1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_amrr.h> 68 69 #define USB_DEBUG_VAR rum_debug 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usb_error.h> 73 #include <dev/usb/usb_core.h> 74 #include <dev/usb/usb_lookup.h> 75 #include <dev/usb/usb_debug.h> 76 #include <dev/usb/usb_request.h> 77 #include <dev/usb/usb_busdma.h> 78 #include <dev/usb/usb_util.h> 79 #include "usbdevs.h" 80 81 #include <dev/usb/wlan/if_rumreg.h> 82 #include <dev/usb/wlan/if_rumvar.h> 83 #include <dev/usb/wlan/if_rumfw.h> 84 85 #if USB_DEBUG 86 static int rum_debug = 0; 87 88 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 89 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 90 "Debug level"); 91 #endif 92 93 static const struct usb_device_id rum_devs[] = { 94 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM) }, 95 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2) }, 96 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3) }, 97 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4) }, 98 { USB_VP(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700) }, 99 { USB_VP(USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO) }, 100 { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1) }, 101 { USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2) }, 102 { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A) }, 103 { USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3) }, 104 { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC) }, 105 { USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR) }, 106 { USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2) }, 107 { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL) }, 108 { USB_VP(USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX) }, 109 { USB_VP(USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F) }, 110 { USB_VP(USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573) }, 111 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1) }, 112 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340) }, 113 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111) }, 114 { USB_VP(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110) }, 115 { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS) }, 116 { USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS) }, 117 { USB_VP(USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573) }, 118 { USB_VP(USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573) }, 119 { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB) }, 120 { USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP) }, 121 { USB_VP(USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G) }, 122 { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP) }, 123 { USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP) }, 124 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1) }, 125 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2) }, 126 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3) }, 127 { USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4) }, 128 { USB_VP(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573) }, 129 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP) }, 130 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2) }, 131 { USB_VP(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM) }, 132 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573) }, 133 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2) }, 134 { USB_VP(USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3) }, 135 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573) }, 136 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2) }, 137 { USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671) }, 138 { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2) }, 139 { USB_VP(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172) }, 140 { USB_VP(USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573) }, 141 { USB_VP(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573) }, 142 }; 143 144 MODULE_DEPEND(rum, wlan, 1, 1, 1); 145 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1); 146 MODULE_DEPEND(rum, usb, 1, 1, 1); 147 148 static device_probe_t rum_match; 149 static device_attach_t rum_attach; 150 static device_detach_t rum_detach; 151 152 static usb_callback_t rum_bulk_read_callback; 153 static usb_callback_t rum_bulk_write_callback; 154 155 static usb_error_t rum_do_request(struct rum_softc *sc, 156 struct usb_device_request *req, void *data); 157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 158 const char name[IFNAMSIZ], int unit, int opmode, 159 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 160 const uint8_t mac[IEEE80211_ADDR_LEN]); 161 static void rum_vap_delete(struct ieee80211vap *); 162 static void rum_tx_free(struct rum_tx_data *, int); 163 static void rum_setup_tx_list(struct rum_softc *); 164 static void rum_unsetup_tx_list(struct rum_softc *); 165 static int rum_newstate(struct ieee80211vap *, 166 enum ieee80211_state, int); 167 static void rum_setup_tx_desc(struct rum_softc *, 168 struct rum_tx_desc *, uint32_t, uint16_t, int, 169 int); 170 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 171 struct ieee80211_node *); 172 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 173 struct ieee80211_node *, 174 const struct ieee80211_bpf_params *); 175 static int rum_tx_data(struct rum_softc *, struct mbuf *, 176 struct ieee80211_node *); 177 static void rum_start(struct ifnet *); 178 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 179 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 180 int); 181 static uint32_t rum_read(struct rum_softc *, uint16_t); 182 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 183 int); 184 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 185 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 186 size_t); 187 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 188 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 189 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 190 static void rum_select_antenna(struct rum_softc *); 191 static void rum_enable_mrr(struct rum_softc *); 192 static void rum_set_txpreamble(struct rum_softc *); 193 static void rum_set_basicrates(struct rum_softc *); 194 static void rum_select_band(struct rum_softc *, 195 struct ieee80211_channel *); 196 static void rum_set_chan(struct rum_softc *, 197 struct ieee80211_channel *); 198 static void rum_enable_tsf_sync(struct rum_softc *); 199 static void rum_enable_tsf(struct rum_softc *); 200 static void rum_update_slot(struct ifnet *); 201 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 202 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 203 static void rum_update_promisc(struct ifnet *); 204 static void rum_setpromisc(struct rum_softc *); 205 static const char *rum_get_rf(int); 206 static void rum_read_eeprom(struct rum_softc *); 207 static int rum_bbp_init(struct rum_softc *); 208 static void rum_init_locked(struct rum_softc *); 209 static void rum_init(void *); 210 static void rum_stop(struct rum_softc *); 211 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 212 size_t); 213 static int rum_prepare_beacon(struct rum_softc *, 214 struct ieee80211vap *); 215 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 216 const struct ieee80211_bpf_params *); 217 static struct ieee80211_node *rum_node_alloc(struct ieee80211vap *, 218 const uint8_t mac[IEEE80211_ADDR_LEN]); 219 static void rum_newassoc(struct ieee80211_node *, int); 220 static void rum_scan_start(struct ieee80211com *); 221 static void rum_scan_end(struct ieee80211com *); 222 static void rum_set_channel(struct ieee80211com *); 223 static int rum_get_rssi(struct rum_softc *, uint8_t); 224 static void rum_amrr_start(struct rum_softc *, 225 struct ieee80211_node *); 226 static void rum_amrr_timeout(void *); 227 static void rum_amrr_task(void *, int); 228 static int rum_pause(struct rum_softc *, int); 229 230 static const struct { 231 uint32_t reg; 232 uint32_t val; 233 } rum_def_mac[] = { 234 { RT2573_TXRX_CSR0, 0x025fb032 }, 235 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 236 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 237 { RT2573_TXRX_CSR3, 0x00858687 }, 238 { RT2573_TXRX_CSR7, 0x2e31353b }, 239 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 240 { RT2573_TXRX_CSR15, 0x0000000f }, 241 { RT2573_MAC_CSR6, 0x00000fff }, 242 { RT2573_MAC_CSR8, 0x016c030a }, 243 { RT2573_MAC_CSR10, 0x00000718 }, 244 { RT2573_MAC_CSR12, 0x00000004 }, 245 { RT2573_MAC_CSR13, 0x00007f00 }, 246 { RT2573_SEC_CSR0, 0x00000000 }, 247 { RT2573_SEC_CSR1, 0x00000000 }, 248 { RT2573_SEC_CSR5, 0x00000000 }, 249 { RT2573_PHY_CSR1, 0x000023b0 }, 250 { RT2573_PHY_CSR5, 0x00040a06 }, 251 { RT2573_PHY_CSR6, 0x00080606 }, 252 { RT2573_PHY_CSR7, 0x00000408 }, 253 { RT2573_AIFSN_CSR, 0x00002273 }, 254 { RT2573_CWMIN_CSR, 0x00002344 }, 255 { RT2573_CWMAX_CSR, 0x000034aa } 256 }; 257 258 static const struct { 259 uint8_t reg; 260 uint8_t val; 261 } rum_def_bbp[] = { 262 { 3, 0x80 }, 263 { 15, 0x30 }, 264 { 17, 0x20 }, 265 { 21, 0xc8 }, 266 { 22, 0x38 }, 267 { 23, 0x06 }, 268 { 24, 0xfe }, 269 { 25, 0x0a }, 270 { 26, 0x0d }, 271 { 32, 0x0b }, 272 { 34, 0x12 }, 273 { 37, 0x07 }, 274 { 39, 0xf8 }, 275 { 41, 0x60 }, 276 { 53, 0x10 }, 277 { 54, 0x18 }, 278 { 60, 0x10 }, 279 { 61, 0x04 }, 280 { 62, 0x04 }, 281 { 75, 0xfe }, 282 { 86, 0xfe }, 283 { 88, 0xfe }, 284 { 90, 0x0f }, 285 { 99, 0x00 }, 286 { 102, 0x16 }, 287 { 107, 0x04 } 288 }; 289 290 static const struct rfprog { 291 uint8_t chan; 292 uint32_t r1, r2, r3, r4; 293 } rum_rf5226[] = { 294 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 295 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 296 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 297 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 298 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 299 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 300 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 301 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 302 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 303 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 304 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 305 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 306 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 307 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 308 309 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 310 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 311 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 312 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 313 314 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 315 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 316 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 317 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 318 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 319 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 320 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 321 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 322 323 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 324 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 325 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 326 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 327 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 328 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 329 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 330 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 331 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 332 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 333 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 334 335 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 336 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 337 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 338 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 339 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 340 }, rum_rf5225[] = { 341 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 342 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 343 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 344 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 345 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 346 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 347 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 348 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 349 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 350 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 351 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 352 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 353 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 354 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 355 356 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 357 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 358 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 359 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 360 361 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 362 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 363 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 364 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 365 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 366 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 367 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 368 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 369 370 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 371 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 372 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 373 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 374 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 375 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 376 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 377 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 378 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 379 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 380 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 381 382 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 383 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 384 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 385 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 386 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 387 }; 388 389 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 390 [RUM_BULK_WR] = { 391 .type = UE_BULK, 392 .endpoint = UE_ADDR_ANY, 393 .direction = UE_DIR_OUT, 394 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 395 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 396 .callback = rum_bulk_write_callback, 397 .timeout = 5000, /* ms */ 398 }, 399 [RUM_BULK_RD] = { 400 .type = UE_BULK, 401 .endpoint = UE_ADDR_ANY, 402 .direction = UE_DIR_IN, 403 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 404 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 405 .callback = rum_bulk_read_callback, 406 }, 407 }; 408 409 static int 410 rum_match(device_t self) 411 { 412 struct usb_attach_arg *uaa = device_get_ivars(self); 413 414 if (uaa->usb_mode != USB_MODE_HOST) 415 return (ENXIO); 416 if (uaa->info.bConfigIndex != 0) 417 return (ENXIO); 418 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 419 return (ENXIO); 420 421 return (usb2_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 422 } 423 424 static int 425 rum_attach(device_t self) 426 { 427 struct usb_attach_arg *uaa = device_get_ivars(self); 428 struct rum_softc *sc = device_get_softc(self); 429 struct ieee80211com *ic; 430 struct ifnet *ifp; 431 uint8_t iface_index, bands; 432 uint32_t tmp; 433 int error, ntries; 434 435 device_set_usb2_desc(self); 436 sc->sc_udev = uaa->device; 437 sc->sc_dev = self; 438 439 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 440 MTX_NETWORK_LOCK, MTX_DEF); 441 442 iface_index = RT2573_IFACE_INDEX; 443 error = usb2_transfer_setup(uaa->device, &iface_index, 444 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 445 if (error) { 446 device_printf(self, "could not allocate USB transfers, " 447 "err=%s\n", usb2_errstr(error)); 448 goto detach; 449 } 450 451 RUM_LOCK(sc); 452 /* retrieve RT2573 rev. no */ 453 for (ntries = 0; ntries < 100; ntries++) { 454 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 455 break; 456 if (rum_pause(sc, hz / 100)) 457 break; 458 } 459 if (ntries == 100) { 460 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 461 RUM_UNLOCK(sc); 462 goto detach; 463 } 464 465 /* retrieve MAC address and various other things from EEPROM */ 466 rum_read_eeprom(sc); 467 468 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 469 tmp, rum_get_rf(sc->rf_rev)); 470 471 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 472 RUM_UNLOCK(sc); 473 474 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 475 if (ifp == NULL) { 476 device_printf(sc->sc_dev, "can not if_alloc()\n"); 477 goto detach; 478 } 479 ic = ifp->if_l2com; 480 481 ifp->if_softc = sc; 482 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 483 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 484 ifp->if_init = rum_init; 485 ifp->if_ioctl = rum_ioctl; 486 ifp->if_start = rum_start; 487 