xref: /freebsd/sys/dev/usb/wlan/if_run.c (revision 11c5cac53f6cc9a2d94cb6f58728b2655e92d3a5)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*-
23  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
24  * http://www.ralinktech.com/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/linker.h>
41 #include <sys/firmware.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_regdomain.h>
64 #include <net80211/ieee80211_radiotap.h>
65 #include <net80211/ieee80211_ratectl.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include "usbdevs.h"
70 
71 #define USB_DEBUG_VAR run_debug
72 #include <dev/usb/usb_debug.h>
73 
74 #include <dev/usb/wlan/if_runreg.h>
75 #include <dev/usb/wlan/if_runvar.h>
76 
77 #define	N(_a) ((int)(sizeof((_a)) / sizeof((_a)[0])))
78 
79 #ifdef	USB_DEBUG
80 #define RUN_DEBUG
81 #endif
82 
83 #ifdef	RUN_DEBUG
84 int run_debug = 0;
85 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
87     "run debug level");
88 #endif
89 
90 #define IEEE80211_HAS_ADDR4(wh) \
91 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
92 
93 /*
94  * Because of LOR in run_key_delete(), use atomic instead.
95  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
96  */
97 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
98 
99 static const STRUCT_USB_HOST_ID run_devs[] = {
100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
101     RUN_DEV(ABOCOM,		RT2770),
102     RUN_DEV(ABOCOM,		RT2870),
103     RUN_DEV(ABOCOM,		RT3070),
104     RUN_DEV(ABOCOM,		RT3071),
105     RUN_DEV(ABOCOM,		RT3072),
106     RUN_DEV(ABOCOM2,		RT2870_1),
107     RUN_DEV(ACCTON,		RT2770),
108     RUN_DEV(ACCTON,		RT2870_1),
109     RUN_DEV(ACCTON,		RT2870_2),
110     RUN_DEV(ACCTON,		RT2870_3),
111     RUN_DEV(ACCTON,		RT2870_4),
112     RUN_DEV(ACCTON,		RT2870_5),
113     RUN_DEV(ACCTON,		RT3070),
114     RUN_DEV(ACCTON,		RT3070_1),
115     RUN_DEV(ACCTON,		RT3070_2),
116     RUN_DEV(ACCTON,		RT3070_3),
117     RUN_DEV(ACCTON,		RT3070_4),
118     RUN_DEV(ACCTON,		RT3070_5),
119     RUN_DEV(AIRTIES,		RT3070),
120     RUN_DEV(ALLWIN,		RT2070),
121     RUN_DEV(ALLWIN,		RT2770),
122     RUN_DEV(ALLWIN,		RT2870),
123     RUN_DEV(ALLWIN,		RT3070),
124     RUN_DEV(ALLWIN,		RT3071),
125     RUN_DEV(ALLWIN,		RT3072),
126     RUN_DEV(ALLWIN,		RT3572),
127     RUN_DEV(AMIGO,		RT2870_1),
128     RUN_DEV(AMIGO,		RT2870_2),
129     RUN_DEV(AMIT,		CGWLUSB2GNR),
130     RUN_DEV(AMIT,		RT2870_1),
131     RUN_DEV(AMIT2,		RT2870),
132     RUN_DEV(ASUS,		RT2870_1),
133     RUN_DEV(ASUS,		RT2870_2),
134     RUN_DEV(ASUS,		RT2870_3),
135     RUN_DEV(ASUS,		RT2870_4),
136     RUN_DEV(ASUS,		RT2870_5),
137     RUN_DEV(ASUS,		USBN13),
138     RUN_DEV(ASUS,		RT3070_1),
139     RUN_DEV(ASUS,		USB_N53),
140     RUN_DEV(ASUS2,		USBN11),
141     RUN_DEV(AZUREWAVE,		RT2870_1),
142     RUN_DEV(AZUREWAVE,		RT2870_2),
143     RUN_DEV(AZUREWAVE,		RT3070_1),
144     RUN_DEV(AZUREWAVE,		RT3070_2),
145     RUN_DEV(AZUREWAVE,		RT3070_3),
146     RUN_DEV(BELKIN,		F5D8053V3),
147     RUN_DEV(BELKIN,		F5D8055),
148     RUN_DEV(BELKIN,		F5D8055V2),
149     RUN_DEV(BELKIN,		F6D4050V1),
150     RUN_DEV(BELKIN,		RT2870_1),
151     RUN_DEV(BELKIN,		RT2870_2),
152     RUN_DEV(CISCOLINKSYS,	AE1000),
153     RUN_DEV(CISCOLINKSYS2,	RT3070),
154     RUN_DEV(CISCOLINKSYS3,	RT3070),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
157     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
158     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
159     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
160     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
161     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
162     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
163     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
164     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
165     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
166     RUN_DEV(COREGA,		CGWLUSB300GNM),
167     RUN_DEV(COREGA,		RT2870_1),
168     RUN_DEV(COREGA,		RT2870_2),
169     RUN_DEV(COREGA,		RT2870_3),
170     RUN_DEV(COREGA,		RT3070),
171     RUN_DEV(CYBERTAN,		RT2870),
172     RUN_DEV(DLINK,		RT2870),
173     RUN_DEV(DLINK,		RT3072),
174     RUN_DEV(DLINK2,		DWA130),
175     RUN_DEV(DLINK2,		RT2870_1),
176     RUN_DEV(DLINK2,		RT2870_2),
177     RUN_DEV(DLINK2,		RT3070_1),
178     RUN_DEV(DLINK2,		RT3070_2),
179     RUN_DEV(DLINK2,		RT3070_3),
180     RUN_DEV(DLINK2,		RT3070_4),
181     RUN_DEV(DLINK2,		RT3070_5),
182     RUN_DEV(DLINK2,		RT3072),
183     RUN_DEV(DLINK2,		RT3072_1),
184     RUN_DEV(EDIMAX,		EW7717),
185     RUN_DEV(EDIMAX,		EW7718),
186     RUN_DEV(EDIMAX,		RT2870_1),
187     RUN_DEV(ENCORE,		RT3070_1),
188     RUN_DEV(ENCORE,		RT3070_2),
189     RUN_DEV(ENCORE,		RT3070_3),
190     RUN_DEV(GIGABYTE,		GNWB31N),
191     RUN_DEV(GIGABYTE,		GNWB32L),
192     RUN_DEV(GIGABYTE,		RT2870_1),
193     RUN_DEV(GIGASET,		RT3070_1),
194     RUN_DEV(GIGASET,		RT3070_2),
195     RUN_DEV(GUILLEMOT,		HWNU300),
196     RUN_DEV(HAWKING,		HWUN2),
197     RUN_DEV(HAWKING,		RT2870_1),
198     RUN_DEV(HAWKING,		RT2870_2),
199     RUN_DEV(HAWKING,		RT3070),
200     RUN_DEV(IODATA,		RT3072_1),
201     RUN_DEV(IODATA,		RT3072_2),
202     RUN_DEV(IODATA,		RT3072_3),
203     RUN_DEV(IODATA,		RT3072_4),
204     RUN_DEV(LINKSYS4,		RT3070),
205     RUN_DEV(LINKSYS4,		WUSB100),
206     RUN_DEV(LINKSYS4,		WUSB54GCV3),
207     RUN_DEV(LINKSYS4,		WUSB600N),
208     RUN_DEV(LINKSYS4,		WUSB600NV2),
209     RUN_DEV(LOGITEC,		RT2870_1),
210     RUN_DEV(LOGITEC,		RT2870_2),
211     RUN_DEV(LOGITEC,		RT2870_3),
212     RUN_DEV(LOGITEC,		LANW300NU2),
213     RUN_DEV(LOGITEC,		LANW150NU2),
214     RUN_DEV(MELCO,		RT2870_1),
215     RUN_DEV(MELCO,		RT2870_2),
216     RUN_DEV(MELCO,		WLIUCAG300N),
217     RUN_DEV(MELCO,		WLIUCG300N),
218     RUN_DEV(MELCO,		WLIUCG301N),
219     RUN_DEV(MELCO,		WLIUCGN),
220     RUN_DEV(MELCO,		WLIUCGNM),
221     RUN_DEV(MELCO,		WLIUCGNM2),
222     RUN_DEV(MOTOROLA4,		RT2770),
223     RUN_DEV(MOTOROLA4,		RT3070),
224     RUN_DEV(MSI,		RT3070_1),
225     RUN_DEV(MSI,		RT3070_2),
226     RUN_DEV(MSI,		RT3070_3),
227     RUN_DEV(MSI,		RT3070_4),
228     RUN_DEV(MSI,		RT3070_5),
229     RUN_DEV(MSI,		RT3070_6),
230     RUN_DEV(MSI,		RT3070_7),
231     RUN_DEV(MSI,		RT3070_8),
232     RUN_DEV(MSI,		RT3070_9),
233     RUN_DEV(MSI,		RT3070_10),
234     RUN_DEV(MSI,		RT3070_11),
235     RUN_DEV(OVISLINK,		RT3072),
236     RUN_DEV(PARA,		RT3070),
237     RUN_DEV(PEGATRON,		RT2870),
238     RUN_DEV(PEGATRON,		RT3070),
239     RUN_DEV(PEGATRON,		RT3070_2),
240     RUN_DEV(PEGATRON,		RT3070_3),
241     RUN_DEV(PHILIPS,		RT2870),
242     RUN_DEV(PLANEX2,		GWUS300MINIS),
243     RUN_DEV(PLANEX2,		GWUSMICRON),
244     RUN_DEV(PLANEX2,		RT2870),
245     RUN_DEV(PLANEX2,		RT3070),
246     RUN_DEV(QCOM,		RT2870),
247     RUN_DEV(QUANTA,		RT3070),
248     RUN_DEV(RALINK,		RT2070),
249     RUN_DEV(RALINK,		RT2770),
250     RUN_DEV(RALINK,		RT2870),
251     RUN_DEV(RALINK,		RT3070),
252     RUN_DEV(RALINK,		RT3071),
253     RUN_DEV(RALINK,		RT3072),
254     RUN_DEV(RALINK,		RT3370),
255     RUN_DEV(RALINK,		RT3572),
256     RUN_DEV(RALINK,		RT8070),
257     RUN_DEV(SAMSUNG,		WIS09ABGN),
258     RUN_DEV(SAMSUNG2,		RT2870_1),
259     RUN_DEV(SENAO,		RT2870_1),
260     RUN_DEV(SENAO,		RT2870_2),
261     RUN_DEV(SENAO,		RT2870_3),
262     RUN_DEV(SENAO,		RT2870_4),
263     RUN_DEV(SENAO,		RT3070),
264     RUN_DEV(SENAO,		RT3071),
265     RUN_DEV(SENAO,		RT3072_1),
266     RUN_DEV(SENAO,		RT3072_2),
267     RUN_DEV(SENAO,		RT3072_3),
268     RUN_DEV(SENAO,		RT3072_4),
269     RUN_DEV(SENAO,		RT3072_5),
270     RUN_DEV(SITECOMEU,		RT2770),
271     RUN_DEV(SITECOMEU,		RT2870_1),
272     RUN_DEV(SITECOMEU,		RT2870_2),
273     RUN_DEV(SITECOMEU,		RT2870_3),
274     RUN_DEV(SITECOMEU,		RT2870_4),
275     RUN_DEV(SITECOMEU,		RT3070),
276     RUN_DEV(SITECOMEU,		RT3070_2),
277     RUN_DEV(SITECOMEU,		RT3070_3),
278     RUN_DEV(SITECOMEU,		RT3070_4),
279     RUN_DEV(SITECOMEU,		RT3071),
280     RUN_DEV(SITECOMEU,		RT3072_1),
281     RUN_DEV(SITECOMEU,		RT3072_2),
282     RUN_DEV(SITECOMEU,		RT3072_3),
283     RUN_DEV(SITECOMEU,		RT3072_4),
284     RUN_DEV(SITECOMEU,		RT3072_5),
285     RUN_DEV(SITECOMEU,		RT3072_6),
286     RUN_DEV(SITECOMEU,		WL608),
287     RUN_DEV(SPARKLAN,		RT2870_1),
288     RUN_DEV(SPARKLAN,		RT3070),
289     RUN_DEV(SWEEX2,		LW153),
290     RUN_DEV(SWEEX2,		LW303),
291     RUN_DEV(SWEEX2,		LW313),
292     RUN_DEV(TOSHIBA,		RT3070),
293     RUN_DEV(UMEDIA,		RT2870_1),
294     RUN_DEV(ZCOM,		RT2870_1),
295     RUN_DEV(ZCOM,		RT2870_2),
296     RUN_DEV(ZINWELL,		RT2870_1),
297     RUN_DEV(ZINWELL,		RT2870_2),
298     RUN_DEV(ZINWELL,		RT3070),
299     RUN_DEV(ZINWELL,		RT3072_1),
300     RUN_DEV(ZINWELL,		RT3072_2),
301     RUN_DEV(ZYXEL,		RT2870_1),
302     RUN_DEV(ZYXEL,		RT2870_2),
303 #undef RUN_DEV
304 };
305 
306 static device_probe_t	run_match;
307 static device_attach_t	run_attach;
308 static device_detach_t	run_detach;
309 
310 static usb_callback_t	run_bulk_rx_callback;
311 static usb_callback_t	run_bulk_tx_callback0;
312 static usb_callback_t	run_bulk_tx_callback1;
313 static usb_callback_t	run_bulk_tx_callback2;
314 static usb_callback_t	run_bulk_tx_callback3;
315 static usb_callback_t	run_bulk_tx_callback4;
316 static usb_callback_t	run_bulk_tx_callback5;
317 
318 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
319 		    usb_error_t error, unsigned int index);
320 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
321 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
322 		    const uint8_t [IEEE80211_ADDR_LEN],
323 		    const uint8_t [IEEE80211_ADDR_LEN]);
324 static void	run_vap_delete(struct ieee80211vap *);
325 static void	run_cmdq_cb(void *, int);
326 static void	run_setup_tx_list(struct run_softc *,
327 		    struct run_endpoint_queue *);
328 static void	run_unsetup_tx_list(struct run_softc *,
329 		    struct run_endpoint_queue *);
330 static int	run_load_microcode(struct run_softc *);
331 static int	run_reset(struct run_softc *);
332 static usb_error_t run_do_request(struct run_softc *,
333 		    struct usb_device_request *, void *);
334 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
335 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
336 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
337 static int	run_write(struct run_softc *, uint16_t, uint32_t);
338 static int	run_write_region_1(struct run_softc *, uint16_t,
339 		    const uint8_t *, int);
340 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
341 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
342 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
343 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
344 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
345 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
346 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
347 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
348 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
349 static const char *run_get_rf(int);
350 static int	run_read_eeprom(struct run_softc *);
351 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
352 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
353 static int	run_media_change(struct ifnet *);
354 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static int	run_wme_update(struct ieee80211com *);
356 static void	run_wme_update_cb(void *);
357 static void	run_key_update_begin(struct ieee80211vap *);
358 static void	run_key_update_end(struct ieee80211vap *);
359 static void	run_key_set_cb(void *);
360 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
361 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
362 static void	run_key_delete_cb(void *);
363 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
364 static void	run_ratectl_to(void *);
365 static void	run_ratectl_cb(void *, int);
366 static void	run_drain_fifo(void *);
367 static void	run_iter_func(void *, struct ieee80211_node *);
368 static void	run_newassoc_cb(void *);
369 static void	run_newassoc(struct ieee80211_node *, int);
370 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
371 static void	run_tx_free(struct run_endpoint_queue *pq,
372 		    struct run_tx_data *, int);
373 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
374 static int	run_tx(struct run_softc *, struct mbuf *,
375 		    struct ieee80211_node *);
376 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
377 		    struct ieee80211_node *);
378 static int	run_sendprot(struct run_softc *, const struct mbuf *,
379 		    struct ieee80211_node *, int, int);
380 static int	run_tx_param(struct run_softc *, struct mbuf *,
381 		    struct ieee80211_node *,
382 		    const struct ieee80211_bpf_params *);
383 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
384 		    const struct ieee80211_bpf_params *);
385 static void	run_start(struct ifnet *);
386 static int	run_ioctl(struct ifnet *, u_long, caddr_t);
387 static void	run_set_agc(struct run_softc *, uint8_t);
388 static void	run_select_chan_group(struct run_softc *, int);
389 static void	run_set_rx_antenna(struct run_softc *, int);
390 static void	run_rt2870_set_chan(struct run_softc *, u_int);
391 static void	run_rt3070_set_chan(struct run_softc *, u_int);
392 static void	run_rt3572_set_chan(struct run_softc *, u_int);
393 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
394 static void	run_set_channel(struct ieee80211com *);
395 static void	run_scan_start(struct ieee80211com *);
396 static void	run_scan_end(struct ieee80211com *);
397 static void	run_update_beacon(struct ieee80211vap *, int);
398 static void	run_update_beacon_cb(void *);
399 static void	run_updateprot(struct ieee80211com *);
400 static void	run_updateprot_cb(void *);
401 static void	run_usb_timeout_cb(void *);
402 static void	run_reset_livelock(struct run_softc *);
403 static void	run_enable_tsf_sync(struct run_softc *);
404 static void	run_enable_mrr(struct run_softc *);
405 static void	run_set_txpreamble(struct run_softc *);
406 static void	run_set_basicrates(struct run_softc *);
407 static void	run_set_leds(struct run_softc *, uint16_t);
408 static void	run_set_bssid(struct run_softc *, const uint8_t *);
409 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
410 static void	run_updateslot(struct ifnet *);
411 static void	run_updateslot_cb(void *);
412 static void	run_update_mcast(struct ifnet *);
413 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
414 static void	run_update_promisc_locked(struct ifnet *);
415 static void	run_update_promisc(struct ifnet *);
416 static int	run_bbp_init(struct run_softc *);
417 static int	run_rt3070_rf_init(struct run_softc *);
418 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
419 		    uint8_t *);
420 static void	run_rt3070_rf_setup(struct run_softc *);
421 static int	run_txrx_enable(struct run_softc *);
422 static void	run_init(void *);
423 static void	run_init_locked(struct run_softc *);
424 static void	run_stop(void *);
425 static void	run_delay(struct run_softc *, unsigned int);
426 
427 static const struct {
428 	uint16_t	reg;
429 	uint32_t	val;
430 } rt2870_def_mac[] = {
431 	RT2870_DEF_MAC
432 };
433 
434 static const struct {
435 	uint8_t	reg;
436 	uint8_t	val;
437 } rt2860_def_bbp[] = {
438 	RT2860_DEF_BBP
439 };
440 
441 static const struct rfprog {
442 	uint8_t		chan;
443 	uint32_t	r1, r2, r3, r4;
444 } rt2860_rf2850[] = {
445 	RT2860_RF2850
446 };
447 
448 struct {
449 	uint8_t	n, r, k;
450 } rt3070_freqs[] = {
451 	RT3070_RF3052
452 };
453 
454 static const struct {
455 	uint8_t	reg;
456 	uint8_t	val;
457 } rt3070_def_rf[] = {
458 	RT3070_DEF_RF
459 },rt3572_def_rf[] = {
460 	RT3572_DEF_RF
461 };
462 
463 static const struct usb_config run_config[RUN_N_XFER] = {
464     [RUN_BULK_TX_BE] = {
465 	.type = UE_BULK,
466 	.endpoint = UE_ADDR_ANY,
467 	.ep_index = 0,
468 	.direction = UE_DIR_OUT,
469 	.bufsize = RUN_MAX_TXSZ,
470 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
471 	.callback = run_bulk_tx_callback0,
472 	.timeout = 5000,	/* ms */
473     },
474     [RUN_BULK_TX_BK] = {
475 	.type = UE_BULK,
476 	.endpoint = UE_ADDR_ANY,
477 	.direction = UE_DIR_OUT,
478 	.ep_index = 1,
479 	.bufsize = RUN_MAX_TXSZ,
480 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
481 	.callback = run_bulk_tx_callback1,
482 	.timeout = 5000,	/* ms */
483     },
484     [RUN_BULK_TX_VI] = {
485 	.type = UE_BULK,
486 	.endpoint = UE_ADDR_ANY,
487 	.direction = UE_DIR_OUT,
488 	.ep_index = 2,
489 	.bufsize = RUN_MAX_TXSZ,
490 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
491 	.callback = run_bulk_tx_callback2,
492 	.timeout = 5000,	/* ms */
493     },
494     [RUN_BULK_TX_VO] = {
495 	.type = UE_BULK,
496 	.endpoint = UE_ADDR_ANY,
497 	.direction = UE_DIR_OUT,
498 	.ep_index = 3,
499 	.bufsize = RUN_MAX_TXSZ,
500 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
501 	.callback = run_bulk_tx_callback3,
502 	.timeout = 5000,	/* ms */
503     },
504     [RUN_BULK_TX_HCCA] = {
505 	.type = UE_BULK,
506 	.endpoint = UE_ADDR_ANY,
507 	.direction = UE_DIR_OUT,
508 	.ep_index = 4,
509 	.bufsize = RUN_MAX_TXSZ,
510 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
511 	.callback = run_bulk_tx_callback4,
512 	.timeout = 5000,	/* ms */
513     },
514     [RUN_BULK_TX_PRIO] = {
515 	.type = UE_BULK,
516 	.endpoint = UE_ADDR_ANY,
517 	.direction = UE_DIR_OUT,
518 	.ep_index = 5,
519 	.bufsize = RUN_MAX_TXSZ,
520 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
521 	.callback = run_bulk_tx_callback5,
522 	.timeout = 5000,	/* ms */
523     },
524     [RUN_BULK_RX] = {
525 	.type = UE_BULK,
526 	.endpoint = UE_ADDR_ANY,
527 	.direction = UE_DIR_IN,
528 	.bufsize = RUN_MAX_RXSZ,
529 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
530 	.callback = run_bulk_rx_callback,
531     }
532 };
533 
534 static int
535 run_match(device_t self)
536 {
