1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #ifdef USB_DEBUG 81 static int rum_debug = 0; 82 83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 85 "Debug level"); 86 #endif 87 88 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, SG54HG), 124 RUM_DEV(MELCO, WLIUCG), 125 RUM_DEV(MELCO, WLRUCG), 126 RUM_DEV(MELCO, WLRUCGAOSS), 127 RUM_DEV(MSI, RT2573_1), 128 RUM_DEV(MSI, RT2573_2), 129 RUM_DEV(MSI, RT2573_3), 130 RUM_DEV(MSI, RT2573_4), 131 RUM_DEV(NOVATECH, RT2573), 132 RUM_DEV(PLANEX2, GWUS54HP), 133 RUM_DEV(PLANEX2, GWUS54MINI2), 134 RUM_DEV(PLANEX2, GWUSMM), 135 RUM_DEV(QCOM, RT2573), 136 RUM_DEV(QCOM, RT2573_2), 137 RUM_DEV(QCOM, RT2573_3), 138 RUM_DEV(RALINK, RT2573), 139 RUM_DEV(RALINK, RT2573_2), 140 RUM_DEV(RALINK, RT2671), 141 RUM_DEV(SITECOMEU, WL113R2), 142 RUM_DEV(SITECOMEU, WL172), 143 RUM_DEV(SPARKLAN, RT2573), 144 RUM_DEV(SURECOM, RT2573), 145 #undef RUM_DEV 146 }; 147 148 static device_probe_t rum_match; 149 static device_attach_t rum_attach; 150 static device_detach_t rum_detach; 151 152 static usb_callback_t rum_bulk_read_callback; 153 static usb_callback_t rum_bulk_write_callback; 154 155 static usb_error_t rum_do_request(struct rum_softc *sc, 156 struct usb_device_request *req, void *data); 157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 158 const char [IFNAMSIZ], int, enum ieee80211_opmode, 159 int, const uint8_t [IEEE80211_ADDR_LEN], 160 const uint8_t [IEEE80211_ADDR_LEN]); 161 static void rum_vap_delete(struct ieee80211vap *); 162 static void rum_tx_free(struct rum_tx_data *, int); 163 static void rum_setup_tx_list(struct rum_softc *); 164 static void rum_unsetup_tx_list(struct rum_softc *); 165 static int rum_newstate(struct ieee80211vap *, 166 enum ieee80211_state, int); 167 static void rum_setup_tx_desc(struct rum_softc *, 168 struct rum_tx_desc *, uint32_t, uint16_t, int, 169 int); 170 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 171 struct ieee80211_node *); 172 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 173 struct ieee80211_node *, 174 const struct ieee80211_bpf_params *); 175 static int rum_tx_data(struct rum_softc *, struct mbuf *, 176 struct ieee80211_node *); 177 static void rum_start(struct ifnet *); 178 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 179 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 180 int); 181 static uint32_t rum_read(struct rum_softc *, uint16_t); 182 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 183 int); 184 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 185 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 186 size_t); 187 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 188 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 189 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 190 static void rum_select_antenna(struct rum_softc *); 191 static void rum_enable_mrr(struct rum_softc *); 192 static void rum_set_txpreamble(struct rum_softc *); 193 static void rum_set_basicrates(struct rum_softc *); 194 static void rum_select_band(struct rum_softc *, 195 struct ieee80211_channel *); 196 static void rum_set_chan(struct rum_softc *, 197 struct ieee80211_channel *); 198 static void rum_enable_tsf_sync(struct rum_softc *); 199 static void rum_enable_tsf(struct rum_softc *); 200 static void rum_update_slot(struct ifnet *); 201 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 202 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 203 static void rum_update_mcast(struct ifnet *); 204 static void rum_update_promisc(struct ifnet *); 205 static void rum_setpromisc(struct rum_softc *); 206 static const char *rum_get_rf(int); 207 static void rum_read_eeprom(struct rum_softc *); 208 static int rum_bbp_init(struct rum_softc *); 209 static void rum_init_locked(struct rum_softc *); 210 static void rum_init(void *); 211 static void rum_stop(struct rum_softc *); 212 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 213 size_t); 214 static void rum_prepare_beacon(struct rum_softc *, 215 struct ieee80211vap *); 216 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 217 const struct ieee80211_bpf_params *); 218 static void rum_scan_start(struct ieee80211com *); 219 static void rum_scan_end(struct ieee80211com *); 220 static void rum_set_channel(struct ieee80211com *); 221 static int rum_get_rssi(struct rum_softc *, uint8_t); 222 static void rum_ratectl_start(struct rum_softc *, 223 struct ieee80211_node *); 224 static void rum_ratectl_timeout(void *); 225 static void rum_ratectl_task(void *, int); 226 static int rum_pause(struct rum_softc *, int); 227 228 static const struct { 229 uint32_t reg; 230 uint32_t val; 231 } rum_def_mac[] = { 232 { RT2573_TXRX_CSR0, 0x025fb032 }, 233 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 234 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 235 { RT2573_TXRX_CSR3, 0x00858687 }, 236 { RT2573_TXRX_CSR7, 0x2e31353b }, 237 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 238 { RT2573_TXRX_CSR15, 0x0000000f }, 239 { RT2573_MAC_CSR6, 0x00000fff }, 240 { RT2573_MAC_CSR8, 0x016c030a }, 241 { RT2573_MAC_CSR10, 0x00000718 }, 242 { RT2573_MAC_CSR12, 0x00000004 }, 243 { RT2573_MAC_CSR13, 0x00007f00 }, 244 { RT2573_SEC_CSR0, 0x00000000 }, 245 { RT2573_SEC_CSR1, 0x00000000 }, 246 { RT2573_SEC_CSR5, 0x00000000 }, 247 { RT2573_PHY_CSR1, 0x000023b0 }, 248 { RT2573_PHY_CSR5, 0x00040a06 }, 249 { RT2573_PHY_CSR6, 0x00080606 }, 250 { RT2573_PHY_CSR7, 0x00000408 }, 251 { RT2573_AIFSN_CSR, 0x00002273 }, 252 { RT2573_CWMIN_CSR, 0x00002344 }, 253 { RT2573_CWMAX_CSR, 0x000034aa } 254 }; 255 256 static const struct { 257 uint8_t reg; 258 uint8_t val; 259 } rum_def_bbp[] = { 260 { 3, 0x80 }, 261 { 15, 0x30 }, 262 { 17, 0x20 }, 263 { 21, 0xc8 }, 264 { 22, 0x38 }, 265 { 23, 0x06 }, 266 { 24, 0xfe }, 267 { 25, 0x0a }, 268 { 26, 0x0d }, 269 { 32, 0x0b }, 270 { 34, 0x12 }, 271 { 37, 0x07 }, 272 { 39, 0xf8 }, 273 { 41, 0x60 }, 274 { 53, 0x10 }, 275 { 54, 0x18 }, 276 { 60, 0x10 }, 277 { 61, 0x04 }, 278 { 62, 0x04 }, 279 { 75, 0xfe }, 280 { 86, 0xfe }, 281 { 88, 0xfe }, 282 { 90, 0x0f }, 283 { 99, 0x00 }, 284 { 102, 0x16 }, 285 { 107, 0x04 } 286 }; 287 288 static const struct rfprog { 289 uint8_t chan; 290 uint32_t r1, r2, r3, r4; 291 } rum_rf5226[] = { 292 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 293 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 294 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 295 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 296 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 297 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 298 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 299 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 300 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 301 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 302 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 303 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 304 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 305 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 306 307 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 308 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 309 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 310 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 311 312 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 313 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 314 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 315 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 316 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 317 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 318 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 319 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 320 321 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 322 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 323 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 324 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 325 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 326 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 327 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 328 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 329 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 330 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 331 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 