xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 
2 /*-
3  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
5  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
6  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 /*-
23  * Ralink Technology RT2501USB/RT2601USB chipset driver
24  * http://www.ralinktech.com.tw/
25  */
26 
27 #include "opt_wlan.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 #endif
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_regdomain.h>
63 #include <net80211/ieee80211_radiotap.h>
64 #include <net80211/ieee80211_ratectl.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include "usbdevs.h"
69 
70 #define	USB_DEBUG_VAR rum_debug
71 #include <dev/usb/usb_debug.h>
72 
73 #include <dev/usb/wlan/if_rumreg.h>
74 #include <dev/usb/wlan/if_rumvar.h>
75 #include <dev/usb/wlan/if_rumfw.h>
76 
77 #ifdef USB_DEBUG
78 static int rum_debug = 0;
79 
80 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
81     "USB rum");
82 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
83     "Debug level");
84 #endif
85 
86 static const STRUCT_USB_HOST_ID rum_devs[] = {
87 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
88     RUM_DEV(ABOCOM, HWU54DM),
89     RUM_DEV(ABOCOM, RT2573_2),
90     RUM_DEV(ABOCOM, RT2573_3),
91     RUM_DEV(ABOCOM, RT2573_4),
92     RUM_DEV(ABOCOM, WUG2700),
93     RUM_DEV(AMIT, CGWLUSB2GO),
94     RUM_DEV(ASUS, RT2573_1),
95     RUM_DEV(ASUS, RT2573_2),
96     RUM_DEV(BELKIN, F5D7050A),
97     RUM_DEV(BELKIN, F5D9050V3),
98     RUM_DEV(CISCOLINKSYS, WUSB54GC),
99     RUM_DEV(CISCOLINKSYS, WUSB54GR),
100     RUM_DEV(CONCEPTRONIC2, C54RU2),
101     RUM_DEV(COREGA, CGWLUSB2GL),
102     RUM_DEV(COREGA, CGWLUSB2GPX),
103     RUM_DEV(DICKSMITH, CWD854F),
104     RUM_DEV(DICKSMITH, RT2573),
105     RUM_DEV(EDIMAX, EW7318USG),
106     RUM_DEV(DLINK2, DWLG122C1),
107     RUM_DEV(DLINK2, WUA1340),
108     RUM_DEV(DLINK2, DWA111),
109     RUM_DEV(DLINK2, DWA110),
110     RUM_DEV(GIGABYTE, GNWB01GS),
111     RUM_DEV(GIGABYTE, GNWI05GS),
112     RUM_DEV(GIGASET, RT2573),
113     RUM_DEV(GOODWAY, RT2573),
114     RUM_DEV(GUILLEMOT, HWGUSB254LB),
115     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
116     RUM_DEV(HUAWEI3COM, WUB320G),
117     RUM_DEV(MELCO, G54HP),
118     RUM_DEV(MELCO, SG54HP),
119     RUM_DEV(MELCO, SG54HG),
120     RUM_DEV(MELCO, WLIUCG),
121     RUM_DEV(MELCO, WLRUCG),
122     RUM_DEV(MELCO, WLRUCGAOSS),
123     RUM_DEV(MSI, RT2573_1),
124     RUM_DEV(MSI, RT2573_2),
125     RUM_DEV(MSI, RT2573_3),
126     RUM_DEV(MSI, RT2573_4),
127     RUM_DEV(NOVATECH, RT2573),
128     RUM_DEV(PLANEX2, GWUS54HP),
129     RUM_DEV(PLANEX2, GWUS54MINI2),
130     RUM_DEV(PLANEX2, GWUSMM),
131     RUM_DEV(QCOM, RT2573),
132     RUM_DEV(QCOM, RT2573_2),
133     RUM_DEV(QCOM, RT2573_3),
134     RUM_DEV(RALINK, RT2573),
135     RUM_DEV(RALINK, RT2573_2),
136     RUM_DEV(RALINK, RT2671),
137     RUM_DEV(SITECOMEU, WL113R2),
138     RUM_DEV(SITECOMEU, WL172),
139     RUM_DEV(SPARKLAN, RT2573),
140     RUM_DEV(SURECOM, RT2573),
141 #undef RUM_DEV
142 };
143 
144 static device_probe_t rum_match;
145 static device_attach_t rum_attach;
146 static device_detach_t rum_detach;
147 
148 static usb_callback_t rum_bulk_read_callback;
149 static usb_callback_t rum_bulk_write_callback;
150 
151 static usb_error_t	rum_do_request(struct rum_softc *sc,
152 			    struct usb_device_request *req, void *data);
153 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
154 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
155 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
156 			    int, const uint8_t [IEEE80211_ADDR_LEN],
157 			    const uint8_t [IEEE80211_ADDR_LEN]);
158 static void		rum_vap_delete(struct ieee80211vap *);
159 static void		rum_cmdq_cb(void *, int);
160 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
161 			    size_t, uint8_t, CMD_FUNC_PROTO);
162 static void		rum_tx_free(struct rum_tx_data *, int);
163 static void		rum_setup_tx_list(struct rum_softc *);
164 static void		rum_reset_tx_list(struct rum_softc *,
165 			    struct ieee80211vap *);
166 static void		rum_unsetup_tx_list(struct rum_softc *);
167 static void		rum_beacon_miss(struct ieee80211vap *);
168 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
169 			    struct mbuf *, int,
170 			    const struct ieee80211_rx_stats *, int, int);
171 static int		rum_set_power_state(struct rum_softc *, int);
172 static int		rum_newstate(struct ieee80211vap *,
173 			    enum ieee80211_state, int);
174 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
175 static void		rum_setup_tx_desc(struct rum_softc *,
176 			    struct rum_tx_desc *, struct ieee80211_key *,
177 			    uint32_t, uint8_t, uint8_t, int, int, int);
178 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
179 			    struct ieee80211_node *,
180 			    const struct ieee80211_key *);
181 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
182 			    struct ieee80211_node *);
183 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
184 			    struct ieee80211_node *,
185 			    const struct ieee80211_bpf_params *);
186 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
187 			    struct ieee80211_node *);
188 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
189 static void		rum_start(struct rum_softc *);
190 static void		rum_parent(struct ieee80211com *);
191 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
192 			    int);
193 static uint32_t		rum_read(struct rum_softc *, uint16_t);
194 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
195 			    int);
196 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
197 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
198 			    size_t);
199 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
200 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
201 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
202 			    uint32_t);
203 static int		rum_bbp_busy(struct rum_softc *);
204 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
205 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
206 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
207 static void		rum_select_antenna(struct rum_softc *);
208 static void		rum_enable_mrr(struct rum_softc *);
209 static void		rum_set_txpreamble(struct rum_softc *);
210 static void		rum_set_basicrates(struct rum_softc *);
211 static void		rum_select_band(struct rum_softc *,
212 			    struct ieee80211_channel *);
213 static void		rum_set_chan(struct rum_softc *,
214 			    struct ieee80211_channel *);
215 static void		rum_set_maxretry(struct rum_softc *,
216 			    struct ieee80211vap *);
217 static int		rum_enable_tsf_sync(struct rum_softc *);
218 static void		rum_enable_tsf(struct rum_softc *);
219 static void		rum_abort_tsf_sync(struct rum_softc *);
220 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
221 static void		rum_update_slot_cb(struct rum_softc *,
222 			    union sec_param *, uint8_t);
223 static void		rum_update_slot(struct ieee80211com *);
224 static int		rum_wme_update(struct ieee80211com *);
225 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
226 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
227 static void		rum_update_mcast(struct ieee80211com *);
228 static void		rum_update_promisc(struct ieee80211com *);
229 static void		rum_setpromisc(struct rum_softc *);
230 static const char	*rum_get_rf(int);
231 static void		rum_read_eeprom(struct rum_softc *);
232 static int		rum_bbp_wakeup(struct rum_softc *);
233 static int		rum_bbp_init(struct rum_softc *);
234 static void		rum_clr_shkey_regs(struct rum_softc *);
235 static int		rum_init(struct rum_softc *);
236 static void		rum_stop(struct rum_softc *);
237 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
238 			    size_t);
239 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
240 static int		rum_reset(struct ieee80211vap *, u_long);
241 static int		rum_set_beacon(struct rum_softc *,
242 			    struct ieee80211vap *);
243 static int		rum_alloc_beacon(struct rum_softc *,
244 			    struct ieee80211vap *);
245 static void		rum_update_beacon_cb(struct rum_softc *,
246 			    union sec_param *, uint8_t);
247 static void		rum_update_beacon(struct ieee80211vap *, int);
248 static int		rum_common_key_set(struct rum_softc *,
249 			    struct ieee80211_key *, uint16_t);
250 static void		rum_group_key_set_cb(struct rum_softc *,
251 			    union sec_param *, uint8_t);
252 static void		rum_group_key_del_cb(struct rum_softc *,
253 			    union sec_param *, uint8_t);
254 static void		rum_pair_key_set_cb(struct rum_softc *,
255 			    union sec_param *, uint8_t);
256 static void		rum_pair_key_del_cb(struct rum_softc *,
257 			    union sec_param *, uint8_t);
258 static int		rum_key_alloc(struct ieee80211vap *,
259 			    struct ieee80211_key *, ieee80211_keyix *,
260 			    ieee80211_keyix *);
261 static int		rum_key_set(struct ieee80211vap *,
262 			    const struct ieee80211_key *);
263 static int		rum_key_delete(struct ieee80211vap *,
264 			    const struct ieee80211_key *);
265 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
266 			    const struct ieee80211_bpf_params *);
267 static void		rum_scan_start(struct ieee80211com *);
268 static void		rum_scan_end(struct ieee80211com *);
269 static void		rum_set_channel(struct ieee80211com *);
270 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
271 			    struct ieee80211_channel[]);
272 static int		rum_get_rssi(struct rum_softc *, uint8_t);
273 static void		rum_ratectl_start(struct rum_softc *,
274 			    struct ieee80211_node *);
275 static void		rum_ratectl_timeout(void *);
276 static void		rum_ratectl_task(void *, int);
277 static int		rum_pause(struct rum_softc *, int);
278 
279 static const struct {
280 	uint32_t	reg;
281 	uint32_t	val;
282 } rum_def_mac[] = {
283 	{ RT2573_TXRX_CSR0,  0x025fb032 },
284 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
285 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
286 	{ RT2573_TXRX_CSR3,  0x00858687 },
287 	{ RT2573_TXRX_CSR7,  0x2e31353b },
288 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
289 	{ RT2573_TXRX_CSR15, 0x0000000f },
290 	{ RT2573_MAC_CSR6,   0x00000fff },
291 	{ RT2573_MAC_CSR8,   0x016c030a },
292 	{ RT2573_MAC_CSR10,  0x00000718 },
293 	{ RT2573_MAC_CSR12,  0x00000004 },
294 	{ RT2573_MAC_CSR13,  0x00007f00 },
295 	{ RT2573_SEC_CSR2,   0x00000000 },
296 	{ RT2573_SEC_CSR3,   0x00000000 },
297 	{ RT2573_SEC_CSR4,   0x00000000 },
298 	{ RT2573_PHY_CSR1,   0x000023b0 },
299 	{ RT2573_PHY_CSR5,   0x00040a06 },
300 	{ RT2573_PHY_CSR6,   0x00080606 },
301 	{ RT2573_PHY_CSR7,   0x00000408 },
302 	{ RT2573_AIFSN_CSR,  0x00002273 },
303 	{ RT2573_CWMIN_CSR,  0x00002344 },
304 	{ RT2573_CWMAX_CSR,  0x000034aa }
305 };
306 
307 static const struct {
308 	uint8_t	reg;
309 	uint8_t	val;
310 } rum_def_bbp[] = {
311 	{   3, 0x80 },
312 	{  15, 0x30 },
313 	{  17, 0x20 },
314 	{  21, 0xc8 },
315 	{  22, 0x38 },
316 	{  23, 0x06 },
317 	{  24, 0xfe },
318 	{  25, 0x0a },
319 	{  26, 0x0d },
320 	{  32, 0x0b },
321 	{  34, 0x12 },
322 	{  37, 0x07 },
323 	{  39, 0xf8 },
324 	{  41, 0x60 },
325 	{  53, 0x10 },
326 	{  54, 0x18 },
327 	{  60, 0x10 },
328 	{  61, 0x04 },
329 	{  62, 0x04 },
330 	{  75, 0xfe },
331 	{  86, 0xfe },
332 	{  88, 0xfe },
333 	{  90, 0x0f },
334 	{  99, 0x00 },
335 	{ 102, 0x16 },
336 	{ 107, 0x04 }
337 };
338 
339 static const uint8_t rum_chan_5ghz[] =
340 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
341 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
342 	  149, 153, 157, 161, 165 };
343 
344 static const struct rfprog {
345 	uint8_t		chan;
346 	uint32_t	r1, r2, r3, r4;
347 }  rum_rf5226[] = {
348 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
349 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
350 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
351 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
352 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
353 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
354 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
355 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
