xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision c9dbb1cc52b063bbd9ab078a7afc89a8696da659)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*-
25  * Ralink Technology RT2501USB/RT2601USB chipset driver
26  * http://www.ralinktech.com.tw/
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include "usbdevs.h"
73 
74 #define	USB_DEBUG_VAR rum_debug
75 #include <dev/usb/usb_debug.h>
76 
77 #include <dev/usb/wlan/if_rumreg.h>
78 #include <dev/usb/wlan/if_rumvar.h>
79 #include <dev/usb/wlan/if_rumfw.h>
80 
81 #ifdef USB_DEBUG
82 static int rum_debug = 0;
83 
84 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
86     "Debug level");
87 #endif
88 
89 #define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))
90 
91 static const STRUCT_USB_HOST_ID rum_devs[] = {
92 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
93     RUM_DEV(ABOCOM, HWU54DM),
94     RUM_DEV(ABOCOM, RT2573_2),
95     RUM_DEV(ABOCOM, RT2573_3),
96     RUM_DEV(ABOCOM, RT2573_4),
97     RUM_DEV(ABOCOM, WUG2700),
98     RUM_DEV(AMIT, CGWLUSB2GO),
99     RUM_DEV(ASUS, RT2573_1),
100     RUM_DEV(ASUS, RT2573_2),
101     RUM_DEV(BELKIN, F5D7050A),
102     RUM_DEV(BELKIN, F5D9050V3),
103     RUM_DEV(CISCOLINKSYS, WUSB54GC),
104     RUM_DEV(CISCOLINKSYS, WUSB54GR),
105     RUM_DEV(CONCEPTRONIC2, C54RU2),
106     RUM_DEV(COREGA, CGWLUSB2GL),
107     RUM_DEV(COREGA, CGWLUSB2GPX),
108     RUM_DEV(DICKSMITH, CWD854F),
109     RUM_DEV(DICKSMITH, RT2573),
110     RUM_DEV(EDIMAX, EW7318USG),
111     RUM_DEV(DLINK2, DWLG122C1),
112     RUM_DEV(DLINK2, WUA1340),
113     RUM_DEV(DLINK2, DWA111),
114     RUM_DEV(DLINK2, DWA110),
115     RUM_DEV(GIGABYTE, GNWB01GS),
116     RUM_DEV(GIGABYTE, GNWI05GS),
117     RUM_DEV(GIGASET, RT2573),
118     RUM_DEV(GOODWAY, RT2573),
119     RUM_DEV(GUILLEMOT, HWGUSB254LB),
120     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
121     RUM_DEV(HUAWEI3COM, WUB320G),
122     RUM_DEV(MELCO, G54HP),
123     RUM_DEV(MELCO, SG54HP),
124     RUM_DEV(MELCO, SG54HG),
125     RUM_DEV(MELCO, WLIUCG),
126     RUM_DEV(MELCO, WLRUCG),
127     RUM_DEV(MELCO, WLRUCGAOSS),
128     RUM_DEV(MSI, RT2573_1),
129     RUM_DEV(MSI, RT2573_2),
130     RUM_DEV(MSI, RT2573_3),
131     RUM_DEV(MSI, RT2573_4),
132     RUM_DEV(NOVATECH, RT2573),
133     RUM_DEV(PLANEX2, GWUS54HP),
134     RUM_DEV(PLANEX2, GWUS54MINI2),
135     RUM_DEV(PLANEX2, GWUSMM),
136     RUM_DEV(QCOM, RT2573),
137     RUM_DEV(QCOM, RT2573_2),
138     RUM_DEV(QCOM, RT2573_3),
139     RUM_DEV(RALINK, RT2573),
140     RUM_DEV(RALINK, RT2573_2),
141     RUM_DEV(RALINK, RT2671),
142     RUM_DEV(SITECOMEU, WL113R2),
143     RUM_DEV(SITECOMEU, WL172),
144     RUM_DEV(SPARKLAN, RT2573),
145     RUM_DEV(SURECOM, RT2573),
146 #undef RUM_DEV
147 };
148 
149 static device_probe_t rum_match;
150 static device_attach_t rum_attach;
151 static device_detach_t rum_detach;
152 
153 static usb_callback_t rum_bulk_read_callback;
154 static usb_callback_t rum_bulk_write_callback;
155 
156 static usb_error_t	rum_do_request(struct rum_softc *sc,
157 			    struct usb_device_request *req, void *data);
158 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
159 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
160 			    int, const uint8_t [IEEE80211_ADDR_LEN],
161 			    const uint8_t [IEEE80211_ADDR_LEN]);
162 static void		rum_vap_delete(struct ieee80211vap *);
163 static void		rum_tx_free(struct rum_tx_data *, int);
164 static void		rum_setup_tx_list(struct rum_softc *);
165 static void		rum_unsetup_tx_list(struct rum_softc *);
166 static int		rum_newstate(struct ieee80211vap *,
167 			    enum ieee80211_state, int);
168 static void		rum_setup_tx_desc(struct rum_softc *,
169 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
170 			    int);
171 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
172 			    struct ieee80211_node *);
173 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
174 			    struct ieee80211_node *,
175 			    const struct ieee80211_bpf_params *);
176 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
177 			    struct ieee80211_node *);
178 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
179 static void		rum_start(struct rum_softc *);
180 static void		rum_parent(struct ieee80211com *);
181 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
182 			    int);
183 static uint32_t		rum_read(struct rum_softc *, uint16_t);
184 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
185 			    int);
186 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
187 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
188 			    size_t);
189 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
190 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
191 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
192 static void		rum_select_antenna(struct rum_softc *);
193 static void		rum_enable_mrr(struct rum_softc *);
194 static void		rum_set_txpreamble(struct rum_softc *);
195 static void		rum_set_basicrates(struct rum_softc *);
196 static void		rum_select_band(struct rum_softc *,
197 			    struct ieee80211_channel *);
198 static void		rum_set_chan(struct rum_softc *,
199 			    struct ieee80211_channel *);
200 static void		rum_enable_tsf_sync(struct rum_softc *);
201 static void		rum_enable_tsf(struct rum_softc *);
202 static void		rum_update_slot(struct rum_softc *);
203 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
204 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
205 static void		rum_update_mcast(struct ieee80211com *);
206 static void		rum_update_promisc(struct ieee80211com *);
207 static void		rum_setpromisc(struct rum_softc *);
208 static const char	*rum_get_rf(int);
209 static void		rum_read_eeprom(struct rum_softc *);
210 static int		rum_bbp_init(struct rum_softc *);
211 static void		rum_init(struct rum_softc *);
212 static void		rum_stop(struct rum_softc *);
213 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
214 			    size_t);
215 static void		rum_prepare_beacon(struct rum_softc *,
216 			    struct ieee80211vap *);
217 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
218 			    const struct ieee80211_bpf_params *);
219 static void		rum_scan_start(struct ieee80211com *);
220 static void		rum_scan_end(struct ieee80211com *);
221 static void		rum_set_channel(struct ieee80211com *);
222 static int		rum_get_rssi(struct rum_softc *, uint8_t);
223 static void		rum_ratectl_start(struct rum_softc *,
224 			    struct ieee80211_node *);
225 static void		rum_ratectl_timeout(void *);
226 static void		rum_ratectl_task(void *, int);
227 static int		rum_pause(struct rum_softc *, int);
228 
229 static const struct {
230 	uint32_t	reg;
231 	uint32_t	val;
232 } rum_def_mac[] = {
233 	{ RT2573_TXRX_CSR0,  0x025fb032 },
234 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
235 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
236 	{ RT2573_TXRX_CSR3,  0x00858687 },
237 	{ RT2573_TXRX_CSR7,  0x2e31353b },
238 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
239 	{ RT2573_TXRX_CSR15, 0x0000000f },
240 	{ RT2573_MAC_CSR6,   0x00000fff },
241 	{ RT2573_MAC_CSR8,   0x016c030a },
242 	{ RT2573_MAC_CSR10,  0x00000718 },
243 	{ RT2573_MAC_CSR12,  0x00000004 },
244 	{ RT2573_MAC_CSR13,  0x00007f00 },
245 	{ RT2573_SEC_CSR0,   0x00000000 },
246 	{ RT2573_SEC_CSR1,   0x00000000 },
247 	{ RT2573_SEC_CSR5,   0x00000000 },
248 	{ RT2573_PHY_CSR1,   0x000023b0 },
249 	{ RT2573_PHY_CSR5,   0x00040a06 },
250 	{ RT2573_PHY_CSR6,   0x00080606 },
251 	{ RT2573_PHY_CSR7,   0x00000408 },
252 	{ RT2573_AIFSN_CSR,  0x00002273 },
253 	{ RT2573_CWMIN_CSR,  0x00002344 },
254 	{ RT2573_CWMAX_CSR,  0x000034aa }
255 };
256 
257 static const struct {
258 	uint8_t	reg;
259 	uint8_t	val;
260 } rum_def_bbp[] = {
261 	{   3, 0x80 },
262 	{  15, 0x30 },
263 	{  17, 0x20 },
264 	{  21, 0xc8 },
265 	{  22, 0x38 },
266 	{  23, 0x06 },
267 	{  24, 0xfe },
268 	{  25, 0x0a },
269 	{  26, 0x0d },
270 	{  32, 0x0b },
271 	{  34, 0x12 },
272 	{  37, 0x07 },
273 	{  39, 0xf8 },
274 	{  41, 0x60 },
275 	{  53, 0x10 },
276 	{  54, 0x18 },
277 	{  60, 0x10 },
278 	{  61, 0x04 },
279 	{  62, 0x04 },
280 	{  75, 0xfe },
281 	{  86, 0xfe },
282 	{  88, 0xfe },
283 	{  90, 0x0f },
284 	{  99, 0x00 },
285 	{ 102, 0x16 },
286 	{ 107, 0x04 }
287 };
288 
289 static const struct rfprog {
290 	uint8_t		chan;
291 	uint32_t	r1, r2, r3, r4;
292 }  rum_rf5226[] = {
293 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
294 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
295 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
296 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
297 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
298 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
299 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
300 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
301 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
302 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
303 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
304 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
305 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
306 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
307 
308 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
309 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
310 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
311 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
312 
313 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
