1 2 /*- 3 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 4 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 5 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 6 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 /*- 23 * Ralink Technology RT2501USB/RT2601USB chipset driver 24 * http://www.ralinktech.com.tw/ 25 */ 26 27 #include "opt_wlan.h" 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #ifdef INET 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/if_ether.h> 58 #include <netinet/ip.h> 59 #endif 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_regdomain.h> 63 #include <net80211/ieee80211_radiotap.h> 64 #include <net80211/ieee80211_ratectl.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include "usbdevs.h" 69 70 #define USB_DEBUG_VAR rum_debug 71 #include <dev/usb/usb_debug.h> 72 73 #include <dev/usb/wlan/if_rumreg.h> 74 #include <dev/usb/wlan/if_rumvar.h> 75 #include <dev/usb/wlan/if_rumfw.h> 76 77 #ifdef USB_DEBUG 78 static int rum_debug = 0; 79 80 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 81 "USB rum"); 82 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 83 "Debug level"); 84 #endif 85 86 static const STRUCT_USB_HOST_ID rum_devs[] = { 87 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 88 RUM_DEV(ABOCOM, HWU54DM), 89 RUM_DEV(ABOCOM, RT2573_2), 90 RUM_DEV(ABOCOM, RT2573_3), 91 RUM_DEV(ABOCOM, RT2573_4), 92 RUM_DEV(ABOCOM, WUG2700), 93 RUM_DEV(AMIT, CGWLUSB2GO), 94 RUM_DEV(ASUS, RT2573_1), 95 RUM_DEV(ASUS, RT2573_2), 96 RUM_DEV(BELKIN, F5D7050A), 97 RUM_DEV(BELKIN, F5D9050V3), 98 RUM_DEV(CISCOLINKSYS, WUSB54GC), 99 RUM_DEV(CISCOLINKSYS, WUSB54GR), 100 RUM_DEV(CONCEPTRONIC2, C54RU2), 101 RUM_DEV(COREGA, CGWLUSB2GL), 102 RUM_DEV(COREGA, CGWLUSB2GPX), 103 RUM_DEV(DICKSMITH, CWD854F), 104 RUM_DEV(DICKSMITH, RT2573), 105 RUM_DEV(EDIMAX, EW7318USG), 106 RUM_DEV(DLINK2, DWLG122C1), 107 RUM_DEV(DLINK2, WUA1340), 108 RUM_DEV(DLINK2, DWA111), 109 RUM_DEV(DLINK2, DWA110), 110 RUM_DEV(GIGABYTE, GNWB01GS), 111 RUM_DEV(GIGABYTE, GNWI05GS), 112 RUM_DEV(GIGASET, RT2573), 113 RUM_DEV(GOODWAY, RT2573), 114 RUM_DEV(GUILLEMOT, HWGUSB254LB), 115 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 116 RUM_DEV(HUAWEI3COM, WUB320G), 117 RUM_DEV(MELCO, G54HP), 118 RUM_DEV(MELCO, SG54HP), 119 RUM_DEV(MELCO, SG54HG), 120 RUM_DEV(MELCO, WLIUCG), 121 RUM_DEV(MELCO, WLRUCG), 122 RUM_DEV(MELCO, WLRUCGAOSS), 123 RUM_DEV(MSI, RT2573_1), 124 RUM_DEV(MSI, RT2573_2), 125 RUM_DEV(MSI, RT2573_3), 126 RUM_DEV(MSI, RT2573_4), 127 RUM_DEV(NOVATECH, RT2573), 128 RUM_DEV(PLANEX2, GWUS54HP), 129 RUM_DEV(PLANEX2, GWUS54MINI2), 130 RUM_DEV(PLANEX2, GWUSMM), 131 RUM_DEV(QCOM, RT2573), 132 RUM_DEV(QCOM, RT2573_2), 133 RUM_DEV(QCOM, RT2573_3), 134 RUM_DEV(RALINK, RT2573), 135 RUM_DEV(RALINK, RT2573_2), 136 RUM_DEV(RALINK, RT2671), 137 RUM_DEV(SITECOMEU, WL113R2), 138 RUM_DEV(SITECOMEU, WL172), 139 RUM_DEV(SPARKLAN, RT2573), 140 RUM_DEV(SURECOM, RT2573), 141 #undef RUM_DEV 142 }; 143 144 static device_probe_t rum_match; 145 static device_attach_t rum_attach; 146 static device_detach_t rum_detach; 147 148 static usb_callback_t rum_bulk_read_callback; 149 static usb_callback_t rum_bulk_write_callback; 150 151 static usb_error_t rum_do_request(struct rum_softc *sc, 152 struct usb_device_request *req, void *data); 153 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 154 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, 156 int, const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void rum_vap_delete(struct ieee80211vap *); 159 static void rum_cmdq_cb(void *, int); 160 static int rum_cmd_sleepable(struct rum_softc *, const void *, 161 size_t, uint8_t, CMD_FUNC_PROTO); 162 static void rum_tx_free(struct rum_tx_data *, int); 163 static void rum_setup_tx_list(struct rum_softc *); 164 static void rum_reset_tx_list(struct rum_softc *, 165 struct ieee80211vap *); 166 static void rum_unsetup_tx_list(struct rum_softc *); 167 static void rum_beacon_miss(struct ieee80211vap *); 168 static void rum_sta_recv_mgmt(struct ieee80211_node *, 169 struct mbuf *, int, 170 const struct ieee80211_rx_stats *, int, int); 171 static int rum_set_power_state(struct rum_softc *, int); 172 static int rum_newstate(struct ieee80211vap *, 173 enum ieee80211_state, int); 174 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 175 static void rum_setup_tx_desc(struct rum_softc *, 176 struct rum_tx_desc *, struct ieee80211_key *, 177 uint32_t, uint8_t, uint8_t, int, int, int); 178 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 179 struct ieee80211_node *, 180 const struct ieee80211_key *); 181 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 182 struct ieee80211_node *); 183 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 184 struct ieee80211_node *, 185 const struct ieee80211_bpf_params *); 186 static int rum_tx_data(struct rum_softc *, struct mbuf *, 187 struct ieee80211_node *); 188 static int rum_transmit(struct ieee80211com *, struct mbuf *); 189 static void rum_start(struct rum_softc *); 190 static void rum_parent(struct ieee80211com *); 191 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 192 int); 193 static uint32_t rum_read(struct rum_softc *, uint16_t); 194 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 195 int); 196 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 197 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 198 size_t); 199 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 200 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 201 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 202 uint32_t); 203 static int rum_bbp_busy(struct rum_softc *); 204 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 205 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 206 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 207 static void rum_select_antenna(struct rum_softc *); 208 static void rum_enable_mrr(struct rum_softc *); 209 static void rum_set_txpreamble(struct rum_softc *); 210 static void rum_set_basicrates(struct rum_softc *); 211 static void rum_select_band(struct rum_softc *, 212 struct ieee80211_channel *); 213 static void rum_set_chan(struct rum_softc *, 214 struct ieee80211_channel *); 215 static void rum_set_maxretry(struct rum_softc *, 216 struct ieee80211vap *); 217 static int rum_enable_tsf_sync(struct rum_softc *); 218 static void rum_enable_tsf(struct rum_softc *); 219 static void rum_abort_tsf_sync(struct rum_softc *); 220 static void rum_get_tsf(struct rum_softc *, uint64_t *); 221 static void rum_update_slot_cb(struct rum_softc *, 222 union sec_param *, uint8_t); 223 static void rum_update_slot(struct ieee80211com *); 224 static int rum_wme_update(struct ieee80211com *); 225 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 226 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 227 static void rum_update_mcast(struct ieee80211com *); 228 static void rum_update_promisc(struct ieee80211com *); 229 static void rum_setpromisc(struct rum_softc *); 230 static const char *rum_get_rf(int); 231 static void rum_read_eeprom(struct rum_softc *); 232 static int rum_bbp_wakeup(struct rum_softc *); 233 static int rum_bbp_init(struct rum_softc *); 234 static void rum_clr_shkey_regs(struct rum_softc *); 235 static int rum_init(struct rum_softc *); 236 static void rum_stop(struct rum_softc *); 237 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 238 size_t); 239 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 240 static int rum_reset(struct ieee80211vap *, u_long); 241 static int rum_set_beacon(struct rum_softc *, 242 struct ieee80211vap *); 243 static int rum_alloc_beacon(struct rum_softc *, 244 struct ieee80211vap *); 245 static void rum_update_beacon_cb(struct rum_softc *, 246 union sec_param *, uint8_t); 247 static void rum_update_beacon(struct ieee80211vap *, int); 248 static int rum_common_key_set(struct rum_softc *, 249 struct ieee80211_key *, uint16_t); 250 static void rum_group_key_set_cb(struct rum_softc *, 251 union sec_param *, uint8_t); 252 static void rum_group_key_del_cb(struct rum_softc *, 253 union sec_param *, uint8_t); 254 static void rum_pair_key_set_cb(struct rum_softc *, 255 union sec_param *, uint8_t); 256 static void rum_pair_key_del_cb(struct rum_softc *, 257 union sec_param *, uint8_t); 258 static int rum_key_alloc(struct ieee80211vap *, 259 struct ieee80211_key *, ieee80211_keyix *, 260 ieee80211_keyix *); 261 static int rum_key_set(struct ieee80211vap *, 262 const struct ieee80211_key *); 263 static int rum_key_delete(struct ieee80211vap *, 264 const struct ieee80211_key *); 265 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 266 const struct ieee80211_bpf_params *); 267 static void rum_scan_start(struct ieee80211com *); 268 static void rum_scan_end(struct ieee80211com *); 269 static void rum_set_channel(struct ieee80211com *); 270 static void rum_getradiocaps(struct ieee80211com *, int, int *, 271 struct ieee80211_channel[]); 272 static int rum_get_rssi(struct rum_softc *, uint8_t); 273 static void rum_ratectl_start(struct rum_softc *, 274 struct ieee80211_node *); 275 static void rum_ratectl_timeout(void *); 276 static void rum_ratectl_task(void *, int); 277 static int rum_pause(struct rum_softc *, int); 278 279 static const struct { 280 uint32_t reg; 281 uint32_t val; 282 } rum_def_mac[] = { 283 { RT2573_TXRX_CSR0, 0x025fb032 }, 284 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 285 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 286 { RT2573_TXRX_CSR3, 0x00858687 }, 287 { RT2573_TXRX_CSR7, 0x2e31353b }, 288 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 289 { RT2573_TXRX_CSR15, 0x0000000f }, 290 { RT2573_MAC_CSR6, 0x00000fff }, 291 { RT2573_MAC_CSR8, 0x016c030a }, 292 { RT2573_MAC_CSR10, 0x00000718 }, 293 { RT2573_MAC_CSR12, 0x00000004 }, 294 { RT2573_MAC_CSR13, 0x00007f00 }, 295 { RT2573_SEC_CSR2, 0x00000000 }, 296 { RT2573_SEC_CSR3, 0x00000000 }, 297 { RT2573_SEC_CSR4, 0x00000000 }, 298 { RT2573_PHY_CSR1, 0x000023b0 }, 299 { RT2573_PHY_CSR5, 0x00040a06 }, 300 { RT2573_PHY_CSR6, 0x00080606 }, 301 { RT2573_PHY_CSR7, 0x00000408 }, 302 { RT2573_AIFSN_CSR, 0x00002273 }, 303 { RT2573_CWMIN_CSR, 0x00002344 }, 304 { RT2573_CWMAX_CSR, 0x000034aa } 305 }; 306 307 static const struct { 308 uint8_t reg; 309 uint8_t val; 310 } rum_def_bbp[] = { 311 { 3, 0x80 }, 312 { 15, 0x30 }, 313 { 17, 0x20 }, 314 { 21, 0xc8 }, 315 { 22, 0x38 }, 316 { 23, 0x06 }, 317 { 24, 0xfe }, 318 { 25, 0x0a }, 319 { 26, 0x0d }, 320 { 32, 0x0b }, 321 { 34, 0x12 }, 322 { 37, 0x07 }, 323 { 39, 0xf8 }, 324 { 41, 0x60 }, 325 { 53, 0x10 }, 326 { 54, 0x18 }, 327 { 60, 0x10 }, 328 { 61, 0x04 }, 329 { 62, 0x04 }, 330 { 75, 0xfe }, 331 { 86, 0xfe }, 332 { 88, 0xfe }, 333 { 90, 0x0f }, 334 { 99, 0x00 }, 335 { 102, 0x16 }, 336 { 107, 0x04 } 337 }; 338 339 static const uint8_t rum_chan_5ghz[] = 340 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 341 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 342 149, 153, 157, 161, 165 }; 343 344 static const struct rfprog { 345 uint8_t chan; 346 uint32_t r1, r2, r3, r4; 347 } rum_rf5226[] = { 348 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 349 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 350 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 351 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 352 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 353 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 354 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 355 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 356 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 357 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 358 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 359 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 360 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 361 