356 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
357 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
358 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
359 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
360 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
361 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
362 
363 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
364 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
365 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
366 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
367 
368 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
369 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
370 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
371 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
372 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
373 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
374 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
375 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
376 
377 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
378 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
379 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
380 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
381 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
382 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
383 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
384 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
385 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
386 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
387 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
388 
389 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
390 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
391 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
392 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
393 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
394 }, rum_rf5225[] = {
395 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
396 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
397 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
398 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
399 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
400 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
401 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
402 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
403 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
404 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
405 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
406 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
407 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
408 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
409 
410 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
411 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
412 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
413 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
414 
415 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
416 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
417 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
418 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
419 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
420 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
421 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
422 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
423 
424 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
425 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
426 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
427 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
428 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
429 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
430 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
431 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
432 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
433 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
434 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
435 
436 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
437 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
438 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
439 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
440 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
441 };
442 
443 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
444 	[RUM_BULK_WR] = {
445 		.type = UE_BULK,
446 		.endpoint = UE_ADDR_ANY,
447 		.direction = UE_DIR_OUT,
448 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
449 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
450 		.callback = rum_bulk_write_callback,
451 		.timeout = 5000,	/* ms */
452 	},
453 	[RUM_BULK_RD] = {
454 		.type = UE_BULK,
455 		.endpoint = UE_ADDR_ANY,
456 		.direction = UE_DIR_IN,
457 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
458 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
459 		.callback = rum_bulk_read_callback,
460 	},
461 };
462 
463 static int
464 rum_match(device_t self)
465 {
466 	struct usb_attach_arg *uaa = device_get_ivars(self);
467 
468 	if (uaa->usb_mode != USB_MODE_HOST)
469 		return (ENXIO);
470 	if (uaa->info.bConfigIndex != 0)
471 		return (ENXIO);
472 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
473 		return (ENXIO);
474 
475 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
476 }
477 
478 static int
479 rum_attach(device_t self)
480 {
481 	struct usb_attach_arg *uaa = device_get_ivars(self);
482 	struct rum_softc *sc = device_get_softc(self);
483 	struct ieee80211com *ic = &sc->sc_ic;
484 	uint32_t tmp;
485 	uint8_t iface_index;
486 	int error, ntries;
487 
488 	device_set_usb_desc(self);
489 	sc->sc_udev = uaa->device;
490 	sc->sc_dev = self;
491 
492 	RUM_LOCK_INIT(sc);
493 	RUM_CMDQ_LOCK_INIT(sc);
494 	mbufq_init(&sc->sc_snd, ifqmaxlen);
495 
496 	iface_index = RT2573_IFACE_INDEX;
497 	error = usbd_transfer_setup(uaa->device, &iface_index,
498 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
499 	if (error) {
500 		device_printf(self, "could not allocate USB transfers, "
501 		    "err=%s\n", usbd_errstr(error));
502 		goto detach;
503 	}
504 
505 	RUM_LOCK(sc);
506 	/* retrieve RT2573 rev. no */
507 	for (ntries = 0; ntries < 100; ntries++) {
508 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
509 			break;
510 		if (rum_pause(sc, hz / 100))
511 			break;
512 	}
513 	if (ntries == 100) {
514 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
515 		RUM_UNLOCK(sc);
516 		goto detach;
517 	}
518 
519 	/* retrieve MAC address and various other things from EEPROM */
520 	rum_read_eeprom(sc);
521 
522 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
523 	    tmp, rum_get_rf(sc->rf_rev));
524 
525 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
526 	RUM_UNLOCK(sc);
527 
528 	ic->ic_softc = sc;
529 	ic->ic_name = device_get_nameunit(self);
530 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
531 
532 	/* set device capabilities */
533 	ic->ic_caps =
534 	      IEEE80211_C_STA		/* station mode supported */
535 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
536 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
537 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
538 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
539 	    | IEEE80211_C_TXPMGT	/* tx power management */
540 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
541 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
542 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
543 	    | IEEE80211_C_WPA		/* 802.11i */
544 	    | IEEE80211_C_WME		/* 802.11e */
545 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
546 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
547 	    ;
548 
549 	ic->ic_cryptocaps =
550 	    IEEE80211_CRYPTO_WEP |
551 	    IEEE80211_CRYPTO_AES_CCM |
552 	    IEEE80211_CRYPTO_TKIPMIC |
553 	    IEEE80211_CRYPTO_TKIP;
554 
555 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
556 	    ic->ic_channels);
557 
558 	ieee80211_ifattach(ic);
559 	ic->ic_update_promisc = rum_update_promisc;
560 	ic->ic_raw_xmit = rum_raw_xmit;
561 	ic->ic_scan_start = rum_scan_start;
562 	ic->ic_scan_end = rum_scan_end;
563 	ic->ic_set_channel = rum_set_channel;
564 	ic->ic_getradiocaps = rum_getradiocaps;
565 	ic->ic_transmit = rum_transmit;
566 	ic->ic_parent = rum_parent;
567 	ic->ic_vap_create = rum_vap_create;
568 	ic->ic_vap_delete = rum_vap_delete;
569 	ic->ic_updateslot = rum_update_slot;
570 	ic->ic_wme.wme_update = rum_wme_update;
571 	ic->ic_update_mcast = rum_update_mcast;
572 
573 	ieee80211_radiotap_attach(ic,
574 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
575 		RT2573_TX_RADIOTAP_PRESENT,
576 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
577 		RT2573_RX_RADIOTAP_PRESENT);
578 
579 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
580 
581 	if (bootverbose)
582 		ieee80211_announce(ic);
583 
584 	return (0);
585 
586 detach:
587 	rum_detach(self);
588 	return (ENXIO);			/* failure */
589 }
590 
591 static int
592 rum_detach(device_t self)
593 {
594 	struct rum_softc *sc = device_get_softc(self);
595 	struct ieee80211com *ic = &sc->sc_ic;
596 
597 	/* Prevent further ioctls */
598 	RUM_LOCK(sc);
599 	sc->sc_detached = 1;
600 	RUM_UNLOCK(sc);
601 
602 	/* stop all USB transfers */
603 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
604 
605 	/* free TX list, if any */
606 	RUM_LOCK(sc);
607 	rum_unsetup_tx_list(sc);
608 	RUM_UNLOCK(sc);
609 
610 	if (ic->ic_softc == sc) {
611 		ieee80211_draintask(ic, &sc->cmdq_task);
612 		ieee80211_ifdetach(ic);
613 	}
614 
615 	mbufq_drain(&sc->sc_snd);
616 	RUM_CMDQ_LOCK_DESTROY(sc);
617 	RUM_LOCK_DESTROY(sc);
618 
619 	return (0);
620 }
621 
622 static usb_error_t
623 rum_do_request(struct rum_softc *sc,
624     struct usb_device_request *req, void *data)
625 {
626 	usb_error_t err;
627 	int ntries = 10;
628 
629 	while (ntries--) {
630 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
631 		    req, data, 0, NULL, 250 /* ms */);
632 		if (err == 0)
633 			break;
634 
635 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
636 		    usbd_errstr(err));
637 		if (rum_pause(sc, hz / 100))
638 			break;
639 	}
640 	return (err);
641 }
642 
643 static usb_error_t
644 rum_do_mcu_request(struct rum_softc *sc, int request)
645 {
646 	struct usb_device_request req;
647 
648 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
649 	req.bRequest = RT2573_MCU_CNTL;
650 	USETW(req.wValue, request);
651 	USETW(req.wIndex, 0);
652 	USETW(req.wLength, 0);
653 
654 	return (rum_do_request(sc, &req, NULL));
655 }
656 
657 static struct ieee80211vap *
658 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
659     enum ieee80211_opmode opmode, int flags,
660     const uint8_t bssid[IEEE80211_ADDR_LEN],
661     const uint8_t mac[IEEE80211_ADDR_LEN])
662 {
663 	struct rum_softc *sc = ic->ic_softc;
664 	struct rum_vap *rvp;
665 	struct ieee80211vap *vap;
666 
667 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
668 		return NULL;
669 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
670 	vap = &rvp->vap;
671 	/* enable s/w bmiss handling for sta mode */
672 
673 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
674 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
675 		/* out of memory */
676 		free(rvp, M_80211_VAP);
677 		return (NULL);
678 	}
679 
680 	/* override state transition machine */
681 	rvp->newstate = vap->iv_newstate;
682 	vap->iv_newstate = rum_newstate;
683 	vap->iv_key_alloc = rum_key_alloc;
684 	vap->iv_key_set = rum_key_set;
685 	vap->iv_key_delete = rum_key_delete;
686 	vap->iv_update_beacon = rum_update_beacon;
687 	vap->iv_reset = rum_reset;
688 	vap->iv_max_aid = RT2573_ADDR_MAX;
689 
690 	if (opmode == IEEE80211_M_STA) {
691 		/*
692 		 * Move device to the sleep state when
693 		 * beacon is received and there is no data for us.
694 		 *
695 		 * Used only for IEEE80211_S_SLEEP state.
