xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_runreg.h>
75 #include <dev/usb/wlan/if_runvar.h>
76 
77 #define	N(_a) ((int)(sizeof((_a)) / sizeof((_a)[0])))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const STRUCT_USB_HOST_ID run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS,		USB_N53),
140     RUN_DEV(ASUS2,		USBN11),
141     RUN_DEV(AZUREWAVE,		RT2870_1),
142     RUN_DEV(AZUREWAVE,		RT2870_2),
143     RUN_DEV(AZUREWAVE,		RT3070_1),
144     RUN_DEV(AZUREWAVE,		RT3070_2),
145     RUN_DEV(AZUREWAVE,		RT3070_3),
146     RUN_DEV(BELKIN,		F5D8053V3),
147     RUN_DEV(BELKIN,		F5D8055),
148     RUN_DEV(BELKIN,		F5D8055V2),
149     RUN_DEV(BELKIN,		F6D4050V1),
150     RUN_DEV(BELKIN,		RT2870_1),
151     RUN_DEV(BELKIN,		RT2870_2),
152     RUN_DEV(CISCOLINKSYS,	AE1000),
153     RUN_DEV(CISCOLINKSYS2,	RT3070),
154     RUN_DEV(CISCOLINKSYS3,	RT3070),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
162     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
163     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
164     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
165     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
166     RUN_DEV(COREGA,		CGWLUSB300GNM),
167     RUN_DEV(COREGA,		RT2870_1),
168     RUN_DEV(COREGA,		RT2870_2),
169     RUN_DEV(COREGA,		RT2870_3),
170     RUN_DEV(COREGA,		RT3070),
171     RUN_DEV(CYBERTAN,		RT2870),
172     RUN_DEV(DLINK,		RT2870),
173     RUN_DEV(DLINK,		RT3072),
174     RUN_DEV(DLINK,		DWA127),
175     RUN_DEV(DLINK2,		DWA130),
176     RUN_DEV(DLINK2,		RT2870_1),
177     RUN_DEV(DLINK2,		RT2870_2),
178     RUN_DEV(DLINK2,		RT3070_1),
179     RUN_DEV(DLINK2,		RT3070_2),
180     RUN_DEV(DLINK2,		RT3070_3),
181     RUN_DEV(DLINK2,		RT3070_4),
182     RUN_DEV(DLINK2,		RT3070_5),
183     RUN_DEV(DLINK2,		RT3072),
184     RUN_DEV(DLINK2,		RT3072_1),
185     RUN_DEV(EDIMAX,		EW7717),
186     RUN_DEV(EDIMAX,		EW7718),
187     RUN_DEV(EDIMAX,		RT2870_1),
188     RUN_DEV(ENCORE,		RT3070_1),
189     RUN_DEV(ENCORE,		RT3070_2),
190     RUN_DEV(ENCORE,		RT3070_3),
191     RUN_DEV(GIGABYTE,		GNWB31N),
192     RUN_DEV(GIGABYTE,		GNWB32L),
193     RUN_DEV(GIGABYTE,		RT2870_1),
194     RUN_DEV(GIGASET,		RT3070_1),
195     RUN_DEV(GIGASET,		RT3070_2),
196     RUN_DEV(GUILLEMOT,		HWNU300),
197     RUN_DEV(HAWKING,		HWUN2),
198     RUN_DEV(HAWKING,		RT2870_1),
199     RUN_DEV(HAWKING,		RT2870_2),
200     RUN_DEV(HAWKING,		RT3070),
201     RUN_DEV(IODATA,		RT3072_1),
202     RUN_DEV(IODATA,		RT3072_2),
203     RUN_DEV(IODATA,		RT3072_3),
204     RUN_DEV(IODATA,		RT3072_4),
205     RUN_DEV(LINKSYS4,		RT3070),
206     RUN_DEV(LINKSYS4,		WUSB100),
207     RUN_DEV(LINKSYS4,		WUSB54GCV3),
208     RUN_DEV(LINKSYS4,		WUSB600N),
209     RUN_DEV(LINKSYS4,		WUSB600NV2),
210     RUN_DEV(LOGITEC,		RT2870_1),
211     RUN_DEV(LOGITEC,		RT2870_2),
212     RUN_DEV(LOGITEC,		RT2870_3),
213     RUN_DEV(LOGITEC,		LANW300NU2),
214     RUN_DEV(LOGITEC,		LANW150NU2),
215     RUN_DEV(LOGITEC,		LANW300NU2S),
216     RUN_DEV(MELCO,		RT2870_1),
217     RUN_DEV(MELCO,		RT2870_2),
218     RUN_DEV(MELCO,		WLIUCAG300N),
219     RUN_DEV(MELCO,		WLIUCG300N),
220     RUN_DEV(MELCO,		WLIUCG301N),
221     RUN_DEV(MELCO,		WLIUCGN),
222     RUN_DEV(MELCO,		WLIUCGNM),
223     RUN_DEV(MELCO,		WLIUCGNM2),
224     RUN_DEV(MOTOROLA4,		RT2770),
225     RUN_DEV(MOTOROLA4,		RT3070),
226     RUN_DEV(MSI,		RT3070_1),
227     RUN_DEV(MSI,		RT3070_2),
228     RUN_DEV(MSI,		RT3070_3),
229     RUN_DEV(MSI,		RT3070_4),
230     RUN_DEV(MSI,		RT3070_5),
231     RUN_DEV(MSI,		RT3070_6),
232     RUN_DEV(MSI,		RT3070_7),
233     RUN_DEV(MSI,		RT3070_8),
234     RUN_DEV(MSI,		RT3070_9),
235     RUN_DEV(MSI,		RT3070_10),
236     RUN_DEV(MSI,		RT3070_11),
237     RUN_DEV(OVISLINK,		RT3072),
238     RUN_DEV(PARA,		RT3070),
239     RUN_DEV(PEGATRON,		RT2870),
240     RUN_DEV(PEGATRON,		RT3070),
241     RUN_DEV(PEGATRON,		RT3070_2),
242     RUN_DEV(PEGATRON,		RT3070_3),
243     RUN_DEV(PHILIPS,		RT2870),
244     RUN_DEV(PLANEX2,		GWUS300MINIS),
245     RUN_DEV(PLANEX2,		GWUSMICRON),
246     RUN_DEV(PLANEX2,		RT2870),
247     RUN_DEV(PLANEX2,		RT3070),
248     RUN_DEV(QCOM,		RT2870),
249     RUN_DEV(QUANTA,		RT3070),
250     RUN_DEV(RALINK,		RT2070),
251     RUN_DEV(RALINK,		RT2770),
252     RUN_DEV(RALINK,		RT2870),
253     RUN_DEV(RALINK,		RT3070),
254     RUN_DEV(RALINK,		RT3071),
255     RUN_DEV(RALINK,		RT3072),
256     RUN_DEV(RALINK,		RT3370),
257     RUN_DEV(RALINK,		RT3572),
258     RUN_DEV(RALINK,		RT8070),
259     RUN_DEV(SAMSUNG,		WIS09ABGN),
260     RUN_DEV(SAMSUNG2,		RT2870_1),
261     RUN_DEV(SENAO,		RT2870_1),
262     RUN_DEV(SENAO,		RT2870_2),
263     RUN_DEV(SENAO,		RT2870_3),
264     RUN_DEV(SENAO,		RT2870_4),
265     RUN_DEV(SENAO,		RT3070),
266     RUN_DEV(SENAO,		RT3071),
267     RUN_DEV(SENAO,		RT3072_1),
268     RUN_DEV(SENAO,		RT3072_2),
269     RUN_DEV(SENAO,		RT3072_3),
270     RUN_DEV(SENAO,		RT3072_4),
271     RUN_DEV(SENAO,		RT3072_5),
272     RUN_DEV(SITECOMEU,		RT2770),
273     RUN_DEV(SITECOMEU,		RT2870_1),
274     RUN_DEV(SITECOMEU,		RT2870_2),
275     RUN_DEV(SITECOMEU,		RT2870_3),
276     RUN_DEV(SITECOMEU,		RT2870_4),
277     RUN_DEV(SITECOMEU,		RT3070),
278     RUN_DEV(SITECOMEU,		RT3070_2),
279     RUN_DEV(SITECOMEU,		RT3070_3),
280     RUN_DEV(SITECOMEU,		RT3070_4),
281     RUN_DEV(SITECOMEU,		RT3071),
282     RUN_DEV(SITECOMEU,		RT3072_1),
283     RUN_DEV(SITECOMEU,		RT3072_2),
284     RUN_DEV(SITECOMEU,		RT3072_3),
285     RUN_DEV(SITECOMEU,		RT3072_4),
286     RUN_DEV(SITECOMEU,		RT3072_5),
287     RUN_DEV(SITECOMEU,		RT3072_6),
288     RUN_DEV(SITECOMEU,		WL608),
289     RUN_DEV(SPARKLAN,		RT2870_1),
290     RUN_DEV(SPARKLAN,		RT3070),
291     RUN_DEV(SWEEX2,		LW153),
292     RUN_DEV(SWEEX2,		LW303),
293     RUN_DEV(SWEEX2,		LW313),
294     RUN_DEV(TOSHIBA,		RT3070),
295     RUN_DEV(UMEDIA,		RT2870_1),
296     RUN_DEV(ZCOM,		RT2870_1),
297     RUN_DEV(ZCOM,		RT2870_2),
298     RUN_DEV(ZINWELL,		RT2870_1),
299     RUN_DEV(ZINWELL,		RT2870_2),
300     RUN_DEV(ZINWELL,		RT3070),
301     RUN_DEV(ZINWELL,		RT3072_1),
302     RUN_DEV(ZINWELL,		RT3072_2),
303     RUN_DEV(ZYXEL,		RT2870_1),
304     RUN_DEV(ZYXEL,		RT2870_2),
305 #undef RUN_DEV
306 };
307 
308 static device_probe_t	run_match;
309 static device_attach_t	run_attach;
310 static device_detach_t	run_detach;
311 
312 static usb_callback_t	run_bulk_rx_callback;
313 static usb_callback_t	run_bulk_tx_callback0;
314 static usb_callback_t	run_bulk_tx_callback1;
315 static usb_callback_t	run_bulk_tx_callback2;
316 static usb_callback_t	run_bulk_tx_callback3;
317 static usb_callback_t	run_bulk_tx_callback4;
318 static usb_callback_t	run_bulk_tx_callback5;
319 
320 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
321 		    usb_error_t error, unsigned int index);
322 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
323 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
324 		    const uint8_t [IEEE80211_ADDR_LEN],
325 		    const uint8_t [IEEE80211_ADDR_LEN]);
326 static void	run_vap_delete(struct ieee80211vap *);
327 static void	run_cmdq_cb(void *, int);
328 static void	run_setup_tx_list(struct run_softc *,
329 		    struct run_endpoint_queue *);
330 static void	run_unsetup_tx_list(struct run_softc *,
331 		    struct run_endpoint_queue *);
332 static int	run_load_microcode(struct run_softc *);
333 static int	run_reset(struct run_softc *);
334 static usb_error_t run_do_request(struct run_softc *,
335 		    struct usb_device_request *, void *);
336 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
337 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
338 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
339 static int	run_write(struct run_softc *, uint16_t, uint32_t);
340 static int	run_write_region_1(struct run_softc *, uint16_t,
341 		    const uint8_t *, int);
342 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
343 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
344 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
345 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
346 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
347 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
348 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
349 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
350 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
351 static const char *run_get_rf(int);
352 static int	run_read_eeprom(struct run_softc *);
353 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
354 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
355 static int	run_media_change(struct ifnet *);
356 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
357 static int	run_wme_update(struct ieee80211com *);
358 static void	run_wme_update_cb(void *);
359 static void	run_key_update_begin(struct ieee80211vap *);
360 static void	run_key_update_end(struct ieee80211vap *);
361 static void	run_key_set_cb(void *);
362 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
363 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
364 static void	run_key_delete_cb(void *);
365 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
366 static void	run_ratectl_to(void *);
367 static void	run_ratectl_cb(void *, int);
368 static void	run_drain_fifo(void *);
369 static void	run_iter_func(void *, struct ieee80211_node *);
370 static void	run_newassoc_cb(void *);
371 static void	run_newassoc(struct ieee80211_node *, int);
372 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
373 static void	run_tx_free(struct run_endpoint_queue *pq,
374 		    struct run_tx_data *, int);
375 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
376 static int	run_tx(struct run_softc *, struct mbuf *,
377 		    struct ieee80211_node *);
378 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
379 		    struct ieee80211_node *);
380 static int	run_sendprot(struct run_softc *, const struct mbuf *,
381 		    struct ieee80211_node *, int, int);
382 static int	run_tx_param(struct run_softc *, struct mbuf *,
383 		    struct ieee80211_node *,
384 		    const struct ieee80211_bpf_params *);
385 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
386 		    const struct ieee80211_bpf_params *);
387 static void	run_start(struct ifnet *);
388 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
389 static void	run_set_agc(struct run_softc *, uint8_t);
390 static void	run_select_chan_group(struct run_softc *, int);
391 static void	run_set_rx_antenna(struct run_softc *, int);
392 static void	run_rt2870_set_chan(struct run_softc *, u_int);
393 static void	run_rt3070_set_chan(struct run_softc *, u_int);
394 static void	run_rt3572_set_chan(struct run_softc *, u_int);
395 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
396 static void	run_set_channel(struct ieee80211com *);
397 static void	run_scan_start(struct ieee80211com *);
398 static void	run_scan_end(struct ieee80211com *);
399 static void	run_update_beacon(struct ieee80211vap *, int);
400 static void	run_update_beacon_cb(void *);
401 static void	run_updateprot(struct ieee80211com *);
402 static void	run_updateprot_cb(void *);
403 static void	run_usb_timeout_cb(void *);
404 static void	run_reset_livelock(struct run_softc *);
405 static void	run_enable_tsf_sync(struct run_softc *);
406 static void	run_enable_mrr(struct run_softc *);
407 static void	run_set_txpreamble(struct run_softc *);
408 static void	run_set_basicrates(struct run_softc *);
409 static void	run_set_leds(struct run_softc *, uint16_t);
410 static void	run_set_bssid(struct run_softc *, const uint8_t *);
411 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
412 static void	run_updateslot(struct ifnet *);
413 static void	run_updateslot_cb(void *);
414 static void	run_update_mcast(struct ifnet *);
415 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
416 static void	run_update_promisc_locked(struct ifnet *);
417 static void	run_update_promisc(struct ifnet *);
418 static int	run_bbp_init(struct run_softc *);
419 static int	run_rt3070_rf_init(struct run_softc *);
420 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
421 		    uint8_t *);
422 static void	run_rt3070_rf_setup(struct run_softc *);
423 static int	run_txrx_enable(struct run_softc *);
424 static void	run_init(void *);
425 static void	run_init_locked(struct run_softc *);
426 static void	run_stop(void *);
427 static void	run_delay(struct run_softc *, unsigned int);
428 
429 static const struct {
430 	uint16_t	reg;
431 	uint32_t	val;
432 } rt2870_def_mac[] = {
433 	RT2870_DEF_MAC
434 };
435 
436 static const struct {
437 	uint8_t	reg;
438 	uint8_t	val;
439 } rt2860_def_bbp[] = {
440 	RT2860_DEF_BBP
441 };
442 
443 static const struct rfprog {
444 	uint8_t		chan;
445 	uint32_t	r1, r2, r3, r4;
446 } rt2860_rf2850[] = {
447 	RT2860_RF2850
448 };
449 
450 struct {
451 	uint8_t	n, r, k;
452 } rt3070_freqs[] = {
453 	RT3070_RF3052
454 };
455 
456 static const struct {
457 	uint8_t	reg;
458 	uint8_t	val;
459 } rt3070_def_rf[] = {
460 	RT3070_DEF_RF
461 },rt3572_def_rf[] = {
462 	RT3572_DEF_RF
463 };
464 
465 static const struct usb_config run_config[RUN_N_XFER] = {
466     [RUN_BULK_TX_BE] = {
467 	.type = UE_BULK,
468 	.endpoint = UE_ADDR_ANY,
469 	.ep_index = 0,
470 	.direction = UE_DIR_OUT,
471 	.bufsize = RUN_MAX_TXSZ,
472 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
473 	.callback = run_bulk_tx_callback0,
474 	.timeout = 5000,	/* ms */
475     },
476     [RUN_BULK_TX_BK] = {
477 	.type = UE_BULK,
478 	.endpoint = UE_ADDR_ANY,
479 	.direction = UE_DIR_OUT,
480 	.ep_index = 1,
481 	.bufsize = RUN_MAX_TXSZ,
482 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
483 	.callback = run_bulk_tx_callback1,
484 	.timeout = 5000,	/* ms */
485     },
486     [RUN_BULK_TX_VI] = {
487 	.type = UE_BULK,
488 	.endpoint = UE_ADDR_ANY,
489 	.direction = UE_DIR_OUT,
490 	.ep_index = 2,
491 	.bufsize = RUN_MAX_TXSZ,
492 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
493 	.callback = run_bulk_tx_callback2,
494 	.timeout = 5000,	/* ms */
495     },
496     [RUN_BULK_TX_VO] = {
497 	.type = UE_BULK,
498 	.endpoint = UE_ADDR_ANY,
499 	.direction = UE_DIR_OUT,
500 	.ep_index = 3,
501 	.bufsize = RUN_MAX_TXSZ,
502 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
503 	.callback = run_bulk_tx_callback3,
504 	.timeout = 5000,	/* ms */
505     },
506     [RUN_BULK_TX_HCCA] = {
507 	.type = UE_BULK,
508 	.endpoint = UE_ADDR_ANY,
509 	.direction = UE_DIR_OUT,
510 	.ep_index = 4,
511 	.bufsize = RUN_MAX_TXSZ,
512 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
513 	.callback = run_bulk_tx_callback4,
514 	.timeout = 5000,	/* ms */
515     },
516     [RUN_BULK_TX_PRIO] = {
517 	.type = UE_BULK,
518 	.endpoint = UE_ADDR_ANY,
519 	.direction = UE_DIR_OUT,
520 	.ep_index = 5,
521 	.bufsize = RUN_MAX_TXSZ,
522 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
523 	.callback = run_bulk_tx_callback5,
524 	.timeout = 5000,	/* ms */
525     },
526     [RUN_BULK_RX] = {
527 	.type = UE_BULK,
528 	.endpoint = UE_ADDR_ANY,
529 	.direction = UE_DIR_IN,
530 	.bufsize = RUN_MAX_RXSZ,
531 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
532 	.callback = run_bulk_rx_callback,
533     }
534 };
535 
536 static int
537 run_match(device_t self)
538 {
539 	struct usb_attach_arg *uaa = device_get_ivars(self);
540 
541 	if (uaa->usb_mode != USB_MODE_HOST)
542 		return (ENXIO);
543 	if (uaa->info.bConfigIndex != 0)
544 		return (ENXIO);
545 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
546 		return (ENXIO);
547 
548 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
549 }
550 
551 static int
552 run_attach(device_t self)
553 {
554 	struct run_softc *sc = device_get_softc(self);
555 	struct usb_attach_arg *uaa = device_get_ivars(self);
556 	struct ieee80211com *ic;
557 	struct ifnet *ifp;
558 	uint32_t ver;
559 	int i, ntries, error;
560 	uint8_t iface_index, bands;
561 
562 	device_set_usb_desc(self);
563 	sc->sc_udev = uaa->device;
564 	sc->sc_dev = self;
565 
566 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
567 	    MTX_NETWORK_LOCK, MTX_DEF);
568 
569 	iface_index = RT2860_IFACE_INDEX;
570 
571 	error = usbd_transfer_setup(uaa->device, &iface_index,
572 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
573 	if (error) {
574 		device_printf(self, "could not allocate USB transfers, "
575 		    "err=%s\n", usbd_errstr(error));
576 		goto detach;
577 	}
578 
579 	RUN_LOCK(sc);
580 
581 	/* wait for the chip to settle */
582 	for (ntries = 0; ntries < 100; ntries++) {
583 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