332 333 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 334 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 335 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 336 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 337 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 338 }, rum_rf5225[] = { 339 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 340 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 341 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 342 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 343 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 344 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 345 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 346 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 347 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 348 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 349 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 350 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 351 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 352 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 353 354 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 355 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 356 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 357 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 358 359 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 360 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 361 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 362 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 363 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 364 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 365 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 366 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 367 368 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 369 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 370 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 371 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 372 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 373 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 374 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 375 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 376 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 377 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 378 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 379 380 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 381 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 382 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 383 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 384 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 385 }; 386 387 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 388 [RUM_BULK_WR] = { 389 .type = UE_BULK, 390 .endpoint = UE_ADDR_ANY, 391 .direction = UE_DIR_OUT, 392 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 393 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 394 .callback = rum_bulk_write_callback, 395 .timeout = 5000, /* ms */ 396 }, 397 [RUM_BULK_RD] = { 398 .type = UE_BULK, 399 .endpoint = UE_ADDR_ANY, 400 .direction = UE_DIR_IN, 401 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 402 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 403 .callback = rum_bulk_read_callback, 404 }, 405 }; 406 407 static int 408 rum_match(device_t self) 409 { 410 struct usb_attach_arg *uaa = device_get_ivars(self); 411 412 if (uaa->usb_mode != USB_MODE_HOST) 413 return (ENXIO); 414 if (uaa->info.bConfigIndex != 0) 415 return (ENXIO); 416 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 417 return (ENXIO); 418 419 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 420 } 421 422 static int 423 rum_attach(device_t self) 424 { 425 struct usb_attach_arg *uaa = device_get_ivars(self); 426 struct rum_softc *sc = device_get_softc(self); 427 struct ieee80211com *ic; 428 struct ifnet *ifp; 429 uint8_t iface_index, bands; 430 uint32_t tmp; 431 int error, ntries; 432 433 device_set_usb_desc(self); 434 sc->sc_udev = uaa->device; 435 sc->sc_dev = self; 436 437 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 438 MTX_NETWORK_LOCK, MTX_DEF); 439 440 iface_index = RT2573_IFACE_INDEX; 441 error = usbd_transfer_setup(uaa->device, &iface_index, 442 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 443 if (error) { 444 device_printf(self, "could not allocate USB transfers, " 445 "err=%s\n", usbd_errstr(error)); 446 goto detach; 447 } 448 449 RUM_LOCK(sc); 450 /* retrieve RT2573 rev. no */ 451 for (ntries = 0; ntries < 100; ntries++) { 452 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 453 break; 454 if (rum_pause(sc, hz / 100)) 455 break; 456 } 457 if (ntries == 100) { 458 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 459 RUM_UNLOCK(sc); 460 goto detach; 461 } 462 463 /* retrieve MAC address and various other things from EEPROM */ 464 rum_read_eeprom(sc); 465 466 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 467 tmp, rum_get_rf(sc->rf_rev)); 468 469 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 470 RUM_UNLOCK(sc); 471 472 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 473 if (ifp == NULL) { 474 device_printf(sc->sc_dev, "can not if_alloc()\n"); 475 goto detach; 476 } 477 ic = ifp->if_l2com; 478 479 ifp->if_softc = sc; 480 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 481 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 482 ifp->if_init = rum_init; 483 ifp->if_ioctl = rum_ioctl; 484 ifp->if_start = rum_start; 485 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 486 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 487 IFQ_SET_READY(&ifp->if_snd); 488 489 ic->ic_ifp = ifp; 490 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 491 492 /* set device capabilities */ 493 ic->ic_caps = 494 IEEE80211_C_STA /* station mode supported */ 495 | IEEE80211_C_IBSS /* IBSS mode supported */ 496 | IEEE80211_C_MONITOR /* monitor mode supported */ 497 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 498 | IEEE80211_C_TXPMGT /* tx power management */ 499 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 500 | IEEE80211_C_SHSLOT /* short slot time supported */ 501 | IEEE80211_C_BGSCAN /* bg scanning supported */ 502 | IEEE80211_C_WPA /* 802.11i */ 503 ; 504 505 bands = 0; 506 setbit(&bands, IEEE80211_MODE_11B); 507 setbit(&bands, IEEE80211_MODE_11G); 508 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 509 setbit(&bands, IEEE80211_MODE_11A); 510 ieee80211_init_channels(ic, NULL, &bands); 511 512 ieee80211_ifattach(ic, sc->sc_bssid); 513 ic->ic_update_promisc = rum_update_promisc; 514 ic->ic_raw_xmit = rum_raw_xmit; 515 ic->ic_scan_start = rum_scan_start; 516 ic->ic_scan_end = rum_scan_end; 517 ic->ic_set_channel = rum_set_channel; 518 519 ic->ic_vap_create = rum_vap_create; 520 ic->ic_vap_delete = rum_vap_delete; 521 ic->ic_update_mcast = rum_update_mcast; 522 523 ieee80211_radiotap_attach(ic, 524 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 525 RT2573_TX_RADIOTAP_PRESENT, 526 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 527 RT2573_RX_RADIOTAP_PRESENT); 528 529 if (bootverbose) 530 ieee80211_announce(ic); 531 532 return (0); 533 534 detach: 535 rum_detach(self); 536 return (ENXIO); /* failure */ 537 } 538 539 static int 540 rum_detach(device_t self) 541 { 542 struct rum_softc *sc = device_get_softc(self); 543 struct ifnet *ifp = sc->sc_ifp; 544 struct ieee80211com *ic; 545 546 /* Prevent further ioctls */ 547 RUM_LOCK(sc); 548 sc->sc_detached = 1; 549 RUM_UNLOCK(sc); 550 551 /* stop all USB transfers */ 552 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 553 554 /* free TX list, if any */ 555 RUM_LOCK(sc); 556 rum_unsetup_tx_list(sc); 557 RUM_UNLOCK(sc); 558 559 if (ifp) { 560 ic = ifp->if_l2com; 561 ieee80211_ifdetach(ic); 562 if_free(ifp); 563 } 564 mtx_destroy(&sc->sc_mtx); 565 return (0); 566 } 567 568 static usb_error_t 569 rum_do_request(struct rum_softc *sc, 570 struct usb_device_request *req, void *data) 571 { 572 usb_error_t err; 573 int ntries = 10; 574 575 while (ntries--) { 576 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 577 req, data, 0, NULL, 250 /* ms */); 578 if (err == 0) 579 break; 580 581 DPRINTFN(1, "Control request failed, %s (retrying)\n", 582 usbd_errstr(err)); 583 