696 		 */
697 		rvp->recv_mgmt = vap->iv_recv_mgmt;
698 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
699 
700 		/* Ignored while sleeping. */
701 		rvp->bmiss = vap->iv_bmiss;
702 		vap->iv_bmiss = rum_beacon_miss;
703 	}
704 
705 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
706 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
707 	ieee80211_ratectl_init(vap);
708 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
709 	/* complete setup */
710 	ieee80211_vap_attach(vap, ieee80211_media_change,
711 	    ieee80211_media_status, mac);
712 	ic->ic_opmode = opmode;
713 	return vap;
714 }
715 
716 static void
717 rum_vap_delete(struct ieee80211vap *vap)
718 {
719 	struct rum_vap *rvp = RUM_VAP(vap);
720 	struct ieee80211com *ic = vap->iv_ic;
721 	struct rum_softc *sc = ic->ic_softc;
722 	int i;
723 
724 	/* Put vap into INIT state. */
725 	ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
726 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
727 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
728 
729 	RUM_LOCK(sc);
730 	/* Cancel any unfinished Tx. */
731 	rum_reset_tx_list(sc, vap);
732 	RUM_UNLOCK(sc);
733 
734 	usb_callout_drain(&rvp->ratectl_ch);
735 	ieee80211_draintask(ic, &rvp->ratectl_task);
736 	ieee80211_ratectl_deinit(vap);
737 	ieee80211_vap_detach(vap);
738 	m_freem(rvp->bcn_mbuf);
739 	free(rvp, M_80211_VAP);
740 }
741 
742 static void
743 rum_cmdq_cb(void *arg, int pending)
744 {
745 	struct rum_softc *sc = arg;
746 	struct rum_cmdq *rc;
747 
748 	RUM_CMDQ_LOCK(sc);
749 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
750 		rc = &sc->cmdq[sc->cmdq_first];
751 		RUM_CMDQ_UNLOCK(sc);
752 
753 		RUM_LOCK(sc);
754 		rc->func(sc, &rc->data, rc->rvp_id);
755 		RUM_UNLOCK(sc);
756 
757 		RUM_CMDQ_LOCK(sc);
758 		memset(rc, 0, sizeof (*rc));
759 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
760 	}
761 	RUM_CMDQ_UNLOCK(sc);
762 }
763 
764 static int
765 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
766     uint8_t rvp_id, CMD_FUNC_PROTO)
767 {
768 	struct ieee80211com *ic = &sc->sc_ic;
769 
770 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
771 
772 	RUM_CMDQ_LOCK(sc);
773 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
774 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
775 		RUM_CMDQ_UNLOCK(sc);
776 
777 		return EAGAIN;
778 	}
779 
780 	if (ptr != NULL)
781 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
782 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
783 	sc->cmdq[sc->cmdq_last].func = func;
784 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
785 	RUM_CMDQ_UNLOCK(sc);
786 
787 	ieee80211_runtask(ic, &sc->cmdq_task);
788 
789 	return 0;
790 }
791 
792 static void
793 rum_tx_free(struct rum_tx_data *data, int txerr)
794 {
795 	struct rum_softc *sc = data->sc;
796 
797 	if (data->m != NULL) {
798 		ieee80211_tx_complete(data->ni, data->m, txerr);
799 		data->m = NULL;
800 		data->ni = NULL;
801 	}
802 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
803 	sc->tx_nfree++;
804 }
805 
806 static void
807 rum_setup_tx_list(struct rum_softc *sc)
808 {
809 	struct rum_tx_data *data;
810 	int i;
811 
812 	sc->tx_nfree = 0;
813 	STAILQ_INIT(&sc->tx_q);
814 	STAILQ_INIT(&sc->tx_free);
815 
816 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
817 		data = &sc->tx_data[i];
818 
819 		data->sc = sc;
820 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
821 		sc->tx_nfree++;
822 	}
823 }
824 
825 static void
826 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
827 {
828 	struct rum_tx_data *data, *tmp;
829 
830 	KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
831 
832 	STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
833 		if (data->ni != NULL && data->ni->ni_vap == vap) {
834 			ieee80211_free_node(data->ni);
835 			data->ni = NULL;
836 
837 			KASSERT(data->m != NULL, ("%s: m is NULL\n",
838 			    __func__));
839 			m_freem(data->m);
840 			data->m = NULL;
841 
842 			STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
843 			STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
844 			sc->tx_nfree++;
845 		}
846 	}
847 }
848 
849 static void
850 rum_unsetup_tx_list(struct rum_softc *sc)
851 {
852 	struct rum_tx_data *data;
853 	int i;
854 
855 	/* make sure any subsequent use of the queues will fail */
856 	sc->tx_nfree = 0;
857 	STAILQ_INIT(&sc->tx_q);
858 	STAILQ_INIT(&sc->tx_free);
859 
860 	/* free up all node references and mbufs */
861 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
862 		data = &sc->tx_data[i];
863 
864 		if (data->m != NULL) {
865 			m_freem(data->m);
866 			data->m = NULL;
867 		}
868 		if (data->ni != NULL) {
869 			ieee80211_free_node(data->ni);
870 			data->ni = NULL;
871 		}
872 	}
873 }
874 
875 static void
876 rum_beacon_miss(struct ieee80211vap *vap)
877 {
878 	struct ieee80211com *ic = vap->iv_ic;
879 	struct rum_softc *sc = ic->ic_softc;
880 	struct rum_vap *rvp = RUM_VAP(vap);
881 	int sleep;
882 
883 	RUM_LOCK(sc);
884 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
885 		DPRINTFN(12, "dropping 'sleeping' bit, "
886 		    "device must be awake now\n");
887 
888 		sc->sc_sleeping = 0;
889 	}
890 
891 	sleep = sc->sc_sleeping;
892 	RUM_UNLOCK(sc);
893 
894 	if (!sleep)
895 		rvp->bmiss(vap);
896 #ifdef USB_DEBUG
897 	else
898 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
899 #endif
900 }
901 
902 static void
903 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
904     const struct ieee80211_rx_stats *rxs,
905     int rssi, int nf)
906 {
907 	struct ieee80211vap *vap = ni->ni_vap;
908 	struct rum_softc *sc = vap->iv_ic->ic_softc;
909 	struct rum_vap *rvp = RUM_VAP(vap);
910 
911 	if (vap->iv_state == IEEE80211_S_SLEEP &&
912 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
913 		RUM_LOCK(sc);
914 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
915 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
916 		    sc->last_rx_flags);
917 
918 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
919 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
920 			/*
921 			 * Put it to sleep here; in case if there is a data
922 			 * for us, iv_recv_mgmt() will wakeup the device via
923 			 * SLEEP -> RUN state transition.
924 			 */
925 			rum_set_power_state(sc, 1);
926 		}
927 		RUM_UNLOCK(sc);
928 	}
929 
930 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
931 }
932 
933 static int
934 rum_set_power_state(struct rum_softc *sc, int sleep)
935 {
936 	usb_error_t uerror;
937 
938 	RUM_LOCK_ASSERT(sc);
939 
940 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
941 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
942 
943 	uerror = rum_do_mcu_request(sc,
944 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
945 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
946 		device_printf(sc->sc_dev,
947 		    "%s: could not change power state: %s\n",
948 		    __func__, usbd_errstr(uerror));
949 		return (EIO);
950 	}
951 
952 	sc->sc_sleeping = !!sleep;
953 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
954 
955 	return (0);
956 }
957 
958 static int
959 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
960 {
961 	struct rum_vap *rvp = RUM_VAP(vap);
962 	struct ieee80211com *ic = vap->iv_ic;
963 	struct rum_softc *sc = ic->ic_softc;
964 	const struct ieee80211_txparam *tp;
965 	enum ieee80211_state ostate;
966 	struct ieee80211_node *ni;
967 	usb_error_t uerror;
968 	int ret = 0;
969 
970 	ostate = vap->iv_state;
971 	DPRINTF("%s -> %s\n",
972 		ieee80211_state_name[ostate],
973 		ieee80211_state_name[nstate]);
974 
975 	IEEE80211_UNLOCK(ic);
976 	RUM_LOCK(sc);
977 	usb_callout_stop(&rvp->ratectl_ch);
978 
979 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
980 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
981 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
982 
983 		/*
984 		 * Ignore any errors;
985 		 * any subsequent TX will wakeup it anyway
986 		 */
987 		(void) rum_set_power_state(sc, 0);
988 	}
989 
990 	switch (nstate) {
991 	case IEEE80211_S_INIT:
992 		if (ostate == IEEE80211_S_RUN)
993 			rum_abort_tsf_sync(sc);
994 
995 		break;
996 
997 	case IEEE80211_S_RUN:
998 		if (ostate == IEEE80211_S_SLEEP)
999 			break;		/* already handled */
1000 
1001 		ni = ieee80211_ref_node(vap->iv_bss);
1002 
1003 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1004 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
1005 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
1006 				ret = EINVAL;
1007 				goto run_fail;
1008 			}
1009 			rum_update_slot_cb(sc, NULL, 0);
1010 			rum_enable_mrr(sc);
1011 			rum_set_txpreamble(sc);
1012 			rum_set_basicrates(sc);
1013 			rum_set_maxretry(sc, vap);
1014 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1015 			rum_set_bssid(sc, sc->sc_bssid);
1016 		}
1017 
1018 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1019 		    vap->iv_opmode == IEEE80211_M_IBSS) {
1020 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
1021 				goto run_fail;
1022 		}
1023 
1024 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
1025 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
1026 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
1027 				goto run_fail;
1028 		} else
1029 			rum_enable_tsf(sc);
1030 
1031 		/* enable automatic rate adaptation */
1032 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1033 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1034 			rum_ratectl_start(sc, ni);
1035 run_fail:
1036 		ieee80211_free_node(ni);
1037 		break;
1038 	case IEEE80211_S_SLEEP:
1039 		/* Implemented for STA mode only. */
1040 		if (vap->iv_opmode != IEEE80211_M_STA)
1041 			break;
1042 
1043 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1044 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1045 			ret = EIO;
1046 			break;
1047 		}
1048 
1049 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1050 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1051 			ret = EIO;
1052 			break;
1053 		}
1054 
1055 		ret = rum_set_power_state(sc, 1);
1056 		if (ret != 0) {
1057 			device_printf(sc->sc_dev,
1058 			    "%s: could not move to the SLEEP state: %s\n",
1059 			    __func__, usbd_errstr(uerror));
1060 		}
1061 		break;
1062 	default:
1063 		break;
1064 	}
1065 	RUM_UNLOCK(sc);
1066 	IEEE80211_LOCK(ic);
1067 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1068 }
1069 
1070 static void
1071 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1072 {
1073 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1074 	struct ieee80211vap *vap;
1075 	struct rum_tx_data *data;
1076 	struct mbuf *m;
1077 	struct usb_page_cache *pc;
1078 	unsigned len;
1079 	int actlen, sumlen;
1080 
1081 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1082 
1083 	switch (USB_GET_STATE(xfer)) {
1084 	case USB_ST_TRANSFERRED:
1085 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1086 
1087 		/* free resources */
1088 		data = usbd_xfer_get_priv(xfer);
1089 		rum_tx_free(data, 0);
1090 		usbd_xfer_set_priv(xfer, NULL);
1091 
1092 		/* FALLTHROUGH */
1093 	case USB_ST_SETUP:
1094 tr_setup:
1095 		data = STAILQ_FIRST(&sc->tx_q);
1096 		if (data) {
1097 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1098 			m = data->m;
1099 
1100 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1101 				DPRINTFN(0, "data overflow, %u bytes\n",
1102 				    m->m_pkthdr.len);
1103 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1104 			}
1105 			pc = usbd_xfer_get_frame(xfer, 0);
1106 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1107 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1108 			    m->m_pkthdr.len);
1109 
1110 			vap = data->ni->ni_vap;
1111 			if (ieee80211_radiotap_active_vap(vap)) {
1112 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1113 
1114 				tap->wt_flags = 0;
1115 				tap->wt_rate = data->rate;
1116 				tap->wt_antenna = sc->tx_ant;
1117 
1118 				ieee80211_radiotap_tx(vap, m);
1119 			}
1120 
1121 			/* align end on a 4-bytes boundary */
1122 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1123 			if ((len % 64) == 0)
1124 				len += 4;
1125 
1126 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1127 			    m->m_pkthdr.len, len);
1128 
1129 			usbd_xfer_set_frame_len(xfer, 0, len);
1130 			usbd_xfer_set_priv(xfer, data);
1131 
1132 			usbd_transfer_submit(xfer);
1133 		}
1134 		rum_start(sc);
1135 		break;
1136 
1137 	default:			/* Error */
1138 		DPRINTFN(11, "transfer error, %s\n",
1139 		    usbd_errstr(error));
1140 
1141 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1142 		data = usbd_xfer_get_priv(xfer);
1143 		if (data != NULL) {
1144 			rum_tx_free(data, error);
1145 			usbd_xfer_set_priv(xfer, NULL);
1146 		}
1147 
1148 		if (error != USB_ERR_CANCELLED) {
1149 			if (error == USB_ERR_TIMEOUT)
1150 				device_printf(sc->sc_dev, "device timeout\n");
1151 
1152 			/*
1153 			 * Try to clear stall first, also if other
1154 			 * errors occur, hence clearing stall
1155 			 * introduces a 50 ms delay:
1156 			 */
1157 			usbd_xfer_set_stall(xfer);
1158 			goto tr_setup;
1159 		}
1160 		break;
1161 	}
1162 }
1163 
1164 static void
1165 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1166 {
1167 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1168 	struct ieee80211com *ic = &sc->sc_ic;
1169 	struct ieee80211_frame_min *wh;
1170 	struct ieee80211_node *ni;
1171 	struct mbuf *m = NULL;
1172 	struct usb_page_cache *pc;
1173 	uint32_t flags;
1174 	uint8_t rssi = 0;
1175 	int len;
1176 
1177 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1178 
1179 	switch (USB_GET_STATE(xfer)) {
1180 	case USB_ST_TRANSFERRED:
1181 
1182 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1183 
1184 		if (len < RT2573_RX_DESC_SIZE) {
1185 			DPRINTF("%s: xfer too short %d\n",
1186 			    device_get_nameunit(sc->sc_dev), len);
1187 			counter_u64_add(ic->ic_ierrors, 1);
1188 			goto tr_setup;
1189 		}
1190 
1191 		len -= RT2573_RX_DESC_SIZE;
1192 		pc = usbd_xfer_get_frame(xfer, 0);
1193 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1194 
1195 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1196 		flags = le32toh(sc->sc_rx_desc.flags);
1197 		sc->last_rx_flags = flags;
1198 		if (len < ((flags >> 16) & 0xfff)) {
1199 			DPRINTFN(5, "%s: frame is truncated from %d to %d "
1200 			    "bytes\n", device_get_nameunit(sc->sc_dev),
1201 			    (flags >> 16) & 0xfff, len);
1202 			counter_u64_add(ic->ic_ierrors, 1);
1203 			goto tr_setup;
1204 		}
1205 		len = (flags >> 16) & 0xfff;
1206 		if (len < sizeof(struct ieee80211_frame_ack)) {
1207 			DPRINTFN(5, "%s: frame too short %d\n",
1208 			    device_get_nameunit(sc->sc_dev), len);
1209 			counter_u64_add(ic->ic_ierrors, 1);
1210 			goto tr_setup;
1211 		}
1212 		if (flags & RT2573_RX_CRC_ERROR) {
1213 			/*
1214 		         * This should not happen since we did not
1215 		         * request to receive those frames when we
1216 		         * filled RUM_TXRX_CSR2:
1217 		         */
1218 			DPRINTFN(5, "PHY or CRC error\n");
1219 			counter_u64_add(ic->ic_ierrors, 1);
1220 			goto tr_setup;
1221 		}
1222 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1223 			switch (flags & RT2573_RX_DEC_MASK) {
1224 			case RT2573_RX_IV_ERROR:
1225 				DPRINTFN(5, "IV/EIV error\n");
1226 				break;
1227 			case RT2573_RX_MIC_ERROR:
1228 				DPRINTFN(5, "MIC error\n");
1229 				break;
1230 			case RT2573_RX_KEY_ERROR:
1231 				DPRINTFN(5, "Key error\n");
1232 				break;
1233 			}
1234 			counter_u64_add(ic->ic_ierrors, 1);
1235 			goto tr_setup;
1236 		}
1237 
1238 		m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
1239 		if (m == NULL) {
1240 			DPRINTF("could not allocate mbuf\n");
1241 			counter_u64_add(ic->ic_ierrors, 1);
1242 			goto tr_setup;
1243 		}
1244 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1245 		    mtod(m, uint8_t *), len);
1246 
1247 		wh = mtod(m, struct ieee80211_frame_min *);
1248 
1249 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1250 		    (flags & RT2573_RX_CIP_MASK) !=
1251 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1252 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1253 			m->m_flags |= M_WEP;
1254 		}
1255 
1256 		/* finalize mbuf */
1257 		m->m_pkthdr.len = m->m_len = len;
1258 
1259 		if (ieee80211_radiotap_active(ic)) {
1260 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1261 
1262 			tap->wr_flags = 0;
1263 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1264 			    (flags & RT2573_RX_OFDM) ?
