1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_amrr.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #if USB_DEBUG 81 static int rum_debug = 0; 82 83 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 85 "Debug level"); 86 #endif 87 88 static const struct usb_device_id rum_devs[] = { 89 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM) }, 90 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2) }, 91 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3) }, 92 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4) }, 93 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700) }, 94 { USB_VP(USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO) }, 95 { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1) }, 96 { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2) }, 97 { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A) }, 98 { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3) }, 99 { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC) }, 100 { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR) }, 101 { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2) }, 102 { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL) }, 103 { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX) }, 104 { USB_VP(USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F) }, 105 { USB_VP(USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573) }, 106 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1) }, 107 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340) }, 108 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111) }, 109 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110) }, 110 { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS) }, 111 { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS) }, 112 { USB_VP(USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573) }, 113 { USB_VP(USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573) }, 114 { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB) }, 115 { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP) }, 116 { USB_VP(USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G) }, 117 { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP) }, 118 { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP) }, 119 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1) }, 120 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2) }, 121 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3) }, 122 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4) }, 123 { USB_VP(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573) }, 124 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP) }, 125 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2) }, 126 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM) }, 127 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573) }, 128 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2) }, 129 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3) }, 130 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573) }, 131 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2) }, 132 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671) }, 133 { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2) }, 134 { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172) }, 135 { USB_VP(USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573) }, 136 { USB_VP(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573) }, 137 }; 138 139 MODULE_DEPEND(rum, wlan, 1, 1, 1); 140 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1); 141 MODULE_DEPEND(rum, usb, 1, 1, 1); 142 143 static device_probe_t rum_match; 144 static device_attach_t rum_attach; 145 static device_detach_t rum_detach; 146 147 static usb_callback_t rum_bulk_read_callback; 148 static usb_callback_t rum_bulk_write_callback; 149 150 static usb_error_t rum_do_request(struct rum_softc *sc, 151 struct usb_device_request *req, void *data); 152 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 153 const char name[IFNAMSIZ], int unit, int opmode, 154 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 155 const uint8_t mac[IEEE80211_ADDR_LEN]); 156 static void rum_vap_delete(struct ieee80211vap *); 157 static void rum_tx_free(struct rum_tx_data *, int); 158 static void rum_setup_tx_list(struct rum_softc *); 159 static void rum_unsetup_tx_list(struct rum_softc *); 160 static int rum_newstate(struct ieee80211vap *, 161 enum ieee80211_state, int); 162 static void rum_setup_tx_desc(struct rum_softc *, 163 struct rum_tx_desc *, uint32_t, uint16_t, int, 164 int); 165 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 166 struct ieee80211_node *); 167 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 168 struct ieee80211_node *, 169 const struct ieee80211_bpf_params *); 170 static int rum_tx_data(struct rum_softc *, struct mbuf *, 171 struct ieee80211_node *); 172 static void rum_start(struct ifnet *); 173 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 174 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 175 int); 176 static uint32_t rum_read(struct rum_softc *, uint16_t); 177 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 178 int); 179 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 180 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 181 size_t); 182 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 183 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 184 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 185 static void rum_select_antenna(struct rum_softc *); 186 static void rum_enable_mrr(struct rum_softc *); 187 static void rum_set_txpreamble(struct rum_softc *); 188 static void rum_set_basicrates(struct rum_softc *); 189 static void rum_select_band(struct rum_softc *, 190 struct ieee80211_channel *); 191 static void rum_set_chan(struct rum_softc *, 192 struct ieee80211_channel *); 193 static void rum_enable_tsf_sync(struct rum_softc *); 194 static void rum_enable_tsf(struct rum_softc *); 195 static void rum_update_slot(struct ifnet *); 196 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 197 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 198 static void rum_update_promisc(struct ifnet *); 199 static void rum_setpromisc(struct rum_softc *); 200 static const char *rum_get_rf(int); 201 static void rum_read_eeprom(struct rum_softc *); 202 static int rum_bbp_init(struct rum_softc *); 203 static void rum_init_locked(struct rum_softc *); 204 static void rum_init(void *); 205 static void rum_stop(struct rum_softc *); 206 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 207 size_t); 208 static int rum_prepare_beacon(struct rum_softc *, 209 struct ieee80211vap *); 210 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 211 const struct ieee80211_bpf_params *); 212 static struct ieee80211_node *rum_node_alloc(struct ieee80211vap *, 213 const uint8_t mac[IEEE80211_ADDR_LEN]); 214 static void rum_newassoc(struct ieee80211_node *, int); 215 static void rum_scan_start(struct ieee80211com *); 216 static void rum_scan_end(struct ieee80211com *); 217 static void rum_set_channel(struct ieee80211com *); 218 static int rum_get_rssi(struct rum_softc *, uint8_t); 219 static void rum_amrr_start(struct rum_softc *, 220 struct ieee80211_node *); 221 static void rum_amrr_timeout(void *); 222 static void rum_amrr_task(void *, int); 223 static int rum_pause(struct rum_softc *, int); 224 225 static const struct { 226 uint32_t reg; 227 uint32_t val; 228 } rum_def_mac[] = { 229 { RT2573_TXRX_CSR0, 0x025fb032 }, 230 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 231 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 232 { RT2573_TXRX_CSR3, 0x00858687 }, 233 { RT2573_TXRX_CSR7, 0x2e31353b }, 234 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 235 { RT2573_TXRX_CSR15, 0x0000000f }, 236 { RT2573_MAC_CSR6, 0x00000fff }, 237 { RT2573_MAC_CSR8, 0x016c030a }, 238 { RT2573_MAC_CSR10, 0x00000718 }, 239 { RT2573_MAC_CSR12, 0x00000004 }, 240 { RT2573_MAC_CSR13, 0x00007f00 }, 241 { RT2573_SEC_CSR0, 0x00000000 }, 242 { RT2573_SEC_CSR1, 0x00000000 }, 243 { RT2573_SEC_CSR5, 0x00000000 }, 244 { RT2573_PHY_CSR1, 0x000023b0 }, 245 { RT2573_PHY_CSR5, 0x00040a06 }, 246 { RT2573_PHY_CSR6, 0x00080606 }, 247 { RT2573_PHY_CSR7, 0x00000408 }, 248 { RT2573_AIFSN_CSR, 0x00002273 }, 249 { RT2573_CWMIN_CSR, 0x00002344 }, 250 { RT2573_CWMAX_CSR, 0x000034aa } 251 }; 252 253 static const struct { 254 uint8_t reg; 255 uint8_t val; 256 } rum_def_bbp[] = { 257 { 3, 0x80 }, 258 { 15, 0x30 }, 259 { 17, 0x20 }, 260 { 21, 0xc8 }, 261 { 22, 0x38 }, 262 { 23, 0x06 }, 263 { 24, 0xfe }, 264 { 25, 0x0a }, 265 { 26, 0x0d }, 266 { 32, 0x0b }, 267 { 34, 0x12 }, 268 { 37, 