if (rum_pause(sc, hz / 100)) 584 break; 585 } 586 return (err); 587 } 588 589 static struct ieee80211vap * 590 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 591 enum ieee80211_opmode opmode, int flags, 592 const uint8_t bssid[IEEE80211_ADDR_LEN], 593 const uint8_t mac[IEEE80211_ADDR_LEN]) 594 { 595 struct rum_softc *sc = ic->ic_ifp->if_softc; 596 struct rum_vap *rvp; 597 struct ieee80211vap *vap; 598 599 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 600 return NULL; 601 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 602 M_80211_VAP, M_NOWAIT | M_ZERO); 603 if (rvp == NULL) 604 return NULL; 605 vap = &rvp->vap; 606 /* enable s/w bmiss handling for sta mode */ 607 ieee80211_vap_setup(ic, vap, name, unit, opmode, 608 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 609 610 /* override state transition machine */ 611 rvp->newstate = vap->iv_newstate; 612 vap->iv_newstate = rum_newstate; 613 614 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 615 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 616 ieee80211_ratectl_init(vap); 617 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 618 /* complete setup */ 619 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 620 ic->ic_opmode = opmode; 621 return vap; 622 } 623 624 static void 625 rum_vap_delete(struct ieee80211vap *vap) 626 { 627 struct rum_vap *rvp = RUM_VAP(vap); 628 struct ieee80211com *ic = vap->iv_ic; 629 630 usb_callout_drain(&rvp->ratectl_ch); 631 ieee80211_draintask(ic, &rvp->ratectl_task); 632 ieee80211_ratectl_deinit(vap); 633 ieee80211_vap_detach(vap); 634 free(rvp, M_80211_VAP); 635 } 636 637 static void 638 rum_tx_free(struct rum_tx_data *data, int txerr) 639 { 640 struct rum_softc *sc = data->sc; 641 642 if (data->m != NULL) { 643 if (data->m->m_flags & M_TXCB) 644 ieee80211_process_callback(data->ni, data->m, 645 txerr ? ETIMEDOUT : 0); 646 m_freem(data->m); 647 data->m = NULL; 648 649 ieee80211_free_node(data->ni); 650 data->ni = NULL; 651 } 652 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 653 sc->tx_nfree++; 654 } 655 656 static void 657 rum_setup_tx_list(struct rum_softc *sc) 658 { 659 struct rum_tx_data *data; 660 int i; 661 662 sc->tx_nfree = 0; 663 STAILQ_INIT(&sc->tx_q); 664 STAILQ_INIT(&sc->tx_free); 665 666 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 667 data = &sc->tx_data[i]; 668 669 data->sc = sc; 670 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 671 sc->tx_nfree++; 672 } 673 } 674 675 static void 676 rum_unsetup_tx_list(struct rum_softc *sc) 677 { 678 struct rum_tx_data *data; 679 int i; 680 681 /* make sure any subsequent use of the queues will fail */ 682 sc->tx_nfree = 0; 683 STAILQ_INIT(&sc->tx_q); 684 STAILQ_INIT(&sc->tx_free); 685 686 /* free up all node references and mbufs */ 687 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 688 data = &sc->tx_data[i]; 689 690 if (data->m != NULL) { 691 m_freem(data->m); 692 data->m = NULL; 693 } 694 if (data->ni != NULL) { 695 ieee80211_free_node(data->ni); 696 data->ni = NULL; 697 } 698 } 699 } 700 701 static int 702 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 703 { 704 struct rum_vap *rvp = RUM_VAP(vap); 705 struct ieee80211com *ic = vap->iv_ic; 706 struct rum_softc *sc = ic->ic_ifp->if_softc; 707 const struct ieee80211_txparam *tp; 708 enum ieee80211_state ostate; 709 struct ieee80211_node *ni; 710 uint32_t tmp; 711 712 ostate = vap->iv_state; 713 DPRINTF("%s -> %s\n", 714 ieee80211_state_name[ostate], 715 ieee80211_state_name[nstate]); 716 717 IEEE80211_UNLOCK(ic); 718 RUM_LOCK(sc); 719 usb_callout_stop(&rvp->ratectl_ch); 720 721 switch (nstate) { 722 case IEEE80211_S_INIT: 723 if (ostate == IEEE80211_S_RUN) { 724 /* abort TSF synchronization */ 725 tmp = rum_read(sc, RT2573_TXRX_CSR9); 726 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 727 } 728 break; 729 730 case IEEE80211_S_RUN: 731 ni = ieee80211_ref_node(vap->iv_bss); 732 733 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 734 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 735 RUM_UNLOCK(sc); 736 IEEE80211_LOCK(ic); 737 ieee80211_free_node(ni); 738 return (-1); 739 } 740 rum_update_slot(ic->ic_ifp); 741 rum_enable_mrr(sc); 742 rum_set_txpreamble(sc); 743 rum_set_basicrates(sc); 744 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 745 rum_set_bssid(sc, sc->sc_bssid); 746 } 747 748 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 749 vap->iv_opmode == IEEE80211_M_IBSS) 750 rum_prepare_beacon(sc, vap); 751 752 if (vap->iv_opmode != IEEE80211_M_MONITOR) 753 rum_enable_tsf_sync(sc); 754 else 755 rum_enable_tsf(sc); 756 757 /* enable automatic rate adaptation */ 758 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 759 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 760 rum_ratectl_start(sc, ni); 761 ieee80211_free_node(ni); 762 break; 763 default: 764 break; 765 } 766 RUM_UNLOCK(sc); 767 IEEE80211_LOCK(ic); 768 return (rvp->newstate(vap, nstate, arg)); 769 } 770 771 static void 772 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 773 { 774 struct rum_softc *sc = usbd_xfer_softc(xfer); 775 struct ifnet *ifp = sc->sc_ifp; 776 struct ieee80211vap *vap; 777 struct rum_tx_data *data; 778 struct mbuf *m; 779 struct usb_page_cache *pc; 780 unsigned int len; 781 int actlen, sumlen; 782 783 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 784 785 switch (USB_GET_STATE(xfer)) { 786 case USB_ST_TRANSFERRED: 787 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 788 789 /* free resources */ 790 data = usbd_xfer_get_priv(xfer); 791 rum_tx_free(data, 0); 792 usbd_xfer_set_priv(xfer, NULL); 793 794 ifp->if_opackets++; 795 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 796 797 /* FALLTHROUGH */ 798 case USB_ST_SETUP: 799 tr_setup: 800 data = STAILQ_FIRST(&sc->tx_q); 801 if (data) { 802 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 803 m = data->m; 804 805 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 806 DPRINTFN(0, "data overflow, %u bytes\n", 807 m->m_pkthdr.len); 808 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 809 } 810 pc = usbd_xfer_get_frame(xfer, 0); 811 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 812 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 813 m->m_pkthdr.len); 814 815 vap = data->ni->ni_vap; 816 if (ieee80211_radiotap_active_vap(vap)) { 817 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 818 819 tap->wt_flags = 0; 820 tap->wt_rate = data->rate; 821 tap->wt_antenna = sc->tx_ant; 822 823 ieee80211_radiotap_tx(vap, m); 824 } 825 826 /* align end on a 4-bytes boundary */ 827 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 828 if ((len % 64) == 0) 829 len += 4; 830 831 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 832 m->m_pkthdr.len, len); 833 834 usbd_xfer_set_frame_len(xfer, 0, len); 835 usbd_xfer_set_priv(xfer, data); 836 837 usbd_transfer_submit(xfer); 838 } 839 RUM_UNLOCK(sc); 840 rum_start(ifp); 841 RUM_LOCK(sc); 842 break; 843 844 default: /* Error */ 845 DPRINTFN(11, "transfer error, %s\n", 846 usbd_errstr(error)); 847 848 ifp->if_oerrors++; 849 data = usbd_xfer_get_priv(xfer); 850 if (data != NULL) { 851 rum_tx_free(data, error); 852 usbd_xfer_set_priv(xfer, NULL); 853 } 854 855 if (error != USB_ERR_CANCELLED) { 856 if (error == USB_ERR_TIMEOUT) 857 device_printf(sc->sc_dev, "device timeout\n"); 858 859 /* 860 * Try to clear stall first, also if other 861 * errors occur, hence clearing stall 862 * introduces a 50 ms delay: 863 */ 864 usbd_xfer_set_stall(xfer); 865 goto tr_setup; 866 } 867 break; 868 } 869 } 870 871 static void 872 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 873 { 874 struct rum_softc *sc = usbd_xfer_softc(xfer); 875 struct ifnet *ifp = sc->sc_ifp; 876 struct ieee80211com *ic = ifp->if_l2com; 877 struct ieee80211_node *ni; 878 struct mbuf *m = NULL; 879 struct usb_page_cache *pc; 880 uint32_t flags; 881 uint8_t rssi = 0; 882 int len; 883 884 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 885 886 switch (USB_GET_STATE(xfer)) { 887 case USB_ST_TRANSFERRED: 888 889 DPRINTFN(15, "rx done, actlen=%d\n", len); 890 891 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 892 DPRINTF("%s: xfer too short %d\n", 893 device_get_nameunit(sc->sc_dev), len); 894 ifp->if_ierrors++; 895 goto tr_setup; 896 } 897 898 len -= RT2573_RX_DESC_SIZE; 899 pc = usbd_xfer_get_frame(xfer, 0); 900 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 901 902 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 903 flags = le32toh(sc->sc_rx_desc.flags); 904 if (flags & RT2573_RX_CRC_ERROR) { 905 /* 906 * This should not happen since we did not 907 * request to receive those frames when we 908 * filled RUM_TXRX_CSR2: 909 */ 910 DPRINTFN(5, "PHY or CRC error\n"); 911 ifp->if_ierrors++; 912 goto tr_setup; 913 } 914 915 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 916 if (m == NULL) { 917 DPRINTF("could not allocate mbuf\n"); 918 ifp->if_ierrors++; 919 goto tr_setup; 920 } 921 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 922 mtod(m, uint8_t *), len); 923 924 /* finalize mbuf */ 925 m->m_pkthdr.rcvif = ifp; 926 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 927 928 if (ieee80211_radiotap_active(ic)) { 929 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 930 931 /* XXX read tsf */ 932 tap->wr_flags = 0; 933 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 934 (flags & RT2573_RX_OFDM) ? 