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 488 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 489 IFQ_SET_READY(&ifp->if_snd); 490 491 ic->ic_ifp = ifp; 492 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 493 494 /* set device capabilities */ 495 ic->ic_caps = 496 IEEE80211_C_STA /* station mode supported */ 497 | IEEE80211_C_IBSS /* IBSS mode supported */ 498 | IEEE80211_C_MONITOR /* monitor mode supported */ 499 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 500 | IEEE80211_C_TXPMGT /* tx power management */ 501 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 502 | IEEE80211_C_SHSLOT /* short slot time supported */ 503 | IEEE80211_C_BGSCAN /* bg scanning supported */ 504 | IEEE80211_C_WPA /* 802.11i */ 505 ; 506 507 bands = 0; 508 setbit(&bands, IEEE80211_MODE_11B); 509 setbit(&bands, IEEE80211_MODE_11G); 510 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 511 setbit(&bands, IEEE80211_MODE_11A); 512 ieee80211_init_channels(ic, NULL, &bands); 513 514 ieee80211_ifattach(ic, sc->sc_bssid); 515 ic->ic_update_promisc = rum_update_promisc; 516 ic->ic_newassoc = rum_newassoc; 517 ic->ic_raw_xmit = rum_raw_xmit; 518 ic->ic_node_alloc = rum_node_alloc; 519 ic->ic_scan_start = rum_scan_start; 520 ic->ic_scan_end = rum_scan_end; 521 ic->ic_set_channel = rum_set_channel; 522 523 ic->ic_vap_create = rum_vap_create; 524 ic->ic_vap_delete = rum_vap_delete; 525 526 ieee80211_radiotap_attach(ic, 527 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 528 RT2573_TX_RADIOTAP_PRESENT, 529 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 530 RT2573_RX_RADIOTAP_PRESENT); 531 532 if (bootverbose) 533 ieee80211_announce(ic); 534 535 return (0); 536 537 detach: 538 rum_detach(self); 539 return (ENXIO); /* failure */ 540 } 541 542 static int 543 rum_detach(device_t self) 544 { 545 struct rum_softc *sc = device_get_softc(self); 546 struct ifnet *ifp = sc->sc_ifp; 547 struct ieee80211com *ic; 548 549 /* stop all USB transfers */ 550 usb2_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 551 552 /* free TX list, if any */ 553 RUM_LOCK(sc); 554 rum_unsetup_tx_list(sc); 555 RUM_UNLOCK(sc); 556 557 if (ifp) { 558 ic = ifp->if_l2com; 559 ieee80211_ifdetach(ic); 560 if_free(ifp); 561 } 562 mtx_destroy(&sc->sc_mtx); 563 564 return (0); 565 } 566 567 static usb_error_t 568 rum_do_request(struct rum_softc *sc, 569 struct usb_device_request *req, void *data) 570 { 571 usb_error_t err; 572 int ntries = 10; 573 574 while (ntries--) { 575 err = usb2_do_request_flags(sc->sc_udev, &sc->sc_mtx, 576 req, data, 0, NULL, 250 /* ms */); 577 if (err == 0) 578 break; 579 580 DPRINTFN(1, "Control request failed, %s (retrying)\n", 581 usb2_errstr(err)); 582 if (rum_pause(sc, hz / 100)) 583 break; 584 } 585 return (err); 586 } 587 588 static struct ieee80211vap * 589 rum_vap_create(struct ieee80211com *ic, 590 const char name[IFNAMSIZ], int unit, int opmode, int flags, 591 const uint8_t bssid[IEEE80211_ADDR_LEN], 592 const uint8_t mac[IEEE80211_ADDR_LEN]) 593 { 594 struct rum_softc *sc = ic->ic_ifp->if_softc; 595 struct rum_vap *rvp; 596 struct ieee80211vap *vap; 597 598 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 599 return NULL; 600 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 601 M_80211_VAP, M_NOWAIT | M_ZERO); 602 if (rvp == NULL) 603 return NULL; 604 vap = &rvp->vap; 605 /* enable s/w bmiss handling for sta mode */ 606 ieee80211_vap_setup(ic, vap, name, unit, opmode, 607 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 608 609 /* override state transition machine */ 610 rvp->newstate = vap->iv_newstate; 611 vap->iv_newstate = rum_newstate; 612 613 usb2_callout_init_mtx(&rvp->amrr_ch, &sc->sc_mtx, 0); 614 TASK_INIT(&rvp->amrr_task, 0, rum_amrr_task, rvp); 615 ieee80211_amrr_init(&rvp->amrr, vap, 616 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 617 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 618 1000 /* 1 sec */); 619 620 /* complete setup */ 621 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 622 ic->ic_opmode = opmode; 623 return vap; 624 } 625 626 static void 627 rum_vap_delete(struct ieee80211vap *vap) 628 { 629 struct rum_vap *rvp = RUM_VAP(vap); 630 struct ieee80211com *ic = vap->iv_ic; 631 632 usb2_callout_drain(&rvp->amrr_ch); 633 ieee80211_draintask(ic, &rvp->amrr_task); 634 ieee80211_amrr_cleanup(&rvp->amrr); 635 ieee80211_vap_detach(vap); 636 free(rvp, M_80211_VAP); 637 } 638 639 static void 640 rum_tx_free(struct rum_tx_data *data, int txerr) 641 { 642 struct rum_softc *sc = data->sc; 643 644 if (data->m != NULL) { 645 if (data->m->m_flags & M_TXCB) 646 ieee80211_process_callback(data->ni, data->m, 647 txerr ? ETIMEDOUT : 0); 648 m_freem(data->m); 649 data->m = NULL; 650 651 ieee80211_free_node(data->ni); 652 data->ni = NULL; 653 } 654 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 655 sc->tx_nfree++; 656 } 657 658 static void 659 rum_setup_tx_list(struct rum_softc *sc) 660 { 661 struct rum_tx_data *data; 662 int i; 663 664 sc->tx_nfree = 0; 665 STAILQ_INIT(&sc->tx_q); 666 STAILQ_INIT(&sc->tx_free); 667 668 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 669 data = &sc->tx_data[i]; 670 671 data->sc = sc; 672 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 673 sc->tx_nfree++; 674 } 675 } 676 677 static void 678 rum_unsetup_tx_list(struct rum_softc *sc) 679 { 680 struct rum_tx_data *data; 681 int i; 682 683 /* make sure any subsequent use of the queues will fail */ 684 sc->tx_nfree = 0; 685 STAILQ_INIT(&sc->tx_q); 686 STAILQ_INIT(&sc->tx_free); 687 688 /* free up all node references and mbufs */ 689 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 690 data = &sc->tx_data[i]; 691 692 if (data->m != NULL) { 693 m_freem(data->m); 694 data->m = NULL; 695 } 696 if (data->ni != NULL) { 697 ieee80211_free_node(data->ni); 698 data->ni = NULL; 699 } 700 } 701 } 702 703 static int 704 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 705 { 706 struct rum_vap *rvp = RUM_VAP(vap); 707 struct ieee80211com *ic = vap->iv_ic; 708 struct rum_softc *sc = ic->ic_ifp->if_softc; 709 const struct ieee80211_txparam *tp; 710 enum ieee80211_state ostate; 711 struct ieee80211_node *ni; 712 uint32_t tmp; 713 714 ostate = vap->iv_state; 715 DPRINTF("%s -> %s\n", 716 ieee80211_state_name[ostate], 717 ieee80211_state_name[nstate]); 718 719 IEEE80211_UNLOCK(ic); 720 RUM_LOCK(sc); 721 usb2_callout_stop(&rvp->amrr_ch); 722 723 switch (nstate) { 724 case IEEE80211_S_INIT: 725 if (ostate == IEEE80211_S_RUN) { 726 /* abort TSF synchronization */ 727 tmp = rum_read(sc, RT2573_TXRX_CSR9); 728 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 729 } 730 break; 731 732 case IEEE80211_S_RUN: 733 ni = vap->iv_bss; 734 735 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 736 rum_update_slot(ic->ic_ifp); 737 rum_enable_mrr(sc); 738 rum_set_txpreamble(sc); 739 rum_set_basicrates(sc); 740 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 741 rum_set_bssid(sc, sc->sc_bssid); 742 } 743 744 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 745 vap->iv_opmode == IEEE80211_M_IBSS) 746 rum_prepare_beacon(sc, vap); 747 748 if (vap->iv_opmode != IEEE80211_M_MONITOR) 749 rum_enable_tsf_sync(sc); 750 else 751 rum_enable_tsf(sc); 752 753 /* enable automatic rate adaptation */ 754 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 755 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 756 rum_amrr_start(sc, ni); 757 break; 758 default: 759 break; 760 } 761 RUM_UNLOCK(sc); 762 IEEE80211_LOCK(ic); 763 return (rvp->newstate(vap, nstate, arg)); 764 } 765 766 static void 767 rum_bulk_write_callback(struct usb_xfer *xfer) 768 { 769 struct rum_softc *sc = xfer->priv_sc; 770 struct ifnet *ifp = sc->sc_ifp; 771 struct ieee80211vap *vap; 772 struct rum_tx_data *data; 773 struct mbuf *m; 774 unsigned int len; 775 776 switch (USB_GET_STATE(xfer)) { 777 case USB_ST_TRANSFERRED: 778 DPRINTFN(11, "transfer complete, %d bytes\n", xfer->actlen); 779 780 /* free resources */ 781 data = xfer->priv_fifo; 782 rum_tx_free(data, 0); 783 xfer->priv_fifo = NULL; 784 785 ifp->if_opackets++; 786 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 787 788 /* FALLTHROUGH */ 789 case USB_ST_SETUP: 790 tr_setup: 791 data = STAILQ_FIRST(&sc->tx_q); 792 if (data) { 793 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 794 m = data->m; 795 796 if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) { 797 DPRINTFN(0, "data overflow, %u bytes\n", 798 m->m_pkthdr.len); 799 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 800 } 801 usb2_copy_in(xfer->frbuffers, 0, &data->desc, 802 RT2573_TX_DESC_SIZE); 803 usb2_m_copy_in(xfer->frbuffers, RT2573_TX_DESC_SIZE, m, 804 0, m->m_pkthdr.len); 805 806 vap = data->ni->ni_vap; 