m->m_pkthdr.len;
2781 		/*
2782 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2783 		 * 4-byte padding), and be sure to zero those trailing
2784 		 * bytes:
2785 		 */
2786 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2787 		size += ((-size) & 3) + 8;
2788 
2789 		vap = data->ni->ni_vap;
2790 		if (ieee80211_radiotap_active_vap(vap)) {
2791 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2792 			struct rt2860_txwi *txwi =
2793 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2794 
2795 			tap->wt_flags = 0;
2796 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2797 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2798 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2799 			tap->wt_hwqueue = index;
2800 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2801 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2802 
2803 			ieee80211_radiotap_tx(vap, m);
2804 		}
2805 
2806 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2807 		    m->m_pkthdr.len, size, index);
2808 
2809 		usbd_xfer_set_frame_len(xfer, 0, size);
2810 		usbd_xfer_set_priv(xfer, data);
2811 
2812 		usbd_transfer_submit(xfer);
2813 
2814 		RUN_UNLOCK(sc);
2815 		run_start(ifp);
2816 		RUN_LOCK(sc);
2817 
2818 		break;
2819 
2820 	default:
2821 		DPRINTF("USB transfer error, %s\n",
2822 		    usbd_errstr(error));
2823 
2824 		data = usbd_xfer_get_priv(xfer);
2825 
2826 		ifp->if_oerrors++;
2827 
2828 		if (data != NULL) {
2829 			if(data->ni != NULL)
2830 				vap = data->ni->ni_vap;
2831 			run_tx_free(pq, data, error);
2832 			usbd_xfer_set_priv(xfer, NULL);
2833 		}
2834 		if (vap == NULL)
2835 			vap = TAILQ_FIRST(&ic->ic_vaps);
2836 
2837 		if (error != USB_ERR_CANCELLED) {
2838 			if (error == USB_ERR_TIMEOUT) {
2839 				device_printf(sc->sc_dev, "device timeout\n");
2840 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2841 				DPRINTF("cmdq_store=%d\n", i);
2842 				sc->cmdq[i].func = run_usb_timeout_cb;
2843 				sc->cmdq[i].arg0 = vap;
2844 				ieee80211_runtask(ic, &sc->cmdq_task);
2845 			}
2846 
2847 			/*
2848 			 * Try to clear stall first, also if other
2849 			 * errors occur, hence clearing stall
2850 			 * introduces a 50 ms delay:
2851 			 */
2852 			usbd_xfer_set_stall(xfer);
2853 			goto tr_setup;
2854 		}
2855 		break;
2856 	}
2857 }
2858 
2859 static void
2860 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2861 {
2862 	run_bulk_tx_callbackN(xfer, error, 0);
2863 }
2864 
2865 static void
2866 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2867 {
2868 	run_bulk_tx_callbackN(xfer, error, 1);
2869 }
2870 
2871 static void
2872 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2873 {
2874 	run_bulk_tx_callbackN(xfer, error, 2);
2875 }
2876 
2877 static void
2878 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2879 {
2880 	run_bulk_tx_callbackN(xfer, error, 3);
2881 }
2882 
2883 static void
2884 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2885 {
2886 	run_bulk_tx_callbackN(xfer, error, 4);
2887 }
2888 
2889 static void
2890 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2891 {
2892 	run_bulk_tx_callbackN(xfer, error, 5);
2893 }
2894 
2895 static void
2896 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2897 {
2898 	struct mbuf *m = data->m;
2899 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2900 	struct ieee80211vap *vap = data->ni->ni_vap;
2901 	struct ieee80211_frame *wh;
2902 	struct rt2870_txd *txd;
2903 	struct rt2860_txwi *txwi;
2904 	uint16_t xferlen;
2905 	uint16_t mcs;
2906 	uint8_t ridx = data->ridx;
2907 	uint8_t pad;
2908 
2909 	/* get MCS code from rate index */
2910 	mcs = rt2860_rates[ridx].mcs;
2911 
2912 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2913 
2914 	/* roundup to 32-bit alignment */
2915 	xferlen = (xferlen + 3) & ~3;
2916 
2917 	txd = (struct rt2870_txd *)&data->desc;
2918 	txd->len = htole16(xferlen);
2919 
2920 	wh = mtod(m, struct ieee80211_frame *);
2921 
2922 	/*
2923 	 * Ether both are true or both are false, the header
2924 	 * are nicely aligned to 32-bit. So, no L2 padding.
2925 	 */
2926 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2927 		pad = 0;
2928 	else
2929 		pad = 2;
2930 
2931 	/* setup TX Wireless Information */
2932 	txwi = (struct rt2860_txwi *)(txd + 1);
2933 	txwi->len = htole16(m->m_pkthdr.len - pad);
2934 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2935 		txwi->phy = htole16(RT2860_PHY_CCK);
2936 		if (ridx != RT2860_RIDX_CCK1 &&
2937 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2938 			mcs |= RT2860_PHY_SHPRE;
2939 	} else
2940 		txwi->phy = htole16(RT2860_PHY_OFDM);
2941 	txwi->phy |= htole16(mcs);
2942 
2943 	/* check if RTS/CTS or CTS-to-self protection is required */
2944 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2945 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2946 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2947 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2948 		txwi->txop |= RT2860_TX_TXOP_HT;
2949 	else
2950 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2951 
2952 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2953 		txwi->xflags |= RT2860_TX_NSEQ;
2954 }
2955 
2956 /* This function must be called locked */
2957 static int
2958 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2959 {
2960 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2961 	struct ieee80211vap *vap = ni->ni_vap;
2962 	struct ieee80211_frame *wh;
2963 	struct ieee80211_channel *chan;
2964 	const struct ieee80211_txparam *tp;
2965 	struct run_node *rn = (void *)ni;
2966 	struct run_tx_data *data;
2967 	struct rt2870_txd *txd;
2968 	struct rt2860_txwi *txwi;
2969 	uint16_t qos;
2970 	uint16_t dur;
2971 	uint16_t qid;
2972 	uint8_t type;
2973 	uint8_t tid;
2974 	uint8_t ridx;
2975 	uint8_t ctl_ridx;
2976 	uint8_t qflags;
2977 	uint8_t xflags = 0;
2978 	int hasqos;
2979 
2980 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2981 
2982 	wh = mtod(m, struct ieee80211_frame *);
2983 
2984 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2985 
2986 	/*
2987 	 * There are 7 bulk endpoints: 1 for RX
2988 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2989 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2990 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2991 	 */
2992 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2993 		uint8_t *frm;
2994 
2995 		if(IEEE80211_HAS_ADDR4(wh))
2996 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2997 		else
2998 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
2999 
3000 		qos = le16toh(*(const uint16_t *)frm);
3001 		tid = qos & IEEE80211_QOS_TID;
3002 		qid = TID_TO_WME_AC(tid);
3003 	} else {
3004 		qos = 0;
3005 		tid = 0;
3006 		qid = WME_AC_BE;
3007 	}
3008 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3009 
3010 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3011 	    qos, qid, tid, qflags);
3012 
3013 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3014 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3015 
3016 	/* pickup a rate index */
3017 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3018 	    type != IEEE80211_FC0_TYPE_DATA) {
3019 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3020 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3021 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3022 	} else {
3023 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3024 			ridx = rn->fix_ridx;
3025 		else
3026 			ridx = rn->amrr_ridx;
3027 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3028 	}
3029 
3030 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3031 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3032 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3033 		xflags |= RT2860_TX_ACK;
3034 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3035 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3036 		else
3037 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3038 		*(uint16_t *)wh->i_dur = htole16(dur);
3039 	}
3040 
3041 	/* reserve slots for mgmt packets, just in case */
3042 	if (sc->sc_epq[qid].tx_nfree < 3) {
3043 		DPRINTFN(10, "tx ring %d is full\n", qid);
3044 		return (-1);
3045 	}
3046 
3047 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3048 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3049 	sc->sc_epq[qid].tx_nfree--;
3050 
3051 	txd = (struct rt2870_txd *)&data->desc;
3052 	txd->flags = qflags;
3053 	txwi = (struct rt2860_txwi *)(txd + 1);
3054 	txwi->xflags = xflags;
3055 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3056 		txwi->wcid = 0;
3057 	} else {
3058 		txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
3059 		    1 : RUN_AID2WCID(ni->ni_associd);
3060 	}
3061 	/* clear leftover garbage bits */
3062 	txwi->flags = 0;
3063 	txwi->txop = 0;
3064 
3065 	data->m = m;
3066 	data->ni = ni;
3067 	data->ridx = ridx;
3068 
3069 	run_set_tx_desc(sc, data);
3070 
3071 	/*
3072 	 * The chip keeps track of 2 kind of Tx stats,
3073 	 *  * TX_STAT_FIFO, for per WCID stats, and
3074 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3075 	 *
3076 	 * To use FIFO stats, we need to store MCS into the driver-private
3077  	 * PacketID field. So that, we can tell whose stats when we read them.