0x07 }, 269 { 39, 0xf8 }, 270 { 41, 0x60 }, 271 { 53, 0x10 }, 272 { 54, 0x18 }, 273 { 60, 0x10 }, 274 { 61, 0x04 }, 275 { 62, 0x04 }, 276 { 75, 0xfe }, 277 { 86, 0xfe }, 278 { 88, 0xfe }, 279 { 90, 0x0f }, 280 { 99, 0x00 }, 281 { 102, 0x16 }, 282 { 107, 0x04 } 283 }; 284 285 static const struct rfprog { 286 uint8_t chan; 287 uint32_t r1, r2, r3, r4; 288 } rum_rf5226[] = { 289 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 290 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 291 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 292 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 293 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 294 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 295 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 296 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 297 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 298 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 299 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 300 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 301 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 302 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 303 304 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 305 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 306 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 307 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 308 309 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 310 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 311 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 312 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 313 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 314 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 315 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 316 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 317 318 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 319 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 320 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 321 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 322 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 323 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 324 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 325 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 326 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 327 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 328 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 329 330 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 331 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 332 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 333 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 334 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 335 }, rum_rf5225[] = { 336 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 337 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 338 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 339 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 340 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 341 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 342 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 343 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 344 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 345 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 346 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 347 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 348 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 349 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 350 351 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 352 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 353 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 354 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 355 356 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 357 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 358 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 359 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 360 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 361 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 362 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 363 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 364 365 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 366 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 367 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 368 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 369 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 370 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 371 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 372 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 373 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 374 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 375 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 376 377 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 378 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 379 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 380 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 381 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 382 }; 383 384 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 385 [RUM_BULK_WR] = { 386 .type = UE_BULK, 387 .endpoint = UE_ADDR_ANY, 388 .direction = UE_DIR_OUT, 389 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 390 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 391 .callback = rum_bulk_write_callback, 392 .timeout = 5000, /* ms */ 393 }, 394 [RUM_BULK_RD] = { 395 .type = UE_BULK, 396 .endpoint = UE_ADDR_ANY, 397 .direction = UE_DIR_IN, 398 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 399 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 400 .callback = rum_bulk_read_callback, 401 }, 402 }; 403 404 static int 405 rum_match(device_t self) 406 { 407 struct usb_attach_arg *uaa = device_get_ivars(self); 408 409 if (uaa->usb_mode != USB_MODE_HOST) 410 return (ENXIO); 411 if (uaa->info.bConfigIndex != 0) 412 return (ENXIO); 413 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 414 return (ENXIO); 415 416 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 417 } 418 419 static int 420 rum_attach(device_t self) 421 { 422 struct usb_attach_arg *uaa = device_get_ivars(self); 423 struct rum_softc *sc = device_get_softc(self); 424 struct ieee80211com *ic; 425 struct ifnet *ifp; 426 uint8_t iface_index, bands; 427 uint32_t tmp; 428 int error, ntries; 429 430 device_set_usb_desc(self); 431 sc->sc_udev = uaa->device; 432 sc->sc_dev = self; 433 434 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 435 MTX_NETWORK_LOCK, MTX_DEF); 436 437 iface_index = RT2573_IFACE_INDEX; 438 error = usbd_transfer_setup(uaa->device, &iface_index, 439 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 440 if (error) { 441 device_printf(self, "could not allocate USB transfers, " 442 "err=%s\n", usbd_errstr(error)); 443 goto detach; 444 } 445 446 RUM_LOCK(sc); 447 /* retrieve RT2573 rev. no */ 448 for (ntries = 0; ntries < 100; ntries++) { 449 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 450 break; 451 if (rum_pause(sc, hz / 100)) 452 break; 453 } 454 if (ntries == 100) { 455 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 456 RUM_UNLOCK(sc); 457 goto detach; 458 } 459 460 /* retrieve MAC address and various other things from EEPROM */ 461 rum_read_eeprom(sc); 462 463 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 464 tmp, rum_get_rf(sc->rf_rev)); 465 466 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 467 RUM_UNLOCK(sc); 468 469 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 470 if (ifp == NULL) { 471 device_printf(sc->sc_dev, "can not if_alloc()\n"); 472 goto detach; 473 } 474 ic = ifp->if_l2com; 475 476 ifp->if_softc = sc; 477 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 478 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 479 ifp->if_init = rum_init; 480 ifp->if_ioctl = rum_ioctl; 481 ifp->if_start = rum_start; 482 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 483 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 484 IFQ_SET_READY(&ifp->if_snd); 485 486 ic->ic_ifp = ifp; 487 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 488 489 /* set device capabilities */ 490 ic->ic_caps = 491 IEEE80211_C_STA /* station mode supported */ 492 | IEEE80211_C_IBSS /* IBSS mode supported */ 493 | IEEE80211_C_MONITOR /* monitor mode supported */ 494 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 495 | IEEE80211_C_TXPMGT /* tx power