1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /*- 26 * Ralink Technology RT2501USB/RT2601USB chipset driver 27 * http://www.ralinktech.com.tw/ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/lock.h> 34 #include <sys/mutex.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR rum_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_rumreg.h> 79 #include <dev/usb/wlan/if_rumvar.h> 80 #include <dev/usb/wlan/if_rumfw.h> 81 82 #ifdef USB_DEBUG 83 static int rum_debug = 0; 84 85 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 86 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 87 "Debug level"); 88 #endif 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, SG54HG), 124 RUM_DEV(MELCO, WLIUCG), 125 RUM_DEV(MELCO, WLRUCG), 126 RUM_DEV(MELCO, WLRUCGAOSS), 127 RUM_DEV(MSI, RT2573_1), 128 RUM_DEV(MSI, RT2573_2), 129 RUM_DEV(MSI, RT2573_3), 130 RUM_DEV(MSI, RT2573_4), 131 RUM_DEV(NOVATECH, RT2573), 132 RUM_DEV(PLANEX2, GWUS54HP), 133 RUM_DEV(PLANEX2, GWUS54MINI2), 134 RUM_DEV(PLANEX2, GWUSMM), 135 RUM_DEV(QCOM, RT2573), 136 RUM_DEV(QCOM, RT2573_2), 137 RUM_DEV(QCOM, RT2573_3), 138 RUM_DEV(RALINK, RT2573), 139 RUM_DEV(RALINK, RT2573_2), 140 RUM_DEV(RALINK, RT2671), 141 RUM_DEV(SITECOMEU, WL113R2), 142 RUM_DEV(SITECOMEU, WL172), 143 RUM_DEV(SPARKLAN, RT2573), 144 RUM_DEV(SURECOM, RT2573), 145 #undef RUM_DEV 146 }; 147 148 static device_probe_t rum_match; 149 static device_attach_t rum_attach; 150 static device_detach_t rum_detach; 151 152 static usb_callback_t rum_bulk_read_callback; 153 static usb_callback_t rum_bulk_write_callback; 154 155 static usb_error_t rum_do_request(struct rum_softc *sc, 156 struct usb_device_request *req, void *data); 157 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 158 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 159 const char [IFNAMSIZ], int, enum ieee80211_opmode, 160 int, const uint8_t [IEEE80211_ADDR_LEN], 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void rum_vap_delete(struct ieee80211vap *); 163 static void rum_cmdq_cb(void *, int); 164 static int rum_cmd_sleepable(struct rum_softc *, const void *, 165 size_t, uint8_t, CMD_FUNC_PROTO); 166 static void rum_tx_free(struct rum_tx_data *, int); 167 static void rum_setup_tx_list(struct rum_softc *); 168 static void rum_unsetup_tx_list(struct rum_softc *); 169 static void rum_beacon_miss(struct ieee80211vap *); 170 static void rum_sta_recv_mgmt(struct ieee80211_node *, 171 struct mbuf *, int, 172 const struct ieee80211_rx_stats *, int, int); 173 static int rum_set_power_state(struct rum_softc *, int); 174 static int rum_newstate(struct ieee80211vap *, 175 enum ieee80211_state, int); 176 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 177 static void rum_setup_tx_desc(struct rum_softc *, 178 struct rum_tx_desc *, struct ieee80211_key *, 179 uint32_t, uint8_t, uint8_t, int, int, int); 180 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 181 struct ieee80211_node *, 182 const struct ieee80211_key *); 183 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 184 struct ieee80211_node *); 185 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 186 struct ieee80211_node *, 187 const struct ieee80211_bpf_params *); 188 static int rum_tx_data(struct rum_softc *, struct mbuf *, 189 struct ieee80211_node *); 190 static int rum_transmit(struct ieee80211com *, struct mbuf *); 191 static void rum_start(struct rum_softc *); 192 static void rum_parent(struct ieee80211com *); 193 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 194 int); 195 static uint32_t rum_read(struct rum_softc *, uint16_t); 196 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 197 int); 198 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 199 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 200 size_t); 201 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 202 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 203 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 204 uint32_t); 205 static int rum_bbp_busy(struct rum_softc *); 206 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 207 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 208 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 209 static void rum_select_antenna(struct rum_softc *); 210 static void rum_enable_mrr(struct rum_softc *); 211 static void rum_set_txpreamble(struct rum_softc *); 212 static void rum_set_basicrates(struct rum_softc *); 213 static void rum_select_band(struct rum_softc *, 214 struct ieee80211_channel *); 215 static void rum_set_chan(struct rum_softc *, 216 struct ieee80211_channel *); 217 static void rum_set_maxretry(struct rum_softc *, 218 struct ieee80211vap *); 219 static int rum_enable_tsf_sync(struct rum_softc *); 220 static void rum_enable_tsf(struct rum_softc *); 221 static void rum_abort_tsf_sync(struct rum_softc *); 222 static void rum_get_tsf(struct rum_softc *, uint64_t *); 223 static void rum_update_slot_cb(struct rum_softc *, 224 union sec_param *, uint8_t); 225 static void rum_update_slot(struct ieee80211com *); 226 static int rum_wme_update(struct ieee80211com *); 227 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 228 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 229 static void rum_update_mcast(struct ieee80211com *); 230 static void rum_update_promisc(struct ieee80211com *); 231 static void