584 			RUN_UNLOCK(sc);
585 			goto detach;
586 		}
587 		if (ver != 0 && ver != 0xffffffff)
588 			break;
589 		run_delay(sc, 10);
590 	}
591 	if (ntries == 100) {
592 		device_printf(sc->sc_dev,
593 		    "timeout waiting for NIC to initialize\n");
594 		RUN_UNLOCK(sc);
595 		goto detach;
596 	}
597 	sc->mac_ver = ver >> 16;
598 	sc->mac_rev = ver & 0xffff;
599 
600 	/* retrieve RF rev. no and various other things from EEPROM */
601 	run_read_eeprom(sc);
602 
603 	device_printf(sc->sc_dev,
604 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
605 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
606 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
607 
608 	RUN_UNLOCK(sc);
609 
610 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611 	if (ifp == NULL) {
612 		device_printf(sc->sc_dev, "can not if_alloc()\n");
613 		goto detach;
614 	}
615 	ic = ifp->if_l2com;
616 
617 	ifp->if_softc = sc;
618 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
619 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
620 	ifp->if_init = run_init;
621 	ifp->if_ioctl = run_ioctl;
622 	ifp->if_start = run_start;
623 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
624 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
625 	IFQ_SET_READY(&ifp->if_snd);
626 
627 	ic->ic_ifp = ifp;
628 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
629 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
630 
631 	/* set device capabilities */
632 	ic->ic_caps =
633 	    IEEE80211_C_STA |		/* station mode supported */
634 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
635 	    IEEE80211_C_IBSS |
636 	    IEEE80211_C_HOSTAP |
637 	    IEEE80211_C_WDS |		/* 4-address traffic works */
638 	    IEEE80211_C_MBSS |
639 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
640 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
641 	    IEEE80211_C_WME |		/* WME */
642 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
643 
644 	ic->ic_cryptocaps =
645 	    IEEE80211_CRYPTO_WEP |
646 	    IEEE80211_CRYPTO_AES_CCM |
647 	    IEEE80211_CRYPTO_TKIPMIC |
648 	    IEEE80211_CRYPTO_TKIP;
649 
650 	ic->ic_flags |= IEEE80211_F_DATAPAD;
651 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
652 
653 	bands = 0;
654 	setbit(&bands, IEEE80211_MODE_11B);
655 	setbit(&bands, IEEE80211_MODE_11G);
656 	ieee80211_init_channels(ic, NULL, &bands);
657 
658 	/*
659 	 * Do this by own because h/w supports
660 	 * more channels than ieee80211_init_channels()
661 	 */
662 	if (sc->rf_rev == RT2860_RF_2750 ||
663 	    sc->rf_rev == RT2860_RF_2850 ||
664 	    sc->rf_rev == RT3070_RF_3052) {
665 		/* set supported .11a rates */
666 		for (i = 14; i < N(rt2860_rf2850); i++) {
667 			uint8_t chan = rt2860_rf2850[i].chan;
668 			ic->ic_channels[ic->ic_nchans].ic_freq =
669 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
670 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
671 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
672 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
673 			ic->ic_nchans++;
674 		}
675 	}
676 
677 	ieee80211_ifattach(ic, sc->sc_bssid);
678 
679 	ic->ic_scan_start = run_scan_start;
680 	ic->ic_scan_end = run_scan_end;
681 	ic->ic_set_channel = run_set_channel;
682 	ic->ic_node_alloc = run_node_alloc;
683 	ic->ic_newassoc = run_newassoc;
684 	ic->ic_updateslot = run_updateslot;
685 	ic->ic_update_mcast = run_update_mcast;
686 	ic->ic_wme.wme_update = run_wme_update;
687 	ic->ic_raw_xmit = run_raw_xmit;
688 	ic->ic_update_promisc = run_update_promisc;
689 
690 	ic->ic_vap_create = run_vap_create;
691 	ic->ic_vap_delete = run_vap_delete;
692 
693 	ieee80211_radiotap_attach(ic,
694 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
695 		RUN_TX_RADIOTAP_PRESENT,
696 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
697 		RUN_RX_RADIOTAP_PRESENT);
698 
699 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
700 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
701 	callout_init((struct callout *)&sc->ratectl_ch, 1);
702 
703 	if (bootverbose)
704 		ieee80211_announce(ic);
705 
706 	return (0);
707 
708 detach:
709 	run_detach(self);
710 	return (ENXIO);
711 }
712 
713 static int
714 run_detach(device_t self)
715 {
716 	struct run_softc *sc = device_get_softc(self);
717 	struct ifnet *ifp = sc->sc_ifp;
718 	struct ieee80211com *ic;
719 	int i;
720 
721 	RUN_LOCK(sc);
722 	sc->sc_detached = 1;
723 	RUN_UNLOCK(sc);
724 
725 	/* stop all USB transfers */
726 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
727 
728 	RUN_LOCK(sc);
729 	sc->ratectl_run = RUN_RATECTL_OFF;
730 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
731 
732 	/* free TX list, if any */
733 	for (i = 0; i != RUN_EP_QUEUES; i++)
734 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
735 	RUN_UNLOCK(sc);
736 
737 	if (ifp) {
738 		ic = ifp->if_l2com;
739 		/* drain tasks */
740 		usb_callout_drain(&sc->ratectl_ch);
741 		ieee80211_draintask(ic, &sc->cmdq_task);
742 		ieee80211_draintask(ic, &sc->ratectl_task);
743 		ieee80211_ifdetach(ic);
744 		if_free(ifp);
745 	}
746 
747 	mtx_destroy(&sc->sc_mtx);
748 
749 	return (0);
750 }
751 
752 static struct ieee80211vap *
753 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
754     enum ieee80211_opmode opmode, int flags,
755     const uint8_t bssid[IEEE80211_ADDR_LEN],
756     const uint8_t mac[IEEE80211_ADDR_LEN])
757 {
758 	struct ifnet *ifp = ic->ic_ifp;
759 	struct run_softc *sc = ifp->if_softc;
760 	struct run_vap *rvp;
761 	struct ieee80211vap *vap;
762 	int i;
763 
764 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
765 		if_printf(ifp, "number of VAPs maxed out\n");
766 		return (NULL);
767 	}
768 
769 	switch (opmode) {
770 	case IEEE80211_M_STA:
771 		/* enable s/w bmiss handling for sta mode */
772 		flags |= IEEE80211_CLONE_NOBEACONS;
773 		/* fall though */
774 	case IEEE80211_M_IBSS:
775 	case IEEE80211_M_MONITOR:
776 	case IEEE80211_M_HOSTAP:
777 	case IEEE80211_M_MBSS:
778 		/* other than WDS vaps, only one at a time */
779 		if (!TAILQ_EMPTY(&ic->ic_vaps))
780 			return (NULL);
781 		break;
782 	case IEEE80211_M_WDS:
783 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
784 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
785 				continue;
786 			/* WDS vap's always share the local mac address. */
787 			flags &= ~IEEE80211_CLONE_BSSID;
788 			break;
789 		}
790 		if (vap == NULL) {
791 			if_printf(ifp, "wds only supported in ap mode\n");
792 			return (NULL);
793 		}
794 		break;
795 	default:
796 		if_printf(ifp, "unknown opmode %d\n", opmode);
797 		return (NULL);
798 	}
799 
800 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
801 	    M_80211_VAP, M_NOWAIT | M_ZERO);
802 	if (rvp == NULL)
803 		return (NULL);
804 	vap = &rvp->vap;
805 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
806 
807 	vap->iv_key_update_begin = run_key_update_begin;
808 	vap->iv_key_update_end = run_key_update_end;
809 	vap->iv_update_beacon = run_update_beacon;
810 	vap->iv_max_aid = RT2870_WCID_MAX;
811 	/*
812 	 * To delete the right key from h/w, we need wcid.
813 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
814 	 * and matching wcid will be written into there. So, cast
815 	 * some spells to remove 'const' from ieee80211_key{}
816 	 */
817 	vap->iv_key_delete = (void *)run_key_delete;
818 	vap->iv_key_set = (void *)run_key_set;
819 
820 	/* override state transition machine */
821 	rvp->newstate = vap->iv_newstate;
822 	vap->iv_newstate = run_newstate;
823 
824 	ieee80211_ratectl_init(vap);
825 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
826 
827 	/* complete setup */
828 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
829 
830 	/* make sure id is always unique */
831 	for (i = 0; i < RUN_VAP_MAX; i++) {
832 		if((sc->rvp_bmap & 1 << i) == 0){
833 			sc->rvp_bmap |= 1 << i;
834 			rvp->rvp_id = i;
835 			break;
836 		}
837 	}
838 	if (sc->rvp_cnt++ == 0)
839 		ic->ic_opmode = opmode;
840 
841 	if (opmode == IEEE80211_M_HOSTAP)
842 		sc->cmdq_run = RUN_CMDQ_GO;
843 
844 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
845 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
846 
847 	return (vap);
848 }
849 
850 static void
851 run_vap_delete(struct ieee80211vap *vap)
852 {
853 	struct run_vap *rvp = RUN_VAP(vap);
854 	struct ifnet *ifp;
855 	struct ieee80211com *ic;
856 	struct run_softc *sc;
857 	uint8_t rvp_id;
858 
859 	if (vap == NULL)
860 		return;
861 
862 	ic = vap->iv_ic;
863 	ifp = ic->ic_ifp;
864 
865 	sc = ifp->if_softc;
866 
867 	RUN_LOCK(sc);
868 
869 	m_freem(rvp->beacon_mbuf);
870 	rvp->beacon_mbuf = NULL;
871 
872 	rvp_id = rvp->rvp_id;
873 	sc->ratectl_run &= ~(1 << rvp_id);
874 	sc->rvp_bmap &= ~(1 << rvp_id);
875 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
876 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
877 	--sc->rvp_cnt;
878 
879 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
880 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
881 
882 	RUN_UNLOCK(sc);
883 
884 	ieee80211_ratectl_deinit(vap);
885 	ieee80211_vap_detach(vap);
886 	free(rvp, M_80211_VAP);
887 }
888 
889 /*
890  * There are numbers of functions need to be called in context thread.
891  * Rather than creating taskqueue event for each of those functions,
892  * here is all-for-one taskqueue callback function. This function
893  * gurantees deferred functions are executed in the same order they
894  * were enqueued.
895  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
896  */
897 static void
898 run_cmdq_cb(void *arg, int pending)
899 {
900 	struct run_softc *sc = arg;
901 	uint8_t i;
902 
903 	/* call cmdq[].func locked */
904 	RUN_LOCK(sc);
905 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
906 	    i = sc->cmdq_exec, pending--) {
907 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
908 		if (sc->cmdq_run == RUN_CMDQ_GO) {
909 			/*
910 			 * If arg0 is NULL, callback func needs more
911 			 * than one arg. So, pass ptr to cmdq struct.
912 			 */
913 			if (sc->cmdq[i].arg0)
914 				sc->cmdq[i].func(sc->cmdq[i].arg0);
915 			else
916 				sc->cmdq[i].func(&sc->cmdq[i]);
917 		}
918 		sc->cmdq[i].arg0 = NULL;
919 		sc->cmdq[i].func = NULL;
920 		sc->cmdq_exec++;
921 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
922 	}
923 	RUN_UNLOCK(sc);
924 }
925 
926 static void
927 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
928 {
929 	struct run_tx_data *data;
930 
931 	memset(pq, 0, sizeof(*pq));
932 
933 	STAILQ_INIT(&pq->tx_qh);
934 	STAILQ_INIT(&pq->tx_fh);
935 
936 	for (data = &pq->tx_data[0];
937 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
938 		data->sc = sc;
939 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
940 	}
941 	pq->tx_nfree = RUN_TX_RING_COUNT;
942 }
943 
944 static void
945 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
946 {
947 	struct run_tx_data *data;
948 
949 	/* make sure any subsequent use of the queues will fail */
950 	pq->tx_nfree = 0;
951 	STAILQ_INIT(&pq->tx_fh);
952 	STAILQ_INIT(&pq->tx_qh);
953 
954 	/* free up all node references and mbufs */
955 	for (data = &pq->tx_data[0];
956 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
957 		if (data->m != NULL) {
958 			m_freem(data->m);
959 			data->m = NULL;
960 		}
961 		if (data->ni != NULL) {
962 			ieee80211_free_node(data->ni);
963 			data->ni = NULL;
964 		}
965 	}
966 }
967 
968 static int
969 run_load_microcode(struct run_softc *sc)
970 {
971 	usb_device_request_t req;
972 	const struct firmware *fw;
973 	const u_char *base;
974 	uint32_t tmp;
975 	int ntries, error;
976 	const uint64_t *temp;
977 	uint64_t bytes;
978 
979 	RUN_UNLOCK(sc);
980 	fw = firmware_get("runfw");
981 	RUN_LOCK(sc);
982 	if (fw == NULL) {
983 		device_printf(sc->sc_dev,
984 		    "failed loadfirmware of file %s\n", "runfw");
985 		return ENOENT;
986 	}
987 
988 	if (fw->datasize != 8192) {
989 		device_printf(sc->sc_dev,
990 		    "invalid firmware size (should be 8KB)\n");
991 		error = EINVAL;
992 		goto fail;
993 	}
994 
995 	/*
996 	 * RT3071/RT3072 use a different firmware
997 	 * run-rt2870 (8KB) contains both,
998 	 * first half (4KB) is for rt2870,
999 	 * last half is for rt3071.
1000 	 */
1001 	base = fw->data;
1002 	if ((sc->mac_ver) != 0x2860 &&
1003 	    (sc->mac_ver) != 0x2872 &&
1004 	    (sc->mac_ver) != 0x3070) {
1005 		base += 4096;
1006 	}
1007 
1008 	/* cheap sanity check */
1009 	temp = fw->data;
1010 	bytes = *temp;
1011 	if (bytes != be64toh(0xffffff0210280210)) {
1012 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1013 		error = EINVAL;
1014 		goto fail;
1015 	}
1016 
1017 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1018 	/* write microcode image */
1019 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1020 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1021 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1022 
1023 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1024 	req.bRequest = RT2870_RESET;
1025 	USETW(req.wValue, 8);
1026 	USETW(req.wIndex, 0);
1027 	USETW(req.wLength, 0);
1028 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1029 	    != 0) {
1030 		device_printf(sc->sc_dev, "firmware reset failed\n");
1031 		goto fail;
1032 	}
1033 
1034 	run_delay(sc, 10);
1035 
1036 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1037 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1038 		goto fail;
1039 
1040 	/* wait until microcontroller is ready */
1041 	for (ntries = 0; ntries < 1000; ntries++) {
1042 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1043 			goto fail;
1044 		}
1045 		if (tmp & RT2860_MCU_READY)
1046 			break;
1047 		run_delay(sc, 10);
1048 	}
1049 	if (ntries == 1000) {
1050 		device_printf(sc->sc_dev,
1051 		    "timeout waiting for MCU to initialize\n");
1052 		error = ETIMEDOUT;
1053 		goto fail;
1054 	}
1055 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1056 	    (base == fw->data) ? "RT2870" : "RT3071",
1057 	    *(base + 4092), *(base + 4093));
1058 
1059 fail:
1060 	firmware_put(fw, FIRMWARE_UNLOAD);
1061 	return (error);
1062 }
1063 
1064 int
1065 run_reset(struct run_softc *sc)
1066 {
1067 	usb_device_request_t req;
1068 
1069 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1070 	req.bRequest = RT2870_RESET;
1071 	USETW(req.wValue, 1);
1072 	USETW(req.wIndex, 0);
1073 	USETW(req.wLength, 0);
1074 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1075 }
1076 
1077 static usb_error_t
1078 run_do_request(struct run_softc *sc,
1079     struct usb_device_request *req, void *data)
1080 {
1081 	usb_error_t err;
1082 	int ntries = 10;
1083 
1084 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1085 
1086 	while (ntries--) {
1087 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1088 		    req, data, 0, NULL, 250 /* ms */);
1089 		if (err == 0)
1090 			break;
1091 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1092 		    usbd_errstr(err));
1093 		run_delay(sc, 10);
1094 	}
1095 	return (err);
1096 }
1097 
1098 static int
1099 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1100 {
1101 	uint32_t tmp;
1102 	int error;
1103 
1104 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1105 	if (error == 0)
1106 		*val = le32toh(tmp);
1107 	else
1108 		*val = 0xffffffff;
1109 	return (error);
1110 }
1111 
1112 static int
1113 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1114 {
1115 	usb_device_request_t req;
1116 
1117 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1118 	req.bRequest = RT2870_READ_REGION_1;
1119 	USETW(req.wValue, 0);
1120 	USETW(req.wIndex, reg);
1121 	USETW(req.wLength, len);
1122 
1123 	return (run_do_request(sc, &req, buf));
1124 }
1125 
1126 static int
1127 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1128 {
1129 	usb_device_request_t req;
1130 
1131 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1132 	req.bRequest = RT2870_WRITE_2;
1133 	USETW(req.wValue, val);
1134 	USETW(req.wIndex, reg);
1135 	USETW(req.wLength, 0);
1136 
1137 	return (run_do_request(sc, &req, NULL));
1138 }
1139 
1140 static int
1141 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1142 {
1143 	int error;
1144 
1145 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1146 		error = run_write_2(sc, reg + 2, val >> 16);
1147 	return (error);
1148 }
1149 
1150 static int
1151 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1152     int len)
1153 {
1154 #if 1
1155 	int i, error = 0;
1156 	/*
1157 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1158 	 * We thus issue multiple WRITE_2 commands instead.