3078  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3079  	 * that we don't want feedback in TX_STAT_FIFO.
3080  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3081  	 *
3082  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3083  	 */
3084 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3085 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3086 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3087 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3088 
3089 		/*
3090 		 * Unlike PCI based devices, we don't get any interrupt from
3091 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3092 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3093 		 * quickly get fulled. To prevent overflow, increment a counter on
3094 		 * every FIFO stat request, so we know how many slots are left.
3095 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3096 		 * are used only in those modes.
3097 		 * We just drain stats. AMRR gets updated every 1 sec by
3098 		 * run_ratectl_cb() via callout.
3099 		 * Call it early. Otherwise overflow.
3100 		 */
3101 		if (sc->fifo_cnt++ == 10) {
3102 			/*
3103 			 * With multiple vaps or if_bridge, if_start() is called
3104 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3105 			 */
3106 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3107 			DPRINTFN(6, "cmdq_store=%d\n", i);
3108 			sc->cmdq[i].func = run_drain_fifo;
3109 			sc->cmdq[i].arg0 = sc;
3110 			ieee80211_runtask(ic, &sc->cmdq_task);
3111 		}
3112 	}
3113 
3114         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3115 
3116 	usbd_transfer_start(sc->sc_xfer[qid]);
3117 
3118 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3119 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3120 	    rt2860_rates[ridx].rate, qid);
3121 
3122 	return (0);
3123 }
3124 
3125 static int
3126 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3127 {
3128 	struct ifnet *ifp = sc->sc_ifp;
3129 	struct ieee80211com *ic = ifp->if_l2com;
3130 	struct run_node *rn = (void *)ni;
3131 	struct run_tx_data *data;
3132 	struct ieee80211_frame *wh;
3133 	struct rt2870_txd *txd;
3134 	struct rt2860_txwi *txwi;
3135 	uint16_t dur;
3136 	uint8_t ridx = rn->mgt_ridx;
3137 	uint8_t type;
3138 	uint8_t xflags = 0;
3139 	uint8_t wflags = 0;
3140 
3141 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3142 
3143 	wh = mtod(m, struct ieee80211_frame *);
3144 
3145 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3146 
3147 	/* tell hardware to add timestamp for probe responses */
3148 	if ((wh->i_fc[0] &
3149 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3150 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3151 		wflags |= RT2860_TX_TS;
3152 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3153 		xflags |= RT2860_TX_ACK;
3154 
3155 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3156 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3157 		*(uint16_t *)wh->i_dur = htole16(dur);
3158 	}
3159 
3160 	if (sc->sc_epq[0].tx_nfree == 0) {
3161 		/* let caller free mbuf */
3162 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3163 		return (EIO);
3164 	}
3165 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3166 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3167 	sc->sc_epq[0].tx_nfree--;
3168 
3169 	txd = (struct rt2870_txd *)&data->desc;
3170 	txd->flags = RT2860_TX_QSEL_EDCA;
3171 	txwi = (struct rt2860_txwi *)(txd + 1);
3172 	txwi->wcid = 0xff;
3173 	txwi->flags = wflags;
3174 	txwi->xflags = xflags;
3175 	txwi->txop = 0;	/* clear leftover garbage bits */
3176 
3177 	data->m = m;
3178 	data->ni = ni;
3179 	data->ridx = ridx;
3180 
3181 	run_set_tx_desc(sc, data);
3182 
3183 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3184 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3185 	    rt2860_rates[ridx].rate);
3186 
3187 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3188 
3189 	usbd_transfer_start(sc->sc_xfer[0]);
3190 
3191 	return (0);
3192 }
3193 
3194 static int
3195 run_sendprot(struct run_softc *sc,
3196     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3197 {
3198 	struct ieee80211com *ic = ni->ni_ic;
3199 	struct ieee80211_frame *wh;
3200 	struct run_tx_data *data;
3201 	struct rt2870_txd *txd;
3202 	struct rt2860_txwi *txwi;
3203 	struct mbuf *mprot;
3204 	int ridx;
3205 	int protrate;
3206 	int ackrate;
3207 	int pktlen;
3208 	int isshort;
3209 	uint16_t dur;
3210 	uint8_t type;
3211 	uint8_t wflags = 0;
3212 	uint8_t xflags = 0;
3213 
3214 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3215 
3216 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3217 	    ("protection %d", prot));
3218 
3219 	wh = mtod(m, struct ieee80211_frame *);
3220 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3221 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3222 
3223 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3224 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3225 
3226 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3227 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3228 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3229 	wflags = RT2860_TX_FRAG;
3230 
3231 	/* check that there are free slots before allocating the mbuf */
3232 	if (sc->sc_epq[0].tx_nfree == 0) {
3233 		/* let caller free mbuf */
3234 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3235 		return (ENOBUFS);
3236 	}
3237 
3238 	if (prot == IEEE80211_PROT_RTSCTS) {
3239 		/* NB: CTS is the same size as an ACK */
3240 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3241 		xflags |= RT2860_TX_ACK;
3242 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3243 	} else {
3244 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3245 	}
3246 	if (mprot == NULL) {
3247 		sc->sc_ifp->if_oerrors++;
3248 		DPRINTF("could not allocate mbuf\n");
3249 		return (ENOBUFS);
3250 	}
3251 
3252         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3253         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3254         sc->sc_epq[0].tx_nfree--;
3255 
3256 	txd = (struct rt2870_txd *)&data->desc;
3257 	txd->flags = RT2860_TX_QSEL_EDCA;
3258 	txwi = (struct rt2860_txwi *)(txd + 1);
3259 	txwi->wcid = 0xff;
3260 	txwi->flags = wflags;
3261 	txwi->xflags = xflags;
3262 	txwi->txop = 0;	/* clear leftover garbage bits */
3263 
3264 	data->m = mprot;
3265 	data->ni = ieee80211_ref_node(ni);
3266 
3267 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3268 		if (rt2860_rates[ridx].rate == protrate)
3269 			break;
3270 	data->ridx = ridx;
3271 
3272 	run_set_tx_desc(sc, data);
3273 
3274         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3275             m->m_pkthdr.len, rate);
3276 
3277         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3278 
3279 	usbd_transfer_start(sc->sc_xfer[0]);
3280 
3281 	return (0);
3282 }
3283 
3284 static int
3285 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3286     const struct ieee80211_bpf_params *params)
3287 {
3288 	struct ieee80211com *ic = ni->ni_ic;
3289 	struct ieee80211_frame *wh;
3290 	struct run_tx_data *data;
3291 	struct rt2870_txd *txd;
3292 	struct rt2860_txwi *txwi;
3293 	uint8_t type;
3294 	uint8_t ridx;
3295 	uint8_t rate;
3296 	uint8_t opflags = 0;
3297 	uint8_t xflags = 0;
3298 	int error;
3299 
3300 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3301 
3302 	KASSERT(params != NULL, ("no raw xmit params"));
3303 
3304 	wh = mtod(m, struct ieee80211_frame *);
3305 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3306 
3307 	rate = params->ibp_rate0;
3308 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3309 		/* let caller free mbuf */
3310 		return (EINVAL);
3311 	}
3312 
3313 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3314 		xflags |= RT2860_TX_ACK;
3315 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3316 		error = run_sendprot(sc, m, ni,
3317 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3318 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3319 		    rate);
3320 		if (error) {
3321 			/* let caller free mbuf */
3322 			return error;
3323 		}
3324 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3325 	}
3326 
3327 	if (sc->sc_epq[0].tx_nfree == 0) {
3328 		/* let caller free mbuf */