rum_setpromisc(struct rum_softc *); 232 static const char *rum_get_rf(int); 233 static void rum_read_eeprom(struct rum_softc *); 234 static int rum_bbp_wakeup(struct rum_softc *); 235 static int rum_bbp_init(struct rum_softc *); 236 static void rum_clr_shkey_regs(struct rum_softc *); 237 static int rum_init(struct rum_softc *); 238 static void rum_stop(struct rum_softc *); 239 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 240 size_t); 241 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 242 static int rum_reset(struct ieee80211vap *, u_long); 243 static int rum_set_beacon(struct rum_softc *, 244 struct ieee80211vap *); 245 static int rum_alloc_beacon(struct rum_softc *, 246 struct ieee80211vap *); 247 static void rum_update_beacon_cb(struct rum_softc *, 248 union sec_param *, uint8_t); 249 static void rum_update_beacon(struct ieee80211vap *, int); 250 static int rum_common_key_set(struct rum_softc *, 251 struct ieee80211_key *, uint16_t); 252 static void rum_group_key_set_cb(struct rum_softc *, 253 union sec_param *, uint8_t); 254 static void rum_group_key_del_cb(struct rum_softc *, 255 union sec_param *, uint8_t); 256 static void rum_pair_key_set_cb(struct rum_softc *, 257 union sec_param *, uint8_t); 258 static void rum_pair_key_del_cb(struct rum_softc *, 259 union sec_param *, uint8_t); 260 static int rum_key_alloc(struct ieee80211vap *, 261 struct ieee80211_key *, ieee80211_keyix *, 262 ieee80211_keyix *); 263 static int rum_key_set(struct ieee80211vap *, 264 const struct ieee80211_key *); 265 static int rum_key_delete(struct ieee80211vap *, 266 const struct ieee80211_key *); 267 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 268 const struct ieee80211_bpf_params *); 269 static void rum_scan_start(struct ieee80211com *); 270 static void rum_scan_end(struct ieee80211com *); 271 static void rum_set_channel(struct ieee80211com *); 272 static void rum_getradiocaps(struct ieee80211com *, int, int *, 273 struct ieee80211_channel[]); 274 static int rum_get_rssi(struct rum_softc *, uint8_t); 275 static void rum_ratectl_start(struct rum_softc *, 276 struct ieee80211_node *); 277 static void rum_ratectl_timeout(void *); 278 static void rum_ratectl_task(void *, int); 279 static int rum_pause(struct rum_softc *, int); 280 281 static const struct { 282 uint32_t reg; 283 uint32_t val; 284 } rum_def_mac[] = { 285 { RT2573_TXRX_CSR0, 0x025fb032 }, 286 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 287 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 288 { RT2573_TXRX_CSR3, 0x00858687 }, 289 { RT2573_TXRX_CSR7, 0x2e31353b }, 290 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 291 { RT2573_TXRX_CSR15, 0x0000000f }, 292 { RT2573_MAC_CSR6, 0x00000fff }, 293 { RT2573_MAC_CSR8, 0x016c030a }, 294 { RT2573_MAC_CSR10, 0x00000718 }, 295 { RT2573_MAC_CSR12, 0x00000004 }, 296 { RT2573_MAC_CSR13, 0x00007f00 }, 297 { RT2573_SEC_CSR2, 0x00000000 }, 298 { RT2573_SEC_CSR3, 0x00000000 }, 299 { RT2573_SEC_CSR4, 0x00000000 }, 300 { RT2573_PHY_CSR1, 0x000023b0 }, 301 { RT2573_PHY_CSR5, 0x00040a06 }, 302 { RT2573_PHY_CSR6, 0x00080606 }, 303 { RT2573_PHY_CSR7, 0x00000408 }, 304 { RT2573_AIFSN_CSR, 0x00002273 }, 305 { RT2573_CWMIN_CSR, 0x00002344 }, 306 { RT2573_CWMAX_CSR, 0x000034aa } 307 }; 308 309 static const struct { 310 uint8_t reg; 311 uint8_t val; 312 } rum_def_bbp[] = { 313 { 3, 0x80 }, 314 { 15, 0x30 }, 315 { 17, 0x20 }, 316 { 21, 0xc8 }, 317 { 22, 0x38 }, 318 { 23, 0x06 }, 319 { 24, 0xfe }, 320 { 25, 0x0a }, 321 { 26, 0x0d }, 322 { 32, 0x0b }, 323 { 34, 0x12 }, 324 { 37, 0x07 }, 325 { 39, 0xf8 }, 326 { 41, 0x60 }, 327 { 53, 0x10 }, 328 { 54, 0x18 }, 329 { 60, 0x10 }, 330 { 61, 0x04 }, 331 { 62, 0x04 }, 332 { 75, 0xfe }, 333 { 86, 0xfe }, 334 { 88, 0xfe }, 335 { 90, 0x0f }, 336 { 99, 0x00 }, 337 { 102, 0x16 }, 338 { 107, 0x04 } 339 }; 340 341 static const uint8_t rum_chan_2ghz[] = 342 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 343 344 static const uint8_t rum_chan_5ghz[] = 345 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 346 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 347 149, 153, 157, 161, 165 }; 348 349 static const struct rfprog { 350 uint8_t chan; 351 uint32_t r1, r2, r3, r4; 352 } rum_rf5226[] = { 353 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 354 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 355 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 356 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 357 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 358 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 359 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 360 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 361 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 362 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 363 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 364 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 365 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 366 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 367 368 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 369 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 370 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 371 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 372 373 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 