537 	struct usb_attach_arg *uaa = device_get_ivars(self);
538 
539 	if (uaa->usb_mode != USB_MODE_HOST)
540 		return (ENXIO);
541 	if (uaa->info.bConfigIndex != 0)
542 		return (ENXIO);
543 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
544 		return (ENXIO);
545 
546 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
547 }
548 
549 static int
550 run_attach(device_t self)
551 {
552 	struct run_softc *sc = device_get_softc(self);
553 	struct usb_attach_arg *uaa = device_get_ivars(self);
554 	struct ieee80211com *ic;
555 	struct ifnet *ifp;
556 	uint32_t ver;
557 	int i, ntries, error;
558 	uint8_t iface_index, bands;
559 
560 	device_set_usb_desc(self);
561 	sc->sc_udev = uaa->device;
562 	sc->sc_dev = self;
563 
564 	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
565 	    MTX_NETWORK_LOCK, MTX_DEF);
566 
567 	iface_index = RT2860_IFACE_INDEX;
568 
569 	error = usbd_transfer_setup(uaa->device, &iface_index,
570 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx);
571 	if (error) {
572 		device_printf(self, "could not allocate USB transfers, "
573 		    "err=%s\n", usbd_errstr(error));
574 		goto detach;
575 	}
576 
577 	RUN_LOCK(sc);
578 
579 	/* wait for the chip to settle */
580 	for (ntries = 0; ntries < 100; ntries++) {
581 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
582 			RUN_UNLOCK(sc);
583 			goto detach;
584 		}
585 		if (ver != 0 && ver != 0xffffffff)
586 			break;
587 		run_delay(sc, 10);
588 	}
589 	if (ntries == 100) {
590 		device_printf(sc->sc_dev,
591 		    "timeout waiting for NIC to initialize\n");
592 		RUN_UNLOCK(sc);
593 		goto detach;
594 	}
595 	sc->mac_ver = ver >> 16;
596 	sc->mac_rev = ver & 0xffff;
597 
598 	/* retrieve RF rev. no and various other things from EEPROM */
599 	run_read_eeprom(sc);
600 
601 	device_printf(sc->sc_dev,
602 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
603 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
604 	    sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid));
605 
606 	RUN_UNLOCK(sc);
607 
608 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
609 	if (ifp == NULL) {
610 		device_printf(sc->sc_dev, "can not if_alloc()\n");
611 		goto detach;
612 	}
613 	ic = ifp->if_l2com;
614 
615 	ifp->if_softc = sc;
616 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
617 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
618 	ifp->if_init = run_init;
619 	ifp->if_ioctl = run_ioctl;
620 	ifp->if_start = run_start;
621 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
622 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
623 	IFQ_SET_READY(&ifp->if_snd);
624 
625 	ic->ic_ifp = ifp;
626 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
627 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
628 
629 	/* set device capabilities */
630 	ic->ic_caps =
631 	    IEEE80211_C_STA |		/* station mode supported */
632 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
633 	    IEEE80211_C_IBSS |
634 	    IEEE80211_C_HOSTAP |
635 	    IEEE80211_C_WDS |		/* 4-address traffic works */
636 	    IEEE80211_C_MBSS |
637 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
638 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
639 	    IEEE80211_C_WME |		/* WME */
640 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
641 
642 	ic->ic_cryptocaps =
643 	    IEEE80211_CRYPTO_WEP |
644 	    IEEE80211_CRYPTO_AES_CCM |
645 	    IEEE80211_CRYPTO_TKIPMIC |
646 	    IEEE80211_CRYPTO_TKIP;
647 
648 	ic->ic_flags |= IEEE80211_F_DATAPAD;
649 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
650 
651 	bands = 0;
652 	setbit(&bands, IEEE80211_MODE_11B);
653 	setbit(&bands, IEEE80211_MODE_11G);
654 	ieee80211_init_channels(ic, NULL, &bands);
655 
656 	/*
657 	 * Do this by own because h/w supports
658 	 * more channels than ieee80211_init_channels()
659 	 */
660 	if (sc->rf_rev == RT2860_RF_2750 ||
661 	    sc->rf_rev == RT2860_RF_2850 ||
662 	    sc->rf_rev == RT3070_RF_3052) {
663 		/* set supported .11a rates */
664 		for (i = 14; i < N(rt2860_rf2850); i++) {
665 			uint8_t chan = rt2860_rf2850[i].chan;
666 			ic->ic_channels[ic->ic_nchans].ic_freq =
667 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
668 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
669 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
670 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
671 			ic->ic_nchans++;
672 		}
673 	}
674 
675 	ieee80211_ifattach(ic, sc->sc_bssid);
676 
677 	ic->ic_scan_start = run_scan_start;
678 	ic->ic_scan_end = run_scan_end;
679 	ic->ic_set_channel = run_set_channel;
680 	ic->ic_node_alloc = run_node_alloc;
681 	ic->ic_newassoc = run_newassoc;
682 	ic->ic_updateslot = run_updateslot;
683 	ic->ic_update_mcast = run_update_mcast;
684 	ic->ic_wme.wme_update = run_wme_update;
685 	ic->ic_raw_xmit = run_raw_xmit;
686 	ic->ic_update_promisc = run_update_promisc;
687 
688 	ic->ic_vap_create = run_vap_create;
689 	ic->ic_vap_delete = run_vap_delete;
690 
691 	ieee80211_radiotap_attach(ic,
692 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
693 		RUN_TX_RADIOTAP_PRESENT,
694 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
695 		RUN_RX_RADIOTAP_PRESENT);
696 
697 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
698 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
699 	callout_init((struct callout *)&sc->ratectl_ch, 1);
700 
701 	if (bootverbose)
702 		ieee80211_announce(ic);
703 
704 	return (0);
705 
706 detach:
707 	run_detach(self);
708 	return (ENXIO);
709 }
710 
711 static int
712 run_detach(device_t self)
713 {
714 	struct run_softc *sc = device_get_softc(self);
715 	struct ifnet *ifp = sc->sc_ifp;
716 	struct ieee80211com *ic;
717 	int i;
718 
719 	RUN_LOCK(sc);
720 	sc->sc_detached = 1;
721 	RUN_UNLOCK(sc);
722 
723 	/* stop all USB transfers */
724 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
725 
726 	RUN_LOCK(sc);
727 	sc->ratectl_run = RUN_RATECTL_OFF;
728 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
729 
730 	/* free TX list, if any */
731 	for (i = 0; i != RUN_EP_QUEUES; i++)
732 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
733 	RUN_UNLOCK(sc);
734 
735 	if (ifp) {
736 		ic = ifp->if_l2com;
737 		/* drain tasks */
738 		usb_callout_drain(&sc->ratectl_ch);
739 		ieee80211_draintask(ic, &sc->cmdq_task);
740 		ieee80211_draintask(ic, &sc->ratectl_task);
741 		ieee80211_ifdetach(ic);
742 		if_free(ifp);
743 	}
744 
745 	mtx_destroy(&sc->sc_mtx);
746 
747 	return (0);
748 }
749 
750 static struct ieee80211vap *
751 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
752     enum ieee80211_opmode opmode, int flags,
753     const uint8_t bssid[IEEE80211_ADDR_LEN],
754     const uint8_t mac[IEEE80211_ADDR_LEN])
755 {
756 	struct ifnet *ifp = ic->ic_ifp;
757 	struct run_softc *sc = ifp->if_softc;
758 	struct run_vap *rvp;
759 	struct ieee80211vap *vap;
760 	int i;
761 
762 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
763 		if_printf(ifp, "number of VAPs maxed out\n");
764 		return (NULL);
765 	}
766 
767 	switch (opmode) {
768 	case IEEE80211_M_STA:
769 		/* enable s/w bmiss handling for sta mode */
770 		flags |= IEEE80211_CLONE_NOBEACONS;
771 		/* fall though */
772 	case IEEE80211_M_IBSS:
773 	case IEEE80211_M_MONITOR:
774 	case IEEE80211_M_HOSTAP:
775 	case IEEE80211_M_MBSS:
776 		/* other than WDS vaps, only one at a time */
777 		if (!TAILQ_EMPTY(&ic->ic_vaps))
778 			return (NULL);
779 		break;
780 	case IEEE80211_M_WDS:
781 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
782 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
783 				continue;
784 			/* WDS vap's always share the local mac address. */
785 			flags &= ~IEEE80211_CLONE_BSSID;
786 			break;
787 		}
788 		if (vap == NULL) {
789 			if_printf(ifp, "wds only supported in ap mode\n");
790 			return (NULL);
791 		}
792 		break;
793 	default:
794 		if_printf(ifp, "unknown opmode %d\n", opmode);
795 		return (NULL);
796 	}
797 
798 	rvp = (struct run_vap *) malloc(sizeof(struct run_vap),
799 	    M_80211_VAP, M_NOWAIT | M_ZERO);
800 	if (rvp == NULL)
801 		return (NULL);
802 	vap = &rvp->vap;
803 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
804 
805 	vap->iv_key_update_begin = run_key_update_begin;
806 	vap->iv_key_update_end = run_key_update_end;
807 	vap->iv_update_beacon = run_update_beacon;
808 	vap->iv_max_aid = RT2870_WCID_MAX;
809 	/*
810 	 * To delete the right key from h/w, we need wcid.
811 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
812 	 * and matching wcid will be written into there. So, cast
813 	 * some spells to remove 'const' from ieee80211_key{}
814 	 */
815 	vap->iv_key_delete = (void *)run_key_delete;
816 	vap->iv_key_set = (void *)run_key_set;
817 
818 	/* override state transition machine */
819 	rvp->newstate = vap->iv_newstate;
820 	vap->iv_newstate = run_newstate;
821 
822 	ieee80211_ratectl_init(vap);
823 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
824 
825 	/* complete setup */
826 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
827 
828 	/* make sure id is always unique */
829 	for (i = 0; i < RUN_VAP_MAX; i++) {
830 		if((sc->rvp_bmap & 1 << i) == 0){
831 			sc->rvp_bmap |= 1 << i;
832 			rvp->rvp_id = i;
833 			break;
834 		}
835 	}
836 	if (sc->rvp_cnt++ == 0)
837 		ic->ic_opmode = opmode;
838 
839 	if (opmode == IEEE80211_M_HOSTAP)
840 		sc->cmdq_run = RUN_CMDQ_GO;
841 
842 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
843 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
844 
845 	return (vap);
846 }
847 
848 static void
849 run_vap_delete(struct ieee80211vap *vap)
850 {
851 	struct run_vap *rvp = RUN_VAP(vap);
852 	struct ifnet *ifp;
853 	struct ieee80211com *ic;
854 	struct run_softc *sc;
855 	uint8_t rvp_id;
856 
857 	if (vap == NULL)
858 		return;
859 
860 	ic = vap->iv_ic;
861 	ifp = ic->ic_ifp;
862 
863 	sc = ifp->if_softc;
864 
865 	RUN_LOCK(sc);
866 
867 	m_freem(rvp->beacon_mbuf);
868 	rvp->beacon_mbuf = NULL;
869 
870 	rvp_id = rvp->rvp_id;
871 	sc->ratectl_run &= ~(1 << rvp_id);
872 	sc->rvp_bmap &= ~(1 << rvp_id);
873 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
874 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
875 	--sc->rvp_cnt;
876 
877 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
878 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
879 
880 	RUN_UNLOCK(sc);
881 
882 	ieee80211_ratectl_deinit(vap);
883 	ieee80211_vap_detach(vap);
884 	free(rvp, M_80211_VAP);
885 }
886 
887 /*
888  * There are numbers of functions need to be called in context thread.
889  * Rather than creating taskqueue event for each of those functions,
890  * here is all-for-one taskqueue callback function. This function
891  * gurantees deferred functions are executed in the same order they
892  * were enqueued.
893  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
894  */
895 static void
896 run_cmdq_cb(void *arg, int pending)
897 {
898 	struct run_softc *sc = arg;
899 	uint8_t i;
900 
901 	/* call cmdq[].func locked */
902 	RUN_LOCK(sc);
903 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
904 	    i = sc->cmdq_exec, pending--) {
905 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
906 		if (sc->cmdq_run == RUN_CMDQ_GO) {
907 			/*
908 			 * If arg0 is NULL, callback func needs more
909 			 * than one arg. So, pass ptr to cmdq struct.
910 			 */
911 			if (sc->cmdq[i].arg0)
912 				sc->cmdq[i].func(sc->cmdq[i].arg0);
913 			else
914 				sc->cmdq[i].func(&sc->cmdq[i]);
915 		}
916 		sc->cmdq[i].arg0 = NULL;
917 		sc->cmdq[i].func = NULL;
918 		sc->cmdq_exec++;
919 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
920 	}
921 	RUN_UNLOCK(sc);
922 }
923 
924 static void
925 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
926 {
927 	struct run_tx_data *data;
928 
929 	memset(pq, 0, sizeof(*pq));
930 
931 	STAILQ_INIT(&pq->tx_qh);
932 	STAILQ_INIT(&pq->tx_fh);
933 
934 	for (data = &pq->tx_data[0];
935 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
936 		data->sc = sc;
937 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
938 	}
939 	pq->tx_nfree = RUN_TX_RING_COUNT;
940 }
941 
942 static void
943 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
944 {
945 	struct run_tx_data *data;
946 
947 	/* make sure any subsequent use of the queues will fail */
948 	pq->tx_nfree = 0;
949 	STAILQ_INIT(&pq->tx_fh);
950 	STAILQ_INIT(&pq->tx_qh);
951 
952 	/* free up all node references and mbufs */
953 	for (data = &pq->tx_data[0];
954 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
955 		if (data->m != NULL) {
956 			m_freem(data->m);
957 			data->m = NULL;
958 		}
959 		if (data->ni != NULL) {
960 			ieee80211_free_node(data->ni);
961 			data->ni = NULL;
962 		}
963 	}
964 }
965 
966 static int
967 run_load_microcode(struct run_softc *sc)
968 {
969 	usb_device_request_t req;
970 	const struct firmware *fw;
971 	const u_char *base;
972 	uint32_t tmp;
973 	int ntries, error;
974 	const uint64_t *temp;
975 	uint64_t bytes;
976 
977 	RUN_UNLOCK(sc);
978 	fw = firmware_get("runfw");
979 	RUN_LOCK(sc);
980 	if (fw == NULL) {
981 		device_printf(sc->sc_dev,
982 		    "failed loadfirmware of file %s\n", "runfw");
983 		return ENOENT;
984 	}
985 
986 	if (fw->datasize != 8192) {
987 		device_printf(sc->sc_dev,
988 		    "invalid firmware size (should be 8KB)\n");
989 		error = EINVAL;
990 		goto fail;
991 	}
992 
993 	/*
994 	 * RT3071/RT3072 use a different firmware
995 	 * run-rt2870 (8KB) contains both,
996 	 * first half (4KB) is for rt2870,
997 	 * last half is for rt3071.
998 	 */
999 	base = fw->data;
1000 	if ((sc->mac_ver) != 0x2860 &&
1001 	    (sc->mac_ver) != 0x2872 &&
1002 	    (sc->mac_ver) != 0x3070) {
1003 		base += 4096;
1004 	}
1005 
1006 	/* cheap sanity check */
1007 	temp = fw->data;
1008 	bytes = *temp;
1009 	if (bytes != be64toh(0xffffff0210280210)) {
1010 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1011 		error = EINVAL;
1012 		goto fail;
1013 	}
1014 
1015 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1016 	/* write microcode image */
1017 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1018 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1019 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1020 
1021 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1022 	req.bRequest = RT2870_RESET;
1023 	USETW(req.wValue, 8);
1024 	USETW(req.wIndex, 0);
1025 	USETW(req.wLength, 0);
1026 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL))
1027 	    != 0) {
1028 		device_printf(sc->sc_dev, "firmware reset failed\n");
1029 		goto fail;
1030 	}
1031 
1032 	run_delay(sc, 10);
1033 
1034 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1035 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1036 		goto fail;
1037 
1038 	/* wait until microcontroller is ready */
1039 	for (ntries = 0; ntries < 1000; ntries++) {
1040 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1041 			goto fail;
1042 		}
1043 		if (tmp & RT2860_MCU_READY)
1044 			break;
1045 		run_delay(sc, 10);
1046 	}
1047 	if (ntries == 1000) {
1048 		device_printf(sc->sc_dev,
1049 		    "timeout waiting for MCU to initialize\n");
1050 		error = ETIMEDOUT;
1051 		goto fail;
1052 	}
1053 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1054 	    (base == fw->data) ? "RT2870" : "RT3071",
1055 	    *(base + 4092), *(base + 4093));
1056 
1057 fail:
1058 	firmware_put(fw, FIRMWARE_UNLOAD);
1059 	return (error);
1060 }
1061 
1062 int
1063 run_reset(struct run_softc *sc)
1064 {
1065 	usb_device_request_t req;
1066 
1067 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1068 	req.bRequest = RT2870_RESET;
1069 	USETW(req.wValue, 1);
1070 	USETW(req.wIndex, 0);
1071 	USETW(req.wLength, 0);
1072 	return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL));
1073 }
1074 
1075 static usb_error_t
1076 run_do_request(struct run_softc *sc,
1077     struct usb_device_request *req, void *data)
1078 {
1079 	usb_error_t err;
1080 	int ntries = 10;
1081 
1082 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1083 
1084 	while (ntries--) {
1085 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
1086 		    req, data, 0, NULL, 250 /* ms */);
1087 		if (err == 0)
1088 			break;
1089 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1090 		    usbd_errstr(err));
1091 		run_delay(sc, 10);
1092 	}
1093 	return (err);
1094 }
1095 
1096 static int
1097 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1098 {
1099 	uint32_t tmp;
1100 	int error;
1101 
1102 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1103 	if (error == 0)
1104 		*val = le32toh(tmp);
1105 	else
1106 		*val = 0xffffffff;
1107 	return (error);
1108 }
1109 
1110 static int
1111 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1112 {
1113 	usb_device_request_t req;
1114 
1115 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1116 	req.bRequest = RT2870_READ_REGION_1;
1117 	USETW(req.wValue, 0);
1118 	USETW(req.wIndex, reg);
1119 	USETW(req.wLength, len);
1120 
1121 	return (run_do_request(sc, &req, buf));
1122 }
1123 
1124 static int
1125 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1126 {
1127 	usb_device_request_t req;
1128 
1129 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1130 	req.bRequest = RT2870_WRITE_2;
1131 	USETW(req.wValue, val);
1132 	USETW(req.wIndex, reg);
1133 	USETW(req.wLength, 0);
1134 
1135 	return (run_do_request(sc, &req, NULL));
1136 }
1137 
1138 static int
1139 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1140 {
1141 	int error;
1142 
1143 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1144 		error = run_write_2(sc, reg + 2, val >> 16);
1145 	return (error);
1146 }
1147 
1148 static int
1149 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1150     int len)
1151 {
1152 #if 1
1153 	int i, error = 0;
1154 	/*
1155 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1156 	 * We thus issue multiple WRITE_2 commands instead.