3329 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3330 		DPRINTF("sending raw frame, but tx ring is full\n");
3331 		return (EIO);
3332 	}
3333         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3334         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3335         sc->sc_epq[0].tx_nfree--;
3336 
3337 	txd = (struct rt2870_txd *)&data->desc;
3338 	txd->flags = RT2860_TX_QSEL_EDCA;
3339 	txwi = (struct rt2860_txwi *)(txd + 1);
3340 	txwi->wcid = 0xff;
3341 	txwi->xflags = xflags;
3342 	txwi->txop = opflags;
3343 	txwi->flags = 0;	/* clear leftover garbage bits */
3344 
3345         data->m = m;
3346         data->ni = ni;
3347 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3348 		if (rt2860_rates[ridx].rate == rate)
3349 			break;
3350 	data->ridx = ridx;
3351 
3352         run_set_tx_desc(sc, data);
3353 
3354         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3355             m->m_pkthdr.len, rate);
3356 
3357         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3358 
3359 	usbd_transfer_start(sc->sc_xfer[0]);
3360 
3361         return (0);
3362 }
3363 
3364 static int
3365 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3366     const struct ieee80211_bpf_params *params)
3367 {
3368 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3369 	struct run_softc *sc = ifp->if_softc;
3370 	int error = 0;
3371 
3372 	RUN_LOCK(sc);
3373 
3374 	/* prevent management frames from being sent if we're not ready */
3375 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3376 		error =  ENETDOWN;
3377 		goto done;
3378 	}
3379 
3380 	if (params == NULL) {
3381 		/* tx mgt packet */
3382 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3383 			ifp->if_oerrors++;
3384 			DPRINTF("mgt tx failed\n");
3385 			goto done;
3386 		}
3387 	} else {
3388 		/* tx raw packet with param */
3389 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3390 			ifp->if_oerrors++;
3391 			DPRINTF("tx with param failed\n");
3392 			goto done;
3393 		}
3394 	}
3395 
3396 	ifp->if_opackets++;
3397 
3398 done:
3399 	RUN_UNLOCK(sc);
3400 
3401 	if (error != 0) {
3402 		if(m != NULL)
3403 			m_freem(m);
3404 		ieee80211_free_node(ni);
3405 	}
3406 
3407 	return (error);
3408 }
3409 
3410 static void
3411 run_start(struct ifnet *ifp)
3412 {
3413 	struct run_softc *sc = ifp->if_softc;
3414 	struct ieee80211_node *ni;
3415 	struct mbuf *m;
3416 
3417 	RUN_LOCK(sc);
3418 
3419 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3420 		RUN_UNLOCK(sc);
3421 		return;
3422 	}
3423 
3424 	for (;;) {
3425 		/* send data frames */
3426 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3427 		if (m == NULL)
3428 			break;
3429 
3430 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3431 		if (run_tx(sc, m, ni) != 0) {
3432 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3433 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3434 			break;
3435 		}
3436 	}
3437 
3438 	RUN_UNLOCK(sc);
3439 }
3440 
3441 static int
3442 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3443 {
3444 	struct run_softc *sc = ifp->if_softc;
3445 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3446 	struct ifreq *ifr = (struct ifreq *) data;
3447 	int startall = 0;
3448 	int error;
3449 
3450 	RUN_LOCK(sc);
3451 	error = sc->sc_detached ? ENXIO : 0;
3452 	RUN_UNLOCK(sc);
3453 	if (error)
3454 		return (error);
3455 
3456 	switch (cmd) {
3457 	case SIOCSIFFLAGS:
3458 		RUN_LOCK(sc);
3459 		if (ifp->if_flags & IFF_UP) {
3460 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3461 				startall = 1;
3462 				run_init_locked(sc);
3463 			} else
3464 				run_update_promisc_locked(ifp);
3465 		} else {
3466 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3467 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3468 					run_stop(sc);
3469 			}
3470 		}
3471 		RUN_UNLOCK(sc);
3472 		if (startall)
3473 			ieee80211_start_all(ic);
3474 		break;
3475 	case SIOCGIFMEDIA:
3476 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3477 		break;
3478 	case SIOCGIFADDR:
3479 		error = ether_ioctl(ifp, cmd, data);
3480 		break;
3481 	default:
3482 		error = EINVAL;
3483 		break;
3484 	}
3485 
3486 	return (error);
3487 }
3488 
3489 static void
3490 run_set_agc(struct run_softc *sc, uint8_t agc)
3491 {
3492 	uint8_t bbp;
3493 
3494 	if (sc->mac_ver == 0x3572) {
3495 		run_bbp_read(sc, 27, &bbp);
3496 		bbp &= ~(0x3 << 5);
3497 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3498 		run_bbp_write(sc, 66, agc);
3499 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3500 		run_bbp_write(sc, 66, agc);
3501 	} else
3502 		run_bbp_write(sc, 66, agc);
3503 }
3504 
3505 static void
3506 run_select_chan_group(struct run_softc *sc, int group)
3507 {
3508 	uint32_t tmp;
3509 	uint8_t agc;
3510 
3511 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3512 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3513 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3514 	run_bbp_write(sc, 86, 0x00);
3515 
3516 	if (group == 0) {
3517 		if (sc->ext_2ghz_lna) {
3518 			run_bbp_write(sc, 82, 0x62);
3519 			run_bbp_write(sc, 75, 0x46);
3520 		} else {
3521 			run_bbp_write(sc, 82, 0x84);
3522 			run_bbp_write(sc, 75, 0x50);
3523 		}
3524 	} else {
3525 		if (sc->mac_ver == 0x3572)
3526 			run_bbp_write(sc, 82, 0x94);
3527 		else
3528 			run_bbp_write(sc, 82, 0xf2);
3529 		if (sc->ext_5ghz_lna)
3530 			run_bbp_write(sc, 75, 0x46);
3531 		else
3532 			run_bbp_write(sc, 75, 0x50);
3533 	}
3534 
3535 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3536 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3537 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3538 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3539 
3540 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3541 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3542 	if (sc->nrxchains > 1)
3543 		tmp |= RT2860_LNA_PE1_EN;
3544 	if (group == 0) {	/* 2GHz */
3545 		tmp |= RT2860_PA_PE_G0_EN;
3546 		if (sc->ntxchains > 1)
3547 			tmp |= RT2860_PA_PE_G1_EN;
3548 	} else {		/* 5GHz */
3549 		tmp |= RT2860_PA_PE_A0_EN;
3550 		if (sc->ntxchains > 1)
3551 			tmp |= RT2860_PA_PE_A1_EN;
3552 	}
3553 	if (sc->mac_ver == 0x3572) {
3554 		run_rt3070_rf_write(sc, 8, 0x00);
3555 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3556 		run_rt3070_rf_write(sc, 8, 0x80);
3557 	} else
3558 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3559 
3560 	/* set initial AGC value */
3561 	if (group == 0) {	/* 2GHz band */
3562 		if (sc->mac_ver >= 0x3070)
3563 			agc = 0x1c + sc->lna[0] * 2;
3564 		else
3565 			agc = 0x2e + sc->lna[0];
3566 	} else {		/* 5GHz band */
3567 		if (sc->mac_ver == 0x3572)
3568 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3569 		else
3570 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3571 	}
3572 	run_set_agc(sc, agc);
3573 }
3574 
3575 static void
3576 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3577 {
3578 	const struct rfprog *rfprog = rt2860_rf2850;
3579 	uint32_t r2, r3, r4;
3580 	int8_t txpow1, txpow2;
3581 	int i;
3582 
3583 	/* find the settings for this channel (we know it exists) */
3584 	for (i = 0; rfprog[i].chan != chan; i++);
3585 
3586 	r2 = rfprog[i].r2;
3587 	if (sc->ntxchains == 1)
3588 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3589 	if (sc->nrxchains == 1)
3590 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3591 	else if (sc->nrxchains == 2)
3592 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3593 
3594 	/* use Tx power values from EEPROM */
3595 	txpow1 = sc->txpow1[i];
3596 	txpow2 = sc->txpow2[i];
3597 	if (chan > 14) {
3598 		if (txpow1 >= 0)
3599 			txpow1 = txpow1 << 1 | 1;
3600 		else
3601 			txpow1 = (7 + txpow1) << 1;
3602 		if (txpow2 >= 0)
3603 			txpow2 = txpow2 << 1 | 1;
3604 		else
3605 			txpow2 = (7 + txpow2) << 1;
3606 	}
3607 	r3 = rfprog[i].r3 | txpow1 << 7;
3608 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3609 
3610 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3611 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3612 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3613 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3614 
3615 	run_delay(sc, 10);
3616 