314 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
315 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
316 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
317 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
318 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
319 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
320 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
321 
322 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
323 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
324 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
325 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
326 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
327 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
328 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
329 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
330 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
331 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
332 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
333 
334 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
335 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
336 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
337 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
338 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
339 }, rum_rf5225[] = {
340 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
341 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
342 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
343 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
344 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
345 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
346 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
347 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
348 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
349 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
350 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
351 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
352 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
353 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
354 
355 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
356 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
357 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
358 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
359 
360 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
361 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
362 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
363 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
364 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
365 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
366 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
367 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
368 
369 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
370 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
371 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
372 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
373 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
374 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
375 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
376 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
377 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
378 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
379 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
380 
381 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
382 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
383 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
384 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
385 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
386 };
387 
388 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
389 	[RUM_BULK_WR] = {
390 		.type = UE_BULK,
391 		.endpoint = UE_ADDR_ANY,
392 		.direction = UE_DIR_OUT,
393 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
394 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
395 		.callback = rum_bulk_write_callback,
396 		.timeout = 5000,	/* ms */
397 	},
398 	[RUM_BULK_RD] = {
399 		.type = UE_BULK,
400 		.endpoint = UE_ADDR_ANY,
401 		.direction = UE_DIR_IN,
402 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
403 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
404 		.callback = rum_bulk_read_callback,
405 	},
406 };
407 
408 static int
409 rum_match(device_t self)
410 {
411 	struct usb_attach_arg *uaa = device_get_ivars(self);
412 
413 	if (uaa->usb_mode != USB_MODE_HOST)
414 		return (ENXIO);
415 	if (uaa->info.bConfigIndex != 0)
416 		return (ENXIO);
417 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
418 		return (ENXIO);
419 
420 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
421 }
422 
423 static int
424 rum_attach(device_t self)
425 {
426 	struct usb_attach_arg *uaa = device_get_ivars(self);
427 	struct rum_softc *sc = device_get_softc(self);
428 	struct ieee80211com *ic = &sc->sc_ic;
429 	uint8_t iface_index, bands;
430 	uint32_t tmp;
431 	int error, ntries;
432 
433 	device_set_usb_desc(self);
434 	sc->sc_udev = uaa->device;
435 	sc->sc_dev = self;
436 
437 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
438 	    MTX_NETWORK_LOCK, MTX_DEF);
439 	mbufq_init(&sc->sc_snd, ifqmaxlen);
440 
441 	iface_index = RT2573_IFACE_INDEX;
442 	error = usbd_transfer_setup(uaa->device, &iface_index,
443 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
444 	if (error) {
445 		device_printf(self, "could not allocate USB transfers, "
446 		    "err=%s\n", usbd_errstr(error));
447 		goto detach;
448 	}
449 
450 	RUM_LOCK(sc);
451 	/* retrieve RT2573 rev. no */
452 	for (ntries = 0; ntries < 100; ntries++) {
453 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
454 			break;
455 		if (rum_pause(sc, hz / 100))
456 			break;
457 	}
458 	if (ntries == 100) {
459 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
460 		RUM_UNLOCK(sc);
461 		goto detach;
462 	}
463 
464 	/* retrieve MAC address and various other things from EEPROM */
465 	rum_read_eeprom(sc);
466 
467 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
468 	    tmp, rum_get_rf(sc->rf_rev));
469 
470 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
471 	RUM_UNLOCK(sc);
472 
473 	ic->ic_softc = sc;
474 	ic->ic_name = device_get_nameunit(self);
475 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
476 
477 	/* set device capabilities */
478 	ic->ic_caps =
479 	      IEEE80211_C_STA		/* station mode supported */
480 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
481 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
482 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
483 	    | IEEE80211_C_TXPMGT	/* tx power management */
484 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
485 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
486 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
487 	    | IEEE80211_C_WPA		/* 802.11i */
488 	    ;
489 
490 	bands = 0;
491 	setbit(&bands, IEEE80211_MODE_11B);
492 	setbit(&bands, IEEE80211_MODE_11G);
493 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
494 		setbit(&bands, IEEE80211_MODE_11A);
495 	ieee80211_init_channels(ic, NULL, &bands);
496 
497 	ieee80211_ifattach(ic);
498 	ic->ic_update_promisc = rum_update_promisc;
499 	ic->ic_raw_xmit = rum_raw_xmit;
500 	ic->ic_scan_start = rum_scan_start;
501 	ic->ic_scan_end = rum_scan_end;
502 	ic->ic_set_channel = rum_set_channel;
503 	ic->ic_transmit = rum_transmit;
504 	ic->ic_parent = rum_parent;
505 	ic->ic_vap_create = rum_vap_create;
506 	ic->ic_vap_delete = rum_vap_delete;
507 	ic->ic_update_mcast = rum_update_mcast;
508 
509 	ieee80211_radiotap_attach(ic,
510 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
511 		RT2573_TX_RADIOTAP_PRESENT,
512 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
513 		RT2573_RX_RADIOTAP_PRESENT);
514 
515 	if (bootverbose)
516 		ieee80211_announce(ic);
517 
518 	return (0);
519 
520 detach:
521 	rum_detach(self);
522 	return (ENXIO);			/* failure */
523 }
524 
525 static int
526 rum_detach(device_t self)
527 {
528 	struct rum_softc *sc = device_get_softc(self);
529 
530 	/* Prevent further ioctls */
531 	RUM_LOCK(sc);
532 	sc->sc_detached = 1;
533 	RUM_UNLOCK(sc);
534 
535 	/* stop all USB transfers */
536 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
537 
538 	/* free TX list, if any */
539 	RUM_LOCK(sc);
540 	rum_unsetup_tx_list(sc);
541 	RUM_UNLOCK(sc);
542 
543 	if (sc->sc_ic.ic_softc == sc)
544 		ieee80211_ifdetach(&sc->sc_ic);
545 	mbufq_drain(&sc->sc_snd);
546 	mtx_destroy(&sc->sc_mtx);
547 	return (0);
548 }
549 
550 static usb_error_t
551 rum_do_request(struct rum_softc *sc,
552     struct usb_device_request *req, void *data)
553 {
554 	usb_error_t err;
555 	int ntries = 10;
556 
557 	while (ntries--) {
558 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
559 		    req, data, 0, NULL, 250 /* ms */);
560 		if (err == 0)
561 			break;
562 
563 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
564 		    usbd_errstr(err));
565 		if (rum_pause(sc, hz / 100))
566 			break;
567 	}
568 	return (err);
569 }
570 
571 static struct ieee80211vap *
572 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573     enum ieee80211_opmode opmode, int flags,
574     const uint8_t bssid[IEEE80211_ADDR_LEN],