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 362 363 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 364 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 365 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 366 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 367 368 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 369 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 370 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 371 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 372 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 373 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 374 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 375 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 376 377 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 378 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 379 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 380 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 381 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 382 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 383 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 384 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 385 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 386 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 387 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 388 389 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 390 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 391 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 392 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 393 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 394 }, rum_rf5225[] = { 395 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 396 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 397 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 398 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 399 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 400 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 401 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 402 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 403 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 404 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 405 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 406 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 407 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 408 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 409 410 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 411 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 412 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 413 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 414 415 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 416 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 417 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 418 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 419 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 420 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 421 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 422 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 423 424 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 425 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 426 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 427 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 428 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 429 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 430 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 431 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 432 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 433 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 434 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 435 436 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 437 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 438 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 439 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 440 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 441 }; 442 443 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 444 [RUM_BULK_WR] = { 445 .type = UE_BULK, 446 .endpoint = UE_ADDR_ANY, 447 .direction = UE_DIR_OUT, 448 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 449 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 450 .callback = rum_bulk_write_callback, 451 .timeout = 5000, /* ms */ 452 }, 453 [RUM_BULK_RD] = { 454 .type = UE_BULK, 455 .endpoint = UE_ADDR_ANY, 456 .direction = UE_DIR_IN, 457 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 458 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 459 .callback = rum_bulk_read_callback, 460 }, 461 }; 462 463 static int 464 rum_match(device_t self) 465 { 466 struct usb_attach_arg *uaa = device_get_ivars(self); 467 468 if (uaa->usb_mode != USB_MODE_HOST) 469 return (ENXIO); 470 if (uaa->info.bConfigIndex != 0) 471 return (ENXIO); 472 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 473 return (ENXIO); 474 475 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 476 } 477 478 static int 479 rum_attach(device_t self) 480 { 481 struct usb_attach_arg *uaa = device_get_ivars(self); 482 struct rum_softc *sc = device_get_softc(self); 483 struct ieee80211com *ic = &sc->sc_ic; 484 uint32_t tmp; 485 uint8_t iface_index; 486 int error, ntries; 487 488 device_set_usb_desc(self); 489 sc->sc_udev = uaa->device; 490 sc->sc_dev = self; 491 492 RUM_LOCK_INIT(sc); 493 RUM_CMDQ_LOCK_INIT(sc); 494 mbufq_init(&sc->sc_snd, ifqmaxlen); 495 496 iface_index = RT2573_IFACE_INDEX; 497 error = usbd_transfer_setup(uaa->device, &iface_index, 498 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 499 if (error) { 500 device_printf(self, "could not allocate USB transfers, " 501 "err=%s\n", usbd_errstr(error)); 502 goto detach; 503 } 504 505 RUM_LOCK(sc); 506 /* retrieve RT2573 rev. no */ 507 for (ntries = 0; ntries < 100; ntries++) { 508 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 509 break; 510 if (rum_pause(sc, hz / 100)) 511 break; 512 } 513 if (ntries == 100) { 514 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 515 RUM_UNLOCK(sc); 516 goto detach; 517 } 518 519 /* retrieve MAC address and various other things from EEPROM */ 520 rum_read_eeprom(sc); 521 522 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 523 tmp, rum_get_rf(sc->rf_rev)); 524 525 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 526 RUM_UNLOCK(sc); 527 528 ic->ic_softc = sc; 529 ic->ic_name = device_get_nameunit(self); 530 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 531 532 /* set device capabilities */ 533 ic->ic_caps = 534 IEEE80211_C_STA /* station mode supported */ 535 | IEEE80211_C_IBSS /* IBSS mode supported */ 536 | IEEE80211_C_MONITOR /* monitor mode supported */ 537 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 538 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 539 | IEEE80211_C_TXPMGT /* tx power management */ 540 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 541 | IEEE80211_C_SHSLOT /* short slot time supported */ 542 | IEEE80211_C_BGSCAN /* bg scanning supported */ 543 | IEEE80211_C_WPA /* 802.11i */ 544 | IEEE80211_C_WME /* 802.11e */ 545 | IEEE80211_C_PMGT /* Station-side power mgmt */ 546 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 547 ; 548 549 ic->ic_cryptocaps = 550 IEEE80211_CRYPTO_WEP | 551 IEEE80211_CRYPTO_AES_CCM | 552 IEEE80211_CRYPTO_TKIPMIC | 553 IEEE80211_CRYPTO_TKIP; 554 555 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 556 ic->ic_channels); 557 558 ieee80211_ifattach(ic); 559 ic->ic_update_promisc = rum_update_promisc; 560 ic->ic_raw_xmit = rum_raw_xmit; 561 ic->ic_scan_start = rum_scan_start; 562 ic->ic_scan_end = rum_scan_end; 563 ic->ic_set_channel = rum_set_channel; 564 ic->ic_getradiocaps = rum_getradiocaps; 565 ic->ic_transmit = rum_transmit; 566 ic->ic_parent = rum_parent; 567 ic->ic_vap_create = rum_vap_create; 568 ic->ic_vap_delete = rum_vap_delete; 569 ic->ic_updateslot = rum_update_slot; 570 ic->ic_wme.wme_update = rum_wme_update; 571 ic->ic_update_mcast = rum_update_mcast; 572 573 ieee80211_radiotap_attach(ic, 574 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 575 RT2573_TX_RADIOTAP_PRESENT, 576 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 577 RT2573_RX_RADIOTAP_PRESENT); 578 579 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 580 581 if (bootverbose) 582 ieee80211_announce(ic); 583 584 return (0); 585 586 detach: 587 rum_detach(self); 588 return (ENXIO); /* failure */ 589 } 590 591 static int 592 rum_detach(device_t self) 593 { 594 struct rum_softc *sc = device_get_softc(self); 595 struct ieee80211com *ic = &sc->sc_ic; 596 597 /* Prevent further ioctls */ 598 RUM_LOCK(sc); 599 sc->sc_detached = 1; 600 RUM_UNLOCK(sc); 601 602 /* stop all USB transfers */ 603 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 604 605 /* free TX list, if any */ 606 RUM_LOCK(sc); 607 rum_unsetup_tx_list(sc); 608 RUM_UNLOCK(sc); 609 610 if (ic->ic_softc == sc) { 611 ieee80211_draintask(ic, &sc->cmdq_task); 612 ieee80211_ifdetach(ic); 613 } 614 615 mbufq_drain(&sc->sc_snd); 616 RUM_CMDQ_LOCK_DESTROY(sc); 617 RUM_LOCK_DESTROY(sc); 618 619 return (0); 620 } 621 622 static usb_error_t 623 rum_do_request(struct rum_softc *sc, 624 struct usb_device_request *req, void *data) 625 { 626 usb_error_t err; 627 int ntries = 10; 628 629 while (ntries--) { 630 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 631 req, data, 0, NULL, 250 /* ms */); 632 if (err == 0) 633 break; 634 635 DPRINTFN(1, "Control request failed, %s (retrying)\n", 636 usbd_errstr(err)); 637 if (rum_pause(sc, hz / 100)) 638 break; 639 } 640 return (err); 641 } 642 643 static usb_error_t 644 rum_do_mcu_request(struct rum_softc *sc, int request) 645 { 646 struct usb_device_request req; 647 648 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 649 req.bRequest = RT2573_MCU_CNTL; 650 USETW(req.wValue, request); 651 USETW(req.wIndex, 0); 652 USETW(req.wLength, 0); 653 654 return (rum_do_request(sc, &req, NULL)); 655 } 656 657 static struct ieee80211vap * 658 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 659 enum ieee80211_opmode opmode, int flags, 660 const uint8_t bssid[IEEE80211_ADDR_LEN], 661 const uint8_t mac[IEEE80211_ADDR_LEN]) 662 { 663 struct rum_softc *sc = ic->ic_softc; 664 struct rum_vap *rvp; 665 struct ieee80211vap *vap; 666 667 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 668 return NULL; 669 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 670 vap = &rvp->vap; 671 /* enable s/w bmiss handling for sta mode */ 672 673 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 674 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 675 /* out of memory */ 676 free(rvp, M_80211_VAP); 677 return (NULL); 678 } 679 680 /* override state transition machine */ 681 rvp->newstate = vap->iv_newstate; 682 vap->iv_newstate = rum_newstate; 683 vap->iv_key_alloc = rum_key_alloc; 684 vap->iv_key_set = rum_key_set; 685 vap->iv_key_delete = rum_key_delete; 686 vap->iv_update_beacon = rum_update_beacon; 687 vap->iv_reset = rum_reset; 688 vap->iv_max_aid = RT2573_ADDR_MAX; 689 690 if (opmode == IEEE80211_M_STA) { 691 /* 692 * Move device to the sleep state when 693 * beacon is received and there is no data for us. 694 * 695 * Used only for IEEE80211_S_SLEEP state. 