1159 	 */
1160 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1161 	for (i = 0; i < len && error == 0; i += 2)
1162 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1163 	return (error);
1164 #else
1165 	usb_device_request_t req;
1166 
1167 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1168 	req.bRequest = RT2870_WRITE_REGION_1;
1169 	USETW(req.wValue, 0);
1170 	USETW(req.wIndex, reg);
1171 	USETW(req.wLength, len);
1172 	return (run_do_request(sc, &req, buf));
1173 #endif
1174 }
1175 
1176 static int
1177 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1178 {
1179 	int i, error = 0;
1180 
1181 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1182 	for (i = 0; i < len && error == 0; i += 4)
1183 		error = run_write(sc, reg + i, val);
1184 	return (error);
1185 }
1186 
1187 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1188 static int
1189 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1190 {
1191 	uint32_t tmp;
1192 	uint16_t reg;
1193 	int error, ntries;
1194 
1195 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1196 		return (error);
1197 
1198 	addr *= 2;
1199 	/*-
1200 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1201 	 * DATA0: F E D C
1202 	 * DATA1: B A 9 8
1203 	 * DATA2: 7 6 5 4
1204 	 * DATA3: 3 2 1 0
1205 	 */
1206 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1207 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1208 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1209 	for (ntries = 0; ntries < 100; ntries++) {
1210 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1211 			return (error);
1212 		if (!(tmp & RT3070_EFSROM_KICK))
1213 			break;
1214 		run_delay(sc, 2);
1215 	}
1216 	if (ntries == 100)
1217 		return (ETIMEDOUT);
1218 
1219 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1220 		*val = 0xffff;	/* address not found */
1221 		return (0);
1222 	}
1223 	/* determine to which 32-bit register our 16-bit word belongs */
1224 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1225 	if ((error = run_read(sc, reg, &tmp)) != 0)
1226 		return (error);
1227 
1228 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1229 	return (0);
1230 }
1231 
1232 static int
1233 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1234 {
1235 	usb_device_request_t req;
1236 	uint16_t tmp;
1237 	int error;
1238 
1239 	addr *= 2;
1240 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1241 	req.bRequest = RT2870_EEPROM_READ;
1242 	USETW(req.wValue, 0);
1243 	USETW(req.wIndex, addr);
1244 	USETW(req.wLength, sizeof tmp);
1245 
1246 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1247 	if (error == 0)
1248 		*val = le16toh(tmp);
1249 	else
1250 		*val = 0xffff;
1251 	return (error);
1252 }
1253 
1254 static __inline int
1255 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1256 {
1257 	/* either eFUSE ROM or EEPROM */
1258 	return sc->sc_srom_read(sc, addr, val);
1259 }
1260 
1261 static int
1262 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1263 {
1264 	uint32_t tmp;
1265 	int error, ntries;
1266 
1267 	for (ntries = 0; ntries < 10; ntries++) {
1268 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1269 			return (error);
1270 		if (!(tmp & RT2860_RF_REG_CTRL))
1271 			break;
1272 	}
1273 	if (ntries == 10)
1274 		return (ETIMEDOUT);
1275 
1276 	/* RF registers are 24-bit on the RT2860 */
1277 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1278 	    (val & 0x3fffff) << 2 | (reg & 3);
1279 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1280 }
1281 
1282 static int
1283 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1284 {
1285 	uint32_t tmp;
1286 	int error, ntries;
1287 
1288 	for (ntries = 0; ntries < 100; ntries++) {
1289 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1290 			return (error);
1291 		if (!(tmp & RT3070_RF_KICK))
1292 			break;
1293 	}
1294 	if (ntries == 100)
1295 		return (ETIMEDOUT);
1296 
1297 	tmp = RT3070_RF_KICK | reg << 8;
1298 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1299 		return (error);
1300 
1301 	for (ntries = 0; ntries < 100; ntries++) {
1302 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1303 			return (error);
1304 		if (!(tmp & RT3070_RF_KICK))
1305 			break;
1306 	}
1307 	if (ntries == 100)
1308 		return (ETIMEDOUT);
1309 
1310 	*val = tmp & 0xff;
1311 	return (0);
1312 }
1313 
1314 static int
1315 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1316 {
1317 	uint32_t tmp;
1318 	int error, ntries;
1319 
1320 	for (ntries = 0; ntries < 10; ntries++) {
1321 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1322 			return (error);
1323 		if (!(tmp & RT3070_RF_KICK))
1324 			break;
1325 	}
1326 	if (ntries == 10)
1327 		return (ETIMEDOUT);
1328 
1329 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1330 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1331 }
1332 
1333 static int
1334 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1335 {
1336 	uint32_t tmp;
1337 	int ntries, error;
1338 
1339 	for (ntries = 0; ntries < 10; ntries++) {
1340 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1341 			return (error);
1342 		if (!(tmp & RT2860_BBP_CSR_KICK))
1343 			break;
1344 	}
1345 	if (ntries == 10)
1346 		return (ETIMEDOUT);
1347 
1348 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1349 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1350 		return (error);
1351 
1352 	for (ntries = 0; ntries < 10; ntries++) {
1353 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1354 			return (error);
1355 		if (!(tmp & RT2860_BBP_CSR_KICK))
1356 			break;
1357 	}
1358 	if (ntries == 10)
1359 		return (ETIMEDOUT);
1360 
1361 	*val = tmp & 0xff;
1362 	return (0);
1363 }
1364 
1365 static int
1366 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1367 {
1368 	uint32_t tmp;
1369 	int ntries, error;
1370 
1371 	for (ntries = 0; ntries < 10; ntries++) {
1372 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1373 			return (error);
1374 		if (!(tmp & RT2860_BBP_CSR_KICK))
1375 			break;
1376 	}
1377 	if (ntries == 10)
1378 		return (ETIMEDOUT);
1379 
1380 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1381 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1382 }
1383 
1384 /*
1385  * Send a command to the 8051 microcontroller unit.
1386  */
1387 static int
1388 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1389 {
1390 	uint32_t tmp;
1391 	int error, ntries;
1392 
1393 	for (ntries = 0; ntries < 100; ntries++) {
1394 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1395 			return error;
1396 		if (!(tmp & RT2860_H2M_BUSY))
1397 			break;
1398 	}
1399 	if (ntries == 100)
1400 		return ETIMEDOUT;
1401 
1402 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1403 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1404 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1405 	return (error);
1406 }
1407 
1408 /*
1409  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1410  * Used to adjust per-rate Tx power registers.
1411  */
1412 static __inline uint32_t
1413 b4inc(uint32_t b32, int8_t delta)
1414 {
1415 	int8_t i, b4;
1416 
1417 	for (i = 0; i < 8; i++) {
1418 		b4 = b32 & 0xf;
1419 		b4 += delta;
1420 		if (b4 < 0)
1421 			b4 = 0;
1422 		else if (b4 > 0xf)
1423 			b4 = 0xf;
1424 		b32 = b32 >> 4 | b4 << 28;
1425 	}
1426 	return (b32);
1427 }
1428 
1429 static const char *
1430 run_get_rf(int rev)
1431 {
1432 	switch (rev) {
1433 	case RT2860_RF_2820:	return "RT2820";
1434 	case RT2860_RF_2850:	return "RT2850";
1435 	case RT2860_RF_2720:	return "RT2720";
1436 	case RT2860_RF_2750:	return "RT2750";
1437 	case RT3070_RF_3020:	return "RT3020";
1438 	case RT3070_RF_2020:	return "RT2020";
1439 	case RT3070_RF_3021:	return "RT3021";
1440 	case RT3070_RF_3022:	return "RT3022";
1441 	case RT3070_RF_3052:	return "RT3052";
1442 	}
1443 	return ("unknown");
1444 }
1445 
1446 int
1447 run_read_eeprom(struct run_softc *sc)
1448 {
1449 	int8_t delta_2ghz, delta_5ghz;
1450 	uint32_t tmp;
1451 	uint16_t val;
1452 	int ridx, ant, i;
1453 
1454 	/* check whether the ROM is eFUSE ROM or EEPROM */
1455 	sc->sc_srom_read = run_eeprom_read_2;
1456 	if (sc->mac_ver >= 0x3070) {
1457 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1458 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1459 		if (tmp & RT3070_SEL_EFUSE)
1460 			sc->sc_srom_read = run_efuse_read_2;
1461 	}
1462 
1463 	/* read ROM version */
1464 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1465 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1466 
1467 	/* read MAC address */
1468 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1469 	sc->sc_bssid[0] = val & 0xff;
1470 	sc->sc_bssid[1] = val >> 8;
1471 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1472 	sc->sc_bssid[2] = val & 0xff;
1473 	sc->sc_bssid[3] = val >> 8;
1474 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1475 	sc->sc_bssid[4] = val & 0xff;
1476 	sc->sc_bssid[5] = val >> 8;
1477 
1478 	/* read vender BBP settings */
1479 	for (i = 0; i < 10; i++) {
1480 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1481 		sc->bbp[i].val = val & 0xff;
1482 		sc->bbp[i].reg = val >> 8;
1483 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1484 	}
1485 	if (sc->mac_ver >= 0x3071) {
1486 		/* read vendor RF settings */
1487 		for (i = 0; i < 10; i++) {
1488 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1489 			sc->rf[i].val = val & 0xff;
1490 			sc->rf[i].reg = val >> 8;
1491 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1492 			    sc->rf[i].val);
1493 		}
1494 	}
1495 
1496 	/* read RF frequency offset from EEPROM */
1497 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1498 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1499 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1500 
1501 	if (val >> 8 != 0xff) {
1502 		/* read LEDs operating mode */
1503 		sc->leds = val >> 8;
1504 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1505 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1506 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1507 	} else {
1508 		/* broken EEPROM, use default settings */
1509 		sc->leds = 0x01;
1510 		sc->led[0] = 0x5555;
1511 		sc->led[1] = 0x2221;
1512 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1513 	}
1514 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1515 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1516 
1517 	/* read RF information */
1518 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1519 	if (val == 0xffff) {
1520 		DPRINTF("invalid EEPROM antenna info, using default\n");
1521 		if (sc->mac_ver == 0x3572) {
1522 			/* default to RF3052 2T2R */
1523 			sc->rf_rev = RT3070_RF_3052;
1524 			sc->ntxchains = 2;
1525 			sc->nrxchains = 2;
1526 		} else if (sc->mac_ver >= 0x3070) {
1527 			/* default to RF3020 1T1R */
1528 			sc->rf_rev = RT3070_RF_3020;
1529 			sc->ntxchains = 1;
1530 			sc->nrxchains = 1;
1531 		} else {
1532 			/* default to RF2820 1T2R */
1533 			sc->rf_rev = RT2860_RF_2820;
1534 			sc->ntxchains = 1;
1535 			sc->nrxchains = 2;
1536 		}
1537 	} else {
1538 		sc->rf_rev = (val >> 8) & 0xf;
1539 		sc->ntxchains = (val >> 4) & 0xf;
1540 		sc->nrxchains = val & 0xf;
1541 	}
1542 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1543 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1544 
1545 	/* check if RF supports automatic Tx access gain control */
1546 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1547 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1548 	/* check if driver should patch the DAC issue */
1549 	if ((val >> 8) != 0xff)
1550 		sc->patch_dac = (val >> 15) & 1;
1551 	if ((val & 0xff) != 0xff) {
1552 		sc->ext_5ghz_lna = (val >> 3) & 1;
1553 		sc->ext_2ghz_lna = (val >> 2) & 1;
1554 		/* check if RF supports automatic Tx access gain control */
1555 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1556 		/* check if we have a hardware radio switch */
1557 		sc->rfswitch = val & 1;
1558 	}
1559 
1560 	/* read power settings for 2GHz channels */
1561 	for (i = 0; i < 14; i += 2) {
1562 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1563 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1564 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1565 
1566 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1567 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1568 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1569 	}
1570 	/* fix broken Tx power entries */
1571 	for (i = 0; i < 14; i++) {
1572 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1573 			sc->txpow1[i] = 5;
1574 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1575 			sc->txpow2[i] = 5;
1576 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1577 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1578 	}
1579 	/* read power settings for 5GHz channels */
1580 	for (i = 0; i < 40; i += 2) {
1581 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1582 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1583 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1584 
1585 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1586 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1587 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1588 	}
1589 	/* fix broken Tx power entries */
1590 	for (i = 0; i < 40; i++) {
1591 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1592 			sc->txpow1[14 + i] = 5;
1593 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1594 			sc->txpow2[14 + i] = 5;
1595 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1596 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1597 		    sc->txpow2[14 + i]);
1598 	}
1599 
1600 	/* read Tx power compensation for each Tx rate */
1601 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1602 	delta_2ghz = delta_5ghz = 0;
1603 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1604 		delta_2ghz = val & 0xf;
1605 		if (!(val & 0x40))	/* negative number */
1606 			delta_2ghz = -delta_2ghz;
1607 	}
1608 	val >>= 8;
1609 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1610 		delta_5ghz = val & 0xf;
1611 		if (!(val & 0x40))	/* negative number */
1612 			delta_5ghz = -delta_5ghz;
1613 	}
1614 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1615 	    delta_2ghz, delta_5ghz);
1616 
1617 	for (ridx = 0; ridx < 5; ridx++) {
1618 		uint32_t reg;
1619 
1620 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1621 		reg = val;
1622 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1623 		reg |= (uint32_t)val << 16;
1624 
1625 		sc->txpow20mhz[ridx] = reg;
1626 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1627 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1628 
1629 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1630 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1631 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1632 	}
1633 
1634 	/* read RSSI offsets and LNA gains from EEPROM */
1635 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1636 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1637 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1638 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1639 	if (sc->mac_ver >= 0x3070) {
1640 		/*
1641 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1642 		 * field contains the Tx mixer gain for the 2GHz band.
1643 		 */
1644 		if ((val & 0xff) != 0xff)
1645 			sc->txmixgain_2ghz = val & 0x7;
1646 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1647 	} else
1648 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1649 	sc->lna[2] = val >> 8;		/* channel group 2 */
1650 
1651 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1652 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1653 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1654 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1655 	if (sc->mac_ver == 0x3572) {
1656 		/*
1657 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1658 		 * field contains the Tx mixer gain for the 5GHz band.
1659 		 */
1660 		if ((val & 0xff) != 0xff)
1661 			sc->txmixgain_5ghz = val & 0x7;
1662 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1663 	} else
1664 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1665 	sc->lna[3] = val >> 8;		/* channel group 3 */
1666 
1667 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1668 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1669 	sc->lna[1] = val >> 8;		/* channel group 1 */
1670 
1671 	/* fix broken 5GHz LNA entries */
1672 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1673 		DPRINTF("invalid LNA for channel group %d\n", 2);
1674 		sc->lna[2] = sc->lna[1];
1675 	}
1676 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1677 		DPRINTF("invalid LNA for channel group %d\n", 3);
1678 		sc->lna[3] = sc->lna[1];
1679 	}
1680 
1681 	/* fix broken RSSI offset entries */
1682 	for (ant = 0; ant < 3; ant++) {
1683 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1684 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1685 			    ant + 1, sc->rssi_2ghz[ant]);
1686 			sc->rssi_2ghz[ant] = 0;
1687 		}
1688 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1689 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1690 			    ant + 1, sc->rssi_5ghz[ant]);
1691 			sc->rssi_5ghz[ant] = 0;
1692 		}
1693 	}
1694 	return (0);
1695 }
1696 
1697 static struct ieee80211_node *
1698 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1699 {
1700 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1701 }
1702 
1703 static int
1704 run_media_change(struct ifnet *ifp)
1705 {
1706 	struct ieee80211vap *vap = ifp->if_softc;
1707 	struct ieee80211com *ic = vap->iv_ic;
1708 	const struct ieee80211_txparam *tp;
1709 	struct run_softc *sc = ic->ic_ifp->if_softc;
1710 	uint8_t rate, ridx;
1711 	int error;
1712 
1713 	RUN_LOCK(sc);
1714 
1715 	error = ieee80211_media_change(ifp);
1716 	if (error != ENETRESET) {
1717 		RUN_UNLOCK(sc);
1718 		return (error);
1719 	}
1720 
1721 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1722 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1723 		struct ieee80211_node *ni;
1724 		struct run_node	*rn;
1725 
1726 		rate = ic->ic_sup_rates[ic->ic_curmode].
1727 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1728 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1729 			if (rt2860_rates[ridx].rate == rate)
1730 				break;
1731 		ni = ieee80211_ref_node(vap->iv_bss);
1732 		rn = (struct run_node *)ni;
1733 		rn->fix_ridx = ridx;
1734 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1735 		ieee80211_free_node(ni);
1736 	}
1737 
1738 #if 0
1739 	if ((ifp->if_flags & IFF_UP) &&
1740 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1741 		run_init_locked(sc);
1742 	}
1743 #endif
1744 
1745 	RUN_UNLOCK(sc);
1746 
1747 	return (0);
1748 }
1749 
1750 static int
1751 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1752 {
1753 	const struct ieee80211_txparam *tp;
1754 	struct ieee80211com *ic = vap->iv_ic;
1755 	struct run_softc *sc = ic->ic_ifp->if_softc;
1756 	struct run_vap *rvp = RUN_VAP(vap);
1757 	enum ieee80211_state ostate;
1758 	uint32_t sta[3];
1759 	uint32_t tmp;
1760 	uint8_t ratectl;
1761 	uint8_t restart_ratectl = 0;
1762 	uint8_t bid = 1 << rvp->rvp_id;
1763 
1764 	ostate = vap->iv_state;
1765 	DPRINTF("%s -> %s\n",
1766 		ieee80211_state_name[ostate],
1767 		ieee80211_state_name[nstate]);
1768 
1769 	IEEE80211_UNLOCK(ic);
1770 	RUN_LOCK(sc);
1771 
1772 	ratectl = sc->ratectl_run; /* remember current state */
1773 	sc->ratectl_run = RUN_RATECTL_OFF;
1774 	usb_callout_stop(&sc->ratectl_ch);
1775 
1776 	if (ostate == IEEE80211_S_RUN) {
1777 		/* turn link LED off */
1778 		run_set_leds(sc, RT2860_LED_RADIO);
1779 	}
1780 
1781 	switch (nstate) {
1782 	case IEEE80211_S_INIT:
1783 		restart_ratectl = 1;
1784 
1785 		if (ostate != IEEE80211_S_RUN)
1786 			break;
1787 
1788 		ratectl &= ~bid;
1789 		sc->runbmap &= ~bid;
1790 
1791 		/* abort TSF synchronization if there is no vap running */
1792 		if (--sc->running == 0) {
1793 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1794 			run_write(sc, RT2860_BCN_TIME_CFG,
1795 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1796 			    RT2860_TBTT_TIMER_EN));
1797 		}
1798 		break;
1799 
1800 	case IEEE80211_S_RUN:
1801 		if (!(sc->runbmap & bid)) {
1802 			if(sc->running++)
1803 				restart_ratectl = 1;
1804 			sc->runbmap |= bid;
1805 		}
1806 
1807 		m_freem(rvp->beacon_mbuf);
1808 		rvp->beacon_mbuf = NULL;
1809 
1810 		switch (vap->iv_opmode) {
1811 		case IEEE80211_M_HOSTAP:
1812 		case IEEE80211_M_MBSS:
1813 			sc->ap_running |= bid;
1814 			ic->ic_opmode = vap->iv_opmode;
1815 			run_update_beacon_cb(vap);
1816 			break;
1817 		case IEEE80211_M_IBSS:
1818 			sc->adhoc_running |= bid;
1819 			if (!sc->ap_running)
1820 				ic->ic_opmode = vap->iv_opmode;
1821 			run_update_beacon_cb(vap);
1822 			break;
1823 		case IEEE80211_M_STA:
1824 			sc->sta_running |= bid;
1825 			if (!sc->ap_running && !sc->adhoc_running)
1826 				ic->ic_opmode = vap->iv_opmode;
1827 
1828 			/* read statistic counters (clear on read) */
1829 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1830 			    (uint8_t *)sta, sizeof sta);
1831 
1832 			break;
1833 		default:
1834 			ic->ic_opmode = vap->iv_opmode;
1835 			break;
1836 		}
1837 
1838 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1839 			struct ieee80211_node *ni;
1840 
1841 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1842 				RUN_UNLOCK(sc);
1843 				IEEE80211_LOCK(ic);
1844 				return (-1);
1845 			}
1846 			run_updateslot(ic->ic_ifp);
1847 			run_enable_mrr(sc);
1848 			run_set_txpreamble(sc);
1849 			run_set_basicrates(sc);
1850 			ni = ieee80211_ref_node(vap->iv_bss);
1851 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1852 			run_set_bssid(sc, ni->ni_bssid);
1853 			ieee80211_free_node(ni);
1854 			run_enable_tsf_sync(sc);
1855 
1856 			/* enable automatic rate adaptation */
1857 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1858 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1859 				ratectl |= bid;
1860 		}
1861 
1862 		/* turn link LED on */
1863 		run_set_leds(sc, RT2860_LED_RADIO |
1864 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1865 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1866 
1867 		break;
1868 	default:
1869 		DPRINTFN(6, "undefined case\n");
1870 		break;
1871 	}
1872 
1873 	/* restart amrr for running VAPs */
1874 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1875 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1876 
1877 	RUN_UNLOCK(sc);
1878 	IEEE80211_LOCK(ic);
1879 
1880 	return(rvp->newstate(vap, nstate, arg));
1881 }
1882 
1883 /* ARGSUSED */
1884 static void
1885 run_wme_update_cb(void *arg)
1886 {
1887 	struct ieee80211com *ic = arg;
1888 	struct run_softc *sc = ic->ic_ifp->if_softc;
1889 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1890 	int aci, error = 0;
1891 
1892 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1893 
1894 	/* update MAC TX configuration registers */
1895 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1896 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1897 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1898 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1899 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1900 		    wmesp->wme_params[aci].wmep_txopLimit);
1901 		if (error) goto err;
1902 	}
1903 
1904 	/* update SCH/DMA registers too */
1905 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1906 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1907 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1908 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1909 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1910 	if (error) goto err;
1911 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1912 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1913 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1914 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1915 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1916 	if (error) goto err;
1917 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1918 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1919 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1920 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1921 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1922 	if (error) goto err;
1923 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1924 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1925 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1926 	if (error) goto err;
1927 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1928 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1929 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1930 
1931 err:
1932 	if (error)
1933 		DPRINTF("WME update failed\n");
1934 
1935 	return;
1936 }
1937 
1938 static int
1939 run_wme_update(struct ieee80211com *ic)
1940 {
1941 	struct run_softc *sc = ic->ic_ifp->if_softc;
1942 
1943 	/* sometime called wothout lock */
1944 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1945 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1946 		DPRINTF("cmdq_store=%d\n", i);
1947 		sc->cmdq[i].func = run_wme_update_cb;
1948 		sc->cmdq[i].arg0 = ic;
1949 		ieee80211_runtask(ic, &sc->cmdq_task);
1950 		return (0);
1951 	}
1952 
1953 	RUN_LOCK(sc);
1954 	run_wme_update_cb(ic);
1955 	RUN_UNLOCK(sc);
1956 
1957 	/* return whatever, upper layer desn't care anyway */
1958 	return (0);
1959 }
1960 
1961 static void
1962 run_key_update_begin(struct ieee80211vap *vap)
1963 {
1964 	/*
1965 	 * To avoid out-of-order events, both run_key_set() and
1966 	 * _delete() are deferred and handled by run_cmdq_cb().