3617 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3618 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3619 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3620 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3621 
3622 	run_delay(sc, 10);
3623 
3624 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3625 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3626 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3627 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3628 }
3629 
3630 static void
3631 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3632 {
3633 	int8_t txpow1, txpow2;
3634 	uint8_t rf;
3635 	int i;
3636 
3637 	/* RT3070 is 2GHz only */
3638 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3639 
3640 	/* find the settings for this channel (we know it exists) */
3641 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3642 
3643 	/* use Tx power values from EEPROM */
3644 	txpow1 = sc->txpow1[i];
3645 	txpow2 = sc->txpow2[i];
3646 
3647 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3648 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3649 	run_rt3070_rf_read(sc, 6, &rf);
3650 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3651 	run_rt3070_rf_write(sc, 6, rf);
3652 
3653 	/* set Tx0 power */
3654 	run_rt3070_rf_read(sc, 12, &rf);
3655 	rf = (rf & ~0x1f) | txpow1;
3656 	run_rt3070_rf_write(sc, 12, rf);
3657 
3658 	/* set Tx1 power */
3659 	run_rt3070_rf_read(sc, 13, &rf);
3660 	rf = (rf & ~0x1f) | txpow2;
3661 	run_rt3070_rf_write(sc, 13, rf);
3662 
3663 	run_rt3070_rf_read(sc, 1, &rf);
3664 	rf &= ~0xfc;
3665 	if (sc->ntxchains == 1)
3666 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3667 	else if (sc->ntxchains == 2)
3668 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3669 	if (sc->nrxchains == 1)
3670 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3671 	else if (sc->nrxchains == 2)
3672 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3673 	run_rt3070_rf_write(sc, 1, rf);
3674 
3675 	/* set RF offset */
3676 	run_rt3070_rf_read(sc, 23, &rf);
3677 	rf = (rf & ~0x7f) | sc->freq;
3678 	run_rt3070_rf_write(sc, 23, rf);
3679 
3680 	/* program RF filter */
3681 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3682 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3683 	run_rt3070_rf_write(sc, 24, rf);
3684 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3685 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3686 	run_rt3070_rf_write(sc, 31, rf);
3687 
3688 	/* enable RF tuning */
3689 	run_rt3070_rf_read(sc, 7, &rf);
3690 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3691 }
3692 
3693 static void
3694 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3695 {
3696 	int8_t txpow1, txpow2;
3697 	uint32_t tmp;
3698 	uint8_t rf;
3699 	int i;
3700 
3701 	/* find the settings for this channel (we know it exists) */
3702 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3703 
3704 	/* use Tx power values from EEPROM */
3705 	txpow1 = sc->txpow1[i];
3706 	txpow2 = sc->txpow2[i];
3707 
3708 	if (chan <= 14) {
3709 		run_bbp_write(sc, 25, sc->bbp25);
3710 		run_bbp_write(sc, 26, sc->bbp26);
3711 	} else {
3712 		/* enable IQ phase correction */
3713 		run_bbp_write(sc, 25, 0x09);
3714 		run_bbp_write(sc, 26, 0xff);
3715 	}
3716 
3717 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3718 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3719 	run_rt3070_rf_read(sc, 6, &rf);
3720 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3721 	rf |= (chan <= 14) ? 0x08 : 0x04;
3722 	run_rt3070_rf_write(sc, 6, rf);
3723 
3724 	/* set PLL mode */
3725 	run_rt3070_rf_read(sc, 5, &rf);
3726 	rf &= ~(0x08 | 0x04);
3727 	rf |= (chan <= 14) ? 0x04 : 0x08;
3728 	run_rt3070_rf_write(sc, 5, rf);
3729 
3730 	/* set Tx power for chain 0 */
3731 	if (chan <= 14)
3732 		rf = 0x60 | txpow1;
3733 	else
3734 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3735 	run_rt3070_rf_write(sc, 12, rf);
3736 
3737 	/* set Tx power for chain 1 */
3738 	if (chan <= 14)
3739 		rf = 0x60 | txpow2;
3740 	else
3741 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3742 	run_rt3070_rf_write(sc, 13, rf);
3743 
3744 	/* set Tx/Rx streams */
3745 	run_rt3070_rf_read(sc, 1, &rf);
3746 	rf &= ~0xfc;
3747 	if (sc->ntxchains == 1)
3748 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3749 	else if (sc->ntxchains == 2)
3750 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3751 	if (sc->nrxchains == 1)
3752 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3753 	else if (sc->nrxchains == 2)
3754 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3755 	run_rt3070_rf_write(sc, 1, rf);
3756 
3757 	/* set RF offset */
3758 	run_rt3070_rf_read(sc, 23, &rf);
3759 	rf = (rf & ~0x7f) | sc->freq;
3760 	run_rt3070_rf_write(sc, 23, rf);
3761 
3762 	/* program RF filter */
3763 	rf = sc->rf24_20mhz;
3764 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3765 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3766 
3767 	/* enable RF tuning */
3768 	run_rt3070_rf_read(sc, 7, &rf);
3769 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3770 	run_rt3070_rf_write(sc, 7, rf);
3771 
3772 	/* TSSI */
3773 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3774 	run_rt3070_rf_write(sc, 9, rf);
3775 
3776 	/* set loop filter 1 */
3777 	run_rt3070_rf_write(sc, 10, 0xf1);
3778 	/* set loop filter 2 */
3779 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3780 
3781 	/* set tx_mx2_ic */
3782 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3783 	/* set tx_mx1_ic */
3784 	if (chan <= 14)
3785 		rf = 0x48 | sc->txmixgain_2ghz;
3786 	else
3787 		rf = 0x78 | sc->txmixgain_5ghz;
3788 	run_rt3070_rf_write(sc, 16, rf);
3789 
3790 	/* set tx_lo1 */
3791 	run_rt3070_rf_write(sc, 17, 0x23);
3792 	/* set tx_lo2 */
3793 	if (chan <= 14)
3794 		rf = 0x93;
3795 	else if (chan <= 64)
3796 		rf = 0xb7;
3797 	else if (chan <= 128)
3798 		rf = 0x74;
3799 	else
3800 		rf = 0x72;
3801 	run_rt3070_rf_write(sc, 19, rf);
3802 
3803 	/* set rx_lo1 */
3804 	if (chan <= 14)
3805 		rf = 0xb3;
3806 	else if (chan <= 64)
3807 		rf = 0xf6;
3808 	else if (chan <= 128)
3809 		rf = 0xf4;
3810 	else
3811 		rf = 0xf3;
3812 	run_rt3070_rf_write(sc, 20, rf);
3813 
3814 	/* set pfd_delay */
3815 	if (chan <= 14)
3816 		rf = 0x15;
3817 	else if (chan <= 64)
3818 		rf = 0x3d;
3819 	else
3820 		rf = 0x01;
3821 	run_rt3070_rf_write(sc, 25, rf);
3822 
3823 	/* set rx_lo2 */
3824 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3825 	/* set ldo_rf_vc */
3826 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3827 	/* set drv_cc */
3828 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3829 
3830 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3831 	tmp &= ~0x8080;
3832 	if (chan <= 14)
3833 		tmp |= 0x80;
3834 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3835 
3836 	/* enable RF tuning */
3837 	run_rt3070_rf_read(sc, 7, &rf);
3838 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3839 
3840 	run_delay(sc, 2);
3841 }
3842 
3843 static void
3844 run_set_rx_antenna(struct run_softc *sc, int aux)
3845 {
3846 	uint32_t tmp;
3847 
3848 	if (aux) {
3849 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3850 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3851 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3852 	} else {
3853 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3854 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3855 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3856 	}
3857 }
3858 
3859 static int
3860 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3861 {
3862 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3863 	uint32_t chan, group;
3864 
3865 	chan = ieee80211_chan2ieee(ic, c);
3866 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3867 		return (EINVAL);
3868 
3869 	if (sc->mac_ver == 0x3572)
3870 		run_rt3572_set_chan(sc, chan);
3871 	else if (sc->mac_ver >= 0x3070)
3872 		run_rt3070_set_chan(sc, chan);
3873 	else
3874 		run_rt2870_set_chan(sc, chan);
3875 
3876 	/* determine channel group */
3877 	if (chan <= 14)
3878 		group = 0;
3879 	else if (chan <= 64)
3880 		group = 1;
3881 	else if (chan <= 128)
3882 		group = 2;
3883 	else
3884 		group = 3;
3885 
3886 	/* XXX necessary only when group has changed! */