935 IEEE80211_T_OFDM : IEEE80211_T_CCK); 936 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 937 tap->wr_antnoise = RT2573_NOISE_FLOOR; 938 tap->wr_antenna = sc->rx_ant; 939 } 940 /* FALLTHROUGH */ 941 case USB_ST_SETUP: 942 tr_setup: 943 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 944 usbd_transfer_submit(xfer); 945 946 /* 947 * At the end of a USB callback it is always safe to unlock 948 * the private mutex of a device! That is why we do the 949 * "ieee80211_input" here, and not some lines up! 950 */ 951 RUM_UNLOCK(sc); 952 if (m) { 953 ni = ieee80211_find_rxnode(ic, 954 mtod(m, struct ieee80211_frame_min *)); 955 if (ni != NULL) { 956 (void) ieee80211_input(ni, m, rssi, 957 RT2573_NOISE_FLOOR); 958 ieee80211_free_node(ni); 959 } else 960 (void) ieee80211_input_all(ic, m, rssi, 961 RT2573_NOISE_FLOOR); 962 } 963 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 964 !IFQ_IS_EMPTY(&ifp->if_snd)) 965 rum_start(ifp); 966 RUM_LOCK(sc); 967 return; 968 969 default: /* Error */ 970 if (error != USB_ERR_CANCELLED) { 971 /* try to clear stall first */ 972 usbd_xfer_set_stall(xfer); 973 goto tr_setup; 974 } 975 return; 976 } 977 } 978 979 static uint8_t 980 rum_plcp_signal(int rate) 981 { 982 switch (rate) { 983 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 984 case 12: return 0xb; 985 case 18: return 0xf; 986 case 24: return 0xa; 987 case 36: return 0xe; 988 case 48: return 0x9; 989 case 72: return 0xd; 990 case 96: return 0x8; 991 case 108: return 0xc; 992 993 /* CCK rates (NB: not IEEE std, device-specific) */ 994 case 2: return 0x0; 995 case 4: return 0x1; 996 case 11: return 0x2; 997 case 22: return 0x3; 998 } 999 return 0xff; /* XXX unsupported/unknown rate */ 1000 } 1001 1002 static void 1003 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1004 uint32_t flags, uint16_t xflags, int len, int rate) 1005 { 1006 struct ifnet *ifp = sc->sc_ifp; 1007 struct ieee80211com *ic = ifp->if_l2com; 1008 uint16_t plcp_length; 1009 int remainder; 1010 1011 desc->flags = htole32(flags); 1012 desc->flags |= htole32(RT2573_TX_VALID); 1013 desc->flags |= htole32(len << 16); 1014 1015 desc->xflags = htole16(xflags); 1016 1017 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 1018 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 1019 1020 /* setup PLCP fields */ 1021 desc->plcp_signal = rum_plcp_signal(rate); 1022 desc->plcp_service = 4; 1023 1024 len += IEEE80211_CRC_LEN; 1025 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1026 desc->flags |= htole32(RT2573_TX_OFDM); 1027 1028 plcp_length = len & 0xfff; 1029 desc->plcp_length_hi = plcp_length >> 6; 1030 desc->plcp_length_lo = plcp_length & 0x3f; 1031 } else { 1032 plcp_length = (16 * len + rate - 1) / rate; 1033 if (rate == 22) { 1034 remainder = (16 * len) % 22; 1035 if (remainder != 0 && remainder < 7) 1036 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1037 } 1038 desc->plcp_length_hi = plcp_length >> 8; 1039 desc->plcp_length_lo = plcp_length & 0xff; 1040 1041 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1042 desc->plcp_signal |= 0x08; 1043 } 1044 } 1045 1046 static int 1047 rum_sendprot(struct rum_softc *sc, 1048 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1049 { 1050 struct ieee80211com *ic = ni->ni_ic; 1051 const struct ieee80211_frame *wh; 1052 struct rum_tx_data *data; 1053 struct mbuf *mprot; 1054 int protrate, ackrate, pktlen, flags, isshort; 1055 uint16_t dur; 1056 1057 RUM_LOCK_ASSERT(sc, MA_OWNED); 1058 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1059 ("protection %d", prot)); 1060 1061 wh = mtod(m, const struct ieee80211_frame *); 1062 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1063 1064 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1065 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1066 1067 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1068 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1069 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1070 flags = RT2573_TX_MORE_FRAG; 1071 if (prot == IEEE80211_PROT_RTSCTS) { 1072 /* NB: CTS is the same size as an ACK */ 1073 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1074 flags |= RT2573_TX_NEED_ACK; 1075 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1076 } else { 1077 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1078 } 1079 if (mprot == NULL) { 1080 /* XXX stat + msg */ 1081 return (ENOBUFS); 1082 } 1083 data = STAILQ_FIRST(&sc->tx_free); 1084 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1085 sc->tx_nfree--; 1086 1087 data->m = mprot; 1088 data->ni = ieee80211_ref_node(ni); 1089 data->rate = protrate; 1090 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1091 1092 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1093 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1094 1095 return 0; 1096 } 1097 1098 static int 1099 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1100 { 1101 struct ieee80211vap *vap = ni->ni_vap; 1102 struct ifnet *ifp = sc->sc_ifp; 1103 struct ieee80211com *ic = ifp->if_l2com; 1104 struct rum_tx_data *data; 1105 struct ieee80211_frame *wh; 1106 const struct ieee80211_txparam *tp; 1107 struct ieee80211_key *k; 1108 uint32_t flags = 0; 1109 uint16_t dur; 1110 1111 RUM_LOCK_ASSERT(sc, MA_OWNED); 1112 1113 data = STAILQ_FIRST(&sc->tx_free); 1114 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1115 sc->tx_nfree--; 1116 1117 wh = mtod(m0, struct ieee80211_frame *); 1118 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1119 k = ieee80211_crypto_encap(ni, m0); 1120 if (k == NULL) { 1121 m_freem(m0); 1122 return ENOBUFS; 1123 } 1124 wh = mtod(m0, struct ieee80211_frame *); 1125 } 1126 1127 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1128 1129 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1130 flags |= RT2573_TX_NEED_ACK; 1131 1132 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1133 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1134 *(uint16_t *)wh->i_dur = htole16(dur); 1135 1136 /* tell hardware to add timestamp for probe responses */ 1137 if ((wh->i_fc[0] & 1138 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1139 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1140 flags |= RT2573_TX_TIMESTAMP; 1141 } 1142 1143 data->m = m0; 1144 data->ni = ni; 1145 data->rate = tp->mgmtrate; 1146 1147 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1148 1149 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1150 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1151 1152 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1153 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1154 1155 return (0); 1156 } 1157 1158 static int 1159 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1160 const struct ieee80211_bpf_params *params) 1161 { 1162 struct ieee80211com *ic = ni->ni_ic; 1163 struct rum_tx_data *data; 1164 uint32_t flags; 1165 int rate, error; 1166 1167 RUM_LOCK_ASSERT(sc, MA_OWNED); 1168 KASSERT(params != NULL, ("no raw xmit params")); 1169 1170 rate = params->ibp_rate0; 1171 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1172 m_freem(m0); 1173 return EINVAL; 1174 } 1175 flags = 0; 1176 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1177 flags |= RT2573_TX_NEED_ACK; 1178 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1179 error = rum_sendprot(sc, m0, ni, 1180 params->ibp_flags & IEEE80211_BPF_RTS ? 