374 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 375 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 376 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 377 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 378 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 379 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 380 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 381 382 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 383 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 384 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 385 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 386 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 387 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 388 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 389 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 390 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 391 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 392 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 393 394 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 395 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 396 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 397 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 398 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 399 }, rum_rf5225[] = { 400 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 401 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 402 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 403 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 404 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 405 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 406 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 407 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 408 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 409 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 410 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 411 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 412 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 413 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 414 415 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 416 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 417 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 418 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 419 420 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 421 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 422 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 423 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 424 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 425 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 426 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 427 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 428 429 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 430 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 431 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 432 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 433 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 434 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 435 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 436 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 437 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 438 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 439 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 440 441 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 442 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 443 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 444 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 445 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 446 }; 447 448 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 449 [RUM_BULK_WR] = { 450 .type = UE_BULK, 451 .endpoint = UE_ADDR_ANY, 452 .direction = UE_DIR_OUT, 453 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 454 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 455 .callback = rum_bulk_write_callback, 456 .timeout = 5000, /* ms */ 457 }, 458 [RUM_BULK_RD] = { 459 .type = UE_BULK, 460 .endpoint = UE_ADDR_ANY, 461 .direction = UE_DIR_IN, 462 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 463 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 464 .callback = rum_bulk_read_callback, 465 }, 466 }; 467 468 static int 469 rum_match(device_t self) 470 { 471 struct usb_attach_arg *uaa = device_get_ivars(self); 472 473 if (uaa->usb_mode != USB_MODE_HOST) 474 return (ENXIO); 475 if (uaa->info.bConfigIndex != 0) 476 return (ENXIO); 477 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 478 return (ENXIO); 479 480 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 481 } 482 483 static int 484 rum_attach(device_t self) 485 { 486 struct usb_attach_arg *uaa = device_get_ivars(self); 487 struct rum_softc *sc = device_get_softc(self); 488 struct ieee80211com *ic = &sc->sc_ic; 489 uint32_t tmp; 490 uint8_t iface_index; 491 int error, ntries; 492 493 device_set_usb_desc(self); 494 sc->sc_udev = uaa->device; 495 sc->sc_dev = self; 496 497 RUM_LOCK_INIT(sc); 498 RUM_CMDQ_LOCK_INIT(sc); 499 mbufq_init(&sc->sc_snd, ifqmaxlen); 500 501 iface_index = RT2573_IFACE_INDEX; 502 