3887 	run_select_chan_group(sc, group);
3888 
3889 	run_delay(sc, 10);
3890 
3891 	return (0);
3892 }
3893 
3894 static void
3895 run_set_channel(struct ieee80211com *ic)
3896 {
3897 	struct run_softc *sc = ic->ic_ifp->if_softc;
3898 
3899 	RUN_LOCK(sc);
3900 	run_set_chan(sc, ic->ic_curchan);
3901 	RUN_UNLOCK(sc);
3902 
3903 	return;
3904 }
3905 
3906 static void
3907 run_scan_start(struct ieee80211com *ic)
3908 {
3909 	struct run_softc *sc = ic->ic_ifp->if_softc;
3910 	uint32_t tmp;
3911 
3912 	RUN_LOCK(sc);
3913 
3914 	/* abort TSF synchronization */
3915 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3916 	run_write(sc, RT2860_BCN_TIME_CFG,
3917 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3918 	    RT2860_TBTT_TIMER_EN));
3919 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3920 
3921 	RUN_UNLOCK(sc);
3922 
3923 	return;
3924 }
3925 
3926 static void
3927 run_scan_end(struct ieee80211com *ic)
3928 {
3929 	struct run_softc *sc = ic->ic_ifp->if_softc;
3930 
3931 	RUN_LOCK(sc);
3932 
3933 	run_enable_tsf_sync(sc);
3934 	/* XXX keep local copy */
3935 	run_set_bssid(sc, sc->sc_bssid);
3936 
3937 	RUN_UNLOCK(sc);
3938 
3939 	return;
3940 }
3941 
3942 /*
3943  * Could be called from ieee80211_node_timeout()
3944  * (non-sleepable thread)
3945  */
3946 static void
3947 run_update_beacon(struct ieee80211vap *vap, int item)
3948 {
3949 	struct ieee80211com *ic = vap->iv_ic;
3950 	struct run_softc *sc = ic->ic_ifp->if_softc;
3951 	struct run_vap *rvp = RUN_VAP(vap);
3952 	int mcast = 0;
3953 	uint32_t i;
3954 
3955 	KASSERT(vap != NULL, ("no beacon"));
3956 
3957 	switch (item) {
3958 	case IEEE80211_BEACON_ERP:
3959 		run_updateslot(ic->ic_ifp);
3960 		break;
3961 	case IEEE80211_BEACON_HTINFO:
3962 		run_updateprot(ic);
3963 		break;
3964 	case IEEE80211_BEACON_TIM:
3965 		mcast = 1;	/*TODO*/
3966 		break;
3967 	default:
3968 		break;
3969 	}
3970 
3971 	setbit(rvp->bo.bo_flags, item);
3972 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3973 
3974 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3975 	DPRINTF("cmdq_store=%d\n", i);
3976 	sc->cmdq[i].func = run_update_beacon_cb;
3977 	sc->cmdq[i].arg0 = vap;
3978 	ieee80211_runtask(ic, &sc->cmdq_task);
3979 
3980 	return;
3981 }
3982 
3983 static void
3984 run_update_beacon_cb(void *arg)
3985 {
3986 	struct ieee80211vap *vap = arg;
3987 	struct run_vap *rvp = RUN_VAP(vap);
3988 	struct ieee80211com *ic = vap->iv_ic;
3989 	struct run_softc *sc = ic->ic_ifp->if_softc;
3990 	struct rt2860_txwi txwi;
3991 	struct mbuf *m;
3992 	uint8_t ridx;
3993 
3994 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3995 		return;
3996 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
3997 		return;
3998 
3999 	/*
4000 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
4001 	 * is taking care of apropriate calls.
4002 	 */
4003 	if (rvp->beacon_mbuf == NULL) {
4004 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
4005 		    &rvp->bo);
4006 		if (rvp->beacon_mbuf == NULL)
4007 			return;
4008 	}
4009 	m = rvp->beacon_mbuf;
4010 
4011 	memset(&txwi, 0, sizeof txwi);
4012 	txwi.wcid = 0xff;
4013 	txwi.len = htole16(m->m_pkthdr.len);
4014 	/* send beacons at the lowest available rate */
4015 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4016 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
4017 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4018 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4019 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4020 	txwi.txop = RT2860_TX_TXOP_HT;
4021 	txwi.flags = RT2860_TX_TS;
4022 	txwi.xflags = RT2860_TX_NSEQ;
4023 
4024 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4025 	    (uint8_t *)&txwi, sizeof txwi);
4026 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4027 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4028 
4029 	return;
4030 }
4031 
4032 static void
4033 run_updateprot(struct ieee80211com *ic)
4034 {
4035 	struct run_softc *sc = ic->ic_ifp->if_softc;
4036 	uint32_t i;
4037 
4038 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4039 	DPRINTF("cmdq_store=%d\n", i);
4040 	sc->cmdq[i].func = run_updateprot_cb;
4041 	sc->cmdq[i].arg0 = ic;
4042 	ieee80211_runtask(ic, &sc->cmdq_task);
4043 }
4044 
4045 static void
4046 run_updateprot_cb(void *arg)
4047 {
4048 	struct ieee80211com *ic = arg;
4049 	struct run_softc *sc = ic->ic_ifp->if_softc;
4050 	uint32_t tmp;
4051 
4052 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4053 	/* setup protection frame rate (MCS code) */
4054 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4055 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4056 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4057 
4058 	/* CCK frames don't require protection */
4059 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4060 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4061 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4062 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4063 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4064 			tmp |= RT2860_PROT_CTRL_CTS;
4065 	}
4066 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4067 }
4068 
4069 static void
4070 run_usb_timeout_cb(void *arg)
4071 {
4072 	struct ieee80211vap *vap = arg;
4073 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4074 
4075 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4076 
4077 	if(vap->iv_state == IEEE80211_S_RUN &&
4078 	    vap->iv_opmode != IEEE80211_M_STA)
4079 		run_reset_livelock(sc);
4080 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4081 		DPRINTF("timeout caused by scan\n");
4082 		/* cancel bgscan */
4083 		ieee80211_cancel_scan(vap);
4084 	} else
4085 		DPRINTF("timeout by unknown cause\n");
4086 }
4087 
4088 static void
4089 run_reset_livelock(struct run_softc *sc)
4090 {
4091 	uint32_t tmp;
4092 
4093 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4094 
4095 	/*
4096 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4097 	 * can run into a livelock and start sending CTS-to-self frames like
4098 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4099 	 */
4100 	run_read(sc, RT2860_DEBUG, &tmp);
4101 	DPRINTFN(3, "debug reg %08x\n", tmp);
4102 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4103 		DPRINTF("CTS-to-self livelock detected\n");
4104 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4105 		run_delay(sc, 1);
4106 		run_write(sc, RT2860_MAC_SYS_CTRL,
4107 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4108 	}
4109 }
4110 
4111 static void
4112 run_update_promisc_locked(struct ifnet *ifp)
4113 {
4114 	struct run_softc *sc = ifp->if_softc;
4115         uint32_t tmp;
4116 
4117 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4118 
4119 	tmp |= RT2860_DROP_UC_NOME;
4120         if (ifp->if_flags & IFF_PROMISC)
4121 		tmp &= ~RT2860_DROP_UC_NOME;
4122 
4123 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4124 
4125         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4126             "entering" : "leaving");
4127 }
4128 
4129 static void
4130 run_update_promisc(struct ifnet *ifp)
4131 {
4132 	struct run_softc *sc = ifp->if_softc;
4133 
4134 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4135 		return;
4136 
4137 	RUN_LOCK(sc);
4138 	run_update_promisc_locked(ifp);
4139 	RUN_UNLOCK(sc);
4140 }
4141 
4142 static void
4143 run_enable_tsf_sync(struct run_softc *sc)
4144 {
4145 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4146 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4147 	uint32_t tmp;
4148 
4149 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4150 
4151 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4152 	tmp &= ~0x1fffff;
4153 	tmp |= vap->iv_bss->ni_intval * 16;
4154 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4155 
4156 	if (ic->ic_opmode == IEEE80211_M_STA) {
4157 		/*
4158 		 * Local TSF is always updated with remote TSF on beacon
4159 		 * reception.
4160 		 */
4161 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4162 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4163 	        tmp |= RT2860_BCN_TX_EN;
4164 	        /*
4165 	         * Local TSF is updated with remote TSF on beacon reception
4166 	         * only if the remote TSF is greater than local TSF.