1157 	 */
1158 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1159 	for (i = 0; i < len && error == 0; i += 2)
1160 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1161 	return (error);
1162 #else
1163 	usb_device_request_t req;
1164 
1165 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1166 	req.bRequest = RT2870_WRITE_REGION_1;
1167 	USETW(req.wValue, 0);
1168 	USETW(req.wIndex, reg);
1169 	USETW(req.wLength, len);
1170 	return (run_do_request(sc, &req, buf));
1171 #endif
1172 }
1173 
1174 static int
1175 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1176 {
1177 	int i, error = 0;
1178 
1179 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1180 	for (i = 0; i < len && error == 0; i += 4)
1181 		error = run_write(sc, reg + i, val);
1182 	return (error);
1183 }
1184 
1185 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1186 static int
1187 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1188 {
1189 	uint32_t tmp;
1190 	uint16_t reg;
1191 	int error, ntries;
1192 
1193 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1194 		return (error);
1195 
1196 	addr *= 2;
1197 	/*-
1198 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1199 	 * DATA0: F E D C
1200 	 * DATA1: B A 9 8
1201 	 * DATA2: 7 6 5 4
1202 	 * DATA3: 3 2 1 0
1203 	 */
1204 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1205 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1206 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1207 	for (ntries = 0; ntries < 100; ntries++) {
1208 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1209 			return (error);
1210 		if (!(tmp & RT3070_EFSROM_KICK))
1211 			break;
1212 		run_delay(sc, 2);
1213 	}
1214 	if (ntries == 100)
1215 		return (ETIMEDOUT);
1216 
1217 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1218 		*val = 0xffff;	/* address not found */
1219 		return (0);
1220 	}
1221 	/* determine to which 32-bit register our 16-bit word belongs */
1222 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1223 	if ((error = run_read(sc, reg, &tmp)) != 0)
1224 		return (error);
1225 
1226 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1227 	return (0);
1228 }
1229 
1230 static int
1231 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1232 {
1233 	usb_device_request_t req;
1234 	uint16_t tmp;
1235 	int error;
1236 
1237 	addr *= 2;
1238 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1239 	req.bRequest = RT2870_EEPROM_READ;
1240 	USETW(req.wValue, 0);
1241 	USETW(req.wIndex, addr);
1242 	USETW(req.wLength, sizeof tmp);
1243 
1244 	error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp);
1245 	if (error == 0)
1246 		*val = le16toh(tmp);
1247 	else
1248 		*val = 0xffff;
1249 	return (error);
1250 }
1251 
1252 static __inline int
1253 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1254 {
1255 	/* either eFUSE ROM or EEPROM */
1256 	return sc->sc_srom_read(sc, addr, val);
1257 }
1258 
1259 static int
1260 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1261 {
1262 	uint32_t tmp;
1263 	int error, ntries;
1264 
1265 	for (ntries = 0; ntries < 10; ntries++) {
1266 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1267 			return (error);
1268 		if (!(tmp & RT2860_RF_REG_CTRL))
1269 			break;
1270 	}
1271 	if (ntries == 10)
1272 		return (ETIMEDOUT);
1273 
1274 	/* RF registers are 24-bit on the RT2860 */
1275 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1276 	    (val & 0x3fffff) << 2 | (reg & 3);
1277 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1278 }
1279 
1280 static int
1281 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1282 {
1283 	uint32_t tmp;
1284 	int error, ntries;
1285 
1286 	for (ntries = 0; ntries < 100; ntries++) {
1287 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1288 			return (error);
1289 		if (!(tmp & RT3070_RF_KICK))
1290 			break;
1291 	}
1292 	if (ntries == 100)
1293 		return (ETIMEDOUT);
1294 
1295 	tmp = RT3070_RF_KICK | reg << 8;
1296 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1297 		return (error);
1298 
1299 	for (ntries = 0; ntries < 100; ntries++) {
1300 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1301 			return (error);
1302 		if (!(tmp & RT3070_RF_KICK))
1303 			break;
1304 	}
1305 	if (ntries == 100)
1306 		return (ETIMEDOUT);
1307 
1308 	*val = tmp & 0xff;
1309 	return (0);
1310 }
1311 
1312 static int
1313 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1314 {
1315 	uint32_t tmp;
1316 	int error, ntries;
1317 
1318 	for (ntries = 0; ntries < 10; ntries++) {
1319 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1320 			return (error);
1321 		if (!(tmp & RT3070_RF_KICK))
1322 			break;
1323 	}
1324 	if (ntries == 10)
1325 		return (ETIMEDOUT);
1326 
1327 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1328 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1329 }
1330 
1331 static int
1332 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1333 {
1334 	uint32_t tmp;
1335 	int ntries, error;
1336 
1337 	for (ntries = 0; ntries < 10; ntries++) {
1338 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1339 			return (error);
1340 		if (!(tmp & RT2860_BBP_CSR_KICK))
1341 			break;
1342 	}
1343 	if (ntries == 10)
1344 		return (ETIMEDOUT);
1345 
1346 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1347 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1348 		return (error);
1349 
1350 	for (ntries = 0; ntries < 10; ntries++) {
1351 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1352 			return (error);
1353 		if (!(tmp & RT2860_BBP_CSR_KICK))
1354 			break;
1355 	}
1356 	if (ntries == 10)
1357 		return (ETIMEDOUT);
1358 
1359 	*val = tmp & 0xff;
1360 	return (0);
1361 }
1362 
1363 static int
1364 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1365 {
1366 	uint32_t tmp;
1367 	int ntries, error;
1368 
1369 	for (ntries = 0; ntries < 10; ntries++) {
1370 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1371 			return (error);
1372 		if (!(tmp & RT2860_BBP_CSR_KICK))
1373 			break;
1374 	}
1375 	if (ntries == 10)
1376 		return (ETIMEDOUT);
1377 
1378 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1379 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1380 }
1381 
1382 /*
1383  * Send a command to the 8051 microcontroller unit.
1384  */
1385 static int
1386 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1387 {
1388 	uint32_t tmp;
1389 	int error, ntries;
1390 
1391 	for (ntries = 0; ntries < 100; ntries++) {
1392 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1393 			return error;
1394 		if (!(tmp & RT2860_H2M_BUSY))
1395 			break;
1396 	}
1397 	if (ntries == 100)
1398 		return ETIMEDOUT;
1399 
1400 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1401 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1402 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1403 	return (error);
1404 }
1405 
1406 /*
1407  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1408  * Used to adjust per-rate Tx power registers.
1409  */
1410 static __inline uint32_t
1411 b4inc(uint32_t b32, int8_t delta)
1412 {
1413 	int8_t i, b4;
1414 
1415 	for (i = 0; i < 8; i++) {
1416 		b4 = b32 & 0xf;
1417 		b4 += delta;
1418 		if (b4 < 0)
1419 			b4 = 0;
1420 		else if (b4 > 0xf)
1421 			b4 = 0xf;
1422 		b32 = b32 >> 4 | b4 << 28;
1423 	}
1424 	return (b32);
1425 }
1426 
1427 static const char *
1428 run_get_rf(int rev)
1429 {
1430 	switch (rev) {
1431 	case RT2860_RF_2820:	return "RT2820";
1432 	case RT2860_RF_2850:	return "RT2850";
1433 	case RT2860_RF_2720:	return "RT2720";
1434 	case RT2860_RF_2750:	return "RT2750";
1435 	case RT3070_RF_3020:	return "RT3020";
1436 	case RT3070_RF_2020:	return "RT2020";
1437 	case RT3070_RF_3021:	return "RT3021";
1438 	case RT3070_RF_3022:	return "RT3022";
1439 	case RT3070_RF_3052:	return "RT3052";
1440 	}
1441 	return ("unknown");
1442 }
1443 
1444 int
1445 run_read_eeprom(struct run_softc *sc)
1446 {
1447 	int8_t delta_2ghz, delta_5ghz;
1448 	uint32_t tmp;
1449 	uint16_t val;
1450 	int ridx, ant, i;
1451 
1452 	/* check whether the ROM is eFUSE ROM or EEPROM */
1453 	sc->sc_srom_read = run_eeprom_read_2;
1454 	if (sc->mac_ver >= 0x3070) {
1455 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1456 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1457 		if (tmp & RT3070_SEL_EFUSE)
1458 			sc->sc_srom_read = run_efuse_read_2;
1459 	}
1460 
1461 	/* read ROM version */
1462 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1463 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1464 
1465 	/* read MAC address */
1466 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1467 	sc->sc_bssid[0] = val & 0xff;
1468 	sc->sc_bssid[1] = val >> 8;
1469 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1470 	sc->sc_bssid[2] = val & 0xff;
1471 	sc->sc_bssid[3] = val >> 8;
1472 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1473 	sc->sc_bssid[4] = val & 0xff;
1474 	sc->sc_bssid[5] = val >> 8;
1475 
1476 	/* read vender BBP settings */
1477 	for (i = 0; i < 10; i++) {
1478 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1479 		sc->bbp[i].val = val & 0xff;
1480 		sc->bbp[i].reg = val >> 8;
1481 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1482 	}
1483 	if (sc->mac_ver >= 0x3071) {
1484 		/* read vendor RF settings */
1485 		for (i = 0; i < 10; i++) {
1486 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1487 			sc->rf[i].val = val & 0xff;
1488 			sc->rf[i].reg = val >> 8;
1489 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1490 			    sc->rf[i].val);
1491 		}
1492 	}
1493 
1494 	/* read RF frequency offset from EEPROM */
1495 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1496 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1497 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1498 
1499 	if (val >> 8 != 0xff) {
1500 		/* read LEDs operating mode */
1501 		sc->leds = val >> 8;
1502 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1503 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1504 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1505 	} else {
1506 		/* broken EEPROM, use default settings */
1507 		sc->leds = 0x01;
1508 		sc->led[0] = 0x5555;
1509 		sc->led[1] = 0x2221;
1510 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1511 	}
1512 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1513 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1514 
1515 	/* read RF information */
1516 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1517 	if (val == 0xffff) {
1518 		DPRINTF("invalid EEPROM antenna info, using default\n");
1519 		if (sc->mac_ver == 0x3572) {
1520 			/* default to RF3052 2T2R */
1521 			sc->rf_rev = RT3070_RF_3052;
1522 			sc->ntxchains = 2;
1523 			sc->nrxchains = 2;
1524 		} else if (sc->mac_ver >= 0x3070) {
1525 			/* default to RF3020 1T1R */
1526 			sc->rf_rev = RT3070_RF_3020;
1527 			sc->ntxchains = 1;
1528 			sc->nrxchains = 1;
1529 		} else {
1530 			/* default to RF2820 1T2R */
1531 			sc->rf_rev = RT2860_RF_2820;
1532 			sc->ntxchains = 1;
1533 			sc->nrxchains = 2;
1534 		}
1535 	} else {
1536 		sc->rf_rev = (val >> 8) & 0xf;
1537 		sc->ntxchains = (val >> 4) & 0xf;
1538 		sc->nrxchains = val & 0xf;
1539 	}
1540 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1541 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1542 
1543 	/* check if RF supports automatic Tx access gain control */
1544 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1545 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1546 	/* check if driver should patch the DAC issue */
1547 	if ((val >> 8) != 0xff)
1548 		sc->patch_dac = (val >> 15) & 1;
1549 	if ((val & 0xff) != 0xff) {
1550 		sc->ext_5ghz_lna = (val >> 3) & 1;
1551 		sc->ext_2ghz_lna = (val >> 2) & 1;
1552 		/* check if RF supports automatic Tx access gain control */
1553 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1554 		/* check if we have a hardware radio switch */
1555 		sc->rfswitch = val & 1;
1556 	}
1557 
1558 	/* read power settings for 2GHz channels */
1559 	for (i = 0; i < 14; i += 2) {
1560 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1561 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1562 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1563 
1564 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1565 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1566 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1567 	}
1568 	/* fix broken Tx power entries */
1569 	for (i = 0; i < 14; i++) {
1570 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1571 			sc->txpow1[i] = 5;
1572 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1573 			sc->txpow2[i] = 5;
1574 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1575 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1576 	}
1577 	/* read power settings for 5GHz channels */
1578 	for (i = 0; i < 40; i += 2) {
1579 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1580 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1581 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1582 
1583 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1584 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1585 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1586 	}
1587 	/* fix broken Tx power entries */
1588 	for (i = 0; i < 40; i++) {
1589 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1590 			sc->txpow1[14 + i] = 5;
1591 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1592 			sc->txpow2[14 + i] = 5;
1593 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1594 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1595 		    sc->txpow2[14 + i]);
1596 	}
1597 
1598 	/* read Tx power compensation for each Tx rate */
1599 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1600 	delta_2ghz = delta_5ghz = 0;
1601 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1602 		delta_2ghz = val & 0xf;
1603 		if (!(val & 0x40))	/* negative number */
1604 			delta_2ghz = -delta_2ghz;
1605 	}
1606 	val >>= 8;
1607 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1608 		delta_5ghz = val & 0xf;
1609 		if (!(val & 0x40))	/* negative number */
1610 			delta_5ghz = -delta_5ghz;
1611 	}
1612 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1613 	    delta_2ghz, delta_5ghz);
1614 
1615 	for (ridx = 0; ridx < 5; ridx++) {
1616 		uint32_t reg;
1617 
1618 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1619 		reg = val;
1620 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1621 		reg |= (uint32_t)val << 16;
1622 
1623 		sc->txpow20mhz[ridx] = reg;
1624 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1625 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1626 
1627 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1628 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1629 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1630 	}
1631 
1632 	/* read RSSI offsets and LNA gains from EEPROM */
1633 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1634 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1635 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1636 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1637 	if (sc->mac_ver >= 0x3070) {
1638 		/*
1639 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1640 		 * field contains the Tx mixer gain for the 2GHz band.
1641 		 */
1642 		if ((val & 0xff) != 0xff)
1643 			sc->txmixgain_2ghz = val & 0x7;
1644 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1645 	} else
1646 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1647 	sc->lna[2] = val >> 8;		/* channel group 2 */
1648 
1649 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1650 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1651 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1652 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1653 	if (sc->mac_ver == 0x3572) {
1654 		/*
1655 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1656 		 * field contains the Tx mixer gain for the 5GHz band.
1657 		 */
1658 		if ((val & 0xff) != 0xff)
1659 			sc->txmixgain_5ghz = val & 0x7;
1660 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1661 	} else
1662 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1663 	sc->lna[3] = val >> 8;		/* channel group 3 */
1664 
1665 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1666 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1667 	sc->lna[1] = val >> 8;		/* channel group 1 */
1668 
1669 	/* fix broken 5GHz LNA entries */
1670 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1671 		DPRINTF("invalid LNA for channel group %d\n", 2);
1672 		sc->lna[2] = sc->lna[1];
1673 	}
1674 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1675 		DPRINTF("invalid LNA for channel group %d\n", 3);
1676 		sc->lna[3] = sc->lna[1];
1677 	}
1678 
1679 	/* fix broken RSSI offset entries */
1680 	for (ant = 0; ant < 3; ant++) {
1681 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1682 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1683 			    ant + 1, sc->rssi_2ghz[ant]);
1684 			sc->rssi_2ghz[ant] = 0;
1685 		}
1686 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1687 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1688 			    ant + 1, sc->rssi_5ghz[ant]);
1689 			sc->rssi_5ghz[ant] = 0;
1690 		}
1691 	}
1692 	return (0);
1693 }
1694 
1695 static struct ieee80211_node *
1696 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1697 {
1698 	return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1699 }
1700 
1701 static int
1702 run_media_change(struct ifnet *ifp)
1703 {
1704 	struct ieee80211vap *vap = ifp->if_softc;
1705 	struct ieee80211com *ic = vap->iv_ic;
1706 	const struct ieee80211_txparam *tp;
1707 	struct run_softc *sc = ic->ic_ifp->if_softc;
1708 	uint8_t rate, ridx;
1709 	int error;
1710 
1711 	RUN_LOCK(sc);
1712 
1713 	error = ieee80211_media_change(ifp);
1714 	if (error != ENETRESET) {
1715 		RUN_UNLOCK(sc);
1716 		return (error);
1717 	}
1718 
1719 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1720 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1721 		struct ieee80211_node *ni;
1722 		struct run_node	*rn;
1723 
1724 		rate = ic->ic_sup_rates[ic->ic_curmode].