696 */ 697 rvp->recv_mgmt = vap->iv_recv_mgmt; 698 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 699 700 /* Ignored while sleeping. */ 701 rvp->bmiss = vap->iv_bmiss; 702 vap->iv_bmiss = rum_beacon_miss; 703 } 704 705 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 706 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 707 ieee80211_ratectl_init(vap); 708 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 709 /* complete setup */ 710 ieee80211_vap_attach(vap, ieee80211_media_change, 711 ieee80211_media_status, mac); 712 ic->ic_opmode = opmode; 713 return vap; 714 } 715 716 static void 717 rum_vap_delete(struct ieee80211vap *vap) 718 { 719 struct rum_vap *rvp = RUM_VAP(vap); 720 struct ieee80211com *ic = vap->iv_ic; 721 struct rum_softc *sc = ic->ic_softc; 722 int i; 723 724 /* Put vap into INIT state. */ 725 ieee80211_new_state(vap, IEEE80211_S_INIT, -1); 726 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 727 ieee80211_draintask(ic, &vap->iv_nstate_task[i]); 728 729 RUM_LOCK(sc); 730 /* Cancel any unfinished Tx. */ 731 rum_reset_tx_list(sc, vap); 732 RUM_UNLOCK(sc); 733 734 usb_callout_drain(&rvp->ratectl_ch); 735 ieee80211_draintask(ic, &rvp->ratectl_task); 736 ieee80211_ratectl_deinit(vap); 737 ieee80211_vap_detach(vap); 738 m_freem(rvp->bcn_mbuf); 739 free(rvp, M_80211_VAP); 740 } 741 742 static void 743 rum_cmdq_cb(void *arg, int pending) 744 { 745 struct rum_softc *sc = arg; 746 struct rum_cmdq *rc; 747 748 RUM_CMDQ_LOCK(sc); 749 while (sc->cmdq[sc->cmdq_first].func != NULL) { 750 rc = &sc->cmdq[sc->cmdq_first]; 751 RUM_CMDQ_UNLOCK(sc); 752 753 RUM_LOCK(sc); 754 rc->func(sc, &rc->data, rc->rvp_id); 755 RUM_UNLOCK(sc); 756 757 RUM_CMDQ_LOCK(sc); 758 memset(rc, 0, sizeof (*rc)); 759 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 760 } 761 RUM_CMDQ_UNLOCK(sc); 762 } 763 764 static int 765 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 766 uint8_t rvp_id, CMD_FUNC_PROTO) 767 { 768 struct ieee80211com *ic = &sc->sc_ic; 769 770 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 771 772 RUM_CMDQ_LOCK(sc); 773 if (sc->cmdq[sc->cmdq_last].func != NULL) { 774 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 775 RUM_CMDQ_UNLOCK(sc); 776 777 return EAGAIN; 778 } 779 780 if (ptr != NULL) 781 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 782 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 783 sc->cmdq[sc->cmdq_last].func = func; 784 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 785 RUM_CMDQ_UNLOCK(sc); 786 787 ieee80211_runtask(ic, &sc->cmdq_task); 788 789 return 0; 790 } 791 792 static void 793 rum_tx_free(struct rum_tx_data *data, int txerr) 794 { 795 struct rum_softc *sc = data->sc; 796 797 if (data->m != NULL) { 798 ieee80211_tx_complete(data->ni, data->m, txerr); 799 data->m = NULL; 800 data->ni = NULL; 801 } 802 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 803 sc->tx_nfree++; 804 } 805 806 static void 807 rum_setup_tx_list(struct rum_softc *sc) 808 { 809 struct rum_tx_data *data; 810 int i; 811 812 sc->tx_nfree = 0; 813 STAILQ_INIT(&sc->tx_q); 814 STAILQ_INIT(&sc->tx_free); 815 816 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 817 data = &sc->tx_data[i]; 818 819 data->sc = sc; 820 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 821 sc->tx_nfree++; 822 } 823 } 824 825 static void 826 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap) 827 { 828 struct rum_tx_data *data, *tmp; 829 830 KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__)); 831 832 STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) { 833 if (data->ni != NULL && data->ni->ni_vap == vap) { 834 ieee80211_free_node(data->ni); 835 data->ni = NULL; 836 837 KASSERT(data->m != NULL, ("%s: m is NULL\n", 838 __func__)); 839 m_freem(data->m); 840 data->m = NULL; 841 842 STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next); 843 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 844 sc->tx_nfree++; 845 } 846 } 847 } 848 849 static void 850 rum_unsetup_tx_list(struct rum_softc *sc) 851 { 852 struct rum_tx_data *data; 853 int i; 854 855 /* make sure any subsequent use of the queues will fail */ 856 sc->tx_nfree = 0; 857 STAILQ_INIT(&sc->tx_q); 858 STAILQ_INIT(&sc->tx_free); 859 860 /* free up all node references and mbufs */ 861 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 862 data = &sc->tx_data[i]; 863 864 if (data->m != NULL) { 865 m_freem(data->m); 866 data->m = NULL; 867 } 868 if (data->ni != NULL) { 869 ieee80211_free_node(data->ni); 870 data->ni = NULL; 871 } 872 } 873 } 874 875 static void 876 rum_beacon_miss(struct ieee80211vap *vap) 877 { 878 struct ieee80211com *ic = vap->iv_ic; 879 struct rum_softc *sc = ic->ic_softc; 880 struct rum_vap *rvp = RUM_VAP(vap); 881 int sleep; 882 883 RUM_LOCK(sc); 884 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 885 DPRINTFN(12, "dropping 'sleeping' bit, " 886 "device must be awake now\n"); 887 888 sc->sc_sleeping = 0; 889 } 890 891 sleep = sc->sc_sleeping; 892 RUM_UNLOCK(sc); 893 894 if (!sleep) 895 rvp->bmiss(vap); 896 #ifdef USB_DEBUG 897 else 898 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 899 #endif 900 } 901 902 static void 903 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 904 const struct ieee80211_rx_stats *rxs, 905 int rssi, int nf) 906 { 907 struct ieee80211vap *vap = ni->ni_vap; 908 struct rum_softc *sc = vap->iv_ic->ic_softc; 909 struct rum_vap *rvp = RUM_VAP(vap); 910 911 if (vap->iv_state == IEEE80211_S_SLEEP && 912 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 913 RUM_LOCK(sc); 914 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 915 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 916 sc->last_rx_flags); 917 918 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 919 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 920 /* 921 * Put it to sleep here; in case if there is a data 922 * for us, iv_recv_mgmt() will wakeup the device via 923 * SLEEP -> RUN state transition. 924 */ 925 rum_set_power_state(sc, 1); 926 } 927 RUM_UNLOCK(sc); 928 } 929 930 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 931 } 932 933 static int 934 rum_set_power_state(struct rum_softc *sc, int sleep) 935 { 936 usb_error_t uerror; 937 938 RUM_LOCK_ASSERT(sc); 939 940 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 941 sleep ? "sleep" : "awake", sc->sc_sleep_time); 942 943 uerror = rum_do_mcu_request(sc, 944 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 945 if (uerror != USB_ERR_NORMAL_COMPLETION) { 946 device_printf(sc->sc_dev, 947 "%s: could not change power state: %s\n", 948 __func__, usbd_errstr(uerror)); 949 return (EIO); 950 } 951 952 sc->sc_sleeping = !!sleep; 953 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 954 955 return (0); 956 } 957 958 static int 959 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 960 { 961 struct rum_vap *rvp = RUM_VAP(vap); 962 struct ieee80211com *ic = vap->iv_ic; 963 struct rum_softc *sc = ic->ic_softc; 964 const struct ieee80211_txparam *tp; 965 enum ieee80211_state ostate; 966 struct ieee80211_node *ni; 967 usb_error_t uerror; 968 int ret = 0; 969 970 ostate = vap->iv_state; 971 DPRINTF("%s -> %s\n", 972 ieee80211_state_name[ostate], 973 ieee80211_state_name[nstate]); 974 975 IEEE80211_UNLOCK(ic); 976 RUM_LOCK(sc); 977 usb_callout_stop(&rvp->ratectl_ch); 978 979 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 980 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 981 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 982 983 /* 984 * Ignore any errors; 985 * any subsequent TX will wakeup it anyway 986 */ 987 (void) rum_set_power_state(sc, 0); 988 } 989 990 switch (nstate) { 991 case IEEE80211_S_INIT: 992 if (ostate == IEEE80211_S_RUN) 993 rum_abort_tsf_sync(sc); 994 995 break; 996 997 case IEEE80211_S_RUN: 998 if (ostate == IEEE80211_S_SLEEP) 999 break; /* already handled */ 1000 1001 ni = ieee80211_ref_node(vap->iv_bss); 1002 1003 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1004 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 1005 ni->ni_chan == IEEE80211_CHAN_ANYC) { 1006 ret = EINVAL; 1007 goto run_fail; 1008 } 1009 rum_update_slot_cb(sc, NULL, 0); 1010 rum_enable_mrr(sc); 1011 rum_set_txpreamble(sc); 1012 rum_set_basicrates(sc); 1013 rum_set_maxretry(sc, vap); 1014 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1015 rum_set_bssid(sc, sc->sc_bssid); 1016 } 1017 1018 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1019 vap->iv_opmode == IEEE80211_M_IBSS) { 1020 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 1021 goto run_fail; 1022 } 1023 1024 if (vap->iv_opmode != IEEE80211_M_MONITOR && 1025 vap->iv_opmode != IEEE80211_M_AHDEMO) { 1026 if ((ret = rum_enable_tsf_sync(sc)) != 0) 1027 goto run_fail; 1028 } else 1029 rum_enable_tsf(sc); 1030 1031 /* enable automatic rate adaptation */ 1032 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1033 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1034 rum_ratectl_start(sc, ni); 1035 run_fail: 1036 ieee80211_free_node(ni); 1037 break; 1038 case IEEE80211_S_SLEEP: 1039 /* Implemented for STA mode only. */ 1040 if (vap->iv_opmode != IEEE80211_M_STA) 1041 break; 1042 1043 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1044 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1045 ret = EIO; 1046 break; 1047 } 1048 1049 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1050 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1051 ret = EIO; 1052 break; 1053 } 1054 1055 ret = rum_set_power_state(sc, 1); 1056 if (ret != 0) { 1057 device_printf(sc->sc_dev, 1058 "%s: could not move to the SLEEP state: %s\n", 1059 __func__, usbd_errstr(uerror)); 1060 } 1061 break; 1062 default: 1063 break; 1064 } 1065 RUM_UNLOCK(sc); 1066 IEEE80211_LOCK(ic); 1067 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1068 } 1069 1070 static void 1071 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1072 { 1073 struct rum_softc *sc = usbd_xfer_softc(xfer); 1074 struct ieee80211vap *vap; 1075 struct rum_tx_data *data; 1076 struct mbuf *m; 1077 struct usb_page_cache *pc; 1078 unsigned len; 1079 int actlen, sumlen; 1080 1081 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1082 1083 switch (USB_GET_STATE(xfer)) { 1084 case USB_ST_TRANSFERRED: 1085 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1086 1087 /* free resources */ 1088 data = usbd_xfer_get_priv(xfer); 1089 rum_tx_free(data, 0); 1090 usbd_xfer_set_priv(xfer, NULL); 1091 1092 /* FALLTHROUGH */ 1093 case USB_ST_SETUP: 1094 tr_setup: 1095 data = STAILQ_FIRST(&sc->tx_q); 1096 if (data) { 1097 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1098 m = data->m; 1099 1100 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1101 DPRINTFN(0, "data overflow, %u bytes\n", 1102 m->m_pkthdr.len); 1103 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1104 } 1105 pc = usbd_xfer_get_frame(xfer, 0); 1106 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1107 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1108 m->m_pkthdr.len); 1109 1110 vap = data->ni->ni_vap; 1111 if (ieee80211_radiotap_active_vap(vap)) { 1112 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1113 1114 tap->wt_flags = 0; 1115 tap->wt_rate = data->rate; 1116 tap->wt_antenna = sc->tx_ant; 1117 1118 ieee80211_radiotap_tx(vap, m); 1119 } 1120 1121 /* align end on a 4-bytes boundary */ 1122 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1123 if ((len % 64) == 0) 1124 len += 4; 1125 1126 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1127 m->m_pkthdr.len, len); 1128 1129 usbd_xfer_set_frame_len(xfer, 0, len); 1130 usbd_xfer_set_priv(xfer, data); 1131 1132 usbd_transfer_submit(xfer); 1133 } 1134 rum_start(sc); 1135 break; 1136 1137 default: /* Error */ 1138 DPRINTFN(11, "transfer error, %s\n", 1139 usbd_errstr(error)); 1140 1141 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1142 data = usbd_xfer_get_priv(xfer); 1143 if (data != NULL) { 1144 rum_tx_free(data, error); 1145 usbd_xfer_set_priv(xfer, NULL); 1146 } 1147 1148 if (error != USB_ERR_CANCELLED) { 1149 if (error == USB_ERR_TIMEOUT) 1150 device_printf(sc->sc_dev, "device timeout\n"); 1151 1152 /* 1153 * Try to clear stall first, also if other 1154 * errors occur, hence clearing stall 1155 * introduces