1181 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1182 rate); 1183 if (error || sc->tx_nfree == 0) { 1184 m_freem(m0); 1185 return ENOBUFS; 1186 } 1187 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1188 } 1189 1190 data = STAILQ_FIRST(&sc->tx_free); 1191 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1192 sc->tx_nfree--; 1193 1194 data->m = m0; 1195 data->ni = ni; 1196 data->rate = rate; 1197 1198 /* XXX need to setup descriptor ourself */ 1199 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1200 1201 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1202 m0->m_pkthdr.len, rate); 1203 1204 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1205 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1206 1207 return 0; 1208 } 1209 1210 static int 1211 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1212 { 1213 struct ieee80211vap *vap = ni->ni_vap; 1214 struct ifnet *ifp = sc->sc_ifp; 1215 struct ieee80211com *ic = ifp->if_l2com; 1216 struct rum_tx_data *data; 1217 struct ieee80211_frame *wh; 1218 const struct ieee80211_txparam *tp; 1219 struct ieee80211_key *k; 1220 uint32_t flags = 0; 1221 uint16_t dur; 1222 int error, rate; 1223 1224 RUM_LOCK_ASSERT(sc, MA_OWNED); 1225 1226 wh = mtod(m0, struct ieee80211_frame *); 1227 1228 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1229 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1230 rate = tp->mcastrate; 1231 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1232 rate = tp->ucastrate; 1233 else 1234 rate = ni->ni_txrate; 1235 1236 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1237 k = ieee80211_crypto_encap(ni, m0); 1238 if (k == NULL) { 1239 m_freem(m0); 1240 return ENOBUFS; 1241 } 1242 1243 /* packet header may have moved, reset our local pointer */ 1244 wh = mtod(m0, struct ieee80211_frame *); 1245 } 1246 1247 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1248 int prot = IEEE80211_PROT_NONE; 1249 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1250 prot = IEEE80211_PROT_RTSCTS; 1251 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1252 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1253 prot = ic->ic_protmode; 1254 if (prot != IEEE80211_PROT_NONE) { 1255 error = rum_sendprot(sc, m0, ni, prot, rate); 1256 if (error || sc->tx_nfree == 0) { 1257 m_freem(m0); 1258 return ENOBUFS; 1259 } 1260 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1261 } 1262 } 1263 1264 data = STAILQ_FIRST(&sc->tx_free); 1265 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1266 sc->tx_nfree--; 1267 1268 data->m = m0; 1269 data->ni = ni; 1270 data->rate = rate; 1271 1272 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1273 flags |= RT2573_TX_NEED_ACK; 1274 flags |= RT2573_TX_MORE_FRAG; 1275 1276 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1277 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1278 *(uint16_t *)wh->i_dur = htole16(dur); 1279 } 1280 1281 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1282 1283 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1284 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1285 1286 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1287 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1288 1289 return 0; 1290 } 1291 1292 static void 1293 rum_start(struct ifnet *ifp) 1294 { 1295 struct rum_softc *sc = ifp->if_softc; 1296 struct ieee80211_node *ni; 1297 struct mbuf *m; 1298 1299 RUM_LOCK(sc); 1300 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1301 RUM_UNLOCK(sc); 1302 return; 1303 } 1304 for (;;) { 1305 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1306 if (m == NULL) 1307 break; 1308 if (sc->tx_nfree < RUM_TX_MINFREE) { 1309 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1310 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1311 break; 1312 } 1313 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1314 if (rum_tx_data(sc, m, ni) != 0) { 1315 ieee80211_free_node(ni); 1316 ifp->if_oerrors++; 1317 break; 1318 } 1319 } 1320 RUM_UNLOCK(sc); 1321 } 1322 1323 static int 1324 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1325 { 1326 struct rum_softc *sc = ifp->if_softc; 1327 struct ieee80211com *ic = ifp->if_l2com; 1328 struct ifreq *ifr = (struct ifreq *) data; 1329 int error; 1330 int startall = 0; 1331 1332 RUM_LOCK(sc); 1333 error = sc->sc_detached ? ENXIO : 0; 1334 RUM_UNLOCK(sc); 1335 if (error) 1336 return (error); 1337 1338 switch (cmd) { 1339 case SIOCSIFFLAGS: 1340 RUM_LOCK(sc); 1341 if (ifp->if_flags & IFF_UP) { 1342 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1343 rum_init_locked(sc); 1344 startall = 1; 1345 } else 1346 rum_setpromisc(sc); 1347 } else { 1348 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1349 rum_stop(sc); 1350 } 1351 RUM_UNLOCK(sc); 1352 if (startall) 1353 ieee80211_start_all(ic); 1354 break; 1355 case SIOCGIFMEDIA: 1356 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1357 break; 1358 case SIOCGIFADDR: 1359 error = ether_ioctl(ifp, cmd, data); 1360 break; 1361 default: 1362 error = EINVAL; 1363 break; 1364 } 1365 return error; 1366 } 1367 1368 static void 1369 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1370 { 1371 struct usb_device_request req; 1372 usb_error_t error; 1373 1374 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1375 req.bRequest = RT2573_READ_EEPROM; 1376 USETW(req.wValue, 0); 1377 USETW(req.wIndex, addr); 1378 USETW(req.wLength, len); 1379 1380 error = rum_do_request(sc, &req, buf); 1381 if (error != 0) { 1382 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1383 usbd_errstr(error)); 1384 } 1385 } 1386 1387 static uint32_t 1388 rum_read(struct rum_softc *sc, uint16_t reg) 1389 { 1390 uint32_t val; 1391 1392 rum_read_multi(sc, reg, &val, sizeof val); 1393 1394 return le32toh(val); 1395 } 1396 1397 static void 1398 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1399 { 1400 struct usb_device_request req; 1401 usb_error_t error; 1402 1403 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1404 req.bRequest = RT2573_READ_MULTI_MAC; 1405 USETW(req.wValue, 0); 1406 USETW(req.wIndex, reg); 1407 USETW(req.wLength, len); 1408 1409 error = rum_do_request(sc, &req, buf); 1410 if (error != 0) { 1411 device_printf(sc->sc_dev, 1412 "could not multi read MAC register: %s\n", 1413 usbd_errstr(error)); 1414 } 1415 } 1416 1417 static usb_error_t 1418 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1419 { 1420 uint32_t tmp = htole32(val); 1421 1422 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1423 } 1424 1425 static usb_error_t 1426 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1427 { 1428 struct usb_device_request req; 1429 usb_error_t error; 1430 size_t offset; 1431 1432 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1433 req.bRequest = RT2573_WRITE_MULTI_MAC; 1434 USETW(req.wValue, 0); 1435 1436 /* write at most 64 bytes at a time */ 1437 for (offset = 0; offset < len; offset += 64) { 1438 USETW(req.wIndex, reg + offset); 1439 USETW(req.wLength, MIN(len - offset, 64)); 1440 1441 error = rum_do_request(sc, &req, (char *)buf + offset); 1442 if (error != 0) { 1443 device_printf(sc->sc_dev, 1444 "could not multi write MAC register: %s\n", 1445 usbd_errstr(error)); 1446 return (error); 1447 } 1448 } 1449 1450 return (USB_ERR_NORMAL_COMPLETION); 1451 } 1452 1453 static void 1454 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1455 { 1456 uint32_t tmp; 1457 int ntries; 1458 1459 DPRINTFN(2, "reg=0x%08x\n", reg); 1460 1461 for (ntries = 0; ntries < 100; ntries++) { 1462 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1463 break; 1464 if (rum_pause(sc, hz / 100)) 1465 break; 1466 } 1467 if (ntries == 100) { 1468 device_printf(sc->sc_dev, "could not write to BBP\n"); 1469 return; 1470 } 1471 1472 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1473 rum_write(sc, RT2573_PHY_CSR3, tmp); 1474 } 1475 1476 static uint8_t 1477 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1478 { 1479 uint32_t val; 1480 int ntries; 1481 1482 DPRINTFN(2, "reg=0x%08x\n", reg); 1483 1484 for (ntries = 0; ntries < 100; ntries++) { 1485 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1486 break; 1487 if (rum_pause(sc, hz / 100)) 1488 break; 1489 } 1490 if (ntries == 100) { 1491 device_printf(sc->sc_dev, "could not read BBP\n"); 1492 return 0; 1493 } 1494 1495 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1496 rum_write(sc, RT2573_PHY_CSR3, val); 1497 1498 for (ntries = 0; ntries < 100; ntries++) { 1499 val = rum_read(sc, RT2573_PHY_CSR3); 1500 if (!