807 if (ieee80211_radiotap_active_vap(vap)) { 808 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 809 810 tap->wt_flags = 0; 811 tap->wt_rate = data->rate; 812 tap->wt_antenna = sc->tx_ant; 813 814 ieee80211_radiotap_tx(vap, m); 815 } 816 817 /* align end on a 4-bytes boundary */ 818 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 819 if ((len % 64) == 0) 820 len += 4; 821 822 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 823 m->m_pkthdr.len, len); 824 825 xfer->frlengths[0] = len; 826 xfer->priv_fifo = data; 827 828 usb2_start_hardware(xfer); 829 } 830 break; 831 832 default: /* Error */ 833 DPRINTFN(11, "transfer error, %s\n", 834 usb2_errstr(xfer->error)); 835 836 ifp->if_oerrors++; 837 data = xfer->priv_fifo; 838 if (data != NULL) { 839 rum_tx_free(data, xfer->error); 840 xfer->priv_fifo = NULL; 841 } 842 843 if (xfer->error == USB_ERR_STALLED) { 844 /* try to clear stall first */ 845 xfer->flags.stall_pipe = 1; 846 goto tr_setup; 847 } 848 if (xfer->error == USB_ERR_TIMEOUT) 849 device_printf(sc->sc_dev, "device timeout\n"); 850 break; 851 } 852 } 853 854 static void 855 rum_bulk_read_callback(struct usb_xfer *xfer) 856 { 857 struct rum_softc *sc = xfer->priv_sc; 858 struct ifnet *ifp = sc->sc_ifp; 859 struct ieee80211com *ic = ifp->if_l2com; 860 struct ieee80211_node *ni; 861 struct mbuf *m = NULL; 862 uint32_t flags; 863 uint8_t rssi = 0; 864 unsigned int len; 865 866 switch (USB_GET_STATE(xfer)) { 867 case USB_ST_TRANSFERRED: 868 869 DPRINTFN(15, "rx done, actlen=%d\n", xfer->actlen); 870 871 len = xfer->actlen; 872 if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 873 DPRINTF("%s: xfer too short %d\n", 874 device_get_nameunit(sc->sc_dev), len); 875 ifp->if_ierrors++; 876 goto tr_setup; 877 } 878 879 len -= RT2573_RX_DESC_SIZE; 880 usb2_copy_out(xfer->frbuffers, 0, &sc->sc_rx_desc, 881 RT2573_RX_DESC_SIZE); 882 883 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 884 flags = le32toh(sc->sc_rx_desc.flags); 885 if (flags & RT2573_RX_CRC_ERROR) { 886 /* 887 * This should not happen since we did not 888 * request to receive those frames when we 889 * filled RUM_TXRX_CSR2: 890 */ 891 DPRINTFN(5, "PHY or CRC error\n"); 892 ifp->if_ierrors++; 893 goto tr_setup; 894 } 895 896 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 897 if (m == NULL) { 898 DPRINTF("could not allocate mbuf\n"); 899 ifp->if_ierrors++; 900 goto tr_setup; 901 } 902 usb2_copy_out(xfer->frbuffers, RT2573_RX_DESC_SIZE, 903 mtod(m, uint8_t *), len); 904 905 /* finalize mbuf */ 906 m->m_pkthdr.rcvif = ifp; 907 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 908 909 if (ieee80211_radiotap_active(ic)) { 910 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 911 912 /* XXX read tsf */ 913 tap->wr_flags = 0; 914 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 915 (flags & RT2573_RX_OFDM) ? 916 IEEE80211_T_OFDM : IEEE80211_T_CCK); 917 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 918 tap->wr_antnoise = RT2573_NOISE_FLOOR; 919 tap->wr_antenna = sc->rx_ant; 920 } 921 /* FALLTHROUGH */ 922 case USB_ST_SETUP: 923 tr_setup: 924 xfer->frlengths[0] = xfer->max_data_length; 925 usb2_start_hardware(xfer); 926 927 /* 928 * At the end of a USB callback it is always safe to unlock 929 * the private mutex of a device! That is why we do the 930 * "ieee80211_input" here, and not some lines up! 931 */ 932 if (m) { 933 RUM_UNLOCK(sc); 934 ni = ieee80211_find_rxnode(ic, 935 mtod(m, struct ieee80211_frame_min *)); 936 if (ni != NULL) { 937 (void) ieee80211_input(ni, m, rssi, 938 RT2573_NOISE_FLOOR); 939 ieee80211_free_node(ni); 940 } else 941 (void) ieee80211_input_all(ic, m, rssi, 942 RT2573_NOISE_FLOOR); 943 RUM_LOCK(sc); 944 } 945 return; 946 947 default: /* Error */ 948 if (xfer->error != USB_ERR_CANCELLED) { 949 /* try to clear stall first */ 950 xfer->flags.stall_pipe = 1; 951 goto tr_setup; 952 } 953 return; 954 } 955 } 956 957 static uint8_t 958 rum_plcp_signal(int rate) 959 { 960 switch (rate) { 961 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 962 case 12: return 0xb; 963 case 18: return 0xf; 964 case 24: return 0xa; 965 case 36: return 0xe; 966 case 48: return 0x9; 967 case 72: return 0xd; 968 case 96: return 0x8; 969 case 108: return 0xc; 970 971 /* CCK rates (NB: not IEEE std, device-specific) */ 972 case 2: return 0x0; 973 case 4: return 0x1; 974 case 11: return 0x2; 975 case 22: return 0x3; 976 } 977 return 0xff; /* XXX unsupported/unknown rate */ 978 } 979 980 static void 981 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 982 uint32_t flags, uint16_t xflags, int len, int rate) 983 { 984 struct ifnet *ifp = sc->sc_ifp; 985 struct ieee80211com *ic = ifp->if_l2com; 986 uint16_t plcp_length; 987 int remainder; 988 989 desc->flags = htole32(flags); 990 desc->flags |= htole32(RT2573_TX_VALID); 991 desc->flags |= htole32(len << 16); 992 993 desc->xflags = htole16(xflags); 994 995 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 996 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 997 998 /* setup PLCP fields */ 999 desc->plcp_signal = rum_plcp_signal(rate); 1000 desc->plcp_service = 4; 1001 1002 len += IEEE80211_CRC_LEN; 1003 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1004 desc->flags |= htole32(RT2573_TX_OFDM); 1005 1006 plcp_length = len & 0xfff; 1007 desc->plcp_length_hi = plcp_length >> 6; 1008 desc->plcp_length_lo = plcp_length & 0x3f; 1009 } else { 1010 plcp_length = (16 * len + rate - 1) / rate; 1011 if (rate == 22) { 1012 remainder = (16 * len) % 22; 1013 if (remainder != 0 && remainder < 7) 1014 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1015 } 1016 desc->plcp_length_hi = plcp_length >> 8; 1017 desc->plcp_length_lo = plcp_length & 0xff; 1018 1019 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1020 desc->plcp_signal |= 0x08; 1021 } 1022 } 1023 1024 static int 1025 rum_sendprot(struct rum_softc *sc, 1026 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1027 { 1028 struct ieee80211com *ic = ni->ni_ic; 1029 const struct ieee80211_frame *wh; 1030 struct rum_tx_data *data; 1031 struct mbuf *mprot; 1032 int protrate, ackrate, pktlen, flags, isshort; 1033 uint16_t dur; 1034 1035 RUM_LOCK_ASSERT(sc, MA_OWNED); 1036 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1037 ("protection %d", prot)); 1038 1039 wh = mtod(m, const struct ieee80211_frame *); 1040 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1041 1042 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1043 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1044 1045 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1046 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort); 1047 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1048 flags = RT2573_TX_MORE_FRAG; 1049 if (prot == IEEE80211_PROT_RTSCTS) { 1050 /* NB: CTS is the same size as an ACK */ 1051 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1052 flags |= RT2573_TX_NEED_ACK; 1053 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1054 } else { 1055 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1056 } 1057 if (mprot == NULL) { 1058 /* XXX stat + msg */ 1059 return (ENOBUFS); 1060 } 1061 data = STAILQ_FIRST(&sc->tx_free); 1062 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1063 sc->tx_nfree--; 1064 1065 data->m = mprot; 1066 data->ni = ieee80211_ref_node(ni); 1067 data->rate = protrate; 1068 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1069 1070 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1071 usb2_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1072 1073 return 0; 1074 } 1075 1076 static int 1077 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1078 { 1079 struct ieee80211vap *vap = ni->ni_vap; 1080 struct ifnet *ifp = sc->sc_ifp; 1081 struct ieee80211com *ic = ifp->if_l2com; 1082 struct rum_tx_data *data; 1083 struct ieee80211_frame *wh; 1084 const struct ieee80211_txparam *tp; 1085 struct ieee80211_key *k; 1086 uint32_t flags = 0; 1087 uint16_t dur; 1088 1089 RUM_LOCK_ASSERT(sc, MA_OWNED); 1090 1091 data = STAILQ_FIRST(&sc->tx_free); 1092 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1093 sc->tx_nfree--; 1094 1095 wh = mtod(m0, struct ieee80211_frame *); 1096 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1097 k = ieee80211_crypto_encap(ni, m0); 1098 if (k == NULL) { 1099 m_freem(m0); 1100 return ENOBUFS; 1101 } 1102 wh = mtod(m0, struct ieee80211_frame *); 1103 } 1104 1105 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1106 1107 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1108 flags |= RT2573_TX_NEED_ACK; 1109 1110 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1111 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1112 *(uint16_t *)wh->i_dur = htole16(dur); 1113 1114 /* tell hardware to add timestamp for probe responses */ 1115 if ((wh->i_fc[0] & 1116 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1117 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1118 flags |= RT2573_TX_TIMESTAMP; 1119 } 1120 1121 data->m = m0; 1122 data->ni = ni; 1123 data->rate = tp->mgmtrate; 1124 1125 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1126 1127 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1128 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1129 1130 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1131 usb2_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1132 1133 return (0); 1134 } 1135 1136 static int 1137 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1138 const struct ieee80211_bpf_params *params) 1139 { 1140 struct ieee80211com *ic = ni->ni_ic; 1141 struct rum_tx_data *data; 1142 uint32_t flags; 1143 int rate, error; 1144 1145 RUM_LOCK_ASSERT(sc, MA_OWNED); 1146 KASSERT(params != NULL, ("no raw xmit params")); 1147 1148 rate = params->ibp_rate0; 1149 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1150 m_freem(m0); 1151 return EINVAL; 1152 } 1153 flags = 0; 1154 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1155 flags |= RT2573_TX_NEED_ACK; 1156 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1157 error = rum_sendprot(sc, m0, ni, 1158 params->ibp_flags & IEEE80211_BPF_RTS ? 1159 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1160 rate); 1161 if (error || sc->tx_nfree == 0) { 1162 m_freem(m0); 1163 return ENOBUFS; 1164 } 1165 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1166 } 1167 1168 data = STAILQ_FIRST(&sc->tx_free); 1169 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1170 sc->tx_nfree--; 1171 1172 data->m = m0; 1173 data->ni = ni; 1174 data->rate = rate; 1175 1176 /* XXX need to setup descriptor ourself */ 1177 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1178 1179 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1180 m0->m_pkthdr.len, rate); 1181 1182 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1183 usb2_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1184 1185 return 0; 1186 } 1187 1188 static int 1189 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1190 { 1191 struct ieee80211vap *vap = ni->ni_vap; 1192 struct ifnet *ifp = sc->sc_ifp; 1193 struct ieee80211com *ic = ifp->if_l2com; 1194 struct rum_tx_data *data; 1195 struct ieee80211_frame *wh; 1196 const struct ieee80211_txparam *tp; 1197 struct ieee80211_key *k; 1198 uint32_t flags = 0; 1199 uint16_t dur; 1200 int error, rate; 1201 1202 RUM_LOCK_ASSERT(sc, MA_OWNED); 1203 1204 wh = mtod(m0, struct ieee80211_frame *); 1205 1206 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1207 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1208 rate = tp->mcastrate; 1209 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1210 rate = tp->ucastrate; 1211 else 1212 rate = ni->ni_txrate; 1213 1214 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1215 k = ieee80211_crypto_encap(ni, m0); 1216 if (k == NULL) { 1217 m_freem(m0); 1218 return ENOBUFS; 1219 } 1220 1221 /* packet header may have moved, reset our local pointer */ 1222 wh = mtod(m0, struct ieee80211_frame *); 1223 } 1224 1225 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1226 int prot = IEEE80211_PROT_NONE; 1227 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1228 prot = IEEE80211_PROT_RTSCTS; 1229 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1230 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1231 prot = ic->ic_protmode; 1232 if (prot != IEEE80211_PROT_NONE) { 1233 error = rum_sendprot(sc, m0, ni, prot, rate); 1234 if (error || sc->tx_nfree == 0) { 1235 m_freem(m0); 1236 return ENOBUFS; 1237 } 1238 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1239 } 1240 } 1241 1242 data = STAILQ_FIRST(&sc->tx_free); 1243 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1244 sc->tx_nfree--; 1245 1246 data->m = m0; 1247 data->ni = ni; 1248 data->rate = rate; 1249 1250 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1251 flags |= RT2573_TX_NEED_ACK; 1252 flags |= RT2573_TX_MORE_FRAG; 1253 1254 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1255 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1256 *(uint16_t *)wh->i_dur = htole16(dur); 1257 } 1258 1259 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1260 1261 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1262 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1263 1264 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1265 usb2_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1266 1267 return 0; 1268 } 1269 1270 static void 1271 rum_start(struct ifnet *ifp) 1272 { 1273 struct rum_softc *sc = ifp->if_softc; 1274 struct ieee80211_node *ni; 1275 struct mbuf *m; 1276 1277 RUM_LOCK(sc); 1278 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1279 RUM_UNLOCK(sc); 1280 return; 1281 } 1282 for (;;) { 1283 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1284 if (m == NULL) 1285 break; 1286 if (sc->tx_nfree < RUM_TX_MINFREE) { 1287 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1288 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1289 break; 1290 } 1291 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1292 if (rum_tx_data(sc, m, ni) != 0) { 1293 ieee80211_free_node(ni); 1294 ifp->if_oerrors++; 1295 break; 1296 } 1297 } 1298 RUM_UNLOCK(sc); 1299 } 1300 1301 static int 1302 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1303 { 1304 struct rum_softc *sc = ifp->if_softc; 1305 struct ieee80211com *ic = ifp->if_l2com; 1306 struct ifreq *ifr = (struct ifreq *) data; 1307 int error = 0, startall = 0; 1308 1309 switch (cmd) { 1310 case SIOCSIFFLAGS: 1311 RUM_LOCK(sc); 1312 if (ifp->if_flags & IFF_UP) { 1313 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1314 rum_init_locked(sc); 1315 startall = 1; 1316 } else 1317 rum_setpromisc(sc); 1318 } else { 1319 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1320 rum_stop(sc); 1321 } 1322 RUM_UNLOCK(sc); 1323 if (startall) 1324 ieee80211_start_all(ic); 1325 break; 1326 case SIOCGIFMEDIA: 1327 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1328 break; 1329 case SIOCGIFADDR: 1330 error = ether_ioctl(ifp, cmd, data); 1331 break; 1332 default: 1333 error = EINVAL; 1334 break; 1335 } 1336 return error; 1337 } 1338 1339 static void 1340 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1341 { 1342 struct usb_device_request req; 1343 usb_error_t error; 1344 1345 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1346 req.bRequest = RT2573_READ_EEPROM; 1347 USETW(req.wValue, 0); 1348 USETW(req.wIndex, addr); 1349 USETW(req.wLength, len); 1350 1351 error = rum_do_request(sc, &req, buf); 1352 if (error != 0) { 1353 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1354 usb2_errstr(error)); 1355 } 1356 } 1357 1358 static uint32_t 1359 rum_read(struct rum_softc *sc, uint16_t reg) 1360 { 1361 uint32_t val; 1362 1363 rum_read_multi(sc, reg, &val, sizeof val); 1364 1365 return le32toh(val); 1366 } 1367 1368 static void 1369 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1370 { 1371 struct usb_device_request req; 1372 usb_error_t error; 1373 1374 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1375 req.bRequest = RT2573_READ_MULTI_MAC; 1376 USETW(req.wValue, 0); 1377 USETW(req.wIndex, reg); 1378 USETW(req.wLength, len); 1379 1380 error = rum_do_request(sc, &req, buf); 1381 if (error != 0) { 1382 device_printf(sc->sc_dev, 1383 "could not multi read MAC register: %s\n", 1384 usb2_errstr(error)); 1385 } 1386 } 1387 1388 static usb_error_t 1389 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1390 { 1391 uint32_t tmp = htole32(val); 1392 1393 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1394 } 1395 1396 static usb_error_t 1397 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1398 { 1399 struct usb_device_request req; 1400 usb_error_t error; 1401 1402 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1403 req.bRequest = RT2573_WRITE_MULTI_MAC; 1404 USETW(req.wValue, 0); 1405 USETW(req.wIndex, reg); 1406 USETW(req.wLength, len); 1407 1408 error = rum_do_request(sc, &req, buf); 1409 if (error != 0) { 1410 device_printf(sc->sc_dev, 1411 "could not multi write MAC register: %s\n", 1412 usb2_errstr(error)); 1413 } 1414 return (error); 1415 } 1416 1417 static void 1418 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1419 { 1420 uint32_t tmp; 1421 int ntries; 1422 1423 DPRINTFN(2, "reg=0x%08x\n", reg); 1424 1425 for (ntries = 0; ntries < 100; ntries++) { 1426 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1427 break; 1428 if (rum_pause(sc, hz / 100)) 1429 break; 1430 } 1431 if (ntries == 100) { 1432 device_printf(sc->sc_dev, "could not write to BBP\n"); 1433 return; 1434 } 1435 1436 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1437 rum_write(sc, RT2573_PHY_CSR3, tmp); 1438 } 1439 1440 static uint8_t 1441 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1442 { 1443 uint32_t val; 1444 int ntries; 1445 1446 DPRINTFN(2, "reg=0x%08x\n", reg); 1447 1448 for (ntries = 0; ntries < 100; ntries++) { 1449 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1450 break; 1451 if (rum_pause(sc, hz / 100)) 1452 break; 1453 } 1454 if (ntries == 100) { 1455 device_printf(sc->sc_dev, "could not read BBP\n"); 1456 return 0; 1457 } 1458 1459 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1460 rum_write(sc, RT2573_PHY_CSR3, val); 1461 1462 for (ntries = 0; ntries < 100; ntries++) { 1463 val = rum_read(sc, RT2573_PHY_CSR3); 1464 if (!