1967 	 * So, there is nothing we need to do here.
1968 	 */
1969 }
1970 
1971 static void
1972 run_key_update_end(struct ieee80211vap *vap)
1973 {
1974 	/* null */
1975 }
1976 
1977 static void
1978 run_key_set_cb(void *arg)
1979 {
1980 	struct run_cmdq *cmdq = arg;
1981 	struct ieee80211vap *vap = cmdq->arg1;
1982 	struct ieee80211_key *k = cmdq->k;
1983 	struct ieee80211com *ic = vap->iv_ic;
1984 	struct run_softc *sc = ic->ic_ifp->if_softc;
1985 	struct ieee80211_node *ni;
1986 	uint32_t attr;
1987 	uint16_t base, associd;
1988 	uint8_t mode, wcid, iv[8];
1989 
1990 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1991 
1992 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1993 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1994 	else
1995 		ni = vap->iv_bss;
1996 	associd = (ni != NULL) ? ni->ni_associd : 0;
1997 
1998 	/* map net80211 cipher to RT2860 security mode */
1999 	switch (k->wk_cipher->ic_cipher) {
2000 	case IEEE80211_CIPHER_WEP:
2001 		if(k->wk_keylen < 8)
2002 			mode = RT2860_MODE_WEP40;
2003 		else
2004 			mode = RT2860_MODE_WEP104;
2005 		break;
2006 	case IEEE80211_CIPHER_TKIP:
2007 		mode = RT2860_MODE_TKIP;
2008 		break;
2009 	case IEEE80211_CIPHER_AES_CCM:
2010 		mode = RT2860_MODE_AES_CCMP;
2011 		break;
2012 	default:
2013 		DPRINTF("undefined case\n");
2014 		return;
2015 	}
2016 
2017 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2018 	    associd, k->wk_keyix, mode,
2019 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2020 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2021 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2022 
2023 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2024 		wcid = 0;	/* NB: update WCID0 for group keys */
2025 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2026 	} else {
2027 		wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2028 		    1 : RUN_AID2WCID(associd);
2029 		base = RT2860_PKEY(wcid);
2030 	}
2031 
2032 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2033 		if(run_write_region_1(sc, base, k->wk_key, 16))
2034 			return;
2035 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2036 			return;
2037 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2038 			return;
2039 	} else {
2040 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2041 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2042 			return;
2043 	}
2044 
2045 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2046 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2047 		/* set initial packet number in IV+EIV */
2048 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2049 			memset(iv, 0, sizeof iv);
2050 			iv[3] = vap->iv_def_txkey << 6;
2051 		} else {
2052 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2053 				iv[0] = k->wk_keytsc >> 8;
2054 				iv[1] = (iv[0] | 0x20) & 0x7f;
2055 				iv[2] = k->wk_keytsc;
2056 			} else /* CCMP */ {
2057 				iv[0] = k->wk_keytsc;
2058 				iv[1] = k->wk_keytsc >> 8;
2059 				iv[2] = 0;
2060 			}
2061 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2062 			iv[4] = k->wk_keytsc >> 16;
2063 			iv[5] = k->wk_keytsc >> 24;
2064 			iv[6] = k->wk_keytsc >> 32;
2065 			iv[7] = k->wk_keytsc >> 40;
2066 		}
2067 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2068 			return;
2069 	}
2070 
2071 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2072 		/* install group key */
2073 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2074 			return;
2075 		attr &= ~(0xf << (k->wk_keyix * 4));
2076 		attr |= mode << (k->wk_keyix * 4);
2077 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2078 			return;
2079 	} else {
2080 		/* install pairwise key */
2081 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2082 			return;
2083 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2084 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2085 			return;
2086 	}
2087 
2088 	/* TODO create a pass-thru key entry? */
2089 
2090 	/* need wcid to delete the right key later */
2091 	k->wk_pad = wcid;
2092 }
2093 
2094 /*
2095  * Don't have to be deferred, but in order to keep order of
2096  * execution, i.e. with run_key_delete(), defer this and let
2097  * run_cmdq_cb() maintain the order.
2098  *
2099  * return 0 on error
2100  */
2101 static int
2102 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2103 		const uint8_t mac[IEEE80211_ADDR_LEN])
2104 {
2105 	struct ieee80211com *ic = vap->iv_ic;
2106 	struct run_softc *sc = ic->ic_ifp->if_softc;
2107 	uint32_t i;
2108 
2109 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2110 	DPRINTF("cmdq_store=%d\n", i);
2111 	sc->cmdq[i].func = run_key_set_cb;
2112 	sc->cmdq[i].arg0 = NULL;
2113 	sc->cmdq[i].arg1 = vap;
2114 	sc->cmdq[i].k = k;
2115 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2116 	ieee80211_runtask(ic, &sc->cmdq_task);
2117 
2118 	/*
2119 	 * To make sure key will be set when hostapd
2120 	 * calls iv_key_set() before if_init().
2121 	 */
2122 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2123 		RUN_LOCK(sc);
2124 		sc->cmdq_key_set = RUN_CMDQ_GO;
2125 		RUN_UNLOCK(sc);
2126 	}
2127 
2128 	return (1);
2129 }
2130 
2131 /*
2132  * If wlan is destroyed without being brought down i.e. without
2133  * wlan down or wpa_cli terminate, this function is called after
2134  * vap is gone. Don't refer it.
2135  */
2136 static void
2137 run_key_delete_cb(void *arg)
2138 {
2139 	struct run_cmdq *cmdq = arg;
2140 	struct run_softc *sc = cmdq->arg1;
2141 	struct ieee80211_key *k = &cmdq->key;
2142 	uint32_t attr;
2143 	uint8_t wcid;
2144 
2145 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2146 
2147 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2148 		/* remove group key */
2149 		DPRINTF("removing group key\n");
2150 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2151 		attr &= ~(0xf << (k->wk_keyix * 4));
2152 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2153 	} else {
2154 		/* remove pairwise key */
2155 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2156 		/* matching wcid was written to wk_pad in run_key_set() */
2157 		wcid = k->wk_pad;
2158 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2159 		attr &= ~0xf;
2160 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2161 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2162 	}
2163 
2164 	k->wk_pad = 0;
2165 }
2166 
2167 /*
2168  * return 0 on error
2169  */
2170 static int
2171 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2172 {
2173 	struct ieee80211com *ic = vap->iv_ic;
2174 	struct run_softc *sc = ic->ic_ifp->if_softc;
2175 	struct ieee80211_key *k0;
2176 	uint32_t i;
2177 
2178 	/*
2179 	 * When called back, key might be gone. So, make a copy
2180 	 * of some values need to delete keys before deferring.
2181 	 * But, because of LOR with node lock, cannot use lock here.
2182 	 * So, use atomic instead.
2183 	 */
2184 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2185 	DPRINTF("cmdq_store=%d\n", i);
2186 	sc->cmdq[i].func = run_key_delete_cb;
2187 	sc->cmdq[i].arg0 = NULL;
2188 	sc->cmdq[i].arg1 = sc;
2189 	k0 = &sc->cmdq[i].key;
2190 	k0->wk_flags = k->wk_flags;
2191 	k0->wk_keyix = k->wk_keyix;
2192 	/* matching wcid was written to wk_pad in run_key_set() */
2193 	k0->wk_pad = k->wk_pad;
2194 	ieee80211_runtask(ic, &sc->cmdq_task);
2195 	return (1);	/* return fake success */
2196 
2197 }
2198 
2199 static void
2200 run_ratectl_to(void *arg)
2201 {
2202 	struct run_softc *sc = arg;
2203 
2204 	/* do it in a process context, so it can go sleep */
2205 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2206 	/* next timeout will be rescheduled in the callback task */
2207 }
2208 
2209 /* ARGSUSED */
2210 static void
2211 run_ratectl_cb(void *arg, int pending)
2212 {
2213 	struct run_softc *sc = arg;
2214 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2215 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2216 
2217 	if (vap == NULL)
2218 		return;
2219 
2220 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2221 		run_iter_func(sc, vap->iv_bss);
2222 	else {
2223 		/*
2224 		 * run_reset_livelock() doesn't do anything with AMRR,
2225 		 * but Ralink wants us to call it every 1 sec. So, we
2226 		 * piggyback here rather than creating another callout.
2227 		 * Livelock may occur only in HOSTAP or IBSS mode
2228 		 * (when h/w is sending beacons).
2229 		 */
2230 		RUN_LOCK(sc);
2231 		run_reset_livelock(sc);
2232 		/* just in case, there are some stats to drain */
2233 		run_drain_fifo(sc);
2234 		RUN_UNLOCK(sc);
2235 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2236 	}
2237 
2238 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2239 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2240 }
2241 
2242 static void
2243 run_drain_fifo(void *arg)
2244 {
2245 	struct run_softc *sc = arg;
2246 	struct ifnet *ifp = sc->sc_ifp;
2247 	uint32_t stat;
2248 	uint16_t (*wstat)[3];
2249 	uint8_t wcid, mcs, pid;
2250 	int8_t retry;
2251 
2252 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2253 
2254 	for (;;) {
2255 		/* drain Tx status FIFO (maxsize = 16) */
2256 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2257 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2258 		if (!(stat & RT2860_TXQ_VLD))
2259 			break;
2260 
2261 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2262 
2263 		/* if no ACK was requested, no feedback is available */
2264 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2265 		    wcid == 0)
2266 			continue;
2267 
2268 		/*
2269 		 * Even though each stat is Tx-complete-status like format,
2270 		 * the device can poll stats. Because there is no guarantee
2271 		 * that the referring node is still around when read the stats.
2272 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2273 		 * have hard time not to refer already freed node.
2274 		 *
2275 		 * To eliminate such page faults, we poll stats in softc.
2276 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2277 		 */
2278 		wstat = &(sc->wcid_stats[wcid]);
2279 		(*wstat)[RUN_TXCNT]++;
2280 		if (stat & RT2860_TXQ_OK)
2281 			(*wstat)[RUN_SUCCESS]++;
2282 		else
2283 			ifp->if_oerrors++;
2284 		/*
2285 		 * Check if there were retries, ie if the Tx success rate is
2286 		 * different from the requested rate. Note that it works only
2287 		 * because we do not allow rate fallback from OFDM to CCK.
2288 		 */
2289 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2290 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2291 		if ((retry = pid -1 - mcs) > 0) {
2292 			(*wstat)[RUN_TXCNT] += retry;
2293 			(*wstat)[RUN_RETRY] += retry;
2294 		}
2295 	}
2296 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2297 
2298 	sc->fifo_cnt = 0;
2299 }
2300 
2301 static void
2302 run_iter_func(void *arg, struct ieee80211_node *ni)
2303 {
2304 	struct run_softc *sc = arg;
2305 	struct ieee80211vap *vap = ni->ni_vap;
2306 	struct ieee80211com *ic = ni->ni_ic;
2307 	struct ifnet *ifp = ic->ic_ifp;
2308 	struct run_node *rn = (void *)ni;
2309 	union run_stats sta[2];
2310 	uint16_t (*wstat)[3];
2311 	int txcnt, success, retrycnt, error;
2312 
2313 	RUN_LOCK(sc);
2314 
2315 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2316 	    vap->iv_opmode == IEEE80211_M_STA)) {
2317 		/* read statistic counters (clear on read) and update AMRR state */
2318 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2319 		    sizeof sta);
2320 		if (error != 0)
2321 			goto fail;
2322 
2323 		/* count failed TX as errors */
2324 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2325 
2326 		retrycnt = le16toh(sta[1].tx.retry);
2327 		success = le16toh(sta[1].tx.success);
2328 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2329 
2330 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2331 			retrycnt, success, le16toh(sta[0].error.fail));
2332 	} else {
2333 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2334 
2335 		if (wstat == &(sc->wcid_stats[0]) ||
2336 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2337 			goto fail;
2338 
2339 		txcnt = (*wstat)[RUN_TXCNT];
2340 		success = (*wstat)[RUN_SUCCESS];
2341 		retrycnt = (*wstat)[RUN_RETRY];
2342 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2343 		    retrycnt, txcnt, success);
2344 
2345 		memset(wstat, 0, sizeof(*wstat));
2346 	}
2347 
2348 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2349 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2350 
2351 fail:
2352 	RUN_UNLOCK(sc);
2353 
2354 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2355 }
2356 
2357 static void
2358 run_newassoc_cb(void *arg)
2359 {
2360 	struct run_cmdq *cmdq = arg;
2361 	struct ieee80211_node *ni = cmdq->arg1;
2362 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2363 	uint8_t wcid = cmdq->wcid;
2364 
2365 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2366 
2367 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2368 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2369 
2370 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2371 }
2372 
2373 static void
2374 run_newassoc(struct ieee80211_node *ni, int isnew)
2375 {
2376 	struct run_node *rn = (void *)ni;
2377 	struct ieee80211_rateset *rs = &ni->ni_rates;
2378 	struct ieee80211vap *vap = ni->ni_vap;
2379 	struct ieee80211com *ic = vap->iv_ic;
2380 	struct run_softc *sc = ic->ic_ifp->if_softc;
2381 	uint8_t rate;
2382 	uint8_t ridx;
2383 	uint8_t wcid;
2384 	int i, j;
2385 
2386 	wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2387 	    1 : RUN_AID2WCID(ni->ni_associd);
2388 
2389 	if (wcid > RT2870_WCID_MAX) {
2390 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2391 		return;
2392 	}
2393 
2394 	/* only interested in true associations */
2395 	if (isnew && ni->ni_associd != 0) {
2396 
2397 		/*
2398 		 * This function could is called though timeout function.
2399 		 * Need to defer.
2400 		 */
2401 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2402 		DPRINTF("cmdq_store=%d\n", cnt);
2403 		sc->cmdq[cnt].func = run_newassoc_cb;
2404 		sc->cmdq[cnt].arg0 = NULL;
2405 		sc->cmdq[cnt].arg1 = ni;
2406 		sc->cmdq[cnt].wcid = wcid;
2407 		ieee80211_runtask(ic, &sc->cmdq_task);
2408 	}
2409 
2410 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2411 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2412 
2413 	for (i = 0; i < rs->rs_nrates; i++) {
2414 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2415 		/* convert 802.11 rate to hardware rate index */
2416 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2417 			if (rt2860_rates[ridx].rate == rate)
2418 				break;
2419 		rn->ridx[i] = ridx;
2420 		/* determine rate of control response frames */
2421 		for (j = i; j >= 0; j--) {
2422 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2423 			    rt2860_rates[rn->ridx[i]].phy ==
2424 			    rt2860_rates[rn->ridx[j]].phy)
2425 				break;
2426 		}
2427 		if (j >= 0) {
2428 			rn->ctl_ridx[i] = rn->ridx[j];
2429 		} else {
2430 			/* no basic rate found, use mandatory one */
2431 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2432 		}
2433 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2434 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2435 	}
2436 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2437 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2438 		if (rt2860_rates[ridx].rate == rate)
2439 			break;
2440 	rn->mgt_ridx = ridx;
2441 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2442 
2443 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2444 }
2445 
2446 /*
2447  * Return the Rx chain with the highest RSSI for a given frame.