error = usbd_transfer_setup(uaa->device, &iface_index, 503 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 504 if (error) { 505 device_printf(self, "could not allocate USB transfers, " 506 "err=%s\n", usbd_errstr(error)); 507 goto detach; 508 } 509 510 RUM_LOCK(sc); 511 /* retrieve RT2573 rev. no */ 512 for (ntries = 0; ntries < 100; ntries++) { 513 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 514 break; 515 if (rum_pause(sc, hz / 100)) 516 break; 517 } 518 if (ntries == 100) { 519 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 520 RUM_UNLOCK(sc); 521 goto detach; 522 } 523 524 /* retrieve MAC address and various other things from EEPROM */ 525 rum_read_eeprom(sc); 526 527 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 528 tmp, rum_get_rf(sc->rf_rev)); 529 530 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 531 RUM_UNLOCK(sc); 532 533 ic->ic_softc = sc; 534 ic->ic_name = device_get_nameunit(self); 535 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 536 537 /* set device capabilities */ 538 ic->ic_caps = 539 IEEE80211_C_STA /* station mode supported */ 540 | IEEE80211_C_IBSS /* IBSS mode supported */ 541 | IEEE80211_C_MONITOR /* monitor mode supported */ 542 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 543 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 544 | IEEE80211_C_TXPMGT /* tx power management */ 545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 546 | IEEE80211_C_SHSLOT /* short slot time supported */ 547 | IEEE80211_C_BGSCAN /* bg scanning supported */ 548 | IEEE80211_C_WPA /* 802.11i */ 549 | IEEE80211_C_WME /* 802.11e */ 550 | IEEE80211_C_PMGT /* Station-side power mgmt */ 551 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 552 ; 553 554 ic->ic_cryptocaps = 555 IEEE80211_CRYPTO_WEP | 556 IEEE80211_CRYPTO_AES_CCM | 557 IEEE80211_CRYPTO_TKIPMIC | 558 IEEE80211_CRYPTO_TKIP; 559 560 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 561 ic->ic_channels); 562 563 ieee80211_ifattach(ic); 564 ic->ic_update_promisc = rum_update_promisc; 565 ic->ic_raw_xmit = rum_raw_xmit; 566 ic->ic_scan_start = rum_scan_start; 567 ic->ic_scan_end = rum_scan_end; 568 ic->ic_set_channel = rum_set_channel; 569 ic->ic_getradiocaps = rum_getradiocaps; 570 ic->ic_transmit = rum_transmit; 571 ic->ic_parent = rum_parent; 572 ic->ic_vap_create = rum_vap_create; 573 ic->ic_vap_delete = rum_vap_delete; 574 ic->ic_updateslot = rum_update_slot; 575 ic->ic_wme.wme_update = rum_wme_update; 576 ic->ic_update_mcast = rum_update_mcast; 577 578 ieee80211_radiotap_attach(ic, 579 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 580 RT2573_TX_RADIOTAP_PRESENT, 581 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 582 RT2573_RX_RADIOTAP_PRESENT); 583 584 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 585 586 if (bootverbose) 587 ieee80211_announce(ic); 588 589 return (0); 590 591 detach: 592 rum_detach(self); 593 return (ENXIO); /* failure */ 594 } 595 596 static int 597 rum_detach(device_t self) 598 { 599 struct rum_softc *sc = device_get_softc(self); 600 struct ieee80211com *ic = &sc->sc_ic; 601 602 /* Prevent further ioctls */ 603 RUM_LOCK(sc); 604 sc->sc_detached = 1; 605 RUM_UNLOCK(sc); 606 607 /* stop all USB transfers */ 608 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 609 610 /* free TX list, if any */ 611 RUM_LOCK(sc); 612 rum_unsetup_tx_list(sc); 613 RUM_UNLOCK(sc); 614 615 if (ic->ic_softc == sc) { 616 ieee80211_draintask(ic, &sc->cmdq_task); 617 ieee80211_ifdetach(ic); 618 } 619 620 mbufq_drain(&sc->sc_snd); 621 RUM_CMDQ_LOCK_DESTROY(sc); 622 RUM_LOCK_DESTROY(sc); 623 624 return (0); 625 } 626 627 static usb_error_t 628 rum_do_request(struct rum_softc *sc, 629 struct usb_device_request *req, void *data) 630 { 631 usb_error_t err; 632 int ntries = 10; 633 634 while (ntries--) { 635 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 636 req, data, 0, NULL, 250 /* ms */); 637 if (err == 0) 638 break; 639 640 DPRINTFN(1, "Control request failed, %s (retrying)\n", 641 usbd_errstr(err)); 642 if (rum_pause(sc, hz / 100)) 643 break; 644 } 645 return (err); 646 } 647 648 static usb_error_t 649 rum_do_mcu_request(struct rum_softc *sc, int request) 650 { 651 struct usb_device_request req; 652 653 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 654 req.bRequest = RT2573_MCU_CNTL; 655 USETW(req.wValue, request); 656 USETW(req.wIndex, 0); 657 USETW(req.wLength, 0); 658 659 return (rum_do_request(sc, &req, NULL)); 660 } 661 662 static struct ieee80211vap * 663 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 664 enum ieee80211_opmode opmode, int flags, 665 const uint8_t bssid[IEEE80211_ADDR_LEN], 666 const uint8_t mac[IEEE80211_ADDR_LEN]) 667 { 668 struct rum_softc *sc = ic->ic_softc; 669 struct rum_vap *rvp; 670 struct ieee80211vap *vap; 671 672 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 673 return NULL; 674 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 675 vap = &rvp->vap; 676 /* enable s/w bmiss handling for sta mode */ 677 678 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 679 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 680 /* out of memory */ 681 free(rvp, M_80211_VAP); 682 return (NULL); 683 } 684 685 /* override state transition machine */ 686 rvp->newstate = vap->iv_newstate; 687 vap->iv_newstate = rum_newstate; 688 vap->iv_key_alloc = rum_key_alloc; 689 vap->iv_key_set = rum_key_set; 690 vap->iv_key_delete = rum_key_delete; 691 vap->iv_update_beacon = rum_update_beacon; 692 vap->iv_reset = rum_reset; 693 vap->iv_max_aid = RT2573_ADDR_MAX; 694 695 if (opmode == IEEE80211_M_STA) { 696 /* 697 * Move device to the sleep state when 698 * beacon is received and there is no data for us. 699 * 700 * Used only for IEEE80211_S_SLEEP state. 