(val & RT2573_BBP_BUSY)) 1501 return val & 0xff; 1502 if (rum_pause(sc, hz / 100)) 1503 break; 1504 } 1505 1506 device_printf(sc->sc_dev, "could not read BBP\n"); 1507 return 0; 1508 } 1509 1510 static void 1511 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1512 { 1513 uint32_t tmp; 1514 int ntries; 1515 1516 for (ntries = 0; ntries < 100; ntries++) { 1517 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1518 break; 1519 if (rum_pause(sc, hz / 100)) 1520 break; 1521 } 1522 if (ntries == 100) { 1523 device_printf(sc->sc_dev, "could not write to RF\n"); 1524 return; 1525 } 1526 1527 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1528 (reg & 3); 1529 rum_write(sc, RT2573_PHY_CSR4, tmp); 1530 1531 /* remember last written value in sc */ 1532 sc->rf_regs[reg] = val; 1533 1534 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1535 } 1536 1537 static void 1538 rum_select_antenna(struct rum_softc *sc) 1539 { 1540 uint8_t bbp4, bbp77; 1541 uint32_t tmp; 1542 1543 bbp4 = rum_bbp_read(sc, 4); 1544 bbp77 = rum_bbp_read(sc, 77); 1545 1546 /* TBD */ 1547 1548 /* make sure Rx is disabled before switching antenna */ 1549 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1550 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1551 1552 rum_bbp_write(sc, 4, bbp4); 1553 rum_bbp_write(sc, 77, bbp77); 1554 1555 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1556 } 1557 1558 /* 1559 * Enable multi-rate retries for frames sent at OFDM rates. 1560 * In 802.11b/g mode, allow fallback to CCK rates. 1561 */ 1562 static void 1563 rum_enable_mrr(struct rum_softc *sc) 1564 { 1565 struct ifnet *ifp = sc->sc_ifp; 1566 struct ieee80211com *ic = ifp->if_l2com; 1567 uint32_t tmp; 1568 1569 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1570 1571 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1572 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1573 tmp |= RT2573_MRR_CCK_FALLBACK; 1574 tmp |= RT2573_MRR_ENABLED; 1575 1576 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1577 } 1578 1579 static void 1580 rum_set_txpreamble(struct rum_softc *sc) 1581 { 1582 struct ifnet *ifp = sc->sc_ifp; 1583 struct ieee80211com *ic = ifp->if_l2com; 1584 uint32_t tmp; 1585 1586 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1587 1588 tmp &= ~RT2573_SHORT_PREAMBLE; 1589 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1590 tmp |= RT2573_SHORT_PREAMBLE; 1591 1592 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1593 } 1594 1595 static void 1596 rum_set_basicrates(struct rum_softc *sc) 1597 { 1598 struct ifnet *ifp = sc->sc_ifp; 1599 struct ieee80211com *ic = ifp->if_l2com; 1600 1601 /* update basic rate set */ 1602 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1603 /* 11b basic rates: 1, 2Mbps */ 1604 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1605 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1606 /* 11a basic rates: 6, 12, 24Mbps */ 1607 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1608 } else { 1609 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1610 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1611 } 1612 } 1613 1614 /* 1615 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1616 * driver. 1617 */ 1618 static void 1619 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1620 { 1621 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1622 uint32_t tmp; 1623 1624 /* update all BBP registers that depend on the band */ 1625 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1626 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1627 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1628 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1629 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1630 } 1631 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1632 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1633 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1634 } 1635 1636 sc->bbp17 = bbp17; 1637 rum_bbp_write(sc, 17, bbp17); 1638 rum_bbp_write(sc, 96, bbp96); 1639 rum_bbp_write(sc, 104, bbp104); 1640 1641 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1642 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1643 rum_bbp_write(sc, 75, 0x80); 1644 rum_bbp_write(sc, 86, 0x80); 1645 rum_bbp_write(sc, 88, 0x80); 1646 } 1647 1648 rum_bbp_write(sc, 35, bbp35); 1649 rum_bbp_write(sc, 97, bbp97); 1650 rum_bbp_write(sc, 98, bbp98); 1651 1652 tmp = rum_read(sc, RT2573_PHY_CSR0); 1653 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1654 if (IEEE80211_IS_CHAN_2GHZ(c)) 1655 tmp |= RT2573_PA_PE_2GHZ; 1656 else 1657 tmp |= RT2573_PA_PE_5GHZ; 1658 rum_write(sc, RT2573_PHY_CSR0, tmp); 1659 } 1660 1661 static void 1662 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1663 { 1664 struct ifnet *ifp = sc->sc_ifp; 1665 struct ieee80211com *ic = ifp->if_l2com; 1666 const struct rfprog *rfprog; 1667 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1668 int8_t power; 1669 int i, chan; 1670 1671 chan = ieee80211_chan2ieee(ic, c); 1672 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1673 return; 1674 1675 /* select the appropriate RF settings based on what EEPROM says */ 1676 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1677 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1678 1679 /* find the settings for this channel (we know it exists) */ 1680 for (i = 0; rfprog[i].chan != chan; i++); 1681 1682 power = sc->txpow[i]; 1683 if (power < 0) { 1684 bbp94 += power; 1685 power = 0; 1686 } else if (power > 31) { 1687 bbp94 += power - 31; 1688 power = 31; 1689 } 1690 1691 /* 1692 * If we are switching from the 2GHz band to the 5GHz band or 1693 * vice-versa, BBP registers need to be reprogrammed. 1694 */ 1695 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1696 rum_select_band(sc, c); 1697 rum_select_antenna(sc); 1698 } 1699 ic->ic_curchan = c; 1700 1701 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1702 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1703 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1704 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1705 1706 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1707 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1708 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1709 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1710 1711 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1712 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1713 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1714 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1715 1716 rum_pause(sc, hz / 100); 1717 1718 /* enable smart mode for MIMO-capable RFs */ 1719 bbp3 = rum_bbp_read(sc, 3); 1720 1721 bbp3 &= ~RT2573_SMART_MODE; 1722 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1723 bbp3 |= RT2573_SMART_MODE; 1724 1725 rum_bbp_write(sc, 3, bbp3); 1726 1727 if (bbp94 != RT2573_BBPR94_DEFAULT) 1728 rum_bbp_write(sc, 94, bbp94); 1729 1730 /* give the chip some extra time to do the switchover */ 1731 rum_pause(sc, hz / 100); 1732 } 1733 1734 /* 1735 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1736 * and HostAP operating modes. 1737 */ 1738 static void 1739 rum_enable_tsf_sync(struct rum_softc *sc) 1740 { 1741 struct ifnet *ifp = sc->sc_ifp; 1742 struct ieee80211com *ic = ifp->if_l2com; 1743 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1744 uint32_t tmp; 1745 1746 if (vap->iv_opmode != IEEE80211_M_STA) { 1747 /* 1748 * Change default 16ms TBTT adjustment to 8ms. 1749 * Must be done before enabling beacon generation. 