1265 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1266 			rum_get_tsf(sc, &tap->wr_tsf);
1267 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1268 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1269 			tap->wr_antenna = sc->rx_ant;
1270 		}
1271 		/* FALLTHROUGH */
1272 	case USB_ST_SETUP:
1273 tr_setup:
1274 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1275 		usbd_transfer_submit(xfer);
1276 
1277 		/*
1278 		 * At the end of a USB callback it is always safe to unlock
1279 		 * the private mutex of a device! That is why we do the
1280 		 * "ieee80211_input" here, and not some lines up!
1281 		 */
1282 		RUM_UNLOCK(sc);
1283 		if (m) {
1284 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1285 				ni = ieee80211_find_rxnode(ic, wh);
1286 			else
1287 				ni = NULL;
1288 
1289 			if (ni != NULL) {
1290 				(void) ieee80211_input(ni, m, rssi,
1291 				    RT2573_NOISE_FLOOR);
1292 				ieee80211_free_node(ni);
1293 			} else
1294 				(void) ieee80211_input_all(ic, m, rssi,
1295 				    RT2573_NOISE_FLOOR);
1296 		}
1297 		RUM_LOCK(sc);
1298 		rum_start(sc);
1299 		return;
1300 
1301 	default:			/* Error */
1302 		if (error != USB_ERR_CANCELLED) {
1303 			/* try to clear stall first */
1304 			usbd_xfer_set_stall(xfer);
1305 			goto tr_setup;
1306 		}
1307 		return;
1308 	}
1309 }
1310 
1311 static uint8_t
1312 rum_plcp_signal(int rate)
1313 {
1314 	switch (rate) {
1315 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1316 	case 12:	return 0xb;
1317 	case 18:	return 0xf;
1318 	case 24:	return 0xa;
1319 	case 36:	return 0xe;
1320 	case 48:	return 0x9;
1321 	case 72:	return 0xd;
1322 	case 96:	return 0x8;
1323 	case 108:	return 0xc;
1324 
1325 	/* CCK rates (NB: not IEEE std, device-specific) */
1326 	case 2:		return 0x0;
1327 	case 4:		return 0x1;
1328 	case 11:	return 0x2;
1329 	case 22:	return 0x3;
1330 	}
1331 	return 0xff;		/* XXX unsupported/unknown rate */
1332 }
1333 
1334 /*
1335  * Map net80211 cipher to RT2573 security mode.
1336  */
1337 static uint8_t
1338 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1339 {
1340 	switch (cipher) {
1341 	case IEEE80211_CIPHER_WEP:
1342 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1343 	case IEEE80211_CIPHER_TKIP:
1344 		return RT2573_MODE_TKIP;
1345 	case IEEE80211_CIPHER_AES_CCM:
1346 		return RT2573_MODE_AES_CCMP;
1347 	default:
1348 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1349 		return 0;
1350 	}
1351 }
1352 
1353 static void
1354 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1355     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1356     int hdrlen, int len, int rate)
1357 {
1358 	struct ieee80211com *ic = &sc->sc_ic;
1359 	struct wmeParams *wmep = &sc->wme_params[qid];
1360 	uint16_t plcp_length;
1361 	int remainder;
1362 
1363 	flags |= RT2573_TX_VALID;
1364 	flags |= len << 16;
1365 
1366 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1367 		const struct ieee80211_cipher *cip = k->wk_cipher;
1368 
1369 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1370 
1371 		desc->eiv = 0;		/* for WEP */
1372 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1373 	}
1374 
1375 	/* setup PLCP fields */
1376 	desc->plcp_signal  = rum_plcp_signal(rate);
1377 	desc->plcp_service = 4;
1378 
1379 	len += IEEE80211_CRC_LEN;
1380 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1381 		flags |= RT2573_TX_OFDM;
1382 
1383 		plcp_length = len & 0xfff;
1384 		desc->plcp_length_hi = plcp_length >> 6;
1385 		desc->plcp_length_lo = plcp_length & 0x3f;
1386 	} else {
1387 		if (rate == 0)
1388 			rate = 2;	/* avoid division by zero */
1389 		plcp_length = howmany(16 * len, rate);
1390 		if (rate == 22) {
1391 			remainder = (16 * len) % 22;
1392 			if (remainder != 0 && remainder < 7)
1393 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1394 		}
1395 		desc->plcp_length_hi = plcp_length >> 8;
1396 		desc->plcp_length_lo = plcp_length & 0xff;
1397 
1398 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1399 			desc->plcp_signal |= 0x08;
1400 	}
1401 
1402 	desc->flags = htole32(flags);
1403 	desc->hdrlen = hdrlen;
1404 	desc->xflags = xflags;
1405 
1406 	desc->wme = htole16(RT2573_QID(qid) |
1407 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1408 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1409 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1410 }
1411 
1412 static int
1413 rum_sendprot(struct rum_softc *sc,
1414     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1415 {
1416 	struct ieee80211com *ic = ni->ni_ic;
1417 	struct rum_tx_data *data;
1418 	struct mbuf *mprot;
1419 	int protrate, flags;
1420 
1421 	RUM_LOCK_ASSERT(sc);
1422 
1423 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1424 	if (mprot == NULL) {
1425 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1426 		device_printf(sc->sc_dev,
1427 		    "could not allocate mbuf for protection mode %d\n", prot);
1428 		return (ENOBUFS);
1429 	}
1430 
1431 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1432 	flags = 0;
1433 	if (prot == IEEE80211_PROT_RTSCTS)
1434 		flags |= RT2573_TX_NEED_ACK;
1435 
1436 	data = STAILQ_FIRST(&sc->tx_free);
1437 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1438 	sc->tx_nfree--;
1439 
1440 	data->m = mprot;
1441 	data->ni = ieee80211_ref_node(ni);
1442 	data->rate = protrate;
1443 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1444 	    mprot->m_pkthdr.len, protrate);
1445 
1446 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1447 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1448 
1449 	return 0;
1450 }
1451 
1452 static uint32_t
1453 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1454     const struct ieee80211_key *k)
1455 {
1456 	struct ieee80211vap *vap = ni->ni_vap;
1457 	u_int cipher;
1458 	uint32_t flags = 0;
1459 	uint8_t mode, pos;
1460 
1461 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1462 		cipher = k->wk_cipher->ic_cipher;
1463 		pos = k->wk_keyix;
1464 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1465 		if (mode == 0)
1466 			return 0;
1467 
1468 		flags |= RT2573_TX_CIP_MODE(mode);
1469 
1470 		/* Do not trust GROUP flag */
1471 		if (ieee80211_is_key_unicast(vap, k))
1472 			flags |= RT2573_TX_KEY_PAIR;
1473 		else
1474 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1475 
1476 		flags |= RT2573_TX_KEY_ID(pos);
1477 
1478 		if (cipher == IEEE80211_CIPHER_TKIP)
1479 			flags |= RT2573_TX_TKIPMIC;
1480 	}
1481 
1482 	return flags;
1483 }
1484 
1485 static int
1486 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1487 {
1488 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1489 	struct ieee80211com *ic = &sc->sc_ic;
1490 	struct rum_tx_data *data;
1491 	struct ieee80211_frame *wh;
1492 	struct ieee80211_key *k = NULL;
1493 	uint32_t flags = 0;
1494 	uint16_t dur;
1495 	uint8_t ac, type, xflags = 0;
1496 	int hdrlen;
1497 
1498 	RUM_LOCK_ASSERT(sc);
1499 
1500 	data = STAILQ_FIRST(&sc->tx_free);
1501 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1502 	sc->tx_nfree--;
1503 
1504 	wh = mtod(m0, struct ieee80211_frame *);
1505 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1506 	hdrlen = ieee80211_anyhdrsize(wh);
1507 	ac = M_WME_GETAC(m0);
1508 
1509 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1510 		k = ieee80211_crypto_get_txkey(ni, m0);
1511 		if (k == NULL)
1512 			return (ENOENT);
1513 
1514 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1515 		    !k->wk_cipher->ic_encap(k, m0))
1516 			return (ENOBUFS);
1517 
1518 		wh = mtod(m0, struct ieee80211_frame *);
1519 	}
1520 
1521 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1522 		flags |= RT2573_TX_NEED_ACK;
1523 
1524 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1525 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1526 		USETW(wh->i_dur, dur);
1527 
1528 		/* tell hardware to add timestamp for probe responses */
1529 		if (IEEE80211_IS_MGMT_PROBE_RESP(wh))
1530 			flags |= RT2573_TX_TIMESTAMP;
1531 	}
1532 
1533 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1534 		xflags |= RT2573_TX_HWSEQ;
1535 
1536 	if (k != NULL)
1537 		flags |= rum_tx_crypto_flags(sc, ni, k);
1538 
1539 	data->m = m0;
1540 	data->ni = ni;
1541 	data->rate = tp->mgmtrate;
1542 
1543 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1544 	    m0->m_pkthdr.len, tp->mgmtrate);
1545 
1546 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1547 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1548 
1549 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1550 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1551 
1552 	return (0);
1553 }
1554 
1555 static int
1556 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1557     const struct ieee80211_bpf_params *params)
1558 {
1559 	struct ieee80211com *ic = ni->ni_ic;
1560 	struct ieee80211_frame *wh;
1561 	struct rum_tx_data *data;
1562 	uint32_t flags;
1563 	uint8_t ac, type, xflags = 0;
1564 	int rate, error;
1565 
1566 	RUM_LOCK_ASSERT(sc);
1567 
1568 	wh = mtod(m0, struct ieee80211_frame *);
1569 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1570 
1571 	ac = params->ibp_pri & 3;
1572 
1573 	rate = params->ibp_rate0;
1574 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1575 		return (EINVAL);
1576 
1577 	flags = 0;
1578 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1579 		flags |= RT2573_TX_NEED_ACK;
1580 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1581 		error = rum_sendprot(sc, m0, ni,
1582 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1583 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1584 		    rate);
1585 		if (error || sc->tx_nfree == 0)
1586 			return (ENOBUFS);
1587 
1588 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1589 	}
1590 
1591 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1592 		xflags |= RT2573_TX_HWSEQ;
1593 
1594 	data = STAILQ_FIRST(&sc->tx_free);
1595 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1596 	sc->tx_nfree--;
1597 
1598 	data->m = m0;
1599 	data->ni = ni;
1600 	data->rate = rate;
1601 
1602 	/* XXX need to setup descriptor ourself */
1603 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1604 	    m0->m_pkthdr.len, rate);
1605 
1606 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1607 	    m0->m_pkthdr.len, rate);
1608 
1609 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1610 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1611 
1612 	return 0;
1613 }
1614 
1615 static int
1616 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1617 {