a 50 ms delay: 1156 */ 1157 usbd_xfer_set_stall(xfer); 1158 goto tr_setup; 1159 } 1160 break; 1161 } 1162 } 1163 1164 static void 1165 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1166 { 1167 struct rum_softc *sc = usbd_xfer_softc(xfer); 1168 struct ieee80211com *ic = &sc->sc_ic; 1169 struct ieee80211_frame_min *wh; 1170 struct ieee80211_node *ni; 1171 struct mbuf *m = NULL; 1172 struct usb_page_cache *pc; 1173 uint32_t flags; 1174 uint8_t rssi = 0; 1175 int len; 1176 1177 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1178 1179 switch (USB_GET_STATE(xfer)) { 1180 case USB_ST_TRANSFERRED: 1181 1182 DPRINTFN(15, "rx done, actlen=%d\n", len); 1183 1184 if (len < RT2573_RX_DESC_SIZE) { 1185 DPRINTF("%s: xfer too short %d\n", 1186 device_get_nameunit(sc->sc_dev), len); 1187 counter_u64_add(ic->ic_ierrors, 1); 1188 goto tr_setup; 1189 } 1190 1191 len -= RT2573_RX_DESC_SIZE; 1192 pc = usbd_xfer_get_frame(xfer, 0); 1193 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1194 1195 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1196 flags = le32toh(sc->sc_rx_desc.flags); 1197 sc->last_rx_flags = flags; 1198 if (len < ((flags >> 16) & 0xfff)) { 1199 DPRINTFN(5, "%s: frame is truncated from %d to %d " 1200 "bytes\n", device_get_nameunit(sc->sc_dev), 1201 (flags >> 16) & 0xfff, len); 1202 counter_u64_add(ic->ic_ierrors, 1); 1203 goto tr_setup; 1204 } 1205 len = (flags >> 16) & 0xfff; 1206 if (len < sizeof(struct ieee80211_frame_ack)) { 1207 DPRINTFN(5, "%s: frame too short %d\n", 1208 device_get_nameunit(sc->sc_dev), len); 1209 counter_u64_add(ic->ic_ierrors, 1); 1210 goto tr_setup; 1211 } 1212 if (flags & RT2573_RX_CRC_ERROR) { 1213 /* 1214 * This should not happen since we did not 1215 * request to receive those frames when we 1216 * filled RUM_TXRX_CSR2: 1217 */ 1218 DPRINTFN(5, "PHY or CRC error\n"); 1219 counter_u64_add(ic->ic_ierrors, 1); 1220 goto tr_setup; 1221 } 1222 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1223 switch (flags & RT2573_RX_DEC_MASK) { 1224 case RT2573_RX_IV_ERROR: 1225 DPRINTFN(5, "IV/EIV error\n"); 1226 break; 1227 case RT2573_RX_MIC_ERROR: 1228 DPRINTFN(5, "MIC error\n"); 1229 break; 1230 case RT2573_RX_KEY_ERROR: 1231 DPRINTFN(5, "Key error\n"); 1232 break; 1233 } 1234 counter_u64_add(ic->ic_ierrors, 1); 1235 goto tr_setup; 1236 } 1237 1238 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1239 if (m == NULL) { 1240 DPRINTF("could not allocate mbuf\n"); 1241 counter_u64_add(ic->ic_ierrors, 1); 1242 goto tr_setup; 1243 } 1244 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1245 mtod(m, uint8_t *), len); 1246 1247 wh = mtod(m, struct ieee80211_frame_min *); 1248 1249 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1250 (flags & RT2573_RX_CIP_MASK) != 1251 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1252 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1253 m->m_flags |= M_WEP; 1254 } 1255 1256 /* finalize mbuf */ 1257 m->m_pkthdr.len = m->m_len = len; 1258 1259 if (ieee80211_radiotap_active(ic)) { 1260 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1261 1262 tap->wr_flags = 0; 1263 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1264 (flags & RT2573_RX_OFDM) ? 1265 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1266 rum_get_tsf(sc, &tap->wr_tsf); 1267 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1268 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1269 tap->wr_antenna = sc->rx_ant; 1270 } 1271 /* FALLTHROUGH */ 1272 case USB_ST_SETUP: 1273 tr_setup: 1274 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1275 usbd_transfer_submit(xfer); 1276 1277 /* 1278 * At the end of a USB callback it is always safe to unlock 1279 * the private mutex of a device! That is why we do the 1280 * "ieee80211_input" here, and not some lines up! 1281 */ 1282 RUM_UNLOCK(sc); 1283 if (m) { 1284 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1285 ni = ieee80211_find_rxnode(ic, wh); 1286 else 1287 ni = NULL; 1288 1289 if (ni != NULL) { 1290 (void) ieee80211_input(ni, m, rssi, 1291 RT2573_NOISE_FLOOR); 1292 ieee80211_free_node(ni); 1293 } else 1294 (void) ieee80211_input_all(ic, m, rssi, 1295 RT2573_NOISE_FLOOR); 1296 } 1297 RUM_LOCK(sc); 1298 rum_start(sc); 1299 return; 1300 1301 default: /* Error */ 1302 if (error != USB_ERR_CANCELLED) { 1303 /* try to clear stall first */ 1304 usbd_xfer_set_stall(xfer); 1305 goto tr_setup; 1306 } 1307 return; 1308 } 1309 } 1310 1311 static uint8_t 1312 rum_plcp_signal(int rate) 1313 { 1314 switch (rate) { 1315 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1316 case 12: return 0xb; 1317 case 18: return 0xf; 1318 case 24: return 0xa; 1319 case 36: return 0xe; 1320 case 48: return 0x9; 1321 case 72: return 0xd; 1322 case 96: return 0x8; 1323 case 108: return 0xc; 1324 1325 /* CCK rates (NB: not IEEE std, device-specific) */ 1326 case 2: return 0x0; 1327 case 4: return 0x1; 1328 case 11: return 0x2; 1329 case 22: return 0x3; 1330 } 1331 return 0xff; /* XXX unsupported/unknown rate */ 1332 } 1333 1334 /* 1335 * Map net80211 cipher to RT2573 security mode. 1336 */ 1337 static uint8_t 1338 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1339 { 1340 switch (cipher) { 1341 case IEEE80211_CIPHER_WEP: 1342 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1343 case IEEE80211_CIPHER_TKIP: 1344 return RT2573_MODE_TKIP; 1345 case IEEE80211_CIPHER_AES_CCM: 1346 return RT2573_MODE_AES_CCMP; 1347 default: 1348 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1349 return 0; 1350 } 1351 } 1352 1353 static void 1354 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1355 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1356 int hdrlen, int len, int rate) 1357 { 1358 struct ieee80211com *ic = &sc->sc_ic; 1359 struct wmeParams *wmep = &sc->wme_params[qid]; 1360 uint16_t plcp_length; 1361 int remainder; 1362 1363 flags |= RT2573_TX_VALID; 1364 flags |= len << 16; 1365 1366 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1367 const struct ieee80211_cipher *cip = k->wk_cipher; 1368 1369 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1370 1371 desc->eiv = 0; /* for WEP */ 1372 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1373 } 1374 1375 /* setup PLCP fields */ 1376 desc->plcp_signal = rum_plcp_signal(rate); 1377 desc->plcp_service = 4; 1378 1379 len += IEEE80211_CRC_LEN; 1380 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1381 flags |= RT2573_TX_OFDM; 1382 1383 plcp_length = len & 0xfff; 1384 desc->plcp_length_hi = plcp_length >> 6; 1385 desc->plcp_length_lo = plcp_length & 0x3f; 1386 } else { 1387 if (rate == 0) 1388 rate = 2; /* avoid division by zero */ 1389 plcp_length = howmany(16 * len, rate); 1390 if (rate == 22) { 1391 remainder = (16 * len) % 22; 1392 if (remainder != 0 && remainder < 7) 1393 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1394 } 1395 desc->plcp_length_hi = plcp_length >> 8; 1396 desc->plcp_length_lo = plcp_length & 0xff; 1397 1398 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1399 desc->plcp_signal |= 0x08; 1400 } 1401 1402 desc->flags = htole32(flags); 1403 desc->hdrlen = hdrlen; 1404 desc->xflags = xflags; 1405 1406 desc->wme = htole16(RT2573_QID(qid) | 1407 RT2573_AIFSN(wmep->wmep_aifsn) | 1408 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1409 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1410 } 1411 1412 static int 1413 rum_sendprot(struct rum_softc *sc, 1414 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1415 { 1416 struct ieee80211com *ic = ni->ni_ic; 1417 struct rum_tx_data *data; 1418 struct mbuf *mprot; 1419 int protrate, flags; 1420 1421 RUM_LOCK_ASSERT(sc); 1422 1423 mprot = ieee80211_alloc_prot(ni, m, rate, prot); 1424 if (mprot == NULL) { 1425 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 1426 device_printf(sc->sc_dev, 1427 "could not allocate mbuf for protection mode %d\n", prot); 1428 return (ENOBUFS); 1429 } 1430 1431 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1432 flags = 0; 1433 if (prot == IEEE80211_PROT_RTSCTS) 1434 flags |= RT2573_TX_NEED_ACK; 1435 1436 data = STAILQ_FIRST(&sc->tx_free); 1437 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1438 sc->tx_nfree--; 1439 1440 data->m = mprot; 1441 data->ni = ieee80211_ref_node(ni); 1442 data->rate = protrate; 1443 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1444 mprot->m_pkthdr.len, protrate); 1445 1446 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1447 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1448 1449 return 0; 1450 } 1451 1452 static uint32_t 1453 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1454 const struct ieee80211_key *k) 1455 { 1456 struct ieee80211vap *vap = ni->ni_vap; 1457 u_int cipher; 1458 uint32_t flags = 0; 1459 uint8_t mode, pos; 1460 1461 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1462 cipher = k->wk_cipher->ic_cipher; 1463 pos = k->wk_keyix; 1464 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1465 if (mode == 0) 1466 return 0; 1467 1468 flags |= RT2573_TX_CIP_MODE(mode); 1469 1470 /* Do not trust GROUP flag */ 1471 if (ieee80211_is_key_unicast(vap, k)) 1472 flags |= RT2573_TX_KEY_PAIR; 1473 else 1474 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1475 1476 flags |= RT2573_TX_KEY_ID(pos); 1477 1478 if (cipher == IEEE80211_CIPHER_TKIP) 1479 flags |= RT2573_TX_TKIPMIC; 1480 } 1481 1482 return flags; 1483 } 1484 1485 static int 1486 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1487 { 1488 const struct ieee80211_txparam *tp = ni->ni_txparms; 1489 struct ieee80211com *ic = &sc->sc_ic; 1490 struct rum_tx_data *data; 1491 struct ieee80211_frame *wh; 1492 struct ieee80211_key *k = NULL; 1493 uint32_t flags = 0; 1494 uint16_t dur; 1495 uint8_t ac, type, xflags = 0; 1496 int hdrlen; 1497 1498 RUM_LOCK_ASSERT(sc); 1499 1500 data = STAILQ_FIRST(&sc->tx_free); 1501 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1502 sc->tx_nfree--; 1503 1504 wh = mtod(m0, struct ieee80211_frame *); 1505 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1506 hdrlen = ieee80211_anyhdrsize(wh); 1507 ac = M_WME_GETAC(m0); 1508 1509 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1510 k = ieee80211_crypto_get_txkey(ni, m0); 1511 if (k == NULL) 1512 return (ENOENT); 1513 1514 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1515 !k->wk_cipher->ic_encap(k, m0)) 1516 return (ENOBUFS); 1517 1518 wh = mtod(m0, struct ieee80211_frame *); 1519 } 1520 1521 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1522 flags |= RT2573_TX_NEED_ACK; 1523 1524 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1525 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1526 USETW(wh->i_dur, dur); 1527 1528 /* tell hardware to add timestamp for probe responses */ 1529 if (IEEE80211_IS_MGMT_PROBE_RESP(wh)) 1530 flags |= RT2573_TX_TIMESTAMP; 1531 } 1532 1533 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1534 xflags |= RT2573_TX_HWSEQ; 1535 1536 if (k != NULL) 1537 flags |= rum_tx_crypto_flags(sc, ni, k); 1538 1539 data->m = m0; 1540 data->ni = ni; 1541 data->rate = tp->mgmtrate; 1542 1543 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1544 m0->m_pkthdr.len, tp->mgmtrate); 1545 1546 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1547 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1548 1549 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1550 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1551 1552 return (0); 1553 } 1554 1555 static int 1556 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1557 const struct ieee80211_bpf_params *params) 1558 { 1559 struct ieee80211com *ic = ni->ni_ic; 1560 struct ieee80211_frame *wh; 1561 struct rum_tx_data *data; 1562 uint32_t flags; 1563 uint8_t ac, type, xflags = 0; 1564 int rate, error; 1565 1566 RUM_LOCK_ASSERT(sc); 1567 1568 wh = mtod(m0, struct ieee80211_frame *); 1569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1570 1571 ac = params->ibp_pri & 3; 1572 1573 rate = params->ibp_rate0; 1574 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1575 return (EINVAL); 1576 1577 flags = 0; 1578 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1579 flags |= RT2573_TX_NEED_ACK; 1580 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1581 error = rum_sendprot(sc, m0, ni, 1582 params->ibp_flags & IEEE80211_BPF_RTS ? 