1750 */ 1751 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1752 } 1753 1754 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1755 1756 /* set beacon interval (in 1/16ms unit) */ 1757 tmp |= vap->iv_bss->ni_intval * 16; 1758 1759 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1760 if (vap->iv_opmode == IEEE80211_M_STA) 1761 tmp |= RT2573_TSF_MODE(1); 1762 else 1763 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1764 1765 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1766 } 1767 1768 static void 1769 rum_enable_tsf(struct rum_softc *sc) 1770 { 1771 rum_write(sc, RT2573_TXRX_CSR9, 1772 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1773 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1774 } 1775 1776 static void 1777 rum_update_slot(struct ifnet *ifp) 1778 { 1779 struct rum_softc *sc = ifp->if_softc; 1780 struct ieee80211com *ic = ifp->if_l2com; 1781 uint8_t slottime; 1782 uint32_t tmp; 1783 1784 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1785 1786 tmp = rum_read(sc, RT2573_MAC_CSR9); 1787 tmp = (tmp & ~0xff) | slottime; 1788 rum_write(sc, RT2573_MAC_CSR9, tmp); 1789 1790 DPRINTF("setting slot time to %uus\n", slottime); 1791 } 1792 1793 static void 1794 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1795 { 1796 uint32_t tmp; 1797 1798 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1799 rum_write(sc, RT2573_MAC_CSR4, tmp); 1800 1801 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1802 rum_write(sc, RT2573_MAC_CSR5, tmp); 1803 } 1804 1805 static void 1806 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1807 { 1808 uint32_t tmp; 1809 1810 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1811 rum_write(sc, RT2573_MAC_CSR2, tmp); 1812 1813 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1814 rum_write(sc, RT2573_MAC_CSR3, tmp); 1815 } 1816 1817 static void 1818 rum_setpromisc(struct rum_softc *sc) 1819 { 1820 struct ifnet *ifp = sc->sc_ifp; 1821 uint32_t tmp; 1822 1823 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1824 1825 tmp &= ~RT2573_DROP_NOT_TO_ME; 1826 if (!(ifp->if_flags & IFF_PROMISC)) 1827 tmp |= RT2573_DROP_NOT_TO_ME; 1828 1829 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1830 1831 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1832 "entering" : "leaving"); 1833 } 1834 1835 static void 1836 rum_update_promisc(struct ifnet *ifp) 1837 { 1838 struct rum_softc *sc = ifp->if_softc; 1839 1840 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1841 return; 1842 1843 RUM_LOCK(sc); 1844 rum_setpromisc(sc); 1845 RUM_UNLOCK(sc); 1846 } 1847 1848 static void 1849 rum_update_mcast(struct ifnet *ifp) 1850 { 1851 static int warning_printed; 1852 1853 if (warning_printed == 0) { 1854 if_printf(ifp, "need to implement %s\n", __func__); 1855 warning_printed = 1; 1856 } 1857 } 1858 1859 static const char * 1860 rum_get_rf(int rev) 1861 { 1862 switch (rev) { 1863 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1864 case RT2573_RF_2528: return "RT2528"; 1865 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1866 case RT2573_RF_5226: return "RT5226"; 1867 default: return "unknown"; 1868 } 1869 } 1870 1871 static void 1872 rum_read_eeprom(struct rum_softc *sc) 1873 { 1874 uint16_t val; 1875 #ifdef RUM_DEBUG 1876 int i; 1877 #endif 1878 1879 /* read MAC address */ 1880 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1881 1882 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1883 val = le16toh(val); 1884 sc->rf_rev = (val >> 11) & 0x1f; 1885 sc->hw_radio = (val >> 10) & 0x1; 1886 sc->rx_ant = (val >> 4) & 0x3; 1887 sc->tx_ant = (val >> 2) & 0x3; 1888 sc->nb_ant = val & 0x3; 1889 1890 DPRINTF("RF revision=%d\n", sc->rf_rev); 1891 1892 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1893 val = le16toh(val); 1894 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1895 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1896 1897 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1898 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1899 1900 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1901 val = le16toh(val); 1902 if ((val & 0xff) != 0xff) 1903 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1904 1905 /* Only [-10, 10] is valid */ 1906 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1907 sc->rssi_2ghz_corr = 0; 1908 1909 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1910 val = le16toh(val); 1911 if ((val & 0xff) != 0xff) 1912 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1913 1914 /* Only [-10, 10] is valid */ 1915 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1916 sc->rssi_5ghz_corr = 0; 1917 1918 if (sc->ext_2ghz_lna) 1919 sc->rssi_2ghz_corr -= 14; 1920 if (sc->ext_5ghz_lna) 1921 sc->rssi_5ghz_corr -= 14; 1922 1923 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1924 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1925 1926 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1927 val = le16toh(val); 1928 if ((val & 0xff) != 0xff) 1929 sc->rffreq = val & 0xff; 1930 1931 DPRINTF("RF freq=%d\n", sc->rffreq); 1932 1933 /* read Tx power for all a/b/g channels */ 1934 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1935 /* XXX default Tx power for 802.11a channels */ 1936 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1937 #ifdef RUM_DEBUG 1938 for (i = 0; i < 14; i++) 1939 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1940 #endif 1941 1942 /* read default values for BBP registers */ 1943 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1944 #ifdef RUM_DEBUG 1945 for (i = 0; i < 14; i++) { 1946 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1947 continue; 1948 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1949 sc->bbp_prom[i].val); 1950 } 1951 #endif 1952 } 1953 1954 static int 1955 rum_bbp_init(struct rum_softc *sc) 1956 { 1957 int i, ntries; 1958 1959 /* wait for BBP to be ready */ 1960 for (ntries = 0; ntries < 100; ntries++) { 1961 const uint8_t val = rum_bbp_read(sc, 0); 1962 if (val != 0 && val != 0xff) 1963 break; 1964 if (rum_pause(sc, hz / 100)) 1965 break; 1966 } 1967 if (ntries == 100) { 1968 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1969 return EIO; 1970 } 1971 1972 /* initialize BBP registers to default values */ 1973 for (i = 0; i < N(rum_def_bbp); i++) 1974 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1975 1976 /* write vendor-specific BBP values (from EEPROM) */ 1977 for (i = 0; i < 16; i++) { 1978 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1979 continue; 1980 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1981 } 1982 1983 return 0; 1984 } 1985 1986 static void 1987 rum_init_locked(struct rum_softc *sc) 1988 { 1989 struct ifnet *ifp = sc->sc_ifp; 1990 struct ieee80211com *ic = ifp->if_l2com; 1991 uint32_t tmp; 1992 usb_error_t error; 1993 int i, ntries; 1994 1995 RUM_LOCK_ASSERT(sc, MA_OWNED); 1996 1997 rum_stop(sc); 1998 1999 /* initialize MAC registers to default values */ 2000 for (i = 0; i < N(rum_def_mac); i++) 2001 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2002 2003 /* set host ready */ 2004 rum_write(sc, RT2573_MAC_CSR1, 3); 2005 rum_write(sc, RT2573_MAC_CSR1, 0); 2006 2007 /* wait for BBP/RF to wakeup */ 2008 for (ntries = 0; ntries < 100; ntries++) { 2009 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2010 break; 2011 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2012 if (rum_pause(sc, hz / 100)) 2013 break; 2014 } 2015 if (ntries == 100) { 2016 device_printf(sc->sc_dev, 2017 "timeout waiting for BBP/RF to wakeup\n"); 2018 goto fail; 2019 } 2020 2021 if ((error = rum_bbp_init(sc)) != 0) 2022 goto fail; 2023 2024 /* select default channel */ 2025 rum_select_band(sc, ic->ic_curchan); 2026 rum_select_antenna(sc); 2027 rum_set_chan(sc, ic->ic_curchan); 2028 2029 /* clear STA registers */ 2030 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2031 2032 rum_set_macaddr(sc, IF_LLADDR(ifp)); 2033 2034 /* initialize ASIC */ 2035 rum_write(sc, RT2573_MAC_CSR1, 4); 2036 2037 /* 2038 * Allocate Tx and Rx xfer queues. 2039 */ 2040 rum_setup_tx_list(sc); 2041 2042 /* update Rx filter */ 2043 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2044 2045 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2046 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2047 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2048 RT2573_DROP_ACKCTS; 2049 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2050 tmp |= RT2573_DROP_TODS; 2051 if (!