management */ 496 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 497 | IEEE80211_C_SHSLOT /* short slot time supported */ 498 | IEEE80211_C_BGSCAN /* bg scanning supported */ 499 | IEEE80211_C_WPA /* 802.11i */ 500 ; 501 502 bands = 0; 503 setbit(&bands, IEEE80211_MODE_11B); 504 setbit(&bands, IEEE80211_MODE_11G); 505 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 506 setbit(&bands, IEEE80211_MODE_11A); 507 ieee80211_init_channels(ic, NULL, &bands); 508 509 ieee80211_ifattach(ic, sc->sc_bssid); 510 ic->ic_update_promisc = rum_update_promisc; 511 ic->ic_newassoc = rum_newassoc; 512 ic->ic_raw_xmit = rum_raw_xmit; 513 ic->ic_node_alloc = rum_node_alloc; 514 ic->ic_scan_start = rum_scan_start; 515 ic->ic_scan_end = rum_scan_end; 516 ic->ic_set_channel = rum_set_channel; 517 518 ic->ic_vap_create = rum_vap_create; 519 ic->ic_vap_delete = rum_vap_delete; 520 521 ieee80211_radiotap_attach(ic, 522 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 523 RT2573_TX_RADIOTAP_PRESENT, 524 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 525 RT2573_RX_RADIOTAP_PRESENT); 526 527 if (bootverbose) 528 ieee80211_announce(ic); 529 530 return (0); 531 532 detach: 533 rum_detach(self); 534 return (ENXIO); /* failure */ 535 } 536 537 static int 538 rum_detach(device_t self) 539 { 540 struct rum_softc *sc = device_get_softc(self); 541 struct ifnet *ifp = sc->sc_ifp; 542 struct ieee80211com *ic; 543 544 /* stop all USB transfers */ 545 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 546 547 /* free TX list, if any */ 548 RUM_LOCK(sc); 549 rum_unsetup_tx_list(sc); 550 RUM_UNLOCK(sc); 551 552 if (ifp) { 553 ic = ifp->if_l2com; 554 ieee80211_ifdetach(ic); 555 if_free(ifp); 556 } 557 mtx_destroy(&sc->sc_mtx); 558 559 return (0); 560 } 561 562 static usb_error_t 563 rum_do_request(struct rum_softc *sc, 564 struct usb_device_request *req, void *data) 565 { 566 usb_error_t err; 567 int ntries = 10; 568 569 while (ntries--) { 570 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 571 req, data, 0, NULL, 250 /* ms */); 572 if (err == 0) 573 break; 574 575 DPRINTFN(1, "Control request failed, %s (retrying)\n", 576 usbd_errstr(err)); 577 if (rum_pause(sc, hz / 100)) 578 break; 579 } 580 return (err); 581 } 582 583 static struct ieee80211vap * 584 rum_vap_create(struct ieee80211com *ic, 585 const char name[IFNAMSIZ], int unit, int opmode, int flags, 586 const uint8_t bssid[IEEE80211_ADDR_LEN], 587 const uint8_t mac[IEEE80211_ADDR_LEN]) 588 { 589 struct rum_softc *sc = ic->ic_ifp->if_softc; 590 struct rum_vap *rvp; 591 struct ieee80211vap *vap; 592 593 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 594 return NULL; 595 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 596 M_80211_VAP, M_NOWAIT | M_ZERO); 597 if (rvp == NULL) 598 return NULL; 599 vap = &rvp->vap; 600 /* enable s/w bmiss handling for sta mode */ 601 ieee80211_vap_setup(ic, vap, name, unit, opmode, 602 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 603 604 /* override state transition machine */ 605 rvp->newstate = vap->iv_newstate; 606 vap->iv_newstate = rum_newstate; 607 608 usb_callout_init_mtx(&rvp->amrr_ch, &sc->sc_mtx, 0); 609 TASK_INIT(&rvp->amrr_task, 0, rum_amrr_task, rvp); 610 ieee80211_amrr_init(&rvp->amrr, vap, 611 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 612 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 613 1000 /* 1 sec */); 614 615 /* complete setup */ 616 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 617 ic->ic_opmode = opmode; 618 return vap; 619 } 620 621 static void 622 rum_vap_delete(struct ieee80211vap *vap) 623 { 624 struct rum_vap *rvp = RUM_VAP(vap); 625 struct ieee80211com *ic = vap->iv_ic; 626 627 usb_callout_drain(&rvp->amrr_ch); 628 ieee80211_draintask(ic, &rvp->amrr_task); 629 ieee80211_amrr_cleanup(&rvp->amrr); 630 ieee80211_vap_detach(vap); 631 free(rvp, M_80211_VAP); 632 } 633 634 static void 635 rum_tx_free(struct rum_tx_data *data, int txerr) 636 { 637 struct rum_softc *sc = data->sc; 638 639 if (data->m != NULL) { 640 if (data->m->m_flags & M_TXCB) 641 ieee80211_process_callback(data->ni, data->m, 642 txerr ? ETIMEDOUT : 0); 643 m_freem(data->m); 644 data->m = NULL; 645 646 ieee80211_free_node(data->ni); 647 data->ni = NULL; 648 } 649 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 650 sc->tx_nfree++; 651 } 652 653 static void 654 rum_setup_tx_list(struct rum_softc *sc) 655 { 656 struct rum_tx_data *data; 657 int i; 658 659 sc->tx_nfree = 0; 660 STAILQ_INIT(&sc->tx_q); 661 STAILQ_INIT(&sc->tx_free); 662 663 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 664 data = &sc->tx_data[i]; 665 666 data->sc = sc; 667 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 668 sc->tx_nfree++; 669 } 670 } 671 672 static void 673 rum_unsetup_tx_list(struct rum_softc *sc) 674 { 675 struct rum_tx_data *data; 676 int i; 677 678 /* make sure any subsequent use of the queues will fail */ 679 sc->tx_nfree = 0; 680 STAILQ_INIT(&sc->tx_q); 681 STAILQ_INIT(&sc->tx_free); 682 683 /* free up all node references and mbufs */ 684 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 685 data = &sc->tx_data[i]; 686 687 if (data->m != NULL) { 688 m_freem(data->m); 689 data->m = NULL; 690 } 691 if (data->ni != NULL) { 692 ieee80211_free_node(data->ni); 693 data->ni = NULL; 694 } 695 } 696 } 697 698 static int 699 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 700 { 701 struct rum_vap *rvp = RUM_VAP(vap); 702 struct ieee80211com *ic = vap->iv_ic; 703 struct rum_softc *sc = ic->ic_ifp->if_softc; 704 const struct ieee80211_txparam *tp; 705 enum ieee80211_state ostate; 706 struct ieee80211_node *ni; 707 uint32_t tmp; 708 709 ostate = vap->iv_state; 710 DPRINTF("%s -> %s\n", 711 ieee80211_state_name[ostate], 712 ieee80211_state_name[nstate]); 713 714 IEEE80211_UNLOCK(ic); 715 RUM_LOCK(sc); 716 usb_callout_stop(&rvp->amrr_ch); 717 718 switch (nstate) { 719 case IEEE80211_S_INIT: 720 if (ostate == IEEE80211_S_RUN) { 721 /* abort TSF synchronization */ 722 tmp = rum_read(sc, RT2573_TXRX_CSR9); 723 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 724 } 725 break; 726 727 case IEEE80211_S_RUN: 728 ni = vap->iv_bss; 729 730 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 731 rum_update_slot(ic->ic_ifp); 732 rum_enable_mrr(sc); 733 rum_set_txpreamble(sc); 734 rum_set_basicrates(sc); 735 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 736 rum_set_bssid(sc, sc->sc_bssid); 737 } 738 739 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 740 vap->iv_opmode == IEEE80211_M_IBSS) 741 rum_prepare_beacon(sc, vap); 742 743 if (vap->iv_opmode != IEEE80211_M_MONITOR) 744 rum_enable_tsf_sync(sc); 745 else 746 rum_enable_tsf(sc); 747 748 /* enable automatic rate adaptation */ 749 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 750 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 751 rum_amrr_start(sc, ni); 752 break; 753 default: 754 break; 755 } 756 RUM_UNLOCK(sc); 757 IEEE80211_LOCK(ic); 758 return (rvp->newstate(vap, nstate, arg)); 759 } 760 761 static void 762 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 763 { 764 struct rum_softc *sc = usbd_xfer_softc(xfer); 765 struct ifnet *ifp = sc->sc_ifp; 766 struct ieee80211vap *vap; 767 struct rum_tx_data *data; 768 struct mbuf *m; 769 struct usb_page_cache *pc; 770 unsigned int len; 771 int actlen, sumlen; 772 773 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 774 775 switch (USB_GET_STATE(xfer)) { 776 case USB_ST_TRANSFERRED: 777 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 778 779 /* free resources */ 780 data = usbd_xfer_get_priv(xfer); 781 rum_tx_free(data, 0); 782 usbd_xfer_set_priv(xfer, NULL); 783 784 ifp->if_opackets++; 785 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 786 787 /* FALLTHROUGH */ 788 case USB_ST_SETUP: 789 tr_setup: 790 data = STAILQ_FIRST(&sc->tx_q); 791 if (data) { 792 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 793 m = data->m; 794 795 if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) { 796 DPRINTFN(0, "data overflow, %u bytes\n", 797 m->m_pkthdr.len); 798 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 799 } 800 pc = usbd_xfer_get_frame(xfer, 0); 801 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 802 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 803 m->m_pkthdr.len); 804 805 vap = data->ni->ni_vap; 806 if (ieee80211_radiotap_active_vap(vap)) { 807 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 808 809 tap->wt_flags = 0; 810 tap->wt_rate = data->rate; 811 tap->wt_antenna = sc->tx_ant; 812 813 ieee80211_radiotap_tx(vap, m); 814 } 815 816 /* align end on a 4-bytes boundary */ 817 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 