1618 	struct ieee80211vap *vap = ni->ni_vap;
1619 	struct ieee80211com *ic = &sc->sc_ic;
1620 	struct rum_tx_data *data;
1621 	struct ieee80211_frame *wh;
1622 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1623 	struct ieee80211_key *k = NULL;
1624 	uint32_t flags = 0;
1625 	uint16_t dur;
1626 	uint8_t ac, type, qos, xflags = 0;
1627 	int error, hdrlen, rate;
1628 
1629 	RUM_LOCK_ASSERT(sc);
1630 
1631 	wh = mtod(m0, struct ieee80211_frame *);
1632 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1633 	hdrlen = ieee80211_anyhdrsize(wh);
1634 
1635 	if (IEEE80211_QOS_HAS_SEQ(wh))
1636 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1637 	else
1638 		qos = 0;
1639 	ac = M_WME_GETAC(m0);
1640 
1641 	if (m0->m_flags & M_EAPOL)
1642 		rate = tp->mgmtrate;
1643 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1644 		rate = tp->mcastrate;
1645 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1646 		rate = tp->ucastrate;
1647 	else {
1648 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1649 		rate = ni->ni_txrate;
1650 	}
1651 
1652 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1653 		k = ieee80211_crypto_get_txkey(ni, m0);
1654 		if (k == NULL) {
1655 			m_freem(m0);
1656 			return (ENOENT);
1657 		}
1658 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1659 		    !k->wk_cipher->ic_encap(k, m0)) {
1660 			m_freem(m0);
1661 			return (ENOBUFS);
1662 		}
1663 
1664 		/* packet header may have moved, reset our local pointer */
1665 		wh = mtod(m0, struct ieee80211_frame *);
1666 	}
1667 
1668 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1669 		xflags |= RT2573_TX_HWSEQ;
1670 
1671 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1672 		int prot = IEEE80211_PROT_NONE;
1673 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1674 			prot = IEEE80211_PROT_RTSCTS;
1675 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1676 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1677 			prot = ic->ic_protmode;
1678 		if (prot != IEEE80211_PROT_NONE) {
1679 			error = rum_sendprot(sc, m0, ni, prot, rate);
1680 			if (error || sc->tx_nfree == 0) {
1681 				m_freem(m0);
1682 				return ENOBUFS;
1683 			}
1684 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1685 		}
1686 	}
1687 
1688 	if (k != NULL)
1689 		flags |= rum_tx_crypto_flags(sc, ni, k);
1690 
1691 	data = STAILQ_FIRST(&sc->tx_free);
1692 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1693 	sc->tx_nfree--;
1694 
1695 	data->m = m0;
1696 	data->ni = ni;
1697 	data->rate = rate;
1698 
1699 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1700 		/* Unicast frame, check if an ACK is expected. */
1701 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1702 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1703 			flags |= RT2573_TX_NEED_ACK;
1704 
1705 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1706 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1707 		USETW(wh->i_dur, dur);
1708 	}
1709 
1710 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1711 	    m0->m_pkthdr.len, rate);
1712 
1713 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1714 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1715 
1716 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1717 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1718 
1719 	return 0;
1720 }
1721 
1722 static int
1723 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1724 {
1725 	struct rum_softc *sc = ic->ic_softc;
1726 	int error;
1727 
1728 	RUM_LOCK(sc);
1729 	if (!sc->sc_running) {
1730 		RUM_UNLOCK(sc);
1731 		return (ENXIO);
1732 	}
1733 	error = mbufq_enqueue(&sc->sc_snd, m);
1734 	if (error) {
1735 		RUM_UNLOCK(sc);
1736 		return (error);
1737 	}
1738 	rum_start(sc);
1739 	RUM_UNLOCK(sc);
1740 
1741 	return (0);
1742 }
1743 
1744 static void
1745 rum_start(struct rum_softc *sc)
1746 {
1747 	struct ieee80211_node *ni;
1748 	struct mbuf *m;
1749 
1750 	RUM_LOCK_ASSERT(sc);
1751 
1752 	if (!sc->sc_running)
1753 		return;
1754 
1755 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1756 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1757 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1758 		if (rum_tx_data(sc, m, ni) != 0) {
1759 			if_inc_counter(ni->ni_vap->iv_ifp,
1760 			    IFCOUNTER_OERRORS, 1);
1761 			ieee80211_free_node(ni);
1762 			break;
1763 		}
1764 	}
1765 }
1766 
1767 static void
1768 rum_parent(struct ieee80211com *ic)
1769 {
1770 	struct rum_softc *sc = ic->ic_softc;
1771 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1772 
1773 	RUM_LOCK(sc);
1774 	if (sc->sc_detached) {
1775 		RUM_UNLOCK(sc);
1776 		return;
1777 	}
1778 	RUM_UNLOCK(sc);
1779 
1780 	if (ic->ic_nrunning > 0) {
1781 		if (rum_init(sc) == 0)
1782 			ieee80211_start_all(ic);
1783 		else
1784 			ieee80211_stop(vap);
1785 	} else
1786 		rum_stop(sc);
1787 }
1788 
1789 static void
1790 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1791 {
1792 	struct usb_device_request req;
1793 	usb_error_t error;
1794 
1795 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1796 	req.bRequest = RT2573_READ_EEPROM;
1797 	USETW(req.wValue, 0);
1798 	USETW(req.wIndex, addr);
1799 	USETW(req.wLength, len);
1800 
1801 	error = rum_do_request(sc, &req, buf);
1802 	if (error != 0) {
1803 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1804 		    usbd_errstr(error));
1805 	}
1806 }
1807 
1808 static uint32_t
1809 rum_read(struct rum_softc *sc, uint16_t reg)
1810 {
1811 	uint32_t val;
1812 
1813 	rum_read_multi(sc, reg, &val, sizeof val);
1814 
1815 	return le32toh(val);
1816 }
1817 
1818 static void
1819 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1820 {
1821 	struct usb_device_request req;
1822 	usb_error_t error;
1823 
1824 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1825 	req.bRequest = RT2573_READ_MULTI_MAC;
1826 	USETW(req.wValue, 0);
1827 	USETW(req.wIndex, reg);
1828 	USETW(req.wLength, len);
1829 
1830 	error = rum_do_request(sc, &req, buf);
1831 	if (error != 0) {
1832 		device_printf(sc->sc_dev,
1833 		    "could not multi read MAC register: %s\n",
1834 		    usbd_errstr(error));
1835 	}
1836 }
1837 
1838 static usb_error_t
1839 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1840 {
1841 	uint32_t tmp = htole32(val);
1842 
1843 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1844 }
1845 
1846 static usb_error_t
1847 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1848 {
1849 	struct usb_device_request req;
1850 	usb_error_t error;
1851 	size_t offset;
1852 
1853 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1854 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1855 	USETW(req.wValue, 0);
1856 
1857 	/* write at most 64 bytes at a time */
1858 	for (offset = 0; offset < len; offset += 64) {
1859 		USETW(req.wIndex, reg + offset);
1860 		USETW(req.wLength, MIN(len - offset, 64));
1861 
1862 		error = rum_do_request(sc, &req, (char *)buf + offset);
1863 		if (error != 0) {
1864 			device_printf(sc->sc_dev,
1865 			    "could not multi write MAC register: %s\n",
1866 			    usbd_errstr(error));
1867 			return (error);
1868 		}
1869 	}
1870 
1871 	return (USB_ERR_NORMAL_COMPLETION);
1872 }
1873 
1874 static usb_error_t
1875 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1876 {
1877 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1878 }
1879 
1880 static usb_error_t
1881 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1882 {
1883 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1884 }
1885 
1886 static usb_error_t
1887 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1888 {
1889 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1890 }
1891 
1892 static int
1893 rum_bbp_busy(struct rum_softc *sc)
1894 {
1895 	int ntries;
1896 
1897 	for (ntries = 0; ntries < 100; ntries++) {
1898 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1899 			break;
1900 		if (rum_pause(sc, hz / 100))
1901 			break;
1902 	}
1903 	if (ntries == 100)
1904 		return (ETIMEDOUT);
1905 
1906 	return (0);
1907 }
1908 
1909 static void
1910 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1911 {
1912 	uint32_t tmp;
1913 
1914 	DPRINTFN(2, "reg=0x%08x\n", reg);
1915 
1916 	if (rum_bbp_busy(sc) != 0) {
1917 		device_printf(sc->sc_dev, "could not write to BBP\n");
1918 		return;
1919 	}
1920 
1921 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1922 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1923 }
1924 
1925 static uint8_t
1926 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1927 {
1928 	uint32_t val;
1929 	int ntries;
1930 
1931 	DPRINTFN(2, "reg=0x%08x\n", reg);
1932 
1933 	if (rum_bbp_busy(sc) != 0) {
1934 		device_printf(sc->sc_dev, "could not read BBP\n");
1935 		return 0;
1936 	}
1937 
1938 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1939 	rum_write(sc, RT2573_PHY_CSR3, val);
1940 
1941 	for (ntries = 0; ntries < 100; ntries++) {
1942 		val = rum_read(sc, RT2573_PHY_CSR3);
1943 		if (!(val & RT2573_BBP_BUSY))
1944 			return val & 0xff;
1945 		if (rum_pause(sc, hz / 100))
1946 			break;
1947 	}
1948 
1949 	device_printf(sc->sc_dev, "could not read BBP\n");
1950 	return 0;
1951 }
1952 
1953 static void
1954 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1955 {
1956 	uint32_t tmp;
1957 	int ntries;
1958 
1959 	for (ntries = 0; ntries < 100; ntries++) {
1960 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1961 			break;
1962 		if (rum_pause(sc, hz / 100))
1963 			break;
1964 	}
1965 	if (ntries == 100) {
1966 		device_printf(sc->sc_dev, "could not write to RF\n");
1967 		return;
1968 	}
1969 
1970 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1971 	    (reg & 3);
1972 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1973 
1974 	/* remember last written value in sc */
1975 	sc->rf_regs[reg] = val;
1976 
1977 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1978 }
1979 
1980 static void
1981 rum_select_antenna(struct rum_softc *sc)
1982 {
1983 	uint8_t bbp4, bbp77;
1984 	uint32_t tmp;
1985 
1986 	bbp4  = rum_bbp_read(sc, 4);
1987 	bbp77 = rum_bbp_read(sc, 77);
1988 
1989 	/* TBD */
1990 
1991 	/* make sure Rx is disabled before switching antenna */
1992 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1993 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1994 
1995 	rum_bbp_write(sc,  4, bbp4);
1996 	rum_bbp_write(sc, 77, bbp77);
1997 
1998 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1999 }
2000 
2001 /*
2002  * Enable multi-rate retries for frames sent at OFDM rates.