(val & RT2573_BBP_BUSY)) 1465 return val & 0xff; 1466 if (rum_pause(sc, hz / 100)) 1467 break; 1468 } 1469 1470 device_printf(sc->sc_dev, "could not read BBP\n"); 1471 return 0; 1472 } 1473 1474 static void 1475 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1476 { 1477 uint32_t tmp; 1478 int ntries; 1479 1480 for (ntries = 0; ntries < 100; ntries++) { 1481 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1482 break; 1483 if (rum_pause(sc, hz / 100)) 1484 break; 1485 } 1486 if (ntries == 100) { 1487 device_printf(sc->sc_dev, "could not write to RF\n"); 1488 return; 1489 } 1490 1491 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1492 (reg & 3); 1493 rum_write(sc, RT2573_PHY_CSR4, tmp); 1494 1495 /* remember last written value in sc */ 1496 sc->rf_regs[reg] = val; 1497 1498 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1499 } 1500 1501 static void 1502 rum_select_antenna(struct rum_softc *sc) 1503 { 1504 uint8_t bbp4, bbp77; 1505 uint32_t tmp; 1506 1507 bbp4 = rum_bbp_read(sc, 4); 1508 bbp77 = rum_bbp_read(sc, 77); 1509 1510 /* TBD */ 1511 1512 /* make sure Rx is disabled before switching antenna */ 1513 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1514 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1515 1516 rum_bbp_write(sc, 4, bbp4); 1517 rum_bbp_write(sc, 77, bbp77); 1518 1519 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1520 } 1521 1522 /* 1523 * Enable multi-rate retries for frames sent at OFDM rates. 1524 * In 802.11b/g mode, allow fallback to CCK rates. 1525 */ 1526 static void 1527 rum_enable_mrr(struct rum_softc *sc) 1528 { 1529 struct ifnet *ifp = sc->sc_ifp; 1530 struct ieee80211com *ic = ifp->if_l2com; 1531 uint32_t tmp; 1532 1533 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1534 1535 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1536 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1537 tmp |= RT2573_MRR_CCK_FALLBACK; 1538 tmp |= RT2573_MRR_ENABLED; 1539 1540 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1541 } 1542 1543 static void 1544 rum_set_txpreamble(struct rum_softc *sc) 1545 { 1546 struct ifnet *ifp = sc->sc_ifp; 1547 struct ieee80211com *ic = ifp->if_l2com; 1548 uint32_t tmp; 1549 1550 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1551 1552 tmp &= ~RT2573_SHORT_PREAMBLE; 1553 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1554 tmp |= RT2573_SHORT_PREAMBLE; 1555 1556 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1557 } 1558 1559 static void 1560 rum_set_basicrates(struct rum_softc *sc) 1561 { 1562 struct ifnet *ifp = sc->sc_ifp; 1563 struct ieee80211com *ic = ifp->if_l2com; 1564 1565 /* update basic rate set */ 1566 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1567 /* 11b basic rates: 1, 2Mbps */ 1568 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1569 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1570 /* 11a basic rates: 6, 12, 24Mbps */ 1571 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1572 } else { 1573 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1574 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1575 } 1576 } 1577 1578 /* 1579 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1580 * driver. 1581 */ 1582 static void 1583 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1584 { 1585 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1586 uint32_t tmp; 1587 1588 /* update all BBP registers that depend on the band */ 1589 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1590 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1591 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1592 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1593 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1594 } 1595 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1596 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1597 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1598 } 1599 1600 sc->bbp17 = bbp17; 1601 rum_bbp_write(sc, 17, bbp17); 1602 rum_bbp_write(sc, 96, bbp96); 1603 rum_bbp_write(sc, 104, bbp104); 1604 1605 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1606 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1607 rum_bbp_write(sc, 75, 0x80); 1608 rum_bbp_write(sc, 86, 0x80); 1609 rum_bbp_write(sc, 88, 0x80); 1610 } 1611 1612 rum_bbp_write(sc, 35, bbp35); 1613 rum_bbp_write(sc, 97, bbp97); 1614 rum_bbp_write(sc, 98, bbp98); 1615 1616 tmp = rum_read(sc, RT2573_PHY_CSR0); 1617 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1618 if (IEEE80211_IS_CHAN_2GHZ(c)) 1619 tmp |= RT2573_PA_PE_2GHZ; 1620 else 1621 tmp |= RT2573_PA_PE_5GHZ; 1622 rum_write(sc, RT2573_PHY_CSR0, tmp); 1623 } 1624 1625 static void 1626 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1627 { 1628 struct ifnet *ifp = sc->sc_ifp; 1629 struct ieee80211com *ic = ifp->if_l2com; 1630 const struct rfprog *rfprog; 1631 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1632 int8_t power; 1633 int i, chan; 1634 1635 chan = ieee80211_chan2ieee(ic, c); 1636 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1637 return; 1638 1639 /* select the appropriate RF settings based on what EEPROM says */ 1640 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1641 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1642 1643 /* find the settings for this channel (we know it exists) */ 1644 for (i = 0; rfprog[i].chan != chan; i++); 1645 1646 power = sc->txpow[i]; 1647 if (power < 0) { 1648 bbp94 += power; 1649 power = 0; 1650 } else if (power > 31) { 1651 bbp94 += power - 31; 1652 power = 31; 1653 } 1654 1655 /* 1656 * If we are switching from the 2GHz band to the 5GHz band or 1657 * vice-versa, BBP registers need to be reprogrammed. 1658 */ 1659 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1660 rum_select_band(sc, c); 1661 rum_select_antenna(sc); 1662 } 1663 ic->ic_curchan = c; 1664 1665 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1666 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1667 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1668 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1669 1670 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1671 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1672 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1673 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1674 1675 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1676 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1677 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1678 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1679 1680 rum_pause(sc, hz / 100); 1681 1682 /* enable smart mode for MIMO-capable RFs */ 1683 bbp3 = rum_bbp_read(sc, 3); 1684 1685 bbp3 &= ~RT2573_SMART_MODE; 1686 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1687 bbp3 |= RT2573_SMART_MODE; 1688 1689 rum_bbp_write(sc, 3, bbp3); 1690 1691 if (bbp94 != RT2573_BBPR94_DEFAULT) 1692 rum_bbp_write(sc, 94, bbp94); 1693 1694 /* give the chip some extra time to do the switchover */ 1695 rum_pause(sc, hz / 100); 1696 } 1697 1698 /* 1699 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1700 * and HostAP operating modes. 1701 */ 1702 static void 1703 rum_enable_tsf_sync(struct rum_softc *sc) 1704 { 1705 struct ifnet *ifp = sc->sc_ifp; 1706 struct ieee80211com *ic = ifp->if_l2com; 1707 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1708 uint32_t tmp; 1709 1710 if (vap->iv_opmode != IEEE80211_M_STA) { 1711 /* 1712 * Change default 16ms TBTT adjustment to 8ms. 1713 * Must be done before enabling beacon generation. 