1583 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1584 rate); 1585 if (error || sc->tx_nfree == 0) 1586 return (ENOBUFS); 1587 1588 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1589 } 1590 1591 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1592 xflags |= RT2573_TX_HWSEQ; 1593 1594 data = STAILQ_FIRST(&sc->tx_free); 1595 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1596 sc->tx_nfree--; 1597 1598 data->m = m0; 1599 data->ni = ni; 1600 data->rate = rate; 1601 1602 /* XXX need to setup descriptor ourself */ 1603 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1604 m0->m_pkthdr.len, rate); 1605 1606 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1607 m0->m_pkthdr.len, rate); 1608 1609 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1610 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1611 1612 return 0; 1613 } 1614 1615 static int 1616 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1617 { 1618 struct ieee80211vap *vap = ni->ni_vap; 1619 struct ieee80211com *ic = &sc->sc_ic; 1620 struct rum_tx_data *data; 1621 struct ieee80211_frame *wh; 1622 const struct ieee80211_txparam *tp = ni->ni_txparms; 1623 struct ieee80211_key *k = NULL; 1624 uint32_t flags = 0; 1625 uint16_t dur; 1626 uint8_t ac, type, qos, xflags = 0; 1627 int error, hdrlen, rate; 1628 1629 RUM_LOCK_ASSERT(sc); 1630 1631 wh = mtod(m0, struct ieee80211_frame *); 1632 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1633 hdrlen = ieee80211_anyhdrsize(wh); 1634 1635 if (IEEE80211_QOS_HAS_SEQ(wh)) 1636 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1637 else 1638 qos = 0; 1639 ac = M_WME_GETAC(m0); 1640 1641 if (m0->m_flags & M_EAPOL) 1642 rate = tp->mgmtrate; 1643 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1644 rate = tp->mcastrate; 1645 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1646 rate = tp->ucastrate; 1647 else { 1648 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1649 rate = ni->ni_txrate; 1650 } 1651 1652 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1653 k = ieee80211_crypto_get_txkey(ni, m0); 1654 if (k == NULL) { 1655 m_freem(m0); 1656 return (ENOENT); 1657 } 1658 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1659 !k->wk_cipher->ic_encap(k, m0)) { 1660 m_freem(m0); 1661 return (ENOBUFS); 1662 } 1663 1664 /* packet header may have moved, reset our local pointer */ 1665 wh = mtod(m0, struct ieee80211_frame *); 1666 } 1667 1668 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1669 xflags |= RT2573_TX_HWSEQ; 1670 1671 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1672 int prot = IEEE80211_PROT_NONE; 1673 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1674 prot = IEEE80211_PROT_RTSCTS; 1675 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1676 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1677 prot = ic->ic_protmode; 1678 if (prot != IEEE80211_PROT_NONE) { 1679 error = rum_sendprot(sc, m0, ni, prot, rate); 1680 if (error || sc->tx_nfree == 0) { 1681 m_freem(m0); 1682 return ENOBUFS; 1683 } 1684 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1685 } 1686 } 1687 1688 if (k != NULL) 1689 flags |= rum_tx_crypto_flags(sc, ni, k); 1690 1691 data = STAILQ_FIRST(&sc->tx_free); 1692 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1693 sc->tx_nfree--; 1694 1695 data->m = m0; 1696 data->ni = ni; 1697 data->rate = rate; 1698 1699 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1700 /* Unicast frame, check if an ACK is expected. */ 1701 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1702 IEEE80211_QOS_ACKPOLICY_NOACK) 1703 flags |= RT2573_TX_NEED_ACK; 1704 1705 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1706 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1707 USETW(wh->i_dur, dur); 1708 } 1709 1710 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1711 m0->m_pkthdr.len, rate); 1712 1713 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1714 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1715 1716 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1717 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1718 1719 return 0; 1720 } 1721 1722 static int 1723 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1724 { 1725 struct rum_softc *sc = ic->ic_softc; 1726 int error; 1727 1728 RUM_LOCK(sc); 1729 if (!sc->sc_running) { 1730 RUM_UNLOCK(sc); 1731 return (ENXIO); 1732 } 1733 error = mbufq_enqueue(&sc->sc_snd, m); 1734 if (error) { 1735 RUM_UNLOCK(sc); 1736 return (error); 1737 } 1738 rum_start(sc); 1739 RUM_UNLOCK(sc); 1740 1741 return (0); 1742 } 1743 1744 static void 1745 rum_start(struct rum_softc *sc) 1746 { 1747 struct ieee80211_node *ni; 1748 struct mbuf *m; 1749 1750 RUM_LOCK_ASSERT(sc); 1751 1752 if (!sc->sc_running) 1753 return; 1754 1755 while (sc->tx_nfree >= RUM_TX_MINFREE && 1756 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1757 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1758 if (rum_tx_data(sc, m, ni) != 0) { 1759 if_inc_counter(ni->ni_vap->iv_ifp, 1760 IFCOUNTER_OERRORS, 1); 1761 ieee80211_free_node(ni); 1762 break; 1763 } 1764 } 1765 } 1766 1767 static void 1768 rum_parent(struct ieee80211com *ic) 1769 { 1770 struct rum_softc *sc = ic->ic_softc; 1771 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1772 1773 RUM_LOCK(sc); 1774 if (sc->sc_detached) { 1775 RUM_UNLOCK(sc); 1776 return; 1777 } 1778 RUM_UNLOCK(sc); 1779 1780 if (ic->ic_nrunning > 0) { 1781 if (rum_init(sc) == 0) 1782 ieee80211_start_all(ic); 1783 else 1784 ieee80211_stop(vap); 1785 } else 1786 rum_stop(sc); 1787 } 1788 1789 static void 1790 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1791 { 1792 struct usb_device_request req; 1793 usb_error_t error; 1794 1795 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1796 req.bRequest = RT2573_READ_EEPROM; 1797 USETW(req.wValue, 0); 1798 USETW(req.wIndex, addr); 1799 USETW(req.wLength, len); 1800 1801 error = rum_do_request(sc, &req, buf); 1802 if (error != 0) { 1803 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1804 usbd_errstr(error)); 1805 } 1806 } 1807 1808 static uint32_t 1809 rum_read(struct rum_softc *sc, uint16_t reg) 1810 { 1811 uint32_t val; 1812 1813 rum_read_multi(sc, reg, &val, sizeof val); 1814 1815 return le32toh(val); 1816 } 1817 1818 static void 1819 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1820 { 1821 struct usb_device_request req; 1822 usb_error_t error; 1823 1824 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1825 req.bRequest = RT2573_READ_MULTI_MAC; 1826 USETW(req.wValue, 0); 1827 USETW(req.wIndex, reg); 1828 USETW(req.wLength, len); 1829 1830 error = rum_do_request(sc, &req, buf); 1831 if (error != 0) { 1832 device_printf(sc->sc_dev, 1833 "could not multi read MAC register: %s\n", 1834 usbd_errstr(error)); 1835 } 1836 } 1837 1838 static usb_error_t 1839 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1840 { 1841 uint32_t tmp = htole32(val); 1842 1843 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1844 } 1845 1846 static usb_error_t 1847 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1848 { 1849 struct usb_device_request req; 1850 usb_error_t error; 1851 size_t offset; 1852 1853 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1854 req.bRequest = RT2573_WRITE_MULTI_MAC; 1855 USETW(req.wValue, 0); 1856 1857 /* write at most 64 bytes at a time */ 1858 for (offset = 0; offset < len; offset += 64) { 1859 USETW(req.wIndex, reg + offset); 1860 USETW(req.wLength, MIN(len - offset, 64)); 1861 1862 error = rum_do_request(sc, &req, (char *)buf + offset); 1863 if (error != 0) { 1864 device_printf(sc->sc_dev, 1865 "could not multi write MAC register: %s\n", 1866 usbd_errstr(error)); 1867 return (error); 1868 } 1869 } 1870 1871 return (USB_ERR_NORMAL_COMPLETION); 1872 } 1873 1874 static usb_error_t 1875 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1876 { 1877 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1878 } 1879 1880 static usb_error_t 1881 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1882 { 1883 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1884 } 1885 1886 static usb_error_t 1887 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1888 { 1889 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1890 } 1891 1892 static int 1893 rum_bbp_busy(struct rum_softc *sc) 1894 { 1895 int ntries; 1896 1897 for (ntries = 0; ntries < 100; ntries++) { 1898 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1899 break; 1900 if (rum_pause(sc, hz / 100)) 1901 break; 1902 } 1903 if (ntries == 100) 1904 return (ETIMEDOUT); 1905 1906 return (0); 1907 } 1908 1909 static void 1910 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1911 { 1912 uint32_t tmp; 1913 1914 DPRINTFN(2, "reg=0x%08x\n", reg); 1915 1916 if (rum_bbp_busy(sc) != 0) { 1917 device_printf(sc->sc_dev, "could not write to BBP\n"); 1918 return; 1919 } 1920 1921 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1922 rum_write(sc, RT2573_PHY_CSR3, tmp); 1923 } 1924 1925 static uint8_t 1926 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1927 { 1928 uint32_t val; 1929 int ntries; 1930 1931 DPRINTFN(2, "reg=0x%08x\n", reg); 1932 1933 if (rum_bbp_busy(sc) != 0) { 1934 device_printf(sc->sc_dev, "could not read BBP\n"); 1935 return 0; 1936 } 1937 1938 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1939 rum_write(sc, RT2573_PHY_CSR3, val); 1940 1941 for (ntries = 0; ntries < 100; ntries++) { 1942 val = rum_read(sc, RT2573_PHY_CSR3); 1943 if (!(val & RT2573_BBP_BUSY)) 1944 return val & 0xff; 1945 if (rum_pause(sc, hz / 100)) 1946 break; 1947 } 1948 1949 device_printf(sc->sc_dev, "could not read BBP\n"); 1950 return 0; 1951 } 1952 1953 static void 1954 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1955 { 1956 uint32_t tmp; 1957 int ntries; 1958 1959 for (ntries = 0; ntries < 100; ntries++) { 1960 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1961 break; 1962 if (rum_pause(sc, hz / 100)) 1963 break; 1964 } 1965 if (ntries == 100) { 1966 device_printf(sc->sc_dev, "could not write to RF\n"); 1967 return; 1968 } 1969 1970 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1971 (reg & 3); 1972 rum_write(sc, RT2573_PHY_CSR4, tmp); 1973 1974 /* remember last written value in sc */ 1975 sc->rf_regs[reg] = val; 1976 1977 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1978 } 1979 1980 static void 1981 rum_select_antenna(struct rum_softc *sc) 1982 { 1983 uint8_t bbp4, bbp77; 1984 uint32_t tmp; 1985 1986 bbp4 = rum_bbp_read(sc, 4); 1987 bbp77 = rum_bbp_read(sc, 77); 1988 1989 /* TBD */ 1990 1991 /* make sure Rx is disabled before switching antenna */ 1992 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1993 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1994 1995 rum_bbp_write(sc, 4, bbp4); 1996 rum_bbp_write(sc, 77, bbp77); 1997 1998 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1999 } 2000 2001 /* 2002 * Enable multi-rate retries for frames sent at OFDM rates. 2003 * In 802.11b/g mode, allow fallback to CCK rates. 