1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /*- 26 * Ralink Technology RT2501USB/RT2601USB chipset driver 27 * http://www.ralinktech.com.tw/ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/lock.h> 34 #include <sys/mutex.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR rum_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_rumreg.h> 79 #include <dev/usb/wlan/if_rumvar.h> 80 #include <dev/usb/wlan/if_rumfw.h> 81 82 #ifdef USB_DEBUG 83 static int rum_debug = 0; 84 85 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 86 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 87 "Debug level"); 88 #endif 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, SG54HG), 124 RUM_DEV(MELCO, WLIUCG), 125 RUM_DEV(MELCO, WLRUCG), 126 RUM_DEV(MELCO, WLRUCGAOSS), 127 RUM_DEV(MSI, RT2573_1), 128 RUM_DEV(MSI, RT2573_2), 129 RUM_DEV(MSI, RT2573_3), 130 RUM_DEV(MSI, RT2573_4), 131 RUM_DEV(NOVATECH, RT2573), 132 RUM_DEV(PLANEX2, GWUS54HP), 133 RUM_DEV(PLANEX2, GWUS54MINI2), 134 RUM_DEV(PLANEX2, GWUSMM), 135 RUM_DEV(QCOM, RT2573), 136 RUM_DEV(QCOM, RT2573_2), 137 RUM_DEV(QCOM, RT2573_3), 138 RUM_DEV(RALINK, RT2573), 139 RUM_DEV(RALINK, RT2573_2), 140 RUM_DEV(RALINK, RT2671), 141 RUM_DEV(SITECOMEU, WL113R2), 142 RUM_DEV(SITECOMEU, WL172), 143 RUM_DEV(SPARKLAN, RT2573), 144 RUM_DEV(SURECOM, RT2573), 145 #undef RUM_DEV 146 }; 147 148 static device_probe_t rum_match; 149 static device_attach_t rum_attach; 150 static device_detach_t rum_detach; 151 152 static usb_callback_t rum_bulk_read_callback; 153 static usb_callback_t rum_bulk_write_callback; 154 155 static usb_error_t rum_do_request(struct rum_softc *sc, 156 struct usb_device_request *req, void *data); 157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 158 const char [IFNAMSIZ], int, enum ieee80211_opmode, 159 int, const uint8_t [IEEE80211_ADDR_LEN], 160 const uint8_t [IEEE80211_ADDR_LEN]); 161 static void rum_vap_delete(struct ieee80211vap *); 162 static void rum_cmdq_cb(void *, int); 163 static int rum_cmd_sleepable(struct rum_softc *, const void *, 164 size_t, uint8_t, CMD_FUNC_PROTO); 165 static void rum_tx_free(struct rum_tx_data *, int); 166 static void rum_setup_tx_list(struct rum_softc *); 167 static void rum_unsetup_tx_list(struct rum_softc *); 168 static int rum_newstate(struct ieee80211vap *, 169 enum ieee80211_state, int); 170 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 171 static void rum_setup_tx_desc(struct rum_softc *, 172 struct rum_tx_desc *, struct ieee80211_key *, 173 uint32_t, uint8_t, uint8_t, int, int, int); 174 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 175 struct ieee80211_node *, 176 const struct ieee80211_key *); 177 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 178 struct ieee80211_node *); 179 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 180 struct ieee80211_node *, 181 const struct ieee80211_bpf_params *); 182 static int rum_tx_data(struct rum_softc *, struct mbuf *, 183 struct ieee80211_node *); 184 static int rum_transmit(struct ieee80211com *, struct mbuf *); 185 static void rum_start(struct rum_softc *); 186 static void rum_parent(struct ieee80211com *); 187 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 188 int); 189 static uint32_t rum_read(struct rum_softc *, uint16_t); 190 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 191 int); 192 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 193 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 194 size_t); 195 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 196 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 197 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 198 uint32_t); 199 static int rum_bbp_busy(struct rum_softc *); 200 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 201 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 202 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 203 static void rum_select_antenna(struct rum_softc *); 204 static void rum_enable_mrr(struct rum_softc *); 205 static void rum_set_txpreamble(struct rum_softc *); 206 static void rum_set_basicrates(struct rum_softc *); 207 static void rum_select_band(struct rum_softc *, 208 struct ieee80211_channel *); 209 static void rum_set_chan(struct rum_softc *, 210 struct ieee80211_channel *); 211 static void rum_set_maxretry(struct rum_softc *, 212 struct ieee80211vap *); 213 static int rum_enable_tsf_sync(struct rum_softc *); 214 static void rum_enable_tsf(struct rum_softc *); 215 static void rum_abort_tsf_sync(struct rum_softc *); 216 static void rum_get_tsf(struct rum_softc *, uint64_t *); 217 static void rum_update_slot_cb(struct rum_softc *, 218 union sec_param *, uint8_t); 219 static void rum_update_slot(struct ieee80211com *); 220 static int rum_wme_update(struct ieee80211com *); 221 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 222 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 223 static void rum_update_mcast(struct ieee80211com *); 224 static void rum_update_promisc(struct ieee80211com *); 225 static void rum_setpromisc(struct rum_softc *); 226 static const char *rum_get_rf(int); 227 static void rum_read_eeprom(struct rum_softc *); 228 static int rum_bbp_wakeup(struct rum_softc *); 229 static int rum_bbp_init(struct rum_softc *); 230 static void rum_clr_shkey_regs(struct rum_softc *); 231 static int rum_init(struct rum_softc *); 232 static void rum_stop(struct rum_softc *); 233 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 234 size_t); 235 static int rum_set_beacon(struct rum_softc *, 236 struct ieee80211vap *); 237 static int rum_alloc_beacon(struct rum_softc *, 238 struct ieee80211vap *); 239 static void rum_update_beacon_cb(struct rum_softc *, 240 union sec_param *, uint8_t); 241 static void rum_update_beacon(struct ieee80211vap *, int); 242 static int rum_common_key_set(struct rum_softc *, 243 struct ieee80211_key *, uint16_t); 244 static void rum_group_key_set_cb(struct rum_softc *, 245 union sec_param *, uint8_t); 246 static void rum_group_key_del_cb(struct rum_softc *, 247 union sec_param *, uint8_t); 248 static void rum_pair_key_set_cb(struct rum_softc *, 249 union sec_param *, uint8_t); 250 static void rum_pair_key_del_cb(struct rum_softc *, 251 union sec_param *, uint8_t); 252 static int rum_key_alloc(struct ieee80211vap *, 253 struct ieee80211_key *, ieee80211_keyix *, 254 ieee80211_keyix *); 255 static int rum_key_set(struct ieee80211vap *, 256 const struct ieee80211_key *); 257 static int rum_key_delete(struct ieee80211vap *, 258 const struct ieee80211_key *); 259 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 260 const struct ieee80211_bpf_params *); 261 static void rum_scan_start(struct ieee80211com *); 262 static void rum_scan_end(struct ieee80211com *); 263 static void rum_set_channel(struct ieee80211com *); 264 static int rum_get_rssi(struct rum_softc *, uint8_t); 265 static void rum_ratectl_start(struct rum_softc *, 266 struct ieee80211_node *); 267 static void rum_ratectl_timeout(void *); 268 static void rum_ratectl_task(void *, int); 269 static int rum_pause(struct rum_softc *, int); 270 271 static const struct { 272 uint32_t reg; 273 uint32_t val; 274 } rum_def_mac[] = { 275 { RT2573_TXRX_CSR0, 0x025fb032 }, 276 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 277 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 278 { RT2573_TXRX_CSR3, 0x00858687 }, 279 { RT2573_TXRX_CSR7, 0x2e31353b }, 280 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 281 { RT2573_TXRX_CSR15, 0x0000000f }, 282 { RT2573_MAC_CSR6, 0x00000fff }, 283 { RT2573_MAC_CSR8, 0x016c030a }, 284 { RT2573_MAC_CSR10, 0x00000718 }, 285 { RT2573_MAC_CSR12, 0x00000004 }, 286 { RT2573_MAC_CSR13, 0x00007f00 }, 287 { RT2573_SEC_CSR2, 0x00000000 }, 288 { RT2573_SEC_CSR3, 0x00000000 }, 289 { RT2573_SEC_CSR4, 0x00000000 }, 290 { RT2573_PHY_CSR1, 0x000023b0 }, 291 { RT2573_PHY_CSR5, 0x00040a06 }, 292 { RT2573_PHY_CSR6, 0x00080606 }, 293 { RT2573_PHY_CSR7, 0x00000408 }, 294 { RT2573_AIFSN_CSR, 0x00002273 }, 295 { RT2573_CWMIN_CSR, 0x00002344 }, 296 { RT2573_CWMAX_CSR, 0x000034aa } 297 }; 298 299 static const struct { 300 uint8_t reg; 301 uint8_t val; 302 } rum_def_bbp[] = { 303 { 3, 0x80 }, 304 { 15, 0x30 }, 305 { 17, 0x20 }, 306 { 21, 0xc8 }, 307 { 22, 0x38 }, 308 { 23, 0x06 }, 309 { 24, 0xfe }, 310 { 25, 0x0a }, 311 { 26, 0x0d }, 312 { 32, 0x0b }, 313 { 34, 0x12 }, 314 { 37, 0x07 }, 315 { 39, 0xf8 }, 316 { 41, 0x60 }, 317 { 53, 0x10 }, 318 { 54, 0x18 }, 319 { 60, 0x10 }, 320 { 61, 0x04 }, 321 { 62, 0x04 }, 322 { 75, 0xfe }, 323 { 86, 0xfe }, 324 { 88, 0xfe }, 325 { 90, 0x0f }, 326 { 99, 0x00 }, 327 { 102, 0x16 }, 328 { 107, 0x04 } 329 }; 330 331 static const struct rfprog { 332 uint8_t chan; 333 uint32_t r1, r2, r3, r4; 334 } rum_rf5226[] = { 335 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 336 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 337 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 338 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 339 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 340 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 341 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 342 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 343 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 344 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 345 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 346 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 347 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 348 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 349 350 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 351 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 352 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 353 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 354 355 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 356 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 357 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 358 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 359 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 360 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 361 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 362 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 363 364 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 365 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 366 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 367 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 368 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 369 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 370 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 