575     const uint8_t mac[IEEE80211_ADDR_LEN])
576 {
577 	struct rum_softc *sc = ic->ic_softc;
578 	struct rum_vap *rvp;
579 	struct ieee80211vap *vap;
580 
581 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582 		return NULL;
583 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
584 	vap = &rvp->vap;
585 	/* enable s/w bmiss handling for sta mode */
586 
587 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
588 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
589 		/* out of memory */
590 		free(rvp, M_80211_VAP);
591 		return (NULL);
592 	}
593 
594 	/* override state transition machine */
595 	rvp->newstate = vap->iv_newstate;
596 	vap->iv_newstate = rum_newstate;
597 
598 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
599 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
600 	ieee80211_ratectl_init(vap);
601 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
602 	/* complete setup */
603 	ieee80211_vap_attach(vap, ieee80211_media_change,
604 	    ieee80211_media_status, mac);
605 	ic->ic_opmode = opmode;
606 	return vap;
607 }
608 
609 static void
610 rum_vap_delete(struct ieee80211vap *vap)
611 {
612 	struct rum_vap *rvp = RUM_VAP(vap);
613 	struct ieee80211com *ic = vap->iv_ic;
614 
615 	usb_callout_drain(&rvp->ratectl_ch);
616 	ieee80211_draintask(ic, &rvp->ratectl_task);
617 	ieee80211_ratectl_deinit(vap);
618 	ieee80211_vap_detach(vap);
619 	free(rvp, M_80211_VAP);
620 }
621 
622 static void
623 rum_tx_free(struct rum_tx_data *data, int txerr)
624 {
625 	struct rum_softc *sc = data->sc;
626 
627 	if (data->m != NULL) {
628 		ieee80211_tx_complete(data->ni, data->m, txerr);
629 		data->m = NULL;
630 		data->ni = NULL;
631 	}
632 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
633 	sc->tx_nfree++;
634 }
635 
636 static void
637 rum_setup_tx_list(struct rum_softc *sc)
638 {
639 	struct rum_tx_data *data;
640 	int i;
641 
642 	sc->tx_nfree = 0;
643 	STAILQ_INIT(&sc->tx_q);
644 	STAILQ_INIT(&sc->tx_free);
645 
646 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
647 		data = &sc->tx_data[i];
648 
649 		data->sc = sc;
650 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
651 		sc->tx_nfree++;
652 	}
653 }
654 
655 static void
656 rum_unsetup_tx_list(struct rum_softc *sc)
657 {
658 	struct rum_tx_data *data;
659 	int i;
660 
661 	/* make sure any subsequent use of the queues will fail */
662 	sc->tx_nfree = 0;
663 	STAILQ_INIT(&sc->tx_q);
664 	STAILQ_INIT(&sc->tx_free);
665 
666 	/* free up all node references and mbufs */
667 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
668 		data = &sc->tx_data[i];
669 
670 		if (data->m != NULL) {
671 			m_freem(data->m);
672 			data->m = NULL;
673 		}
674 		if (data->ni != NULL) {
675 			ieee80211_free_node(data->ni);
676 			data->ni = NULL;
677 		}
678 	}
679 }
680 
681 static int
682 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
683 {
684 	struct rum_vap *rvp = RUM_VAP(vap);
685 	struct ieee80211com *ic = vap->iv_ic;
686 	struct rum_softc *sc = ic->ic_softc;
687 	const struct ieee80211_txparam *tp;
688 	enum ieee80211_state ostate;
689 	struct ieee80211_node *ni;
690 	uint32_t tmp;
691 
692 	ostate = vap->iv_state;
693 	DPRINTF("%s -> %s\n",
694 		ieee80211_state_name[ostate],
695 		ieee80211_state_name[nstate]);
696 
697 	IEEE80211_UNLOCK(ic);
698 	RUM_LOCK(sc);
699 	usb_callout_stop(&rvp->ratectl_ch);
700 
701 	switch (nstate) {
702 	case IEEE80211_S_INIT:
703 		if (ostate == IEEE80211_S_RUN) {
704 			/* abort TSF synchronization */
705 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
706 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
707 		}
708 		break;
709 
710 	case IEEE80211_S_RUN:
711 		ni = ieee80211_ref_node(vap->iv_bss);
712 
713 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
714 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
715 				RUM_UNLOCK(sc);
716 				IEEE80211_LOCK(ic);
717 				ieee80211_free_node(ni);
718 				return (-1);
719 			}
720 			rum_update_slot(sc);
721 			rum_enable_mrr(sc);
722 			rum_set_txpreamble(sc);
723 			rum_set_basicrates(sc);
724 			IEEE80211_ADDR_COPY(ic->ic_macaddr, ni->ni_bssid);
725 			rum_set_bssid(sc, ic->ic_macaddr);
726 		}
727 
728 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
729 		    vap->iv_opmode == IEEE80211_M_IBSS)
730 			rum_prepare_beacon(sc, vap);
731 
732 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
733 			rum_enable_tsf_sync(sc);
734 		else
735 			rum_enable_tsf(sc);
736 
737 		/* enable automatic rate adaptation */
738 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
739 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
740 			rum_ratectl_start(sc, ni);
741 		ieee80211_free_node(ni);
742 		break;
743 	default:
744 		break;
745 	}
746 	RUM_UNLOCK(sc);
747 	IEEE80211_LOCK(ic);
748 	return (rvp->newstate(vap, nstate, arg));
749 }
750 
751 static void
752 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
753 {
754 	struct rum_softc *sc = usbd_xfer_softc(xfer);
755 	struct ieee80211vap *vap;
756 	struct rum_tx_data *data;
757 	struct mbuf *m;
758 	struct usb_page_cache *pc;
759 	unsigned int len;
760 	int actlen, sumlen;
761 
762 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
763 
764 	switch (USB_GET_STATE(xfer)) {
765 	case USB_ST_TRANSFERRED:
766 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
767 
768 		/* free resources */
769 		data = usbd_xfer_get_priv(xfer);
770 		rum_tx_free(data, 0);
771 		usbd_xfer_set_priv(xfer, NULL);
772 
773 		/* FALLTHROUGH */
774 	case USB_ST_SETUP:
775 tr_setup:
776 		data = STAILQ_FIRST(&sc->tx_q);
777 		if (data) {
778 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
779 			m = data->m;
780 
781 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
782 				DPRINTFN(0, "data overflow, %u bytes\n",
783 				    m->m_pkthdr.len);
784 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
785 			}
786 			pc = usbd_xfer_get_frame(xfer, 0);
787 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
788 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
789 			    m->m_pkthdr.len);
790 
791 			vap = data->ni->ni_vap;
792 			if (ieee80211_radiotap_active_vap(vap)) {
793 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
794 
795 				tap->wt_flags = 0;
796 				tap->wt_rate = data->rate;
797 				tap->wt_antenna = sc->tx_ant;
798 
799 				ieee80211_radiotap_tx(vap, m);
800 			}
801 
802 			/* align end on a 4-bytes boundary */
803 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
804 			if ((len % 64) == 0)
805 				len += 4;
806 
807 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
808 			    m->m_pkthdr.len, len);
809 
810 			usbd_xfer_set_frame_len(xfer, 0, len);
811 			usbd_xfer_set_priv(xfer, data);
812 
813 			usbd_transfer_submit(xfer);
814 		}
815 		rum_start(sc);
816 		break;
817 
818 	default:			/* Error */
819 		DPRINTFN(11, "transfer error, %s\n",
820 		    usbd_errstr(error));
821 
822 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
823 		data = usbd_xfer_get_priv(xfer);
824 		if (data != NULL) {
825 			rum_tx_free(data, error);
826 			usbd_xfer_set_priv(xfer, NULL);
827 		}
828 
829 		if (error != USB_ERR_CANCELLED) {
830 			if (error == USB_ERR_TIMEOUT)
831 				device_printf(sc->sc_dev, "device timeout\n");
832 
833 			/*
834 			 * Try to clear stall first, also if other
835 			 * errors occur, hence clearing stall
836 			 * introduces a 50 ms delay:
837 			 */
838 			usbd_xfer_set_stall(xfer);
839 			goto tr_setup;
840 		}
841 		break;
842 	}
843 }
844 
845 static void
846 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
847 {
848 	struct rum_softc *sc = usbd_xfer_softc(xfer);
849 	struct ieee80211com *ic = &sc->sc_ic;
850 	struct ieee80211_node *ni;
851 	struct mbuf *m = NULL;
852 	struct usb_page_cache *pc;
853 	uint32_t flags;
854 	uint8_t rssi = 0;
855 	int len;
856 
857 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
858 
859 	switch (USB_GET_STATE(xfer)) {
860 	case USB_ST_TRANSFERRED:
861 
862 		DPRINTFN(15, "rx done, actlen=%d\n", len);
863 
864 		if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
865 			DPRINTF("%s: xfer too short %d\n",
866 			    device_get_nameunit(sc->sc_dev), len);
867 			counter_u64_add(ic->ic_ierrors, 1);
868 			goto tr_setup;
869 		}
870 
871 		len -= RT2573_RX_DESC_SIZE;
872 		pc = usbd_xfer_get_frame(xfer, 0);
873 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
874 
875 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
876 		flags = le32toh(sc->sc_rx_desc.flags);
877 		if (flags & RT2573_RX_CRC_ERROR) {
878 			/*
879 		         * This should not happen since we did not
880 		         * request to receive those frames when we
881 		         * filled RUM_TXRX_CSR2:
882 		         */
883 			DPRINTFN(5, "PHY or CRC error\n");
884 			counter_u64_add(ic->ic_ierrors, 1);
885 			goto tr_setup;
886 		}
887 
888 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
889 		if (m == NULL) {
890 			DPRINTF("could not allocate mbuf\n");
891 			counter_u64_add(ic->ic_ierrors, 1);
892 			goto tr_setup;
893 		}
894 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
895 		    mtod(m, uint8_t *), len);
896 
897 		/* finalize mbuf */
898 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
899 
900 		if (ieee80211_radiotap_active(ic)) {
901 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
902 
903 			/* XXX read tsf */
904 			tap->wr_flags = 0;
905 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
906 			    (flags & RT2573_RX_OFDM) ?