1714 */ 1715 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1716 } 1717 1718 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1719 1720 /* set beacon interval (in 1/16ms unit) */ 1721 tmp |= vap->iv_bss->ni_intval * 16; 1722 1723 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1724 if (vap->iv_opmode == IEEE80211_M_STA) 1725 tmp |= RT2573_TSF_MODE(1); 1726 else 1727 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1728 1729 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1730 } 1731 1732 static void 1733 rum_enable_tsf(struct rum_softc *sc) 1734 { 1735 rum_write(sc, RT2573_TXRX_CSR9, 1736 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1737 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1738 } 1739 1740 static void 1741 rum_update_slot(struct ifnet *ifp) 1742 { 1743 struct rum_softc *sc = ifp->if_softc; 1744 struct ieee80211com *ic = ifp->if_l2com; 1745 uint8_t slottime; 1746 uint32_t tmp; 1747 1748 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1749 1750 tmp = rum_read(sc, RT2573_MAC_CSR9); 1751 tmp = (tmp & ~0xff) | slottime; 1752 rum_write(sc, RT2573_MAC_CSR9, tmp); 1753 1754 DPRINTF("setting slot time to %uus\n", slottime); 1755 } 1756 1757 static void 1758 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1759 { 1760 uint32_t tmp; 1761 1762 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1763 rum_write(sc, RT2573_MAC_CSR4, tmp); 1764 1765 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1766 rum_write(sc, RT2573_MAC_CSR5, tmp); 1767 } 1768 1769 static void 1770 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1771 { 1772 uint32_t tmp; 1773 1774 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1775 rum_write(sc, RT2573_MAC_CSR2, tmp); 1776 1777 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1778 rum_write(sc, RT2573_MAC_CSR3, tmp); 1779 } 1780 1781 static void 1782 rum_setpromisc(struct rum_softc *sc) 1783 { 1784 struct ifnet *ifp = sc->sc_ifp; 1785 uint32_t tmp; 1786 1787 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1788 1789 tmp &= ~RT2573_DROP_NOT_TO_ME; 1790 if (!(ifp->if_flags & IFF_PROMISC)) 1791 tmp |= RT2573_DROP_NOT_TO_ME; 1792 1793 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1794 1795 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1796 "entering" : "leaving"); 1797 } 1798 1799 static void 1800 rum_update_promisc(struct ifnet *ifp) 1801 { 1802 struct rum_softc *sc = ifp->if_softc; 1803 1804 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1805 return; 1806 1807 RUM_LOCK(sc); 1808 rum_setpromisc(sc); 1809 RUM_UNLOCK(sc); 1810 } 1811 1812 static const char * 1813 rum_get_rf(int rev) 1814 { 1815 switch (rev) { 1816 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1817 case RT2573_RF_2528: return "RT2528"; 1818 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1819 case RT2573_RF_5226: return "RT5226"; 1820 default: return "unknown"; 1821 } 1822 } 1823 1824 static void 1825 rum_read_eeprom(struct rum_softc *sc) 1826 { 1827 uint16_t val; 1828 #ifdef RUM_DEBUG 1829 int i; 1830 #endif 1831 1832 /* read MAC address */ 1833 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1834 1835 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1836 val = le16toh(val); 1837 sc->rf_rev = (val >> 11) & 0x1f; 1838 sc->hw_radio = (val >> 10) & 0x1; 1839 sc->rx_ant = (val >> 4) & 0x3; 1840 sc->tx_ant = (val >> 2) & 0x3; 1841 sc->nb_ant = val & 0x3; 1842 1843 DPRINTF("RF revision=%d\n", sc->rf_rev); 1844 1845 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1846 val = le16toh(val); 1847 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1848 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1849 1850 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1851 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1852 1853 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1854 val = le16toh(val); 1855 if ((val & 0xff) != 0xff) 1856 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1857 1858 /* Only [-10, 10] is valid */ 1859 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1860 sc->rssi_2ghz_corr = 0; 1861 1862 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1863 val = le16toh(val); 1864 if ((val & 0xff) != 0xff) 1865 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1866 1867 /* Only [-10, 10] is valid */ 1868 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1869 sc->rssi_5ghz_corr = 0; 1870 1871 if (sc->ext_2ghz_lna) 1872 sc->rssi_2ghz_corr -= 14; 1873 if (sc->ext_5ghz_lna) 1874 sc->rssi_5ghz_corr -= 14; 1875 1876 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1877 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1878 1879 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1880 val = le16toh(val); 1881 if ((val & 0xff) != 0xff) 1882 sc->rffreq = val & 0xff; 1883 1884 DPRINTF("RF freq=%d\n", sc->rffreq); 1885 1886 /* read Tx power for all a/b/g channels */ 1887 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1888 /* XXX default Tx power for 802.11a channels */ 1889 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1890 #ifdef RUM_DEBUG 1891 for (i = 0; i < 14; i++) 1892 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1893 #endif 1894 1895 /* read default values for BBP registers */ 1896 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1897 #ifdef RUM_DEBUG 1898 for (i = 0; i < 14; i++) { 1899 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1900 continue; 1901 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1902 sc->bbp_prom[i].val); 1903 } 1904 #endif 1905 } 1906 1907 static int 1908 rum_bbp_init(struct rum_softc *sc) 1909 { 1910 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1911 int i, ntries; 1912 1913 /* wait for BBP to be ready */ 1914 for (ntries = 0; ntries < 100; ntries++) { 1915 const uint8_t val = rum_bbp_read(sc, 0); 1916 if (val != 0 && val != 0xff) 1917 break; 1918 if (rum_pause(sc, hz / 100)) 1919 break; 1920 } 1921 if (ntries == 100) { 1922 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1923 return EIO; 1924 } 1925 1926 /* initialize BBP registers to default values */ 1927 for (i = 0; i < N(rum_def_bbp); i++) 1928 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1929 1930 /* write vendor-specific BBP values (from EEPROM) */ 1931 for (i = 0; i < 16; i++) { 1932 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1933 continue; 1934 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1935 } 1936 1937 return 0; 1938 #undef N 1939 } 1940 1941 static void 1942 rum_init_locked(struct rum_softc *sc) 1943 { 1944 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1945 struct ifnet *ifp = sc->sc_ifp; 1946 struct ieee80211com *ic = ifp->if_l2com; 1947 uint32_t tmp; 1948 usb_error_t error; 1949 int i, ntries; 1950 1951 RUM_LOCK_ASSERT(sc, MA_OWNED); 1952 1953 rum_stop(sc); 1954 1955 /* initialize MAC registers to default values */ 1956 for (i = 0; i < N(rum_def_mac); i++) 1957 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1958 1959 /* set host ready */ 1960 rum_write(sc, RT2573_MAC_CSR1, 3); 1961 rum_write(sc, RT2573_MAC_CSR1, 0); 1962 1963 /* wait for BBP/RF to wakeup */ 1964 for (ntries = 0; ntries < 100; ntries++) { 1965 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1966 break; 1967 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1968 if (rum_pause(sc, hz / 100)) 1969 break; 1970 } 1971 if (ntries == 100) { 1972 device_printf(sc->sc_dev, 1973 "timeout waiting for BBP/RF to wakeup\n"); 1974 goto fail; 1975 } 1976 1977 if ((error = rum_bbp_init(sc)) != 0) 1978 goto fail; 1979 1980 /* select default channel */ 1981 rum_select_band(sc, ic->ic_curchan); 1982 rum_select_antenna(sc); 1983 rum_set_chan(sc, ic->ic_curchan); 1984 1985 /* clear STA registers */ 1986 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1987 1988 rum_set_macaddr(sc, IF_LLADDR(ifp)); 1989 1990 /* initialize ASIC */ 1991 rum_write(sc, RT2573_MAC_CSR1, 4); 1992 1993 /* 1994 * Allocate Tx and Rx xfer queues. 1995 */ 1996 rum_setup_tx_list(sc); 1997 1998 /* update Rx filter */ 1999 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2000 2001 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2002 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2003 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2004 RT2573_DROP_ACKCTS; 2005 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2006 tmp |= RT2573_DROP_TODS; 2007 if (!