371 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 372 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 373 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 374 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 375 376 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 377 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 378 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 379 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 380 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 381 }, rum_rf5225[] = { 382 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 383 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 384 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 385 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 386 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 387 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 388 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 389 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 390 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 391 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 392 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 393 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 394 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 395 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 396 397 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 398 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 399 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 400 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 401 402 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 403 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 404 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 405 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 406 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 407 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 408 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 409 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 410 411 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 412 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 413 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 414 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 415 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 416 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 417 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 418 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 419 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 420 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 421 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 422 423 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 424 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 425 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 426 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 427 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 428 }; 429 430 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 431 [RUM_BULK_WR] = { 432 .type = UE_BULK, 433 .endpoint = UE_ADDR_ANY, 434 .direction = UE_DIR_OUT, 435 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 436 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 437 .callback = rum_bulk_write_callback, 438 .timeout = 5000, /* ms */ 439 }, 440 [RUM_BULK_RD] = { 441 .type = UE_BULK, 442 .endpoint = UE_ADDR_ANY, 443 .direction = UE_DIR_IN, 444 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 445 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 446 .callback = rum_bulk_read_callback, 447 }, 448 }; 449 450 static int 451 rum_match(device_t self) 452 { 453 struct usb_attach_arg *uaa = device_get_ivars(self); 454 455 if (uaa->usb_mode != USB_MODE_HOST) 456 return (ENXIO); 457 if (uaa->info.bConfigIndex != 0) 458 return (ENXIO); 459 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 460 return (ENXIO); 461 462 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 463 } 464 465 static int 466 rum_attach(device_t self) 467 { 468 struct usb_attach_arg *uaa = device_get_ivars(self); 469 struct rum_softc *sc = device_get_softc(self); 470 struct ieee80211com *ic = &sc->sc_ic; 471 uint32_t tmp; 472 uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; 473 uint8_t iface_index; 474 int error, ntries; 475 476 device_set_usb_desc(self); 477 sc->sc_udev = uaa->device; 478 sc->sc_dev = self; 479 480 RUM_LOCK_INIT(sc); 481 RUM_CMDQ_LOCK_INIT(sc); 482 mbufq_init(&sc->sc_snd, ifqmaxlen); 483 484 iface_index = RT2573_IFACE_INDEX; 485 error = usbd_transfer_setup(uaa->device, &iface_index, 486 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 487 if (error) { 488 device_printf(self, "could not allocate USB transfers, " 489 "err=%s\n", usbd_errstr(error)); 490 goto detach; 491 } 492 493 RUM_LOCK(sc); 494 /* retrieve RT2573 rev. no */ 495 for (ntries = 0; ntries < 100; ntries++) { 496 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 497 break; 498 if (rum_pause(sc, hz / 100)) 499 break; 500 } 501 if (ntries == 100) { 502 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 503 RUM_UNLOCK(sc); 504 goto detach; 505 } 506 507 /* retrieve MAC address and various other things from EEPROM */ 508 rum_read_eeprom(sc); 509 510 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 511 tmp, rum_get_rf(sc->rf_rev)); 512 513 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 514 RUM_UNLOCK(sc); 515 516 ic->ic_softc = sc; 517 ic->ic_name = device_get_nameunit(self); 518 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 519 520 /* set device capabilities */ 521 ic->ic_caps = 522 IEEE80211_C_STA /* station mode supported */ 523 | IEEE80211_C_IBSS /* IBSS mode supported */ 524 | IEEE80211_C_MONITOR /* monitor mode supported */ 525 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 526 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 527 | IEEE80211_C_TXPMGT /* tx power management */ 528 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 529 | IEEE80211_C_SHSLOT /* short slot time supported */ 530 | IEEE80211_C_BGSCAN /* bg scanning supported */ 531 | IEEE80211_C_WPA /* 802.11i */ 532 | IEEE80211_C_WME /* 802.11e */ 533 ; 534 535 ic->ic_cryptocaps = 536 IEEE80211_CRYPTO_WEP | 537 IEEE80211_CRYPTO_AES_CCM | 538 IEEE80211_CRYPTO_TKIPMIC | 539 IEEE80211_CRYPTO_TKIP; 540 541 memset(bands, 0, sizeof(bands)); 542 setbit(bands, IEEE80211_MODE_11B); 543 setbit(bands, IEEE80211_MODE_11G); 544 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 545 setbit(bands, IEEE80211_MODE_11A); 546 ieee80211_init_channels(ic, NULL, bands); 547 548 ieee80211_ifattach(ic); 549 ic->ic_update_promisc = rum_update_promisc; 550 ic->ic_raw_xmit = rum_raw_xmit; 551 ic->ic_scan_start = rum_scan_start; 552 ic->ic_scan_end = rum_scan_end; 553 ic->ic_set_channel = rum_set_channel; 554 ic->ic_transmit = rum_transmit; 555 ic->ic_parent = rum_parent; 556 ic->ic_vap_create = rum_vap_create; 557 ic->ic_vap_delete = rum_vap_delete; 558 ic->ic_updateslot = rum_update_slot; 559 ic->ic_wme.wme_update = rum_wme_update; 560 ic->ic_update_mcast = rum_update_mcast; 561 562 ieee80211_radiotap_attach(ic, 563 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 564 RT2573_TX_RADIOTAP_PRESENT, 565 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 566 RT2573_RX_RADIOTAP_PRESENT); 567 568 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 569 570 if (bootverbose) 571 ieee80211_announce(ic); 572 573 return (0); 574 575 detach: 576 rum_detach(self); 577 return (ENXIO); /* failure */ 578 } 579 580 static int 581 rum_detach(device_t self) 582 { 583 struct rum_softc *sc = device_get_softc(self); 584 struct ieee80211com *ic = &sc->sc_ic; 585 586 /* Prevent further ioctls */ 587 RUM_LOCK(sc); 588 sc->sc_detached = 1; 589 RUM_UNLOCK(sc); 590 591 /* stop all USB transfers */ 592 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 593 594 /* free TX list, if any */ 595 RUM_LOCK(sc); 596 rum_unsetup_tx_list(sc); 597 RUM_UNLOCK(sc); 598 599 if (ic->ic_softc == sc) { 600 ieee80211_draintask(ic, &sc->cmdq_task); 601 ieee80211_ifdetach(ic); 602 } 603 604 mbufq_drain(&sc->sc_snd); 605 RUM_CMDQ_LOCK_DESTROY(sc); 606 RUM_LOCK_DESTROY(sc); 607 608 return (0); 609 } 610 611 static usb_error_t 612 rum_do_request(struct rum_softc *sc, 613 struct usb_device_request *req, void *data) 614 { 615 usb_error_t err; 616 int ntries = 10; 617 618 while (ntries--) { 619 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 620 req, data, 0, NULL, 250 /* ms */); 621 if (err == 0) 622 break; 623 624 DPRINTFN(1, "Control request failed, %s (retrying)\n", 625 usbd_errstr(err)); 626 if (rum_pause(sc, hz / 100)) 627 break; 628 } 629 return (err); 630 } 631 632 static struct ieee80211vap * 633 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 634 enum ieee80211_opmode opmode, int flags, 635 const uint8_t bssid[IEEE80211_ADDR_LEN], 636 const uint8_t mac[IEEE80211_ADDR_LEN]) 637 { 638 struct rum_softc *sc = ic->ic_softc; 639 struct rum_vap *rvp; 640 struct ieee80211vap *vap; 641 642 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 643 return NULL; 644 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 645 vap = &rvp->vap; 646 /* enable s/w bmiss handling for sta mode */ 647 648 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 649 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 650 /* out of memory */ 651 free(rvp, M_80211_VAP); 652 return (NULL); 653 } 654 655 /* override state transition machine */ 656 rvp->newstate = vap->iv_newstate; 657 vap->iv_newstate = rum_newstate; 658 vap->iv_key_alloc = rum_key_alloc; 659 vap->iv_key_set = rum_key_set; 660 vap->iv_key_delete = rum_key_delete; 661 vap->iv_update_beacon = rum_update_beacon; 662 vap->iv_max_aid = RT2573_ADDR_MAX; 663 664 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 665 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 666 ieee80211_ratectl_init(vap); 667 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 668 /* complete setup */ 669 ieee80211_vap_attach(vap, ieee80211_media_change, 670 ieee80211_media_status, mac); 671 ic->ic_opmode = opmode; 672 return vap; 673 } 674 675 static void 676 rum_vap_delete(struct ieee80211vap *vap) 677 { 678 struct rum_vap *rvp = RUM_VAP(vap); 679 struct ieee80211com *ic = vap->iv_ic; 680 681 m_freem(rvp->bcn_mbuf); 682 usb_callout_drain(&rvp->ratectl_ch); 683 ieee80211_draintask(ic, &rvp->ratectl_task); 684 ieee80211_ratectl_deinit(vap); 685 ieee80211_vap_detach(vap); 686 free(rvp, M_80211_VAP); 687 } 688 689 static void 690 rum_cmdq_cb(void *arg, int pending) 691 { 692 struct rum_softc *sc = arg; 693 struct rum_cmdq *rc; 694 695 