907 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
908 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
909 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
910 			tap->wr_antenna = sc->rx_ant;
911 		}
912 		/* FALLTHROUGH */
913 	case USB_ST_SETUP:
914 tr_setup:
915 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
916 		usbd_transfer_submit(xfer);
917 
918 		/*
919 		 * At the end of a USB callback it is always safe to unlock
920 		 * the private mutex of a device! That is why we do the
921 		 * "ieee80211_input" here, and not some lines up!
922 		 */
923 		RUM_UNLOCK(sc);
924 		if (m) {
925 			ni = ieee80211_find_rxnode(ic,
926 			    mtod(m, struct ieee80211_frame_min *));
927 			if (ni != NULL) {
928 				(void) ieee80211_input(ni, m, rssi,
929 				    RT2573_NOISE_FLOOR);
930 				ieee80211_free_node(ni);
931 			} else
932 				(void) ieee80211_input_all(ic, m, rssi,
933 				    RT2573_NOISE_FLOOR);
934 		}
935 		RUM_LOCK(sc);
936 		rum_start(sc);
937 		return;
938 
939 	default:			/* Error */
940 		if (error != USB_ERR_CANCELLED) {
941 			/* try to clear stall first */
942 			usbd_xfer_set_stall(xfer);
943 			goto tr_setup;
944 		}
945 		return;
946 	}
947 }
948 
949 static uint8_t
950 rum_plcp_signal(int rate)
951 {
952 	switch (rate) {
953 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
954 	case 12:	return 0xb;
955 	case 18:	return 0xf;
956 	case 24:	return 0xa;
957 	case 36:	return 0xe;
958 	case 48:	return 0x9;
959 	case 72:	return 0xd;
960 	case 96:	return 0x8;
961 	case 108:	return 0xc;
962 
963 	/* CCK rates (NB: not IEEE std, device-specific) */
964 	case 2:		return 0x0;
965 	case 4:		return 0x1;
966 	case 11:	return 0x2;
967 	case 22:	return 0x3;
968 	}
969 	return 0xff;		/* XXX unsupported/unknown rate */
970 }
971 
972 static void
973 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
974     uint32_t flags, uint16_t xflags, int len, int rate)
975 {
976 	struct ieee80211com *ic = &sc->sc_ic;
977 	uint16_t plcp_length;
978 	int remainder;
979 
980 	desc->flags = htole32(flags);
981 	desc->flags |= htole32(RT2573_TX_VALID);
982 	desc->flags |= htole32(len << 16);
983 
984 	desc->xflags = htole16(xflags);
985 
986 	desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) |
987 	    RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
988 
989 	/* setup PLCP fields */
990 	desc->plcp_signal  = rum_plcp_signal(rate);
991 	desc->plcp_service = 4;
992 
993 	len += IEEE80211_CRC_LEN;
994 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
995 		desc->flags |= htole32(RT2573_TX_OFDM);
996 
997 		plcp_length = len & 0xfff;
998 		desc->plcp_length_hi = plcp_length >> 6;
999 		desc->plcp_length_lo = plcp_length & 0x3f;
1000 	} else {
1001 		if (rate == 0)
1002 			rate = 2;	/* avoid division by zero */
1003 		plcp_length = (16 * len + rate - 1) / rate;
1004 		if (rate == 22) {
1005 			remainder = (16 * len) % 22;
1006 			if (remainder != 0 && remainder < 7)
1007 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1008 		}
1009 		desc->plcp_length_hi = plcp_length >> 8;
1010 		desc->plcp_length_lo = plcp_length & 0xff;
1011 
1012 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1013 			desc->plcp_signal |= 0x08;
1014 	}
1015 }
1016 
1017 static int
1018 rum_sendprot(struct rum_softc *sc,
1019     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1020 {
1021 	struct ieee80211com *ic = ni->ni_ic;
1022 	const struct ieee80211_frame *wh;
1023 	struct rum_tx_data *data;
1024 	struct mbuf *mprot;
1025 	int protrate, ackrate, pktlen, flags, isshort;
1026 	uint16_t dur;
1027 
1028 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1029 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1030 	    ("protection %d", prot));
1031 
1032 	wh = mtod(m, const struct ieee80211_frame *);
1033 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1034 
1035 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1036 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1037 
1038 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1039 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1040 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1041 	flags = RT2573_TX_MORE_FRAG;
1042 	if (prot == IEEE80211_PROT_RTSCTS) {
1043 		/* NB: CTS is the same size as an ACK */
1044 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1045 		flags |= RT2573_TX_NEED_ACK;
1046 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1047 	} else {
1048 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1049 	}
1050 	if (mprot == NULL) {
1051 		/* XXX stat + msg */
1052 		return (ENOBUFS);
1053 	}
1054 	data = STAILQ_FIRST(&sc->tx_free);
1055 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1056 	sc->tx_nfree--;
1057 
1058 	data->m = mprot;
1059 	data->ni = ieee80211_ref_node(ni);
1060 	data->rate = protrate;
1061 	rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);
1062 
1063 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1064 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1065 
1066 	return 0;
1067 }
1068 
1069 static int
1070 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1071 {
1072 	struct ieee80211vap *vap = ni->ni_vap;
1073 	struct ieee80211com *ic = &sc->sc_ic;
1074 	struct rum_tx_data *data;
1075 	struct ieee80211_frame *wh;
1076 	const struct ieee80211_txparam *tp;
1077 	struct ieee80211_key *k;
1078 	uint32_t flags = 0;
1079 	uint16_t dur;
1080 
1081 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1082 
1083 	data = STAILQ_FIRST(&sc->tx_free);
1084 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1085 	sc->tx_nfree--;
1086 
1087 	wh = mtod(m0, struct ieee80211_frame *);
1088 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1089 		k = ieee80211_crypto_encap(ni, m0);
1090 		if (k == NULL) {
1091 			m_freem(m0);
1092 			return ENOBUFS;
1093 		}
1094 		wh = mtod(m0, struct ieee80211_frame *);
1095 	}
1096 
1097 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1098 
1099 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1100 		flags |= RT2573_TX_NEED_ACK;
1101 
1102 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1103 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1104 		USETW(wh->i_dur, dur);
1105 
1106 		/* tell hardware to add timestamp for probe responses */
1107 		if ((wh->i_fc[0] &
1108 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1109 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1110 			flags |= RT2573_TX_TIMESTAMP;
1111 	}
1112 
1113 	data->m = m0;
1114 	data->ni = ni;
1115 	data->rate = tp->mgmtrate;
1116 
1117 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);
1118 
1119 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1120 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1121 
1122 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1123 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1124 
1125 	return (0);
1126 }
1127 
1128 static int
1129 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1130     const struct ieee80211_bpf_params *params)
1131 {
1132 	struct ieee80211com *ic = ni->ni_ic;
1133 	struct rum_tx_data *data;
1134 	uint32_t flags;
1135 	int rate, error;
1136 
1137 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1138 	KASSERT(params != NULL, ("no raw xmit params"));
1139 
1140 	rate = params->ibp_rate0;
1141 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1142 		m_freem(m0);
1143 		return EINVAL;
1144 	}
1145 	flags = 0;
1146 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1147 		flags |= RT2573_TX_NEED_ACK;
1148 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1149 		error = rum_sendprot(sc, m0, ni,
1150 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1151 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1152 		    rate);
1153 		if (error || sc->tx_nfree == 0) {
1154 			m_freem(m0);
1155 			return ENOBUFS;
1156 		}
1157 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1158 	}
1159 
1160 	data = STAILQ_FIRST(&sc->tx_free);
1161 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1162 	sc->tx_nfree--;
1163 
1164 	data->m = m0;
1165 	data->ni = ni;
1166 	data->rate = rate;
1167 
1168 	/* XXX need to setup descriptor ourself */
1169 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1170 
1171 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1172 	    m0->m_pkthdr.len, rate);
1173 
1174 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1175 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
1181 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1182 {
1183 	struct ieee80211vap *vap = ni->ni_vap;
1184 	struct ieee80211com *ic = &sc->sc_ic;
1185 	struct rum_tx_data *data;
1186 	struct ieee80211_frame *wh;
1187 	const struct ieee80211_txparam *tp;
1188 	struct ieee80211_key *k;
1189 	uint32_t flags = 0;
1190 	uint16_t dur;
1191 	int error, rate;
1192 
1193 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1194 