701 */ 702 rvp->recv_mgmt = vap->iv_recv_mgmt; 703 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 704 705 /* Ignored while sleeping. */ 706 rvp->bmiss = vap->iv_bmiss; 707 vap->iv_bmiss = rum_beacon_miss; 708 } 709 710 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 711 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 712 ieee80211_ratectl_init(vap); 713 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 714 /* complete setup */ 715 ieee80211_vap_attach(vap, ieee80211_media_change, 716 ieee80211_media_status, mac); 717 ic->ic_opmode = opmode; 718 return vap; 719 } 720 721 static void 722 rum_vap_delete(struct ieee80211vap *vap) 723 { 724 struct rum_vap *rvp = RUM_VAP(vap); 725 struct ieee80211com *ic = vap->iv_ic; 726 727 m_freem(rvp->bcn_mbuf); 728 usb_callout_drain(&rvp->ratectl_ch); 729 ieee80211_draintask(ic, &rvp->ratectl_task); 730 ieee80211_ratectl_deinit(vap); 731 ieee80211_vap_detach(vap); 732 free(rvp, M_80211_VAP); 733 } 734 735 static void 736 rum_cmdq_cb(void *arg, int pending) 737 { 738 struct rum_softc *sc = arg; 739 struct rum_cmdq *rc; 740 741 RUM_CMDQ_LOCK(sc); 742 while (sc->cmdq[sc->cmdq_first].func != NULL) { 743 rc = &sc->cmdq[sc->cmdq_first]; 744 RUM_CMDQ_UNLOCK(sc); 745 746 RUM_LOCK(sc); 747 rc->func(sc, &rc->data, rc->rvp_id); 748 RUM_UNLOCK(sc); 749 750 RUM_CMDQ_LOCK(sc); 751 memset(rc, 0, sizeof (*rc)); 752 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 753 } 754 RUM_CMDQ_UNLOCK(sc); 755 } 756 757 static int 758 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 759 uint8_t rvp_id, CMD_FUNC_PROTO) 760 { 761 struct ieee80211com *ic = &sc->sc_ic; 762 763 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 764 765 RUM_CMDQ_LOCK(sc); 766 if (sc->cmdq[sc->cmdq_last].func != NULL) { 767 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 768 RUM_CMDQ_UNLOCK(sc); 769 770 return EAGAIN; 771 } 772 773 if (ptr != NULL) 774 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 775 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 776 sc->cmdq[sc->cmdq_last].func = func; 777 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 778 RUM_CMDQ_UNLOCK(sc); 779 780 ieee80211_runtask(ic, &sc->cmdq_task); 781 782 return 0; 783 } 784 785 static void 786 rum_tx_free(struct rum_tx_data *data, int txerr) 787 { 788 struct rum_softc *sc = data->sc; 789 790 if (data->m != NULL) { 791 ieee80211_tx_complete(data->ni, data->m, txerr); 792 data->m = NULL; 793 data->ni = NULL; 794 } 795 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 796 sc->tx_nfree++; 797 } 798 799 static void 800 rum_setup_tx_list(struct rum_softc *sc) 801 { 802 struct rum_tx_data *data; 803 int i; 804 805 sc->tx_nfree = 0; 806 STAILQ_INIT(&sc->tx_q); 807 STAILQ_INIT(&sc->tx_free); 808 809 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 810 data = &sc->tx_data[i]; 811 812 data->sc = sc; 813 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 814 sc->tx_nfree++; 815 } 816 } 817 818 static void 819 rum_unsetup_tx_list(struct rum_softc *sc) 820 { 821 struct rum_tx_data *data; 822 int i; 823 824 /* make sure any subsequent use of the queues will fail */ 825 sc->tx_nfree = 0; 826 STAILQ_INIT(&sc->tx_q); 827 STAILQ_INIT(&sc->tx_free); 828 829 /* free up all node references and mbufs */ 830 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 831 data = &sc->tx_data[i]; 832 833 if (data->m != NULL) { 834 m_freem(data->m); 835 data->m = NULL; 836 } 837 if (data->ni != NULL) { 838 ieee80211_free_node(data->ni); 839 data->ni = NULL; 840 } 841 } 842 } 843 844 static void 845 rum_beacon_miss(struct ieee80211vap *vap) 846 { 847 struct ieee80211com *ic = vap->iv_ic; 848 struct rum_softc *sc = ic->ic_softc; 849 struct rum_vap *rvp = RUM_VAP(vap); 850 int sleep; 851 852 RUM_LOCK(sc); 853 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 854 DPRINTFN(12, "dropping 'sleeping' bit, " 855 "device must be awake now\n"); 856 857 sc->sc_sleeping = 0; 858 } 859 860 sleep = sc->sc_sleeping; 861 RUM_UNLOCK(sc); 862 863 if (!sleep) 864 rvp->bmiss(vap); 865 #ifdef USB_DEBUG 866 else 867 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 868 #endif 869 } 870 871 static void 872 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 873 const struct ieee80211_rx_stats *rxs, 874 int rssi, int nf) 875 { 876 struct ieee80211vap *vap = ni->ni_vap; 877 struct rum_softc *sc = vap->iv_ic->ic_softc; 878 struct rum_vap *rvp = RUM_VAP(vap); 879 880 if (vap->iv_state == IEEE80211_S_SLEEP && 881 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 882 RUM_LOCK(sc); 883 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 884 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 885 sc->last_rx_flags); 886 887 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 888 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 889 /* 890 * Put it to sleep here; in case if there is a data 891 * for us, iv_recv_mgmt() will wakeup the device via 892 * SLEEP -> RUN state transition. 