RUM_CMDQ_LOCK(sc); 696 while (sc->cmdq[sc->cmdq_first].func != NULL) { 697 rc = &sc->cmdq[sc->cmdq_first]; 698 RUM_CMDQ_UNLOCK(sc); 699 700 RUM_LOCK(sc); 701 rc->func(sc, &rc->data, rc->rvp_id); 702 RUM_UNLOCK(sc); 703 704 RUM_CMDQ_LOCK(sc); 705 memset(rc, 0, sizeof (*rc)); 706 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 707 } 708 RUM_CMDQ_UNLOCK(sc); 709 } 710 711 static int 712 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 713 uint8_t rvp_id, CMD_FUNC_PROTO) 714 { 715 struct ieee80211com *ic = &sc->sc_ic; 716 717 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 718 719 RUM_CMDQ_LOCK(sc); 720 if (sc->cmdq[sc->cmdq_last].func != NULL) { 721 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 722 RUM_CMDQ_UNLOCK(sc); 723 724 return EAGAIN; 725 } 726 727 if (ptr != NULL) 728 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 729 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 730 sc->cmdq[sc->cmdq_last].func = func; 731 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 732 RUM_CMDQ_UNLOCK(sc); 733 734 ieee80211_runtask(ic, &sc->cmdq_task); 735 736 return 0; 737 } 738 739 static void 740 rum_tx_free(struct rum_tx_data *data, int txerr) 741 { 742 struct rum_softc *sc = data->sc; 743 744 if (data->m != NULL) { 745 ieee80211_tx_complete(data->ni, data->m, txerr); 746 data->m = NULL; 747 data->ni = NULL; 748 } 749 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 750 sc->tx_nfree++; 751 } 752 753 static void 754 rum_setup_tx_list(struct rum_softc *sc) 755 { 756 struct rum_tx_data *data; 757 int i; 758 759 sc->tx_nfree = 0; 760 STAILQ_INIT(&sc->tx_q); 761 STAILQ_INIT(&sc->tx_free); 762 763 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 764 data = &sc->tx_data[i]; 765 766 data->sc = sc; 767 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 768 sc->tx_nfree++; 769 } 770 } 771 772 static void 773 rum_unsetup_tx_list(struct rum_softc *sc) 774 { 775 struct rum_tx_data *data; 776 int i; 777 778 /* make sure any subsequent use of the queues will fail */ 779 sc->tx_nfree = 0; 780 STAILQ_INIT(&sc->tx_q); 781 STAILQ_INIT(&sc->tx_free); 782 783 /* free up all node references and mbufs */ 784 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 785 data = &sc->tx_data[i]; 786 787 if (data->m != NULL) { 788 m_freem(data->m); 789 data->m = NULL; 790 } 791 if (data->ni != NULL) { 792 ieee80211_free_node(data->ni); 793 data->ni = NULL; 794 } 795 } 796 } 797 798 static int 799 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 800 { 801 struct rum_vap *rvp = RUM_VAP(vap); 802 struct ieee80211com *ic = vap->iv_ic; 803 struct rum_softc *sc = ic->ic_softc; 804 const struct ieee80211_txparam *tp; 805 enum ieee80211_state ostate; 806 struct ieee80211_node *ni; 807 int ret; 808 809 ostate = vap->iv_state; 810 DPRINTF("%s -> %s\n", 811 ieee80211_state_name[ostate], 812 ieee80211_state_name[nstate]); 813 814 IEEE80211_UNLOCK(ic); 815 RUM_LOCK(sc); 816 usb_callout_stop(&rvp->ratectl_ch); 817 818 switch (nstate) { 819 case IEEE80211_S_INIT: 820 if (ostate == IEEE80211_S_RUN) 821 rum_abort_tsf_sync(sc); 822 823 break; 824 825 case IEEE80211_S_RUN: 826 ni = ieee80211_ref_node(vap->iv_bss); 827 828 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 829 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 830 ni->ni_chan == IEEE80211_CHAN_ANYC) { 831 ret = EINVAL; 832 goto run_fail; 833 } 834 rum_update_slot_cb(sc, NULL, 0); 835 rum_enable_mrr(sc); 836 rum_set_txpreamble(sc); 837 rum_set_basicrates(sc); 838 rum_set_maxretry(sc, vap); 839 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 840 rum_set_bssid(sc, sc->sc_bssid); 841 } 842 843 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 844 vap->iv_opmode == IEEE80211_M_IBSS) { 845 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 846 goto run_fail; 847 } 848 849 if (vap->iv_opmode != IEEE80211_M_MONITOR && 850 vap->iv_opmode != IEEE80211_M_AHDEMO) { 851 if ((ret = rum_enable_tsf_sync(sc)) != 0) 852 goto run_fail; 853 } else 854 rum_enable_tsf(sc); 855 856 /* enable automatic rate adaptation */ 857 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 858 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 859 rum_ratectl_start(sc, ni); 860 ieee80211_free_node(ni); 861 break; 862 default: 863 break; 864 } 865 RUM_UNLOCK(sc); 866 IEEE80211_LOCK(ic); 867 return (rvp->newstate(vap, nstate, arg)); 868 869 run_fail: 870 RUM_UNLOCK(sc); 871 IEEE80211_LOCK(ic); 872 ieee80211_free_node(ni); 873 return ret; 874 } 875 876 static void 877 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 878 { 879 struct rum_softc *sc = usbd_xfer_softc(xfer); 880 struct ieee80211vap *vap; 881 struct rum_tx_data *data; 882 struct mbuf *m; 883 struct usb_page_cache *pc; 884 unsigned int len; 885 int actlen, sumlen; 886 887 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 888 889 switch (USB_GET_STATE(xfer)) { 890 case USB_ST_TRANSFERRED: 891 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 892 893 /* free resources */ 894 data = usbd_xfer_get_priv(xfer); 895 rum_tx_free(data, 0); 896 usbd_xfer_set_priv(xfer, NULL); 897 898 /* FALLTHROUGH */ 899 case USB_ST_SETUP: 900 tr_setup: 901 data = STAILQ_FIRST(&sc->tx_q); 902 if (data) { 903 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 904 m = data->m; 905 906 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 907 DPRINTFN(0, "data overflow, %u bytes\n", 908 m->m_pkthdr.len); 909 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 910 } 911 pc = usbd_xfer_get_frame(xfer, 0); 912 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 913 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 914 m->m_pkthdr.len); 915 916 vap = data->ni->ni_vap; 917 if (ieee80211_radiotap_active_vap(vap)) { 918 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 919 920 tap->wt_flags = 0; 921 tap->wt_rate = data->rate; 922 rum_get_tsf(sc, &tap->wt_tsf); 923 tap->wt_antenna = sc->tx_ant; 924 925 ieee80211_radiotap_tx(vap, m); 926 } 927 928 /* align end on a 4-bytes boundary */ 929 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 930 if ((len % 64) == 0) 931 len += 4; 932 933 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 934 m->m_pkthdr.len, len); 935 936 usbd_xfer_set_frame_len(xfer, 0, len); 937 usbd_xfer_set_priv(xfer, data); 938 939 usbd_transfer_submit(xfer); 940 } 941 rum_start(sc); 942 break; 943 944 default: /* Error */ 945 DPRINTFN(11, "transfer error, %s\n", 946 usbd_errstr(error)); 947 948 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 949 data = usbd_xfer_get_priv(xfer); 950 if (data != NULL) { 951 rum_tx_free(data, error); 952 usbd_xfer_set_priv(xfer, NULL); 953 } 954 955 if (error != USB_ERR_CANCELLED) { 956 if (error == USB_ERR_TIMEOUT) 957 device_printf(sc->sc_dev, "device timeout\n"); 958 959 /* 960 * Try to clear stall first, also if other 961 * errors occur, hence clearing stall 962 * introduces a 50 ms delay: 963 */ 964 usbd_xfer_set_stall(xfer); 965 goto tr_setup; 966 } 967 break; 968 } 969 } 970 971 static void 972 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 973 { 974 struct rum_softc *sc = usbd_xfer_softc(xfer); 975 struct ieee80211com *ic = &sc->sc_ic; 976 struct ieee80211_frame_min *wh; 977 struct ieee80211_node *ni; 978 struct mbuf *m = NULL; 979 struct usb_page_cache *pc; 980 uint32_t flags; 981 uint8_t rssi = 0; 982 int len; 983 984 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 985 986 switch (USB_GET_STATE(xfer)) { 987 case USB_ST_TRANSFERRED: 988 989 DPRINTFN(15, "rx done, actlen=%d\n", len); 990 991 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 992 DPRINTF("%s: xfer too short %d\n", 993 device_get_nameunit(sc->sc_dev), len); 994 counter_u64_add(ic->ic_ierrors, 1); 995 goto tr_setup; 996 } 997 998 len -= RT2573_RX_DESC_SIZE; 999 pc = usbd_xfer_get_frame(xfer, 0); 1000 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1001 1002 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1003 flags = le32toh(sc->sc_rx_desc.flags); 1004 if (flags & RT2573_RX_CRC_ERROR) { 1005 /* 1006 * This should not happen since we did not 1007 * request to receive those frames when we 1008 * filled RUM_TXRX_CSR2: 1009 */ 1010 DPRINTFN(5, "PHY or CRC error\n"); 1011 counter_u64_add(ic->ic_ierrors, 1); 1012 goto tr_setup; 1013 } 1014 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1015 switch (flags & RT2573_RX_DEC_MASK) { 1016 case RT2573_RX_IV_ERROR: 1017 DPRINTFN(5, "IV/EIV error\n"); 1018 break; 1019 case RT2573_RX_MIC_ERROR: 1020 DPRINTFN(5, "MIC error\n"); 1021 break; 1022 case RT2573_RX_KEY_ERROR: 1023 DPRINTFN(5, "Key error\n"); 1024 break; 1025 } 1026 counter_u64_add(ic->ic_ierrors, 1); 1027 goto tr_setup; 1028 } 1029 1030 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1031 if (m == NULL) { 1032 DPRINTF("could not allocate mbuf\n"); 1033 counter_u64_add(ic->ic_ierrors, 1); 1034 goto tr_setup; 1035 } 1036 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1037 mtod(m, uint8_t *), len); 1038 1039 wh = mtod(m, struct ieee80211_frame_min *); 1040 1041 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1042 (flags & RT2573_RX_CIP_MASK) != 1043 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1044 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1045 m->m_flags |= M_WEP; 1046 } 1047 1048 /* finalize mbuf */ 1049 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 1050 1051 if (ieee80211_radiotap_active(ic)) { 1052 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1053 1054 tap->wr_flags = 0; 1055 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1056 (flags & RT2573_RX_OFDM) ? 