2004 */ 2005 static void 2006 rum_enable_mrr(struct rum_softc *sc) 2007 { 2008 struct ieee80211com *ic = &sc->sc_ic; 2009 2010 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2011 rum_setbits(sc, RT2573_TXRX_CSR4, 2012 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 2013 } else { 2014 rum_modbits(sc, RT2573_TXRX_CSR4, 2015 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 2016 } 2017 } 2018 2019 static void 2020 rum_set_txpreamble(struct rum_softc *sc) 2021 { 2022 struct ieee80211com *ic = &sc->sc_ic; 2023 2024 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2025 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2026 else 2027 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2028 } 2029 2030 static void 2031 rum_set_basicrates(struct rum_softc *sc) 2032 { 2033 struct ieee80211com *ic = &sc->sc_ic; 2034 2035 /* update basic rate set */ 2036 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2037 /* 11b basic rates: 1, 2Mbps */ 2038 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2039 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2040 /* 11a basic rates: 6, 12, 24Mbps */ 2041 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2042 } else { 2043 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2044 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2045 } 2046 } 2047 2048 /* 2049 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2050 * driver. 2051 */ 2052 static void 2053 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2054 { 2055 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2056 2057 /* update all BBP registers that depend on the band */ 2058 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2059 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2060 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2061 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2062 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2063 } 2064 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2065 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2066 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2067 } 2068 2069 sc->bbp17 = bbp17; 2070 rum_bbp_write(sc, 17, bbp17); 2071 rum_bbp_write(sc, 96, bbp96); 2072 rum_bbp_write(sc, 104, bbp104); 2073 2074 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2075 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2076 rum_bbp_write(sc, 75, 0x80); 2077 rum_bbp_write(sc, 86, 0x80); 2078 rum_bbp_write(sc, 88, 0x80); 2079 } 2080 2081 rum_bbp_write(sc, 35, bbp35); 2082 rum_bbp_write(sc, 97, bbp97); 2083 rum_bbp_write(sc, 98, bbp98); 2084 2085 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2086 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2087 RT2573_PA_PE_5GHZ); 2088 } else { 2089 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2090 RT2573_PA_PE_2GHZ); 2091 } 2092 } 2093 2094 static void 2095 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2096 { 2097 struct ieee80211com *ic = &sc->sc_ic; 2098 const struct rfprog *rfprog; 2099 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2100 int8_t power; 2101 int i, chan; 2102 2103 chan = ieee80211_chan2ieee(ic, c); 2104 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2105 return; 2106 2107 /* select the appropriate RF settings based on what EEPROM says */ 2108 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2109 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2110 2111 /* find the settings for this channel (we know it exists) */ 2112 for (i = 0; rfprog[i].chan != chan; i++); 2113 2114 power = sc->txpow[i]; 2115 if (power < 0) { 2116 bbp94 += power; 2117 power = 0; 2118 } else if (power > 31) { 2119 bbp94 += power - 31; 2120 power = 31; 2121 } 2122 2123 /* 2124 * If we are switching from the 2GHz band to the 5GHz band or 2125 * vice-versa, BBP registers need to be reprogrammed. 2126 */ 2127 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2128 rum_select_band(sc, c); 2129 rum_select_antenna(sc); 2130 } 2131 ic->ic_curchan = c; 2132 2133 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2134 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2135 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2136 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2137 2138 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2139 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2140 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2141 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2142 2143 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2144 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2145 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2146 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2147 2148 rum_pause(sc, hz / 100); 2149 2150 /* enable smart mode for MIMO-capable RFs */ 2151 bbp3 = rum_bbp_read(sc, 3); 2152 2153 bbp3 &= ~RT2573_SMART_MODE; 2154 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2155 bbp3 |= RT2573_SMART_MODE; 2156 2157 rum_bbp_write(sc, 3, bbp3); 2158 2159 if (bbp94 != RT2573_BBPR94_DEFAULT) 2160 rum_bbp_write(sc, 94, bbp94); 2161 2162 /* give the chip some extra time to do the switchover */ 2163 rum_pause(sc, hz / 100); 2164 } 2165 2166 static void 2167 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2168 { 2169 struct ieee80211_node *ni = vap->iv_bss; 2170 const struct ieee80211_txparam *tp = ni->ni_txparms; 2171 struct rum_vap *rvp = RUM_VAP(vap); 2172 2173 rvp->maxretry = MIN(tp->maxretry, 0xf); 2174 2175 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2176 RT2573_LONG_RETRY(rvp->maxretry), 2177 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2178 } 2179 2180 /* 2181 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2182 * and HostAP operating modes. 2183 */ 2184 static int 2185 rum_enable_tsf_sync(struct rum_softc *sc) 2186 { 2187 struct ieee80211com *ic = &sc->sc_ic; 2188 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2189 uint32_t tmp; 2190 uint16_t bintval; 2191 2192 if (vap->iv_opmode != IEEE80211_M_STA) { 2193 /* 2194 * Change default 16ms TBTT adjustment to 8ms. 2195 * Must be done before enabling beacon generation. 2196 */ 2197 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2198 return EIO; 2199 } 2200 2201 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2202 2203 /* set beacon interval (in 1/16ms unit) */ 2204 bintval = vap->iv_bss->ni_intval; 2205 tmp |= bintval * 16; 2206 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2207 2208 switch (vap->iv_opmode) { 2209 case IEEE80211_M_STA: 2210 /* 2211 * Local TSF is always updated with remote TSF on beacon 2212 * reception. 2213 */ 2214 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2215 break; 2216 case IEEE80211_M_IBSS: 2217 /* 2218 * Local TSF is updated with remote TSF on beacon reception 2219 * only if the remote TSF is greater than local TSF. 2220 */ 2221 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2222 tmp |= RT2573_BCN_TX_EN; 2223 break; 2224 case IEEE80211_M_HOSTAP: 2225 /* SYNC with nobody */ 2226 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2227 tmp |= RT2573_BCN_TX_EN; 2228 break; 2229 default: 2230 device_printf(sc->sc_dev, 2231 "Enabling TSF failed. undefined opmode %d\n", 2232 vap->iv_opmode); 2233 return EINVAL; 2234 } 2235 2236 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2237 return EIO; 2238 2239 /* refresh current sleep time */ 2240 return (rum_set_sleep_time(sc, bintval)); 2241 } 2242 2243 static void 2244 rum_enable_tsf(struct rum_softc *sc) 2245 { 2246 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2247 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2248 } 2249 2250 static void 2251 rum_abort_tsf_sync(struct rum_softc *sc) 2252 { 2253 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2254 } 2255 2256 static void 2257 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2258 { 2259 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2260 } 2261 2262 static void 2263 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2264 { 2265 struct ieee80211com *ic = &sc->sc_ic; 2266 uint8_t slottime; 2267 2268 slottime = IEEE80211_GET_SLOTTIME(ic); 2269 2270 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2271 2272 DPRINTF("setting slot time to %uus\n", slottime); 2273 } 2274 2275 static void 2276 rum_update_slot(struct ieee80211com *ic) 2277 { 2278 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2279 } 2280 2281 static int 2282 rum_wme_update(struct ieee80211com *ic) 2283 { 2284 struct chanAccParams chp; 2285 const struct wmeParams *chanp; 2286 struct rum_softc *sc = ic->ic_softc; 2287 int error = 0; 2288 2289 ieee80211_wme_ic_getparams(ic, &chp); 2290 chanp = chp.cap_wmeParams; 2291 2292 RUM_LOCK(sc); 2293 error = rum_write(sc, RT2573_AIFSN_CSR, 2294 chanp[WME_AC_VO].wmep_aifsn << 12 | 2295 chanp[WME_AC_VI].wmep_aifsn << 8 | 2296 chanp[WME_AC_BK].wmep_aifsn << 4 | 2297 chanp[WME_AC_BE].wmep_aifsn); 2298 if (error) 2299 goto print_err; 2300 error = rum_write(sc, RT2573_CWMIN_CSR, 2301 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2302 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2303 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2304 chanp[WME_AC_BE].wmep_logcwmin); 2305 if (error) 2306 goto print_err; 2307 error = rum_write(sc, RT2573_CWMAX_CSR, 2308 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2309 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2310 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2311 chanp[WME_AC_BE].wmep_logcwmax); 2312 if (error) 2313 goto print_err; 2314 error = rum_write(sc, RT2573_TXOP01_CSR, 2315 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2316 chanp[WME_AC_BE].wmep_txopLimit); 2317 if (error) 2318 goto print_err; 2319 error = rum_write(sc, RT2573_TXOP23_CSR, 2320 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2321 chanp[WME_AC_VI].wmep_txopLimit); 2322 if (error) 2323 goto print_err; 2324 2325 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2326 2327 print_err: 2328 RUM_UNLOCK(sc); 2329 if (error != 0) { 2330 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2331 __func__, error); 2332 } 2333 2334 return (error); 2335 } 2336 2337 static void 2338 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2339 { 2340 2341 rum_write(sc, RT2573_MAC_CSR4, 2342 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2343 rum_write(sc, RT2573_MAC_CSR5, 2344 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2345 } 2346 2347 static void 2348 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2349 { 2350 2351 rum_write(sc, RT2573_MAC_CSR2, 2352 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2353 rum_write(sc, RT2573_MAC_CSR3, 2354 addr[4] | addr[5] << 8 | 0xff << 16); 2355 } 2356 2357 static void 2358 rum_setpromisc(struct rum_softc *sc) 2359 { 2360 struct ieee80211com *ic = &sc->sc_ic; 2361 2362 if (ic->ic_promisc == 0) 2363 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2364 else 2365 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2366 2367 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2368 "entering" : "leaving"); 2369 } 2370 2371 static void 2372 rum_update_promisc(struct ieee80211com *ic) 2373 { 2374 struct rum_softc *sc = ic->ic_softc; 2375 2376 RUM_LOCK(sc); 2377 if (sc->sc_running) 2378 rum_setpromisc(sc); 2379 RUM_UNLOCK(sc); 2380 } 2381 2382 static void 2383 rum_update_mcast(struct ieee80211com *ic) 2384 { 2385 /* Ignore. */ 2386 } 2387 2388 static const char * 2389 rum_get_rf(int rev) 2390 { 2391 switch (rev) { 2392 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2393 case RT2573_RF_2528: return "RT2528"; 2394 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2395 case RT2573_RF_5226: return "RT5226"; 2396 default: return "unknown"; 2397 } 2398 } 2399 2400 static void 2401 rum_read_eeprom(struct rum_softc *sc) 2402 { 2403 uint16_t val; 2404 #ifdef RUM_DEBUG 2405 int i; 2406 #endif 2407 2408 /* read MAC address */ 2409 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2410 2411 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2412 val = le16toh(val); 2413 sc->rf_rev = (val >> 11) & 0x1f; 2414 sc->hw_radio = (val >> 10) & 0x1; 2415 sc->rx_ant = (val >> 4) & 0x3; 2416 sc->tx_ant = (val >> 2) & 0x3; 2417 sc->nb_ant = val & 0x3; 2418 2419 DPRINTF("RF