893 */ 894 rum_set_power_state(sc, 1); 895 } 896 RUM_UNLOCK(sc); 897 } 898 899 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 900 } 901 902 static int 903 rum_set_power_state(struct rum_softc *sc, int sleep) 904 { 905 usb_error_t uerror; 906 907 RUM_LOCK_ASSERT(sc); 908 909 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 910 sleep ? "sleep" : "awake", sc->sc_sleep_time); 911 912 uerror = rum_do_mcu_request(sc, 913 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 914 if (uerror != USB_ERR_NORMAL_COMPLETION) { 915 device_printf(sc->sc_dev, 916 "%s: could not change power state: %s\n", 917 __func__, usbd_errstr(uerror)); 918 return (EIO); 919 } 920 921 sc->sc_sleeping = !!sleep; 922 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 923 924 return (0); 925 } 926 927 static int 928 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 929 { 930 struct rum_vap *rvp = RUM_VAP(vap); 931 struct ieee80211com *ic = vap->iv_ic; 932 struct rum_softc *sc = ic->ic_softc; 933 const struct ieee80211_txparam *tp; 934 enum ieee80211_state ostate; 935 struct ieee80211_node *ni; 936 usb_error_t uerror; 937 int ret = 0; 938 939 ostate = vap->iv_state; 940 DPRINTF("%s -> %s\n", 941 ieee80211_state_name[ostate], 942 ieee80211_state_name[nstate]); 943 944 IEEE80211_UNLOCK(ic); 945 RUM_LOCK(sc); 946 usb_callout_stop(&rvp->ratectl_ch); 947 948 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 949 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 950 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 951 952 /* 953 * Ignore any errors; 954 * any subsequent TX will wakeup it anyway 955 */ 956 (void) rum_set_power_state(sc, 0); 957 } 958 959 switch (nstate) { 960 case IEEE80211_S_INIT: 961 if (ostate == IEEE80211_S_RUN) 962 rum_abort_tsf_sync(sc); 963 964 break; 965 966 case IEEE80211_S_RUN: 967 if (ostate == IEEE80211_S_SLEEP) 968 break; /* already handled */ 969 970 ni = ieee80211_ref_node(vap->iv_bss); 971 972 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 973 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 974 ni->ni_chan == IEEE80211_CHAN_ANYC) { 975 ret = EINVAL; 976 goto run_fail; 977 } 978 rum_update_slot_cb(sc, NULL, 0); 979 rum_enable_mrr(sc); 980 rum_set_txpreamble(sc); 981 rum_set_basicrates(sc); 982 rum_set_maxretry(sc, vap); 983 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 984 rum_set_bssid(sc, sc->sc_bssid); 985 } 986 987 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 988 vap->iv_opmode == IEEE80211_M_IBSS) { 989 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 990 goto run_fail; 991 } 992 993 if (vap->iv_opmode != IEEE80211_M_MONITOR && 994 vap->iv_opmode != IEEE80211_M_AHDEMO) { 995 if ((ret = rum_enable_tsf_sync(sc)) != 0) 996 goto run_fail; 997 } else 998 rum_enable_tsf(sc); 999 1000 /* enable automatic rate adaptation */ 1001 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1002 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1003 rum_ratectl_start(sc, ni); 1004 run_fail: 1005 ieee80211_free_node(ni); 1006 break; 1007 case IEEE80211_S_SLEEP: 1008 /* Implemented for STA mode only. */ 1009 if (vap->iv_opmode != IEEE80211_M_STA) 1010 break; 1011 1012 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1013 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1014 ret = EIO; 1015 break; 1016 } 1017 1018 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1019 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1020 ret = EIO; 1021 break; 1022 } 1023 1024 ret = rum_set_power_state(sc, 1); 1025 if (ret != 0) { 1026 device_printf(sc->sc_dev, 1027 "%s: could not move to the SLEEP state: %s\n", 1028 __func__, usbd_errstr(uerror)); 1029 } 1030 break; 1031 default: 1032 break; 1033 } 1034 RUM_UNLOCK(sc); 1035 IEEE80211_LOCK(ic); 1036 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1037 } 1038 1039 static void 1040 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1041 { 1042 struct rum_softc *sc = usbd_xfer_softc(xfer); 1043 struct ieee80211vap *vap; 1044 struct rum_tx_data *data; 1045 struct mbuf *m; 1046 struct usb_page_cache *pc; 1047 unsigned int len; 1048 int actlen, sumlen; 1049 1050 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1051 1052 switch (USB_GET_STATE(xfer)) { 1053 case USB_ST_TRANSFERRED: 1054 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1055 1056 /* free resources */ 1057 data = usbd_xfer_get_priv(xfer); 1058 rum_tx_free(data, 0); 1059 usbd_xfer_set_priv(xfer, NULL); 1060 1061 /* FALLTHROUGH */ 1062 case USB_ST_SETUP: 1063 tr_setup: 1064 data = STAILQ_FIRST(&sc->tx_q); 1065 if (data) { 1066 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1067 m = data->m; 1068 1069 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1070 DPRINTFN(0, "data overflow, %u bytes\n", 1071 m->m_pkthdr.len); 1072 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1073 } 1074 pc = usbd_xfer_get_frame(xfer, 0); 1075 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1076 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1077 m->m_pkthdr.len); 1078 1079 vap = data->ni->ni_vap; 1080 if (ieee80211_radiotap_active_vap(vap)) { 1081 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1082 1083 tap->wt_flags = 0; 1084 tap->wt_rate = data->rate; 1085 rum_get_tsf(sc, &tap->wt_tsf); 1086 tap->wt_antenna = sc->tx_ant; 1087 