1057 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1058 rum_get_tsf(sc, &tap->wr_tsf); 1059 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1060 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1061 tap->wr_antenna = sc->rx_ant; 1062 } 1063 /* FALLTHROUGH */ 1064 case USB_ST_SETUP: 1065 tr_setup: 1066 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1067 usbd_transfer_submit(xfer); 1068 1069 /* 1070 * At the end of a USB callback it is always safe to unlock 1071 * the private mutex of a device! That is why we do the 1072 * "ieee80211_input" here, and not some lines up! 1073 */ 1074 RUM_UNLOCK(sc); 1075 if (m) { 1076 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1077 ni = ieee80211_find_rxnode(ic, wh); 1078 else 1079 ni = NULL; 1080 1081 if (ni != NULL) { 1082 (void) ieee80211_input(ni, m, rssi, 1083 RT2573_NOISE_FLOOR); 1084 ieee80211_free_node(ni); 1085 } else 1086 (void) ieee80211_input_all(ic, m, rssi, 1087 RT2573_NOISE_FLOOR); 1088 } 1089 RUM_LOCK(sc); 1090 rum_start(sc); 1091 return; 1092 1093 default: /* Error */ 1094 if (error != USB_ERR_CANCELLED) { 1095 /* try to clear stall first */ 1096 usbd_xfer_set_stall(xfer); 1097 goto tr_setup; 1098 } 1099 return; 1100 } 1101 } 1102 1103 static uint8_t 1104 rum_plcp_signal(int rate) 1105 { 1106 switch (rate) { 1107 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1108 case 12: return 0xb; 1109 case 18: return 0xf; 1110 case 24: return 0xa; 1111 case 36: return 0xe; 1112 case 48: return 0x9; 1113 case 72: return 0xd; 1114 case 96: return 0x8; 1115 case 108: return 0xc; 1116 1117 /* CCK rates (NB: not IEEE std, device-specific) */ 1118 case 2: return 0x0; 1119 case 4: return 0x1; 1120 case 11: return 0x2; 1121 case 22: return 0x3; 1122 } 1123 return 0xff; /* XXX unsupported/unknown rate */ 1124 } 1125 1126 /* 1127 * Map net80211 cipher to RT2573 security mode. 1128 */ 1129 static uint8_t 1130 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1131 { 1132 switch (cipher) { 1133 case IEEE80211_CIPHER_WEP: 1134 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1135 case IEEE80211_CIPHER_TKIP: 1136 return RT2573_MODE_TKIP; 1137 case IEEE80211_CIPHER_AES_CCM: 1138 return RT2573_MODE_AES_CCMP; 1139 default: 1140 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1141 return 0; 1142 } 1143 } 1144 1145 static void 1146 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1147 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1148 int hdrlen, int len, int rate) 1149 { 1150 struct ieee80211com *ic = &sc->sc_ic; 1151 struct wmeParams *wmep = &sc->wme_params[qid]; 1152 uint16_t plcp_length; 1153 int remainder; 1154 1155 flags |= RT2573_TX_VALID; 1156 flags |= len << 16; 1157 1158 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1159 const struct ieee80211_cipher *cip = k->wk_cipher; 1160 1161 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1162 1163 desc->eiv = 0; /* for WEP */ 1164 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1165 } 1166 1167 /* setup PLCP fields */ 1168 desc->plcp_signal = rum_plcp_signal(rate); 1169 desc->plcp_service = 4; 1170 1171 len += IEEE80211_CRC_LEN; 1172 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1173 flags |= RT2573_TX_OFDM; 1174 1175 plcp_length = len & 0xfff; 1176 desc->plcp_length_hi = plcp_length >> 6; 1177 desc->plcp_length_lo = plcp_length & 0x3f; 1178 } else { 1179 if (rate == 0) 1180 rate = 2; /* avoid division by zero */ 1181 plcp_length = (16 * len + rate - 1) / rate; 1182 if (rate == 22) { 1183 remainder = (16 * len) % 22; 1184 if (remainder != 0 && remainder < 7) 1185 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1186 } 1187 desc->plcp_length_hi = plcp_length >> 8; 1188 desc->plcp_length_lo = plcp_length & 0xff; 1189 1190 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1191 desc->plcp_signal |= 0x08; 1192 } 1193 1194 desc->flags = htole32(flags); 1195 desc->hdrlen = hdrlen; 1196 desc->xflags = xflags; 1197 1198 desc->wme = htole16(RT2573_QID(qid) | 1199 RT2573_AIFSN(wmep->wmep_aifsn) | 1200 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1201 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1202 } 1203 1204 static int 1205 rum_sendprot(struct rum_softc *sc, 1206 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1207 { 1208 struct ieee80211com *ic = ni->ni_ic; 1209 const struct ieee80211_frame *wh; 1210 struct rum_tx_data *data; 1211 struct mbuf *mprot; 1212 int protrate, pktlen, flags, isshort; 1213 uint16_t dur; 1214 1215 RUM_LOCK_ASSERT(sc); 1216 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1217 ("protection %d", prot)); 1218 1219 wh = mtod(m, const struct ieee80211_frame *); 1220 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1221 1222 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1223 1224 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1225 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1226 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1227 flags = 0; 1228 if (prot == IEEE80211_PROT_RTSCTS) { 1229 /* NB: CTS is the same size as an ACK */ 1230 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1231 flags |= RT2573_TX_NEED_ACK; 1232 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1233 } else { 1234 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1235 } 1236 if (mprot == NULL) { 1237 /* XXX stat + msg */ 1238 return (ENOBUFS); 1239 } 1240 data = STAILQ_FIRST(&sc->tx_free); 1241 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1242 sc->tx_nfree--; 1243 1244 data->m = mprot; 1245 data->ni = ieee80211_ref_node(ni); 1246 data->rate = protrate; 1247 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1248 mprot->m_pkthdr.len, protrate); 1249 1250 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1251 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1252 1253 return 0; 1254 } 1255 1256 static uint32_t 1257 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1258 const struct ieee80211_key *k) 1259 { 1260 struct ieee80211vap *vap = ni->ni_vap; 1261 u_int cipher; 1262 uint32_t flags = 0; 1263 uint8_t mode, pos; 1264 1265 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1266 cipher = k->wk_cipher->ic_cipher; 1267 pos = k->wk_keyix; 1268 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1269 if (mode == 0) 1270 return 0; 1271 1272 flags |= RT2573_TX_CIP_MODE(mode); 1273 1274 /* Do not trust GROUP flag */ 1275 if (!(k >= &vap->iv_nw_keys[0] && 1276 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1277 flags |= RT2573_TX_KEY_PAIR; 1278 else 1279 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1280 1281 flags |= RT2573_TX_KEY_ID(pos); 1282 1283 if (cipher == IEEE80211_CIPHER_TKIP) 1284 flags |= RT2573_TX_TKIPMIC; 1285 } 1286 1287 return flags; 1288 } 1289 1290 static int 1291 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1292 { 1293 struct ieee80211vap *vap = ni->ni_vap; 1294 struct ieee80211com *ic = &sc->sc_ic; 1295 struct rum_tx_data *data; 1296 struct ieee80211_frame *wh; 1297 const struct ieee80211_txparam *tp; 1298 struct ieee80211_key *k = NULL; 1299 uint32_t flags = 0; 1300 uint16_t dur; 1301 uint8_t ac, type, xflags = 0; 1302 int hdrlen; 1303 1304 RUM_LOCK_ASSERT(sc); 1305 1306 data = STAILQ_FIRST(&sc->tx_free); 1307 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1308 sc->tx_nfree--; 1309 1310 wh = mtod(m0, struct ieee80211_frame *); 1311 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1312 hdrlen = ieee80211_anyhdrsize(wh); 1313 ac = M_WME_GETAC(m0); 1314 1315 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1316 k = ieee80211_crypto_get_txkey(ni, m0); 1317 if (k == NULL) 1318 return (ENOENT); 1319 1320 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1321 !k->wk_cipher->ic_encap(k, m0)) 1322 return (ENOBUFS); 1323 1324 wh = mtod(m0, struct ieee80211_frame *); 1325 } 1326 1327 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1328 1329 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1330 flags |= RT2573_TX_NEED_ACK; 1331 1332 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1333 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1334 USETW(wh->i_dur, dur); 1335 1336 /* tell hardware to add timestamp for probe responses */ 1337 if (type == IEEE80211_FC0_TYPE_MGT && 1338 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1339 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1340 flags |= RT2573_TX_TIMESTAMP; 1341 } 1342 1343 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1344 xflags |= RT2573_TX_HWSEQ; 1345 1346 if (k != NULL) 1347 flags |= rum_tx_crypto_flags(sc, ni, k); 1348 1349 data->m = m0; 1350 data->ni = ni; 1351 data->rate = tp->mgmtrate; 1352 1353 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1354 m0->m_pkthdr.len, tp->mgmtrate); 1355 1356 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1357 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1358 1359 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1360 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1361 1362 return (0); 1363 } 1364 1365 static int 1366 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1367 const struct ieee80211_bpf_params *params) 1368 { 1369 struct ieee80211com *ic = ni->ni_ic; 1370 struct ieee80211_frame *wh; 1371 struct rum_tx_data *data; 1372 uint32_t flags; 1373 uint8_t ac, type, xflags = 0; 1374 int rate, error; 1375 1376 RUM_LOCK_ASSERT(sc); 1377 1378 wh = mtod(m0, struct ieee80211_frame *); 1379 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1380 1381 ac = params->ibp_pri & 3; 1382 1383 rate = params->ibp_rate0; 1384 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1385 return (EINVAL); 1386 1387 flags = 0; 1388 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1389 flags |= RT2573_TX_NEED_ACK; 1390 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1391 error = rum_sendprot(sc, m0, ni, 1392 params->ibp_flags & IEEE80211_BPF_RTS ? 1393 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1394 rate); 1395 if (error || sc->tx_nfree == 0) 1396 return (ENOBUFS); 1397 1398 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1399 } 1400 1401 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1402 xflags |= RT2573_TX_HWSEQ; 1403 1404 data = STAILQ_FIRST(&sc->tx_free); 1405 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1406 sc->tx_nfree--; 1407 1408 data->m = m0; 1409 data->ni = ni; 1410 data->rate = rate; 1411 1412 /* XXX need to setup descriptor ourself */ 1413 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1414 m0->m_pkthdr.len, rate); 1415 1416 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1417 m0->m_pkthdr.len, rate); 1418 1419 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1420 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1421 1422 return 0; 1423 } 1424 1425 static int 1426 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1427 { 1428 struct ieee80211vap *vap = ni->ni_vap; 1429 struct ieee80211com *ic = &sc->sc_ic; 1430 struct rum_tx_data *data; 1431 struct ieee80211_frame *wh; 1432 const struct ieee80211_txparam *tp; 1433 struct ieee80211_key *k = NULL; 1434 uint32_t flags = 0; 1435 uint16_t dur; 1436 uint8_t ac, type, qos, xflags = 0; 1437 int error, hdrlen, rate; 1438 1439 RUM_LOCK_ASSERT(sc); 1440 1441 wh = mtod(m0, struct ieee80211_frame *); 1442 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1443 hdrlen = ieee80211_anyhdrsize(wh); 1444 1445 if (IEEE80211_QOS_HAS_SEQ(wh)) 1446 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1447 else 1448 qos = 0; 1449 ac = M_WME_GETAC(m0); 1450 1451 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1452 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1453 rate = tp->mcastrate; 1454 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1455 rate = tp->ucastrate; 1456 else 1457 rate = ni->ni_txrate; 1458 1459 