818 if ((len % 64) == 0) 819 len += 4; 820 821 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 822 m->m_pkthdr.len, len); 823 824 usbd_xfer_set_frame_len(xfer, 0, len); 825 usbd_xfer_set_priv(xfer, data); 826 827 usbd_transfer_submit(xfer); 828 } 829 RUM_UNLOCK(sc); 830 rum_start(ifp); 831 RUM_LOCK(sc); 832 break; 833 834 default: /* Error */ 835 DPRINTFN(11, "transfer error, %s\n", 836 usbd_errstr(error)); 837 838 ifp->if_oerrors++; 839 data = usbd_xfer_get_priv(xfer); 840 if (data != NULL) { 841 rum_tx_free(data, error); 842 usbd_xfer_set_priv(xfer, NULL); 843 } 844 845 if (error == USB_ERR_STALLED) { 846 /* try to clear stall first */ 847 usbd_xfer_set_stall(xfer); 848 goto tr_setup; 849 } 850 if (error == USB_ERR_TIMEOUT) 851 device_printf(sc->sc_dev, "device timeout\n"); 852 break; 853 } 854 } 855 856 static void 857 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 858 { 859 struct rum_softc *sc = usbd_xfer_softc(xfer); 860 struct ifnet *ifp = sc->sc_ifp; 861 struct ieee80211com *ic = ifp->if_l2com; 862 struct ieee80211_node *ni; 863 struct mbuf *m = NULL; 864 struct usb_page_cache *pc; 865 uint32_t flags; 866 uint8_t rssi = 0; 867 int len; 868 869 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 870 871 switch (USB_GET_STATE(xfer)) { 872 case USB_ST_TRANSFERRED: 873 874 DPRINTFN(15, "rx done, actlen=%d\n", len); 875 876 if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 877 DPRINTF("%s: xfer too short %d\n", 878 device_get_nameunit(sc->sc_dev), len); 879 ifp->if_ierrors++; 880 goto tr_setup; 881 } 882 883 len -= RT2573_RX_DESC_SIZE; 884 pc = usbd_xfer_get_frame(xfer, 0); 885 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 886 887 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 888 flags = le32toh(sc->sc_rx_desc.flags); 889 if (flags & RT2573_RX_CRC_ERROR) { 890 /* 891 * This should not happen since we did not 892 * request to receive those frames when we 893 * filled RUM_TXRX_CSR2: 894 */ 895 DPRINTFN(5, "PHY or CRC error\n"); 896 ifp->if_ierrors++; 897 goto tr_setup; 898 } 899 900 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 901 if (m == NULL) { 902 DPRINTF("could not allocate mbuf\n"); 903 ifp->if_ierrors++; 904 goto tr_setup; 905 } 906 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 907 mtod(m, uint8_t *), len); 908 909 /* finalize mbuf */ 910 m->m_pkthdr.rcvif = ifp; 911 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 912 913 if (ieee80211_radiotap_active(ic)) { 914 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 915 916 /* XXX read tsf */ 917 tap->wr_flags = 0; 918 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 919 (flags & RT2573_RX_OFDM) ? 920 IEEE80211_T_OFDM : IEEE80211_T_CCK); 921 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 922 tap->wr_antnoise = RT2573_NOISE_FLOOR; 923 tap->wr_antenna = sc->rx_ant; 924 } 925 /* FALLTHROUGH */ 926 case USB_ST_SETUP: 927 tr_setup: 928 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 929 usbd_transfer_submit(xfer); 930 931 /* 932 * At the end of a USB callback it is always safe to unlock 933 * the private mutex of a device! That is why we do the 934 * "ieee80211_input" here, and not some lines up! 935 */ 936 RUM_UNLOCK(sc); 937 if (m) { 938 ni = ieee80211_find_rxnode(ic, 939 mtod(m, struct ieee80211_frame_min *)); 940 if (ni != NULL) { 941 (void) ieee80211_input(ni, m, rssi, 942 RT2573_NOISE_FLOOR); 943 ieee80211_free_node(ni); 944 } else 945 (void) ieee80211_input_all(ic, m, rssi, 946 RT2573_NOISE_FLOOR); 947 } 948 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 949 !IFQ_IS_EMPTY(&ifp->if_snd)) 950 rum_start(ifp); 951 RUM_LOCK(sc); 952 return; 953 954 default: /* Error */ 955 if (error != USB_ERR_CANCELLED) { 956 /* try to clear stall first */ 957 usbd_xfer_set_stall(xfer); 958 goto tr_setup; 959 } 960 return; 961 } 962 } 963 964 static uint8_t 965 rum_plcp_signal(int rate) 966 { 967 switch (rate) { 968 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 969 case 12: return 0xb; 970 case 18: return 0xf; 971 case 24: return 0xa; 972 case 36: return 0xe; 973 case 48: return 0x9; 974 case 72: return 0xd; 975 case 96: return 0x8; 976 case 108: return 0xc; 977 978 /* CCK rates (NB: not IEEE std, device-specific) */ 979 case 2: return 0x0; 980 case 4: return 0x1; 981 case 11: return 0x2; 982 case 22: return 0x3; 983 } 984 return 0xff; /* XXX unsupported/unknown rate */ 985 } 986 987 static void 988 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 989 uint32_t flags, uint16_t xflags, int len, int rate) 990 { 991 struct ifnet *ifp = sc->sc_ifp; 992 struct ieee80211com *ic = ifp->if_l2com; 993 uint16_t plcp_length; 994 int remainder; 995 996 desc->flags = htole32(flags); 997 desc->flags |= htole32(RT2573_TX_VALID); 998 desc->flags |= htole32(len << 16); 999 1000 desc->xflags = htole16(xflags); 1001 1002 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 1003 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 1004 1005 /* setup PLCP fields */ 1006 desc->plcp_signal = rum_plcp_signal(rate); 1007 desc->plcp_service = 4; 1008 1009 len += IEEE80211_CRC_LEN; 1010 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1011 desc->flags |= htole32(RT2573_TX_OFDM); 1012 1013 plcp_length = len & 0xfff; 1014 desc->plcp_length_hi = plcp_length >> 6; 1015 desc->plcp_length_lo = plcp_length & 0x3f; 1016 } else { 1017 plcp_length = (16 * len + rate - 1) / rate; 1018 if (rate == 22) { 1019 remainder = (16 * len) % 22; 1020 if (remainder != 0 && remainder < 7) 1021 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1022 } 1023 desc->plcp_length_hi = plcp_length >> 8; 1024 desc->plcp_length_lo = plcp_length & 0xff; 1025 1026 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1027 desc->plcp_signal |= 0x08; 1028 } 1029 } 1030 1031 static int 1032 rum_sendprot(struct rum_softc *sc, 1033 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1034 { 1035 struct ieee80211com *ic = ni->ni_ic; 1036 const struct ieee80211_frame *wh; 1037 struct rum_tx_data *data; 1038 struct mbuf *mprot; 1039 int protrate, ackrate, pktlen, flags, isshort; 1040 uint16_t dur; 1041 1042 RUM_LOCK_ASSERT(sc, MA_OWNED); 1043 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1044 ("protection %d", prot)); 1045 1046 wh = mtod(m, const struct ieee80211_frame *); 1047 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1048 1049 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1050 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1051 1052 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1053 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort); 1054 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1055 flags = RT2573_TX_MORE_FRAG; 1056 if (prot == IEEE80211_PROT_RTSCTS) { 1057 /* NB: CTS is the same size as an ACK */ 1058 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1059 flags |= RT2573_TX_NEED_ACK; 1060 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1061 } else { 1062 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1063 } 1064 if (mprot == NULL) { 1065 /* XXX stat + msg */ 1066 return (ENOBUFS); 1067 } 1068 data = STAILQ_FIRST(&sc->tx_free); 1069 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1070 sc->tx_nfree--; 1071 1072 data->m = mprot; 1073 data->ni = ieee80211_ref_node(ni); 1074 data->rate = protrate; 1075 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1076 1077 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1078 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1079 1080 return 0; 1081 } 1082 1083 static int 1084 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1085 { 1086 struct ieee80211vap *vap = ni->ni_vap; 1087 struct ifnet *ifp = sc->sc_ifp; 1088 struct ieee80211com *ic = ifp->if_l2com; 1089 struct rum_tx_data *data; 1090 struct ieee80211_frame *wh; 1091 const struct ieee80211_txparam *tp; 1092 struct ieee80211_key *k; 1093 uint32_t flags = 0; 1094 uint16_t dur; 1095 1096 RUM_LOCK_ASSERT(sc, MA_OWNED); 1097 1098 data = STAILQ_FIRST(&sc->tx_free); 1099 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1100 sc->tx_nfree--; 1101 1102 wh = mtod(m0, struct ieee80211_frame *); 1103 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1104 k = ieee80211_crypto_encap(ni, m0); 1105 if (k == NULL) { 1106 m_freem(m0); 1107 return ENOBUFS; 1108 } 1109 wh = mtod(m0, struct ieee80211_frame *); 1110 } 1111 1112 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1113 1114 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1115 flags |= RT2573_TX_NEED_ACK; 1116 1117 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1118 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1119 *(uint16_t *)wh->i_dur = htole16(dur); 1120 1121 /* tell hardware