1088 ieee80211_radiotap_tx(vap, m); 1089 } 1090 1091 /* align end on a 4-bytes boundary */ 1092 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1093 if ((len % 64) == 0) 1094 len += 4; 1095 1096 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1097 m->m_pkthdr.len, len); 1098 1099 usbd_xfer_set_frame_len(xfer, 0, len); 1100 usbd_xfer_set_priv(xfer, data); 1101 1102 usbd_transfer_submit(xfer); 1103 } 1104 rum_start(sc); 1105 break; 1106 1107 default: /* Error */ 1108 DPRINTFN(11, "transfer error, %s\n", 1109 usbd_errstr(error)); 1110 1111 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1112 data = usbd_xfer_get_priv(xfer); 1113 if (data != NULL) { 1114 rum_tx_free(data, error); 1115 usbd_xfer_set_priv(xfer, NULL); 1116 } 1117 1118 if (error != USB_ERR_CANCELLED) { 1119 if (error == USB_ERR_TIMEOUT) 1120 device_printf(sc->sc_dev, "device timeout\n"); 1121 1122 /* 1123 * Try to clear stall first, also if other 1124 * errors occur, hence clearing stall 1125 * introduces a 50 ms delay: 1126 */ 1127 usbd_xfer_set_stall(xfer); 1128 goto tr_setup; 1129 } 1130 break; 1131 } 1132 } 1133 1134 static void 1135 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1136 { 1137 struct rum_softc *sc = usbd_xfer_softc(xfer); 1138 struct ieee80211com *ic = &sc->sc_ic; 1139 struct ieee80211_frame_min *wh; 1140 struct ieee80211_node *ni; 1141 struct mbuf *m = NULL; 1142 struct usb_page_cache *pc; 1143 uint32_t flags; 1144 uint8_t rssi = 0; 1145 int len; 1146 1147 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1148 1149 switch (USB_GET_STATE(xfer)) { 1150 case USB_ST_TRANSFERRED: 1151 1152 DPRINTFN(15, "rx done, actlen=%d\n", len); 1153 1154 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 1155 DPRINTF("%s: xfer too short %d\n", 1156 device_get_nameunit(sc->sc_dev), len); 1157 counter_u64_add(ic->ic_ierrors, 1); 1158 goto tr_setup; 1159 } 1160 1161 len -= RT2573_RX_DESC_SIZE; 1162 pc = usbd_xfer_get_frame(xfer, 0); 1163 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1164 1165 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1166 flags = le32toh(sc->sc_rx_desc.flags); 1167 sc->last_rx_flags = flags; 1168 if (flags & RT2573_RX_CRC_ERROR) { 1169 /* 1170 * This should not happen since we did not 1171 * request to receive those frames when we 1172 * filled RUM_TXRX_CSR2: 1173 */ 1174 DPRINTFN(5, "PHY or CRC error\n"); 1175 counter_u64_add(ic->ic_ierrors, 1); 1176 goto tr_setup; 1177 } 1178 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1179 switch (flags & RT2573_RX_DEC_MASK) { 1180 case RT2573_RX_IV_ERROR: 1181 DPRINTFN(5, "IV/EIV error\n"); 1182 break; 1183 case RT2573_RX_MIC_ERROR: 1184 DPRINTFN(5, "MIC error\n"); 1185 break; 1186 case RT2573_RX_KEY_ERROR: 1187 DPRINTFN(5, "Key error\n"); 1188 break; 1189 } 1190 counter_u64_add(ic->ic_ierrors, 1); 1191 goto tr_setup; 1192 } 1193 1194 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1195 if (m == NULL) { 1196 DPRINTF("could not allocate mbuf\n"); 1197 counter_u64_add(ic->ic_ierrors, 1); 1198 goto tr_setup; 1199 } 1200 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1201 mtod(m, uint8_t *), len); 1202 1203 wh = mtod(m, struct ieee80211_frame_min *); 1204 1205 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1206 (flags & RT2573_RX_CIP_MASK) != 1207 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1208 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1209 m->m_flags |= M_WEP; 1210 } 1211 1212 /* finalize mbuf */ 1213 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 1214 1215 if (ieee80211_radiotap_active(ic)) { 1216 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1217 1218 tap->wr_flags = 0; 1219 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1220 (flags & RT2573_RX_OFDM) ? 1221 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1222 rum_get_tsf(sc, &tap->wr_tsf); 1223 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1224 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1225 tap->wr_antenna = sc->rx_ant; 1226 } 1227 /* FALLTHROUGH */ 1228 case USB_ST_SETUP: 1229 tr_setup: 1230 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1231 usbd_transfer_submit(xfer); 1232 1233 /* 1234 * At the end of a USB callback it is always safe to unlock 1235 * the private mutex of a device! That is why we do the 1236 * "ieee80211_input" here, and not some lines up! 1237 */ 1238 RUM_UNLOCK(sc); 1239 if (m) { 1240 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1241 ni = ieee80211_find_rxnode(ic, wh); 1242 else 1243 ni = NULL; 1244 1245 if (ni != NULL) { 1246 (void) ieee80211_input(ni, m, rssi, 1247 RT2573_NOISE_FLOOR); 1248 ieee80211_free_node(ni); 1249 } else 1250 (void) ieee80211_input_all(ic, m, rssi, 1251 RT2573_NOISE_FLOOR); 1252 } 1253 RUM_LOCK(sc); 1254 rum_start(sc); 1255 return; 1256 1257 default: /* Error */ 1258 if (error != USB_ERR_CANCELLED) { 1259 /* try to clear stall first */ 1260 usbd_xfer_set_stall(xfer); 1261 goto tr_setup; 1262 } 1263 return; 1264 } 1265 } 1266 1267 static uint8_t 1268 rum_plcp_signal(int rate) 1269 { 1270 switch (rate) { 1271 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1272 case 12: return 0xb; 1273 case 18: return 0xf; 1274 case 24: return 0xa; 1275 case 36: return 0xe; 1276 case 48: return 0x9; 1277 case 72: return 0xd; 1278 case 96: return 0x8; 1279 case 108: return 0xc; 1280 1281 /* CCK