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1460 k = ieee80211_crypto_get_txkey(ni, m0); 1461 if (k == NULL) { 1462 m_freem(m0); 1463 return (ENOENT); 1464 } 1465 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1466 !k->wk_cipher->ic_encap(k, m0)) { 1467 m_freem(m0); 1468 return (ENOBUFS); 1469 } 1470 1471 /* packet header may have moved, reset our local pointer */ 1472 wh = mtod(m0, struct ieee80211_frame *); 1473 } 1474 1475 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1476 xflags |= RT2573_TX_HWSEQ; 1477 1478 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1479 int prot = IEEE80211_PROT_NONE; 1480 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1481 prot = IEEE80211_PROT_RTSCTS; 1482 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1483 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1484 prot = ic->ic_protmode; 1485 if (prot != IEEE80211_PROT_NONE) { 1486 error = rum_sendprot(sc, m0, ni, prot, rate); 1487 if (error || sc->tx_nfree == 0) { 1488 m_freem(m0); 1489 return ENOBUFS; 1490 } 1491 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1492 } 1493 } 1494 1495 if (k != NULL) 1496 flags |= rum_tx_crypto_flags(sc, ni, k); 1497 1498 data = STAILQ_FIRST(&sc->tx_free); 1499 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1500 sc->tx_nfree--; 1501 1502 data->m = m0; 1503 data->ni = ni; 1504 data->rate = rate; 1505 1506 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1507 /* Unicast frame, check if an ACK is expected. */ 1508 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1509 IEEE80211_QOS_ACKPOLICY_NOACK) 1510 flags |= RT2573_TX_NEED_ACK; 1511 1512 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1513 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1514 USETW(wh->i_dur, dur); 1515 } 1516 1517 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1518 m0->m_pkthdr.len, rate); 1519 1520 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1521 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1522 1523 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1524 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1525 1526 return 0; 1527 } 1528 1529 static int 1530 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1531 { 1532 struct rum_softc *sc = ic->ic_softc; 1533 int error; 1534 1535 RUM_LOCK(sc); 1536 if (!sc->sc_running) { 1537 RUM_UNLOCK(sc); 1538 return (ENXIO); 1539 } 1540 error = mbufq_enqueue(&sc->sc_snd, m); 1541 if (error) { 1542 RUM_UNLOCK(sc); 1543 return (error); 1544 } 1545 rum_start(sc); 1546 RUM_UNLOCK(sc); 1547 1548 return (0); 1549 } 1550 1551 static void 1552 rum_start(struct rum_softc *sc) 1553 { 1554 struct ieee80211_node *ni; 1555 struct mbuf *m; 1556 1557 RUM_LOCK_ASSERT(sc); 1558 1559 if (!sc->sc_running) 1560 return; 1561 1562 while (sc->tx_nfree >= RUM_TX_MINFREE && 1563 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1564 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1565 if (rum_tx_data(sc, m, ni) != 0) { 1566 if_inc_counter(ni->ni_vap->iv_ifp, 1567 IFCOUNTER_OERRORS, 1); 1568 ieee80211_free_node(ni); 1569 break; 1570 } 1571 } 1572 } 1573 1574 static void 1575 rum_parent(struct ieee80211com *ic) 1576 { 1577 struct rum_softc *sc = ic->ic_softc; 1578 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1579 1580 RUM_LOCK(sc); 1581 if (sc->sc_detached) { 1582 RUM_UNLOCK(sc); 1583 return; 1584 } 1585 RUM_UNLOCK(sc); 1586 1587 if (ic->ic_nrunning > 0) { 1588 if (rum_init(sc) == 0) 1589 ieee80211_start_all(ic); 1590 else 1591 ieee80211_stop(vap); 1592 } else 1593 rum_stop(sc); 1594 } 1595 1596 static void 1597 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1598 { 1599 struct usb_device_request req; 1600 usb_error_t error; 1601 1602 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1603 req.bRequest = RT2573_READ_EEPROM; 1604 USETW(req.wValue, 0); 1605 USETW(req.wIndex, addr); 1606 USETW(req.wLength, len); 1607 1608 error = rum_do_request(sc, &req, buf); 1609 if (error != 0) { 1610 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1611 usbd_errstr(error)); 1612 } 1613 } 1614 1615 static uint32_t 1616 rum_read(struct rum_softc *sc, uint16_t reg) 1617 { 1618 uint32_t val; 1619 1620 rum_read_multi(sc, reg, &val, sizeof val); 1621 1622 return le32toh(val); 1623 } 1624 1625 static void 1626 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1627 { 1628 struct usb_device_request req; 1629 usb_error_t error; 1630 1631 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1632 req.bRequest = RT2573_READ_MULTI_MAC; 1633 USETW(req.wValue, 0); 1634 USETW(req.wIndex, reg); 1635 USETW(req.wLength, len); 1636 1637 error = rum_do_request(sc, &req, buf); 1638 if (error != 0) { 1639 device_printf(sc->sc_dev, 1640 "could not multi read MAC register: %s\n", 1641 usbd_errstr(error)); 1642 } 1643 } 1644 1645 static usb_error_t 1646 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1647 { 1648 uint32_t tmp = htole32(val); 1649 1650 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1651 } 1652 1653 static usb_error_t 1654 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1655 { 1656 struct usb_device_request req; 1657 usb_error_t error; 1658 size_t offset; 1659 1660 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1661 req.bRequest = RT2573_WRITE_MULTI_MAC; 1662 USETW(req.wValue, 0); 1663 1664 /* write at most 64 bytes at a time */ 1665 for (offset = 0; offset < len; offset += 64) { 1666 USETW(req.wIndex, reg + offset); 1667 USETW(req.wLength, MIN(len - offset, 64)); 1668 1669 error = rum_do_request(sc, &req, (char *)buf + offset); 1670 if (error != 0) { 1671 device_printf(sc->sc_dev, 1672 "could not multi write MAC register: %s\n", 1673 usbd_errstr(error)); 1674 return (error); 1675 } 1676 } 1677 1678 return (USB_ERR_NORMAL_COMPLETION); 1679 } 1680 1681 static usb_error_t 1682 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1683 { 1684 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1685 } 1686 1687 static usb_error_t 1688 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1689 { 1690 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1691 } 1692 1693 static usb_error_t 1694 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1695 { 1696 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1697 } 1698 1699 static int 1700 rum_bbp_busy(struct rum_softc *sc) 1701 { 1702 int ntries; 1703 1704 for (ntries = 0; ntries < 100; ntries++) { 1705 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1706 break; 1707 if (rum_pause(sc, hz / 100)) 1708 break; 1709 } 1710 if (ntries == 100) 1711 return (ETIMEDOUT); 1712 1713 return (0); 1714 } 1715 1716 static void 1717 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1718 { 1719 uint32_t tmp; 1720 1721 DPRINTFN(2, "reg=0x%08x\n", reg); 1722 1723 if (rum_bbp_busy(sc) != 0) { 1724 device_printf(sc->sc_dev, "could not write to BBP\n"); 1725 return; 1726 } 1727 1728 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1729 rum_write(sc, RT2573_PHY_CSR3, tmp); 1730 } 1731 1732 static uint8_t 1733 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1734 { 1735 uint32_t val; 1736 int ntries; 1737 1738 DPRINTFN(2, "reg=0x%08x\n", reg); 1739 1740 if (rum_bbp_busy(sc) != 0) { 1741 device_printf(sc->sc_dev, "could not read BBP\n"); 1742 return 0; 1743 } 1744 1745 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1746 rum_write(sc, RT2573_PHY_CSR3, val); 1747 1748 for (ntries = 0; ntries < 100; ntries++) { 1749 val = rum_read(sc, RT2573_PHY_CSR3); 1750 if (!(val & RT2573_BBP_BUSY)) 1751 return val & 0xff; 1752 if (rum_pause(sc, hz / 100)) 1753 break; 1754 } 1755 1756 device_printf(sc->sc_dev, "could not read BBP\n"); 1757 return 0; 1758 } 1759 1760 static void 1761 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1762 { 1763 uint32_t tmp; 1764 int ntries; 1765 1766 for (ntries = 0; ntries < 100; ntries++) { 1767 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1768 break; 1769 if (rum_pause(sc, hz / 100)) 1770 break; 1771 } 1772 if (ntries == 100) { 1773 device_printf(sc->sc_dev, "could not write to RF\n"); 1774 return; 1775 } 1776 1777 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1778 (reg & 3); 1779 rum_write(sc, RT2573_PHY_CSR4, tmp); 1780 1781 /* remember last written value in sc */ 1782 sc->rf_regs[reg] = val; 1783 1784 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1785 } 1786 1787 static void 1788 rum_select_antenna(struct rum_softc *sc) 1789 { 1790 uint8_t bbp4, bbp77; 1791 uint32_t tmp; 1792 1793 bbp4 = rum_bbp_read(sc, 4); 1794 bbp77 = rum_bbp_read(sc, 77); 1795 1796 /* TBD */ 1797 1798 /* make sure Rx is disabled before switching antenna */ 1799 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1800 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1801 1802 rum_bbp_write(sc, 4, bbp4); 1803 rum_bbp_write(sc, 77, bbp77); 1804 1805 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1806 } 1807 1808 /* 1809 * Enable multi-rate retries for frames sent at OFDM rates. 1810 * In 802.11b/g mode, allow fallback to CCK rates. 1811 */ 1812 static void 1813 rum_enable_mrr(struct rum_softc *sc) 1814 { 1815 struct ieee80211com *ic = &sc->sc_ic; 1816 1817 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1818 rum_setbits(sc, RT2573_TXRX_CSR4, 1819 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 1820 } else { 1821 rum_modbits(sc, RT2573_TXRX_CSR4, 1822 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 1823 } 1824 } 1825 1826 static void 1827 rum_set_txpreamble(struct rum_softc *sc) 1828 { 1829 struct ieee80211com *ic = &sc->sc_ic; 1830 1831 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1832 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1833 else 1834 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1835 } 1836 1837 static void 1838 rum_set_basicrates(struct rum_softc *sc) 1839 { 1840 struct ieee80211com *ic = &sc->sc_ic; 1841 1842 /* update basic rate set */ 1843 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1844 /* 11b basic rates: 1, 2Mbps */ 1845 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1846 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1847 /* 11a basic rates: 6, 12, 24Mbps */ 1848 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1849 } else { 1850 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1851 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1852 } 1853 } 1854 1855 /* 1856 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1857 * driver. 