1725 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1726 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1727 			if (rt2860_rates[ridx].rate == rate)
1728 				break;
1729 		ni = ieee80211_ref_node(vap->iv_bss);
1730 		rn = (struct run_node *)ni;
1731 		rn->fix_ridx = ridx;
1732 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1733 		ieee80211_free_node(ni);
1734 	}
1735 
1736 #if 0
1737 	if ((ifp->if_flags & IFF_UP) &&
1738 	    (ifp->if_drv_flags &  IFF_DRV_RUNNING)){
1739 		run_init_locked(sc);
1740 	}
1741 #endif
1742 
1743 	RUN_UNLOCK(sc);
1744 
1745 	return (0);
1746 }
1747 
1748 static int
1749 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1750 {
1751 	const struct ieee80211_txparam *tp;
1752 	struct ieee80211com *ic = vap->iv_ic;
1753 	struct run_softc *sc = ic->ic_ifp->if_softc;
1754 	struct run_vap *rvp = RUN_VAP(vap);
1755 	enum ieee80211_state ostate;
1756 	uint32_t sta[3];
1757 	uint32_t tmp;
1758 	uint8_t ratectl;
1759 	uint8_t restart_ratectl = 0;
1760 	uint8_t bid = 1 << rvp->rvp_id;
1761 
1762 	ostate = vap->iv_state;
1763 	DPRINTF("%s -> %s\n",
1764 		ieee80211_state_name[ostate],
1765 		ieee80211_state_name[nstate]);
1766 
1767 	IEEE80211_UNLOCK(ic);
1768 	RUN_LOCK(sc);
1769 
1770 	ratectl = sc->ratectl_run; /* remember current state */
1771 	sc->ratectl_run = RUN_RATECTL_OFF;
1772 	usb_callout_stop(&sc->ratectl_ch);
1773 
1774 	if (ostate == IEEE80211_S_RUN) {
1775 		/* turn link LED off */
1776 		run_set_leds(sc, RT2860_LED_RADIO);
1777 	}
1778 
1779 	switch (nstate) {
1780 	case IEEE80211_S_INIT:
1781 		restart_ratectl = 1;
1782 
1783 		if (ostate != IEEE80211_S_RUN)
1784 			break;
1785 
1786 		ratectl &= ~bid;
1787 		sc->runbmap &= ~bid;
1788 
1789 		/* abort TSF synchronization if there is no vap running */
1790 		if (--sc->running == 0) {
1791 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1792 			run_write(sc, RT2860_BCN_TIME_CFG,
1793 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1794 			    RT2860_TBTT_TIMER_EN));
1795 		}
1796 		break;
1797 
1798 	case IEEE80211_S_RUN:
1799 		if (!(sc->runbmap & bid)) {
1800 			if(sc->running++)
1801 				restart_ratectl = 1;
1802 			sc->runbmap |= bid;
1803 		}
1804 
1805 		m_freem(rvp->beacon_mbuf);
1806 		rvp->beacon_mbuf = NULL;
1807 
1808 		switch (vap->iv_opmode) {
1809 		case IEEE80211_M_HOSTAP:
1810 		case IEEE80211_M_MBSS:
1811 			sc->ap_running |= bid;
1812 			ic->ic_opmode = vap->iv_opmode;
1813 			run_update_beacon_cb(vap);
1814 			break;
1815 		case IEEE80211_M_IBSS:
1816 			sc->adhoc_running |= bid;
1817 			if (!sc->ap_running)
1818 				ic->ic_opmode = vap->iv_opmode;
1819 			run_update_beacon_cb(vap);
1820 			break;
1821 		case IEEE80211_M_STA:
1822 			sc->sta_running |= bid;
1823 			if (!sc->ap_running && !sc->adhoc_running)
1824 				ic->ic_opmode = vap->iv_opmode;
1825 
1826 			/* read statistic counters (clear on read) */
1827 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1828 			    (uint8_t *)sta, sizeof sta);
1829 
1830 			break;
1831 		default:
1832 			ic->ic_opmode = vap->iv_opmode;
1833 			break;
1834 		}
1835 
1836 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1837 			struct ieee80211_node *ni;
1838 
1839 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1840 				RUN_UNLOCK(sc);
1841 				IEEE80211_LOCK(ic);
1842 				return (-1);
1843 			}
1844 			run_updateslot(ic->ic_ifp);
1845 			run_enable_mrr(sc);
1846 			run_set_txpreamble(sc);
1847 			run_set_basicrates(sc);
1848 			ni = ieee80211_ref_node(vap->iv_bss);
1849 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1850 			run_set_bssid(sc, ni->ni_bssid);
1851 			ieee80211_free_node(ni);
1852 			run_enable_tsf_sync(sc);
1853 
1854 			/* enable automatic rate adaptation */
1855 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1856 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1857 				ratectl |= bid;
1858 		}
1859 
1860 		/* turn link LED on */
1861 		run_set_leds(sc, RT2860_LED_RADIO |
1862 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1863 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1864 
1865 		break;
1866 	default:
1867 		DPRINTFN(6, "undefined case\n");
1868 		break;
1869 	}
1870 
1871 	/* restart amrr for running VAPs */
1872 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1873 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1874 
1875 	RUN_UNLOCK(sc);
1876 	IEEE80211_LOCK(ic);
1877 
1878 	return(rvp->newstate(vap, nstate, arg));
1879 }
1880 
1881 /* ARGSUSED */
1882 static void
1883 run_wme_update_cb(void *arg)
1884 {
1885 	struct ieee80211com *ic = arg;
1886 	struct run_softc *sc = ic->ic_ifp->if_softc;
1887 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1888 	int aci, error = 0;
1889 
1890 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1891 
1892 	/* update MAC TX configuration registers */
1893 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1894 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1895 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1896 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1897 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1898 		    wmesp->wme_params[aci].wmep_txopLimit);
1899 		if (error) goto err;
1900 	}
1901 
1902 	/* update SCH/DMA registers too */
1903 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1904 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1905 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1906 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1907 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1908 	if (error) goto err;
1909 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1910 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1911 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1912 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1913 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1914 	if (error) goto err;
1915 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1916 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1917 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1918 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1919 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1920 	if (error) goto err;
1921 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1922 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1923 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1924 	if (error) goto err;
1925 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1926 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1927 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1928 
1929 err:
1930 	if (error)
1931 		DPRINTF("WME update failed\n");
1932 
1933 	return;
1934 }
1935 
1936 static int
1937 run_wme_update(struct ieee80211com *ic)
1938 {
1939 	struct run_softc *sc = ic->ic_ifp->if_softc;
1940 
1941 	/* sometime called wothout lock */
1942 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1943 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1944 		DPRINTF("cmdq_store=%d\n", i);
1945 		sc->cmdq[i].func = run_wme_update_cb;
1946 		sc->cmdq[i].arg0 = ic;
1947 		ieee80211_runtask(ic, &sc->cmdq_task);
1948 		return (0);
1949 	}
1950 
1951 	RUN_LOCK(sc);
1952 	run_wme_update_cb(ic);
1953 	RUN_UNLOCK(sc);
1954 
1955 	/* return whatever, upper layer desn't care anyway */
1956 	return (0);
1957 }
1958 
1959 static void
1960 run_key_update_begin(struct ieee80211vap *vap)
1961 {
1962 	/*
1963 	 * To avoid out-of-order events, both run_key_set() and
1964 	 * _delete() are deferred and handled by run_cmdq_cb().
1965 	 * So, there is nothing we need to do here.
1966 	 */
1967 }
1968 
1969 static void
1970 run_key_update_end(struct ieee80211vap *vap)
1971 {
1972 	/* null */
1973 }
1974 
1975 static void
1976 run_key_set_cb(void *arg)
1977 {
1978 	struct run_cmdq *cmdq = arg;
1979 	struct ieee80211vap *vap = cmdq->arg1;
1980 	struct ieee80211_key *k = cmdq->k;
1981 	struct ieee80211com *ic = vap->iv_ic;
1982 	struct run_softc *sc = ic->ic_ifp->if_softc;
1983 	struct ieee80211_node *ni;
1984 	uint32_t attr;
1985 	uint16_t base, associd;
1986 	uint8_t mode, wcid, iv[8];
1987 
1988 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1989 
1990 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1991 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1992 	else
1993 		ni = vap->iv_bss;
1994 	associd = (ni != NULL) ? ni->ni_associd : 0;
1995 
1996 	/* map net80211 cipher to RT2860 security mode */
1997 	switch (k->wk_cipher->ic_cipher) {
1998 	case IEEE80211_CIPHER_WEP:
1999 		if(k->wk_keylen < 8)
2000 			mode = RT2860_MODE_WEP40;
2001 		else
2002 			mode = RT2860_MODE_WEP104;
2003 		break;
2004 	case IEEE80211_CIPHER_TKIP:
2005 		mode = RT2860_MODE_TKIP;
2006 		break;
2007 	case IEEE80211_CIPHER_AES_CCM:
2008 		mode = RT2860_MODE_AES_CCMP;
2009 		break;
2010 	default:
2011 		DPRINTF("undefined case\n");
2012 		return;
2013 	}
2014 
2015 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2016 	    associd, k->wk_keyix, mode,
2017 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2018 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2019 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2020 
2021 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2022 		wcid = 0;	/* NB: update WCID0 for group keys */
2023 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2024 	} else {
2025 		wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2026 		    1 : RUN_AID2WCID(associd);
2027 		base = RT2860_PKEY(wcid);
2028 	}
2029 
2030 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2031 		if(run_write_region_1(sc, base, k->wk_key, 16))
2032 			return;
2033 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2034 			return;
2035 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2036 			return;
2037 	} else {
2038 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2039 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2040 			return;
2041 	}
2042 
2043 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2044 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2045 		/* set initial packet number in IV+EIV */
2046 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2047 			memset(iv, 0, sizeof iv);
2048 			iv[3] = vap->iv_def_txkey << 6;
2049 		} else {
2050 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2051 				iv[0] = k->wk_keytsc >> 8;
2052 				iv[1] = (iv[0] | 0x20) & 0x7f;
2053 				iv[2] = k->wk_keytsc;
2054 			} else /* CCMP */ {
2055 				iv[0] = k->wk_keytsc;
2056 				iv[1] = k->wk_keytsc >> 8;
2057 				iv[2] = 0;
2058 			}
2059 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2060 			iv[4] = k->wk_keytsc >> 16;
2061 			iv[5] = k->wk_keytsc >> 24;
2062 			iv[6] = k->wk_keytsc >> 32;
2063 			iv[7] = k->wk_keytsc >> 40;
2064 		}
2065 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2066 			return;
2067 	}
2068 
2069 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2070 		/* install group key */
2071 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2072 			return;
2073 		attr &= ~(0xf << (k->wk_keyix * 4));
2074 		attr |= mode << (k->wk_keyix * 4);
2075 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2076 			return;
2077 	} else {
2078 		/* install pairwise key */
2079 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2080 			return;
2081 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2082 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2083 			return;
2084 	}
2085 
2086 	/* TODO create a pass-thru key entry? */
2087 
2088 	/* need wcid to delete the right key later */
2089 	k->wk_pad = wcid;
2090 }
2091 
2092 /*
2093  * Don't have to be deferred, but in order to keep order of
2094  * execution, i.e. with run_key_delete(), defer this and let
2095  * run_cmdq_cb() maintain the order.
2096  *
2097  * return 0 on error
2098  */
2099 static int
2100 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2101 		const uint8_t mac[IEEE80211_ADDR_LEN])
2102 {
2103 	struct ieee80211com *ic = vap->iv_ic;
2104 	struct run_softc *sc = ic->ic_ifp->if_softc;
2105 	uint32_t i;
2106 
2107 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2108 	DPRINTF("cmdq_store=%d\n", i);
2109 	sc->cmdq[i].func = run_key_set_cb;
2110 	sc->cmdq[i].arg0 = NULL;
2111 	sc->cmdq[i].arg1 = vap;
2112 	sc->cmdq[i].k = k;
2113 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2114 	ieee80211_runtask(ic, &sc->cmdq_task);
2115 
2116 	/*
2117 	 * To make sure key will be set when hostapd
2118 	 * calls iv_key_set() before if_init().
2119 	 */
2120 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2121 		RUN_LOCK(sc);
2122 		sc->cmdq_key_set = RUN_CMDQ_GO;
2123 		RUN_UNLOCK(sc);
2124 	}
2125 
2126 	return (1);
2127 }
2128 
2129 /*
2130  * If wlan is destroyed without being brought down i.e. without
2131  * wlan down or wpa_cli terminate, this function is called after
2132  * vap is gone. Don't refer it.
2133  */
2134 static void
2135 run_key_delete_cb(void *arg)
2136 {
2137 	struct run_cmdq *cmdq = arg;
2138 	struct run_softc *sc = cmdq->arg1;
2139 	struct ieee80211_key *k = &cmdq->key;
2140 	uint32_t attr;
2141 	uint8_t wcid;
2142 
2143 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2144 
2145 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2146 		/* remove group key */
2147 		DPRINTF("removing group key\n");
2148 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2149 		attr &= ~(0xf << (k->wk_keyix * 4));
2150 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2151 	} else {
2152 		/* remove pairwise key */
2153 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2154 		/* matching wcid was written to wk_pad in run_key_set() */
2155 		wcid = k->wk_pad;
2156 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2157 		attr &= ~0xf;
2158 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2159 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2160 	}
2161 
2162 	k->wk_pad = 0;
2163 }
2164 
2165 /*
2166  * return 0 on error
2167  */
2168 static int
2169 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2170 {
2171 	struct ieee80211com *ic = vap->iv_ic;
2172 	struct run_softc *sc = ic->ic_ifp->if_softc;
2173 	struct ieee80211_key *k0;
2174 	uint32_t i;
2175 
2176 	/*
2177 	 * When called back, key might be gone. So, make a copy
2178 	 * of some values need to delete keys before deferring.
2179 	 * But, because of LOR with node lock, cannot use lock here.
2180 	 * So, use atomic instead.
2181 	 */
2182 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2183 	DPRINTF("cmdq_store=%d\n", i);
2184 	sc->cmdq[i].func = run_key_delete_cb;
2185 	sc->cmdq[i].arg0 = NULL;
2186 	sc->cmdq[i].arg1 = sc;
2187 	k0 = &sc->cmdq[i].key;
2188 	k0->wk_flags = k->wk_flags;
2189 	k0->wk_keyix = k->wk_keyix;
2190 	/* matching wcid was written to wk_pad in run_key_set() */
2191 	k0->wk_pad = k->wk_pad;
2192 	ieee80211_runtask(ic, &sc->cmdq_task);
2193 	return (1);	/* return fake success */
2194 
2195 }
2196 
2197 static void
2198 run_ratectl_to(void *arg)
2199 {
2200 	struct run_softc *sc = arg;
2201 
2202 	/* do it in a process context, so it can go sleep */
2203 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2204 	/* next timeout will be rescheduled in the callback task */
2205 }
2206 
2207 /* ARGSUSED */
2208 static void
2209 run_ratectl_cb(void *arg, int pending)
2210 {
2211 	struct run_softc *sc = arg;
2212 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2213 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2214 
2215 	if (vap == NULL)
2216 		return;
2217 
2218 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2219 		run_iter_func(sc, vap->iv_bss);
2220 	else {
2221 		/*
2222 		 * run_reset_livelock() doesn't do anything with AMRR,
2223 		 * but Ralink wants us to call it every 1 sec. So, we
2224 		 * piggyback here rather than creating another callout.
2225 		 * Livelock may occur only in HOSTAP or IBSS mode
2226 		 * (when h/w is sending beacons).
2227 		 */
2228 		RUN_LOCK(sc);
2229 		run_reset_livelock(sc);
2230 		/* just in case, there are some stats to drain */
2231 		run_drain_fifo(sc);
2232 		RUN_UNLOCK(sc);
2233 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2234 	}
2235 
2236 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2237 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2238 }
2239 
2240 static void
2241 run_drain_fifo(void *arg)
2242 {
2243 	struct run_softc *sc = arg;
2244 	struct ifnet *ifp = sc->sc_ifp;
2245 	uint32_t stat;
2246 	uint16_t (*wstat)[3];
2247 	uint8_t wcid, mcs, pid;
2248 	int8_t retry;
2249 
2250 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2251 
2252 	for (;;) {
2253 		/* drain Tx status FIFO (maxsize = 16) */
2254 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2255 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2256 		if (!(stat & RT2860_TXQ_VLD))
2257 			break;
2258 
2259 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2260 
2261 		/* if no ACK was requested, no feedback is available */
2262 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2263 		    wcid == 0)
2264 			continue;
2265 
2266 		/*
2267 		 * Even though each stat is Tx-complete-status like format,
2268 		 * the device can poll stats. Because there is no guarantee
2269 		 * that the referring node is still around when read the stats.
2270 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2271 		 * have hard time not to refer already freed node.
2272 		 *
2273 		 * To eliminate such page faults, we poll stats in softc.
2274 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2275 		 */
2276 		wstat = &(sc->wcid_stats[wcid]);
2277 		(*wstat)[RUN_TXCNT]++;
2278 		if (stat & RT2860_TXQ_OK)
2279 			(*wstat)[RUN_SUCCESS]++;
2280 		else
2281 			ifp->if_oerrors++;
2282 		/*
2283 		 * Check if there were retries, ie if the Tx success rate is
2284 		 * different from the requested rate. Note that it works only
2285 		 * because we do not allow rate fallback from OFDM to CCK.
2286 		 */
2287 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2288 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2289 		if ((retry = pid -1 - mcs) > 0) {
2290 			(*wstat)[RUN_TXCNT] += retry;
2291 			(*wstat)[RUN_RETRY] += retry;
2292 		}
2293 	}
2294 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2295 
2296 	sc->fifo_cnt = 0;
2297 }
2298 
2299 static void
2300 run_iter_func(void *arg, struct ieee80211_node *ni)
2301 {
2302 	struct run_softc *sc = arg;
2303 	struct ieee80211vap *vap = ni->ni_vap;
2304 	struct ieee80211com *ic = ni->ni_ic;
2305 	struct ifnet *ifp = ic->ic_ifp;
2306 	struct run_node *rn = (void *)ni;
2307 	union run_stats sta[2];
2308 	uint16_t (*wstat)[3];
2309 	int txcnt, success, retrycnt, error;
2310 
2311 	RUN_LOCK(sc);
2312 
2313 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2314 	    vap->iv_opmode == IEEE80211_M_STA)) {
2315 		/* read statistic counters (clear on read) and update AMRR state */
2316 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2317 		    sizeof sta);
2318 		if (error != 0)
2319 			goto fail;
2320 
2321 		/* count failed TX as errors */
2322 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2323 
2324 		retrycnt = le16toh(sta[1].tx.retry);
2325 		success = le16toh(sta[1].tx.success);
2326 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2327 
2328 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2329 			retrycnt, success, le16toh(sta[0].error.fail));
2330 	} else {
2331 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2332 
2333 		if (wstat == &(sc->wcid_stats[0]) ||
2334 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2335 			goto fail;
2336 
2337 		txcnt = (*wstat)[RUN_TXCNT];
2338 		success = (*wstat)[RUN_SUCCESS];
2339 		retrycnt = (*wstat)[RUN_RETRY];
2340 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2341 		    retrycnt, txcnt, success);
2342 
2343 		memset(wstat, 0, sizeof(*wstat));
2344 	}
2345 
2346 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2347 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2348 
2349 fail:
2350 	RUN_UNLOCK(sc);
2351 
2352 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2353 }
2354 
2355 static void
2356 run_newassoc_cb(void *arg)
2357 {
2358 	struct run_cmdq *cmdq = arg;
2359 	struct ieee80211_node *ni = cmdq->arg1;
2360 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2361 	uint8_t wcid = cmdq->wcid;
2362 
2363 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2364 
2365 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2366 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2367 
2368 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2369 }
2370 
2371 static void
2372 run_newassoc(struct ieee80211_node *ni, int isnew)
2373 {
2374 	struct run_node *rn = (void *)ni;
2375 	struct ieee80211_rateset *rs = &ni->ni_rates;
2376 	struct ieee80211vap *vap = ni->ni_vap;
2377 	struct ieee80211com *ic = vap->iv_ic;
2378 	struct run_softc *sc = ic->ic_ifp->if_softc;
2379 	uint8_t rate;
2380 	uint8_t ridx;
2381 	uint8_t wcid;
2382 	int i, j;
2383 
2384 	wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2385 	    1 : RUN_AID2WCID(ni->ni_associd);
2386 
2387 	if (wcid > RT2870_WCID_MAX) {
2388 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2389 		return;
2390 	}
2391 
2392 	/* only interested in true associations */
2393 	if (isnew && ni->ni_associd != 0) {
2394 
2395 		/*
2396 		 * This function could is called though timeout function.
2397 		 * Need to defer.