1195 	wh = mtod(m0, struct ieee80211_frame *);
1196 
1197 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1198 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1199 		rate = tp->mcastrate;
1200 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1201 		rate = tp->ucastrate;
1202 	else
1203 		rate = ni->ni_txrate;
1204 
1205 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1206 		k = ieee80211_crypto_encap(ni, m0);
1207 		if (k == NULL) {
1208 			m_freem(m0);
1209 			return ENOBUFS;
1210 		}
1211 
1212 		/* packet header may have moved, reset our local pointer */
1213 		wh = mtod(m0, struct ieee80211_frame *);
1214 	}
1215 
1216 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1217 		int prot = IEEE80211_PROT_NONE;
1218 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1219 			prot = IEEE80211_PROT_RTSCTS;
1220 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1221 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1222 			prot = ic->ic_protmode;
1223 		if (prot != IEEE80211_PROT_NONE) {
1224 			error = rum_sendprot(sc, m0, ni, prot, rate);
1225 			if (error || sc->tx_nfree == 0) {
1226 				m_freem(m0);
1227 				return ENOBUFS;
1228 			}
1229 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1230 		}
1231 	}
1232 
1233 	data = STAILQ_FIRST(&sc->tx_free);
1234 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1235 	sc->tx_nfree--;
1236 
1237 	data->m = m0;
1238 	data->ni = ni;
1239 	data->rate = rate;
1240 
1241 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1242 		flags |= RT2573_TX_NEED_ACK;
1243 		flags |= RT2573_TX_MORE_FRAG;
1244 
1245 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1246 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1247 		USETW(wh->i_dur, dur);
1248 	}
1249 
1250 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1251 
1252 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1253 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1254 
1255 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1256 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1257 
1258 	return 0;
1259 }
1260 
1261 static int
1262 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1263 {
1264 	struct rum_softc *sc = ic->ic_softc;
1265 	int error;
1266 
1267 	RUM_LOCK(sc);
1268 	if (!sc->sc_running) {
1269 		RUM_UNLOCK(sc);
1270 		return (ENXIO);
1271 	}
1272 	error = mbufq_enqueue(&sc->sc_snd, m);
1273 	if (error) {
1274 		RUM_UNLOCK(sc);
1275 		return (error);
1276 	}
1277 	rum_start(sc);
1278 	RUM_UNLOCK(sc);
1279 
1280 	return (0);
1281 }
1282 
1283 static void
1284 rum_start(struct rum_softc *sc)
1285 {
1286 	struct ieee80211_node *ni;
1287 	struct mbuf *m;
1288 
1289 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1290 
1291 	if (!sc->sc_running)
1292 		return;
1293 
1294 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1295 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1296 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1297 		if (rum_tx_data(sc, m, ni) != 0) {
1298 			if_inc_counter(ni->ni_vap->iv_ifp,
1299 			    IFCOUNTER_OERRORS, 1);
1300 			ieee80211_free_node(ni);
1301 			break;
1302 		}
1303 	}
1304 }
1305 
1306 static void
1307 rum_parent(struct ieee80211com *ic)
1308 {
1309 	struct rum_softc *sc = ic->ic_softc;
1310 	int startall = 0;
1311 
1312 	RUM_LOCK(sc);
1313 	if (sc->sc_detached) {
1314 		RUM_UNLOCK(sc);
1315 		return;
1316 	}
1317 	if (ic->ic_nrunning > 0) {
1318 		if (!sc->sc_running) {
1319 			rum_init(sc);
1320 			startall = 1;
1321 		} else
1322 			rum_setpromisc(sc);
1323 	} else if (sc->sc_running)
1324 		rum_stop(sc);
1325 	RUM_UNLOCK(sc);
1326 	if (startall)
1327 		ieee80211_start_all(ic);
1328 }
1329 
1330 static void
1331 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1332 {
1333 	struct usb_device_request req;
1334 	usb_error_t error;
1335 
1336 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1337 	req.bRequest = RT2573_READ_EEPROM;
1338 	USETW(req.wValue, 0);
1339 	USETW(req.wIndex, addr);
1340 	USETW(req.wLength, len);
1341 
1342 	error = rum_do_request(sc, &req, buf);
1343 	if (error != 0) {
1344 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1345 		    usbd_errstr(error));
1346 	}
1347 }
1348 
1349 static uint32_t
1350 rum_read(struct rum_softc *sc, uint16_t reg)
1351 {
1352 	uint32_t val;
1353 
1354 	rum_read_multi(sc, reg, &val, sizeof val);
1355 
1356 	return le32toh(val);
1357 }
1358 
1359 static void
1360 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1361 {
1362 	struct usb_device_request req;
1363 	usb_error_t error;
1364 
1365 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1366 	req.bRequest = RT2573_READ_MULTI_MAC;
1367 	USETW(req.wValue, 0);
1368 	USETW(req.wIndex, reg);
1369 	USETW(req.wLength, len);
1370 
1371 	error = rum_do_request(sc, &req, buf);
1372 	if (error != 0) {
1373 		device_printf(sc->sc_dev,
1374 		    "could not multi read MAC register: %s\n",
1375 		    usbd_errstr(error));
1376 	}
1377 }
1378 
1379 static usb_error_t
1380 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1381 {
1382 	uint32_t tmp = htole32(val);
1383 
1384 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1385 }
1386 
1387 static usb_error_t
1388 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1389 {
1390 	struct usb_device_request req;
1391 	usb_error_t error;
1392 	size_t offset;
1393 
1394 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1395 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1396 	USETW(req.wValue, 0);
1397 
1398 	/* write at most 64 bytes at a time */
1399 	for (offset = 0; offset < len; offset += 64) {
1400 		USETW(req.wIndex, reg + offset);
1401 		USETW(req.wLength, MIN(len - offset, 64));
1402 
1403 		error = rum_do_request(sc, &req, (char *)buf + offset);
1404 		if (error != 0) {
1405 			device_printf(sc->sc_dev,
1406 			    "could not multi write MAC register: %s\n",
1407 			    usbd_errstr(error));
1408 			return (error);
1409 		}
1410 	}
1411 
1412 	return (USB_ERR_NORMAL_COMPLETION);
1413 }
1414 
1415 static void
1416 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1417 {
1418 	uint32_t tmp;
1419 	int ntries;
1420 
1421 	DPRINTFN(2, "reg=0x%08x\n", reg);
1422 
1423 	for (ntries = 0; ntries < 100; ntries++) {
1424 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1425 			break;
1426 		if (rum_pause(sc, hz / 100))
1427 			break;
1428 	}
1429 	if (ntries == 100) {
1430 		device_printf(sc->sc_dev, "could not write to BBP\n");
1431 		return;
1432 	}
1433 
1434 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1435 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1436 }
1437 
1438 static uint8_t
1439 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1440 {
1441 	uint32_t val;
1442 	int ntries;
1443 
1444 	DPRINTFN(2, "reg=0x%08x\n", reg);
1445 
1446 	for (ntries = 0; ntries < 100; ntries++) {
1447 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1448 			break;
1449 		if (rum_pause(sc, hz / 100))
1450 			break;
1451 	}
1452 	if (ntries == 100) {
1453 		device_printf(sc->sc_dev, "could not read BBP\n");
1454 		return 0;
1455 	}
1456 
1457 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1458 	rum_write(sc, RT2573_PHY_CSR3, val);
1459 
1460 	for (ntries = 0; ntries < 100; ntries++) {
1461 		val = rum_read(sc, RT2573_PHY_CSR3);
1462 		if (!(val & RT2573_BBP_BUSY))
1463 			return val & 0xff;
1464 		if (rum_pause(sc, hz / 100))
1465 			break;
1466 	}
1467 
1468 	device_printf(sc->sc_dev, "could not read BBP\n");
1469 	return 0;
1470 }
1471 
1472 static void
1473 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1474 {
1475 	uint32_t tmp;
1476 	int ntries;
1477 
1478 	for (ntries = 0; ntries < 100; ntries++) {
1479 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1480 			break;
1481 		if (rum_pause(sc, hz / 100))
1482 			break;
1483 	}
1484 	if (ntries == 100) {
1485 		device_printf(sc->sc_dev, "could not write to RF\n");
1486 		return;
1487 	}
1488 
1489 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1490 	    (reg & 3);
1491 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1492 
1493 	/* remember last written value in sc */
1494 	sc->rf_regs[reg] = val;
1495 
1496 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1497 }
1498 
1499 static void
1500 rum_select_antenna(struct rum_softc *sc)
1501 {
1502 	uint8_t bbp4, bbp77;
1503 	uint32_t tmp;
1504 
1505 	bbp4  = rum_bbp_read(sc, 4);
1506 	bbp77 = rum_bbp_read(sc, 77);
1507 
1508 	/* TBD */
1509 
1510 	/* make sure Rx is disabled before switching antenna */
1511 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1512 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1513 
1514 	rum_bbp_write(sc,  4, bbp4);
1515 	rum_bbp_write(sc, 77, bbp77);
1516 
1517 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1518 }
1519 
1520 /*
1521  * Enable multi-rate retries for frames sent at OFDM rates.