2448  */
2449 static __inline uint8_t
2450 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2451 {
2452 	uint8_t rxchain = 0;
2453 
2454 	if (sc->nrxchains > 1) {
2455 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2456 			rxchain = 1;
2457 		if (sc->nrxchains > 2)
2458 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2459 				rxchain = 2;
2460 	}
2461 	return (rxchain);
2462 }
2463 
2464 static void
2465 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2466 {
2467 	struct ifnet *ifp = sc->sc_ifp;
2468 	struct ieee80211com *ic = ifp->if_l2com;
2469 	struct ieee80211_frame *wh;
2470 	struct ieee80211_node *ni;
2471 	struct rt2870_rxd *rxd;
2472 	struct rt2860_rxwi *rxwi;
2473 	uint32_t flags;
2474 	uint16_t len, phy;
2475 	uint8_t ant, rssi;
2476 	int8_t nf;
2477 
2478 	rxwi = mtod(m, struct rt2860_rxwi *);
2479 	len = le16toh(rxwi->len) & 0xfff;
2480 	if (__predict_false(len > dmalen)) {
2481 		m_freem(m);
2482 		ifp->if_ierrors++;
2483 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2484 		return;
2485 	}
2486 	/* Rx descriptor is located at the end */
2487 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2488 	flags = le32toh(rxd->flags);
2489 
2490 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2491 		m_freem(m);
2492 		ifp->if_ierrors++;
2493 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2494 		return;
2495 	}
2496 
2497 	m->m_data += sizeof(struct rt2860_rxwi);
2498 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2499 
2500 	wh = mtod(m, struct ieee80211_frame *);
2501 
2502 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2503 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2504 		m->m_flags |= M_WEP;
2505 	}
2506 
2507 	if (flags & RT2860_RX_L2PAD) {
2508 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2509 		len += 2;
2510 	}
2511 
2512 	ni = ieee80211_find_rxnode(ic,
2513 	    mtod(m, struct ieee80211_frame_min *));
2514 
2515 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2516 		/* report MIC failures to net80211 for TKIP */
2517 		if (ni != NULL)
2518 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2519 		m_freem(m);
2520 		ifp->if_ierrors++;
2521 		DPRINTF("MIC error. Someone is lying.\n");
2522 		return;
2523 	}
2524 
2525 	ant = run_maxrssi_chain(sc, rxwi);
2526 	rssi = rxwi->rssi[ant];
2527 	nf = run_rssi2dbm(sc, rssi, ant);
2528 
2529 	m->m_pkthdr.rcvif = ifp;
2530 	m->m_pkthdr.len = m->m_len = len;
2531 
2532 	if (ni != NULL) {
2533 		(void)ieee80211_input(ni, m, rssi, nf);
2534 		ieee80211_free_node(ni);
2535 	} else {
2536 		(void)ieee80211_input_all(ic, m, rssi, nf);
2537 	}
2538 
2539 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2540 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2541 
2542 		tap->wr_flags = 0;
2543 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2544 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2545 		tap->wr_antsignal = rssi;
2546 		tap->wr_antenna = ant;
2547 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2548 		tap->wr_rate = 2;	/* in case it can't be found below */
2549 		phy = le16toh(rxwi->phy);
2550 		switch (phy & RT2860_PHY_MODE) {
2551 		case RT2860_PHY_CCK:
2552 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2553 			case 0:	tap->wr_rate =   2; break;
2554 			case 1:	tap->wr_rate =   4; break;
2555 			case 2:	tap->wr_rate =  11; break;
2556 			case 3:	tap->wr_rate =  22; break;
2557 			}
2558 			if (phy & RT2860_PHY_SHPRE)
2559 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2560 			break;
2561 		case RT2860_PHY_OFDM:
2562 			switch (phy & RT2860_PHY_MCS) {
2563 			case 0:	tap->wr_rate =  12; break;
2564 			case 1:	tap->wr_rate =  18; break;
2565 			case 2:	tap->wr_rate =  24; break;
2566 			case 3:	tap->wr_rate =  36; break;
2567 			case 4:	tap->wr_rate =  48; break;
2568 			case 5:	tap->wr_rate =  72; break;
2569 			case 6:	tap->wr_rate =  96; break;
2570 			case 7:	tap->wr_rate = 108; break;
2571 			}
2572 			break;
2573 		}
2574 	}
2575 }
2576 
2577 static void
2578 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2579 {
2580 	struct run_softc *sc = usbd_xfer_softc(xfer);
2581 	struct ifnet *ifp = sc->sc_ifp;
2582 	struct mbuf *m = NULL;
2583 	struct mbuf *m0;
2584 	uint32_t dmalen;
2585 	int xferlen;
2586 
2587 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2588 
2589 	switch (USB_GET_STATE(xfer)) {
2590 	case USB_ST_TRANSFERRED:
2591 
2592 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2593 
2594 		if (xferlen < (int)(sizeof(uint32_t) +
2595 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2596 			DPRINTF("xfer too short %d\n", xferlen);
2597 			goto tr_setup;
2598 		}
2599 
2600 		m = sc->rx_m;
2601 		sc->rx_m = NULL;
2602 
2603 		/* FALLTHROUGH */
2604 	case USB_ST_SETUP:
2605 tr_setup:
2606 		if (sc->rx_m == NULL) {
2607 			sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
2608 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2609 		}
2610 		if (sc->rx_m == NULL) {
2611 			DPRINTF("could not allocate mbuf - idle with stall\n");
2612 			ifp->if_ierrors++;
2613 			usbd_xfer_set_stall(xfer);
2614 			usbd_xfer_set_frames(xfer, 0);
2615 		} else {
2616 			/*
2617 			 * Directly loading a mbuf cluster into DMA to
2618 			 * save some data copying. This works because
2619 			 * there is only one cluster.
2620 			 */
2621 			usbd_xfer_set_frame_data(xfer, 0,
2622 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2623 			usbd_xfer_set_frames(xfer, 1);
2624 		}
2625 		usbd_transfer_submit(xfer);
2626 		break;
2627 
2628 	default:	/* Error */
2629 		if (error != USB_ERR_CANCELLED) {
2630 			/* try to clear stall first */
2631 			usbd_xfer_set_stall(xfer);
2632 
2633 			if (error == USB_ERR_TIMEOUT)
2634 				device_printf(sc->sc_dev, "device timeout\n");
2635 
2636 			ifp->if_ierrors++;
2637 
2638 			goto tr_setup;
2639 		}
2640 		if (sc->rx_m != NULL) {
2641 			m_freem(sc->rx_m);
2642 			sc->rx_m = NULL;
2643 		}
2644 		break;
2645 	}
2646 
2647 	if (m == NULL)
2648 		return;
2649 
2650 	/* inputting all the frames must be last */
2651 
2652 	RUN_UNLOCK(sc);
2653 
2654 	m->m_pkthdr.len = m->m_len = xferlen;
2655 
2656 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2657 	for(;;) {
2658 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2659 
2660 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2661 		    ((dmalen & 3) != 0)) {
2662 			DPRINTF("bad DMA length %u\n", dmalen);
2663 			break;
2664 		}
2665 		if ((dmalen + 8) > (uint32_t)xferlen) {
2666 			DPRINTF("bad DMA length %u > %d\n",
2667 			dmalen + 8, xferlen);
2668 			break;
2669 		}
2670 
2671 		/* If it is the last one or a single frame, we won't copy. */
2672 		if ((xferlen -= dmalen + 8) <= 8) {
2673 			/* trim 32-bit DMA-len header */
2674 			m->m_data += 4;
2675 			m->m_pkthdr.len = m->m_len -= 4;
2676 			run_rx_frame(sc, m, dmalen);
2677 			break;
2678 		}
2679 
2680 		/* copy aggregated frames to another mbuf */
2681 		m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2682 		if (__predict_false(m0 == NULL)) {
2683 			DPRINTF("could not allocate mbuf\n");
2684 			ifp->if_ierrors++;
2685 			break;
2686 		}
2687 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2688 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2689 		m0->m_pkthdr.len = m0->m_len =
2690 		    dmalen + sizeof(struct rt2870_rxd);
2691 		run_rx_frame(sc, m0, dmalen);
2692 
2693 		/* update data ptr */
2694 		m->m_data += dmalen + 8;
2695 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2696 	}
2697 
2698 	RUN_LOCK(sc);
2699 }
2700 
2701 static void
2702 run_tx_free(struct run_endpoint_queue *pq,
2703     struct run_tx_data *data, int txerr)
2704 {
2705 	if (data->m != NULL) {
2706 		if (data->m->m_flags & M_TXCB)
2707 			ieee80211_process_callback(data->ni, data->m,
2708 			    txerr ? ETIMEDOUT : 0);
2709 		m_freem(data->m);
2710 		data->m = NULL;
2711 
2712 		if (data->ni == NULL) {
2713 			DPRINTF("no node\n");
2714 		} else {
2715 			ieee80211_free_node(data->ni);
2716 			data->ni = NULL;
2717 		}
2718 	}
2719 
2720 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2721 	pq->tx_nfree++;
2722 }
2723 
2724 static void
2725 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2726 {
2727 	struct run_softc *sc = usbd_xfer_softc(xfer);
2728 	struct ifnet *ifp = sc->sc_ifp;
2729 	struct ieee80211com *ic = ifp->if_l2com;
2730 	struct run_tx_data *data;
2731 	struct ieee80211vap *vap = NULL;
2732 	struct usb_page_cache *pc;
2733 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2734 	struct mbuf *m;
2735 	usb_frlength_t size;
2736 	int actlen;
2737 	int sumlen;
2738 
2739 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2740 
2741 	switch (USB_GET_STATE(xfer)) {
2742 	case USB_ST_TRANSFERRED:
2743 		DPRINTFN(11, "transfer complete: %d "
2744 		    "bytes @ index %d\n", actlen, index);
2745 
2746 		data = usbd_xfer_get_priv(xfer);
2747 
2748 		run_tx_free(pq, data, 0);
2749 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2750 
2751 		usbd_xfer_set_priv(xfer, NULL);
2752 
2753 		ifp->if_opackets++;
2754 
2755 		/* FALLTHROUGH */
2756 	case USB_ST_SETUP:
2757 tr_setup:
2758 		data = STAILQ_FIRST(&pq->tx_qh);
2759 		if (data == NULL)
2760 			break;
2761 
2762 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2763 
2764 		m = data->m;
2765 		if ((m->m_pkthdr.len +
2766 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2767 			DPRINTF("data overflow, %u bytes\n",
2768 			    m->m_pkthdr.len);
2769 
2770 			ifp->if_oerrors++;
2771 
2772 			run_tx_free(pq, data, 1);
2773 
2774 			goto tr_setup;
2775 		}
2776 
2777 		pc = usbd_xfer_get_frame(xfer, 0);
2778 		size = sizeof(data->desc);
2779 		usbd_copy_in(pc, 0, &data->desc, size);
2780 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2781 		size += m->m_pkthdr.len;
2782 		/*
2783 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2784 		 * 4-byte padding), and be sure to zero those trailing
2785 		 * bytes:
2786 		 */
2787 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2788 		size += ((-size) & 3) + 8;
2789 
2790 		vap = data->ni->ni_vap;
2791 		if (ieee80211_radiotap_active_vap(vap)) {
2792 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2793 			struct rt2860_txwi *txwi =
2794 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2795 
2796 			tap->wt_flags = 0;
2797 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2798 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2799 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2800 			tap->wt_hwqueue = index;
2801 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2802 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2803 
2804 			ieee80211_radiotap_tx(vap, m);
2805 		}
2806 
2807 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2808 		    m->m_pkthdr.len, size, index);
2809 
2810 		usbd_xfer_set_frame_len(xfer, 0, size);
2811 		usbd_xfer_set_priv(xfer, data);
2812 
2813 		usbd_transfer_submit(xfer);
2814 
2815 		RUN_UNLOCK(sc);
2816 		run_start(ifp);
2817 		RUN_LOCK(sc);
2818 
2819 		break;
2820 
2821 	default:
2822 		DPRINTF("USB transfer error, %s\n",
2823 		    usbd_errstr(error));
2824 
2825 		data = usbd_xfer_get_priv(xfer);
2826 
2827 		ifp->if_oerrors++;
2828 
2829 		if (data != NULL) {
2830 			if(data->ni != NULL)
2831 				vap = data->ni->ni_vap;
2832 			run_tx_free(pq, data, error);
2833 			usbd_xfer_set_priv(xfer, NULL);
2834 		}
2835 		if (vap == NULL)
2836 			vap = TAILQ_FIRST(&ic->ic_vaps);
2837 
2838 		if (error != USB_ERR_CANCELLED) {
2839 			if (error == USB_ERR_TIMEOUT) {
2840 				device_printf(sc->sc_dev, "device timeout\n");
2841 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2842 				DPRINTF("cmdq_store=%d\n", i);
2843 				sc->cmdq[i].func = run_usb_timeout_cb;
2844 				sc->cmdq[i].arg0 = vap;
2845 				ieee80211_runtask(ic, &sc->cmdq_task);
2846 			}
2847 
2848 			/*
2849 			 * Try to clear stall first, also if other
2850 			 * errors occur, hence clearing stall
2851 			 * introduces a 50 ms delay:
2852 			 */
2853 			usbd_xfer_set_stall(xfer);
2854 			goto tr_setup;
2855 		}
2856 		break;
2857 	}
2858 }
2859 
2860 static void
2861 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2862 {
2863 	run_bulk_tx_callbackN(xfer, error, 0);
2864 }
2865 
2866 static void
2867 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2868 {
2869 	run_bulk_tx_callbackN(xfer, error, 1);
2870 }
2871 
2872 static void
2873 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2874 {
2875 	run_bulk_tx_callbackN(xfer, error, 2);
2876 }
2877 
2878 static void
2879 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2880 {
2881 	run_bulk_tx_callbackN(xfer, error, 3);
2882 }
2883 
2884 static void
2885 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2886 {
2887 	run_bulk_tx_callbackN(xfer, error, 4);
2888 }
2889 
2890 static void
2891 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2892 {
2893 	run_bulk_tx_callbackN(xfer, error, 5);
2894 }
2895 
2896 static void
2897 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2898 {
2899 	struct mbuf *m = data->m;
2900 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2901 	struct ieee80211vap *vap = data->ni->ni_vap;
2902 	struct ieee80211_frame *wh;
2903 	struct rt2870_txd *txd;
2904 	struct rt2860_txwi *txwi;
2905 	uint16_t xferlen;
2906 	uint16_t mcs;
2907 	uint8_t ridx = data->ridx;
2908 	uint8_t pad;
2909 
2910 	/* get MCS code from rate index */
2911 	mcs = rt2860_rates[ridx].mcs;
2912 
2913 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2914 
2915 	/* roundup to 32-bit alignment */
2916 	xferlen = (xferlen + 3) & ~3;
2917 
2918 	txd = (struct rt2870_txd *)&data->desc;
2919 	txd->len = htole16(xferlen);
2920 
2921 	wh = mtod(m, struct ieee80211_frame *);
2922 
2923 	/*
2924 	 * Ether both are true or both are false, the header
2925 	 * are nicely aligned to 32-bit. So, no L2 padding.
2926 	 */
2927 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2928 		pad = 0;
2929 	else
2930 		pad = 2;
2931 
2932 	/* setup TX Wireless Information */
2933 	txwi = (struct rt2860_txwi *)(txd + 1);
2934 	txwi->len = htole16(m->m_pkthdr.len - pad);
2935 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2936 		txwi->phy = htole16(RT2860_PHY_CCK);
2937 		if (ridx != RT2860_RIDX_CCK1 &&
2938 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2939 			mcs |= RT2860_PHY_SHPRE;
2940 	} else
2941 		txwi->phy = htole16(RT2860_PHY_OFDM);
2942 	txwi->phy |= htole16(mcs);
2943 
2944 	/* check if RTS/CTS or CTS-to-self protection is required */
2945 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2946 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2947 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2948 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2949 		txwi->txop |= RT2860_TX_TXOP_HT;
2950 	else
2951 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2952 
2953 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2954 		txwi->xflags |= RT2860_TX_NSEQ;
2955 }
2956 
2957 /* This function must be called locked */
2958 static int
2959 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2960 {
2961 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2962 	struct ieee80211vap *vap = ni->ni_vap;
2963 	struct ieee80211_frame *wh;
2964 	struct ieee80211_channel *chan;
2965 	const struct ieee80211_txparam *tp;
2966 	struct run_node *rn = (void *)ni;
2967 	struct run_tx_data *data;
2968 	struct rt2870_txd *txd;
2969 	struct rt2860_txwi *txwi;
2970 	uint16_t qos;
2971 	uint16_t dur;
2972 	uint16_t qid;
2973 	uint8_t type;
2974 	uint8_t tid;
2975 	uint8_t ridx;
2976 	uint8_t ctl_ridx;
2977 	uint8_t qflags;
2978 	uint8_t xflags = 0;
2979 	int hasqos;
2980 
2981 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2982 
2983 	wh = mtod(m, struct ieee80211_frame *);
2984 
2985 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2986 
2987 	/*
2988 	 * There are 7 bulk endpoints: 1 for RX
2989 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2990 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2991 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2992 	 */
2993 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2994 		uint8_t *frm;
2995 
2996 		if(IEEE80211_HAS_ADDR4(wh))
2997 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2998 		else
2999 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
3000 
3001 		qos = le16toh(*(const uint16_t *)frm);
3002 		tid = qos & IEEE80211_QOS_TID;
3003 		qid = TID_TO_WME_AC(tid);
3004 	} else {
3005 		qos = 0;
3006 		tid = 0;
3007 		qid = WME_AC_BE;
3008 	}
3009 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3010 
3011 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3012 	    qos, qid, tid, qflags);
3013 
3014 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3015 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3016 
3017 	/* pickup a rate index */
3018 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3019 	    type != IEEE80211_FC0_TYPE_DATA) {
3020 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3021 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3022 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3023 	} else {
3024 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3025 			ridx = rn->fix_ridx;
3026 		else
3027 			ridx = rn->amrr_ridx;
3028 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3029 	}
3030 
3031 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3032 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3033 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3034 		xflags |= RT2860_TX_ACK;
3035 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3036 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3037 		else
3038 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3039 		*(uint16_t *)wh->i_dur = htole16(dur);
3040 	}
3041 
3042 	/* reserve slots for mgmt packets, just in case */
3043 	if (sc->sc_epq[qid].tx_nfree < 3) {
3044 		DPRINTFN(10, "tx ring %d is full\n", qid);
3045 		return (-1);
3046 	}
3047 
3048 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3049 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3050 	sc->sc_epq[qid].tx_nfree--;
3051 
3052 	txd = (struct rt2870_txd *)&data->desc;
3053 	txd->flags = qflags;
3054 	txwi = (struct rt2860_txwi *)(txd + 1);
3055 	txwi->xflags = xflags;
3056 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3057 		txwi->wcid = 0;
3058 	} else {
3059 		txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
3060 		    1 : RUN_AID2WCID(ni->ni_associd);
3061 	}
3062 	/* clear leftover garbage bits */
3063 	txwi->flags = 0;
3064 	txwi->txop = 0;
3065 
3066 	data->m = m;
3067 	data->ni = ni;
3068 	data->ridx = ridx;
3069 
3070 	run_set_tx_desc(sc, data);
3071 
3072 	/*
3073 	 * The chip keeps track of 2 kind of Tx stats,
3074 	 *  * TX_STAT_FIFO, for per WCID stats, and
3075 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3076 	 *
3077 	 * To use FIFO stats, we need to store MCS into the driver-private
3078  	 * PacketID field. So that, we can tell whose stats when we read them.
3079  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3080  	 * that we don't want feedback in TX_STAT_FIFO.
3081  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3082  	 *
3083  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3084  	 */
3085 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3086 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3087 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3088 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3089 
3090 		/*
3091 		 * Unlike PCI based devices, we don't get any interrupt from
3092 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3093 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3094 		 * quickly get fulled. To prevent overflow, increment a counter on
3095 		 * every FIFO stat request, so we know how many slots are left.
3096 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3097 		 * are used only in those modes.