2398 		 */
2399 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2400 		DPRINTF("cmdq_store=%d\n", cnt);
2401 		sc->cmdq[cnt].func = run_newassoc_cb;
2402 		sc->cmdq[cnt].arg0 = NULL;
2403 		sc->cmdq[cnt].arg1 = ni;
2404 		sc->cmdq[cnt].wcid = wcid;
2405 		ieee80211_runtask(ic, &sc->cmdq_task);
2406 	}
2407 
2408 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2409 	    isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr));
2410 
2411 	for (i = 0; i < rs->rs_nrates; i++) {
2412 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2413 		/* convert 802.11 rate to hardware rate index */
2414 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2415 			if (rt2860_rates[ridx].rate == rate)
2416 				break;
2417 		rn->ridx[i] = ridx;
2418 		/* determine rate of control response frames */
2419 		for (j = i; j >= 0; j--) {
2420 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2421 			    rt2860_rates[rn->ridx[i]].phy ==
2422 			    rt2860_rates[rn->ridx[j]].phy)
2423 				break;
2424 		}
2425 		if (j >= 0) {
2426 			rn->ctl_ridx[i] = rn->ridx[j];
2427 		} else {
2428 			/* no basic rate found, use mandatory one */
2429 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2430 		}
2431 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2432 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2433 	}
2434 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2435 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2436 		if (rt2860_rates[ridx].rate == rate)
2437 			break;
2438 	rn->mgt_ridx = ridx;
2439 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2440 
2441 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2442 }
2443 
2444 /*
2445  * Return the Rx chain with the highest RSSI for a given frame.
2446  */
2447 static __inline uint8_t
2448 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2449 {
2450 	uint8_t rxchain = 0;
2451 
2452 	if (sc->nrxchains > 1) {
2453 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2454 			rxchain = 1;
2455 		if (sc->nrxchains > 2)
2456 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2457 				rxchain = 2;
2458 	}
2459 	return (rxchain);
2460 }
2461 
2462 static void
2463 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2464 {
2465 	struct ifnet *ifp = sc->sc_ifp;
2466 	struct ieee80211com *ic = ifp->if_l2com;
2467 	struct ieee80211_frame *wh;
2468 	struct ieee80211_node *ni;
2469 	struct rt2870_rxd *rxd;
2470 	struct rt2860_rxwi *rxwi;
2471 	uint32_t flags;
2472 	uint16_t len, phy;
2473 	uint8_t ant, rssi;
2474 	int8_t nf;
2475 
2476 	rxwi = mtod(m, struct rt2860_rxwi *);
2477 	len = le16toh(rxwi->len) & 0xfff;
2478 	if (__predict_false(len > dmalen)) {
2479 		m_freem(m);
2480 		ifp->if_ierrors++;
2481 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2482 		return;
2483 	}
2484 	/* Rx descriptor is located at the end */
2485 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2486 	flags = le32toh(rxd->flags);
2487 
2488 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2489 		m_freem(m);
2490 		ifp->if_ierrors++;
2491 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2492 		return;
2493 	}
2494 
2495 	m->m_data += sizeof(struct rt2860_rxwi);
2496 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2497 
2498 	wh = mtod(m, struct ieee80211_frame *);
2499 
2500 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2501 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2502 		m->m_flags |= M_WEP;
2503 	}
2504 
2505 	if (flags & RT2860_RX_L2PAD) {
2506 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2507 		len += 2;
2508 	}
2509 
2510 	ni = ieee80211_find_rxnode(ic,
2511 	    mtod(m, struct ieee80211_frame_min *));
2512 
2513 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2514 		/* report MIC failures to net80211 for TKIP */
2515 		if (ni != NULL)
2516 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2517 		m_freem(m);
2518 		ifp->if_ierrors++;
2519 		DPRINTF("MIC error. Someone is lying.\n");
2520 		return;
2521 	}
2522 
2523 	ant = run_maxrssi_chain(sc, rxwi);
2524 	rssi = rxwi->rssi[ant];
2525 	nf = run_rssi2dbm(sc, rssi, ant);
2526 
2527 	m->m_pkthdr.rcvif = ifp;
2528 	m->m_pkthdr.len = m->m_len = len;
2529 
2530 	if (ni != NULL) {
2531 		(void)ieee80211_input(ni, m, rssi, nf);
2532 		ieee80211_free_node(ni);
2533 	} else {
2534 		(void)ieee80211_input_all(ic, m, rssi, nf);
2535 	}
2536 
2537 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2538 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2539 
2540 		tap->wr_flags = 0;
2541 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2542 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2543 		tap->wr_antsignal = rssi;
2544 		tap->wr_antenna = ant;
2545 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2546 		tap->wr_rate = 2;	/* in case it can't be found below */
2547 		phy = le16toh(rxwi->phy);
2548 		switch (phy & RT2860_PHY_MODE) {
2549 		case RT2860_PHY_CCK:
2550 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2551 			case 0:	tap->wr_rate =   2; break;
2552 			case 1:	tap->wr_rate =   4; break;
2553 			case 2:	tap->wr_rate =  11; break;
2554 			case 3:	tap->wr_rate =  22; break;
2555 			}
2556 			if (phy & RT2860_PHY_SHPRE)
2557 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2558 			break;
2559 		case RT2860_PHY_OFDM:
2560 			switch (phy & RT2860_PHY_MCS) {
2561 			case 0:	tap->wr_rate =  12; break;
2562 			case 1:	tap->wr_rate =  18; break;
2563 			case 2:	tap->wr_rate =  24; break;
2564 			case 3:	tap->wr_rate =  36; break;
2565 			case 4:	tap->wr_rate =  48; break;
2566 			case 5:	tap->wr_rate =  72; break;
2567 			case 6:	tap->wr_rate =  96; break;
2568 			case 7:	tap->wr_rate = 108; break;
2569 			}
2570 			break;
2571 		}
2572 	}
2573 }
2574 
2575 static void
2576 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2577 {
2578 	struct run_softc *sc = usbd_xfer_softc(xfer);
2579 	struct ifnet *ifp = sc->sc_ifp;
2580 	struct mbuf *m = NULL;
2581 	struct mbuf *m0;
2582 	uint32_t dmalen;
2583 	int xferlen;
2584 
2585 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2586 
2587 	switch (USB_GET_STATE(xfer)) {
2588 	case USB_ST_TRANSFERRED:
2589 
2590 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2591 
2592 		if (xferlen < (int)(sizeof(uint32_t) +
2593 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2594 			DPRINTF("xfer too short %d\n", xferlen);
2595 			goto tr_setup;
2596 		}
2597 
2598 		m = sc->rx_m;
2599 		sc->rx_m = NULL;
2600 
2601 		/* FALLTHROUGH */
2602 	case USB_ST_SETUP:
2603 tr_setup:
2604 		if (sc->rx_m == NULL) {
2605 			sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
2606 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2607 		}
2608 		if (sc->rx_m == NULL) {
2609 			DPRINTF("could not allocate mbuf - idle with stall\n");
2610 			ifp->if_ierrors++;
2611 			usbd_xfer_set_stall(xfer);
2612 			usbd_xfer_set_frames(xfer, 0);
2613 		} else {
2614 			/*
2615 			 * Directly loading a mbuf cluster into DMA to
2616 			 * save some data copying. This works because
2617 			 * there is only one cluster.
2618 			 */
2619 			usbd_xfer_set_frame_data(xfer, 0,
2620 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2621 			usbd_xfer_set_frames(xfer, 1);
2622 		}
2623 		usbd_transfer_submit(xfer);
2624 		break;
2625 
2626 	default:	/* Error */
2627 		if (error != USB_ERR_CANCELLED) {
2628 			/* try to clear stall first */
2629 			usbd_xfer_set_stall(xfer);
2630 
2631 			if (error == USB_ERR_TIMEOUT)
2632 				device_printf(sc->sc_dev, "device timeout\n");
2633 
2634 			ifp->if_ierrors++;
2635 
2636 			goto tr_setup;
2637 		}
2638 		if (sc->rx_m != NULL) {
2639 			m_freem(sc->rx_m);
2640 			sc->rx_m = NULL;
2641 		}
2642 		break;
2643 	}
2644 
2645 	if (m == NULL)
2646 		return;
2647 
2648 	/* inputting all the frames must be last */
2649 
2650 	RUN_UNLOCK(sc);
2651 
2652 	m->m_pkthdr.len = m->m_len = xferlen;
2653 
2654 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2655 	for(;;) {
2656 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2657 
2658 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2659 		    ((dmalen & 3) != 0)) {
2660 			DPRINTF("bad DMA length %u\n", dmalen);
2661 			break;
2662 		}
2663 		if ((dmalen + 8) > (uint32_t)xferlen) {
2664 			DPRINTF("bad DMA length %u > %d\n",
2665 			dmalen + 8, xferlen);
2666 			break;
2667 		}
2668 
2669 		/* If it is the last one or a single frame, we won't copy. */
2670 		if ((xferlen -= dmalen + 8) <= 8) {
2671 			/* trim 32-bit DMA-len header */
2672 			m->m_data += 4;
2673 			m->m_pkthdr.len = m->m_len -= 4;
2674 			run_rx_frame(sc, m, dmalen);
2675 			break;
2676 		}
2677 
2678 		/* copy aggregated frames to another mbuf */
2679 		m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2680 		if (__predict_false(m0 == NULL)) {
2681 			DPRINTF("could not allocate mbuf\n");
2682 			ifp->if_ierrors++;
2683 			break;
2684 		}
2685 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2686 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2687 		m0->m_pkthdr.len = m0->m_len =
2688 		    dmalen + sizeof(struct rt2870_rxd);
2689 		run_rx_frame(sc, m0, dmalen);
2690 
2691 		/* update data ptr */
2692 		m->m_data += dmalen + 8;
2693 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2694 	}
2695 
2696 	RUN_LOCK(sc);
2697 }
2698 
2699 static void
2700 run_tx_free(struct run_endpoint_queue *pq,
2701     struct run_tx_data *data, int txerr)
2702 {
2703 	if (data->m != NULL) {
2704 		if (data->m->m_flags & M_TXCB)
2705 			ieee80211_process_callback(data->ni, data->m,
2706 			    txerr ? ETIMEDOUT : 0);
2707 		m_freem(data->m);
2708 		data->m = NULL;
2709 
2710 		if (data->ni == NULL) {
2711 			DPRINTF("no node\n");
2712 		} else {
2713 			ieee80211_free_node(data->ni);
2714 			data->ni = NULL;
2715 		}
2716 	}
2717 
2718 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2719 	pq->tx_nfree++;
2720 }
2721 
2722 static void
2723 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2724 {
2725 	struct run_softc *sc = usbd_xfer_softc(xfer);
2726 	struct ifnet *ifp = sc->sc_ifp;
2727 	struct ieee80211com *ic = ifp->if_l2com;
2728 	struct run_tx_data *data;
2729 	struct ieee80211vap *vap = NULL;
2730 	struct usb_page_cache *pc;
2731 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2732 	struct mbuf *m;
2733 	usb_frlength_t size;
2734 	int actlen;
2735 	int sumlen;
2736 
2737 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2738 
2739 	switch (USB_GET_STATE(xfer)) {
2740 	case USB_ST_TRANSFERRED:
2741 		DPRINTFN(11, "transfer complete: %d "
2742 		    "bytes @ index %d\n", actlen, index);
2743 
2744 		data = usbd_xfer_get_priv(xfer);
2745 
2746 		run_tx_free(pq, data, 0);
2747 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2748 
2749 		usbd_xfer_set_priv(xfer, NULL);
2750 
2751 		ifp->if_opackets++;
2752 
2753 		/* FALLTHROUGH */
2754 	case USB_ST_SETUP:
2755 tr_setup:
2756 		data = STAILQ_FIRST(&pq->tx_qh);
2757 		if (data == NULL)
2758 			break;
2759 
2760 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2761 
2762 		m = data->m;
2763 		if ((m->m_pkthdr.len +
2764 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2765 			DPRINTF("data overflow, %u bytes\n",
2766 			    m->m_pkthdr.len);
2767 
2768 			ifp->if_oerrors++;
2769 
2770 			run_tx_free(pq, data, 1);
2771 
2772 			goto tr_setup;
2773 		}
2774 
2775 		pc = usbd_xfer_get_frame(xfer, 0);
2776 		size = sizeof(data->desc);
2777 		usbd_copy_in(pc, 0, &data->desc, size);
2778 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2779 		size += m->m_pkthdr.len;
2780 		/*
2781 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2782 		 * 4-byte padding), and be sure to zero those trailing
2783 		 * bytes:
2784 		 */
2785 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2786 		size += ((-size) & 3) + 8;
2787 
2788 		vap = data->ni->ni_vap;
2789 		if (ieee80211_radiotap_active_vap(vap)) {
2790 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2791 			struct rt2860_txwi *txwi =
2792 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2793 
2794 			tap->wt_flags = 0;
2795 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2796 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2797 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2798 			tap->wt_hwqueue = index;
2799 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2800 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2801 
2802 			ieee80211_radiotap_tx(vap, m);
2803 		}
2804 
2805 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2806 		    m->m_pkthdr.len, size, index);
2807 
2808 		usbd_xfer_set_frame_len(xfer, 0, size);
2809 		usbd_xfer_set_priv(xfer, data);
2810 
2811 		usbd_transfer_submit(xfer);
2812 
2813 		RUN_UNLOCK(sc);
2814 		run_start(ifp);
2815 		RUN_LOCK(sc);
2816 
2817 		break;
2818 
2819 	default:
2820 		DPRINTF("USB transfer error, %s\n",
2821 		    usbd_errstr(error));
2822 
2823 		data = usbd_xfer_get_priv(xfer);
2824 
2825 		ifp->if_oerrors++;
2826 
2827 		if (data != NULL) {
2828 			if(data->ni != NULL)
2829 				vap = data->ni->ni_vap;
2830 			run_tx_free(pq, data, error);
2831 			usbd_xfer_set_priv(xfer, NULL);
2832 		}
2833 		if (vap == NULL)
2834 			vap = TAILQ_FIRST(&ic->ic_vaps);
2835 
2836 		if (error != USB_ERR_CANCELLED) {
2837 			if (error == USB_ERR_TIMEOUT) {
2838 				device_printf(sc->sc_dev, "device timeout\n");
2839 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2840 				DPRINTF("cmdq_store=%d\n", i);
2841 				sc->cmdq[i].func = run_usb_timeout_cb;
2842 				sc->cmdq[i].arg0 = vap;
2843 				ieee80211_runtask(ic, &sc->cmdq_task);
2844 			}
2845 
2846 			/*
2847 			 * Try to clear stall first, also if other
2848 			 * errors occur, hence clearing stall
2849 			 * introduces a 50 ms delay:
2850 			 */
2851 			usbd_xfer_set_stall(xfer);
2852 			goto tr_setup;
2853 		}
2854 		break;
2855 	}
2856 }
2857 
2858 static void
2859 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2860 {
2861 	run_bulk_tx_callbackN(xfer, error, 0);
2862 }
2863 
2864 static void
2865 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2866 {
2867 	run_bulk_tx_callbackN(xfer, error, 1);
2868 }
2869 
2870 static void
2871 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2872 {
2873 	run_bulk_tx_callbackN(xfer, error, 2);
2874 }
2875 
2876 static void
2877 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2878 {
2879 	run_bulk_tx_callbackN(xfer, error, 3);
2880 }
2881 
2882 static void
2883 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2884 {
2885 	run_bulk_tx_callbackN(xfer, error, 4);
2886 }
2887 
2888 static void
2889 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2890 {
2891 	run_bulk_tx_callbackN(xfer, error, 5);
2892 }
2893 
2894 static void
2895 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2896 {
2897 	struct mbuf *m = data->m;
2898 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2899 	struct ieee80211vap *vap = data->ni->ni_vap;
2900 	struct ieee80211_frame *wh;
2901 	struct rt2870_txd *txd;
2902 	struct rt2860_txwi *txwi;
2903 	uint16_t xferlen;
2904 	uint16_t mcs;
2905 	uint8_t ridx = data->ridx;
2906 	uint8_t pad;
2907 
2908 	/* get MCS code from rate index */
2909 	mcs = rt2860_rates[ridx].mcs;
2910 
2911 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2912 
2913 	/* roundup to 32-bit alignment */
2914 	xferlen = (xferlen + 3) & ~3;
2915 
2916 	txd = (struct rt2870_txd *)&data->desc;
2917 	txd->len = htole16(xferlen);
2918 
2919 	wh = mtod(m, struct ieee80211_frame *);
2920 
2921 	/*
2922 	 * Ether both are true or both are false, the header
2923 	 * are nicely aligned to 32-bit. So, no L2 padding.
2924 	 */
2925 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2926 		pad = 0;
2927 	else
2928 		pad = 2;
2929 
2930 	/* setup TX Wireless Information */
2931 	txwi = (struct rt2860_txwi *)(txd + 1);
2932 	txwi->len = htole16(m->m_pkthdr.len - pad);
2933 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2934 		txwi->phy = htole16(RT2860_PHY_CCK);
2935 		if (ridx != RT2860_RIDX_CCK1 &&
2936 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2937 			mcs |= RT2860_PHY_SHPRE;
2938 	} else
2939 		txwi->phy = htole16(RT2860_PHY_OFDM);
2940 	txwi->phy |= htole16(mcs);
2941 
2942 	/* check if RTS/CTS or CTS-to-self protection is required */
2943 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2944 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2945 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2946 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2947 		txwi->txop |= RT2860_TX_TXOP_HT;
2948 	else
2949 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2950 
2951 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2952 		txwi->xflags |= RT2860_TX_NSEQ;
2953 }
2954 
2955 /* This function must be called locked */
2956 static int
2957 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2958 {
2959 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2960 	struct ieee80211vap *vap = ni->ni_vap;
2961 	struct ieee80211_frame *wh;
2962 	struct ieee80211_channel *chan;
2963 	const struct ieee80211_txparam *tp;
2964 	struct run_node *rn = (void *)ni;
2965 	struct run_tx_data *data;
2966 	struct rt2870_txd *txd;
2967 	struct rt2860_txwi *txwi;
2968 	uint16_t qos;
2969 	uint16_t dur;
2970 	uint16_t qid;
2971 	uint8_t type;
2972 	uint8_t tid;
2973 	uint8_t ridx;
2974 	uint8_t ctl_ridx;
2975 	uint8_t qflags;
2976 	uint8_t xflags = 0;
2977 	int hasqos;
2978 
2979 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2980 
2981 	wh = mtod(m, struct ieee80211_frame *);
2982 
2983 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2984 
2985 	/*
2986 	 * There are 7 bulk endpoints: 1 for RX
2987 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2988 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2989 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2990 	 */
2991 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2992 		uint8_t *frm;
2993 
2994 		if(IEEE80211_HAS_ADDR4(wh))
2995 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
2996 		else
2997 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
2998 
2999 		qos = le16toh(*(const uint16_t *)frm);
3000 		tid = qos & IEEE80211_QOS_TID;
3001 		qid = TID_TO_WME_AC(tid);
3002 	} else {
3003 		qos = 0;
3004 		tid = 0;
3005 		qid = WME_AC_BE;
3006 	}
3007 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3008 
3009 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3010 	    qos, qid, tid, qflags);
3011 
3012 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3013 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3014 
3015 	/* pickup a rate index */
3016 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3017 	    type != IEEE80211_FC0_TYPE_DATA) {
3018 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3019 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3020 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3021 	} else {
3022 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3023 			ridx = rn->fix_ridx;
3024 		else
3025 			ridx = rn->amrr_ridx;
3026 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3027 	}
3028 
3029 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3030 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3031 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3032 		xflags |= RT2860_TX_ACK;
3033 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3034 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3035 		else
3036 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3037 		*(uint16_t *)wh->i_dur = htole16(dur);
3038 	}
3039 
3040 	/* reserve slots for mgmt packets, just in case */
3041 	if (sc->sc_epq[qid].tx_nfree < 3) {
3042 		DPRINTFN(10, "tx ring %d is full\n", qid);
3043 		return (-1);
3044 	}
3045 
3046 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3047 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3048 	sc->sc_epq[qid].tx_nfree--;
3049 
3050 	txd = (struct rt2870_txd *)&data->desc;
3051 	txd->flags = qflags;
3052 	txwi = (struct rt2860_txwi *)(txd + 1);
3053 	txwi->xflags = xflags;
3054 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3055 		txwi->wcid = 0;
3056 	} else {
3057 		txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
3058 		    1 : RUN_AID2WCID(ni->ni_associd);
3059 	}
3060 	/* clear leftover garbage bits */
3061 	txwi->flags = 0;
3062 	txwi->txop = 0;
3063 
3064 	data->m = m;
3065 	data->ni = ni;
3066 	data->ridx = ridx;
3067 
3068 	run_set_tx_desc(sc, data);
3069 
3070 	/*
3071 	 * The chip keeps track of 2 kind of Tx stats,
3072 	 *  * TX_STAT_FIFO, for per WCID stats, and
3073 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3074 	 *
3075 	 * To use FIFO stats, we need to store MCS into the driver-private
3076  	 * PacketID field. So that, we can tell whose stats when we read them.