1522  * In 802.11b/g mode, allow fallback to CCK rates.
1523  */
1524 static void
1525 rum_enable_mrr(struct rum_softc *sc)
1526 {
1527 	struct ieee80211com *ic = &sc->sc_ic;
1528 	uint32_t tmp;
1529 
1530 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1531 
1532 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1533 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
1534 		tmp |= RT2573_MRR_CCK_FALLBACK;
1535 	tmp |= RT2573_MRR_ENABLED;
1536 
1537 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1538 }
1539 
1540 static void
1541 rum_set_txpreamble(struct rum_softc *sc)
1542 {
1543 	struct ieee80211com *ic = &sc->sc_ic;
1544 	uint32_t tmp;
1545 
1546 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1547 
1548 	tmp &= ~RT2573_SHORT_PREAMBLE;
1549 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1550 		tmp |= RT2573_SHORT_PREAMBLE;
1551 
1552 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1553 }
1554 
1555 static void
1556 rum_set_basicrates(struct rum_softc *sc)
1557 {
1558 	struct ieee80211com *ic = &sc->sc_ic;
1559 
1560 	/* update basic rate set */
1561 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1562 		/* 11b basic rates: 1, 2Mbps */
1563 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1564 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1565 		/* 11a basic rates: 6, 12, 24Mbps */
1566 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1567 	} else {
1568 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1569 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1570 	}
1571 }
1572 
1573 /*
1574  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1575  * driver.
1576  */
1577 static void
1578 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1579 {
1580 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1581 	uint32_t tmp;
1582 
1583 	/* update all BBP registers that depend on the band */
1584 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1585 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1586 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1587 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1588 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1589 	}
1590 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1591 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1592 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1593 	}
1594 
1595 	sc->bbp17 = bbp17;
1596 	rum_bbp_write(sc,  17, bbp17);
1597 	rum_bbp_write(sc,  96, bbp96);
1598 	rum_bbp_write(sc, 104, bbp104);
1599 
1600 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1601 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1602 		rum_bbp_write(sc, 75, 0x80);
1603 		rum_bbp_write(sc, 86, 0x80);
1604 		rum_bbp_write(sc, 88, 0x80);
1605 	}
1606 
1607 	rum_bbp_write(sc, 35, bbp35);
1608 	rum_bbp_write(sc, 97, bbp97);
1609 	rum_bbp_write(sc, 98, bbp98);
1610 
1611 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1612 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1613 	if (IEEE80211_IS_CHAN_2GHZ(c))
1614 		tmp |= RT2573_PA_PE_2GHZ;
1615 	else
1616 		tmp |= RT2573_PA_PE_5GHZ;
1617 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1618 }
1619 
1620 static void
1621 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1622 {
1623 	struct ieee80211com *ic = &sc->sc_ic;
1624 	const struct rfprog *rfprog;
1625 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1626 	int8_t power;
1627 	int i, chan;
1628 
1629 	chan = ieee80211_chan2ieee(ic, c);
1630 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1631 		return;
1632 
1633 	/* select the appropriate RF settings based on what EEPROM says */
1634 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1635 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1636 
1637 	/* find the settings for this channel (we know it exists) */
1638 	for (i = 0; rfprog[i].chan != chan; i++);
1639 
1640 	power = sc->txpow[i];
1641 	if (power < 0) {
1642 		bbp94 += power;
1643 		power = 0;
1644 	} else if (power > 31) {
1645 		bbp94 += power - 31;
1646 		power = 31;
1647 	}
1648 
1649 	/*
1650 	 * If we are switching from the 2GHz band to the 5GHz band or
1651 	 * vice-versa, BBP registers need to be reprogrammed.
1652 	 */
1653 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1654 		rum_select_band(sc, c);
1655 		rum_select_antenna(sc);
1656 	}
1657 	ic->ic_curchan = c;
1658 
1659 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1660 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1661 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1662 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1663 
1664 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1665 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1666 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1667 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1668 
1669 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1670 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1671 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1672 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1673 
1674 	rum_pause(sc, hz / 100);
1675 
1676 	/* enable smart mode for MIMO-capable RFs */
1677 	bbp3 = rum_bbp_read(sc, 3);
1678 
1679 	bbp3 &= ~RT2573_SMART_MODE;
1680 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1681 		bbp3 |= RT2573_SMART_MODE;
1682 
1683 	rum_bbp_write(sc, 3, bbp3);
1684 
1685 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1686 		rum_bbp_write(sc, 94, bbp94);
1687 
1688 	/* give the chip some extra time to do the switchover */
1689 	rum_pause(sc, hz / 100);
1690 }
1691 
1692 /*
1693  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1694  * and HostAP operating modes.
1695  */
1696 static void
1697 rum_enable_tsf_sync(struct rum_softc *sc)
1698 {
1699 	struct ieee80211com *ic = &sc->sc_ic;
1700 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1701 	uint32_t tmp;
1702 
1703 	if (vap->iv_opmode != IEEE80211_M_STA) {
1704 		/*
1705 		 * Change default 16ms TBTT adjustment to 8ms.
1706 		 * Must be done before enabling beacon generation.