2003  * In 802.11b/g mode, allow fallback to CCK rates.
2004  */
2005 static void
2006 rum_enable_mrr(struct rum_softc *sc)
2007 {
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 
2010 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2011 		rum_setbits(sc, RT2573_TXRX_CSR4,
2012 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
2013 	} else {
2014 		rum_modbits(sc, RT2573_TXRX_CSR4,
2015 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
2016 	}
2017 }
2018 
2019 static void
2020 rum_set_txpreamble(struct rum_softc *sc)
2021 {
2022 	struct ieee80211com *ic = &sc->sc_ic;
2023 
2024 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2025 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2026 	else
2027 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2028 }
2029 
2030 static void
2031 rum_set_basicrates(struct rum_softc *sc)
2032 {
2033 	struct ieee80211com *ic = &sc->sc_ic;
2034 
2035 	/* update basic rate set */
2036 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2037 		/* 11b basic rates: 1, 2Mbps */
2038 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2039 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2040 		/* 11a basic rates: 6, 12, 24Mbps */
2041 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2042 	} else {
2043 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2044 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2045 	}
2046 }
2047 
2048 /*
2049  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2050  * driver.
2051  */
2052 static void
2053 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2054 {
2055 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2056 
2057 	/* update all BBP registers that depend on the band */
2058 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2059 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2060 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2061 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2062 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2063 	}
2064 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2065 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2066 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2067 	}
2068 
2069 	sc->bbp17 = bbp17;
2070 	rum_bbp_write(sc,  17, bbp17);
2071 	rum_bbp_write(sc,  96, bbp96);
2072 	rum_bbp_write(sc, 104, bbp104);
2073 
2074 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2075 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2076 		rum_bbp_write(sc, 75, 0x80);
2077 		rum_bbp_write(sc, 86, 0x80);
2078 		rum_bbp_write(sc, 88, 0x80);
2079 	}
2080 
2081 	rum_bbp_write(sc, 35, bbp35);
2082 	rum_bbp_write(sc, 97, bbp97);
2083 	rum_bbp_write(sc, 98, bbp98);
2084 
2085 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2086 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2087 		    RT2573_PA_PE_5GHZ);
2088 	} else {
2089 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2090 		    RT2573_PA_PE_2GHZ);
2091 	}
2092 }
2093 
2094 static void
2095 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2096 {
2097 	struct ieee80211com *ic = &sc->sc_ic;
2098 	const struct rfprog *rfprog;
2099 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2100 	int8_t power;
2101 	int i, chan;
2102 
2103 	chan = ieee80211_chan2ieee(ic, c);
2104 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2105 		return;
2106 
2107 	/* select the appropriate RF settings based on what EEPROM says */
2108 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2109 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2110 
2111 	/* find the settings for this channel (we know it exists) */
2112 	for (i = 0; rfprog[i].chan != chan; i++);
2113 
2114 	power = sc->txpow[i];
2115 	if (power < 0) {
2116 		bbp94 += power;
2117 		power = 0;
2118 	} else if (power > 31) {
2119 		bbp94 += power - 31;
2120 		power = 31;
2121 	}
2122 
2123 	/*
2124 	 * If we are switching from the 2GHz band to the 5GHz band or
2125 	 * vice-versa, BBP registers need to be reprogrammed.
2126 	 */
2127 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2128 		rum_select_band(sc, c);
2129 		rum_select_antenna(sc);
2130 	}
2131 	ic->ic_curchan = c;
2132 
2133 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2134 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2135 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2136 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2137 
2138 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2139 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2140 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2141 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2142 
2143 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2144 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2145 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2146 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2147 
2148 	rum_pause(sc, hz / 100);
2149 
2150 	/* enable smart mode for MIMO-capable RFs */
2151 	bbp3 = rum_bbp_read(sc, 3);
2152 
2153 	bbp3 &= ~RT2573_SMART_MODE;
2154 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2155 		bbp3 |= RT2573_SMART_MODE;
2156 
2157 	rum_bbp_write(sc, 3, bbp3);
2158 
2159 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2160 		rum_bbp_write(sc, 94, bbp94);
2161 
2162 	/* give the chip some extra time to do the switchover */
2163 	rum_pause(sc, hz / 100);
2164 }
2165 
2166 static void
2167 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2168 {
2169 	struct ieee80211_node *ni = vap->iv_bss;
2170 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2171 	struct rum_vap *rvp = RUM_VAP(vap);
2172 
2173 	rvp->maxretry = MIN(tp->maxretry, 0xf);
2174 
2175 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2176 	    RT2573_LONG_RETRY(rvp->maxretry),
2177 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2178 }
2179 
2180 /*
2181  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2182  * and HostAP operating modes.
2183  */
2184 static int
2185 rum_enable_tsf_sync(struct rum_softc *sc)
2186 {
2187 	struct ieee80211com *ic = &sc->sc_ic;
2188 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2189 	uint32_t tmp;
2190 	uint16_t bintval;
2191 
2192 	if (vap->iv_opmode != IEEE80211_M_STA) {
2193 		/*
2194 		 * Change default 16ms TBTT adjustment to 8ms.
2195 		 * Must be done before enabling beacon generation.
2196 		 */
2197 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2198 			return EIO;
2199 	}
2200 
2201 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2202 
2203 	/* set beacon interval (in 1/16ms unit) */
2204 	bintval = vap->iv_bss->ni_intval;
2205 	tmp |= bintval * 16;
2206 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2207 
2208 	switch (vap->iv_opmode) {
2209 	case IEEE80211_M_STA:
2210 		/*
2211 		 * Local TSF is always updated with remote TSF on beacon
2212 		 * reception.
2213 		 */
2214 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2215 		break;
2216 	case IEEE80211_M_IBSS:
2217 		/*
2218 		 * Local TSF is updated with remote TSF on beacon reception
2219 		 * only if the remote TSF is greater than local TSF.
2220 		 */
2221 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2222 		tmp |= RT2573_BCN_TX_EN;
2223 		break;
2224 	case IEEE80211_M_HOSTAP:
2225 		/* SYNC with nobody */
2226 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2227 		tmp |= RT2573_BCN_TX_EN;
2228 		break;
2229 	default:
2230 		device_printf(sc->sc_dev,
2231 		    "Enabling TSF failed. undefined opmode %d\n",
2232 		    vap->iv_opmode);
2233 		return EINVAL;
2234 	}
2235 
2236 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2237 		return EIO;
2238 
2239 	/* refresh current sleep time */
2240 	return (rum_set_sleep_time(sc, bintval));
2241 }
2242 
2243 static void
2244 rum_enable_tsf(struct rum_softc *sc)
2245 {
2246 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2247 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2248 }
2249 
2250 static void
2251 rum_abort_tsf_sync(struct rum_softc *sc)
2252 {
2253 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2254 }
2255 
2256 static void
2257 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2258 {
2259 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2260 }
2261 
2262 static void
2263 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2264 {
2265 	struct ieee80211com *ic = &sc->sc_ic;
2266 	uint8_t slottime;
2267 
2268 	slottime = IEEE80211_GET_SLOTTIME(ic);
2269 
2270 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2271 
2272 	DPRINTF("setting slot time to %uus\n", slottime);
2273 }
2274 
2275 static void
2276 rum_update_slot(struct ieee80211com *ic)
2277 {
2278 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2279 }
2280 
2281 static int
2282 rum_wme_update(struct ieee80211com *ic)
2283 {
2284 	struct chanAccParams chp;
2285 	const struct wmeParams *chanp;
2286 	struct rum_softc *sc = ic->ic_softc;
2287 	int error = 0;
2288 
2289 	ieee80211_wme_ic_getparams(ic, &chp);
2290 	chanp = chp.cap_wmeParams;
2291 
2292 	RUM_LOCK(sc);
2293 	error = rum_write(sc, RT2573_AIFSN_CSR,
2294 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2295 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2296 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2297 	    chanp[WME_AC_BE].wmep_aifsn);
2298 	if (error)
2299 		goto print_err;
2300 	error = rum_write(sc, RT2573_CWMIN_CSR,
2301 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2302 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2303 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2304 	    chanp[WME_AC_BE].wmep_logcwmin);
2305 	if (error)
2306 		goto print_err;
2307 	error = rum_write(sc, RT2573_CWMAX_CSR,
2308 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2309 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2310 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2311 	    chanp[WME_AC_BE].wmep_logcwmax);
2312 	if (error)
2313 		goto print_err;
2314 	error = rum_write(sc, RT2573_TXOP01_CSR,
2315 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2316 	    chanp[WME_AC_BE].wmep_txopLimit);
2317 	if (error)
2318 		goto print_err;
2319 	error = rum_write(sc, RT2573_TXOP23_CSR,
2320 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2321 	    chanp[WME_AC_VI].wmep_txopLimit);
2322 	if (error)
2323 		goto print_err;
2324 
2325 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2326 
2327 print_err:
2328 	RUM_UNLOCK(sc);
2329 	if (error != 0) {
2330 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2331 		    __func__, error);
2332 	}
2333 
2334 	return (error);
2335 }
2336 
2337 static void
2338 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2339 {
2340 
2341 	rum_write(sc, RT2573_MAC_CSR4,
2342 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2343 	rum_write(sc, RT2573_MAC_CSR5,
2344 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2345 }
2346 
2347 static void
2348 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2349 {
2350 
2351 	rum_write(sc, RT2573_MAC_CSR2,
2352 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2353 	rum_write(sc, RT2573_MAC_CSR3,
2354 	    addr[4] | addr[5] << 8 | 0xff << 16);
2355 }
2356 
2357 static void
2358 rum_setpromisc(struct rum_softc *sc)
2359 {
2360 	struct ieee80211com *ic = &sc->sc_ic;
2361 
2362 	if (ic->ic_promisc == 0)
2363 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2364 	else
2365 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2366 
2367 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2368 	    "entering" : "leaving");
2369 }
2370 
2371 static void
2372 rum_update_promisc(struct ieee80211com *ic)
2373 {
2374 	struct rum_softc *sc = ic->ic_softc;
2375 
2376 	RUM_LOCK(sc);
2377 	if (sc->sc_running)
2378 		rum_setpromisc(sc);
2379 	RUM_UNLOCK(sc);
2380 }
2381 
2382 static void
2383 rum_update_mcast(struct ieee80211com *ic)
2384 {
2385 	/* Ignore. */
2386 }
2387 
2388 static const char *
2389 rum_get_rf(int rev)
2390 {
2391 	switch (rev) {
2392 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2393 	case RT2573_RF_2528:	return "RT2528";
2394 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2395 	case RT2573_RF_5226:	return "RT5226";
2396 	default:		return "unknown";
2397 	}
2398 }
2399 
2400 static void
2401 rum_read_eeprom(struct rum_softc *sc)
2402 {
2403 	uint16_t val;
2404 #ifdef RUM_DEBUG
2405 	int i;
2406 #endif
2407 
2408 	/* read MAC address */
2409 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2410 
2411 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2412 	val = le16toh(val);