3077  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3078  	 * that we don't want feedback in TX_STAT_FIFO.
3079  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3080  	 *
3081  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3082  	 */
3083 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3084 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3085 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3086 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3087 
3088 		/*
3089 		 * Unlike PCI based devices, we don't get any interrupt from
3090 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3091 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3092 		 * quickly get fulled. To prevent overflow, increment a counter on
3093 		 * every FIFO stat request, so we know how many slots are left.
3094 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3095 		 * are used only in those modes.
3096 		 * We just drain stats. AMRR gets updated every 1 sec by
3097 		 * run_ratectl_cb() via callout.
3098 		 * Call it early. Otherwise overflow.
3099 		 */
3100 		if (sc->fifo_cnt++ == 10) {
3101 			/*
3102 			 * With multiple vaps or if_bridge, if_start() is called
3103 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3104 			 */
3105 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3106 			DPRINTFN(6, "cmdq_store=%d\n", i);
3107 			sc->cmdq[i].func = run_drain_fifo;
3108 			sc->cmdq[i].arg0 = sc;
3109 			ieee80211_runtask(ic, &sc->cmdq_task);
3110 		}
3111 	}
3112 
3113         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3114 
3115 	usbd_transfer_start(sc->sc_xfer[qid]);
3116 
3117 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3118 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3119 	    rt2860_rates[ridx].rate, qid);
3120 
3121 	return (0);
3122 }
3123 
3124 static int
3125 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3126 {
3127 	struct ifnet *ifp = sc->sc_ifp;
3128 	struct ieee80211com *ic = ifp->if_l2com;
3129 	struct run_node *rn = (void *)ni;
3130 	struct run_tx_data *data;
3131 	struct ieee80211_frame *wh;
3132 	struct rt2870_txd *txd;
3133 	struct rt2860_txwi *txwi;
3134 	uint16_t dur;
3135 	uint8_t ridx = rn->mgt_ridx;
3136 	uint8_t type;
3137 	uint8_t xflags = 0;
3138 	uint8_t wflags = 0;
3139 
3140 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3141 
3142 	wh = mtod(m, struct ieee80211_frame *);
3143 
3144 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3145 
3146 	/* tell hardware to add timestamp for probe responses */
3147 	if ((wh->i_fc[0] &
3148 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3149 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3150 		wflags |= RT2860_TX_TS;
3151 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3152 		xflags |= RT2860_TX_ACK;
3153 
3154 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3155 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3156 		*(uint16_t *)wh->i_dur = htole16(dur);
3157 	}
3158 
3159 	if (sc->sc_epq[0].tx_nfree == 0) {
3160 		/* let caller free mbuf */
3161 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3162 		return (EIO);
3163 	}
3164 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3165 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3166 	sc->sc_epq[0].tx_nfree--;
3167 
3168 	txd = (struct rt2870_txd *)&data->desc;
3169 	txd->flags = RT2860_TX_QSEL_EDCA;
3170 	txwi = (struct rt2860_txwi *)(txd + 1);
3171 	txwi->wcid = 0xff;
3172 	txwi->flags = wflags;
3173 	txwi->xflags = xflags;
3174 	txwi->txop = 0;	/* clear leftover garbage bits */
3175 
3176 	data->m = m;
3177 	data->ni = ni;
3178 	data->ridx = ridx;
3179 
3180 	run_set_tx_desc(sc, data);
3181 
3182 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3183 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3184 	    rt2860_rates[ridx].rate);
3185 
3186 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3187 
3188 	usbd_transfer_start(sc->sc_xfer[0]);
3189 
3190 	return (0);
3191 }
3192 
3193 static int
3194 run_sendprot(struct run_softc *sc,
3195     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3196 {
3197 	struct ieee80211com *ic = ni->ni_ic;
3198 	struct ieee80211_frame *wh;
3199 	struct run_tx_data *data;
3200 	struct rt2870_txd *txd;
3201 	struct rt2860_txwi *txwi;
3202 	struct mbuf *mprot;
3203 	int ridx;
3204 	int protrate;
3205 	int ackrate;
3206 	int pktlen;
3207 	int isshort;
3208 	uint16_t dur;
3209 	uint8_t type;
3210 	uint8_t wflags = 0;
3211 	uint8_t xflags = 0;
3212 
3213 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3214 
3215 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3216 	    ("protection %d", prot));
3217 
3218 	wh = mtod(m, struct ieee80211_frame *);
3219 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3220 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3221 
3222 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3223 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3224 
3225 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3226 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3227 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3228 	wflags = RT2860_TX_FRAG;
3229 
3230 	/* check that there are free slots before allocating the mbuf */
3231 	if (sc->sc_epq[0].tx_nfree == 0) {
3232 		/* let caller free mbuf */
3233 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3234 		return (ENOBUFS);
3235 	}
3236 
3237 	if (prot == IEEE80211_PROT_RTSCTS) {
3238 		/* NB: CTS is the same size as an ACK */
3239 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3240 		xflags |= RT2860_TX_ACK;
3241 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3242 	} else {
3243 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3244 	}
3245 	if (mprot == NULL) {
3246 		sc->sc_ifp->if_oerrors++;
3247 		DPRINTF("could not allocate mbuf\n");
3248 		return (ENOBUFS);
3249 	}
3250 
3251         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3252         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3253         sc->sc_epq[0].tx_nfree--;
3254 
3255 	txd = (struct rt2870_txd *)&data->desc;
3256 	txd->flags = RT2860_TX_QSEL_EDCA;
3257 	txwi = (struct rt2860_txwi *)(txd + 1);
3258 	txwi->wcid = 0xff;
3259 	txwi->flags = wflags;
3260 	txwi->xflags = xflags;
3261 	txwi->txop = 0;	/* clear leftover garbage bits */
3262 
3263 	data->m = mprot;
3264 	data->ni = ieee80211_ref_node(ni);
3265 
3266 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3267 		if (rt2860_rates[ridx].rate == protrate)
3268 			break;
3269 	data->ridx = ridx;
3270 
3271 	run_set_tx_desc(sc, data);
3272 
3273         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3274             m->m_pkthdr.len, rate);
3275 
3276         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3277 
3278 	usbd_transfer_start(sc->sc_xfer[0]);
3279 
3280 	return (0);
3281 }
3282 
3283 static int
3284 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3285     const struct ieee80211_bpf_params *params)
3286 {
3287 	struct ieee80211com *ic = ni->ni_ic;
3288 	struct ieee80211_frame *wh;
3289 	struct run_tx_data *data;
3290 	struct rt2870_txd *txd;
3291 	struct rt2860_txwi *txwi;
3292 	uint8_t type;
3293 	uint8_t ridx;
3294 	uint8_t rate;
3295 	uint8_t opflags = 0;
3296 	uint8_t xflags = 0;
3297 	int error;
3298 
3299 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3300 
3301 	KASSERT(params != NULL, ("no raw xmit params"));
3302 
3303 	wh = mtod(m, struct ieee80211_frame *);
3304 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3305 
3306 	rate = params->ibp_rate0;
3307 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3308 		/* let caller free mbuf */
3309 		return (EINVAL);
3310 	}
3311 
3312 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3313 		xflags |= RT2860_TX_ACK;
3314 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3315 		error = run_sendprot(sc, m, ni,
3316 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3317 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3318 		    rate);
3319 		if (error) {
3320 			/* let caller free mbuf */
3321 			return error;
3322 		}
3323 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3324 	}
3325 
3326 	if (sc->sc_epq[0].tx_nfree == 0) {
3327 		/* let caller free mbuf */
3328 		sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3329 		DPRINTF("sending raw frame, but tx ring is full\n");
3330 		return (EIO);
3331 	}
3332         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3333         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3334         sc->sc_epq[0].tx_nfree--;
3335 
3336 	txd = (struct rt2870_txd *)&data->desc;
3337 	txd->flags = RT2860_TX_QSEL_EDCA;
3338 	txwi = (struct rt2860_txwi *)(txd + 1);
3339 	txwi->wcid = 0xff;
3340 	txwi->xflags = xflags;
3341 	txwi->txop = opflags;
3342 	txwi->flags = 0;	/* clear leftover garbage bits */
3343 
3344         data->m = m;
3345         data->ni = ni;
3346 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3347 		if (rt2860_rates[ridx].rate == rate)
3348 			break;
3349 	data->ridx = ridx;
3350 
3351         run_set_tx_desc(sc, data);
3352 
3353         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3354             m->m_pkthdr.len, rate);
3355 
3356         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3357 
3358 	usbd_transfer_start(sc->sc_xfer[0]);
3359 
3360         return (0);
3361 }
3362 
3363 static int
3364 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3365     const struct ieee80211_bpf_params *params)
3366 {
3367 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3368 	struct run_softc *sc = ifp->if_softc;
3369 	int error = 0;
3370 
3371 	RUN_LOCK(sc);
3372 
3373 	/* prevent management frames from being sent if we're not ready */
3374 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3375 		error =  ENETDOWN;
3376 		goto done;
3377 	}
3378 
3379 	if (params == NULL) {
3380 		/* tx mgt packet */
3381 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3382 			ifp->if_oerrors++;
3383 			DPRINTF("mgt tx failed\n");
3384 			goto done;
3385 		}
3386 	} else {
3387 		/* tx raw packet with param */
3388 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3389 			ifp->if_oerrors++;
3390 			DPRINTF("tx with param failed\n");
3391 			goto done;
3392 		}
3393 	}
3394 
3395 	ifp->if_opackets++;
3396 
3397 done:
3398 	RUN_UNLOCK(sc);
3399 
3400 	if (error != 0) {
3401 		if(m != NULL)
3402 			m_freem(m);
3403 		ieee80211_free_node(ni);
3404 	}
3405 
3406 	return (error);
3407 }
3408 
3409 static void
3410 run_start(struct ifnet *ifp)
3411 {
3412 	struct run_softc *sc = ifp->if_softc;
3413 	struct ieee80211_node *ni;
3414 	struct mbuf *m;
3415 
3416 	RUN_LOCK(sc);
3417 
3418 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3419 		RUN_UNLOCK(sc);
3420 		return;
3421 	}
3422 
3423 	for (;;) {
3424 		/* send data frames */
3425 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3426 		if (m == NULL)
3427 			break;
3428 
3429 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3430 		if (run_tx(sc, m, ni) != 0) {
3431 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
3432 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3433 			break;
3434 		}
3435 	}
3436 
3437 	RUN_UNLOCK(sc);
3438 }
3439 
3440 static int
3441 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3442 {
3443 	struct run_softc *sc = ifp->if_softc;
3444 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3445 	struct ifreq *ifr = (struct ifreq *) data;
3446 	int startall = 0;
3447 	int error;
3448 
3449 	RUN_LOCK(sc);
3450 	error = sc->sc_detached ? ENXIO : 0;
3451 	RUN_UNLOCK(sc);
3452 	if (error)
3453 		return (error);
3454 
3455 	switch (cmd) {
3456 	case SIOCSIFFLAGS:
3457 		RUN_LOCK(sc);
3458 		if (ifp->if_flags & IFF_UP) {
3459 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){
3460 				startall = 1;
3461 				run_init_locked(sc);
3462 			} else
3463 				run_update_promisc_locked(ifp);
3464 		} else {
3465 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3466 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3467 					run_stop(sc);
3468 			}
3469 		}
3470 		RUN_UNLOCK(sc);
3471 		if (startall)
3472 			ieee80211_start_all(ic);
3473 		break;
3474 	case SIOCGIFMEDIA:
3475 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3476 		break;
3477 	case SIOCGIFADDR:
3478 		error = ether_ioctl(ifp, cmd, data);
3479 		break;
3480 	default:
3481 		error = EINVAL;
3482 		break;
3483 	}
3484 
3485 	return (error);
3486 }
3487 
3488 static void
3489 run_set_agc(struct run_softc *sc, uint8_t agc)
3490 {
3491 	uint8_t bbp;
3492 
3493 	if (sc->mac_ver == 0x3572) {
3494 		run_bbp_read(sc, 27, &bbp);
3495 		bbp &= ~(0x3 << 5);
3496 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3497 		run_bbp_write(sc, 66, agc);
3498 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3499 		run_bbp_write(sc, 66, agc);
3500 	} else
3501 		run_bbp_write(sc, 66, agc);
3502 }
3503 
3504 static void
3505 run_select_chan_group(struct run_softc *sc, int group)
3506 {
3507 	uint32_t tmp;
3508 	uint8_t agc;
3509 
3510 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3511 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3512 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3513 	run_bbp_write(sc, 86, 0x00);
3514 
3515 	if (group == 0) {
3516 		if (sc->ext_2ghz_lna) {
3517 			run_bbp_write(sc, 82, 0x62);
3518 			run_bbp_write(sc, 75, 0x46);
3519 		} else {
3520 			run_bbp_write(sc, 82, 0x84);
3521 			run_bbp_write(sc, 75, 0x50);
3522 		}
3523 	} else {
3524 		if (sc->mac_ver == 0x3572)
3525 			run_bbp_write(sc, 82, 0x94);
3526 		else
3527 			run_bbp_write(sc, 82, 0xf2);
3528 		if (sc->ext_5ghz_lna)
3529 			run_bbp_write(sc, 75, 0x46);
3530 		else
3531 			run_bbp_write(sc, 75, 0x50);
3532 	}
3533 
3534 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3535 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3536 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3537 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3538 
3539 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3540 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3541 	if (sc->nrxchains > 1)
3542 		tmp |= RT2860_LNA_PE1_EN;
3543 	if (group == 0) {	/* 2GHz */
3544 		tmp |= RT2860_PA_PE_G0_EN;
3545 		if (sc->ntxchains > 1)
3546 			tmp |= RT2860_PA_PE_G1_EN;
3547 	} else {		/* 5GHz */
3548 		tmp |= RT2860_PA_PE_A0_EN;
3549 		if (sc->ntxchains > 1)
3550 			tmp |= RT2860_PA_PE_A1_EN;
3551 	}
3552 	if (sc->mac_ver == 0x3572) {
3553 		run_rt3070_rf_write(sc, 8, 0x00);
3554 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3555 		run_rt3070_rf_write(sc, 8, 0x80);
3556 	} else
3557 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3558 
3559 	/* set initial AGC value */
3560 	if (group == 0) {	/* 2GHz band */
3561 		if (sc->mac_ver >= 0x3070)
3562 			agc = 0x1c + sc->lna[0] * 2;
3563 		else
3564 			agc = 0x2e + sc->lna[0];
3565 	} else {		/* 5GHz band */
3566 		if (sc->mac_ver == 0x3572)
3567 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3568 		else
3569 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3570 	}
3571 	run_set_agc(sc, agc);
3572 }
3573 
3574 static void
3575 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3576 {
3577 	const struct rfprog *rfprog = rt2860_rf2850;
3578 	uint32_t r2, r3, r4;
3579 	int8_t txpow1, txpow2;
3580 	int i;
3581 
3582 	/* find the settings for this channel (we know it exists) */
3583 	for (i = 0; rfprog[i].chan != chan; i++);
3584 
3585 	r2 = rfprog[i].r2;
3586 	if (sc->ntxchains == 1)
3587 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3588 	if (sc->nrxchains == 1)
3589 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3590 	else if (sc->nrxchains == 2)
3591 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3592 
3593 	/* use Tx power values from EEPROM */
3594 	txpow1 = sc->txpow1[i];
3595 	txpow2 = sc->txpow2[i];
3596 	if (chan > 14) {
3597 		if (txpow1 >= 0)
3598 			txpow1 = txpow1 << 1 | 1;
3599 		else
3600 			txpow1 = (7 + txpow1) << 1;
3601 		if (txpow2 >= 0)
3602 			txpow2 = txpow2 << 1 | 1;
3603 		else
3604 			txpow2 = (7 + txpow2) << 1;
3605 	}
3606 	r3 = rfprog[i].r3 | txpow1 << 7;
3607 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3608 
3609 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3610 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3611 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3612 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3613 
3614 	run_delay(sc, 10);
3615 
3616 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3617 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3618 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3619 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3620 
3621 	run_delay(sc, 10);
3622 
3623 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3624 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3625 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3626 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3627 }
3628 
3629 static void
3630 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3631 {
3632 	int8_t txpow1, txpow2;
3633 	uint8_t rf;
3634 	int i;
3635 
3636 	/* RT3070 is 2GHz only */
3637 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3638 
3639 	/* find the settings for this channel (we know it exists) */
3640 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3641 
3642 	/* use Tx power values from EEPROM */
3643 	txpow1 = sc->txpow1[i];
3644 	txpow2 = sc->txpow2[i];
3645 
3646 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3647 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3648 	run_rt3070_rf_read(sc, 6, &rf);
3649 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3650 	run_rt3070_rf_write(sc, 6, rf);
3651 
3652 	/* set Tx0 power */
3653 	run_rt3070_rf_read(sc, 12, &rf);
3654 	rf = (rf & ~0x1f) | txpow1;
3655 	run_rt3070_rf_write(sc, 12, rf);
3656 
3657 	/* set Tx1 power */
3658 	run_rt3070_rf_read(sc, 13, &rf);
3659 	rf = (rf & ~0x1f) | txpow2;
3660 	run_rt3070_rf_write(sc, 13, rf);
3661 
3662 	run_rt3070_rf_read(sc, 1, &rf);
3663 	rf &= ~0xfc;
3664 	if (sc->ntxchains == 1)
3665 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3666 	else if (sc->ntxchains == 2)
3667 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3668 	if (sc->nrxchains == 1)
3669 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3670 	else if (sc->nrxchains == 2)
3671 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3672 	run_rt3070_rf_write(sc, 1, rf);
3673 
3674 	/* set RF offset */
3675 	run_rt3070_rf_read(sc, 23, &rf);
3676 	rf = (rf & ~0x7f) | sc->freq;
3677 	run_rt3070_rf_write(sc, 23, rf);
3678 
3679 	/* program RF filter */
3680 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3681 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3682 	run_rt3070_rf_write(sc, 24, rf);
3683 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3684 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3685 	run_rt3070_rf_write(sc, 31, rf);
3686 
3687 	/* enable RF tuning */
3688 	run_rt3070_rf_read(sc, 7, &rf);
3689 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3690 }
3691 
3692 static void
3693 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3694 {
3695 	int8_t txpow1, txpow2;
3696 	uint32_t tmp;
3697 	uint8_t rf;
3698 	int i;
3699 
3700 	/* find the settings for this channel (we know it exists) */
3701 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3702 
3703 	/* use Tx power values from EEPROM */
3704 	txpow1 = sc->txpow1[i];
3705 	txpow2 = sc->txpow2[i];
3706 
3707 	if (chan <= 14) {