revision=%d\n", sc->rf_rev); 2420 2421 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2422 val = le16toh(val); 2423 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2424 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2425 2426 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2427 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2428 2429 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2430 val = le16toh(val); 2431 if ((val & 0xff) != 0xff) 2432 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2433 2434 /* Only [-10, 10] is valid */ 2435 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2436 sc->rssi_2ghz_corr = 0; 2437 2438 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2439 val = le16toh(val); 2440 if ((val & 0xff) != 0xff) 2441 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2442 2443 /* Only [-10, 10] is valid */ 2444 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2445 sc->rssi_5ghz_corr = 0; 2446 2447 if (sc->ext_2ghz_lna) 2448 sc->rssi_2ghz_corr -= 14; 2449 if (sc->ext_5ghz_lna) 2450 sc->rssi_5ghz_corr -= 14; 2451 2452 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2453 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2454 2455 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2456 val = le16toh(val); 2457 if ((val & 0xff) != 0xff) 2458 sc->rffreq = val & 0xff; 2459 2460 DPRINTF("RF freq=%d\n", sc->rffreq); 2461 2462 /* read Tx power for all a/b/g channels */ 2463 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2464 /* XXX default Tx power for 802.11a channels */ 2465 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2466 #ifdef RUM_DEBUG 2467 for (i = 0; i < 14; i++) 2468 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2469 #endif 2470 2471 /* read default values for BBP registers */ 2472 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2473 #ifdef RUM_DEBUG 2474 for (i = 0; i < 14; i++) { 2475 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2476 continue; 2477 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2478 sc->bbp_prom[i].val); 2479 } 2480 #endif 2481 } 2482 2483 static int 2484 rum_bbp_wakeup(struct rum_softc *sc) 2485 { 2486 unsigned ntries; 2487 2488 for (ntries = 0; ntries < 100; ntries++) { 2489 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2490 break; 2491 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2492 if (rum_pause(sc, hz / 100)) 2493 break; 2494 } 2495 if (ntries == 100) { 2496 device_printf(sc->sc_dev, 2497 "timeout waiting for BBP/RF to wakeup\n"); 2498 return (ETIMEDOUT); 2499 } 2500 2501 return (0); 2502 } 2503 2504 static int 2505 rum_bbp_init(struct rum_softc *sc) 2506 { 2507 int i, ntries; 2508 2509 /* wait for BBP to be ready */ 2510 for (ntries = 0; ntries < 100; ntries++) { 2511 const uint8_t val = rum_bbp_read(sc, 0); 2512 if (val != 0 && val != 0xff) 2513 break; 2514 if (rum_pause(sc, hz / 100)) 2515 break; 2516 } 2517 if (ntries == 100) { 2518 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2519 return EIO; 2520 } 2521 2522 /* initialize BBP registers to default values */ 2523 for (i = 0; i < nitems(rum_def_bbp); i++) 2524 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2525 2526 /* write vendor-specific BBP values (from EEPROM) */ 2527 for (i = 0; i < 16; i++) { 2528 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2529 continue; 2530 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2531 } 2532 2533 return 0; 2534 } 2535 2536 static void 2537 rum_clr_shkey_regs(struct rum_softc *sc) 2538 { 2539 rum_write(sc, RT2573_SEC_CSR0, 0); 2540 rum_write(sc, RT2573_SEC_CSR1, 0); 2541 rum_write(sc, RT2573_SEC_CSR5, 0); 2542 } 2543 2544 static int 2545 rum_init(struct rum_softc *sc) 2546 { 2547 struct ieee80211com *ic = &sc->sc_ic; 2548 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2549 uint32_t tmp; 2550 int i, ret; 2551 2552 RUM_LOCK(sc); 2553 if (sc->sc_running) { 2554 ret = 0; 2555 goto end; 2556 } 2557 2558 /* initialize MAC registers to default values */ 2559 for (i = 0; i < nitems(rum_def_mac); i++) 2560 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2561 2562 /* reset some WME parameters to default values */ 2563 sc->wme_params[0].wmep_aifsn = 2; 2564 sc->wme_params[0].wmep_logcwmin = 4; 2565 sc->wme_params[0].wmep_logcwmax = 10; 2566 2567 /* set host ready */ 2568 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2569 rum_write(sc, RT2573_MAC_CSR1, 0); 2570 2571 /* wait for BBP/RF to wakeup */ 2572 if ((ret = rum_bbp_wakeup(sc)) != 0) 2573 goto end; 2574 2575 if ((ret = rum_bbp_init(sc)) != 0) 2576 goto end; 2577 2578 /* select default channel */ 2579 rum_select_band(sc, ic->ic_curchan); 2580 rum_select_antenna(sc); 2581 rum_set_chan(sc, ic->ic_curchan); 2582 2583 /* clear STA registers */ 2584 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2585 2586 /* clear security registers (if required) */ 2587 if (sc->sc_clr_shkeys == 0) { 2588 rum_clr_shkey_regs(sc); 2589 sc->sc_clr_shkeys = 1; 2590 } 2591 2592 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2593 2594 /* initialize ASIC */ 2595 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2596 2597 /* 2598 * Allocate Tx and Rx xfer queues. 2599 */ 2600 rum_setup_tx_list(sc); 2601 2602 /* update Rx filter */ 2603 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2604 2605 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2606 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2607 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2608 RT2573_DROP_ACKCTS; 2609 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2610 tmp |= RT2573_DROP_TODS; 2611 if (ic->ic_promisc == 0) 2612 tmp |= RT2573_DROP_NOT_TO_ME; 2613 } 2614 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2615 2616 sc->sc_running = 1; 2617 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2618 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2619 2620 end: RUM_UNLOCK(sc); 2621 2622 if (ret != 0) 2623 rum_stop(sc); 2624 2625 return ret; 2626 } 2627 2628 static void 2629 rum_stop(struct rum_softc *sc) 2630 { 2631 2632 RUM_LOCK(sc); 2633 if (!sc->sc_running) { 2634 RUM_UNLOCK(sc); 2635 return; 2636 } 2637 sc->sc_running = 0; 2638 RUM_UNLOCK(sc); 2639 2640 /* 2641 * Drain the USB transfers, if not already drained: 2642 */ 2643 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2644 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2645 2646 RUM_LOCK(sc); 2647 rum_unsetup_tx_list(sc); 2648 2649 /* disable Rx */ 2650 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2651 2652 /* reset ASIC */ 2653 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2654 rum_write(sc, RT2573_MAC_CSR1, 0); 2655 RUM_UNLOCK(sc); 2656 } 2657 2658 static void 2659 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2660 { 2661 uint16_t reg = RT2573_MCU_CODE_BASE; 2662 usb_error_t err; 2663 2664 /* copy firmware image into NIC */ 2665 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2666 err = rum_write(sc, reg, UGETDW(ucode)); 2667 if (err) { 2668 /* firmware already loaded ? */ 2669 device_printf(sc->sc_dev, "Firmware load " 2670 "failure! (ignored)\n"); 2671 break; 2672 } 2673 } 2674 2675 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2676 if (err != USB_ERR_NORMAL_COMPLETION) { 2677 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2678 usbd_errstr(err)); 2679 } 2680 2681 /* give the chip some time to boot */ 2682 rum_pause(sc, hz / 8); 2683 } 2684 2685 static int 2686 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2687 { 2688 struct ieee80211com *ic = &sc->sc_ic; 2689 usb_error_t uerror; 2690 int exp, delay; 2691 2692 RUM_LOCK_ASSERT(sc); 2693 2694 exp = ic->ic_lintval / bintval; 2695 delay = ic->ic_lintval % bintval; 2696 2697 if (exp > RT2573_TBCN_EXP_MAX) 2698 exp = RT2573_TBCN_EXP_MAX; 2699 if (delay > RT2573_TBCN_DELAY_MAX) 2700 delay = RT2573_TBCN_DELAY_MAX; 2701 2702 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2703 RT2573_TBCN_EXP(exp) | 2704 RT2573_TBCN_DELAY(delay), 2705 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2706 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2707 2708 if (uerror != USB_ERR_NORMAL_COMPLETION) 2709 return (EIO); 2710 2711 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2712 2713 return (0); 2714 } 2715 2716 static int 2717 rum_reset(struct ieee80211vap *vap, u_long cmd) 2718 { 2719 struct ieee80211com *ic = vap->iv_ic; 2720 struct ieee80211_node *ni; 2721 struct rum_softc *sc = ic->ic_softc; 2722 int error; 2723 2724 switch (cmd) { 2725 case IEEE80211_IOC_POWERSAVE: 2726 case IEEE80211_IOC_PROTMODE: 2727 case IEEE80211_IOC_RTSTHRESHOLD: 2728 error = 0; 2729 break; 2730 case IEEE80211_IOC_POWERSAVESLEEP: 2731 ni = ieee80211_ref_node(vap->iv_bss); 2732 2733 RUM_LOCK(sc); 2734 error = rum_set_sleep_time(sc, ni->ni_intval); 2735 if (vap->iv_state == IEEE80211_S_SLEEP) { 2736 /* Use new values for wakeup timer. */ 2737 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2738 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2739 } 2740 /* XXX send reassoc */ 2741 RUM_UNLOCK(sc); 2742 2743 ieee80211_free_node(ni); 2744 break; 2745 default: 2746 error = ENETRESET; 2747 break; 2748 } 2749 2750 return (error); 2751 } 2752 2753 static int 2754 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2755 { 2756 struct ieee80211com *ic = vap->iv_ic; 2757 struct rum_vap *rvp = RUM_VAP(vap); 2758 struct mbuf *m = rvp->bcn_mbuf; 2759 const struct ieee80211_txparam *tp; 2760 struct rum_tx_desc desc; 2761 2762 RUM_LOCK_ASSERT(sc); 2763 2764 if (m == NULL) 2765 return EINVAL; 2766 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2767 return EINVAL; 2768 2769 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2770 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2771 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2772 2773 /* copy the Tx descriptor into NIC memory */ 2774 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2775 RT2573_TX_DESC_SIZE) != 0) 2776 return EIO; 2777 2778 /* copy beacon header and payload into NIC memory */ 2779 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2780 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2781 return EIO; 2782 2783 return 0; 2784 } 2785 2786 static int 2787 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2788 { 2789 struct rum_vap *rvp = RUM_VAP(vap); 2790 struct ieee80211_node *ni = vap->iv_bss; 2791 struct mbuf *m; 2792 2793 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2794 return EINVAL; 2795 2796 m = ieee80211_beacon_alloc(ni); 2797 if (m == NULL) 2798 return ENOMEM; 2799 2800 if (rvp->bcn_mbuf != NULL) 2801 m_freem(rvp->bcn_mbuf); 2802 2803 rvp->bcn_mbuf = m; 2804 2805 return (rum_set_beacon(sc, vap)); 2806 } 2807 2808 static void 2809 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2810 uint8_t rvp_id) 2811 { 2812 struct ieee80211vap *vap = data->vap; 2813 2814 rum_set_beacon(sc, vap); 2815 } 2816 2817 static void 2818 rum_update_beacon(struct ieee80211vap *vap, int item) 2819 { 2820 struct ieee80211com *ic = vap->iv_ic; 2821 struct rum_softc *sc = ic->ic_softc; 2822 struct rum_vap *rvp = RUM_VAP(vap); 2823 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2824 struct ieee80211_node *ni = vap->iv_bss; 2825 struct mbuf *m = rvp->bcn_mbuf; 2826 int mcast = 0; 2827 2828 RUM_LOCK(sc); 2829 if (m == NULL) { 2830 m = ieee80211_beacon_alloc(ni); 2831 if (m == NULL) { 2832 device_printf(sc->sc_dev, 2833 "%s: could not allocate beacon frame\n", __func__); 2834 RUM_UNLOCK(sc); 2835 return; 2836 } 2837 rvp->bcn_mbuf = m; 2838 } 2839 2840 switch (item) { 2841 case IEEE80211_BEACON_ERP: 2842 rum_update_slot(ic); 2843 break; 2844 case IEEE80211_BEACON_TIM: 2845 mcast = 1; /*TODO*/ 2846 break; 2847 default: 2848 break; 2849 } 2850 RUM_UNLOCK(sc); 2851 2852 setbit(bo->bo_flags, item); 2853 ieee80211_beacon_update(ni, m, mcast); 2854 2855 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2856 } 2857 2858 static int 2859 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2860 uint16_t base) 2861 { 2862 2863 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2864 return EIO; 2865 2866 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2867 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2868 k->wk_txmic, 8)) 2869 return EIO; 2870 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2871 k->wk_rxmic, 8)) 2872 return EIO; 2873 } 2874 2875 return 0; 2876 } 2877 2878 static void 2879 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2880 uint8_t rvp_id) 2881 { 2882 struct ieee80211_key *k = &data->key; 2883 uint8_t mode; 2884 2885 if (sc->sc_clr_shkeys == 0) { 2886 rum_clr_shkey_regs(sc); 2887 sc->sc_clr_shkeys = 1; 2888 } 2889 2890 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2891 if (mode == 0) 2892 goto print_err; 2893 2894 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2895 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2896 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2897 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2898 2899 /* Install the key. */ 2900 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2901 goto print_err; 2902 2903 /* Set cipher mode. */ 2904 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2905 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2906 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2907 != 0) 2908 goto print_err; 2909 2910 /* Mark this key as valid. */ 2911 if (rum_setbits(sc, RT2573_SEC_CSR0, 2912 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2913 goto print_err; 2914 2915 return; 2916 2917 print_err: 2918 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2919 __func__, k->wk_keyix, rvp_id); 2920 } 2921 2922 static void 2923 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2924 uint8_t rvp_id) 2925 { 2926 struct ieee80211_key *k = &data->key; 2927 2928 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2929 k->wk_keyix, rvp_id); 2930 rum_clrbits(sc, 2931 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2932 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2933 rum_clrbits(sc, RT2573_SEC_CSR0, 2934 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2935 } 2936 2937 static void 2938 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2939 uint8_t rvp_id) 2940 { 2941 struct ieee80211_key *k = &data->key; 2942 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2943 uint8_t mode; 2944 2945 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2946 if (mode == 0) 2947 goto print_err; 2948 2949 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2950 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2951 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2952 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2953 2954 /* Install the key. */ 2955 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2956 goto print_err; 2957 2958 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2959 buf[IEEE80211_ADDR_LEN] = mode; 2960 2961 /* Set transmitter address and cipher mode. */ 2962 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2963 buf, sizeof buf) != 0) 2964 goto print_err; 2965 2966 /* Enable key table lookup for this vap. */ 2967 if (sc->vap_key_count[rvp_id]++ == 0) 2968 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2969 goto print_err; 2970 2971 /* Mark this key as valid. */ 2972 if (rum_setbits(sc, 2973 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2974 1 << (k->wk_keyix % 32)) != 0) 2975 goto print_err; 2976 2977 return; 2978 2979 print_err: 2980 device_printf(sc->sc_dev, 2981 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2982 rvp_id); 2983 } 2984 2985 static void 2986 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2987 uint8_t rvp_id) 2988 { 2989 struct ieee80211_key *k = &data->key; 2990 2991 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2992 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2993 1 << (k->wk_keyix % 32)); 2994 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 2995 if (--sc->vap_key_count[rvp_id] == 0) 2996 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2997 } 2998 2999 static int 3000 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 3001 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 3002 { 3003 struct rum_softc *sc = vap->iv_ic->ic_softc; 3004 uint8_t i; 3005 3006 if (ieee80211_is_key_unicast(vap, k)) { 3007 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 3008 RUM_LOCK(sc); 3009 for (i = 0; i < RT2573_ADDR_MAX; i++) { 3010 if ((sc->keys_bmap & (1ULL << i)) == 0) { 3011 sc->keys_bmap |= (1ULL << i); 3012 *keyix = i; 3013 break; 3014 } 3015 } 3016 RUM_UNLOCK(sc); 3017 if (i == RT2573_ADDR_MAX) { 3018 device_printf(sc->sc_dev, 3019 "%s: no free space in the key table\n", 3020 __func__); 3021 return 0; 3022 } 3023 } else 3024 *keyix = 0; 3025 } else { 3026 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 3027 } 3028 *rxkeyix = *keyix; 3029 return 1; 3030 } 3031 3032 static int 3033 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3034 { 3035 struct rum_softc *sc = vap->iv_ic->ic_softc; 3036 int group; 3037 3038 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3039 /* Not for us. */ 3040 return 1; 3041 } 3042 3043 group = ieee80211_is_key_global(vap, k); 3044 3045 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3046 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3047 } 3048 3049 static int 3050 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3051 { 3052 struct rum_softc *sc = vap->iv_ic->ic_softc; 3053 int group; 3054 3055 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3056 /* Not for us. */ 3057 return 1; 3058 } 3059 3060 group = ieee80211_is_key_global(vap, k); 3061 3062 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3063 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3064 } 3065 3066 static int 3067 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3068 const struct ieee80211_bpf_params *params) 3069 { 3070 struct rum_softc *sc = ni->ni_ic->ic_softc; 3071 int ret; 3072 3073 RUM_LOCK(sc); 3074 /* prevent management frames from being sent if we're not ready */ 3075 if (!sc->sc_running) { 3076 ret = ENETDOWN; 3077 goto bad; 3078 } 3079 if (sc->tx_nfree < RUM_TX_MINFREE) { 3080 ret = EIO; 3081 goto bad; 3082 } 3083 3084 if (params == NULL) { 3085 /* 3086 * Legacy path; interpret frame contents to decide 3087 * precisely how to send the frame. 3088 */ 3089 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3090 goto bad; 3091 } else { 3092 /* 3093 * Caller supplied explicit parameters to use in 3094 * sending the frame. 3095 */ 3096 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3097 goto bad; 3098 } 3099 RUM_UNLOCK(sc); 3100 3101 return 0; 3102 bad: 3103 RUM_UNLOCK(sc); 3104 m_freem(m); 3105 return ret; 3106 } 3107 3108 static void 3109 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3110 { 3111 struct ieee80211vap *vap = ni->ni_vap; 3112 struct rum_vap *rvp = RUM_VAP(vap); 3113 3114 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3115 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3116 3117 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3118 } 3119 3120 static void 3121 rum_ratectl_timeout(void *arg) 3122 { 3123 struct rum_vap *rvp = arg; 3124 struct ieee80211vap *vap = &rvp->vap; 3125 struct ieee80211com *ic = vap->iv_ic; 3126 3127 ieee80211_runtask(ic, &rvp->ratectl_task); 3128 } 3129 3130 static void 3131 rum_ratectl_task(void *arg, int pending) 3132 { 3133 struct rum_vap *rvp = arg; 3134 struct ieee80211vap *vap = &rvp->vap; 3135 struct rum_softc *sc = vap->iv_ic->ic_softc; 3136 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 3137 int ok[3], fail; 3138 3139 RUM_LOCK(sc); 3140 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3141 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3142 3143 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3144 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3145 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3146 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3147 3148 txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES; 3149 txs->nframes = ok[0] + ok[1] + ok[2] + fail; 3150 txs->nsuccess = txs->nframes - fail; 3151 /* XXX at least */ 3152 txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3153 3154 if (txs->nframes != 0) 3155 ieee80211_ratectl_tx_update(vap, txs); 3156 3157 /* count TX retry-fail as Tx errors */ 3158 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3159 3160 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3161 RUM_UNLOCK(sc); 3162 } 3163 3164 static void 3165 rum_scan_start(struct ieee80211com *ic) 3166 { 3167 struct rum_softc *sc = ic->ic_softc; 3168 3169 RUM_LOCK(sc); 3170 rum_abort_tsf_sync(sc); 3171 rum_set_bssid(sc, ieee80211broadcastaddr); 3172 RUM_UNLOCK(sc); 3173 3174 } 3175 3176 static void 3177 rum_scan_end(struct ieee80211com *ic) 3178 { 3179 struct rum_softc *sc = ic->ic_softc; 3180 3181 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3182 RUM_LOCK(sc); 3183 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3184 rum_enable_tsf_sync(sc); 3185 else 3186 rum_enable_tsf(sc); 3187 rum_set_bssid(sc, sc->sc_bssid); 3188 RUM_UNLOCK(sc); 3189 } 3190 } 3191 3192 static void 3193 rum_set_channel(struct ieee80211com *ic) 3194 { 3195 struct rum_softc *sc = ic->ic_softc; 3196 3197 RUM_LOCK(sc); 3198 rum_set_chan(sc, ic->ic_curchan); 3199 RUM_UNLOCK(sc); 3200 } 3201 3202 static void 3203 rum_getradiocaps(struct ieee80211com *ic, 3204 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3205 { 3206 struct rum_softc *sc = ic->ic_softc; 3207 uint8_t bands[IEEE80211_MODE_BYTES]; 3208 3209 memset(bands, 0, sizeof(bands)); 3210 setbit(bands, IEEE80211_MODE_11B); 3211 setbit(bands, IEEE80211_MODE_11G); 3212 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 3213 3214 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3215 setbit(bands, IEEE80211_MODE_11A); 3216 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3217 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3218 } 3219 } 3220 3221 static int 3222 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3223 { 3224 struct ieee80211com *ic = &sc->sc_ic; 3225 int lna, agc, rssi; 3226 3227 lna = (raw >> 5) & 0x3; 3228 agc = raw & 0x1f; 3229 3230 if (lna == 0) { 3231 /* 3232 * No RSSI mapping 3233 * 3234 * NB: Since RSSI is relative to noise floor, -1 is 3235 * adequate for caller to know error happened. 3236 */ 3237 return -1; 3238 } 3239 3240 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3241 3242 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3243 rssi += sc->rssi_2ghz_corr; 3244 3245 if (lna == 1) 3246 rssi -= 64; 3247 else if (lna == 2) 3248 rssi -= 74; 3249 else if (lna == 3) 3250 rssi -= 90; 3251 } else { 3252 rssi += sc->rssi_5ghz_corr; 3253 3254 if (!sc->ext_5ghz_lna && lna != 1) 3255 rssi += 4; 3256 3257 if (lna == 1) 3258 rssi -= 64; 3259 else if (lna == 2) 3260 rssi -= 86; 3261 else if (lna == 3) 3262 rssi -= 100; 3263 } 3264 return rssi; 3265 } 3266 3267 static int 3268 rum_pause(struct rum_softc *sc, int timeout) 3269 { 3270 3271 usb_pause_mtx(&sc->sc_mtx, timeout); 3272 return (0); 3273 } 3274 3275 static device_method_t rum_methods[] = { 3276 /* Device interface */ 3277 DEVMETHOD(device_probe, rum_match), 3278 DEVMETHOD(device_attach, rum_attach), 3279 DEVMETHOD(device_detach, rum_detach), 3280 DEVMETHOD_END 3281 }; 3282 3283 static driver_t rum_driver = { 3284 .name = "rum", 3285 .methods = rum_methods, 3286 .size = sizeof(struct rum_softc), 3287 }; 3288 3289 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL); 3290 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3291 MODULE_DEPEND(rum, usb, 1, 1, 1); 3292 MODULE_VERSION(rum, 1); 3293 USB_PNP_HOST_INFO(rum_devs); 3294