4167 	         */
4168 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4169 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4170 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4171 	        tmp |= RT2860_BCN_TX_EN;
4172 	        /* SYNC with nobody */
4173 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4174 	} else {
4175 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4176 		return;
4177 	}
4178 
4179 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4180 }
4181 
4182 static void
4183 run_enable_mrr(struct run_softc *sc)
4184 {
4185 #define CCK(mcs)	(mcs)
4186 #define OFDM(mcs)	(1 << 3 | (mcs))
4187 	run_write(sc, RT2860_LG_FBK_CFG0,
4188 	    OFDM(6) << 28 |	/* 54->48 */
4189 	    OFDM(5) << 24 |	/* 48->36 */
4190 	    OFDM(4) << 20 |	/* 36->24 */
4191 	    OFDM(3) << 16 |	/* 24->18 */
4192 	    OFDM(2) << 12 |	/* 18->12 */
4193 	    OFDM(1) <<  8 |	/* 12-> 9 */
4194 	    OFDM(0) <<  4 |	/*  9-> 6 */
4195 	    OFDM(0));		/*  6-> 6 */
4196 
4197 	run_write(sc, RT2860_LG_FBK_CFG1,
4198 	    CCK(2) << 12 |	/* 11->5.5 */
4199 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4200 	    CCK(0) <<  4 |	/*   2-> 1 */
4201 	    CCK(0));		/*   1-> 1 */
4202 #undef OFDM
4203 #undef CCK
4204 }
4205 
4206 static void
4207 run_set_txpreamble(struct run_softc *sc)
4208 {
4209 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4210 	uint32_t tmp;
4211 
4212 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4213 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4214 		tmp |= RT2860_CCK_SHORT_EN;
4215 	else
4216 		tmp &= ~RT2860_CCK_SHORT_EN;
4217 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4218 }
4219 
4220 static void
4221 run_set_basicrates(struct run_softc *sc)
4222 {
4223 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4224 
4225 	/* set basic rates mask */
4226 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4227 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4228 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4229 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4230 	else	/* 11g */
4231 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4232 }
4233 
4234 static void
4235 run_set_leds(struct run_softc *sc, uint16_t which)
4236 {
4237 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4238 	    which | (sc->leds & 0x7f));
4239 }
4240 
4241 static void
4242 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4243 {
4244 	run_write(sc, RT2860_MAC_BSSID_DW0,
4245 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4246 	run_write(sc, RT2860_MAC_BSSID_DW1,
4247 	    bssid[4] | bssid[5] << 8);
4248 }
4249 
4250 static void
4251 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4252 {
4253 	run_write(sc, RT2860_MAC_ADDR_DW0,
4254 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4255 	run_write(sc, RT2860_MAC_ADDR_DW1,
4256 	    addr[4] | addr[5] << 8 | 0xff << 16);
4257 }
4258 
4259 static void
4260 run_updateslot(struct ifnet *ifp)
4261 {
4262 	struct run_softc *sc = ifp->if_softc;
4263 	struct ieee80211com *ic = ifp->if_l2com;
4264 	uint32_t i;
4265 
4266 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4267 	DPRINTF("cmdq_store=%d\n", i);
4268 	sc->cmdq[i].func = run_updateslot_cb;
4269 	sc->cmdq[i].arg0 = ifp;
4270 	ieee80211_runtask(ic, &sc->cmdq_task);
4271 
4272 	return;
4273 }
4274 
4275 /* ARGSUSED */
4276 static void
4277 run_updateslot_cb(void *arg)
4278 {
4279 	struct ifnet *ifp = arg;
4280 	struct run_softc *sc = ifp->if_softc;
4281 	struct ieee80211com *ic = ifp->if_l2com;
4282 	uint32_t tmp;
4283 
4284 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4285 	tmp &= ~0xff;
4286 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4287 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4288 }
4289 
4290 static void
4291 run_update_mcast(struct ifnet *ifp)
4292 {
4293 	/* h/w filter supports getting everything or nothing */
4294 	ifp->if_flags |= IFF_ALLMULTI;
4295 }
4296 
4297 static int8_t
4298 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4299 {
4300 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4301 	struct ieee80211_channel *c = ic->ic_curchan;
4302 	int delta;
4303 
4304 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4305 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4306 		delta = sc->rssi_5ghz[rxchain];
4307 
4308 		/* determine channel group */
4309 		if (chan <= 64)
4310 			delta -= sc->lna[1];
4311 		else if (chan <= 128)
4312 			delta -= sc->lna[2];
4313 		else
4314 			delta -= sc->lna[3];
4315 	} else
4316 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4317 
4318 	return (-12 - delta - rssi);
4319 }
4320 
4321 static int
4322 run_bbp_init(struct run_softc *sc)
4323 {
4324 	int i, error, ntries;
4325 	uint8_t bbp0;
4326 
4327 	/* wait for BBP to wake up */
4328 	for (ntries = 0; ntries < 20; ntries++) {
4329 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4330 			return error;
4331 		if (bbp0 != 0 && bbp0 != 0xff)
4332 			break;
4333 	}
4334 	if (ntries == 20)
4335 		return (ETIMEDOUT);
4336 
4337 	/* initialize BBP registers to default values */
4338 	for (i = 0; i < N(rt2860_def_bbp); i++) {
4339 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4340 		    rt2860_def_bbp[i].val);
4341 	}
4342 
4343 	/* fix BBP84 for RT2860E */
4344 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4345 		run_bbp_write(sc, 84, 0x19);
4346 
4347 	if (sc->mac_ver >= 0x3070) {
4348 		run_bbp_write(sc, 79, 0x13);
4349 		run_bbp_write(sc, 80, 0x05);
4350 		run_bbp_write(sc, 81, 0x33);
4351 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4352 		run_bbp_write(sc, 69, 0x16);
4353 		run_bbp_write(sc, 73, 0x12);
4354 	}
4355 	return (0);
4356 }
4357 
4358 static int
4359 run_rt3070_rf_init(struct run_softc *sc)
4360 {
4361 	uint32_t tmp;
4362 	uint8_t rf, target, bbp4;
4363 	int i;
4364 
4365 	run_rt3070_rf_read(sc, 30, &rf);
4366 	/* toggle RF R30 bit 7 */
4367 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4368 	run_delay(sc, 10);
4369 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4370 
4371 	/* initialize RF registers to default value */
4372 	if (sc->mac_ver == 0x3572) {
4373 		for (i = 0; i < N(rt3572_def_rf); i++) {
4374 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4375 			    rt3572_def_rf[i].val);
4376 		}
4377 	} else {
4378 		for (i = 0; i < N(rt3070_def_rf); i++) {
4379 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4380 			    rt3070_def_rf[i].val);
4381 		}
4382 	}
4383 
4384 	if (sc->mac_ver == 0x3070) {
4385 		/* change voltage from 1.2V to 1.35V for RT3070 */
4386 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4387 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4388 		run_write(sc, RT3070_LDO_CFG0, tmp);
4389 
4390 	} else if (sc->mac_ver == 0x3071) {
4391 		run_rt3070_rf_read(sc, 6, &rf);
4392 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4393 		run_rt3070_rf_write(sc, 31, 0x14);
4394 
4395 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4396 		tmp &= ~0x1f000000;
4397 		if (sc->mac_rev < 0x0211)
4398 			tmp |= 0x0d000000;	/* 1.3V */
4399 		else
4400 			tmp |= 0x01000000;	/* 1.2V */
4401 		run_write(sc, RT3070_LDO_CFG0, tmp);
4402 
4403 		/* patch LNA_PE_G1 */
4404 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4405 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4406 
4407 	} else if (sc->mac_ver == 0x3572) {
4408 		run_rt3070_rf_read(sc, 6, &rf);
4409 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4410 
4411 		/* increase voltage from 1.2V to 1.35V */
4412 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4413 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4414 		run_write(sc, RT3070_LDO_CFG0, tmp);
4415 
4416 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4417 			run_delay(sc, 1);	/* wait for 1msec */
4418 			/* decrease voltage back to 1.2V */
4419 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4420 			run_write(sc, RT3070_LDO_CFG0, tmp);
4421 		}
4422 	}
4423 
4424 	/* select 20MHz bandwidth */
4425 	run_rt3070_rf_read(sc, 31, &rf);
4426 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4427 
4428 	/* calibrate filter for 20MHz bandwidth */
4429 	sc->rf24_20mhz = 0x1f;	/* default value */
4430 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4431 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4432 
4433 	/* select 40MHz bandwidth */
4434 	run_bbp_read(sc, 4, &bbp4);
4435 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4436 	run_rt3070_rf_read(sc, 31, &rf);
4437 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4438 