2413 	sc->rf_rev =   (val >> 11) & 0x1f;
2414 	sc->hw_radio = (val >> 10) & 0x1;
2415 	sc->rx_ant =   (val >> 4)  & 0x3;
2416 	sc->tx_ant =   (val >> 2)  & 0x3;
2417 	sc->nb_ant =   val & 0x3;
2418 
2419 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2420 
2421 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2422 	val = le16toh(val);
2423 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2424 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2425 
2426 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2427 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2428 
2429 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2430 	val = le16toh(val);
2431 	if ((val & 0xff) != 0xff)
2432 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2433 
2434 	/* Only [-10, 10] is valid */
2435 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2436 		sc->rssi_2ghz_corr = 0;
2437 
2438 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2439 	val = le16toh(val);
2440 	if ((val & 0xff) != 0xff)
2441 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2442 
2443 	/* Only [-10, 10] is valid */
2444 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2445 		sc->rssi_5ghz_corr = 0;
2446 
2447 	if (sc->ext_2ghz_lna)
2448 		sc->rssi_2ghz_corr -= 14;
2449 	if (sc->ext_5ghz_lna)
2450 		sc->rssi_5ghz_corr -= 14;
2451 
2452 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2453 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2454 
2455 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2456 	val = le16toh(val);
2457 	if ((val & 0xff) != 0xff)
2458 		sc->rffreq = val & 0xff;
2459 
2460 	DPRINTF("RF freq=%d\n", sc->rffreq);
2461 
2462 	/* read Tx power for all a/b/g channels */
2463 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2464 	/* XXX default Tx power for 802.11a channels */
2465 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2466 #ifdef RUM_DEBUG
2467 	for (i = 0; i < 14; i++)
2468 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2469 #endif
2470 
2471 	/* read default values for BBP registers */
2472 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2473 #ifdef RUM_DEBUG
2474 	for (i = 0; i < 14; i++) {
2475 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2476 			continue;
2477 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2478 		    sc->bbp_prom[i].val);
2479 	}
2480 #endif
2481 }
2482 
2483 static int
2484 rum_bbp_wakeup(struct rum_softc *sc)
2485 {
2486 	unsigned ntries;
2487 
2488 	for (ntries = 0; ntries < 100; ntries++) {
2489 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2490 			break;
2491 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2492 		if (rum_pause(sc, hz / 100))
2493 			break;
2494 	}
2495 	if (ntries == 100) {
2496 		device_printf(sc->sc_dev,
2497 		    "timeout waiting for BBP/RF to wakeup\n");
2498 		return (ETIMEDOUT);
2499 	}
2500 
2501 	return (0);
2502 }
2503 
2504 static int
2505 rum_bbp_init(struct rum_softc *sc)
2506 {
2507 	int i, ntries;
2508 
2509 	/* wait for BBP to be ready */
2510 	for (ntries = 0; ntries < 100; ntries++) {
2511 		const uint8_t val = rum_bbp_read(sc, 0);
2512 		if (val != 0 && val != 0xff)
2513 			break;
2514 		if (rum_pause(sc, hz / 100))
2515 			break;
2516 	}
2517 	if (ntries == 100) {
2518 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2519 		return EIO;
2520 	}
2521 
2522 	/* initialize BBP registers to default values */
2523 	for (i = 0; i < nitems(rum_def_bbp); i++)
2524 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2525 
2526 	/* write vendor-specific BBP values (from EEPROM) */
2527 	for (i = 0; i < 16; i++) {
2528 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2529 			continue;
2530 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 static void
2537 rum_clr_shkey_regs(struct rum_softc *sc)
2538 {
2539 	rum_write(sc, RT2573_SEC_CSR0, 0);
2540 	rum_write(sc, RT2573_SEC_CSR1, 0);
2541 	rum_write(sc, RT2573_SEC_CSR5, 0);
2542 }
2543 
2544 static int
2545 rum_init(struct rum_softc *sc)
2546 {
2547 	struct ieee80211com *ic = &sc->sc_ic;
2548 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2549 	uint32_t tmp;
2550 	int i, ret;
2551 
2552 	RUM_LOCK(sc);
2553 	if (sc->sc_running) {
2554 		ret = 0;
2555 		goto end;
2556 	}
2557 
2558 	/* initialize MAC registers to default values */
2559 	for (i = 0; i < nitems(rum_def_mac); i++)
2560 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2561 
2562 	/* reset some WME parameters to default values */
2563 	sc->wme_params[0].wmep_aifsn = 2;
2564 	sc->wme_params[0].wmep_logcwmin = 4;
2565 	sc->wme_params[0].wmep_logcwmax = 10;
2566 
2567 	/* set host ready */
2568 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2569 	rum_write(sc, RT2573_MAC_CSR1, 0);
2570 
2571 	/* wait for BBP/RF to wakeup */
2572 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2573 		goto end;
2574 
2575 	if ((ret = rum_bbp_init(sc)) != 0)
2576 		goto end;
2577 
2578 	/* select default channel */
2579 	rum_select_band(sc, ic->ic_curchan);
2580 	rum_select_antenna(sc);
2581 	rum_set_chan(sc, ic->ic_curchan);
2582 
2583 	/* clear STA registers */
2584 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2585 
2586 	/* clear security registers (if required) */
2587 	if (sc->sc_clr_shkeys == 0) {
2588 		rum_clr_shkey_regs(sc);
2589 		sc->sc_clr_shkeys = 1;
2590 	}
2591 
2592 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2593 
2594 	/* initialize ASIC */
2595 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2596 
2597 	/*
2598 	 * Allocate Tx and Rx xfer queues.
2599 	 */
2600 	rum_setup_tx_list(sc);
2601 
2602 	/* update Rx filter */
2603 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2604 
2605 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2606 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2607 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2608 		       RT2573_DROP_ACKCTS;
2609 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2610 			tmp |= RT2573_DROP_TODS;
2611 		if (ic->ic_promisc == 0)
2612 			tmp |= RT2573_DROP_NOT_TO_ME;
2613 	}
2614 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2615 
2616 	sc->sc_running = 1;
2617 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2618 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2619 
2620 end:	RUM_UNLOCK(sc);
2621 
2622 	if (ret != 0)
2623 		rum_stop(sc);
2624 
2625 	return ret;
2626 }
2627 
2628 static void
2629 rum_stop(struct rum_softc *sc)
2630 {
2631 
2632 	RUM_LOCK(sc);
2633 	if (!sc->sc_running) {
2634 		RUM_UNLOCK(sc);
2635 		return;
2636 	}
2637 	sc->sc_running = 0;
2638 	RUM_UNLOCK(sc);
2639 
2640 	/*
2641 	 * Drain the USB transfers, if not already drained:
2642 	 */
2643 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2644 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2645 
2646 	RUM_LOCK(sc);
2647 	rum_unsetup_tx_list(sc);
2648 
2649 	/* disable Rx */
2650 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2651 
2652 	/* reset ASIC */
2653 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2654 	rum_write(sc, RT2573_MAC_CSR1, 0);
2655 	RUM_UNLOCK(sc);
2656 }
2657 
2658 static void
2659 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2660 {
2661 	uint16_t reg = RT2573_MCU_CODE_BASE;
2662 	usb_error_t err;
2663 
2664 	/* copy firmware image into NIC */
2665 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2666 		err = rum_write(sc, reg, UGETDW(ucode));
2667 		if (err) {
2668 			/* firmware already loaded ? */
2669 			device_printf(sc->sc_dev, "Firmware load "
2670 			    "failure! (ignored)\n");
2671 			break;
2672 		}
2673 	}
2674 
2675 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2676 	if (err != USB_ERR_NORMAL_COMPLETION) {
2677 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2678 		    usbd_errstr(err));
2679 	}
2680 
2681 	/* give the chip some time to boot */
2682 	rum_pause(sc, hz / 8);
2683 }
2684 
2685 static int
2686 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2687 {
2688 	struct ieee80211com *ic = &sc->sc_ic;
2689 	usb_error_t uerror;
2690 	int exp, delay;
2691 
2692 	RUM_LOCK_ASSERT(sc);
2693 
2694 	exp = ic->ic_lintval / bintval;
2695 	delay = ic->ic_lintval % bintval;
2696 
2697 	if (exp > RT2573_TBCN_EXP_MAX)
2698 		exp = RT2573_TBCN_EXP_MAX;
2699 	if (delay > RT2573_TBCN_DELAY_MAX)
2700 		delay = RT2573_TBCN_DELAY_MAX;
2701 
2702 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2703 	    RT2573_TBCN_EXP(exp) |
2704 	    RT2573_TBCN_DELAY(delay),
2705 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2706 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2707 
2708 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2709 		return (EIO);
2710 
2711 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2712 
2713 	return (0);
2714 }
2715 
2716 static int
2717 rum_reset(struct ieee80211vap *vap, u_long cmd)
2718 {
2719 	struct ieee80211com *ic = vap->iv_ic;
2720 	struct ieee80211_node *ni;
2721 	struct rum_softc *sc = ic->ic_softc;
2722 	int error;
2723 
2724 	switch (cmd) {
2725 	case IEEE80211_IOC_POWERSAVE:
2726 	case IEEE80211_IOC_PROTMODE:
2727 	case IEEE80211_IOC_RTSTHRESHOLD:
2728 		error = 0;
2729 		break;
2730 	case IEEE80211_IOC_POWERSAVESLEEP:
2731 		ni = ieee80211_ref_node(vap->iv_bss);
2732 
2733 		RUM_LOCK(sc);
2734 		error = rum_set_sleep_time(sc, ni->ni_intval);
2735 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2736 			/* Use new values for wakeup timer. */
2737 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2738 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2739 		}
2740 		/* XXX send reassoc */
2741 		RUM_UNLOCK(sc);
2742 
2743 		ieee80211_free_node(ni);
2744 		break;
2745 	default:
2746 		error = ENETRESET;
2747 		break;
2748 	}
2749 
2750 	return (error);
2751 }
2752 
2753 static int
2754 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2755 {
2756 	struct ieee80211com *ic = vap->iv_ic;
2757 	struct rum_vap *rvp = RUM_VAP(vap);
2758 	struct mbuf *m = rvp->bcn_mbuf;
2759 	const struct ieee80211_txparam *tp;
2760 	struct rum_tx_desc desc;
2761 
2762 	RUM_LOCK_ASSERT(sc);
2763 
2764 	if (m == NULL)
2765 		return EINVAL;
2766 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2767 		return EINVAL;
2768 
2769 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2770 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2771 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2772 
2773 	/* copy the Tx descriptor into NIC memory */
2774 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2775 	    RT2573_TX_DESC_SIZE) != 0)
2776 		return EIO;
2777 
2778 	/* copy beacon header and payload into NIC memory */
2779 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2780 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2781 		return EIO;
2782 
2783 	return 0;
2784 }
2785 
2786 static int
2787 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2788 {
2789 	struct rum_vap *rvp = RUM_VAP(vap);
2790 	struct ieee80211_node *ni = vap->iv_bss;
2791 	struct mbuf *m;
2792 
2793 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2794 		return EINVAL;
2795 
2796 	m = ieee80211_beacon_alloc(ni);
2797 	if (m == NULL)
2798 		return ENOMEM;
2799 
2800 	if (rvp->bcn_mbuf != NULL)
2801 		m_freem(rvp->bcn_mbuf);
2802 
2803 	rvp->bcn_mbuf = m;
2804 
2805 	return (rum_set_beacon(sc, vap));
2806 }
2807 
2808 static void
2809 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2810     uint8_t rvp_id)
2811 {
2812 	struct ieee80211vap *vap = data->vap;
2813 
2814 	rum_set_beacon(sc, vap);
2815 }
2816 
2817 static void
2818 rum_update_beacon(struct ieee80211vap *vap, int item)
2819 {
2820 	struct ieee80211com *ic = vap->iv_ic;
2821 	struct rum_softc *sc = ic->ic_softc;
2822 	struct rum_vap *rvp = RUM_VAP(vap);
2823 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2824 	struct ieee80211_node *ni = vap->iv_bss;
2825 	struct mbuf *m = rvp->bcn_mbuf;
2826 	int mcast = 0;
2827 
2828 	RUM_LOCK(sc);
2829 	if (m == NULL) {
2830 		m = ieee80211_beacon_alloc(ni);
2831 		if (m == NULL) {
2832 			device_printf(sc->sc_dev,
2833 			    "%s: could not allocate beacon frame\n", __func__);
2834 			RUM_UNLOCK(sc);
2835 			return;
2836 		}
2837 		rvp->bcn_mbuf = m;
2838 	}
2839 
2840 	switch (item) {
2841 	case IEEE80211_BEACON_ERP:
2842 		rum_update_slot(ic);
2843 		break;
2844 	case IEEE80211_BEACON_TIM:
2845 		mcast = 1;	/*TODO*/
2846 		break;
2847 	default:
2848 		break;
2849 	}
2850 	RUM_UNLOCK(sc);
2851 
2852 	setbit(bo->bo_flags, item);
2853 	ieee80211_beacon_update(ni, m, mcast);