3098 		 * We just drain stats. AMRR gets updated every 1 sec by
3099 		 * run_ratectl_cb() via callout.
3100 		 * Call it early. Otherwise overflow.
3101 		 */
3102 		if (sc->fifo_cnt++ == 10) {
3103 			/*
3104 			 * With multiple vaps or if_bridge, if_start() is called
3105 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3106 			 */
3107 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3108 			DPRINTFN(6, "cmdq_store=%d\n", i);
3109 			sc->cmdq[i].func = run_drain_fifo;
3110 			sc->cmdq[i].arg0 = sc;
3111 			ieee80211_runtask(ic, &sc->cmdq_task);
3112 		}
3113 	}
3114 
3115         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3116 
3117 	usbd_transfer_start(sc->sc_xfer[qid]);
3118 
3119 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3120 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3121 	    rt2860_rates[ridx].rate, qid);
3122 
3123 	return (0);
3124 }
3125 
3126 static int
3127 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3128 {
3129 	struct ifnet *ifp = sc->sc_ifp;
3130 	struct ieee80211com *ic = ifp->if_l2com;
3131 	struct run_node *rn = (void *)ni;
3132 	struct run_tx_data *data;
3133 	struct ieee80211_frame *wh;
3134 	struct rt2870_txd *txd;
3135 	struct rt2860_txwi *txwi;
3136 	uint16_t dur;
3137 	uint8_t ridx = rn->mgt_ridx;
3138 	uint8_t type;
3139 	uint8_t xflags = 0;
3140 	uint8_t wflags = 0;
3141 
3142 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3143 
3144 	wh = mtod(m, struct ieee80211_frame *);
3145 
3146 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3147 
3148 	/* tell hardware to add timestamp for probe responses */
3149 	if ((wh->i_fc[0] &
3150 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3151 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3152 		wflags |= RT2860_TX_TS;
3153 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3154 		xflags |= RT2860_TX_ACK;
3155 
3156 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3157 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3158 		*(uint16_t *)wh->i_dur = htole16(dur);
3159 	}
3160 
3161 	if (sc->sc_epq[0].tx_nfree == 0) {
3162 		/* let caller free mbuf */
3163 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3164 		return (EIO);
3165 	}
3166 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3167 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3168 	sc->sc_epq[0].tx_nfree--;
3169 
3170 	txd = (struct rt2870_txd *)&data->desc;
3171 	txd->flags = RT2860_TX_QSEL_EDCA;
3172 	txwi = (struct rt2860_txwi *)(txd + 1);
3173 	txwi->wcid = 0xff;
3174 	txwi->flags = wflags;
3175 	txwi->xflags = xflags;
3176 	txwi->txop = 0;	/* clear leftover garbage bits */
3177 
3178 	data->m = m;
3179 	data->ni = ni;
3180 	data->ridx = ridx;
3181 
3182 	run_set_tx_desc(sc, data);
3183 
3184 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3185 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3186 	    rt2860_rates[ridx].rate);
3187 
3188 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3189 
3190 	usbd_transfer_start(sc->sc_xfer[0]);
3191 
3192 	return (0);
3193 }
3194 
3195 static int
3196 run_sendprot(struct run_softc *sc,
3197     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3198 {
3199 	struct ieee80211com *ic = ni->ni_ic;
3200 	struct ieee80211_frame *wh;
3201 	struct run_tx_data *data;
3202 	struct rt2870_txd *txd;
3203 	struct rt2860_txwi *txwi;
3204 	struct mbuf *mprot;
3205 	int ridx;
3206 	int protrate;
3207 	int ackrate;
3208 	int pktlen;
3209 	int isshort;
3210 	uint16_t dur;
3211 	uint8_t type;
3212 	uint8_t wflags = 0;
3213 	uint8_t xflags = 0;
3214 
3215 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3216 
3217 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3218 	    ("protection %d", prot));
3219 
3220 	wh = mtod(m, struct ieee80211_frame *);
3221 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3222 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3223 
3224 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3225 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3226 
3227 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3228 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3229 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3230 	wflags = RT2860_TX_FRAG;
3231 
3232 	/* check that there are free slots before allocating the mbuf */
3233 	if (sc->sc_epq[0].tx_nfree == 0) {
3234 		/* let caller free mbuf */
3235 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3236 		return (ENOBUFS);
3237 	}
3238 
3239 	if (prot == IEEE80211_PROT_RTSCTS) {
3240 		/* NB: CTS is the same size as an ACK */
3241 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3242 		xflags |= RT2860_TX_ACK;
3243 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3244 	} else {
3245 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3246 	}
3247 	if (mprot == NULL) {
3248 		sc->sc_ifp->if_oerrors++;
3249 		DPRINTF("could not allocate mbuf\n");
3250 		return (ENOBUFS);
3251 	}
3252 
3253         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3254         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3255         sc->sc_epq[0].tx_nfree--;
3256 
3257 	txd = (struct rt2870_txd *)&data->desc;
3258 	txd->flags = RT2860_TX_QSEL_EDCA;
3259 	txwi = (struct rt2860_txwi *)(txd + 1);
3260 	txwi->wcid = 0xff;
3261 	txwi->flags = wflags;
3262 	txwi->xflags = xflags;
3263 	txwi->txop = 0;	/* clear leftover garbage bits */
3264 
3265 	data->m = mprot;
3266 	data->ni = ieee80211_ref_node(ni);
3267 
3268 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3269 		if (rt2860_rates[ridx].rate == protrate)
3270 			break;
3271 	data->ridx = ridx;
3272 
3273 	run_set_tx_desc(sc, data);
3274 
3275         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3276             m->m_pkthdr.len, rate);
3277 
3278         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3279 
3280 	usbd_transfer_start(sc->sc_xfer[0]);
3281 
3282 	return (0);
3283 }
3284 
3285 static int
3286 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3287     const struct ieee80211_bpf_params *params)
3288 {
3289 	struct ieee80211com *ic = ni->ni_ic;
3290 	struct ieee80211_frame *wh;
3291 	struct run_tx_data *data;
3292 	struct rt2870_txd *txd;
3293 	struct rt2860_txwi *txwi;
3294 	uint8_t type;
3295 	uint8_t ridx;
3296 	uint8_t rate;
3297 	uint8_t opflags = 0;
3298 	uint8_t xflags = 0;
3299 	int error;
3300 
3301 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3302 
3303 	KASSERT(params != NULL, ("no raw xmit params"));
3304 
3305 	wh = mtod(m, struct ieee80211_frame *);
3306 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3307 
3308 	rate = params->ibp_rate0;
3309 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3310 		/* let caller free mbuf */
3311 		return (EINVAL);
3312 	}
3313 
3314 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3315 		xflags |= RT2860_TX_ACK;
3316 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3317 		error = run_sendprot(sc, m, ni,
3318 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3319 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3320 		    rate);
3321 		if (error) {
3322 			/* let caller free mbuf */
3323 			return error;
3324 		}
3325 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3326 	}
3327 
3328 	if (sc->sc_epq[0].tx_nfree == 0) {
3329 		/* let caller free mbuf */
3330 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3331 		DPRINTF("sending raw frame, but tx ring is full\n");
3332 		return (EIO);
3333 	}
3334         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3335         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3336         sc->sc_epq[0].tx_nfree--;
3337 
3338 	txd = (struct rt2870_txd *)&data->desc;
3339 	txd->flags = RT2860_TX_QSEL_EDCA;
3340 	txwi = (struct rt2860_txwi *)(txd + 1);
3341 	txwi->wcid = 0xff;
3342 	txwi->xflags = xflags;
3343 	txwi->txop = opflags;
3344 	txwi->flags = 0;	/* clear leftover garbage bits */
3345 
3346         data->m = m;
3347         data->ni = ni;
3348 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3349 		if (rt2860_rates[ridx].rate == rate)
3350 			break;
3351 	data->ridx = ridx;
3352 
3353         run_set_tx_desc(sc, data);
3354 
3355         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3356             m->m_pkthdr.len, rate);
3357 
3358         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3359 
3360 	usbd_transfer_start(sc->sc_xfer[0]);
3361 
3362         return (0);
3363 }
3364 
3365 static int
3366 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3367     const struct ieee80211_bpf_params *params)
3368 {
3369 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3370 	struct run_softc *sc = ifp->if_softc;
3371 	int error = 0;
3372 
3373 	RUN_LOCK(sc);
3374 
3375 	/* prevent management frames from being sent if we're not ready */
3376 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3377 		error =  ENETDOWN;
3378 		goto done;
3379 	}
3380 
3381 	if (params == NULL) {
3382 		/* tx mgt packet */
3383 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3384 			ifp->if_oerrors++;
3385 			DPRINTF("mgt tx failed\n");
3386 			goto done;
3387 		}
3388 	} else {
3389 		/* tx raw packet with param */
3390 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3391 			ifp->if_oerrors++;
3392 			DPRINTF("tx with param failed\n");
3393 			goto done;
3394 		}
3395 	}
3396 
3397 	ifp->if_opackets++;
3398 
3399 done:
3400 	RUN_UNLOCK(sc);
3401 
3402 	if (error != 0) {
3403 		if(m != NULL)
3404 			m_freem(m);
3405 		ieee80211_free_node(ni);
3406 	}
3407 
3408 	return (error);
3409 }
3410 
3411 static void
3412 run_start(struct ifnet *ifp)
3413 {
3414 	struct run_softc *sc = ifp->if_softc;
3415 	struct ieee80211_node *ni;
3416 	struct mbuf *m;
3417 
3418 	RUN_LOCK(sc);
3419 
3420 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3421 		RUN_UNLOCK(sc);
3422 		return;
3423 	}
3424 
3425 	for (;;) {
3426 		/* send data frames */
3427 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3428 		if (m == NULL)
3429 			break;
3430 
3431 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3432 		if (run_tx(sc, m, ni) != 0) {
3433 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3434 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3435 			break;
3436 		}
3437 	}
3438 
3439 	RUN_UNLOCK(sc);
3440 }
3441 
3442 static int
3443 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3444 {
3445 	struct run_softc *sc = ifp->if_softc;
3446 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3447 	struct ifreq *ifr = (struct ifreq *) data;
3448 	int startall = 0;
3449 	int error;
3450 
3451 	RUN_LOCK(sc);
3452 	error = sc->sc_detached ? ENXIO : 0;
3453 	RUN_UNLOCK(sc);
3454 	if (error)
3455 		return (error);
3456 
3457 	switch (cmd) {
3458 	case SIOCSIFFLAGS:
3459 		RUN_LOCK(sc);
3460 		if (ifp->if_flags & IFF_UP) {
3461 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3462 				startall = 1;
3463 				run_init_locked(sc);
3464 			} else
3465 				run_update_promisc_locked(ifp);
3466 		} else {
3467 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3468 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3469 					run_stop(sc);
3470 			}
3471 		}
3472 		RUN_UNLOCK(sc);
3473 		if (startall)
3474 			ieee80211_start_all(ic);
3475 		break;
3476 	case SIOCGIFMEDIA:
3477 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3478 		break;
3479 	case SIOCGIFADDR:
3480 		error = ether_ioctl(ifp, cmd, data);
3481 		break;
3482 	default:
3483 		error = EINVAL;
3484 		break;
3485 	}
3486 
3487 	return (error);
3488 }
3489 
3490 static void
3491 run_set_agc(struct run_softc *sc, uint8_t agc)
3492 {
3493 	uint8_t bbp;
3494 
3495 	if (sc->mac_ver == 0x3572) {
3496 		run_bbp_read(sc, 27, &bbp);
3497 		bbp &= ~(0x3 << 5);
3498 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3499 		run_bbp_write(sc, 66, agc);
3500 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3501 		run_bbp_write(sc, 66, agc);
3502 	} else
3503 		run_bbp_write(sc, 66, agc);
3504 }
3505 
3506 static void
3507 run_select_chan_group(struct run_softc *sc, int group)
3508 {
3509 	uint32_t tmp;
3510 	uint8_t agc;
3511 
3512 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3513 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3514 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3515 	run_bbp_write(sc, 86, 0x00);
3516 
3517 	if (group == 0) {
3518 		if (sc->ext_2ghz_lna) {
3519 			run_bbp_write(sc, 82, 0x62);
3520 			run_bbp_write(sc, 75, 0x46);
3521 		} else {
3522 			run_bbp_write(sc, 82, 0x84);
3523 			run_bbp_write(sc, 75, 0x50);
3524 		}
3525 	} else {
3526 		if (sc->mac_ver == 0x3572)
3527 			run_bbp_write(sc, 82, 0x94);
3528 		else
3529 			run_bbp_write(sc, 82, 0xf2);
3530 		if (sc->ext_5ghz_lna)
3531 			run_bbp_write(sc, 75, 0x46);
3532 		else
3533 			run_bbp_write(sc, 75, 0x50);
3534 	}
3535 
3536 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3537 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3538 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3539 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3540 
3541 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3542 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3543 	if (sc->nrxchains > 1)
3544 		tmp |= RT2860_LNA_PE1_EN;
3545 	if (group == 0) {	/* 2GHz */
3546 		tmp |= RT2860_PA_PE_G0_EN;
3547 		if (sc->ntxchains > 1)
3548 			tmp |= RT2860_PA_PE_G1_EN;
3549 	} else {		/* 5GHz */
3550 		tmp |= RT2860_PA_PE_A0_EN;
3551 		if (sc->ntxchains > 1)
3552 			tmp |= RT2860_PA_PE_A1_EN;
3553 	}
3554 	if (sc->mac_ver == 0x3572) {
3555 		run_rt3070_rf_write(sc, 8, 0x00);
3556 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3557 		run_rt3070_rf_write(sc, 8, 0x80);
3558 	} else
3559 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3560 
3561 	/* set initial AGC value */
3562 	if (group == 0) {	/* 2GHz band */
3563 		if (sc->mac_ver >= 0x3070)
3564 			agc = 0x1c + sc->lna[0] * 2;
3565 		else
3566 			agc = 0x2e + sc->lna[0];
3567 	} else {		/* 5GHz band */
3568 		if (sc->mac_ver == 0x3572)
3569 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3570 		else
3571 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3572 	}
3573 	run_set_agc(sc, agc);
3574 }
3575 
3576 static void
3577 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3578 {
3579 	const struct rfprog *rfprog = rt2860_rf2850;
3580 	uint32_t r2, r3, r4;
3581 	int8_t txpow1, txpow2;
3582 	int i;
3583 
3584 	/* find the settings for this channel (we know it exists) */
3585 	for (i = 0; rfprog[i].chan != chan; i++);
3586 
3587 	r2 = rfprog[i].r2;
3588 	if (sc->ntxchains == 1)
3589 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3590 	if (sc->nrxchains == 1)
3591 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3592 	else if (sc->nrxchains == 2)
3593 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3594 
3595 	/* use Tx power values from EEPROM */
3596 	txpow1 = sc->txpow1[i];
3597 	txpow2 = sc->txpow2[i];
3598 	if (chan > 14) {
3599 		if (txpow1 >= 0)
3600 			txpow1 = txpow1 << 1 | 1;
3601 		else
3602 			txpow1 = (7 + txpow1) << 1;
3603 		if (txpow2 >= 0)
3604 			txpow2 = txpow2 << 1 | 1;
3605 		else
3606 			txpow2 = (7 + txpow2) << 1;
3607 	}
3608 	r3 = rfprog[i].r3 | txpow1 << 7;
3609 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3610 
3611 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3612 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3613 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3614 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3615 
3616 	run_delay(sc, 10);
3617 
3618 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3619 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3620 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3621 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3622 
3623 	run_delay(sc, 10);
3624 
3625 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3626 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3627 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3628 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3629 }
3630 
3631 static void
3632 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3633 {
3634 	int8_t txpow1, txpow2;
3635 	uint8_t rf;
3636 	int i;
3637 
3638 	/* RT3070 is 2GHz only */
3639 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3640 
3641 	/* find the settings for this channel (we know it exists) */
3642 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3643 
3644 	/* use Tx power values from EEPROM */
3645 	txpow1 = sc->txpow1[i];
3646 	txpow2 = sc->txpow2[i];
3647 
3648 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3649 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3650 	run_rt3070_rf_read(sc, 6, &rf);
3651 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3652 	run_rt3070_rf_write(sc, 6, rf);
3653 
3654 	/* set Tx0 power */
3655 	run_rt3070_rf_read(sc, 12, &rf);
3656 	rf = (rf & ~0x1f) | txpow1;
3657 	run_rt3070_rf_write(sc, 12, rf);
3658 
3659 	/* set Tx1 power */
3660 	run_rt3070_rf_read(sc, 13, &rf);
3661 	rf = (rf & ~0x1f) | txpow2;
3662 	run_rt3070_rf_write(sc, 13, rf);
3663 
3664 	run_rt3070_rf_read(sc, 1, &rf);
3665 	rf &= ~0xfc;
3666 	if (sc->ntxchains == 1)
3667 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3668 	else if (sc->ntxchains == 2)
3669 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3670 	if (sc->nrxchains == 1)
3671 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3672 	else if (sc->nrxchains == 2)
3673 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3674 	run_rt3070_rf_write(sc, 1, rf);
3675 
3676 	/* set RF offset */
3677 	run_rt3070_rf_read(sc, 23, &rf);
3678 	rf = (rf & ~0x7f) | sc->freq;
3679 	run_rt3070_rf_write(sc, 23, rf);
3680 
3681 	/* program RF filter */
3682 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3683 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3684 	run_rt3070_rf_write(sc, 24, rf);
3685 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3686 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3687 	run_rt3070_rf_write(sc, 31, rf);
3688 
3689 	/* enable RF tuning */
3690 	run_rt3070_rf_read(sc, 7, &rf);
3691 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3692 }
3693 
3694 static void
3695 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3696 {
3697 	int8_t txpow1, txpow2;
3698 	uint32_t tmp;
3699 	uint8_t rf;
3700 	int i;
3701 
3702 	/* find the settings for this channel (we know it exists) */
3703 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3704 
3705 	/* use Tx power values from EEPROM */
3706 	txpow1 = sc->txpow1[i];
3707 	txpow2 = sc->txpow2[i];
3708 
3709 	if (chan <= 14) {
3710 		run_bbp_write(sc, 25, sc->bbp25);
3711 		run_bbp_write(sc, 26, sc->bbp26);
3712 	} else {
3713 		/* enable IQ phase correction */
3714 		run_bbp_write(sc, 25, 0x09);
3715 		run_bbp_write(sc, 26, 0xff);
3716 	}
3717 
3718 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3719 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3720 	run_rt3070_rf_read(sc, 6, &rf);
3721 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3722 	rf |= (chan <= 14) ? 0x08 : 0x04;
3723 	run_rt3070_rf_write(sc, 6, rf);
3724 
3725 	/* set PLL mode */
3726 	run_rt3070_rf_read(sc, 5, &rf);
3727 	rf &= ~(0x08 | 0x04);
3728 	rf |= (chan <= 14) ? 0x04 : 0x08;