4439 	/* calibrate filter for 40MHz bandwidth */
4440 	sc->rf24_40mhz = 0x2f;	/* default value */
4441 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4442 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4443 
4444 	/* go back to 20MHz bandwidth */
4445 	run_bbp_read(sc, 4, &bbp4);
4446 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4447 
4448 	if (sc->mac_ver == 0x3572) {
4449 		/* save default BBP registers 25 and 26 values */
4450 		run_bbp_read(sc, 25, &sc->bbp25);
4451 		run_bbp_read(sc, 26, &sc->bbp26);
4452 	} else if (sc->mac_rev < 0x0211)
4453 		run_rt3070_rf_write(sc, 27, 0x03);
4454 
4455 	run_read(sc, RT3070_OPT_14, &tmp);
4456 	run_write(sc, RT3070_OPT_14, tmp | 1);
4457 
4458 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4459 		run_rt3070_rf_read(sc, 17, &rf);
4460 		rf &= ~RT3070_TX_LO1;
4461 		if ((sc->mac_ver == 0x3070 ||
4462 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4463 		    !sc->ext_2ghz_lna)
4464 			rf |= 0x20;	/* fix for long range Rx issue */
4465 		if (sc->txmixgain_2ghz >= 1)
4466 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4467 		run_rt3070_rf_write(sc, 17, rf);
4468 	}
4469 
4470 	if (sc->mac_rev == 0x3071) {
4471 		run_rt3070_rf_read(sc, 1, &rf);
4472 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4473 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4474 		run_rt3070_rf_write(sc, 1, rf);
4475 
4476 		run_rt3070_rf_read(sc, 15, &rf);
4477 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4478 
4479 		run_rt3070_rf_read(sc, 20, &rf);
4480 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4481 
4482 		run_rt3070_rf_read(sc, 21, &rf);
4483 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4484 	}
4485 
4486 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4487 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4488 		run_rt3070_rf_read(sc, 27, &rf);
4489 		rf &= ~0x77;
4490 		if (sc->mac_rev < 0x0211)
4491 			rf |= 0x03;
4492 		run_rt3070_rf_write(sc, 27, rf);
4493 	}
4494 	return (0);
4495 }
4496 
4497 static int
4498 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4499     uint8_t *val)
4500 {
4501 	uint8_t rf22, rf24;
4502 	uint8_t bbp55_pb, bbp55_sb, delta;
4503 	int ntries;
4504 
4505 	/* program filter */
4506 	run_rt3070_rf_read(sc, 24, &rf24);
4507 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4508 	run_rt3070_rf_write(sc, 24, rf24);
4509 
4510 	/* enable baseband loopback mode */
4511 	run_rt3070_rf_read(sc, 22, &rf22);
4512 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4513 
4514 	/* set power and frequency of passband test tone */
4515 	run_bbp_write(sc, 24, 0x00);
4516 	for (ntries = 0; ntries < 100; ntries++) {
4517 		/* transmit test tone */
4518 		run_bbp_write(sc, 25, 0x90);
4519 		run_delay(sc, 10);
4520 		/* read received power */
4521 		run_bbp_read(sc, 55, &bbp55_pb);
4522 		if (bbp55_pb != 0)
4523 			break;
4524 	}
4525 	if (ntries == 100)
4526 		return ETIMEDOUT;
4527 
4528 	/* set power and frequency of stopband test tone */
4529 	run_bbp_write(sc, 24, 0x06);
4530 	for (ntries = 0; ntries < 100; ntries++) {
4531 		/* transmit test tone */
4532 		run_bbp_write(sc, 25, 0x90);
4533 		run_delay(sc, 10);
4534 		/* read received power */
4535 		run_bbp_read(sc, 55, &bbp55_sb);
4536 
4537 		delta = bbp55_pb - bbp55_sb;
4538 		if (delta > target)
4539 			break;
4540 
4541 		/* reprogram filter */
4542 		rf24++;
4543 		run_rt3070_rf_write(sc, 24, rf24);
4544 	}
4545 	if (ntries < 100) {
4546 		if (rf24 != init)
4547 			rf24--;	/* backtrack */
4548 		*val = rf24;
4549 		run_rt3070_rf_write(sc, 24, rf24);
4550 	}
4551 
4552 	/* restore initial state */
4553 	run_bbp_write(sc, 24, 0x00);
4554 
4555 	/* disable baseband loopback mode */
4556 	run_rt3070_rf_read(sc, 22, &rf22);
4557 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4558 
4559 	return (0);
4560 }
4561 
4562 static void
4563 run_rt3070_rf_setup(struct run_softc *sc)
4564 {
4565 	uint8_t bbp, rf;
4566 	int i;
4567 
4568 	if (sc->mac_ver == 0x3572) {
4569 		/* enable DC filter */
4570 		if (sc->mac_rev >= 0x0201)
4571 			run_bbp_write(sc, 103, 0xc0);
4572 
4573 		run_bbp_read(sc, 138, &bbp);
4574 		if (sc->ntxchains == 1)
4575 			bbp |= 0x20;	/* turn off DAC1 */
4576 		if (sc->nrxchains == 1)
4577 			bbp &= ~0x02;	/* turn off ADC1 */
4578 		run_bbp_write(sc, 138, bbp);
4579 
4580 		if (sc->mac_rev >= 0x0211) {
4581 			/* improve power consumption */
4582 			run_bbp_read(sc, 31, &bbp);
4583 			run_bbp_write(sc, 31, bbp & ~0x03);
4584 		}
4585 
4586 		run_rt3070_rf_read(sc, 16, &rf);
4587 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4588 		run_rt3070_rf_write(sc, 16, rf);
4589 
4590 	} else if (sc->mac_ver == 0x3071) {
4591 		/* enable DC filter */
4592 		if (sc->mac_rev >= 0x0201)
4593 			run_bbp_write(sc, 103, 0xc0);
4594 
4595 		run_bbp_read(sc, 138, &bbp);
4596 		if (sc->ntxchains == 1)
4597 			bbp |= 0x20;	/* turn off DAC1 */
4598 		if (sc->nrxchains == 1)
4599 			bbp &= ~0x02;	/* turn off ADC1 */
4600 		run_bbp_write(sc, 138, bbp);
4601 
4602 		if (sc->mac_rev >= 0x0211) {
4603 			/* improve power consumption */
4604 			run_bbp_read(sc, 31, &bbp);
4605 			run_bbp_write(sc, 31, bbp & ~0x03);
4606 		}
4607 
4608 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4609 		if (sc->mac_rev < 0x0211) {
4610 			run_write(sc, RT2860_TX_SW_CFG2,
4611 			    sc->patch_dac ? 0x2c : 0x0f);
4612 		} else
4613 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4614 
4615 	} else if (sc->mac_ver == 0x3070) {
4616 		if (sc->mac_rev >= 0x0201) {
4617 			/* enable DC filter */
4618 			run_bbp_write(sc, 103, 0xc0);
4619 
4620 			/* improve power consumption */
4621 			run_bbp_read(sc, 31, &bbp);
4622 			run_bbp_write(sc, 31, bbp & ~0x03);
4623 		}
4624 
4625 		if (sc->mac_rev < 0x0211) {
4626 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4627 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4628 		} else
4629 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4630 	}
4631 
4632 	/* initialize RF registers from ROM for >=RT3071*/
4633 	if (sc->mac_ver >= 0x3071) {
4634 		for (i = 0; i < 10; i++) {
4635 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4636 				continue;
4637 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4638 		}
4639 	}
4640 }
4641 
4642 static int
4643 run_txrx_enable(struct run_softc *sc)
4644 {
4645 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4646 	uint32_t tmp;
4647 	int error, ntries;
4648 
4649 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4650 	for (ntries = 0; ntries < 200; ntries++) {
4651 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4652 			return error;
4653 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4654 			break;
4655 		run_delay(sc, 50);
4656 	}
4657 	if (ntries == 200)
4658 		return ETIMEDOUT;
4659 
4660 	run_delay(sc, 50);
4661 
4662 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4663 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4664 
4665 	/* enable Rx bulk aggregation (set timeout and limit) */
4666 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4667 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4668 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4669 
4670 	/* set Rx filter */
4671 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4672 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4673 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4674 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4675 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4676 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4677 		if (ic->ic_opmode == IEEE80211_M_STA)
4678 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4679 	}
4680 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4681 
4682 	run_write(sc, RT2860_MAC_SYS_CTRL,
4683 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4684 
4685 	return (0);
4686 }
4687 
4688 static void
4689 run_init_locked(struct run_softc *sc)
4690 {
4691 	struct ifnet *ifp = sc->sc_ifp;
4692 	struct ieee80211com *ic = ifp->if_l2com;
4693 	uint32_t tmp;
4694 	uint8_t bbp1, bbp3;
4695 	int i;
4696 	int ridx;
4697 	int ntries;
4698 
4699 	if (ic->ic_nrunning > 1)
4700 		return;
4701 
4702 	run_stop(sc);
4703 
4704 	if (run_load_microcode(sc) != 0) {
4705 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4706 		goto fail;
4707 	}
4708 
4709 	for (ntries = 0; ntries < 100; ntries++) {
4710 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4711 			goto fail;
4712 		if (tmp != 0 && tmp != 0xffffffff)
4713 			break;
4714 		run_delay(sc, 10);
4715 	}