2854 
2855 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2856 }
2857 
2858 static int
2859 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2860     uint16_t base)
2861 {
2862 
2863 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2864 		return EIO;
2865 
2866 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2867 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2868 		    k->wk_txmic, 8))
2869 			return EIO;
2870 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2871 		    k->wk_rxmic, 8))
2872 			return EIO;
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 static void
2879 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2880     uint8_t rvp_id)
2881 {
2882 	struct ieee80211_key *k = &data->key;
2883 	uint8_t mode;
2884 
2885 	if (sc->sc_clr_shkeys == 0) {
2886 		rum_clr_shkey_regs(sc);
2887 		sc->sc_clr_shkeys = 1;
2888 	}
2889 
2890 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2891 	if (mode == 0)
2892 		goto print_err;
2893 
2894 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2895 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2896 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2897 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2898 
2899 	/* Install the key. */
2900 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2901 		goto print_err;
2902 
2903 	/* Set cipher mode. */
2904 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2905 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2906 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2907 	    != 0)
2908 		goto print_err;
2909 
2910 	/* Mark this key as valid. */
2911 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2912 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2913 		goto print_err;
2914 
2915 	return;
2916 
2917 print_err:
2918 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2919 	    __func__, k->wk_keyix, rvp_id);
2920 }
2921 
2922 static void
2923 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2924     uint8_t rvp_id)
2925 {
2926 	struct ieee80211_key *k = &data->key;
2927 
2928 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2929 	    k->wk_keyix, rvp_id);
2930 	rum_clrbits(sc,
2931 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2932 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2933 	rum_clrbits(sc, RT2573_SEC_CSR0,
2934 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2935 }
2936 
2937 static void
2938 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2939     uint8_t rvp_id)
2940 {
2941 	struct ieee80211_key *k = &data->key;
2942 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2943 	uint8_t mode;
2944 
2945 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2946 	if (mode == 0)
2947 		goto print_err;
2948 
2949 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2950 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2951 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2952 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2953 
2954 	/* Install the key. */
2955 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2956 		goto print_err;
2957 
2958 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2959 	buf[IEEE80211_ADDR_LEN] = mode;
2960 
2961 	/* Set transmitter address and cipher mode. */
2962 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2963 	      buf, sizeof buf) != 0)
2964 		goto print_err;
2965 
2966 	/* Enable key table lookup for this vap. */
2967 	if (sc->vap_key_count[rvp_id]++ == 0)
2968 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2969 			goto print_err;
2970 
2971 	/* Mark this key as valid. */
2972 	if (rum_setbits(sc,
2973 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2974 	      1 << (k->wk_keyix % 32)) != 0)
2975 		goto print_err;
2976 
2977 	return;
2978 
2979 print_err:
2980 	device_printf(sc->sc_dev,
2981 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2982 	    rvp_id);
2983 }
2984 
2985 static void
2986 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2987     uint8_t rvp_id)
2988 {
2989 	struct ieee80211_key *k = &data->key;
2990 
2991 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2992 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2993 	    1 << (k->wk_keyix % 32));
2994 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
2995 	if (--sc->vap_key_count[rvp_id] == 0)
2996 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
2997 }
2998 
2999 static int
3000 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3001     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3002 {
3003 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3004 	uint8_t i;
3005 
3006 	if (ieee80211_is_key_unicast(vap, k)) {
3007 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
3008 			RUM_LOCK(sc);
3009 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
3010 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
3011 					sc->keys_bmap |= (1ULL << i);
3012 					*keyix = i;
3013 					break;
3014 				}
3015 			}
3016 			RUM_UNLOCK(sc);
3017 			if (i == RT2573_ADDR_MAX) {
3018 				device_printf(sc->sc_dev,
3019 				    "%s: no free space in the key table\n",
3020 				    __func__);
3021 				return 0;
3022 			}
3023 		} else
3024 			*keyix = 0;
3025 	} else {
3026 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
3027 	}
3028 	*rxkeyix = *keyix;
3029 	return 1;
3030 }
3031 
3032 static int
3033 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3034 {
3035 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3036 	int group;
3037 
3038 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3039 		/* Not for us. */
3040 		return 1;
3041 	}
3042 
3043 	group = ieee80211_is_key_global(vap, k);
3044 
3045 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3046 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3047 }
3048 
3049 static int
3050 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3051 {
3052 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3053 	int group;
3054 
3055 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3056 		/* Not for us. */
3057 		return 1;
3058 	}
3059 
3060 	group = ieee80211_is_key_global(vap, k);
3061 
3062 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3063 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3064 }
3065 
3066 static int
3067 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3068     const struct ieee80211_bpf_params *params)
3069 {
3070 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3071 	int ret;
3072 
3073 	RUM_LOCK(sc);
3074 	/* prevent management frames from being sent if we're not ready */
3075 	if (!sc->sc_running) {
3076 		ret = ENETDOWN;
3077 		goto bad;
3078 	}
3079 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3080 		ret = EIO;
3081 		goto bad;
3082 	}
3083 
3084 	if (params == NULL) {
3085 		/*
3086 		 * Legacy path; interpret frame contents to decide
3087 		 * precisely how to send the frame.
3088 		 */
3089 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3090 			goto bad;
3091 	} else {
3092 		/*
3093 		 * Caller supplied explicit parameters to use in
3094 		 * sending the frame.
3095 		 */
3096 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3097 			goto bad;
3098 	}
3099 	RUM_UNLOCK(sc);
3100 
3101 	return 0;
3102 bad:
3103 	RUM_UNLOCK(sc);
3104 	m_freem(m);
3105 	return ret;
3106 }
3107 
3108 static void
3109 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3110 {
3111 	struct ieee80211vap *vap = ni->ni_vap;
3112 	struct rum_vap *rvp = RUM_VAP(vap);
3113 
3114 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3115 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3116 
3117 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3118 }
3119 
3120 static void
3121 rum_ratectl_timeout(void *arg)
3122 {
3123 	struct rum_vap *rvp = arg;
3124 	struct ieee80211vap *vap = &rvp->vap;
3125 	struct ieee80211com *ic = vap->iv_ic;
3126 
3127 	ieee80211_runtask(ic, &rvp->ratectl_task);
3128 }
3129 
3130 static void
3131 rum_ratectl_task(void *arg, int pending)
3132 {
3133 	struct rum_vap *rvp = arg;
3134 	struct ieee80211vap *vap = &rvp->vap;
3135 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3136 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
3137 	int ok[3], fail;
3138 
3139 	RUM_LOCK(sc);
3140 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3141 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3142 
3143 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3144 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3145 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3146 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3147 
3148 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
3149 	txs->nframes = ok[0] + ok[1] + ok[2] + fail;
3150 	txs->nsuccess = txs->nframes - fail;
3151 	/* XXX at least */
3152 	txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3153 
3154 	if (txs->nframes != 0)
3155 		ieee80211_ratectl_tx_update(vap, txs);
3156 
3157 	/* count TX retry-fail as Tx errors */
3158 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3159 
3160 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3161 	RUM_UNLOCK(sc);
3162 }
3163 
3164 static void
3165 rum_scan_start(struct ieee80211com *ic)
3166 {
3167 	struct rum_softc *sc = ic->ic_softc;
3168 
3169 	RUM_LOCK(sc);
3170 	rum_abort_tsf_sync(sc);
3171 	rum_set_bssid(sc, ieee80211broadcastaddr);
3172 	RUM_UNLOCK(sc);
3173 
3174 }
3175 
3176 static void
3177 rum_scan_end(struct ieee80211com *ic)
3178 {
3179 	struct rum_softc *sc = ic->ic_softc;
3180 
3181 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3182 		RUM_LOCK(sc);
3183 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3184 			rum_enable_tsf_sync(sc);
3185 		else
3186 			rum_enable_tsf(sc);
3187 		rum_set_bssid(sc, sc->sc_bssid);
3188 		RUM_UNLOCK(sc);
3189 	}
3190 }
3191 
3192 static void
3193 rum_set_channel(struct ieee80211com *ic)
3194 {
3195 	struct rum_softc *sc = ic->ic_softc;
3196 
3197 	RUM_LOCK(sc);
3198 	rum_set_chan(sc, ic->ic_curchan);
3199 	RUM_UNLOCK(sc);
3200 }
3201 
3202 static void
3203 rum_getradiocaps(struct ieee80211com *ic,
3204     int maxchans, int *nchans, struct ieee80211_channel chans[])
3205 {
3206 	struct rum_softc *sc = ic->ic_softc;
3207 	uint8_t bands[IEEE80211_MODE_BYTES];
3208 
3209 	memset(bands, 0, sizeof(bands));
3210 	setbit(bands, IEEE80211_MODE_11B);
3211 	setbit(bands, IEEE80211_MODE_11G);
3212 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
3213 
3214 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3215 		setbit(bands, IEEE80211_MODE_11A);
3216 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3217 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3218 	}
3219 }
3220 
3221 static int
3222 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3223 {
3224 	struct ieee80211com *ic = &sc->sc_ic;
3225 	int lna, agc, rssi;
3226 
3227 	lna = (raw >> 5) & 0x3;
3228 	agc = raw & 0x1f;
3229 
3230 	if (lna == 0) {
3231 		/*
3232 		 * No RSSI mapping
3233 		 *
3234 		 * NB: Since RSSI is relative to noise floor, -1 is
3235 		 *     adequate for caller to know error happened.
3236 		 */
3237 		return -1;
3238 	}
3239 
3240 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3241 
3242 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3243 		rssi += sc->rssi_2ghz_corr;
3244 
3245 		if (lna == 1)
3246 			rssi -= 64;
3247 		else if (lna == 2)
3248 			rssi -= 74;
3249 		else if (lna == 3)
3250 			rssi -= 90;
3251 	} else {
3252 		rssi += sc->rssi_5ghz_corr;
3253 
3254 		if (!sc->ext_5ghz_lna && lna != 1)
3255 			rssi += 4;
3256 
3257 		if (lna == 1)
3258 			rssi -= 64;
3259 		else if (lna == 2)
3260 			rssi -= 86;
3261 		else if (lna == 3)
3262 			rssi -= 100;
3263 	}
3264 	return rssi;
3265 }
3266 
3267 static int
3268 rum_pause(struct rum_softc *sc, int timeout)
3269 {
3270 
3271 	usb_pause_mtx(&sc->sc_mtx, timeout);
3272 	return (0);
3273 }
3274 
3275 static device_method_t rum_methods[] = {
3276 	/* Device interface */
3277 	DEVMETHOD(device_probe,		rum_match),
3278 	DEVMETHOD(device_attach,	rum_attach),
3279 	DEVMETHOD(device_detach,	rum_detach),
3280 	DEVMETHOD_END
3281 };
3282 
3283 static driver_t rum_driver = {
3284 	.name = "rum",
3285 	.methods = rum_methods,
3286 	.size = sizeof(struct rum_softc),
3287 };
3288 
3289 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL);
3290 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3291 MODULE_DEPEND(rum, usb, 1, 1, 1);
3292 MODULE_VERSION(rum, 1);
3293 USB_PNP_HOST_INFO(rum_devs);
3294