1858 */ 1859 static void 1860 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1861 { 1862 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1863 1864 /* update all BBP registers that depend on the band */ 1865 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1866 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1867 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1868 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1869 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1870 } 1871 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1872 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1873 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1874 } 1875 1876 sc->bbp17 = bbp17; 1877 rum_bbp_write(sc, 17, bbp17); 1878 rum_bbp_write(sc, 96, bbp96); 1879 rum_bbp_write(sc, 104, bbp104); 1880 1881 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1882 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1883 rum_bbp_write(sc, 75, 0x80); 1884 rum_bbp_write(sc, 86, 0x80); 1885 rum_bbp_write(sc, 88, 0x80); 1886 } 1887 1888 rum_bbp_write(sc, 35, bbp35); 1889 rum_bbp_write(sc, 97, bbp97); 1890 rum_bbp_write(sc, 98, bbp98); 1891 1892 if (IEEE80211_IS_CHAN_2GHZ(c)) { 1893 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 1894 RT2573_PA_PE_5GHZ); 1895 } else { 1896 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 1897 RT2573_PA_PE_2GHZ); 1898 } 1899 } 1900 1901 static void 1902 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1903 { 1904 struct ieee80211com *ic = &sc->sc_ic; 1905 const struct rfprog *rfprog; 1906 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1907 int8_t power; 1908 int i, chan; 1909 1910 chan = ieee80211_chan2ieee(ic, c); 1911 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1912 return; 1913 1914 /* select the appropriate RF settings based on what EEPROM says */ 1915 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1916 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1917 1918 /* find the settings for this channel (we know it exists) */ 1919 for (i = 0; rfprog[i].chan != chan; i++); 1920 1921 power = sc->txpow[i]; 1922 if (power < 0) { 1923 bbp94 += power; 1924 power = 0; 1925 } else if (power > 31) { 1926 bbp94 += power - 31; 1927 power = 31; 1928 } 1929 1930 /* 1931 * If we are switching from the 2GHz band to the 5GHz band or 1932 * vice-versa, BBP registers need to be reprogrammed. 1933 */ 1934 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1935 rum_select_band(sc, c); 1936 rum_select_antenna(sc); 1937 } 1938 ic->ic_curchan = c; 1939 1940 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1941 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1942 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1943 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1944 1945 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1946 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1947 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1948 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1949 1950 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1951 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1952 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1953 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1954 1955 rum_pause(sc, hz / 100); 1956 1957 /* enable smart mode for MIMO-capable RFs */ 1958 bbp3 = rum_bbp_read(sc, 3); 1959 1960 bbp3 &= ~RT2573_SMART_MODE; 1961 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1962 bbp3 |= RT2573_SMART_MODE; 1963 1964 rum_bbp_write(sc, 3, bbp3); 1965 1966 if (bbp94 != RT2573_BBPR94_DEFAULT) 1967 rum_bbp_write(sc, 94, bbp94); 1968 1969 /* give the chip some extra time to do the switchover */ 1970 rum_pause(sc, hz / 100); 1971 } 1972 1973 static void 1974 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 1975 { 1976 const struct ieee80211_txparam *tp; 1977 struct ieee80211_node *ni = vap->iv_bss; 1978 struct rum_vap *rvp = RUM_VAP(vap); 1979 1980 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1981 rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; 1982 1983 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 1984 RT2573_LONG_RETRY(rvp->maxretry), 1985 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 1986 } 1987 1988 /* 1989 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1990 * and HostAP operating modes. 1991 */ 1992 static int 1993 rum_enable_tsf_sync(struct rum_softc *sc) 1994 { 1995 struct ieee80211com *ic = &sc->sc_ic; 1996 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1997 uint32_t tmp; 1998 1999 if (vap->iv_opmode != IEEE80211_M_STA) { 2000 /* 2001 * Change default 16ms TBTT adjustment to 8ms. 2002 * Must be done before enabling beacon generation. 2003 */ 2004 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2005 return EIO; 2006 } 2007 2008 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2009 2010 /* set beacon interval (in 1/16ms unit) */ 2011 tmp |= vap->iv_bss->ni_intval * 16; 2012 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2013 2014 switch (vap->iv_opmode) { 2015 case IEEE80211_M_STA: 2016 /* 2017 * Local TSF is always updated with remote TSF on beacon 2018 * reception. 2019 */ 2020 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2021 break; 2022 case IEEE80211_M_IBSS: 2023 /* 2024 * Local TSF is updated with remote TSF on beacon reception 2025 * only if the remote TSF is greater than local TSF. 2026 */ 2027 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2028 tmp |= RT2573_BCN_TX_EN; 2029 break; 2030 case IEEE80211_M_HOSTAP: 2031 /* SYNC with nobody */ 2032 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2033 tmp |= RT2573_BCN_TX_EN; 2034 break; 2035 default: 2036 device_printf(sc->sc_dev, 2037 "Enabling TSF failed. undefined opmode %d\n", 2038 vap->iv_opmode); 2039 return EINVAL; 2040 } 2041 2042 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2043 return EIO; 2044 2045 return 0; 2046 } 2047 2048 static void 2049 rum_enable_tsf(struct rum_softc *sc) 2050 { 2051 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2052 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2053 } 2054 2055 static void 2056 rum_abort_tsf_sync(struct rum_softc *sc) 2057 { 2058 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2059 } 2060 2061 static void 2062 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2063 { 2064 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2065 } 2066 2067 static void 2068 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2069 { 2070 struct ieee80211com *ic = &sc->sc_ic; 2071 uint8_t slottime; 2072 2073 slottime = IEEE80211_GET_SLOTTIME(ic); 2074 2075 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2076 2077 DPRINTF("setting slot time to %uus\n", slottime); 2078 } 2079 2080 static void 2081 rum_update_slot(struct ieee80211com *ic) 2082 { 2083 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2084 } 2085 2086 static int 2087 rum_wme_update(struct ieee80211com *ic) 2088 { 2089 const struct wmeParams *chanp = 2090 ic->ic_wme.wme_chanParams.cap_wmeParams; 2091 struct rum_softc *sc = ic->ic_softc; 2092 int error = 0; 2093 2094 RUM_LOCK(sc); 2095 error = rum_write(sc, RT2573_AIFSN_CSR, 2096 chanp[WME_AC_VO].wmep_aifsn << 12 | 2097 chanp[WME_AC_VI].wmep_aifsn << 8 | 2098 chanp[WME_AC_BK].wmep_aifsn << 4 | 2099 chanp[WME_AC_BE].wmep_aifsn); 2100 if (error) 2101 goto print_err; 2102 error = rum_write(sc, RT2573_CWMIN_CSR, 2103 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2104 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2105 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2106 chanp[WME_AC_BE].wmep_logcwmin); 2107 if (error) 2108 goto print_err; 2109 error = rum_write(sc, RT2573_CWMAX_CSR, 2110 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2111 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2112 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2113 chanp[WME_AC_BE].wmep_logcwmax); 2114 if (error) 2115 goto print_err; 2116 error = rum_write(sc, RT2573_TXOP01_CSR, 2117 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2118 chanp[WME_AC_BE].wmep_txopLimit); 2119 if (error) 2120 goto print_err; 2121 error = rum_write(sc, RT2573_TXOP23_CSR, 2122 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2123 chanp[WME_AC_VI].wmep_txopLimit); 2124 if (error) 2125 goto print_err; 2126 2127 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2128 2129 print_err: 2130 RUM_UNLOCK(sc); 2131 if (error != 0) { 2132 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2133 __func__, error); 2134 } 2135 2136 return (error); 2137 } 2138 2139 static void 2140 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2141 { 2142 2143 rum_write(sc, RT2573_MAC_CSR4, 2144 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2145 rum_write(sc, RT2573_MAC_CSR5, 2146 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2147 } 2148 2149 static void 2150 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2151 { 2152 2153 rum_write(sc, RT2573_MAC_CSR2, 2154 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2155 rum_write(sc, RT2573_MAC_CSR3, 2156 addr[4] | addr[5] << 8 | 0xff << 16); 2157 } 2158 2159 static void 2160 rum_setpromisc(struct rum_softc *sc) 2161 { 2162 struct ieee80211com *ic = &sc->sc_ic; 2163 2164 if (ic->ic_promisc == 0) 2165 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2166 else 2167 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2168 2169 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2170 "entering" : "leaving"); 2171 } 2172 2173 static void 2174 rum_update_promisc(struct ieee80211com *ic) 2175 { 2176 struct rum_softc *sc = ic->ic_softc; 2177 2178 RUM_LOCK(sc); 2179 if (sc->sc_running) 2180 rum_setpromisc(sc); 2181 RUM_UNLOCK(sc); 2182 } 2183 2184 static void 2185 rum_update_mcast(struct ieee80211com *ic) 2186 { 2187 /* Ignore. */ 2188 } 2189 2190 static const char * 2191 rum_get_rf(int rev) 2192 { 2193 switch (rev) { 2194 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2195 case RT2573_RF_2528: return "RT2528"; 2196 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2197 case RT2573_RF_5226: return "RT5226"; 2198 default: return "unknown"; 2199 } 2200 } 2201 2202 static void 2203 rum_read_eeprom(struct rum_softc *sc) 2204 { 2205 uint16_t val; 2206 #ifdef RUM_DEBUG 2207 int i; 2208 #endif 2209 2210 /* read MAC address */ 2211 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2212 2213 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2214 val = le16toh(val); 2215 sc->rf_rev = (val >> 11) & 0x1f; 2216 sc->hw_radio = (val >> 10) & 0x1; 2217 sc->rx_ant = (val >> 4) & 0x3; 2218 sc->tx_ant = (val >> 2) & 0x3; 2219 sc->nb_ant = val & 0x3; 2220 2221 DPRINTF("RF revision=%d\n", sc->rf_rev); 2222 2223 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2224 val = le16toh(val); 2225 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2226 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2227 