4716 	if (ntries == 100)
4717 		goto fail;
4718 
4719 	for (i = 0; i != RUN_EP_QUEUES; i++)
4720 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4721 
4722 	run_set_macaddr(sc, IF_LLADDR(ifp));
4723 
4724 	for (ntries = 0; ntries < 100; ntries++) {
4725 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4726 			goto fail;
4727 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4728 			break;
4729 		run_delay(sc, 10);
4730 	}
4731 	if (ntries == 100) {
4732 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4733 		goto fail;
4734 	}
4735 	tmp &= 0xff0;
4736 	tmp |= RT2860_TX_WB_DDONE;
4737 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4738 
4739 	/* turn off PME_OEN to solve high-current issue */
4740 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4741 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4742 
4743 	run_write(sc, RT2860_MAC_SYS_CTRL,
4744 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4745 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4746 
4747 	if (run_reset(sc) != 0) {
4748 		device_printf(sc->sc_dev, "could not reset chipset\n");
4749 		goto fail;
4750 	}
4751 
4752 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4753 
4754 	/* init Tx power for all Tx rates (from EEPROM) */
4755 	for (ridx = 0; ridx < 5; ridx++) {
4756 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4757 			continue;
4758 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4759 	}
4760 
4761 	for (i = 0; i < N(rt2870_def_mac); i++)
4762 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4763 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4764 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4765 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4766 
4767 	if (sc->mac_ver >= 0x3070) {
4768 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4769 		run_write(sc, RT2860_TX_SW_CFG0,
4770 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4771 	}
4772 
4773 	/* wait while MAC is busy */
4774 	for (ntries = 0; ntries < 100; ntries++) {
4775 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4776 			goto fail;
4777 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4778 			break;
4779 		run_delay(sc, 10);
4780 	}
4781 	if (ntries == 100)
4782 		goto fail;
4783 
4784 	/* clear Host to MCU mailbox */
4785 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4786 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4787 	run_delay(sc, 10);
4788 
4789 	if (run_bbp_init(sc) != 0) {
4790 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4791 		goto fail;
4792 	}
4793 
4794 	/* abort TSF synchronization */
4795 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4796 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4797 	    RT2860_TBTT_TIMER_EN);
4798 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4799 
4800 	/* clear RX WCID search table */
4801 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4802 	/* clear WCID attribute table */
4803 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4804 
4805 	/* hostapd sets a key before init. So, don't clear it. */
4806 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4807 		/* clear shared key table */
4808 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4809 		/* clear shared key mode */
4810 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4811 	}
4812 
4813 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4814 	tmp = (tmp & ~0xff) | 0x1e;
4815 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4816 
4817 	if (sc->mac_rev != 0x0101)
4818 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4819 
4820 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4821 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4822 
4823 	/* write vendor-specific BBP values (from EEPROM) */
4824 	for (i = 0; i < 10; i++) {
4825 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4826 			continue;
4827 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4828 	}
4829 
4830 	/* select Main antenna for 1T1R devices */
4831 	if (sc->rf_rev == RT3070_RF_3020)
4832 		run_set_rx_antenna(sc, 0);
4833 
4834 	/* send LEDs operating mode to microcontroller */
4835 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4836 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4837 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4838 
4839 	if (sc->mac_ver >= 0x3070)
4840 		run_rt3070_rf_init(sc);
4841 
4842 	/* disable non-existing Rx chains */
4843 	run_bbp_read(sc, 3, &bbp3);
4844 	bbp3 &= ~(1 << 3 | 1 << 4);
4845 	if (sc->nrxchains == 2)
4846 		bbp3 |= 1 << 3;
4847 	else if (sc->nrxchains == 3)
4848 		bbp3 |= 1 << 4;
4849 	run_bbp_write(sc, 3, bbp3);
4850 
4851 	/* disable non-existing Tx chains */
4852 	run_bbp_read(sc, 1, &bbp1);
4853 	if (sc->ntxchains == 1)
4854 		bbp1 &= ~(1 << 3 | 1 << 4);
4855 	run_bbp_write(sc, 1, bbp1);
4856 
4857 	if (sc->mac_ver >= 0x3070)
4858 		run_rt3070_rf_setup(sc);
4859 
4860 	/* select default channel */
4861 	run_set_chan(sc, ic->ic_curchan);
4862 
4863 	/* setup initial protection mode */
4864 	run_updateprot_cb(ic);
4865 
4866 	/* turn radio LED on */
4867 	run_set_leds(sc, RT2860_LED_RADIO);
4868 
4869 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4870 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4871 	sc->cmdq_run = RUN_CMDQ_GO;
4872 
4873 	for (i = 0; i != RUN_N_XFER; i++)
4874 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4875 
4876 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4877 
4878 	if (run_txrx_enable(sc) != 0)
4879 		goto fail;
4880 
4881 	return;
4882 
4883 fail:
4884 	run_stop(sc);
4885 }
4886 
4887 static void
4888 run_init(void *arg)
4889 {
4890 	struct run_softc *sc = arg;
4891 	struct ifnet *ifp = sc->sc_ifp;
4892 	struct ieee80211com *ic = ifp->if_l2com;
4893 
4894 	RUN_LOCK(sc);
4895 	run_init_locked(sc);
4896 	RUN_UNLOCK(sc);
4897 
4898 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4899 		ieee80211_start_all(ic);
4900 }
4901 
4902 static void
4903 run_stop(void *arg)
4904 {
4905 	struct run_softc *sc = (struct run_softc *)arg;
4906 	struct ifnet *ifp = sc->sc_ifp;
4907 	uint32_t tmp;
4908 	int i;
4909 	int ntries;
4910 
4911 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4912 
4913 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4914 		run_set_leds(sc, 0);	/* turn all LEDs off */
4915 
4916 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4917 
4918 	sc->ratectl_run = RUN_RATECTL_OFF;
4919 	sc->cmdq_run = sc->cmdq_key_set;
4920 
4921 	RUN_UNLOCK(sc);
4922 
4923 	for(i = 0; i < RUN_N_XFER; i++)
4924 		usbd_transfer_drain(sc->sc_xfer[i]);
4925 
4926 	RUN_LOCK(sc);
4927 
4928 	if (sc->rx_m != NULL) {
4929 		m_free(sc->rx_m);
4930 		sc->rx_m = NULL;
4931 	}
4932 
4933 	/* disable Tx/Rx */
4934 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4935 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4936 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4937 
4938 	/* wait for pending Tx to complete */
4939 	for (ntries = 0; ntries < 100; ntries++) {
4940 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4941 			DPRINTF("Cannot read Tx queue count\n");
4942 			break;
4943 		}
4944 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4945 			DPRINTF("All Tx cleared\n");
4946 			break;
4947 		}
4948 		run_delay(sc, 10);
4949 	}
4950 	if (ntries >= 100)
4951 		DPRINTF("There are still pending Tx\n");
4952 	run_delay(sc, 10);
4953 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4954 
4955 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4956 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4957 
4958 	for (i = 0; i != RUN_EP_QUEUES; i++)
4959 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4960 
4961 	return;
4962 }
4963 
4964 static void
4965 run_delay(struct run_softc *sc, unsigned int ms)
4966 {
4967 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4968 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4969 }
4970 
4971 static device_method_t run_methods[] = {
4972 	/* Device interface */
4973 	DEVMETHOD(device_probe,		run_match),
4974 	DEVMETHOD(device_attach,	run_attach),
4975 	DEVMETHOD(device_detach,	run_detach),
4976 	DEVMETHOD_END
4977 };
4978 
4979 static driver_t run_driver = {
4980 	.name = "run",
4981 	.methods = run_methods,
4982 	.size = sizeof(struct run_softc)
4983 };
4984 
4985 static devclass_t run_devclass;
4986 
4987 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4988 MODULE_DEPEND(run, wlan, 1, 1, 1);
4989 MODULE_DEPEND(run, usb, 1, 1, 1);
4990 MODULE_DEPEND(run, firmware, 1, 1, 1);
4991 MODULE_VERSION(run, 1);
4992