3729 	run_rt3070_rf_write(sc, 5, rf);
3730 
3731 	/* set Tx power for chain 0 */
3732 	if (chan <= 14)
3733 		rf = 0x60 | txpow1;
3734 	else
3735 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3736 	run_rt3070_rf_write(sc, 12, rf);
3737 
3738 	/* set Tx power for chain 1 */
3739 	if (chan <= 14)
3740 		rf = 0x60 | txpow2;
3741 	else
3742 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3743 	run_rt3070_rf_write(sc, 13, rf);
3744 
3745 	/* set Tx/Rx streams */
3746 	run_rt3070_rf_read(sc, 1, &rf);
3747 	rf &= ~0xfc;
3748 	if (sc->ntxchains == 1)
3749 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3750 	else if (sc->ntxchains == 2)
3751 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3752 	if (sc->nrxchains == 1)
3753 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3754 	else if (sc->nrxchains == 2)
3755 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3756 	run_rt3070_rf_write(sc, 1, rf);
3757 
3758 	/* set RF offset */
3759 	run_rt3070_rf_read(sc, 23, &rf);
3760 	rf = (rf & ~0x7f) | sc->freq;
3761 	run_rt3070_rf_write(sc, 23, rf);
3762 
3763 	/* program RF filter */
3764 	rf = sc->rf24_20mhz;
3765 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3766 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3767 
3768 	/* enable RF tuning */
3769 	run_rt3070_rf_read(sc, 7, &rf);
3770 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3771 	run_rt3070_rf_write(sc, 7, rf);
3772 
3773 	/* TSSI */
3774 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3775 	run_rt3070_rf_write(sc, 9, rf);
3776 
3777 	/* set loop filter 1 */
3778 	run_rt3070_rf_write(sc, 10, 0xf1);
3779 	/* set loop filter 2 */
3780 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3781 
3782 	/* set tx_mx2_ic */
3783 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3784 	/* set tx_mx1_ic */
3785 	if (chan <= 14)
3786 		rf = 0x48 | sc->txmixgain_2ghz;
3787 	else
3788 		rf = 0x78 | sc->txmixgain_5ghz;
3789 	run_rt3070_rf_write(sc, 16, rf);
3790 
3791 	/* set tx_lo1 */
3792 	run_rt3070_rf_write(sc, 17, 0x23);
3793 	/* set tx_lo2 */
3794 	if (chan <= 14)
3795 		rf = 0x93;
3796 	else if (chan <= 64)
3797 		rf = 0xb7;
3798 	else if (chan <= 128)
3799 		rf = 0x74;
3800 	else
3801 		rf = 0x72;
3802 	run_rt3070_rf_write(sc, 19, rf);
3803 
3804 	/* set rx_lo1 */
3805 	if (chan <= 14)
3806 		rf = 0xb3;
3807 	else if (chan <= 64)
3808 		rf = 0xf6;
3809 	else if (chan <= 128)
3810 		rf = 0xf4;
3811 	else
3812 		rf = 0xf3;
3813 	run_rt3070_rf_write(sc, 20, rf);
3814 
3815 	/* set pfd_delay */
3816 	if (chan <= 14)
3817 		rf = 0x15;
3818 	else if (chan <= 64)
3819 		rf = 0x3d;
3820 	else
3821 		rf = 0x01;
3822 	run_rt3070_rf_write(sc, 25, rf);
3823 
3824 	/* set rx_lo2 */
3825 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3826 	/* set ldo_rf_vc */
3827 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3828 	/* set drv_cc */
3829 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3830 
3831 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3832 	tmp &= ~0x8080;
3833 	if (chan <= 14)
3834 		tmp |= 0x80;
3835 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3836 
3837 	/* enable RF tuning */
3838 	run_rt3070_rf_read(sc, 7, &rf);
3839 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3840 
3841 	run_delay(sc, 2);
3842 }
3843 
3844 static void
3845 run_set_rx_antenna(struct run_softc *sc, int aux)
3846 {
3847 	uint32_t tmp;
3848 
3849 	if (aux) {
3850 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3851 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3852 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3853 	} else {
3854 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3855 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3856 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3857 	}
3858 }
3859 
3860 static int
3861 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3862 {
3863 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3864 	uint32_t chan, group;
3865 
3866 	chan = ieee80211_chan2ieee(ic, c);
3867 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3868 		return (EINVAL);
3869 
3870 	if (sc->mac_ver == 0x3572)
3871 		run_rt3572_set_chan(sc, chan);
3872 	else if (sc->mac_ver >= 0x3070)
3873 		run_rt3070_set_chan(sc, chan);
3874 	else
3875 		run_rt2870_set_chan(sc, chan);
3876 
3877 	/* determine channel group */
3878 	if (chan <= 14)
3879 		group = 0;
3880 	else if (chan <= 64)
3881 		group = 1;
3882 	else if (chan <= 128)
3883 		group = 2;
3884 	else
3885 		group = 3;
3886 
3887 	/* XXX necessary only when group has changed! */
3888 	run_select_chan_group(sc, group);
3889 
3890 	run_delay(sc, 10);
3891 
3892 	return (0);
3893 }
3894 
3895 static void
3896 run_set_channel(struct ieee80211com *ic)
3897 {
3898 	struct run_softc *sc = ic->ic_ifp->if_softc;
3899 
3900 	RUN_LOCK(sc);
3901 	run_set_chan(sc, ic->ic_curchan);
3902 	RUN_UNLOCK(sc);
3903 
3904 	return;
3905 }
3906 
3907 static void
3908 run_scan_start(struct ieee80211com *ic)
3909 {
3910 	struct run_softc *sc = ic->ic_ifp->if_softc;
3911 	uint32_t tmp;
3912 
3913 	RUN_LOCK(sc);
3914 
3915 	/* abort TSF synchronization */
3916 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3917 	run_write(sc, RT2860_BCN_TIME_CFG,
3918 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3919 	    RT2860_TBTT_TIMER_EN));
3920 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3921 
3922 	RUN_UNLOCK(sc);
3923 
3924 	return;
3925 }
3926 
3927 static void
3928 run_scan_end(struct ieee80211com *ic)
3929 {
3930 	struct run_softc *sc = ic->ic_ifp->if_softc;
3931 
3932 	RUN_LOCK(sc);
3933 
3934 	run_enable_tsf_sync(sc);
3935 	/* XXX keep local copy */
3936 	run_set_bssid(sc, sc->sc_bssid);
3937 
3938 	RUN_UNLOCK(sc);
3939 
3940 	return;
3941 }
3942 
3943 /*
3944  * Could be called from ieee80211_node_timeout()
3945  * (non-sleepable thread)
3946  */
3947 static void
3948 run_update_beacon(struct ieee80211vap *vap, int item)
3949 {
3950 	struct ieee80211com *ic = vap->iv_ic;
3951 	struct run_softc *sc = ic->ic_ifp->if_softc;
3952 	struct run_vap *rvp = RUN_VAP(vap);
3953 	int mcast = 0;
3954 	uint32_t i;
3955 
3956 	KASSERT(vap != NULL, ("no beacon"));
3957 
3958 	switch (item) {
3959 	case IEEE80211_BEACON_ERP:
3960 		run_updateslot(ic->ic_ifp);
3961 		break;
3962 	case IEEE80211_BEACON_HTINFO:
3963 		run_updateprot(ic);
3964 		break;
3965 	case IEEE80211_BEACON_TIM:
3966 		mcast = 1;	/*TODO*/
3967 		break;
3968 	default:
3969 		break;
3970 	}
3971 
3972 	setbit(rvp->bo.bo_flags, item);
3973 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3974 
3975 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3976 	DPRINTF("cmdq_store=%d\n", i);
3977 	sc->cmdq[i].func = run_update_beacon_cb;
3978 	sc->cmdq[i].arg0 = vap;
3979 	ieee80211_runtask(ic, &sc->cmdq_task);
3980 
3981 	return;
3982 }
3983 
3984 static void
3985 run_update_beacon_cb(void *arg)
3986 {
3987 	struct ieee80211vap *vap = arg;
3988 	struct run_vap *rvp = RUN_VAP(vap);
3989 	struct ieee80211com *ic = vap->iv_ic;
3990 	struct run_softc *sc = ic->ic_ifp->if_softc;
3991 	struct rt2860_txwi txwi;
3992 	struct mbuf *m;
3993 	uint8_t ridx;
3994 
3995 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3996 		return;
3997 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
3998 		return;
3999 
4000 	/*
4001 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
4002 	 * is taking care of apropriate calls.
4003 	 */
4004 	if (rvp->beacon_mbuf == NULL) {
4005 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
4006 		    &rvp->bo);
4007 		if (rvp->beacon_mbuf == NULL)
4008 			return;
4009 	}
4010 	m = rvp->beacon_mbuf;
4011 
4012 	memset(&txwi, 0, sizeof txwi);
4013 	txwi.wcid = 0xff;
4014 	txwi.len = htole16(m->m_pkthdr.len);
4015 	/* send beacons at the lowest available rate */
4016 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4017 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
4018 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4019 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4020 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4021 	txwi.txop = RT2860_TX_TXOP_HT;
4022 	txwi.flags = RT2860_TX_TS;
4023 	txwi.xflags = RT2860_TX_NSEQ;
4024 
4025 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4026 	    (uint8_t *)&txwi, sizeof txwi);
4027 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4028 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4029 
4030 	return;
4031 }
4032 
4033 static void
4034 run_updateprot(struct ieee80211com *ic)
4035 {
4036 	struct run_softc *sc = ic->ic_ifp->if_softc;
4037 	uint32_t i;
4038 
4039 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4040 	DPRINTF("cmdq_store=%d\n", i);
4041 	sc->cmdq[i].func = run_updateprot_cb;
4042 	sc->cmdq[i].arg0 = ic;
4043 	ieee80211_runtask(ic, &sc->cmdq_task);
4044 }
4045 
4046 static void
4047 run_updateprot_cb(void *arg)
4048 {
4049 	struct ieee80211com *ic = arg;
4050 	struct run_softc *sc = ic->ic_ifp->if_softc;
4051 	uint32_t tmp;
4052 
4053 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4054 	/* setup protection frame rate (MCS code) */
4055 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4056 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4057 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4058 
4059 	/* CCK frames don't require protection */
4060 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4061 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4062 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4063 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4064 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4065 			tmp |= RT2860_PROT_CTRL_CTS;
4066 	}
4067 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4068 }
4069 
4070 static void
4071 run_usb_timeout_cb(void *arg)
4072 {
4073 	struct ieee80211vap *vap = arg;
4074 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4075 
4076 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4077 
4078 	if(vap->iv_state == IEEE80211_S_RUN &&
4079 	    vap->iv_opmode != IEEE80211_M_STA)
4080 		run_reset_livelock(sc);
4081 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4082 		DPRINTF("timeout caused by scan\n");
4083 		/* cancel bgscan */
4084 		ieee80211_cancel_scan(vap);
4085 	} else
4086 		DPRINTF("timeout by unknown cause\n");
4087 }
4088 
4089 static void
4090 run_reset_livelock(struct run_softc *sc)
4091 {
4092 	uint32_t tmp;
4093 
4094 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4095 
4096 	/*
4097 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4098 	 * can run into a livelock and start sending CTS-to-self frames like
4099 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4100 	 */
4101 	run_read(sc, RT2860_DEBUG, &tmp);
4102 	DPRINTFN(3, "debug reg %08x\n", tmp);
4103 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4104 		DPRINTF("CTS-to-self livelock detected\n");
4105 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4106 		run_delay(sc, 1);
4107 		run_write(sc, RT2860_MAC_SYS_CTRL,
4108 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4109 	}
4110 }
4111 
4112 static void
4113 run_update_promisc_locked(struct ifnet *ifp)
4114 {
4115 	struct run_softc *sc = ifp->if_softc;
4116         uint32_t tmp;
4117 
4118 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4119 
4120 	tmp |= RT2860_DROP_UC_NOME;
4121         if (ifp->if_flags & IFF_PROMISC)
4122 		tmp &= ~RT2860_DROP_UC_NOME;
4123 
4124 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4125 
4126         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4127             "entering" : "leaving");
4128 }
4129 
4130 static void
4131 run_update_promisc(struct ifnet *ifp)
4132 {
4133 	struct run_softc *sc = ifp->if_softc;
4134 
4135 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4136 		return;
4137 
4138 	RUN_LOCK(sc);
4139 	run_update_promisc_locked(ifp);
4140 	RUN_UNLOCK(sc);
4141 }
4142 
4143 static void
4144 run_enable_tsf_sync(struct run_softc *sc)
4145 {
4146 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4147 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4148 	uint32_t tmp;
4149 
4150 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4151 
4152 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4153 	tmp &= ~0x1fffff;
4154 	tmp |= vap->iv_bss->ni_intval * 16;
4155 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4156 
4157 	if (ic->ic_opmode == IEEE80211_M_STA) {
4158 		/*
4159 		 * Local TSF is always updated with remote TSF on beacon
4160 		 * reception.
4161 		 */
4162 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4163 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4164 	        tmp |= RT2860_BCN_TX_EN;
4165 	        /*
4166 	         * Local TSF is updated with remote TSF on beacon reception
4167 	         * only if the remote TSF is greater than local TSF.
4168 	         */
4169 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4170 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4171 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4172 	        tmp |= RT2860_BCN_TX_EN;
4173 	        /* SYNC with nobody */
4174 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4175 	} else {
4176 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4177 		return;
4178 	}
4179 
4180 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4181 }
4182 
4183 static void
4184 run_enable_mrr(struct run_softc *sc)
4185 {
4186 #define CCK(mcs)	(mcs)
4187 #define OFDM(mcs)	(1 << 3 | (mcs))
4188 	run_write(sc, RT2860_LG_FBK_CFG0,
4189 	    OFDM(6) << 28 |	/* 54->48 */
4190 	    OFDM(5) << 24 |	/* 48->36 */
4191 	    OFDM(4) << 20 |	/* 36->24 */
4192 	    OFDM(3) << 16 |	/* 24->18 */
4193 	    OFDM(2) << 12 |	/* 18->12 */
4194 	    OFDM(1) <<  8 |	/* 12-> 9 */
4195 	    OFDM(0) <<  4 |	/*  9-> 6 */
4196 	    OFDM(0));		/*  6-> 6 */
4197 
4198 	run_write(sc, RT2860_LG_FBK_CFG1,
4199 	    CCK(2) << 12 |	/* 11->5.5 */
4200 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4201 	    CCK(0) <<  4 |	/*   2-> 1 */
4202 	    CCK(0));		/*   1-> 1 */
4203 #undef OFDM
4204 #undef CCK
4205 }
4206 
4207 static void
4208 run_set_txpreamble(struct run_softc *sc)
4209 {
4210 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4211 	uint32_t tmp;
4212 
4213 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4214 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4215 		tmp |= RT2860_CCK_SHORT_EN;
4216 	else
4217 		tmp &= ~RT2860_CCK_SHORT_EN;
4218 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4219 }
4220 
4221 static void
4222 run_set_basicrates(struct run_softc *sc)
4223 {
4224 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4225 
4226 	/* set basic rates mask */
4227 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4228 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4229 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4230 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4231 	else	/* 11g */
4232 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4233 }
4234 
4235 static void
4236 run_set_leds(struct run_softc *sc, uint16_t which)
4237 {
4238 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4239 	    which | (sc->leds & 0x7f));
4240 }
4241 
4242 static void
4243 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4244 {
4245 	run_write(sc, RT2860_MAC_BSSID_DW0,
4246 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4247 	run_write(sc, RT2860_MAC_BSSID_DW1,
4248 	    bssid[4] | bssid[5] << 8);
4249 }
4250 
4251 static void
4252 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4253 {
4254 	run_write(sc, RT2860_MAC_ADDR_DW0,
4255 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4256 	run_write(sc, RT2860_MAC_ADDR_DW1,
4257 	    addr[4] | addr[5] << 8 | 0xff << 16);
4258 }
4259 
4260 static void
4261 run_updateslot(struct ifnet *ifp)
4262 {
4263 	struct run_softc *sc = ifp->if_softc;
4264 	struct ieee80211com *ic = ifp->if_l2com;
4265 	uint32_t i;
4266 
4267 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4268 	DPRINTF("cmdq_store=%d\n", i);
4269 	sc->cmdq[i].func = run_updateslot_cb;
4270 	sc->cmdq[i].arg0 = ifp;
4271 	ieee80211_runtask(ic, &sc->cmdq_task);
4272 
4273 	return;
4274 }
4275 
4276 /* ARGSUSED */
4277 static void
4278 run_updateslot_cb(void *arg)
4279 {
4280 	struct ifnet *ifp = arg;
4281 	struct run_softc *sc = ifp->if_softc;
4282 	struct ieee80211com *ic = ifp->if_l2com;
4283 	uint32_t tmp;
4284 
4285 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4286 	tmp &= ~0xff;
4287 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4288 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4289 }
4290 
4291 static void
4292 run_update_mcast(struct ifnet *ifp)
4293 {
4294 	/* h/w filter supports getting everything or nothing */
4295 	ifp->if_flags |= IFF_ALLMULTI;
4296 }
4297 
4298 static int8_t
4299 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4300 {
4301 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4302 	struct ieee80211_channel *c = ic->ic_curchan;
4303 	int delta;
4304 
4305 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4306 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4307 		delta = sc->rssi_5ghz[rxchain];
4308 
4309 		/* determine channel group */
4310 		if (chan <= 64)
4311 			delta -= sc->lna[1];
4312 		else if (chan <= 128)
4313 			delta -= sc->lna[2];
4314 		else
4315 			delta -= sc->lna[3];
4316 	} else
4317 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4318 
4319 	return (-12 - delta - rssi);
4320 }
4321 
4322 static int
4323 run_bbp_init(struct run_softc *sc)
4324 {
4325 	int i, error, ntries;
4326 	uint8_t bbp0;
4327 
4328 	/* wait for BBP to wake up */
4329 	for (ntries = 0; ntries < 20; ntries++) {
4330 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4331 			return error;
4332 		if (bbp0 != 0 && bbp0 != 0xff)
4333 			break;
4334 	}
4335 	if (ntries == 20)
4336 		return (ETIMEDOUT);
4337 
4338 	/* initialize BBP registers to default values */
4339 	for (i = 0; i < N(rt2860_def_bbp); i++) {
4340 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4341 		    rt2860_def_bbp[i].val);
4342 	}
4343 
4344 	/* fix BBP84 for RT2860E */
4345 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4346 		run_bbp_write(sc, 84, 0x19);
4347 
4348 	if (sc->mac_ver >= 0x3070) {
4349 		run_bbp_write(sc, 79, 0x13);
4350 		run_bbp_write(sc, 80, 0x05);
4351 		run_bbp_write(sc, 81, 0x33);
4352 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4353 		run_bbp_write(sc, 69, 0x16);
4354 		run_bbp_write(sc, 73, 0x12);
4355 	}
4356 	return (0);
4357 }
4358 
4359 static int
4360 run_rt3070_rf_init(struct run_softc *sc)
4361 {
4362 	uint32_t tmp;
4363 	uint8_t rf, target, bbp4;
4364 	int i;
4365 
4366 	run_rt3070_rf_read(sc, 30, &rf);
4367 	/* toggle RF R30 bit 7 */
4368 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4369 	run_delay(sc, 10);
4370 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4371 
4372 	/* initialize RF registers to default value */
4373 	if (sc->mac_ver == 0x3572) {
4374 		for (i = 0; i < N(rt3572_def_rf); i++) {
4375 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4376 			    rt3572_def_rf[i].val);
4377 		}
4378 	} else {
4379 		for (i = 0; i < N(rt3070_def_rf); i++) {
4380 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4381 			    rt3070_def_rf[i].val);