1707 		 */
1708 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1709 	}
1710 
1711 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1712 
1713 	/* set beacon interval (in 1/16ms unit) */
1714 	tmp |= vap->iv_bss->ni_intval * 16;
1715 
1716 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1717 	if (vap->iv_opmode == IEEE80211_M_STA)
1718 		tmp |= RT2573_TSF_MODE(1);
1719 	else
1720 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1721 
1722 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1723 }
1724 
1725 static void
1726 rum_enable_tsf(struct rum_softc *sc)
1727 {
1728 	rum_write(sc, RT2573_TXRX_CSR9,
1729 	    (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
1730 	    RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
1731 }
1732 
1733 static void
1734 rum_update_slot(struct rum_softc *sc)
1735 {
1736 	struct ieee80211com *ic = &sc->sc_ic;
1737 	uint8_t slottime;
1738 	uint32_t tmp;
1739 
1740 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1741 
1742 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1743 	tmp = (tmp & ~0xff) | slottime;
1744 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1745 
1746 	DPRINTF("setting slot time to %uus\n", slottime);
1747 }
1748 
1749 static void
1750 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1751 {
1752 	uint32_t tmp;
1753 
1754 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1755 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1756 
1757 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1758 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1759 }
1760 
1761 static void
1762 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1763 {
1764 	uint32_t tmp;
1765 
1766 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1767 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1768 
1769 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1770 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1771 }
1772 
1773 static void
1774 rum_setpromisc(struct rum_softc *sc)
1775 {
1776 	uint32_t tmp;
1777 
1778 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1779 
1780 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1781 	if (sc->sc_ic.ic_promisc == 0)
1782 		tmp |= RT2573_DROP_NOT_TO_ME;
1783 
1784 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1785 
1786 	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc > 0 ?
1787 	    "entering" : "leaving");
1788 }
1789 
1790 static void
1791 rum_update_promisc(struct ieee80211com *ic)
1792 {
1793 	struct rum_softc *sc = ic->ic_softc;
1794 
1795 	RUM_LOCK(sc);
1796 	if (!sc->sc_running) {
1797 		RUM_UNLOCK(sc);
1798 		return;
1799 	}
1800 	rum_setpromisc(sc);
1801 	RUM_UNLOCK(sc);
1802 }
1803 
1804 static void
1805 rum_update_mcast(struct ieee80211com *ic)
1806 {
1807 	static int warning_printed;
1808 
1809 	if (warning_printed == 0) {
1810 		ic_printf(ic, "need to implement %s\n", __func__);
1811 		warning_printed = 1;
1812 	}
1813 }
1814 
1815 static const char *
1816 rum_get_rf(int rev)
1817 {
1818 	switch (rev) {
1819 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1820 	case RT2573_RF_2528:	return "RT2528";
1821 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1822 	case RT2573_RF_5226:	return "RT5226";
1823 	default:		return "unknown";
1824 	}
1825 }
1826 
1827 static void
1828 rum_read_eeprom(struct rum_softc *sc)
1829 {
1830 	uint16_t val;
1831 #ifdef RUM_DEBUG
1832 	int i;
1833 #endif
1834 
1835 	/* read MAC address */
1836 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
1837 
1838 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1839 	val = le16toh(val);
1840 	sc->rf_rev =   (val >> 11) & 0x1f;
1841 	sc->hw_radio = (val >> 10) & 0x1;
1842 	sc->rx_ant =   (val >> 4)  & 0x3;
1843 	sc->tx_ant =   (val >> 2)  & 0x3;
1844 	sc->nb_ant =   val & 0x3;
1845 
1846 	DPRINTF("RF revision=%d\n", sc->rf_rev);
1847 
1848 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1849 	val = le16toh(val);
1850 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1851 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1852 
1853 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1854 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1855 
1856 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1857 	val = le16toh(val);
1858 	if ((val & 0xff) != 0xff)
1859 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1860 
1861 	/* Only [-10, 10] is valid */
1862 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1863 		sc->rssi_2ghz_corr = 0;
1864 
1865 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1866 	val = le16toh(val);
1867 	if ((val & 0xff) != 0xff)
1868 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1869 
1870 	/* Only [-10, 10] is valid */
1871 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1872 		sc->rssi_5ghz_corr = 0;
1873 
1874 	if (sc->ext_2ghz_lna)
1875 		sc->rssi_2ghz_corr -= 14;
1876 	if (sc->ext_5ghz_lna)
1877 		sc->rssi_5ghz_corr -= 14;
1878 
1879 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1880 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1883 	val = le16toh(val);
1884 	if ((val & 0xff) != 0xff)
1885 		sc->rffreq = val & 0xff;
1886 
1887 	DPRINTF("RF freq=%d\n", sc->rffreq);
1888 
1889 	/* read Tx power for all a/b/g channels */
1890 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1891 	/* XXX default Tx power for 802.11a channels */
1892 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1893 #ifdef RUM_DEBUG
1894 	for (i = 0; i < 14; i++)
1895 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
1896 #endif
1897 
1898 	/* read default values for BBP registers */
1899 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1900 #ifdef RUM_DEBUG
1901 	for (i = 0; i < 14; i++) {
1902 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1903 			continue;
1904 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1905 		    sc->bbp_prom[i].val);
1906 	}
1907 #endif
1908 }
1909 
1910 static int
1911 rum_bbp_init(struct rum_softc *sc)
1912 {
1913 	int i, ntries;
1914 
1915 	/* wait for BBP to be ready */
1916 	for (ntries = 0; ntries < 100; ntries++) {
1917 		const uint8_t val = rum_bbp_read(sc, 0);
1918 		if (val != 0 && val != 0xff)
1919 			break;
1920 		if (rum_pause(sc, hz / 100))
1921 			break;
1922 	}
1923 	if (ntries == 100) {
1924 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1925 		return EIO;
1926 	}
1927 
1928 	/* initialize BBP registers to default values */
1929 	for (i = 0; i < N(rum_def_bbp); i++)
1930 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1931 
1932 	/* write vendor-specific BBP values (from EEPROM) */
1933 	for (i = 0; i < 16; i++) {
1934 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1935 			continue;
1936 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static void
1943 rum_init(struct rum_softc *sc)
1944 {
1945 	struct ieee80211com *ic = &sc->sc_ic;
1946 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1947 	uint32_t tmp;
1948 	usb_error_t error;
1949 	int i, ntries;
1950 
1951 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1952 
1953 	rum_stop(sc);
1954 
1955 	/* initialize MAC registers to default values */
1956 	for (i = 0; i < N(rum_def_mac); i++)
1957 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1958 
1959 	/* set host ready */
1960 	rum_write(sc, RT2573_MAC_CSR1, 3);
1961 	rum_write(sc, RT2573_MAC_CSR1, 0);
1962 
1963 	/* wait for BBP/RF to wakeup */
1964 	for (ntries = 0; ntries < 100; ntries++) {
1965 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1966 			break;
1967 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1968 		if (rum_pause(sc, hz / 100))
1969 			break;
1970 	}
1971 	if (ntries == 100) {
1972 		device_printf(sc->sc_dev,
1973 		    "timeout waiting for BBP/RF to wakeup\n");
1974 		goto fail;
1975 	}
1976 
1977 	if ((error = rum_bbp_init(sc)) != 0)
1978 		goto fail;
1979 
1980 	/* select default channel */
1981 	rum_select_band(sc, ic->ic_curchan);
1982 	rum_select_antenna(sc);
1983 	rum_set_chan(sc, ic->ic_curchan);
1984 
1985 	/* clear STA registers */
1986 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1987 
1988 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
1989 
1990 	/* initialize ASIC */
1991 	rum_write(sc, RT2573_MAC_CSR1, 4);
1992 
1993 	/*
1994 	 * Allocate Tx and Rx xfer queues.