to add timestamp for probe responses */ 1122 if ((wh->i_fc[0] & 1123 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1124 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1125 flags |= RT2573_TX_TIMESTAMP; 1126 } 1127 1128 data->m = m0; 1129 data->ni = ni; 1130 data->rate = tp->mgmtrate; 1131 1132 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1133 1134 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1135 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1136 1137 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1138 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1139 1140 return (0); 1141 } 1142 1143 static int 1144 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1145 const struct ieee80211_bpf_params *params) 1146 { 1147 struct ieee80211com *ic = ni->ni_ic; 1148 struct rum_tx_data *data; 1149 uint32_t flags; 1150 int rate, error; 1151 1152 RUM_LOCK_ASSERT(sc, MA_OWNED); 1153 KASSERT(params != NULL, ("no raw xmit params")); 1154 1155 rate = params->ibp_rate0; 1156 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1157 m_freem(m0); 1158 return EINVAL; 1159 } 1160 flags = 0; 1161 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1162 flags |= RT2573_TX_NEED_ACK; 1163 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1164 error = rum_sendprot(sc, m0, ni, 1165 params->ibp_flags & IEEE80211_BPF_RTS ? 1166 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1167 rate); 1168 if (error || sc->tx_nfree == 0) { 1169 m_freem(m0); 1170 return ENOBUFS; 1171 } 1172 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1173 } 1174 1175 data = STAILQ_FIRST(&sc->tx_free); 1176 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1177 sc->tx_nfree--; 1178 1179 data->m = m0; 1180 data->ni = ni; 1181 data->rate = rate; 1182 1183 /* XXX need to setup descriptor ourself */ 1184 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1185 1186 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1187 m0->m_pkthdr.len, rate); 1188 1189 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1190 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1191 1192 return 0; 1193 } 1194 1195 static int 1196 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1197 { 1198 struct ieee80211vap *vap = ni->ni_vap; 1199 struct ifnet *ifp = sc->sc_ifp; 1200 struct ieee80211com *ic = ifp->if_l2com; 1201 struct rum_tx_data *data; 1202 struct ieee80211_frame *wh; 1203 const struct ieee80211_txparam *tp; 1204 struct ieee80211_key *k; 1205 uint32_t flags = 0; 1206 uint16_t dur; 1207 int error, rate; 1208 1209 RUM_LOCK_ASSERT(sc, MA_OWNED); 1210 1211 wh = mtod(m0, struct ieee80211_frame *); 1212 1213 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1214 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1215 rate = tp->mcastrate; 1216 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1217 rate = tp->ucastrate; 1218 else 1219 rate = ni->ni_txrate; 1220 1221 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1222 k = ieee80211_crypto_encap(ni, m0); 1223 if (k == NULL) { 1224 m_freem(m0); 1225 return ENOBUFS; 1226 } 1227 1228 /* packet header may have moved, reset our local pointer */ 1229 wh = mtod(m0, struct ieee80211_frame *); 1230 } 1231 1232 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1233 int prot = IEEE80211_PROT_NONE; 1234 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1235 prot = IEEE80211_PROT_RTSCTS; 1236 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1237 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1238 prot = ic->ic_protmode; 1239 if (prot != IEEE80211_PROT_NONE) { 1240 error = rum_sendprot(sc, m0, ni, prot, rate); 1241 if (error || sc->tx_nfree == 0) { 1242 m_freem(m0); 1243 return ENOBUFS; 1244 } 1245 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1246 } 1247 } 1248 1249 data = STAILQ_FIRST(&sc->tx_free); 1250 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1251 sc->tx_nfree--; 1252 1253 data->m = m0; 1254 data->ni = ni; 1255 data->rate = rate; 1256 1257 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1258 flags |= RT2573_TX_NEED_ACK; 1259 flags |= RT2573_TX_MORE_FRAG; 1260 1261 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1262 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1263 *(uint16_t *)wh->i_dur = htole16(dur); 1264 } 1265 1266 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1267 1268 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1269 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1270 1271 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1272 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1273 1274 return 0; 1275 } 1276 1277 static void 1278 rum_start(struct ifnet *ifp) 1279 { 1280 struct rum_softc *sc = ifp->if_softc; 1281 struct ieee80211_node *ni; 1282 struct mbuf *m; 1283 1284 RUM_LOCK(sc); 1285 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1286 RUM_UNLOCK(sc); 1287 return; 1288 } 1289 for (;;) { 1290 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1291 if (m == NULL) 1292 break; 1293 if (sc->tx_nfree < RUM_TX_MINFREE) { 1294 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1295 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1296 break; 1297 } 1298 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1299 if (rum_tx_data(sc, m, ni) != 0) { 1300 ieee80211_free_node(ni); 1301 ifp->if_oerrors++; 1302 break; 1303 } 1304 } 1305 RUM_UNLOCK(sc); 1306 } 1307 1308 static int 1309 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1310 { 1311 struct rum_softc *sc = ifp->if_softc; 1312 struct ieee80211com *ic = ifp->if_l2com; 1313 struct ifreq *ifr = (struct ifreq *) data; 1314 int error = 0, startall = 0; 1315 1316 switch (cmd) { 1317 case SIOCSIFFLAGS: 1318 RUM_LOCK(sc); 1319 if (ifp->if_flags & IFF_UP) { 1320 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1321 rum_init_locked(sc); 1322 startall = 1; 1323 } else 1324 rum_setpromisc(sc); 1325 } else { 1326 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1327 rum_stop(sc); 1328 } 1329 RUM_UNLOCK(sc); 1330 if (startall) 1331 ieee80211_start_all(ic); 1332 break; 1333 case SIOCGIFMEDIA: 1334 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1335 break; 1336 case SIOCGIFADDR: 1337 error = ether_ioctl(ifp, cmd, data); 1338 break; 1339 default: 1340 error = EINVAL; 1341 break; 1342 } 1343 return error; 1344 } 1345 1346 static void 1347 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1348 { 1349 struct usb_device_request req; 1350 usb_error_t error; 1351 1352 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1353 req.bRequest = RT2573_READ_EEPROM; 1354 USETW(req.wValue, 0); 1355 USETW(req.wIndex, addr); 1356 USETW(req.wLength, len); 1357 1358 error = rum_do_request(sc, &req, buf); 1359 if (error != 0) { 1360 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1361 usbd_errstr(error)); 1362 } 1363 } 1364 1365 static uint32_t 1366 rum_read(struct rum_softc *sc, uint16_t reg) 1367 { 1368 uint32_t val; 1369 1370 rum_read_multi(sc, reg, &val, sizeof val); 1371 1372 return le32toh(val); 1373 } 1374 1375 static void 1376 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1377 { 1378 struct usb_device_request req; 1379 usb_error_t error; 1380 1381 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1382 req.bRequest = RT2573_READ_MULTI_MAC; 1383 USETW(req.wValue, 0); 1384 USETW(req.wIndex, reg); 1385 USETW(req.wLength, len); 1386 1387 error = rum_do_request(sc, &req, buf); 1388 if (error != 0) { 1389 device_printf(sc->sc_dev, 1390 "could not multi read MAC register: %s\n", 1391 usbd_errstr(error)); 1392 } 1393 } 1394 1395 static usb_error_t 1396 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1397 { 1398 uint32_t tmp = htole32(val); 1399 1400 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1401 } 1402 1403 static usb_error_t 1404 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1405 { 1406 struct usb_device_request req; 1407 usb_error_t error; 1408 1409 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1410 req.bRequest = RT2573_WRITE_MULTI_MAC; 1411 USETW(req.wValue, 0); 1412 USETW(req.wIndex, reg); 1413 USETW(req.wLength, len); 1414 1415 error = rum_do_request(sc, &req, buf); 1416 if (error != 0) { 1417 device_printf(sc->sc_dev, 1418 "could not multi write MAC register: %s\n", 1419 usbd_errstr(error)); 1420 } 1421 return (error); 1422 } 1423 1424 static void 1425 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1426 { 1427 uint32_t tmp; 1428 int ntries; 1429 1430 DPRINTFN(2, "reg=0x%08x\n", reg); 1431 1432 for (ntries = 0; ntries < 100; ntries++) { 1433 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1434 break; 1435 if (rum_pause(sc, hz / 100)) 1436 break; 1437 } 1438 if (ntries == 100) { 1439 device_printf(sc->sc_dev, "could not write to BBP\n"); 1440 return; 1441 } 1442 1443 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1444 rum_write(sc, RT2573_PHY_CSR3, tmp); 1445 } 1446 1447 static uint8_t 1448 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1449 { 1450 uint32_t val; 1451 int ntries; 1452 1453 DPRINTFN(2, "reg=0x%08x\n", reg); 1454 1455 for (ntries = 0; ntries < 100; ntries++) { 1456 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1457 break; 1458 if (rum_pause(sc, hz / 100)) 1459 break; 1460 } 1461 if (ntries == 100) { 1462 device_printf(sc->sc_dev, "could not read BBP\n"); 1463 return 0; 1464 } 1465 1466 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1467 rum_write(sc, RT2573_PHY_CSR3, val); 1468 1469 for (ntries = 0; ntries < 100; ntries++) { 1470 val = rum_read(sc, RT2573_PHY_CSR3); 1471 if (!