(ifp->if_flags & IFF_PROMISC)) 2008 tmp |= RT2573_DROP_NOT_TO_ME; 2009 } 2010 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2011 2012 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2013 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2014 usb2_transfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2015 usb2_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2016 return; 2017 2018 fail: rum_stop(sc); 2019 #undef N 2020 } 2021 2022 static void 2023 rum_init(void *priv) 2024 { 2025 struct rum_softc *sc = priv; 2026 struct ifnet *ifp = sc->sc_ifp; 2027 struct ieee80211com *ic = ifp->if_l2com; 2028 2029 RUM_LOCK(sc); 2030 rum_init_locked(sc); 2031 RUM_UNLOCK(sc); 2032 2033 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2034 ieee80211_start_all(ic); /* start all vap's */ 2035 } 2036 2037 static void 2038 rum_stop(struct rum_softc *sc) 2039 { 2040 struct ifnet *ifp = sc->sc_ifp; 2041 uint32_t tmp; 2042 2043 RUM_LOCK_ASSERT(sc, MA_OWNED); 2044 2045 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2046 2047 RUM_UNLOCK(sc); 2048 2049 /* 2050 * Drain the USB transfers, if not already drained: 2051 */ 2052 usb2_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2053 usb2_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2054 2055 RUM_LOCK(sc); 2056 2057 rum_unsetup_tx_list(sc); 2058 2059 /* disable Rx */ 2060 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2061 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2062 2063 /* reset ASIC */ 2064 rum_write(sc, RT2573_MAC_CSR1, 3); 2065 rum_write(sc, RT2573_MAC_CSR1, 0); 2066 } 2067 2068 static void 2069 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2070 { 2071 struct usb_device_request req; 2072 uint16_t reg = RT2573_MCU_CODE_BASE; 2073 usb_error_t err; 2074 2075 /* copy firmware image into NIC */ 2076 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2077 err = rum_write(sc, reg, UGETDW(ucode)); 2078 if (err) { 2079 /* firmware already loaded ? */ 2080 device_printf(sc->sc_dev, "Firmware load " 2081 "failure! (ignored)\n"); 2082 break; 2083 } 2084 } 2085 2086 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2087 req.bRequest = RT2573_MCU_CNTL; 2088 USETW(req.wValue, RT2573_MCU_RUN); 2089 USETW(req.wIndex, 0); 2090 USETW(req.wLength, 0); 2091 2092 err = rum_do_request(sc, &req, NULL); 2093 if (err != 0) { 2094 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2095 usb2_errstr(err)); 2096 } 2097 2098 /* give the chip some time to boot */ 2099 rum_pause(sc, hz / 8); 2100 } 2101 2102 static int 2103 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2104 { 2105 struct ieee80211com *ic = vap->iv_ic; 2106 const struct ieee80211_txparam *tp; 2107 struct rum_tx_desc desc; 2108 struct mbuf *m0; 2109 2110 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2111 if (m0 == NULL) { 2112 return ENOBUFS; 2113 } 2114 2115 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2116 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2117 m0->m_pkthdr.len, tp->mgmtrate); 2118 2119 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2120 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2121 2122 /* copy beacon header and payload into NIC memory */ 2123 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2124 m0->m_pkthdr.len); 2125 2126 m_freem(m0); 2127 2128 return 0; 2129 } 2130 2131 static int 2132 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2133 const struct ieee80211_bpf_params *params) 2134 { 2135 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2136 struct rum_softc *sc = ifp->if_softc; 2137 2138 RUM_LOCK(sc); 2139 /* prevent management frames from being sent if we're not ready */ 2140 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2141 RUM_UNLOCK(sc); 2142 m_freem(m); 2143 ieee80211_free_node(ni); 2144 return ENETDOWN; 2145 } 2146 if (sc->tx_nfree < RUM_TX_MINFREE) { 2147 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2148 RUM_UNLOCK(sc); 2149 m_freem(m); 2150 ieee80211_free_node(ni); 2151 return EIO; 2152 } 2153 2154 ifp->if_opackets++; 2155 2156 if (params == NULL) { 2157 /* 2158 * Legacy path; interpret frame contents to decide 2159 * precisely how to send the frame. 2160 */ 2161 if (rum_tx_mgt(sc, m, ni) != 0) 2162 goto bad; 2163 } else { 2164 /* 2165 * Caller supplied explicit parameters to use in 2166 * sending the frame. 2167 */ 2168 if (rum_tx_raw(sc, m, ni, params) != 0) 2169 goto bad; 2170 } 2171 RUM_UNLOCK(sc); 2172 2173 return 0; 2174 bad: 2175 ifp->if_oerrors++; 2176 RUM_UNLOCK(sc); 2177 ieee80211_free_node(ni); 2178 return EIO; 2179 } 2180 2181 static void 2182 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2183 { 2184 struct ieee80211vap *vap = ni->ni_vap; 2185 struct rum_vap *rvp = RUM_VAP(vap); 2186 2187 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2188 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2189 2190 ieee80211_amrr_node_init(&rvp->amrr, &RUM_NODE(ni)->amn, ni); 2191 2192 usb2_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2193 } 2194 2195 static void 2196 rum_amrr_timeout(void *arg) 2197 { 2198 struct rum_vap *rvp = arg; 2199 struct ieee80211vap *vap = &rvp->vap; 2200 struct ieee80211com *ic = vap->iv_ic; 2201 2202 ieee80211_runtask(ic, &rvp->amrr_task); 2203 } 2204 2205 static void 2206 rum_amrr_task(void *arg, int pending) 2207 { 2208 struct rum_vap *rvp = arg; 2209 struct ieee80211vap *vap = &rvp->vap; 2210 struct ieee80211com *ic = vap->iv_ic; 2211 struct ifnet *ifp = ic->ic_ifp; 2212 struct rum_softc *sc = ifp->if_softc; 2213 struct ieee80211_node *ni = vap->iv_bss; 2214 int ok, fail; 2215 2216 RUM_LOCK(sc); 2217 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2218 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2219 2220 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2221 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2222 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2223 2224 ieee80211_amrr_tx_update(&RUM_NODE(ni)->amn, 2225 ok+fail, ok, (le32toh(sc->sta[5]) & 0xffff) + fail); 2226 (void) ieee80211_amrr_choose(ni, &RUM_NODE(ni)->amn); 2227 2228 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2229 2230 usb2_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2231 RUM_UNLOCK(sc); 2232 } 2233 2234 /* ARGUSED */ 2235 static struct ieee80211_node * 2236 rum_node_alloc(struct ieee80211vap *vap __unused, 2237 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 2238 { 2239 struct rum_node *rn; 2240 2241 rn = malloc(sizeof(struct rum_node), M_80211_NODE, M_NOWAIT | M_ZERO); 2242 return rn != NULL ? &rn->ni : NULL; 2243 } 2244 2245 static void 2246 rum_newassoc(struct ieee80211_node *ni, int isnew) 2247 { 2248 struct ieee80211vap *vap = ni->ni_vap; 2249 2250 ieee80211_amrr_node_init(&RUM_VAP(vap)->amrr, &RUM_NODE(ni)->amn, ni); 2251 } 2252 2253 static void 2254 rum_scan_start(struct ieee80211com *ic) 2255 { 2256 struct ifnet *ifp = ic->ic_ifp; 2257 struct rum_softc *sc = ifp->if_softc; 2258 uint32_t tmp; 2259 2260 RUM_LOCK(sc); 2261 /* abort TSF synchronization */ 2262 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2263 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2264 rum_set_bssid(sc, ifp->if_broadcastaddr); 2265 RUM_UNLOCK(sc); 2266 2267 } 2268 2269 static void 2270 rum_scan_end(struct ieee80211com *ic) 2271 { 2272 struct rum_softc *sc = ic->ic_ifp->if_softc; 2273 2274 RUM_LOCK(sc); 2275 rum_enable_tsf_sync(sc); 2276 rum_set_bssid(sc, sc->sc_bssid); 2277 RUM_UNLOCK(sc); 2278 2279 } 2280 2281 static void 2282 rum_set_channel(struct ieee80211com *ic) 2283 { 2284 struct rum_softc *sc = ic->ic_ifp->if_softc; 2285 2286 RUM_LOCK(sc); 2287 rum_set_chan(sc, ic->ic_curchan); 2288 RUM_UNLOCK(sc); 2289 } 2290 2291 static int 2292 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2293 { 2294 struct ifnet *ifp = sc->sc_ifp; 2295 struct ieee80211com *ic = ifp->if_l2com; 2296 int lna, agc, rssi; 2297 2298 lna = (raw >> 5) & 0x3; 2299 agc = raw & 0x1f; 2300 2301 if (lna == 0) { 2302 /* 2303 * No RSSI mapping 2304 * 2305 * NB: Since RSSI is relative to noise floor, -1 is 2306 * adequate for caller to know error happened. 2307 */ 2308 return -1; 2309 } 2310 2311 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2312 2313 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2314 rssi += sc->rssi_2ghz_corr; 2315 2316 if (lna == 1) 2317 rssi -= 64; 2318 else if (lna == 2) 2319 rssi -= 74; 2320 else if (lna == 3) 2321 rssi -= 90; 2322 } else { 2323 rssi += sc->rssi_5ghz_corr; 2324 2325 if (!sc->ext_5ghz_lna && lna != 1) 2326 rssi += 4; 2327 2328 if (lna == 1) 2329 rssi -= 64; 2330 else if (lna == 2) 2331 rssi -= 86; 2332 else if (lna == 3) 2333 rssi -= 100; 2334 } 2335 return rssi; 2336 } 2337 2338 static int 2339 rum_pause(struct rum_softc *sc, int timeout) 2340 { 2341 2342 usb2_pause_mtx(&sc->sc_mtx, timeout); 2343 return (0); 2344 } 2345 2346 static device_method_t rum_methods[] = { 2347 /* Device interface */ 2348 DEVMETHOD(device_probe, rum_match), 2349 DEVMETHOD(device_attach, rum_attach), 2350 DEVMETHOD(device_detach, rum_detach), 2351 2352 { 0, 0 } 2353 }; 2354 2355 static driver_t rum_driver = { 2356 .name = "rum", 2357 .methods = rum_methods, 2358 .size = sizeof(struct rum_softc), 2359 }; 2360 2361 static devclass_t rum_devclass; 2362 2363 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2364