1995 	 */
1996 	rum_setup_tx_list(sc);
1997 
1998 	/* update Rx filter */
1999 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2000 
2001 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2002 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2003 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2004 		       RT2573_DROP_ACKCTS;
2005 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2006 			tmp |= RT2573_DROP_TODS;
2007 		if (ic->ic_promisc == 0)
2008 			tmp |= RT2573_DROP_NOT_TO_ME;
2009 	}
2010 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2011 
2012 	sc->sc_running = 1;
2013 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2014 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2015 	return;
2016 
2017 fail:	rum_stop(sc);
2018 #undef N
2019 }
2020 
2021 static void
2022 rum_stop(struct rum_softc *sc)
2023 {
2024 	uint32_t tmp;
2025 
2026 	RUM_LOCK_ASSERT(sc, MA_OWNED);
2027 
2028 	sc->sc_running = 0;
2029 
2030 	RUM_UNLOCK(sc);
2031 
2032 	/*
2033 	 * Drain the USB transfers, if not already drained:
2034 	 */
2035 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2036 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2037 
2038 	RUM_LOCK(sc);
2039 
2040 	rum_unsetup_tx_list(sc);
2041 
2042 	/* disable Rx */
2043 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2044 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2045 
2046 	/* reset ASIC */
2047 	rum_write(sc, RT2573_MAC_CSR1, 3);
2048 	rum_write(sc, RT2573_MAC_CSR1, 0);
2049 }
2050 
2051 static void
2052 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2053 {
2054 	struct usb_device_request req;
2055 	uint16_t reg = RT2573_MCU_CODE_BASE;
2056 	usb_error_t err;
2057 
2058 	/* copy firmware image into NIC */
2059 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2060 		err = rum_write(sc, reg, UGETDW(ucode));
2061 		if (err) {
2062 			/* firmware already loaded ? */
2063 			device_printf(sc->sc_dev, "Firmware load "
2064 			    "failure! (ignored)\n");
2065 			break;
2066 		}
2067 	}
2068 
2069 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2070 	req.bRequest = RT2573_MCU_CNTL;
2071 	USETW(req.wValue, RT2573_MCU_RUN);
2072 	USETW(req.wIndex, 0);
2073 	USETW(req.wLength, 0);
2074 
2075 	err = rum_do_request(sc, &req, NULL);
2076 	if (err != 0) {
2077 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2078 		    usbd_errstr(err));
2079 	}
2080 
2081 	/* give the chip some time to boot */
2082 	rum_pause(sc, hz / 8);
2083 }
2084 
2085 static void
2086 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2087 {
2088 	struct ieee80211com *ic = vap->iv_ic;
2089 	const struct ieee80211_txparam *tp;
2090 	struct rum_tx_desc desc;
2091 	struct mbuf *m0;
2092 
2093 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
2094 		return;
2095 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2096 		return;
2097 
2098 	m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
2099 	if (m0 == NULL)
2100 		return;
2101 
2102 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2103 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2104 	    m0->m_pkthdr.len, tp->mgmtrate);
2105 
2106 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2107 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2108 
2109 	/* copy beacon header and payload into NIC memory */
2110 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2111 	    m0->m_pkthdr.len);
2112 
2113 	m_freem(m0);
2114 }
2115 
2116 static int
2117 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2118     const struct ieee80211_bpf_params *params)
2119 {
2120 	struct rum_softc *sc = ni->ni_ic->ic_softc;
2121 
2122 	RUM_LOCK(sc);
2123 	/* prevent management frames from being sent if we're not ready */
2124 	if (!sc->sc_running) {
2125 		RUM_UNLOCK(sc);
2126 		m_freem(m);
2127 		ieee80211_free_node(ni);
2128 		return ENETDOWN;
2129 	}
2130 	if (sc->tx_nfree < RUM_TX_MINFREE) {
2131 		RUM_UNLOCK(sc);
2132 		m_freem(m);
2133 		ieee80211_free_node(ni);
2134 		return EIO;
2135 	}
2136 
2137 	if (params == NULL) {
2138 		/*
2139 		 * Legacy path; interpret frame contents to decide
2140 		 * precisely how to send the frame.
2141 		 */
2142 		if (rum_tx_mgt(sc, m, ni) != 0)
2143 			goto bad;
2144 	} else {
2145 		/*
2146 		 * Caller supplied explicit parameters to use in
2147 		 * sending the frame.
2148 		 */
2149 		if (rum_tx_raw(sc, m, ni, params) != 0)
2150 			goto bad;
2151 	}
2152 	RUM_UNLOCK(sc);
2153 
2154 	return 0;
2155 bad:
2156 	RUM_UNLOCK(sc);
2157 	ieee80211_free_node(ni);
2158 	return EIO;
2159 }
2160 
2161 static void
2162 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
2163 {
2164 	struct ieee80211vap *vap = ni->ni_vap;
2165 	struct rum_vap *rvp = RUM_VAP(vap);
2166 
2167 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2168 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2169 
2170 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2171 }
2172 
2173 static void
2174 rum_ratectl_timeout(void *arg)
2175 {
2176 	struct rum_vap *rvp = arg;
2177 	struct ieee80211vap *vap = &rvp->vap;
2178 	struct ieee80211com *ic = vap->iv_ic;
2179 
2180 	ieee80211_runtask(ic, &rvp->ratectl_task);
2181 }
2182 
2183 static void
2184 rum_ratectl_task(void *arg, int pending)
2185 {
2186 	struct rum_vap *rvp = arg;
2187 	struct ieee80211vap *vap = &rvp->vap;
2188 	struct ieee80211com *ic = vap->iv_ic;
2189 	struct rum_softc *sc = ic->ic_softc;
2190 	struct ieee80211_node *ni;
2191 	int ok, fail;
2192 	int sum, retrycnt;
2193 
2194 	RUM_LOCK(sc);
2195 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2196 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2197 
2198 	ok = (le32toh(sc->sta[4]) >> 16) +	/* TX ok w/o retry */
2199 	    (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ retry */
2200 	fail = (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2201 	sum = ok+fail;
2202 	retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail;
2203 
2204 	ni = ieee80211_ref_node(vap->iv_bss);
2205 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2206 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2207 	ieee80211_free_node(ni);
2208 
2209 	/* count TX retry-fail as Tx errors */
2210 	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2211 
2212 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2213 	RUM_UNLOCK(sc);
2214 }
2215 
2216 static void
2217 rum_scan_start(struct ieee80211com *ic)
2218 {
2219 	struct rum_softc *sc = ic->ic_softc;
2220 	uint32_t tmp;
2221 
2222 	RUM_LOCK(sc);
2223 	/* abort TSF synchronization */
2224 	tmp = rum_read(sc, RT2573_TXRX_CSR9);
2225 	rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2226 	rum_set_bssid(sc, ieee80211broadcastaddr);
2227 	RUM_UNLOCK(sc);
2228 
2229 }
2230 
2231 static void
2232 rum_scan_end(struct ieee80211com *ic)
2233 {
2234 	struct rum_softc *sc = ic->ic_softc;
2235 
2236 	RUM_LOCK(sc);
2237 	rum_enable_tsf_sync(sc);
2238 	rum_set_bssid(sc, ic->ic_macaddr);
2239 	RUM_UNLOCK(sc);
2240 
2241 }
2242 
2243 static void
2244 rum_set_channel(struct ieee80211com *ic)
2245 {
2246 	struct rum_softc *sc = ic->ic_softc;
2247 
2248 	RUM_LOCK(sc);
2249 	rum_set_chan(sc, ic->ic_curchan);
2250 	RUM_UNLOCK(sc);
2251 }
2252 
2253 static int
2254 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2255 {
2256 	struct ieee80211com *ic = &sc->sc_ic;
2257 	int lna, agc, rssi;
2258 
2259 	lna = (raw >> 5) & 0x3;
2260 	agc = raw & 0x1f;
2261 
2262 	if (lna == 0) {
2263 		/*
2264 		 * No RSSI mapping
2265 		 *
2266 		 * NB: Since RSSI is relative to noise floor, -1 is
2267 		 *     adequate for caller to know error happened.
2268 		 */
2269 		return -1;
2270 	}
2271 
2272 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2273 
2274 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2275 		rssi += sc->rssi_2ghz_corr;
2276 
2277 		if (lna == 1)
2278 			rssi -= 64;
2279 		else if (lna == 2)
2280 			rssi -= 74;
2281 		else if (lna == 3)
2282 			rssi -= 90;
2283 	} else {
2284 		rssi += sc->rssi_5ghz_corr;
2285 
2286 		if (!sc->ext_5ghz_lna && lna != 1)
2287 			rssi += 4;
2288 
2289 		if (lna == 1)
2290 			rssi -= 64;
2291 		else if (lna == 2)
2292 			rssi -= 86;
2293 		else if (lna == 3)
2294 			rssi -= 100;
2295 	}
2296 	return rssi;
2297 }
2298 
2299 static int
2300 rum_pause(struct rum_softc *sc, int timeout)
2301 {
2302 
2303 	usb_pause_mtx(&sc->sc_mtx, timeout);
2304 	return (0);
2305 }
2306 
2307 static device_method_t rum_methods[] = {
2308 	/* Device interface */
2309 	DEVMETHOD(device_probe,		rum_match),
2310 	DEVMETHOD(device_attach,	rum_attach),
2311 	DEVMETHOD(device_detach,	rum_detach),
2312 	DEVMETHOD_END
2313 };
2314 
2315 static driver_t rum_driver = {
2316 	.name = "rum",
2317 	.methods = rum_methods,
2318 	.size = sizeof(struct rum_softc),
2319 };
2320 
2321 static devclass_t rum_devclass;
2322 
2323 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
2324 MODULE_DEPEND(rum, wlan, 1, 1, 1);
2325 MODULE_DEPEND(rum, usb, 1, 1, 1);
2326 MODULE_VERSION(rum, 1);
2327