(val & RT2573_BBP_BUSY)) 1472 return val & 0xff; 1473 if (rum_pause(sc, hz / 100)) 1474 break; 1475 } 1476 1477 device_printf(sc->sc_dev, "could not read BBP\n"); 1478 return 0; 1479 } 1480 1481 static void 1482 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1483 { 1484 uint32_t tmp; 1485 int ntries; 1486 1487 for (ntries = 0; ntries < 100; ntries++) { 1488 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1489 break; 1490 if (rum_pause(sc, hz / 100)) 1491 break; 1492 } 1493 if (ntries == 100) { 1494 device_printf(sc->sc_dev, "could not write to RF\n"); 1495 return; 1496 } 1497 1498 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1499 (reg & 3); 1500 rum_write(sc, RT2573_PHY_CSR4, tmp); 1501 1502 /* remember last written value in sc */ 1503 sc->rf_regs[reg] = val; 1504 1505 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1506 } 1507 1508 static void 1509 rum_select_antenna(struct rum_softc *sc) 1510 { 1511 uint8_t bbp4, bbp77; 1512 uint32_t tmp; 1513 1514 bbp4 = rum_bbp_read(sc, 4); 1515 bbp77 = rum_bbp_read(sc, 77); 1516 1517 /* TBD */ 1518 1519 /* make sure Rx is disabled before switching antenna */ 1520 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1521 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1522 1523 rum_bbp_write(sc, 4, bbp4); 1524 rum_bbp_write(sc, 77, bbp77); 1525 1526 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1527 } 1528 1529 /* 1530 * Enable multi-rate retries for frames sent at OFDM rates. 1531 * In 802.11b/g mode, allow fallback to CCK rates. 1532 */ 1533 static void 1534 rum_enable_mrr(struct rum_softc *sc) 1535 { 1536 struct ifnet *ifp = sc->sc_ifp; 1537 struct ieee80211com *ic = ifp->if_l2com; 1538 uint32_t tmp; 1539 1540 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1541 1542 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1543 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1544 tmp |= RT2573_MRR_CCK_FALLBACK; 1545 tmp |= RT2573_MRR_ENABLED; 1546 1547 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1548 } 1549 1550 static void 1551 rum_set_txpreamble(struct rum_softc *sc) 1552 { 1553 struct ifnet *ifp = sc->sc_ifp; 1554 struct ieee80211com *ic = ifp->if_l2com; 1555 uint32_t tmp; 1556 1557 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1558 1559 tmp &= ~RT2573_SHORT_PREAMBLE; 1560 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1561 tmp |= RT2573_SHORT_PREAMBLE; 1562 1563 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1564 } 1565 1566 static void 1567 rum_set_basicrates(struct rum_softc *sc) 1568 { 1569 struct ifnet *ifp = sc->sc_ifp; 1570 struct ieee80211com *ic = ifp->if_l2com; 1571 1572 /* update basic rate set */ 1573 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1574 /* 11b basic rates: 1, 2Mbps */ 1575 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1576 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1577 /* 11a basic rates: 6, 12, 24Mbps */ 1578 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1579 } else { 1580 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1581 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1582 } 1583 } 1584 1585 /* 1586 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1587 * driver. 1588 */ 1589 static void 1590 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1591 { 1592 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1593 uint32_t tmp; 1594 1595 /* update all BBP registers that depend on the band */ 1596 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1597 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1598 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1599 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1600 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1601 } 1602 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1603 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1604 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1605 } 1606 1607 sc->bbp17 = bbp17; 1608 rum_bbp_write(sc, 17, bbp17); 1609 rum_bbp_write(sc, 96, bbp96); 1610 rum_bbp_write(sc, 104, bbp104); 1611 1612 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1613 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1614 rum_bbp_write(sc, 75, 0x80); 1615 rum_bbp_write(sc, 86, 0x80); 1616 rum_bbp_write(sc, 88, 0x80); 1617 } 1618 1619 rum_bbp_write(sc, 35, bbp35); 1620 rum_bbp_write(sc, 97, bbp97); 1621 rum_bbp_write(sc, 98, bbp98); 1622 1623 tmp = rum_read(sc, RT2573_PHY_CSR0); 1624 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1625 if (IEEE80211_IS_CHAN_2GHZ(c)) 1626 tmp |= RT2573_PA_PE_2GHZ; 1627 else 1628 tmp |= RT2573_PA_PE_5GHZ; 1629 rum_write(sc, RT2573_PHY_CSR0, tmp); 1630 } 1631 1632 static void 1633 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1634 { 1635 struct ifnet *ifp = sc->sc_ifp; 1636 struct ieee80211com *ic = ifp->if_l2com; 1637 const struct rfprog *rfprog; 1638 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1639 int8_t power; 1640 int i, chan; 1641 1642 chan = ieee80211_chan2ieee(ic, c); 1643 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1644 return; 1645 1646 /* select the appropriate RF settings based on what EEPROM says */ 1647 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1648 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1649 1650 /* find the settings for this channel (we know it exists) */ 1651 for (i = 0; rfprog[i].chan != chan; i++); 1652 1653 power = sc->txpow[i]; 1654 if (power < 0) { 1655 bbp94 += power; 1656 power = 0; 1657 } else if (power > 31) { 1658 bbp94 += power - 31; 1659 power = 31; 1660 } 1661 1662 /* 1663 * If we are switching from the 2GHz band to the 5GHz band or 1664 * vice-versa, BBP registers need to be reprogrammed. 1665 */ 1666 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1667 rum_select_band(sc, c); 1668 rum_select_antenna(sc); 1669 } 1670 ic->ic_curchan = c; 1671 1672 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1673 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1674 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1675 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1676 1677 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1678 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1679 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1680 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1681 1682 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1683 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1684 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1685 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1686 1687 rum_pause(sc, hz / 100); 1688 1689 /* enable smart mode for MIMO-capable RFs */ 1690 bbp3 = rum_bbp_read(sc, 3); 1691 1692 bbp3 &= ~RT2573_SMART_MODE; 1693 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1694 bbp3 |= RT2573_SMART_MODE; 1695 1696 rum_bbp_write(sc, 3, bbp3); 1697 1698 if (bbp94 != RT2573_BBPR94_DEFAULT) 1699 rum_bbp_write(sc, 94, bbp94); 1700 1701 /* give the chip some extra time to do the switchover */ 1702 rum_pause(sc, hz / 100); 1703 } 1704 1705 /* 1706 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1707 * and HostAP operating modes. 1708 */ 1709 static void 1710 rum_enable_tsf_sync(struct rum_softc *sc) 1711 { 1712 struct ifnet *ifp = sc->sc_ifp; 1713 struct ieee80211com *ic = ifp->if_l2com; 1714 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1715 uint32_t tmp; 1716 1717 if (vap->iv_opmode != IEEE80211_M_STA) { 1718 /* 1719 * Change default 16ms TBTT adjustment to 8ms. 1720 * Must be done before enabling beacon generation. 