2228 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2229 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2230 2231 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2232 val = le16toh(val); 2233 if ((val & 0xff) != 0xff) 2234 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2235 2236 /* Only [-10, 10] is valid */ 2237 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2238 sc->rssi_2ghz_corr = 0; 2239 2240 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2241 val = le16toh(val); 2242 if ((val & 0xff) != 0xff) 2243 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2244 2245 /* Only [-10, 10] is valid */ 2246 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2247 sc->rssi_5ghz_corr = 0; 2248 2249 if (sc->ext_2ghz_lna) 2250 sc->rssi_2ghz_corr -= 14; 2251 if (sc->ext_5ghz_lna) 2252 sc->rssi_5ghz_corr -= 14; 2253 2254 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2255 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2256 2257 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2258 val = le16toh(val); 2259 if ((val & 0xff) != 0xff) 2260 sc->rffreq = val & 0xff; 2261 2262 DPRINTF("RF freq=%d\n", sc->rffreq); 2263 2264 /* read Tx power for all a/b/g channels */ 2265 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2266 /* XXX default Tx power for 802.11a channels */ 2267 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2268 #ifdef RUM_DEBUG 2269 for (i = 0; i < 14; i++) 2270 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2271 #endif 2272 2273 /* read default values for BBP registers */ 2274 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2275 #ifdef RUM_DEBUG 2276 for (i = 0; i < 14; i++) { 2277 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2278 continue; 2279 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2280 sc->bbp_prom[i].val); 2281 } 2282 #endif 2283 } 2284 2285 static int 2286 rum_bbp_wakeup(struct rum_softc *sc) 2287 { 2288 unsigned int ntries; 2289 2290 for (ntries = 0; ntries < 100; ntries++) { 2291 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2292 break; 2293 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2294 if (rum_pause(sc, hz / 100)) 2295 break; 2296 } 2297 if (ntries == 100) { 2298 device_printf(sc->sc_dev, 2299 "timeout waiting for BBP/RF to wakeup\n"); 2300 return (ETIMEDOUT); 2301 } 2302 2303 return (0); 2304 } 2305 2306 static int 2307 rum_bbp_init(struct rum_softc *sc) 2308 { 2309 int i, ntries; 2310 2311 /* wait for BBP to be ready */ 2312 for (ntries = 0; ntries < 100; ntries++) { 2313 const uint8_t val = rum_bbp_read(sc, 0); 2314 if (val != 0 && val != 0xff) 2315 break; 2316 if (rum_pause(sc, hz / 100)) 2317 break; 2318 } 2319 if (ntries == 100) { 2320 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2321 return EIO; 2322 } 2323 2324 /* initialize BBP registers to default values */ 2325 for (i = 0; i < nitems(rum_def_bbp); i++) 2326 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2327 2328 /* write vendor-specific BBP values (from EEPROM) */ 2329 for (i = 0; i < 16; i++) { 2330 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2331 continue; 2332 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2333 } 2334 2335 return 0; 2336 } 2337 2338 static void 2339 rum_clr_shkey_regs(struct rum_softc *sc) 2340 { 2341 rum_write(sc, RT2573_SEC_CSR0, 0); 2342 rum_write(sc, RT2573_SEC_CSR1, 0); 2343 rum_write(sc, RT2573_SEC_CSR5, 0); 2344 } 2345 2346 static int 2347 rum_init(struct rum_softc *sc) 2348 { 2349 struct ieee80211com *ic = &sc->sc_ic; 2350 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2351 uint32_t tmp; 2352 int i, ret; 2353 2354 RUM_LOCK(sc); 2355 if (sc->sc_running) { 2356 ret = 0; 2357 goto end; 2358 } 2359 2360 /* initialize MAC registers to default values */ 2361 for (i = 0; i < nitems(rum_def_mac); i++) 2362 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2363 2364 /* reset some WME parameters to default values */ 2365 sc->wme_params[0].wmep_aifsn = 2; 2366 sc->wme_params[0].wmep_logcwmin = 4; 2367 sc->wme_params[0].wmep_logcwmax = 10; 2368 2369 /* set host ready */ 2370 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2371 rum_write(sc, RT2573_MAC_CSR1, 0); 2372 2373 /* wait for BBP/RF to wakeup */ 2374 if ((ret = rum_bbp_wakeup(sc)) != 0) 2375 goto end; 2376 2377 if ((ret = rum_bbp_init(sc)) != 0) 2378 goto end; 2379 2380 /* select default channel */ 2381 rum_select_band(sc, ic->ic_curchan); 2382 rum_select_antenna(sc); 2383 rum_set_chan(sc, ic->ic_curchan); 2384 2385 /* clear STA registers */ 2386 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2387 2388 /* clear security registers (if required) */ 2389 if (sc->sc_clr_shkeys == 0) { 2390 rum_clr_shkey_regs(sc); 2391 sc->sc_clr_shkeys = 1; 2392 } 2393 2394 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2395 2396 /* initialize ASIC */ 2397 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2398 2399 /* 2400 * Allocate Tx and Rx xfer queues. 2401 */ 2402 rum_setup_tx_list(sc); 2403 2404 /* update Rx filter */ 2405 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2406 2407 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2408 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2409 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2410 RT2573_DROP_ACKCTS; 2411 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2412 tmp |= RT2573_DROP_TODS; 2413 if (ic->ic_promisc == 0) 2414 tmp |= RT2573_DROP_NOT_TO_ME; 2415 } 2416 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2417 2418 sc->sc_running = 1; 2419 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2420 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2421 2422 end: RUM_UNLOCK(sc); 2423 2424 if (ret != 0) 2425 rum_stop(sc); 2426 2427 return ret; 2428 } 2429 2430 static void 2431 rum_stop(struct rum_softc *sc) 2432 { 2433 2434 RUM_LOCK(sc); 2435 if (!sc->sc_running) { 2436 RUM_UNLOCK(sc); 2437 return; 2438 } 2439 sc->sc_running = 0; 2440 RUM_UNLOCK(sc); 2441 2442 /* 2443 * Drain the USB transfers, if not already drained: 2444 */ 2445 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2446 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2447 2448 RUM_LOCK(sc); 2449 rum_unsetup_tx_list(sc); 2450 2451 /* disable Rx */ 2452 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2453 2454 /* reset ASIC */ 2455 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2456 rum_write(sc, RT2573_MAC_CSR1, 0); 2457 RUM_UNLOCK(sc); 2458 } 2459 2460 static void 2461 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2462 { 2463 struct usb_device_request req; 2464 uint16_t reg = RT2573_MCU_CODE_BASE; 2465 usb_error_t err; 2466 2467 /* copy firmware image into NIC */ 2468 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2469 err = rum_write(sc, reg, UGETDW(ucode)); 2470 if (err) { 2471 /* firmware already loaded ? */ 2472 device_printf(sc->sc_dev, "Firmware load " 2473 "failure! (ignored)\n"); 2474 break; 2475 } 2476 } 2477 2478 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2479 req.bRequest = RT2573_MCU_CNTL; 2480 USETW(req.wValue, RT2573_MCU_RUN); 2481 USETW(req.wIndex, 0); 2482 USETW(req.wLength, 0); 2483 2484 err = rum_do_request(sc, &req, NULL); 2485 if (err != 0) { 2486 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2487 usbd_errstr(err)); 2488 } 2489 2490 /* give the chip some time to boot */ 2491 rum_pause(sc, hz / 8); 2492 } 2493 2494 static int 2495 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2496 { 2497 struct ieee80211com *ic = vap->iv_ic; 2498 struct rum_vap *rvp = RUM_VAP(vap); 2499 struct mbuf *m = rvp->bcn_mbuf; 2500 const struct ieee80211_txparam *tp; 2501 struct rum_tx_desc desc; 2502 2503 RUM_LOCK_ASSERT(sc); 2504 2505 if (m == NULL) 2506 return EINVAL; 2507 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2508 return EINVAL; 2509 2510 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2511 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2512 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2513 2514 /* copy the Tx descriptor into NIC memory */ 2515 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2516 RT2573_TX_DESC_SIZE) != 0) 2517 return EIO; 2518 2519 /* copy beacon header and payload into NIC memory */ 2520 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2521 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2522 return EIO; 2523 2524 return 0; 2525 } 2526 2527 static int 2528 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2529 { 2530 struct rum_vap *rvp = RUM_VAP(vap); 2531 struct ieee80211_node *ni = vap->iv_bss; 2532 struct mbuf *m; 2533 2534 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2535 return EINVAL; 2536 2537 m = ieee80211_beacon_alloc(ni); 2538 if (m == NULL) 2539 return ENOMEM; 2540 2541 if (rvp->bcn_mbuf != NULL) 2542 m_freem(rvp->bcn_mbuf); 2543 2544 rvp->bcn_mbuf = m; 2545 2546 return (rum_set_beacon(sc, vap)); 2547 } 2548 2549 static void 2550 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2551 uint8_t rvp_id) 2552 { 2553 struct ieee80211vap *vap = data->vap; 2554 2555 rum_set_beacon(sc, vap); 2556 } 2557 2558 static void 2559 rum_update_beacon(struct ieee80211vap *vap, int item) 2560 { 2561 struct ieee80211com *ic = vap->iv_ic; 2562 struct rum_softc *sc = ic->ic_softc; 2563 struct rum_vap *rvp = RUM_VAP(vap); 2564 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2565 struct ieee80211_node *ni = vap->iv_bss; 2566 struct mbuf *m = rvp->bcn_mbuf; 2567 int mcast = 0; 2568 2569 RUM_LOCK(sc); 2570 if (m == NULL) { 2571 m = ieee80211_beacon_alloc(ni); 2572 if (m == NULL) { 2573 device_printf(sc->sc_dev, 2574 "%s: could not allocate beacon frame\n", __func__); 2575 RUM_UNLOCK(sc); 2576 return; 2577 } 2578 rvp->bcn_mbuf = m; 2579 } 2580 2581 switch (item) { 2582 case IEEE80211_BEACON_ERP: 2583 rum_update_slot(ic); 2584 break; 2585 case IEEE80211_BEACON_TIM: 2586 mcast = 1; /*TODO*/ 2587 break; 2588 default: 2589 break; 2590 } 2591 RUM_UNLOCK(sc); 2592 2593 setbit(bo->bo_flags, item); 2594 ieee80211_beacon_update(ni, m, mcast); 2595 2596 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2597 } 2598 2599 static int 2600 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2601 uint16_t base) 2602 { 2603 2604 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2605 return EIO; 2606 2607 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2608 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2609 k->wk_txmic, 8)) 2610 return EIO; 2611 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2612 k->wk_rxmic, 8)) 2613 return EIO; 2614 } 2615 2616 return 0; 2617 } 2618 2619 static void 2620 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2621 uint8_t rvp_id) 2622 { 2623 struct