(ifp->if_flags & IFF_PROMISC)) 2052 tmp |= RT2573_DROP_NOT_TO_ME; 2053 } 2054 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2055 2056 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2057 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2058 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2059 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2060 return; 2061 2062 fail: rum_stop(sc); 2063 #undef N 2064 } 2065 2066 static void 2067 rum_init(void *priv) 2068 { 2069 struct rum_softc *sc = priv; 2070 struct ifnet *ifp = sc->sc_ifp; 2071 struct ieee80211com *ic = ifp->if_l2com; 2072 2073 RUM_LOCK(sc); 2074 rum_init_locked(sc); 2075 RUM_UNLOCK(sc); 2076 2077 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2078 ieee80211_start_all(ic); /* start all vap's */ 2079 } 2080 2081 static void 2082 rum_stop(struct rum_softc *sc) 2083 { 2084 struct ifnet *ifp = sc->sc_ifp; 2085 uint32_t tmp; 2086 2087 RUM_LOCK_ASSERT(sc, MA_OWNED); 2088 2089 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2090 2091 RUM_UNLOCK(sc); 2092 2093 /* 2094 * Drain the USB transfers, if not already drained: 2095 */ 2096 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2097 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2098 2099 RUM_LOCK(sc); 2100 2101 rum_unsetup_tx_list(sc); 2102 2103 /* disable Rx */ 2104 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2105 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2106 2107 /* reset ASIC */ 2108 rum_write(sc, RT2573_MAC_CSR1, 3); 2109 rum_write(sc, RT2573_MAC_CSR1, 0); 2110 } 2111 2112 static void 2113 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2114 { 2115 struct usb_device_request req; 2116 uint16_t reg = RT2573_MCU_CODE_BASE; 2117 usb_error_t err; 2118 2119 /* copy firmware image into NIC */ 2120 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2121 err = rum_write(sc, reg, UGETDW(ucode)); 2122 if (err) { 2123 /* firmware already loaded ? */ 2124 device_printf(sc->sc_dev, "Firmware load " 2125 "failure! (ignored)\n"); 2126 break; 2127 } 2128 } 2129 2130 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2131 req.bRequest = RT2573_MCU_CNTL; 2132 USETW(req.wValue, RT2573_MCU_RUN); 2133 USETW(req.wIndex, 0); 2134 USETW(req.wLength, 0); 2135 2136 err = rum_do_request(sc, &req, NULL); 2137 if (err != 0) { 2138 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2139 usbd_errstr(err)); 2140 } 2141 2142 /* give the chip some time to boot */ 2143 rum_pause(sc, hz / 8); 2144 } 2145 2146 static void 2147 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2148 { 2149 struct ieee80211com *ic = vap->iv_ic; 2150 const struct ieee80211_txparam *tp; 2151 struct rum_tx_desc desc; 2152 struct mbuf *m0; 2153 2154 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 2155 return; 2156 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2157 return; 2158 2159 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2160 if (m0 == NULL) 2161 return; 2162 2163 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2164 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2165 m0->m_pkthdr.len, tp->mgmtrate); 2166 2167 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2168 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2169 2170 /* copy beacon header and payload into NIC memory */ 2171 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2172 m0->m_pkthdr.len); 2173 2174 m_freem(m0); 2175 } 2176 2177 static int 2178 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2179 const struct ieee80211_bpf_params *params) 2180 { 2181 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2182 struct rum_softc *sc = ifp->if_softc; 2183 2184 RUM_LOCK(sc); 2185 /* prevent management frames from being sent if we're not ready */ 2186 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2187 RUM_UNLOCK(sc); 2188 m_freem(m); 2189 ieee80211_free_node(ni); 2190 return ENETDOWN; 2191 } 2192 if (sc->tx_nfree < RUM_TX_MINFREE) { 2193 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2194 RUM_UNLOCK(sc); 2195 m_freem(m); 2196 ieee80211_free_node(ni); 2197 return EIO; 2198 } 2199 2200 ifp->if_opackets++; 2201 2202 if (params == NULL) { 2203 /* 2204 * Legacy path; interpret frame contents to decide 2205 * precisely how to send the frame. 2206 */ 2207 if (rum_tx_mgt(sc, m, ni) != 0) 2208 goto bad; 2209 } else { 2210 /* 2211 * Caller supplied explicit parameters to use in 2212 * sending the frame. 2213 */ 2214 if (rum_tx_raw(sc, m, ni, params) != 0) 2215 goto bad; 2216 } 2217 RUM_UNLOCK(sc); 2218 2219 return 0; 2220 bad: 2221 ifp->if_oerrors++; 2222 RUM_UNLOCK(sc); 2223 ieee80211_free_node(ni); 2224 return EIO; 2225 } 2226 2227 static void 2228 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2229 { 2230 struct ieee80211vap *vap = ni->ni_vap; 2231 struct rum_vap *rvp = RUM_VAP(vap); 2232 2233 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2234 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2235 2236 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2237 } 2238 2239 static void 2240 rum_ratectl_timeout(void *arg) 2241 { 2242 struct rum_vap *rvp = arg; 2243 struct ieee80211vap *vap = &rvp->vap; 2244 struct ieee80211com *ic = vap->iv_ic; 2245 2246 ieee80211_runtask(ic, &rvp->ratectl_task); 2247 } 2248 2249 static void 2250 rum_ratectl_task(void *arg, int pending) 2251 { 2252 struct rum_vap *rvp = arg; 2253 struct ieee80211vap *vap = &rvp->vap; 2254 struct ieee80211com *ic = vap->iv_ic; 2255 struct ifnet *ifp = ic->ic_ifp; 2256 struct rum_softc *sc = ifp->if_softc; 2257 struct ieee80211_node *ni; 2258 int ok, fail; 2259 int sum, retrycnt; 2260 2261 RUM_LOCK(sc); 2262 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2263 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2264 2265 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2266 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2267 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2268 sum = ok+fail; 2269 retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail; 2270 2271 ni = ieee80211_ref_node(vap->iv_bss); 2272 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2273 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2274 ieee80211_free_node(ni); 2275 2276 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2277 2278 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2279 RUM_UNLOCK(sc); 2280 } 2281 2282 static void 2283 rum_scan_start(struct ieee80211com *ic) 2284 { 2285 struct ifnet *ifp = ic->ic_ifp; 2286 struct rum_softc *sc = ifp->if_softc; 2287 uint32_t tmp; 2288 2289 RUM_LOCK(sc); 2290 /* abort TSF synchronization */ 2291 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2292 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2293 rum_set_bssid(sc, ifp->if_broadcastaddr); 2294 RUM_UNLOCK(sc); 2295 2296 } 2297 2298 static void 2299 rum_scan_end(struct ieee80211com *ic) 2300 { 2301 struct rum_softc *sc = ic->ic_ifp->if_softc; 2302 2303 RUM_LOCK(sc); 2304 rum_enable_tsf_sync(sc); 2305 rum_set_bssid(sc, sc->sc_bssid); 2306 RUM_UNLOCK(sc); 2307 2308 } 2309 2310 static void 2311 rum_set_channel(struct ieee80211com *ic) 2312 { 2313 struct rum_softc *sc = ic->ic_ifp->if_softc; 2314 2315 RUM_LOCK(sc); 2316 rum_set_chan(sc, ic->ic_curchan); 2317 RUM_UNLOCK(sc); 2318 } 2319 2320 static int 2321 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2322 { 2323 struct ifnet *ifp = sc->sc_ifp; 2324 struct ieee80211com *ic = ifp->if_l2com; 2325 int lna, agc, rssi; 2326 2327 lna = (raw >> 5) & 0x3; 2328 agc = raw & 0x1f; 2329 2330 if (lna == 0) { 2331 /* 2332 * No RSSI mapping 2333 * 2334 * NB: Since RSSI is relative to noise floor, -1 is 2335 * adequate for caller to know error happened. 2336 */ 2337 return -1; 2338 } 2339 2340 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2341 2342 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2343 rssi += sc->rssi_2ghz_corr; 2344 2345 if (lna == 1) 2346 rssi -= 64; 2347 else if (lna == 2) 2348 rssi -= 74; 2349 else if (lna == 3) 2350 rssi -= 90; 2351 } else { 2352 rssi += sc->rssi_5ghz_corr; 2353 2354 if (!sc->ext_5ghz_lna && lna != 1) 2355 rssi += 4; 2356 2357 if (lna == 1) 2358 rssi -= 64; 2359 else if (lna == 2) 2360 rssi -= 86; 2361 else if (lna == 3) 2362 rssi -= 100; 2363 } 2364 return rssi; 2365 } 2366 2367 static int 2368 rum_pause(struct rum_softc *sc, int timeout) 2369 { 2370 2371 usb_pause_mtx(&sc->sc_mtx, timeout); 2372 return (0); 2373 } 2374 2375 static device_method_t rum_methods[] = { 2376 /* Device interface */ 2377 DEVMETHOD(device_probe, rum_match), 2378 DEVMETHOD(device_attach, rum_attach), 2379 DEVMETHOD(device_detach, rum_detach), 2380 DEVMETHOD_END 2381 }; 2382 2383 static driver_t rum_driver = { 2384 .name = "rum", 2385 .methods = rum_methods, 2386 .size = sizeof(struct rum_softc), 2387 }; 2388 2389 static devclass_t rum_devclass; 2390 2391 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2392 MODULE_DEPEND(rum, wlan, 1, 1, 1); 2393 MODULE_DEPEND(rum, usb, 1, 1, 1); 2394 MODULE_VERSION(rum, 1); 2395