1721 */ 1722 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1723 } 1724 1725 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1726 1727 /* set beacon interval (in 1/16ms unit) */ 1728 tmp |= vap->iv_bss->ni_intval * 16; 1729 1730 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1731 if (vap->iv_opmode == IEEE80211_M_STA) 1732 tmp |= RT2573_TSF_MODE(1); 1733 else 1734 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1735 1736 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1737 } 1738 1739 static void 1740 rum_enable_tsf(struct rum_softc *sc) 1741 { 1742 rum_write(sc, RT2573_TXRX_CSR9, 1743 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1744 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1745 } 1746 1747 static void 1748 rum_update_slot(struct ifnet *ifp) 1749 { 1750 struct rum_softc *sc = ifp->if_softc; 1751 struct ieee80211com *ic = ifp->if_l2com; 1752 uint8_t slottime; 1753 uint32_t tmp; 1754 1755 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1756 1757 tmp = rum_read(sc, RT2573_MAC_CSR9); 1758 tmp = (tmp & ~0xff) | slottime; 1759 rum_write(sc, RT2573_MAC_CSR9, tmp); 1760 1761 DPRINTF("setting slot time to %uus\n", slottime); 1762 } 1763 1764 static void 1765 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1766 { 1767 uint32_t tmp; 1768 1769 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1770 rum_write(sc, RT2573_MAC_CSR4, tmp); 1771 1772 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1773 rum_write(sc, RT2573_MAC_CSR5, tmp); 1774 } 1775 1776 static void 1777 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1778 { 1779 uint32_t tmp; 1780 1781 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1782 rum_write(sc, RT2573_MAC_CSR2, tmp); 1783 1784 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1785 rum_write(sc, RT2573_MAC_CSR3, tmp); 1786 } 1787 1788 static void 1789 rum_setpromisc(struct rum_softc *sc) 1790 { 1791 struct ifnet *ifp = sc->sc_ifp; 1792 uint32_t tmp; 1793 1794 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1795 1796 tmp &= ~RT2573_DROP_NOT_TO_ME; 1797 if (!(ifp->if_flags & IFF_PROMISC)) 1798 tmp |= RT2573_DROP_NOT_TO_ME; 1799 1800 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1801 1802 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1803 "entering" : "leaving"); 1804 } 1805 1806 static void 1807 rum_update_promisc(struct ifnet *ifp) 1808 { 1809 struct rum_softc *sc = ifp->if_softc; 1810 1811 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1812 return; 1813 1814 RUM_LOCK(sc); 1815 rum_setpromisc(sc); 1816 RUM_UNLOCK(sc); 1817 } 1818 1819 static const char * 1820 rum_get_rf(int rev) 1821 { 1822 switch (rev) { 1823 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1824 case RT2573_RF_2528: return "RT2528"; 1825 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1826 case RT2573_RF_5226: return "RT5226"; 1827 default: return "unknown"; 1828 } 1829 } 1830 1831 static void 1832 rum_read_eeprom(struct rum_softc *sc) 1833 { 1834 uint16_t val; 1835 #ifdef RUM_DEBUG 1836 int i; 1837 #endif 1838 1839 /* read MAC address */ 1840 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1841 1842 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1843 val = le16toh(val); 1844 sc->rf_rev = (val >> 11) & 0x1f; 1845 sc->hw_radio = (val >> 10) & 0x1; 1846 sc->rx_ant = (val >> 4) & 0x3; 1847 sc->tx_ant = (val >> 2) & 0x3; 1848 sc->nb_ant = val & 0x3; 1849 1850 DPRINTF("RF revision=%d\n", sc->rf_rev); 1851 1852 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1853 val = le16toh(val); 1854 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1855 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1856 1857 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1858 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1859 1860 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1861 val = le16toh(val); 1862 if ((val & 0xff) != 0xff) 1863 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1864 1865 /* Only [-10, 10] is valid */ 1866 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1867 sc->rssi_2ghz_corr = 0; 1868 1869 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1870 val = le16toh(val); 1871 if ((val & 0xff) != 0xff) 1872 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1873 1874 /* Only [-10, 10] is valid */ 1875 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1876 sc->rssi_5ghz_corr = 0; 1877 1878 if (sc->ext_2ghz_lna) 1879 sc->rssi_2ghz_corr -= 14; 1880 if (sc->ext_5ghz_lna) 1881 sc->rssi_5ghz_corr -= 14; 1882 1883 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1884 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1885 1886 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1887 val = le16toh(val); 1888 if ((val & 0xff) != 0xff) 1889 sc->rffreq = val & 0xff; 1890 1891 DPRINTF("RF freq=%d\n", sc->rffreq); 1892 1893 /* read Tx power for all a/b/g channels */ 1894 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1895 /* XXX default Tx power for 802.11a channels */ 1896 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1897 #ifdef RUM_DEBUG 1898 for (i = 0; i < 14; i++) 1899 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1900 #endif 1901 1902 /* read default values for BBP registers */ 1903 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1904 #ifdef RUM_DEBUG 1905 for (i = 0; i < 14; i++) { 1906 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1907 continue; 1908 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1909 sc->bbp_prom[i].val); 1910 } 1911 #endif 1912 } 1913 1914 static int 1915 rum_bbp_init(struct rum_softc *sc) 1916 { 1917 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1918 int i, ntries; 1919 1920 /* wait for BBP to be ready */ 1921 for (ntries = 0; ntries < 100; ntries++) { 1922 const uint8_t val = rum_bbp_read(sc, 0); 1923 if (val != 0 && val != 0xff) 1924 break; 1925 if (rum_pause(sc, hz / 100)) 1926 break; 1927 } 1928 if (ntries == 100) { 1929 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1930 return EIO; 1931 } 1932 1933 /* initialize BBP registers to default values */ 1934 for (i = 0; i < N(rum_def_bbp); i++) 1935 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1936 1937 /* write vendor-specific BBP values (from EEPROM) */ 1938 for (i = 0; i < 16; i++) { 1939 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1940 continue; 1941 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1942 } 1943 1944 return 0; 1945 #undef N 1946 } 1947 1948 static void 1949 rum_init_locked(struct rum_softc *sc) 1950 { 1951 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1952 struct ifnet *ifp = sc->sc_ifp; 1953 struct ieee80211com *ic = ifp->if_l2com; 1954 uint32_t tmp; 1955 usb_error_t error; 1956 int i, ntries; 1957 1958 RUM_LOCK_ASSERT(sc, MA_OWNED); 1959 1960 rum_stop(sc); 1961 1962 /* initialize MAC registers to default values */ 1963 for (i = 0; i < N(rum_def_mac); i++) 1964 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1965 1966 /* set host ready */ 1967 rum_write(sc, RT2573_MAC_CSR1, 3); 1968 rum_write(sc, RT2573_MAC_CSR1, 0); 1969 1970 /* wait for BBP/RF to wakeup */ 1971 for (ntries = 0; ntries < 100; ntries++) { 1972 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1973 break; 1974 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1975 if (rum_pause(sc, hz / 100)) 1976 break; 1977 } 1978 if (ntries == 100) { 1979 device_printf(sc->sc_dev, 1980 "timeout waiting for BBP/RF to wakeup\n"); 1981 goto fail; 1982 } 1983 1984 if ((error = rum_bbp_init(sc)) != 0) 1985 goto fail; 1986 1987 /* select default channel */ 1988 rum_select_band(sc, ic->ic_curchan); 1989 rum_select_antenna(sc); 1990 rum_set_chan(sc, ic->ic_curchan); 1991 1992 /* clear STA registers */ 1993 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1994 1995 rum_set_macaddr(sc, IF_LLADDR(ifp)); 1996 1997 /* initialize ASIC */ 1998 rum_write(sc, RT2573_MAC_CSR1, 4); 1999 2000 /* 2001 * Allocate Tx and Rx xfer queues. 2002 */ 2003 rum_setup_tx_list(sc); 2004 2005 /* update Rx filter */ 2006 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2007 2008 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2009 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2010 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2011 RT2573_DROP_ACKCTS; 2012 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2013 tmp |= RT2573_DROP_TODS; 2014 if (!