3708 		run_bbp_write(sc, 25, sc->bbp25);
3709 		run_bbp_write(sc, 26, sc->bbp26);
3710 	} else {
3711 		/* enable IQ phase correction */
3712 		run_bbp_write(sc, 25, 0x09);
3713 		run_bbp_write(sc, 26, 0xff);
3714 	}
3715 
3716 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3717 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3718 	run_rt3070_rf_read(sc, 6, &rf);
3719 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3720 	rf |= (chan <= 14) ? 0x08 : 0x04;
3721 	run_rt3070_rf_write(sc, 6, rf);
3722 
3723 	/* set PLL mode */
3724 	run_rt3070_rf_read(sc, 5, &rf);
3725 	rf &= ~(0x08 | 0x04);
3726 	rf |= (chan <= 14) ? 0x04 : 0x08;
3727 	run_rt3070_rf_write(sc, 5, rf);
3728 
3729 	/* set Tx power for chain 0 */
3730 	if (chan <= 14)
3731 		rf = 0x60 | txpow1;
3732 	else
3733 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3734 	run_rt3070_rf_write(sc, 12, rf);
3735 
3736 	/* set Tx power for chain 1 */
3737 	if (chan <= 14)
3738 		rf = 0x60 | txpow2;
3739 	else
3740 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3741 	run_rt3070_rf_write(sc, 13, rf);
3742 
3743 	/* set Tx/Rx streams */
3744 	run_rt3070_rf_read(sc, 1, &rf);
3745 	rf &= ~0xfc;
3746 	if (sc->ntxchains == 1)
3747 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3748 	else if (sc->ntxchains == 2)
3749 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3750 	if (sc->nrxchains == 1)
3751 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3752 	else if (sc->nrxchains == 2)
3753 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3754 	run_rt3070_rf_write(sc, 1, rf);
3755 
3756 	/* set RF offset */
3757 	run_rt3070_rf_read(sc, 23, &rf);
3758 	rf = (rf & ~0x7f) | sc->freq;
3759 	run_rt3070_rf_write(sc, 23, rf);
3760 
3761 	/* program RF filter */
3762 	rf = sc->rf24_20mhz;
3763 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3764 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3765 
3766 	/* enable RF tuning */
3767 	run_rt3070_rf_read(sc, 7, &rf);
3768 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3769 	run_rt3070_rf_write(sc, 7, rf);
3770 
3771 	/* TSSI */
3772 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3773 	run_rt3070_rf_write(sc, 9, rf);
3774 
3775 	/* set loop filter 1 */
3776 	run_rt3070_rf_write(sc, 10, 0xf1);
3777 	/* set loop filter 2 */
3778 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3779 
3780 	/* set tx_mx2_ic */
3781 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3782 	/* set tx_mx1_ic */
3783 	if (chan <= 14)
3784 		rf = 0x48 | sc->txmixgain_2ghz;
3785 	else
3786 		rf = 0x78 | sc->txmixgain_5ghz;
3787 	run_rt3070_rf_write(sc, 16, rf);
3788 
3789 	/* set tx_lo1 */
3790 	run_rt3070_rf_write(sc, 17, 0x23);
3791 	/* set tx_lo2 */
3792 	if (chan <= 14)
3793 		rf = 0x93;
3794 	else if (chan <= 64)
3795 		rf = 0xb7;
3796 	else if (chan <= 128)
3797 		rf = 0x74;
3798 	else
3799 		rf = 0x72;
3800 	run_rt3070_rf_write(sc, 19, rf);
3801 
3802 	/* set rx_lo1 */
3803 	if (chan <= 14)
3804 		rf = 0xb3;
3805 	else if (chan <= 64)
3806 		rf = 0xf6;
3807 	else if (chan <= 128)
3808 		rf = 0xf4;
3809 	else
3810 		rf = 0xf3;
3811 	run_rt3070_rf_write(sc, 20, rf);
3812 
3813 	/* set pfd_delay */
3814 	if (chan <= 14)
3815 		rf = 0x15;
3816 	else if (chan <= 64)
3817 		rf = 0x3d;
3818 	else
3819 		rf = 0x01;
3820 	run_rt3070_rf_write(sc, 25, rf);
3821 
3822 	/* set rx_lo2 */
3823 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3824 	/* set ldo_rf_vc */
3825 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3826 	/* set drv_cc */
3827 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3828 
3829 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3830 	tmp &= ~0x8080;
3831 	if (chan <= 14)
3832 		tmp |= 0x80;
3833 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3834 
3835 	/* enable RF tuning */
3836 	run_rt3070_rf_read(sc, 7, &rf);
3837 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3838 
3839 	run_delay(sc, 2);
3840 }
3841 
3842 static void
3843 run_set_rx_antenna(struct run_softc *sc, int aux)
3844 {
3845 	uint32_t tmp;
3846 
3847 	if (aux) {
3848 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3849 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3850 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3851 	} else {
3852 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3853 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3854 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3855 	}
3856 }
3857 
3858 static int
3859 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3860 {
3861 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3862 	uint32_t chan, group;
3863 
3864 	chan = ieee80211_chan2ieee(ic, c);
3865 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3866 		return (EINVAL);
3867 
3868 	if (sc->mac_ver == 0x3572)
3869 		run_rt3572_set_chan(sc, chan);
3870 	else if (sc->mac_ver >= 0x3070)
3871 		run_rt3070_set_chan(sc, chan);
3872 	else
3873 		run_rt2870_set_chan(sc, chan);
3874 
3875 	/* determine channel group */
3876 	if (chan <= 14)
3877 		group = 0;
3878 	else if (chan <= 64)
3879 		group = 1;
3880 	else if (chan <= 128)
3881 		group = 2;
3882 	else
3883 		group = 3;
3884 
3885 	/* XXX necessary only when group has changed! */
3886 	run_select_chan_group(sc, group);
3887 
3888 	run_delay(sc, 10);
3889 
3890 	return (0);
3891 }
3892 
3893 static void
3894 run_set_channel(struct ieee80211com *ic)
3895 {
3896 	struct run_softc *sc = ic->ic_ifp->if_softc;
3897 
3898 	RUN_LOCK(sc);
3899 	run_set_chan(sc, ic->ic_curchan);
3900 	RUN_UNLOCK(sc);
3901 
3902 	return;
3903 }
3904 
3905 static void
3906 run_scan_start(struct ieee80211com *ic)
3907 {
3908 	struct run_softc *sc = ic->ic_ifp->if_softc;
3909 	uint32_t tmp;
3910 
3911 	RUN_LOCK(sc);
3912 
3913 	/* abort TSF synchronization */
3914 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3915 	run_write(sc, RT2860_BCN_TIME_CFG,
3916 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3917 	    RT2860_TBTT_TIMER_EN));
3918 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3919 
3920 	RUN_UNLOCK(sc);
3921 
3922 	return;
3923 }
3924 
3925 static void
3926 run_scan_end(struct ieee80211com *ic)
3927 {
3928 	struct run_softc *sc = ic->ic_ifp->if_softc;
3929 
3930 	RUN_LOCK(sc);
3931 
3932 	run_enable_tsf_sync(sc);
3933 	/* XXX keep local copy */
3934 	run_set_bssid(sc, sc->sc_bssid);
3935 
3936 	RUN_UNLOCK(sc);
3937 
3938 	return;
3939 }
3940 
3941 /*
3942  * Could be called from ieee80211_node_timeout()
3943  * (non-sleepable thread)
3944  */
3945 static void
3946 run_update_beacon(struct ieee80211vap *vap, int item)
3947 {
3948 	struct ieee80211com *ic = vap->iv_ic;
3949 	struct run_softc *sc = ic->ic_ifp->if_softc;
3950 	struct run_vap *rvp = RUN_VAP(vap);
3951 	int mcast = 0;
3952 	uint32_t i;
3953 
3954 	KASSERT(vap != NULL, ("no beacon"));
3955 
3956 	switch (item) {
3957 	case IEEE80211_BEACON_ERP:
3958 		run_updateslot(ic->ic_ifp);
3959 		break;
3960 	case IEEE80211_BEACON_HTINFO:
3961 		run_updateprot(ic);
3962 		break;
3963 	case IEEE80211_BEACON_TIM:
3964 		mcast = 1;	/*TODO*/
3965 		break;
3966 	default:
3967 		break;
3968 	}
3969 
3970 	setbit(rvp->bo.bo_flags, item);
3971 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3972 
3973 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3974 	DPRINTF("cmdq_store=%d\n", i);
3975 	sc->cmdq[i].func = run_update_beacon_cb;
3976 	sc->cmdq[i].arg0 = vap;
3977 	ieee80211_runtask(ic, &sc->cmdq_task);
3978 
3979 	return;
3980 }
3981 
3982 static void
3983 run_update_beacon_cb(void *arg)
3984 {
3985 	struct ieee80211vap *vap = arg;
3986 	struct run_vap *rvp = RUN_VAP(vap);
3987 	struct ieee80211com *ic = vap->iv_ic;
3988 	struct run_softc *sc = ic->ic_ifp->if_softc;
3989 	struct rt2860_txwi txwi;
3990 	struct mbuf *m;
3991 	uint8_t ridx;
3992 
3993 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
3994 		return;
3995 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
3996 		return;
3997 
3998 	/*
3999 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
4000 	 * is taking care of apropriate calls.
4001 	 */
4002 	if (rvp->beacon_mbuf == NULL) {
4003 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
4004 		    &rvp->bo);
4005 		if (rvp->beacon_mbuf == NULL)
4006 			return;
4007 	}
4008 	m = rvp->beacon_mbuf;
4009 
4010 	memset(&txwi, 0, sizeof txwi);
4011 	txwi.wcid = 0xff;
4012 	txwi.len = htole16(m->m_pkthdr.len);
4013 	/* send beacons at the lowest available rate */
4014 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4015 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
4016 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4017 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4018 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4019 	txwi.txop = RT2860_TX_TXOP_HT;
4020 	txwi.flags = RT2860_TX_TS;
4021 	txwi.xflags = RT2860_TX_NSEQ;
4022 
4023 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4024 	    (uint8_t *)&txwi, sizeof txwi);
4025 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4026 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4027 
4028 	return;
4029 }
4030 
4031 static void
4032 run_updateprot(struct ieee80211com *ic)
4033 {
4034 	struct run_softc *sc = ic->ic_ifp->if_softc;
4035 	uint32_t i;
4036 
4037 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4038 	DPRINTF("cmdq_store=%d\n", i);
4039 	sc->cmdq[i].func = run_updateprot_cb;
4040 	sc->cmdq[i].arg0 = ic;
4041 	ieee80211_runtask(ic, &sc->cmdq_task);
4042 }
4043 
4044 static void
4045 run_updateprot_cb(void *arg)
4046 {
4047 	struct ieee80211com *ic = arg;
4048 	struct run_softc *sc = ic->ic_ifp->if_softc;
4049 	uint32_t tmp;
4050 
4051 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4052 	/* setup protection frame rate (MCS code) */
4053 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4054 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4055 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4056 
4057 	/* CCK frames don't require protection */
4058 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4059 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4060 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4061 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4062 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4063 			tmp |= RT2860_PROT_CTRL_CTS;
4064 	}
4065 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4066 }
4067 
4068 static void
4069 run_usb_timeout_cb(void *arg)
4070 {
4071 	struct ieee80211vap *vap = arg;
4072 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4073 
4074 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4075 
4076 	if(vap->iv_state == IEEE80211_S_RUN &&
4077 	    vap->iv_opmode != IEEE80211_M_STA)
4078 		run_reset_livelock(sc);
4079 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4080 		DPRINTF("timeout caused by scan\n");
4081 		/* cancel bgscan */
4082 		ieee80211_cancel_scan(vap);
4083 	} else
4084 		DPRINTF("timeout by unknown cause\n");
4085 }
4086 
4087 static void
4088 run_reset_livelock(struct run_softc *sc)
4089 {
4090 	uint32_t tmp;
4091 
4092 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4093 
4094 	/*
4095 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4096 	 * can run into a livelock and start sending CTS-to-self frames like
4097 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4098 	 */
4099 	run_read(sc, RT2860_DEBUG, &tmp);
4100 	DPRINTFN(3, "debug reg %08x\n", tmp);
4101 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4102 		DPRINTF("CTS-to-self livelock detected\n");
4103 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4104 		run_delay(sc, 1);
4105 		run_write(sc, RT2860_MAC_SYS_CTRL,
4106 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4107 	}
4108 }
4109 
4110 static void
4111 run_update_promisc_locked(struct ifnet *ifp)
4112 {
4113 	struct run_softc *sc = ifp->if_softc;
4114         uint32_t tmp;
4115 
4116 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4117 
4118 	tmp |= RT2860_DROP_UC_NOME;
4119         if (ifp->if_flags & IFF_PROMISC)
4120 		tmp &= ~RT2860_DROP_UC_NOME;
4121 
4122 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4123 
4124         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4125             "entering" : "leaving");
4126 }
4127 
4128 static void
4129 run_update_promisc(struct ifnet *ifp)
4130 {
4131 	struct run_softc *sc = ifp->if_softc;
4132 
4133 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4134 		return;
4135 
4136 	RUN_LOCK(sc);
4137 	run_update_promisc_locked(ifp);
4138 	RUN_UNLOCK(sc);
4139 }
4140 
4141 static void
4142 run_enable_tsf_sync(struct run_softc *sc)
4143 {
4144 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4145 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4146 	uint32_t tmp;
4147 
4148 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4149 
4150 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4151 	tmp &= ~0x1fffff;
4152 	tmp |= vap->iv_bss->ni_intval * 16;
4153 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4154 
4155 	if (ic->ic_opmode == IEEE80211_M_STA) {
4156 		/*
4157 		 * Local TSF is always updated with remote TSF on beacon
4158 		 * reception.
4159 		 */
4160 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4161 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4162 	        tmp |= RT2860_BCN_TX_EN;
4163 	        /*
4164 	         * Local TSF is updated with remote TSF on beacon reception
4165 	         * only if the remote TSF is greater than local TSF.
4166 	         */
4167 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4168 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4169 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4170 	        tmp |= RT2860_BCN_TX_EN;
4171 	        /* SYNC with nobody */
4172 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4173 	} else {
4174 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4175 		return;
4176 	}
4177 
4178 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4179 }
4180 
4181 static void
4182 run_enable_mrr(struct run_softc *sc)
4183 {
4184 #define CCK(mcs)	(mcs)
4185 #define OFDM(mcs)	(1 << 3 | (mcs))
4186 	run_write(sc, RT2860_LG_FBK_CFG0,
4187 	    OFDM(6) << 28 |	/* 54->48 */
4188 	    OFDM(5) << 24 |	/* 48->36 */
4189 	    OFDM(4) << 20 |	/* 36->24 */
4190 	    OFDM(3) << 16 |	/* 24->18 */
4191 	    OFDM(2) << 12 |	/* 18->12 */
4192 	    OFDM(1) <<  8 |	/* 12-> 9 */
4193 	    OFDM(0) <<  4 |	/*  9-> 6 */
4194 	    OFDM(0));		/*  6-> 6 */
4195 
4196 	run_write(sc, RT2860_LG_FBK_CFG1,
4197 	    CCK(2) << 12 |	/* 11->5.5 */
4198 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4199 	    CCK(0) <<  4 |	/*   2-> 1 */
4200 	    CCK(0));		/*   1-> 1 */
4201 #undef OFDM
4202 #undef CCK
4203 }
4204 
4205 static void
4206 run_set_txpreamble(struct run_softc *sc)
4207 {
4208 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4209 	uint32_t tmp;
4210 
4211 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4212 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4213 		tmp |= RT2860_CCK_SHORT_EN;
4214 	else
4215 		tmp &= ~RT2860_CCK_SHORT_EN;
4216 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4217 }
4218 
4219 static void
4220 run_set_basicrates(struct run_softc *sc)
4221 {
4222 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4223 
4224 	/* set basic rates mask */
4225 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4226 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4227 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4228 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4229 	else	/* 11g */
4230 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4231 }
4232 
4233 static void
4234 run_set_leds(struct run_softc *sc, uint16_t which)
4235 {
4236 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4237 	    which | (sc->leds & 0x7f));
4238 }
4239 
4240 static void
4241 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4242 {
4243 	run_write(sc, RT2860_MAC_BSSID_DW0,
4244 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4245 	run_write(sc, RT2860_MAC_BSSID_DW1,
4246 	    bssid[4] | bssid[5] << 8);
4247 }
4248 
4249 static void
4250 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4251 {
4252 	run_write(sc, RT2860_MAC_ADDR_DW0,
4253 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4254 	run_write(sc, RT2860_MAC_ADDR_DW1,
4255 	    addr[4] | addr[5] << 8 | 0xff << 16);
4256 }
4257 
4258 static void
4259 run_updateslot(struct ifnet *ifp)
4260 {
4261 	struct run_softc *sc = ifp->if_softc;
4262 	struct ieee80211com *ic = ifp->if_l2com;
4263 	uint32_t i;
4264 
4265 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4266 	DPRINTF("cmdq_store=%d\n", i);
4267 	sc->cmdq[i].func = run_updateslot_cb;
4268 	sc->cmdq[i].arg0 = ifp;
4269 	ieee80211_runtask(ic, &sc->cmdq_task);
4270 
4271 	return;
4272 }
4273 
4274 /* ARGSUSED */
4275 static void
4276 run_updateslot_cb(void *arg)
4277 {
4278 	struct ifnet *ifp = arg;
4279 	struct run_softc *sc = ifp->if_softc;
4280 	struct ieee80211com *ic = ifp->if_l2com;
4281 	uint32_t tmp;
4282 
4283 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4284 	tmp &= ~0xff;
4285 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4286 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4287 }
4288 
4289 static void
4290 run_update_mcast(struct ifnet *ifp)
4291 {
4292 	/* h/w filter supports getting everything or nothing */
4293 	ifp->if_flags |= IFF_ALLMULTI;
4294 }
4295 
4296 static int8_t
4297 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4298 {
4299 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4300 	struct ieee80211_channel *c = ic->ic_curchan;
4301 	int delta;
4302 
4303 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4304 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4305 		delta = sc->rssi_5ghz[rxchain];
4306 
4307 		/* determine channel group */
4308 		if (chan <= 64)
4309 			delta -= sc->lna[1];
4310 		else if (chan <= 128)
4311 			delta -= sc->lna[2];
4312 		else
4313 			delta -= sc->lna[3];
4314 	} else
4315 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4316 
4317 	return (-12 - delta - rssi);
4318 }
4319 
4320 static int
4321 run_bbp_init(struct run_softc *sc)
4322 {
4323 	int i, error, ntries;
4324 	uint8_t bbp0;
4325 
4326 	/* wait for BBP to wake up */
4327 	for (ntries = 0; ntries < 20; ntries++) {
4328 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4329 			return error;
4330 		if (bbp0 != 0 && bbp0 != 0xff)
4331 			break;
4332 	}
4333 	if (ntries == 20)
4334 		return (ETIMEDOUT);
4335 
4336 	/* initialize BBP registers to default values */
4337 	for (i = 0; i < N(rt2860_def_bbp); i++) {
4338 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4339 		    rt2860_def_bbp[i].val);
4340 	}
4341 
4342 	/* fix BBP84 for RT2860E */
4343 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4344 		run_bbp_write(sc, 84, 0x19);
4345 
4346 	if (sc->mac_ver >= 0x3070) {
4347 		run_bbp_write(sc, 79, 0x13);
4348 		run_bbp_write(sc, 80, 0x05);
4349 		run_bbp_write(sc, 81, 0x33);
4350 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4351 		run_bbp_write(sc, 69, 0x16);
4352 		run_bbp_write(sc, 73, 0x12);
4353 	}
4354 	return (0);
4355 }
4356 
4357 static int
4358 run_rt3070_rf_init(struct run_softc *sc)
4359 {
4360 	uint32_t tmp;
4361 	uint8_t rf, target, bbp4;
4362 	int i;
4363 
4364 	run_rt3070_rf_read(sc, 30, &rf);
4365 	/* toggle RF R30 bit 7 */
4366 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4367 	run_delay(sc, 10);
4368 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4369 
4370 	/* initialize RF registers to default value */