ieee80211_key *k = &data->key; 2624 uint8_t mode; 2625 2626 if (sc->sc_clr_shkeys == 0) { 2627 rum_clr_shkey_regs(sc); 2628 sc->sc_clr_shkeys = 1; 2629 } 2630 2631 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2632 if (mode == 0) 2633 goto print_err; 2634 2635 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2636 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2637 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2638 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2639 2640 /* Install the key. */ 2641 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2642 goto print_err; 2643 2644 /* Set cipher mode. */ 2645 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2646 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2647 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2648 != 0) 2649 goto print_err; 2650 2651 /* Mark this key as valid. */ 2652 if (rum_setbits(sc, RT2573_SEC_CSR0, 2653 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2654 goto print_err; 2655 2656 return; 2657 2658 print_err: 2659 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2660 __func__, k->wk_keyix, rvp_id); 2661 } 2662 2663 static void 2664 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2665 uint8_t rvp_id) 2666 { 2667 struct ieee80211_key *k = &data->key; 2668 2669 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2670 k->wk_keyix, rvp_id); 2671 rum_clrbits(sc, 2672 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2673 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2674 rum_clrbits(sc, RT2573_SEC_CSR0, 2675 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2676 } 2677 2678 static void 2679 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2680 uint8_t rvp_id) 2681 { 2682 struct ieee80211_key *k = &data->key; 2683 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2684 uint8_t mode; 2685 2686 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2687 if (mode == 0) 2688 goto print_err; 2689 2690 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2691 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2692 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2693 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2694 2695 /* Install the key. */ 2696 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2697 goto print_err; 2698 2699 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2700 buf[IEEE80211_ADDR_LEN] = mode; 2701 2702 /* Set transmitter address and cipher mode. */ 2703 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2704 buf, sizeof buf) != 0) 2705 goto print_err; 2706 2707 /* Enable key table lookup for this vap. */ 2708 if (sc->vap_key_count[rvp_id]++ == 0) 2709 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2710 goto print_err; 2711 2712 /* Mark this key as valid. */ 2713 if (rum_setbits(sc, 2714 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2715 1 << (k->wk_keyix % 32)) != 0) 2716 goto print_err; 2717 2718 return; 2719 2720 print_err: 2721 device_printf(sc->sc_dev, 2722 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2723 rvp_id); 2724 } 2725 2726 static void 2727 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2728 uint8_t rvp_id) 2729 { 2730 struct ieee80211_key *k = &data->key; 2731 2732 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2733 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2734 1 << (k->wk_keyix % 32)); 2735 sc->keys_bmap &= ~(1 << k->wk_keyix); 2736 if (--sc->vap_key_count[rvp_id] == 0) 2737 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2738 } 2739 2740 static int 2741 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2742 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2743 { 2744 struct rum_softc *sc = vap->iv_ic->ic_softc; 2745 uint8_t i; 2746 2747 if (!(&vap->iv_nw_keys[0] <= k && 2748 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2749 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 2750 RUM_LOCK(sc); 2751 for (i = 0; i < RT2573_ADDR_MAX; i++) { 2752 if ((sc->keys_bmap & (1 << i)) == 0) { 2753 sc->keys_bmap |= 1 << i; 2754 *keyix = i; 2755 break; 2756 } 2757 } 2758 RUM_UNLOCK(sc); 2759 if (i == RT2573_ADDR_MAX) { 2760 device_printf(sc->sc_dev, 2761 "%s: no free space in the key table\n", 2762 __func__); 2763 return 0; 2764 } 2765 } else 2766 *keyix = 0; 2767 } else { 2768 *keyix = k - vap->iv_nw_keys; 2769 } 2770 *rxkeyix = *keyix; 2771 return 1; 2772 } 2773 2774 static int 2775 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 2776 { 2777 struct rum_softc *sc = vap->iv_ic->ic_softc; 2778 int group; 2779 2780 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2781 /* Not for us. */ 2782 return 1; 2783 } 2784 2785 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 2786 2787 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 2788 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 2789 } 2790 2791 static int 2792 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 2793 { 2794 struct rum_softc *sc = vap->iv_ic->ic_softc; 2795 int group; 2796 2797 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2798 /* Not for us. */ 2799 return 1; 2800 } 2801 2802 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 2803 2804 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 2805 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 2806 } 2807 2808 static int 2809 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2810 const struct ieee80211_bpf_params *params) 2811 { 2812 struct rum_softc *sc = ni->ni_ic->ic_softc; 2813 int ret; 2814 2815 RUM_LOCK(sc); 2816 /* prevent management frames from being sent if we're not ready */ 2817 if (!sc->sc_running) { 2818 ret = ENETDOWN; 2819 goto bad; 2820 } 2821 if (sc->tx_nfree < RUM_TX_MINFREE) { 2822 ret = EIO; 2823 goto bad; 2824 } 2825 2826 if (params == NULL) { 2827 /* 2828 * Legacy path; interpret frame contents to decide 2829 * precisely how to send the frame. 2830 */ 2831 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 2832 goto bad; 2833 } else { 2834 /* 2835 * Caller supplied explicit parameters to use in 2836 * sending the frame. 2837 */ 2838 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 2839 goto bad; 2840 } 2841 RUM_UNLOCK(sc); 2842 2843 return 0; 2844 bad: 2845 RUM_UNLOCK(sc); 2846 m_freem(m); 2847 return ret; 2848 } 2849 2850 static void 2851 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2852 { 2853 struct ieee80211vap *vap = ni->ni_vap; 2854 struct rum_vap *rvp = RUM_VAP(vap); 2855 2856 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2857 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2858 2859 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2860 } 2861 2862 static void 2863 rum_ratectl_timeout(void *arg) 2864 { 2865 struct rum_vap *rvp = arg; 2866 struct ieee80211vap *vap = &rvp->vap; 2867 struct ieee80211com *ic = vap->iv_ic; 2868 2869 ieee80211_runtask(ic, &rvp->ratectl_task); 2870 } 2871 2872 static void 2873 rum_ratectl_task(void *arg, int pending) 2874 { 2875 struct rum_vap *rvp = arg; 2876 struct ieee80211vap *vap = &rvp->vap; 2877 struct rum_softc *sc = vap->iv_ic->ic_softc; 2878 struct ieee80211_node *ni; 2879 int ok[3], fail; 2880 int sum, success, retrycnt; 2881 2882 RUM_LOCK(sc); 2883 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 2884 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2885 2886 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 2887 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 2888 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 2889 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2890 2891 success = ok[0] + ok[1] + ok[2]; 2892 sum = success + fail; 2893 /* XXX at least */ 2894 retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 2895 2896 if (sum != 0) { 2897 ni = ieee80211_ref_node(vap->iv_bss); 2898 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2899 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2900 ieee80211_free_node(ni); 2901 } 2902 2903 /* count TX retry-fail as Tx errors */ 2904 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 2905 2906 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2907 RUM_UNLOCK(sc); 2908 } 2909 2910 static void 2911 rum_scan_start(struct ieee80211com *ic) 2912 { 2913 struct rum_softc *sc = ic->ic_softc; 2914 2915 RUM_LOCK(sc); 2916 rum_abort_tsf_sync(sc); 2917 rum_set_bssid(sc, ieee80211broadcastaddr); 2918 RUM_UNLOCK(sc); 2919 2920 } 2921 2922 static void 2923 rum_scan_end(struct ieee80211com *ic) 2924 { 2925 struct rum_softc *sc = ic->ic_softc; 2926 2927 RUM_LOCK(sc); 2928 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 2929 rum_enable_tsf_sync(sc); 2930 else 2931 rum_enable_tsf(sc); 2932 rum_set_bssid(sc, sc->sc_bssid); 2933 RUM_UNLOCK(sc); 2934 2935 } 2936 2937 static void 2938 rum_set_channel(struct ieee80211com *ic) 2939 { 2940 struct rum_softc *sc = ic->ic_softc; 2941 2942 RUM_LOCK(sc); 2943 rum_set_chan(sc, ic->ic_curchan); 2944 RUM_UNLOCK(sc); 2945 } 2946 2947 static int 2948 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2949 { 2950 struct ieee80211com *ic = &sc->sc_ic; 2951 int lna, agc, rssi; 2952 2953 lna = (raw >> 5) & 0x3; 2954 agc = raw & 0x1f; 2955 2956 if (lna == 0) { 2957 /* 2958 * No RSSI mapping 2959 * 2960 * NB: Since RSSI is relative to noise floor, -1 is 2961 * adequate for caller to know error happened. 2962 */ 2963 return -1; 2964 } 2965 2966 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2967 2968 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2969 rssi += sc->rssi_2ghz_corr; 2970 2971 if (lna == 1) 2972 rssi -= 64; 2973 else if (lna == 2) 2974 rssi -= 74; 2975 else if (lna == 3) 2976 rssi -= 90; 2977 } else { 2978 rssi += sc->rssi_5ghz_corr; 2979 2980 if (!sc->ext_5ghz_lna && lna != 1) 2981 rssi += 4; 2982 2983 if (lna == 1) 2984 rssi -= 64; 2985 else if (lna == 2) 2986 rssi -= 86; 2987 else if (lna == 3) 2988 rssi -= 100; 2989 } 2990 return rssi; 2991 } 2992 2993 static int 2994 rum_pause(struct rum_softc *sc, int timeout) 2995 { 2996 2997 usb_pause_mtx(&sc->sc_mtx, timeout); 2998 return (0); 2999 } 3000 3001 static device_method_t rum_methods[] = { 3002 /* Device interface */ 3003 DEVMETHOD(device_probe, rum_match), 3004 DEVMETHOD(device_attach, rum_attach), 3005 DEVMETHOD(device_detach, rum_detach), 3006 DEVMETHOD_END 3007 }; 3008 3009 static driver_t rum_driver = { 3010 .name = "rum", 3011 .methods = rum_methods, 3012 .size = sizeof(struct rum_softc), 3013 }; 3014 3015 static devclass_t rum_devclass; 3016 3017 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 3018 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3019 MODULE_DEPEND(rum, usb, 1, 1, 1); 3020 MODULE_VERSION(rum, 1); 3021 USB_PNP_HOST_INFO(rum_devs); 3022