(ifp->if_flags & IFF_PROMISC)) 2015 tmp |= RT2573_DROP_NOT_TO_ME; 2016 } 2017 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2018 2019 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2020 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2021 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2022 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2023 return; 2024 2025 fail: rum_stop(sc); 2026 #undef N 2027 } 2028 2029 static void 2030 rum_init(void *priv) 2031 { 2032 struct rum_softc *sc = priv; 2033 struct ifnet *ifp = sc->sc_ifp; 2034 struct ieee80211com *ic = ifp->if_l2com; 2035 2036 RUM_LOCK(sc); 2037 rum_init_locked(sc); 2038 RUM_UNLOCK(sc); 2039 2040 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2041 ieee80211_start_all(ic); /* start all vap's */ 2042 } 2043 2044 static void 2045 rum_stop(struct rum_softc *sc) 2046 { 2047 struct ifnet *ifp = sc->sc_ifp; 2048 uint32_t tmp; 2049 2050 RUM_LOCK_ASSERT(sc, MA_OWNED); 2051 2052 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2053 2054 RUM_UNLOCK(sc); 2055 2056 /* 2057 * Drain the USB transfers, if not already drained: 2058 */ 2059 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2060 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2061 2062 RUM_LOCK(sc); 2063 2064 rum_unsetup_tx_list(sc); 2065 2066 /* disable Rx */ 2067 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2068 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2069 2070 /* reset ASIC */ 2071 rum_write(sc, RT2573_MAC_CSR1, 3); 2072 rum_write(sc, RT2573_MAC_CSR1, 0); 2073 } 2074 2075 static void 2076 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2077 { 2078 struct usb_device_request req; 2079 uint16_t reg = RT2573_MCU_CODE_BASE; 2080 usb_error_t err; 2081 2082 /* copy firmware image into NIC */ 2083 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2084 err = rum_write(sc, reg, UGETDW(ucode)); 2085 if (err) { 2086 /* firmware already loaded ? */ 2087 device_printf(sc->sc_dev, "Firmware load " 2088 "failure! (ignored)\n"); 2089 break; 2090 } 2091 } 2092 2093 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2094 req.bRequest = RT2573_MCU_CNTL; 2095 USETW(req.wValue, RT2573_MCU_RUN); 2096 USETW(req.wIndex, 0); 2097 USETW(req.wLength, 0); 2098 2099 err = rum_do_request(sc, &req, NULL); 2100 if (err != 0) { 2101 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2102 usbd_errstr(err)); 2103 } 2104 2105 /* give the chip some time to boot */ 2106 rum_pause(sc, hz / 8); 2107 } 2108 2109 static int 2110 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2111 { 2112 struct ieee80211com *ic = vap->iv_ic; 2113 const struct ieee80211_txparam *tp; 2114 struct rum_tx_desc desc; 2115 struct mbuf *m0; 2116 2117 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2118 if (m0 == NULL) { 2119 return ENOBUFS; 2120 } 2121 2122 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2123 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2124 m0->m_pkthdr.len, tp->mgmtrate); 2125 2126 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2127 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2128 2129 /* copy beacon header and payload into NIC memory */ 2130 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2131 m0->m_pkthdr.len); 2132 2133 m_freem(m0); 2134 2135 return 0; 2136 } 2137 2138 static int 2139 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2140 const struct ieee80211_bpf_params *params) 2141 { 2142 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2143 struct rum_softc *sc = ifp->if_softc; 2144 2145 RUM_LOCK(sc); 2146 /* prevent management frames from being sent if we're not ready */ 2147 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2148 RUM_UNLOCK(sc); 2149 m_freem(m); 2150 ieee80211_free_node(ni); 2151 return ENETDOWN; 2152 } 2153 if (sc->tx_nfree < RUM_TX_MINFREE) { 2154 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2155 RUM_UNLOCK(sc); 2156 m_freem(m); 2157 ieee80211_free_node(ni); 2158 return EIO; 2159 } 2160 2161 ifp->if_opackets++; 2162 2163 if (params == NULL) { 2164 /* 2165 * Legacy path; interpret frame contents to decide 2166 * precisely how to send the frame. 2167 */ 2168 if (rum_tx_mgt(sc, m, ni) != 0) 2169 goto bad; 2170 } else { 2171 /* 2172 * Caller supplied explicit parameters to use in 2173 * sending the frame. 2174 */ 2175 if (rum_tx_raw(sc, m, ni, params) != 0) 2176 goto bad; 2177 } 2178 RUM_UNLOCK(sc); 2179 2180 return 0; 2181 bad: 2182 ifp->if_oerrors++; 2183 RUM_UNLOCK(sc); 2184 ieee80211_free_node(ni); 2185 return EIO; 2186 } 2187 2188 static void 2189 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2190 { 2191 struct ieee80211vap *vap = ni->ni_vap; 2192 struct rum_vap *rvp = RUM_VAP(vap); 2193 2194 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2195 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2196 2197 ieee80211_amrr_node_init(&rvp->amrr, &RUM_NODE(ni)->amn, ni); 2198 2199 usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2200 } 2201 2202 static void 2203 rum_amrr_timeout(void *arg) 2204 { 2205 struct rum_vap *rvp = arg; 2206 struct ieee80211vap *vap = &rvp->vap; 2207 struct ieee80211com *ic = vap->iv_ic; 2208 2209 ieee80211_runtask(ic, &rvp->amrr_task); 2210 } 2211 2212 static void 2213 rum_amrr_task(void *arg, int pending) 2214 { 2215 struct rum_vap *rvp = arg; 2216 struct ieee80211vap *vap = &rvp->vap; 2217 struct ieee80211com *ic = vap->iv_ic; 2218 struct ifnet *ifp = ic->ic_ifp; 2219 struct rum_softc *sc = ifp->if_softc; 2220 struct ieee80211_node *ni = vap->iv_bss; 2221 int ok, fail; 2222 2223 RUM_LOCK(sc); 2224 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2225 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2226 2227 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2228 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2229 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2230 2231 ieee80211_amrr_tx_update(&RUM_NODE(ni)->amn, 2232 ok+fail, ok, (le32toh(sc->sta[5]) & 0xffff) + fail); 2233 (void) ieee80211_amrr_choose(ni, &RUM_NODE(ni)->amn); 2234 2235 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2236 2237 usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2238 RUM_UNLOCK(sc); 2239 } 2240 2241 /* ARGUSED */ 2242 static struct ieee80211_node * 2243 rum_node_alloc(struct ieee80211vap *vap __unused, 2244 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 2245 { 2246 struct rum_node *rn; 2247 2248 rn = malloc(sizeof(struct rum_node), M_80211_NODE, M_NOWAIT | M_ZERO); 2249 return rn != NULL ? &rn->ni : NULL; 2250 } 2251 2252 static void 2253 rum_newassoc(struct ieee80211_node *ni, int isnew) 2254 { 2255 struct ieee80211vap *vap = ni->ni_vap; 2256 2257 ieee80211_amrr_node_init(&RUM_VAP(vap)->amrr, &RUM_NODE(ni)->amn, ni); 2258 } 2259 2260 static void 2261 rum_scan_start(struct ieee80211com *ic) 2262 { 2263 struct ifnet *ifp = ic->ic_ifp; 2264 struct rum_softc *sc = ifp->if_softc; 2265 uint32_t tmp; 2266 2267 RUM_LOCK(sc); 2268 /* abort TSF synchronization */ 2269 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2270 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2271 rum_set_bssid(sc, ifp->if_broadcastaddr); 2272 RUM_UNLOCK(sc); 2273 2274 } 2275 2276 static void 2277 rum_scan_end(struct ieee80211com *ic) 2278 { 2279 struct rum_softc *sc = ic->ic_ifp->if_softc; 2280 2281 RUM_LOCK(sc); 2282 rum_enable_tsf_sync(sc); 2283 rum_set_bssid(sc, sc->sc_bssid); 2284 RUM_UNLOCK(sc); 2285 2286 } 2287 2288 static void 2289 rum_set_channel(struct ieee80211com *ic) 2290 { 2291 struct rum_softc *sc = ic->ic_ifp->if_softc; 2292 2293 RUM_LOCK(sc); 2294 rum_set_chan(sc, ic->ic_curchan); 2295 RUM_UNLOCK(sc); 2296 } 2297 2298 static int 2299 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2300 { 2301 struct ifnet *ifp = sc->sc_ifp; 2302 struct ieee80211com *ic = ifp->if_l2com; 2303 int lna, agc, rssi; 2304 2305 lna = (raw >> 5) & 0x3; 2306 agc = raw & 0x1f; 2307 2308 if (lna == 0) { 2309 /* 2310 * No RSSI mapping 2311 * 2312 * NB: Since RSSI is relative to noise floor, -1 is 2313 * adequate for caller to know error happened. 2314 */ 2315 return -1; 2316 } 2317 2318 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2319 2320 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2321 rssi += sc->rssi_2ghz_corr; 2322 2323 if (lna == 1) 2324 rssi -= 64; 2325 else if (lna == 2) 2326 rssi -= 74; 2327 else if (lna == 3) 2328 rssi -= 90; 2329 } else { 2330 rssi += sc->rssi_5ghz_corr; 2331 2332 if (!sc->ext_5ghz_lna && lna != 1) 2333 rssi += 4; 2334 2335 if (lna == 1) 2336 rssi -= 64; 2337 else if (lna == 2) 2338 rssi -= 86; 2339 else if (lna == 3) 2340 rssi -= 100; 2341 } 2342 return rssi; 2343 } 2344 2345 static int 2346 rum_pause(struct rum_softc *sc, int timeout) 2347 { 2348 2349 usb_pause_mtx(&sc->sc_mtx, timeout); 2350 return (0); 2351 } 2352 2353 static device_method_t rum_methods[] = { 2354 /* Device interface */ 2355 DEVMETHOD(device_probe, rum_match), 2356 DEVMETHOD(device_attach, rum_attach), 2357 DEVMETHOD(device_detach, rum_detach), 2358 2359 { 0, 0 } 2360 }; 2361 2362 static driver_t rum_driver = { 2363 .name = "rum", 2364 .methods = rum_methods, 2365 .size = sizeof(struct rum_softc), 2366 }; 2367 2368 static devclass_t rum_devclass; 2369 2370 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2371