4371 	if (sc->mac_ver == 0x3572) {
4372 		for (i = 0; i < N(rt3572_def_rf); i++) {
4373 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4374 			    rt3572_def_rf[i].val);
4375 		}
4376 	} else {
4377 		for (i = 0; i < N(rt3070_def_rf); i++) {
4378 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4379 			    rt3070_def_rf[i].val);
4380 		}
4381 	}
4382 
4383 	if (sc->mac_ver == 0x3070) {
4384 		/* change voltage from 1.2V to 1.35V for RT3070 */
4385 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4386 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4387 		run_write(sc, RT3070_LDO_CFG0, tmp);
4388 
4389 	} else if (sc->mac_ver == 0x3071) {
4390 		run_rt3070_rf_read(sc, 6, &rf);
4391 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4392 		run_rt3070_rf_write(sc, 31, 0x14);
4393 
4394 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4395 		tmp &= ~0x1f000000;
4396 		if (sc->mac_rev < 0x0211)
4397 			tmp |= 0x0d000000;	/* 1.3V */
4398 		else
4399 			tmp |= 0x01000000;	/* 1.2V */
4400 		run_write(sc, RT3070_LDO_CFG0, tmp);
4401 
4402 		/* patch LNA_PE_G1 */
4403 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4404 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4405 
4406 	} else if (sc->mac_ver == 0x3572) {
4407 		run_rt3070_rf_read(sc, 6, &rf);
4408 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4409 
4410 		/* increase voltage from 1.2V to 1.35V */
4411 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4412 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4413 		run_write(sc, RT3070_LDO_CFG0, tmp);
4414 
4415 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4416 			run_delay(sc, 1);	/* wait for 1msec */
4417 			/* decrease voltage back to 1.2V */
4418 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4419 			run_write(sc, RT3070_LDO_CFG0, tmp);
4420 		}
4421 	}
4422 
4423 	/* select 20MHz bandwidth */
4424 	run_rt3070_rf_read(sc, 31, &rf);
4425 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4426 
4427 	/* calibrate filter for 20MHz bandwidth */
4428 	sc->rf24_20mhz = 0x1f;	/* default value */
4429 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4430 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4431 
4432 	/* select 40MHz bandwidth */
4433 	run_bbp_read(sc, 4, &bbp4);
4434 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4435 	run_rt3070_rf_read(sc, 31, &rf);
4436 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4437 
4438 	/* calibrate filter for 40MHz bandwidth */
4439 	sc->rf24_40mhz = 0x2f;	/* default value */
4440 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4441 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4442 
4443 	/* go back to 20MHz bandwidth */
4444 	run_bbp_read(sc, 4, &bbp4);
4445 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4446 
4447 	if (sc->mac_ver == 0x3572) {
4448 		/* save default BBP registers 25 and 26 values */
4449 		run_bbp_read(sc, 25, &sc->bbp25);
4450 		run_bbp_read(sc, 26, &sc->bbp26);
4451 	} else if (sc->mac_rev < 0x0211)
4452 		run_rt3070_rf_write(sc, 27, 0x03);
4453 
4454 	run_read(sc, RT3070_OPT_14, &tmp);
4455 	run_write(sc, RT3070_OPT_14, tmp | 1);
4456 
4457 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4458 		run_rt3070_rf_read(sc, 17, &rf);
4459 		rf &= ~RT3070_TX_LO1;
4460 		if ((sc->mac_ver == 0x3070 ||
4461 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4462 		    !sc->ext_2ghz_lna)
4463 			rf |= 0x20;	/* fix for long range Rx issue */
4464 		if (sc->txmixgain_2ghz >= 1)
4465 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4466 		run_rt3070_rf_write(sc, 17, rf);
4467 	}
4468 
4469 	if (sc->mac_rev == 0x3071) {
4470 		run_rt3070_rf_read(sc, 1, &rf);
4471 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4472 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4473 		run_rt3070_rf_write(sc, 1, rf);
4474 
4475 		run_rt3070_rf_read(sc, 15, &rf);
4476 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4477 
4478 		run_rt3070_rf_read(sc, 20, &rf);
4479 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4480 
4481 		run_rt3070_rf_read(sc, 21, &rf);
4482 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4483 	}
4484 
4485 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4486 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4487 		run_rt3070_rf_read(sc, 27, &rf);
4488 		rf &= ~0x77;
4489 		if (sc->mac_rev < 0x0211)
4490 			rf |= 0x03;
4491 		run_rt3070_rf_write(sc, 27, rf);
4492 	}
4493 	return (0);
4494 }
4495 
4496 static int
4497 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4498     uint8_t *val)
4499 {
4500 	uint8_t rf22, rf24;
4501 	uint8_t bbp55_pb, bbp55_sb, delta;
4502 	int ntries;
4503 
4504 	/* program filter */
4505 	run_rt3070_rf_read(sc, 24, &rf24);
4506 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4507 	run_rt3070_rf_write(sc, 24, rf24);
4508 
4509 	/* enable baseband loopback mode */
4510 	run_rt3070_rf_read(sc, 22, &rf22);
4511 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4512 
4513 	/* set power and frequency of passband test tone */
4514 	run_bbp_write(sc, 24, 0x00);
4515 	for (ntries = 0; ntries < 100; ntries++) {
4516 		/* transmit test tone */
4517 		run_bbp_write(sc, 25, 0x90);
4518 		run_delay(sc, 10);
4519 		/* read received power */
4520 		run_bbp_read(sc, 55, &bbp55_pb);
4521 		if (bbp55_pb != 0)
4522 			break;
4523 	}
4524 	if (ntries == 100)
4525 		return ETIMEDOUT;
4526 
4527 	/* set power and frequency of stopband test tone */
4528 	run_bbp_write(sc, 24, 0x06);
4529 	for (ntries = 0; ntries < 100; ntries++) {
4530 		/* transmit test tone */
4531 		run_bbp_write(sc, 25, 0x90);
4532 		run_delay(sc, 10);
4533 		/* read received power */
4534 		run_bbp_read(sc, 55, &bbp55_sb);
4535 
4536 		delta = bbp55_pb - bbp55_sb;
4537 		if (delta > target)
4538 			break;
4539 
4540 		/* reprogram filter */
4541 		rf24++;
4542 		run_rt3070_rf_write(sc, 24, rf24);
4543 	}
4544 	if (ntries < 100) {
4545 		if (rf24 != init)
4546 			rf24--;	/* backtrack */
4547 		*val = rf24;
4548 		run_rt3070_rf_write(sc, 24, rf24);
4549 	}
4550 
4551 	/* restore initial state */
4552 	run_bbp_write(sc, 24, 0x00);
4553 
4554 	/* disable baseband loopback mode */
4555 	run_rt3070_rf_read(sc, 22, &rf22);
4556 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4557 
4558 	return (0);
4559 }
4560 
4561 static void
4562 run_rt3070_rf_setup(struct run_softc *sc)
4563 {
4564 	uint8_t bbp, rf;
4565 	int i;
4566 
4567 	if (sc->mac_ver == 0x3572) {
4568 		/* enable DC filter */
4569 		if (sc->mac_rev >= 0x0201)
4570 			run_bbp_write(sc, 103, 0xc0);
4571 
4572 		run_bbp_read(sc, 138, &bbp);
4573 		if (sc->ntxchains == 1)
4574 			bbp |= 0x20;	/* turn off DAC1 */
4575 		if (sc->nrxchains == 1)
4576 			bbp &= ~0x02;	/* turn off ADC1 */
4577 		run_bbp_write(sc, 138, bbp);
4578 
4579 		if (sc->mac_rev >= 0x0211) {
4580 			/* improve power consumption */
4581 			run_bbp_read(sc, 31, &bbp);
4582 			run_bbp_write(sc, 31, bbp & ~0x03);
4583 		}
4584 
4585 		run_rt3070_rf_read(sc, 16, &rf);
4586 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4587 		run_rt3070_rf_write(sc, 16, rf);
4588 
4589 	} else if (sc->mac_ver == 0x3071) {
4590 		/* enable DC filter */
4591 		if (sc->mac_rev >= 0x0201)
4592 			run_bbp_write(sc, 103, 0xc0);
4593 
4594 		run_bbp_read(sc, 138, &bbp);
4595 		if (sc->ntxchains == 1)
4596 			bbp |= 0x20;	/* turn off DAC1 */
4597 		if (sc->nrxchains == 1)
4598 			bbp &= ~0x02;	/* turn off ADC1 */
4599 		run_bbp_write(sc, 138, bbp);
4600 
4601 		if (sc->mac_rev >= 0x0211) {
4602 			/* improve power consumption */
4603 			run_bbp_read(sc, 31, &bbp);
4604 			run_bbp_write(sc, 31, bbp & ~0x03);
4605 		}
4606 
4607 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4608 		if (sc->mac_rev < 0x0211) {
4609 			run_write(sc, RT2860_TX_SW_CFG2,
4610 			    sc->patch_dac ? 0x2c : 0x0f);
4611 		} else
4612 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4613 
4614 	} else if (sc->mac_ver == 0x3070) {
4615 		if (sc->mac_rev >= 0x0201) {
4616 			/* enable DC filter */
4617 			run_bbp_write(sc, 103, 0xc0);
4618 
4619 			/* improve power consumption */
4620 			run_bbp_read(sc, 31, &bbp);
4621 			run_bbp_write(sc, 31, bbp & ~0x03);
4622 		}
4623 
4624 		if (sc->mac_rev < 0x0211) {
4625 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4626 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4627 		} else
4628 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4629 	}
4630 
4631 	/* initialize RF registers from ROM for >=RT3071*/
4632 	if (sc->mac_ver >= 0x3071) {
4633 		for (i = 0; i < 10; i++) {
4634 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4635 				continue;
4636 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4637 		}
4638 	}
4639 }
4640 
4641 static int
4642 run_txrx_enable(struct run_softc *sc)
4643 {
4644 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4645 	uint32_t tmp;
4646 	int error, ntries;
4647 
4648 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4649 	for (ntries = 0; ntries < 200; ntries++) {
4650 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4651 			return error;
4652 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4653 			break;
4654 		run_delay(sc, 50);
4655 	}
4656 	if (ntries == 200)
4657 		return ETIMEDOUT;
4658 
4659 	run_delay(sc, 50);
4660 
4661 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4662 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4663 
4664 	/* enable Rx bulk aggregation (set timeout and limit) */
4665 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4666 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4667 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4668 
4669 	/* set Rx filter */
4670 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4671 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4672 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4673 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4674 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4675 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4676 		if (ic->ic_opmode == IEEE80211_M_STA)
4677 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4678 	}
4679 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4680 
4681 	run_write(sc, RT2860_MAC_SYS_CTRL,
4682 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4683 
4684 	return (0);
4685 }
4686 
4687 static void
4688 run_init_locked(struct run_softc *sc)
4689 {
4690 	struct ifnet *ifp = sc->sc_ifp;
4691 	struct ieee80211com *ic = ifp->if_l2com;
4692 	uint32_t tmp;
4693 	uint8_t bbp1, bbp3;
4694 	int i;
4695 	int ridx;
4696 	int ntries;
4697 
4698 	if (ic->ic_nrunning > 1)
4699 		return;
4700 
4701 	run_stop(sc);
4702 
4703 	if (run_load_microcode(sc) != 0) {
4704 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4705 		goto fail;
4706 	}
4707 
4708 	for (ntries = 0; ntries < 100; ntries++) {
4709 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4710 			goto fail;
4711 		if (tmp != 0 && tmp != 0xffffffff)
4712 			break;
4713 		run_delay(sc, 10);
4714 	}
4715 	if (ntries == 100)
4716 		goto fail;
4717 
4718 	for (i = 0; i != RUN_EP_QUEUES; i++)
4719 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4720 
4721 	run_set_macaddr(sc, IF_LLADDR(ifp));
4722 
4723 	for (ntries = 0; ntries < 100; ntries++) {
4724 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4725 			goto fail;
4726 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4727 			break;
4728 		run_delay(sc, 10);
4729 	}
4730 	if (ntries == 100) {
4731 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4732 		goto fail;
4733 	}
4734 	tmp &= 0xff0;
4735 	tmp |= RT2860_TX_WB_DDONE;
4736 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4737 
4738 	/* turn off PME_OEN to solve high-current issue */
4739 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4740 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4741 
4742 	run_write(sc, RT2860_MAC_SYS_CTRL,
4743 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4744 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4745 
4746 	if (run_reset(sc) != 0) {
4747 		device_printf(sc->sc_dev, "could not reset chipset\n");
4748 		goto fail;
4749 	}
4750 
4751 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4752 
4753 	/* init Tx power for all Tx rates (from EEPROM) */
4754 	for (ridx = 0; ridx < 5; ridx++) {
4755 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4756 			continue;
4757 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4758 	}
4759 
4760 	for (i = 0; i < N(rt2870_def_mac); i++)
4761 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4762 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4763 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4764 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4765 
4766 	if (sc->mac_ver >= 0x3070) {
4767 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4768 		run_write(sc, RT2860_TX_SW_CFG0,
4769 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4770 	}
4771 
4772 	/* wait while MAC is busy */
4773 	for (ntries = 0; ntries < 100; ntries++) {
4774 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4775 			goto fail;
4776 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4777 			break;
4778 		run_delay(sc, 10);
4779 	}
4780 	if (ntries == 100)
4781 		goto fail;
4782 
4783 	/* clear Host to MCU mailbox */
4784 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4785 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4786 	run_delay(sc, 10);
4787 
4788 	if (run_bbp_init(sc) != 0) {
4789 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4790 		goto fail;
4791 	}
4792 
4793 	/* abort TSF synchronization */
4794 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4795 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4796 	    RT2860_TBTT_TIMER_EN);
4797 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4798 
4799 	/* clear RX WCID search table */
4800 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4801 	/* clear WCID attribute table */
4802 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4803 
4804 	/* hostapd sets a key before init. So, don't clear it. */
4805 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4806 		/* clear shared key table */
4807 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4808 		/* clear shared key mode */
4809 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4810 	}
4811 
4812 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4813 	tmp = (tmp & ~0xff) | 0x1e;
4814 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4815 
4816 	if (sc->mac_rev != 0x0101)
4817 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4818 
4819 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4820 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4821 
4822 	/* write vendor-specific BBP values (from EEPROM) */
4823 	for (i = 0; i < 10; i++) {
4824 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4825 			continue;
4826 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4827 	}
4828 
4829 	/* select Main antenna for 1T1R devices */
4830 	if (sc->rf_rev == RT3070_RF_3020)
4831 		run_set_rx_antenna(sc, 0);
4832 
4833 	/* send LEDs operating mode to microcontroller */
4834 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4835 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4836 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4837 
4838 	if (sc->mac_ver >= 0x3070)
4839 		run_rt3070_rf_init(sc);
4840 
4841 	/* disable non-existing Rx chains */
4842 	run_bbp_read(sc, 3, &bbp3);
4843 	bbp3 &= ~(1 << 3 | 1 << 4);
4844 	if (sc->nrxchains == 2)
4845 		bbp3 |= 1 << 3;
4846 	else if (sc->nrxchains == 3)
4847 		bbp3 |= 1 << 4;
4848 	run_bbp_write(sc, 3, bbp3);
4849 
4850 	/* disable non-existing Tx chains */
4851 	run_bbp_read(sc, 1, &bbp1);
4852 	if (sc->ntxchains == 1)
4853 		bbp1 &= ~(1 << 3 | 1 << 4);
4854 	run_bbp_write(sc, 1, bbp1);
4855 
4856 	if (sc->mac_ver >= 0x3070)
4857 		run_rt3070_rf_setup(sc);
4858 
4859 	/* select default channel */
4860 	run_set_chan(sc, ic->ic_curchan);
4861 
4862 	/* setup initial protection mode */
4863 	run_updateprot_cb(ic);
4864 
4865 	/* turn radio LED on */
4866 	run_set_leds(sc, RT2860_LED_RADIO);
4867 
4868 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4869 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4870 	sc->cmdq_run = RUN_CMDQ_GO;
4871 
4872 	for (i = 0; i != RUN_N_XFER; i++)
4873 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4874 
4875 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4876 
4877 	if (run_txrx_enable(sc) != 0)
4878 		goto fail;
4879 
4880 	return;
4881 
4882 fail:
4883 	run_stop(sc);
4884 }
4885 
4886 static void
4887 run_init(void *arg)
4888 {
4889 	struct run_softc *sc = arg;
4890 	struct ifnet *ifp = sc->sc_ifp;
4891 	struct ieee80211com *ic = ifp->if_l2com;
4892 
4893 	RUN_LOCK(sc);
4894 	run_init_locked(sc);
4895 	RUN_UNLOCK(sc);
4896 
4897 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4898 		ieee80211_start_all(ic);
4899 }
4900 
4901 static void
4902 run_stop(void *arg)
4903 {
4904 	struct run_softc *sc = (struct run_softc *)arg;
4905 	struct ifnet *ifp = sc->sc_ifp;
4906 	uint32_t tmp;
4907 	int i;
4908 	int ntries;
4909 
4910 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4911 
4912 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4913 		run_set_leds(sc, 0);	/* turn all LEDs off */
4914 
4915 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4916 
4917 	sc->ratectl_run = RUN_RATECTL_OFF;
4918 	sc->cmdq_run = sc->cmdq_key_set;
4919 
4920 	RUN_UNLOCK(sc);
4921 
4922 	for(i = 0; i < RUN_N_XFER; i++)
4923 		usbd_transfer_drain(sc->sc_xfer[i]);
4924 
4925 	RUN_LOCK(sc);
4926 
4927 	if (sc->rx_m != NULL) {
4928 		m_free(sc->rx_m);
4929 		sc->rx_m = NULL;
4930 	}
4931 
4932 	/* disable Tx/Rx */
4933 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4934 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4935 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4936 
4937 	/* wait for pending Tx to complete */
4938 	for (ntries = 0; ntries < 100; ntries++) {
4939 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4940 			DPRINTF("Cannot read Tx queue count\n");
4941 			break;
4942 		}
4943 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4944 			DPRINTF("All Tx cleared\n");
4945 			break;
4946 		}
4947 		run_delay(sc, 10);
4948 	}
4949 	if (ntries >= 100)
4950 		DPRINTF("There are still pending Tx\n");
4951 	run_delay(sc, 10);
4952 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4953 
4954 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4955 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4956 
4957 	for (i = 0; i != RUN_EP_QUEUES; i++)
4958 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4959 
4960 	return;
4961 }
4962 
4963 static void
4964 run_delay(struct run_softc *sc, unsigned int ms)
4965 {
4966 	usb_pause_mtx(mtx_owned(&sc->sc_mtx) ?
4967 	    &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms));
4968 }
4969 
4970 static device_method_t run_methods[] = {
4971 	/* Device interface */
4972 	DEVMETHOD(device_probe,		run_match),
4973 	DEVMETHOD(device_attach,	run_attach),
4974 	DEVMETHOD(device_detach,	run_detach),
4975 	DEVMETHOD_END
4976 };
4977 
4978 static driver_t run_driver = {
4979 	.name = "run",
4980 	.methods = run_methods,
4981 	.size = sizeof(struct run_softc)
4982 };
4983 
4984 static devclass_t run_devclass;
4985 
4986 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
4987 MODULE_DEPEND(run, wlan, 1, 1, 1);
4988 MODULE_DEPEND(run, usb, 1, 1, 1);
4989 MODULE_DEPEND(run, firmware, 1, 1, 1);
4990 MODULE_VERSION(run, 1);
4991