4382 		}
4383 	}
4384 
4385 	if (sc->mac_ver == 0x3070) {
4386 		/* change voltage from 1.2V to 1.35V for RT3070 */
4387 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4388 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4389 		run_write(sc, RT3070_LDO_CFG0, tmp);
4390 
4391 	} else if (sc->mac_ver == 0x3071) {
4392 		run_rt3070_rf_read(sc, 6, &rf);
4393 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4394 		run_rt3070_rf_write(sc, 31, 0x14);
4395 
4396 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4397 		tmp &= ~0x1f000000;
4398 		if (sc->mac_rev < 0x0211)
4399 			tmp |= 0x0d000000;	/* 1.3V */
4400 		else
4401 			tmp |= 0x01000000;	/* 1.2V */
4402 		run_write(sc, RT3070_LDO_CFG0, tmp);
4403 
4404 		/* patch LNA_PE_G1 */
4405 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4406 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4407 
4408 	} else if (sc->mac_ver == 0x3572) {
4409 		run_rt3070_rf_read(sc, 6, &rf);
4410 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4411 
4412 		/* increase voltage from 1.2V to 1.35V */
4413 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4414 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4415 		run_write(sc, RT3070_LDO_CFG0, tmp);
4416 
4417 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4418 			run_delay(sc, 1);	/* wait for 1msec */
4419 			/* decrease voltage back to 1.2V */
4420 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4421 			run_write(sc, RT3070_LDO_CFG0, tmp);
4422 		}
4423 	}
4424 
4425 	/* select 20MHz bandwidth */
4426 	run_rt3070_rf_read(sc, 31, &rf);
4427 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4428 
4429 	/* calibrate filter for 20MHz bandwidth */
4430 	sc->rf24_20mhz = 0x1f;	/* default value */
4431 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4432 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4433 
4434 	/* select 40MHz bandwidth */
4435 	run_bbp_read(sc, 4, &bbp4);
4436 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4437 	run_rt3070_rf_read(sc, 31, &rf);
4438 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4439 
4440 	/* calibrate filter for 40MHz bandwidth */
4441 	sc->rf24_40mhz = 0x2f;	/* default value */
4442 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4443 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4444 
4445 	/* go back to 20MHz bandwidth */
4446 	run_bbp_read(sc, 4, &bbp4);
4447 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4448 
4449 	if (sc->mac_ver == 0x3572) {
4450 		/* save default BBP registers 25 and 26 values */
4451 		run_bbp_read(sc, 25, &sc->bbp25);
4452 		run_bbp_read(sc, 26, &sc->bbp26);
4453 	} else if (sc->mac_rev < 0x0211)
4454 		run_rt3070_rf_write(sc, 27, 0x03);
4455 
4456 	run_read(sc, RT3070_OPT_14, &tmp);
4457 	run_write(sc, RT3070_OPT_14, tmp | 1);
4458 
4459 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4460 		run_rt3070_rf_read(sc, 17, &rf);
4461 		rf &= ~RT3070_TX_LO1;
4462 		if ((sc->mac_ver == 0x3070 ||
4463 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4464 		    !sc->ext_2ghz_lna)
4465 			rf |= 0x20;	/* fix for long range Rx issue */
4466 		if (sc->txmixgain_2ghz >= 1)
4467 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4468 		run_rt3070_rf_write(sc, 17, rf);
4469 	}
4470 
4471 	if (sc->mac_rev == 0x3071) {
4472 		run_rt3070_rf_read(sc, 1, &rf);
4473 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4474 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4475 		run_rt3070_rf_write(sc, 1, rf);
4476 
4477 		run_rt3070_rf_read(sc, 15, &rf);
4478 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4479 
4480 		run_rt3070_rf_read(sc, 20, &rf);
4481 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4482 
4483 		run_rt3070_rf_read(sc, 21, &rf);
4484 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4485 	}
4486 
4487 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4488 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4489 		run_rt3070_rf_read(sc, 27, &rf);
4490 		rf &= ~0x77;
4491 		if (sc->mac_rev < 0x0211)
4492 			rf |= 0x03;
4493 		run_rt3070_rf_write(sc, 27, rf);
4494 	}
4495 	return (0);
4496 }
4497 
4498 static int
4499 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4500     uint8_t *val)
4501 {
4502 	uint8_t rf22, rf24;
4503 	uint8_t bbp55_pb, bbp55_sb, delta;
4504 	int ntries;
4505 
4506 	/* program filter */
4507 	run_rt3070_rf_read(sc, 24, &rf24);
4508 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4509 	run_rt3070_rf_write(sc, 24, rf24);
4510 
4511 	/* enable baseband loopback mode */
4512 	run_rt3070_rf_read(sc, 22, &rf22);
4513 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4514 
4515 	/* set power and frequency of passband test tone */
4516 	run_bbp_write(sc, 24, 0x00);
4517 	for (ntries = 0; ntries < 100; ntries++) {
4518 		/* transmit test tone */
4519 		run_bbp_write(sc, 25, 0x90);
4520 		run_delay(sc, 10);
4521 		/* read received power */
4522 		run_bbp_read(sc, 55, &bbp55_pb);
4523 		if (bbp55_pb != 0)
4524 			break;
4525 	}
4526 	if (ntries == 100)
4527 		return ETIMEDOUT;
4528 
4529 	/* set power and frequency of stopband test tone */
4530 	run_bbp_write(sc, 24, 0x06);
4531 	for (ntries = 0; ntries < 100; ntries++) {
4532 		/* transmit test tone */
4533 		run_bbp_write(sc, 25, 0x90);
4534 		run_delay(sc, 10);
4535 		/* read received power */
4536 		run_bbp_read(sc, 55, &bbp55_sb);
4537 
4538 		delta = bbp55_pb - bbp55_sb;
4539 		if (delta > target)
4540 			break;
4541 
4542 		/* reprogram filter */
4543 		rf24++;
4544 		run_rt3070_rf_write(sc, 24, rf24);
4545 	}
4546 	if (ntries < 100) {
4547 		if (rf24 != init)
4548 			rf24--;	/* backtrack */
4549 		*val = rf24;
4550 		run_rt3070_rf_write(sc, 24, rf24);
4551 	}
4552 
4553 	/* restore initial state */
4554 	run_bbp_write(sc, 24, 0x00);
4555 
4556 	/* disable baseband loopback mode */
4557 	run_rt3070_rf_read(sc, 22, &rf22);
4558 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4559 
4560 	return (0);
4561 }
4562 
4563 static void
4564 run_rt3070_rf_setup(struct run_softc *sc)
4565 {
4566 	uint8_t bbp, rf;
4567 	int i;
4568 
4569 	if (sc->mac_ver == 0x3572) {
4570 		/* enable DC filter */
4571 		if (sc->mac_rev >= 0x0201)
4572 			run_bbp_write(sc, 103, 0xc0);
4573 
4574 		run_bbp_read(sc, 138, &bbp);
4575 		if (sc->ntxchains == 1)
4576 			bbp |= 0x20;	/* turn off DAC1 */
4577 		if (sc->nrxchains == 1)
4578 			bbp &= ~0x02;	/* turn off ADC1 */
4579 		run_bbp_write(sc, 138, bbp);
4580 
4581 		if (sc->mac_rev >= 0x0211) {
4582 			/* improve power consumption */
4583 			run_bbp_read(sc, 31, &bbp);
4584 			run_bbp_write(sc, 31, bbp & ~0x03);
4585 		}
4586 
4587 		run_rt3070_rf_read(sc, 16, &rf);
4588 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4589 		run_rt3070_rf_write(sc, 16, rf);
4590 
4591 	} else if (sc->mac_ver == 0x3071) {
4592 		/* enable DC filter */
4593 		if (sc->mac_rev >= 0x0201)
4594 			run_bbp_write(sc, 103, 0xc0);
4595 
4596 		run_bbp_read(sc, 138, &bbp);
4597 		if (sc->ntxchains == 1)
4598 			bbp |= 0x20;	/* turn off DAC1 */
4599 		if (sc->nrxchains == 1)
4600 			bbp &= ~0x02;	/* turn off ADC1 */
4601 		run_bbp_write(sc, 138, bbp);
4602 
4603 		if (sc->mac_rev >= 0x0211) {
4604 			/* improve power consumption */
4605 			run_bbp_read(sc, 31, &bbp);
4606 			run_bbp_write(sc, 31, bbp & ~0x03);
4607 		}
4608 
4609 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4610 		if (sc->mac_rev < 0x0211) {
4611 			run_write(sc, RT2860_TX_SW_CFG2,
4612 			    sc->patch_dac ? 0x2c : 0x0f);
4613 		} else
4614 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4615 
4616 	} else if (sc->mac_ver == 0x3070) {
4617 		if (sc->mac_rev >= 0x0201) {
4618 			/* enable DC filter */
4619 			run_bbp_write(sc, 103, 0xc0);
4620 
4621 			/* improve power consumption */
4622 			run_bbp_read(sc, 31, &bbp);
4623 			run_bbp_write(sc, 31, bbp & ~0x03);
4624 		}
4625 
4626 		if (sc->mac_rev < 0x0211) {
4627 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4628 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4629 		} else
4630 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4631 	}
4632 
4633 	/* initialize RF registers from ROM for >=RT3071*/
4634 	if (sc->mac_ver >= 0x3071) {
4635 		for (i = 0; i < 10; i++) {
4636 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4637 				continue;
4638 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4639 		}
4640 	}
4641 }
4642 
4643 static int
4644 run_txrx_enable(struct run_softc *sc)
4645 {
4646 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4647 	uint32_t tmp;
4648 	int error, ntries;
4649 
4650 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4651 	for (ntries = 0; ntries < 200; ntries++) {
4652 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4653 			return error;
4654 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4655 			break;
4656 		run_delay(sc, 50);
4657 	}
4658 	if (ntries == 200)
4659 		return ETIMEDOUT;
4660 
4661 	run_delay(sc, 50);
4662 
4663 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4664 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4665 
4666 	/* enable Rx bulk aggregation (set timeout and limit) */
4667 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4668 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4669 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4670 
4671 	/* set Rx filter */
4672 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4673 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4674 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4675 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4676 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4677 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4678 		if (ic->ic_opmode == IEEE80211_M_STA)
4679 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4680 	}
4681 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4682 
4683 	run_write(sc, RT2860_MAC_SYS_CTRL,
4684 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4685 
4686 	return (0);
4687 }
4688 
4689 static void
4690 run_init_locked(struct run_softc *sc)
4691 {
4692 	struct ifnet *ifp = sc->sc_ifp;
4693 	struct ieee80211com *ic = ifp->if_l2com;
4694 	uint32_t tmp;
4695 	uint8_t bbp1, bbp3;
4696 	int i;
4697 	int ridx;
4698 	int ntries;
4699 
4700 	if (ic->ic_nrunning > 1)
4701 		return;
4702 
4703 	run_stop(sc);
4704 
4705 	if (run_load_microcode(sc) != 0) {
4706 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4707 		goto fail;
4708 	}
4709 
4710 	for (ntries = 0; ntries < 100; ntries++) {
4711 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4712 			goto fail;
4713 		if (tmp != 0 && tmp != 0xffffffff)
4714 			break;
4715 		run_delay(sc, 10);
4716 	}
4717 	if (ntries == 100)
4718 		goto fail;
4719 
4720 	for (i = 0; i != RUN_EP_QUEUES; i++)
4721 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4722 
4723 	run_set_macaddr(sc, IF_LLADDR(ifp));
4724 
4725 	for (ntries = 0; ntries < 100; ntries++) {
4726 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4727 			goto fail;
4728 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4729 			break;
4730 		run_delay(sc, 10);
4731 	}
4732 	if (ntries == 100) {
4733 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4734 		goto fail;
4735 	}
4736 	tmp &= 0xff0;
4737 	tmp |= RT2860_TX_WB_DDONE;
4738 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4739 
4740 	/* turn off PME_OEN to solve high-current issue */
4741 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4742 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4743 
4744 	run_write(sc, RT2860_MAC_SYS_CTRL,
4745 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4746 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4747 
4748 	if (run_reset(sc) != 0) {
4749 		device_printf(sc->sc_dev, "could not reset chipset\n");
4750 		goto fail;
4751 	}
4752 
4753 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4754 
4755 	/* init Tx power for all Tx rates (from EEPROM) */
4756 	for (ridx = 0; ridx < 5; ridx++) {
4757 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4758 			continue;
4759 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4760 	}
4761 
4762 	for (i = 0; i < N(rt2870_def_mac); i++)
4763 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4764 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4765 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4766 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4767 
4768 	if (sc->mac_ver >= 0x3070) {
4769 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4770 		run_write(sc, RT2860_TX_SW_CFG0,
4771 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4772 	}
4773 
4774 	/* wait while MAC is busy */
4775 	for (ntries = 0; ntries < 100; ntries++) {
4776 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4777 			goto fail;
4778 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4779 			break;
4780 		run_delay(sc, 10);
4781 	}
4782 	if (ntries == 100)
4783 		goto fail;
4784 
4785 	/* clear Host to MCU mailbox */
4786 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4787 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4788 	run_delay(sc, 10);
4789 
4790 	if (run_bbp_init(sc) != 0) {
4791 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4792 		goto fail;
4793 	}
4794 
4795 	/* abort TSF synchronization */
4796 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4797 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4798 	    RT2860_TBTT_TIMER_EN);
4799 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4800 
4801 	/* clear RX WCID search table */
4802 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4803 	/* clear WCID attribute table */
4804 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4805 
4806 	/* hostapd sets a key before init. So, don't clear it. */
4807 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4808 		/* clear shared key table */
4809 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4810 		/* clear shared key mode */
4811 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4812 	}
4813 
4814 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4815 	tmp = (tmp & ~0xff) | 0x1e;
4816 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4817 
4818 	if (sc->mac_rev != 0x0101)
4819 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4820 
4821 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4822 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4823 
4824 	/* write vendor-specific BBP values (from EEPROM) */
4825 	for (i = 0; i < 10; i++) {
4826 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4827 			continue;
4828 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4829 	}
4830 
4831 	/* select Main antenna for 1T1R devices */
4832 	if (sc->rf_rev == RT3070_RF_3020)
4833 		run_set_rx_antenna(sc, 0);
4834 
4835 	/* send LEDs operating mode to microcontroller */
4836 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4837 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4838 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4839 
4840 	if (sc->mac_ver >= 0x3070)
4841 		run_rt3070_rf_init(sc);
4842 
4843 	/* disable non-existing Rx chains */
4844 	run_bbp_read(sc, 3, &bbp3);
4845 	bbp3 &= ~(1 << 3 | 1 << 4);
4846 	if (sc->nrxchains == 2)
4847 		bbp3 |= 1 << 3;
4848 	else if (sc->nrxchains == 3)
4849 		bbp3 |= 1 << 4;
4850 	run_bbp_write(sc, 3, bbp3);
4851 
4852 	/* disable non-existing Tx chains */
4853 	run_bbp_read(sc, 1, &bbp1);
4854 	if (sc->ntxchains == 1)
4855 		bbp1 &= ~(1 << 3 | 1 << 4);
4856 	run_bbp_write(sc, 1, bbp1);
4857 
4858 	if (sc->mac_ver >= 0x3070)
4859 		run_rt3070_rf_setup(sc);
4860 
4861 	/* select default channel */
4862 	run_set_chan(sc, ic->ic_curchan);
4863 
4864 	/* setup initial protection mode */
4865 	run_updateprot_cb(ic);
4866 
4867 	/* turn radio LED on */
4868 	run_set_leds(sc, RT2860_LED_RADIO);
4869 
4870 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4871 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4872 	sc->cmdq_run = RUN_CMDQ_GO;
4873 
4874 	for (i = 0; i != RUN_N_XFER; i++)
4875 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4876 
4877 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4878 
4879 	if (run_txrx_enable(sc) != 0)
4880 		goto fail;
4881 
4882 	return;
4883 
4884 fail:
4885 	run_stop(sc);
4886 }
4887 
4888 static void
4889 run_init(void *arg)
4890 {
4891 	struct run_softc *sc = arg;
4892 	struct ifnet *ifp = sc->sc_ifp;
4893 	struct ieee80211com *ic = ifp->if_l2com;
4894 
4895 	RUN_LOCK(sc);
4896 	run_init_locked(sc);
4897 	RUN_UNLOCK(sc);
4898 
4899 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4900 		ieee80211_start_all(ic);
4901 }
4902 
4903 static void
4904 run_stop(void *arg)
4905 {
4906 	struct run_softc *sc = (struct run_softc *)arg;
4907 	struct ifnet *ifp = sc->sc_ifp;
4908 	uint32_t tmp;
4909 	int i;
4910 	int ntries;
4911 
4912 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4913 
4914 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4915 		run_set_leds(sc, 0);	/* turn all LEDs off */
4916 
4917 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4918 
4919 	sc->ratectl_run = RUN_RATECTL_OFF;
4920 	sc->cmdq_run = sc->cmdq_key_set;
4921 
4922 	RUN_UNLOCK(sc);
4923 
4924 	for(i = 0; i < RUN_N_XFER; i++)
4925 		usbd_transfer_drain(sc->sc_xfer[i]);
4926 
4927 	RUN_LOCK(sc);
4928 
4929 	if (sc->rx_m != NULL) {
4930 		m_free(sc->rx_m);
4931 		sc->rx_m = NULL;
4932 	}
4933 
4934 	/* disable Tx/Rx */
4935 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4936 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4937 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4938 
4939 	/* wait for pending Tx to complete */
4940 	for (ntries = 0; ntries < 100; ntries++) {
4941 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4942 			DPRINTF("Cannot read Tx queue count\n");
4943 			break;
4944 		}
4945 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4946 			DPRINTF("All Tx cleared\n");
4947 			break;
4948 		}
4949 		run_delay(sc, 10);
4950 	}
4951 	if (ntries >= 100)
4952 		DPRINTF("There are still pending Tx\n");
4953 	run_delay(sc, 10);
4954 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4955 
4956 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4957 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4958 
4959 	for (i = 0; i != RUN_EP_QUEUES; i++)
4960 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4961 
4962 	return;
4963 }
4964 
4965 static void
4966 run_delay(struct run_softc *sc, unsigned int ms)
4967 {
4968 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4969 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4970 }
4971 
4972 static device_method_t run_methods[] = {
4973 	/* Device interface */
4974 	DEVMETHOD(device_probe,		run_match),
4975 	DEVMETHOD(device_attach,	run_attach),
4976 	DEVMETHOD(device_detach,	run_detach),
4977 	DEVMETHOD_END
4978 };
4979 
4980 static driver_t run_driver = {
4981 	.name = "run",
4982 	.methods = run_methods,
4983 	.size = sizeof(struct run_softc)
4984 };
4985 
4986 static devclass_t run_devclass;
4987 
4988 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4989 MODULE_DEPEND(run, wlan, 1, 1, 1);
4990 MODULE_DEPEND(run, usb, 1, 1, 1);
4991 MODULE_DEPEND(run, firmware, 1, 1, 1);
4992 MODULE_VERSION(run, 1);
4993