rates (NB: not IEEE std, device-specific) */ 1282 case 2: return 0x0; 1283 case 4: return 0x1; 1284 case 11: return 0x2; 1285 case 22: return 0x3; 1286 } 1287 return 0xff; /* XXX unsupported/unknown rate */ 1288 } 1289 1290 /* 1291 * Map net80211 cipher to RT2573 security mode. 1292 */ 1293 static uint8_t 1294 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1295 { 1296 switch (cipher) { 1297 case IEEE80211_CIPHER_WEP: 1298 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1299 case IEEE80211_CIPHER_TKIP: 1300 return RT2573_MODE_TKIP; 1301 case IEEE80211_CIPHER_AES_CCM: 1302 return RT2573_MODE_AES_CCMP; 1303 default: 1304 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1305 return 0; 1306 } 1307 } 1308 1309 static void 1310 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1311 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1312 int hdrlen, int len, int rate) 1313 { 1314 struct ieee80211com *ic = &sc->sc_ic; 1315 struct wmeParams *wmep = &sc->wme_params[qid]; 1316 uint16_t plcp_length; 1317 int remainder; 1318 1319 flags |= RT2573_TX_VALID; 1320 flags |= len << 16; 1321 1322 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1323 const struct ieee80211_cipher *cip = k->wk_cipher; 1324 1325 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1326 1327 desc->eiv = 0; /* for WEP */ 1328 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1329 } 1330 1331 /* setup PLCP fields */ 1332 desc->plcp_signal = rum_plcp_signal(rate); 1333 desc->plcp_service = 4; 1334 1335 len += IEEE80211_CRC_LEN; 1336 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1337 flags |= RT2573_TX_OFDM; 1338 1339 plcp_length = len & 0xfff; 1340 desc->plcp_length_hi = plcp_length >> 6; 1341 desc->plcp_length_lo = plcp_length & 0x3f; 1342 } else { 1343 if (rate == 0) 1344 rate = 2; /* avoid division by zero */ 1345 plcp_length = howmany(16 * len, rate); 1346 if (rate == 22) { 1347 remainder = (16 * len) % 22; 1348 if (remainder != 0 && remainder < 7) 1349 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1350 } 1351 desc->plcp_length_hi = plcp_length >> 8; 1352 desc->plcp_length_lo = plcp_length & 0xff; 1353 1354 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1355 desc->plcp_signal |= 0x08; 1356 } 1357 1358 desc->flags = htole32(flags); 1359 desc->hdrlen = hdrlen; 1360 desc->xflags = xflags; 1361 1362 desc->wme = htole16(RT2573_QID(qid) | 1363 RT2573_AIFSN(wmep->wmep_aifsn) | 1364 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1365 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1366 } 1367 1368 static int 1369 rum_sendprot(struct rum_softc *sc, 1370 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1371 { 1372 struct ieee80211com *ic = ni->ni_ic; 1373 const struct ieee80211_frame *wh; 1374 struct rum_tx_data *data; 1375 struct mbuf *mprot; 1376 int protrate, pktlen, flags, isshort; 1377 uint16_t dur; 1378 1379 RUM_LOCK_ASSERT(sc); 1380 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1381 ("protection %d", prot)); 1382 1383 wh = mtod(m, const struct ieee80211_frame *); 1384 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1385 1386 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1387 1388 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1389 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1390 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1391 flags = 0; 1392 if (prot == IEEE80211_PROT_RTSCTS) { 1393 /* NB: CTS is the same size as an ACK */ 1394 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1395 flags |= RT2573_TX_NEED_ACK; 1396 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1397 } else { 1398 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1399 } 1400 if (mprot == NULL) { 1401 /* XXX stat + msg */ 1402 return (ENOBUFS); 1403 } 1404 data = STAILQ_FIRST(&sc->tx_free); 1405 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1406 sc->tx_nfree--; 1407 1408 data->m = mprot; 1409 data->ni = ieee80211_ref_node(ni); 1410 data->rate = protrate; 1411 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1412 mprot->m_pkthdr.len, protrate); 1413 1414 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1415 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1416 1417 return 0; 1418 } 1419 1420 static uint32_t 1421 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1422 const struct ieee80211_key *k) 1423 { 1424 struct ieee80211vap *vap = ni->ni_vap; 1425 u_int cipher; 1426 uint32_t flags = 0; 1427 uint8_t mode, pos; 1428 1429 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1430 cipher = k->wk_cipher->ic_cipher; 1431 pos = k->wk_keyix; 1432 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1433 if (mode == 0) 1434 return 0; 1435 1436 flags |= RT2573_TX_CIP_MODE(mode); 1437 1438 /* Do not trust GROUP flag */ 1439 if (!(k >= &vap->iv_nw_keys[0] && 1440 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1441 flags |= RT2573_TX_KEY_PAIR; 1442 else 1443 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1444 1445 flags |= RT2573_TX_KEY_ID(pos); 1446 1447 if (cipher == IEEE80211_CIPHER_TKIP) 1448 flags |= RT2573_TX_TKIPMIC; 1449 } 1450 1451 return flags; 1452 } 1453 1454 static int 1455 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1456 { 1457 struct ieee80211vap *vap = ni->ni_vap; 1458 struct ieee80211com *ic = &sc->sc_ic; 1459 struct rum_tx_data *data; 1460 struct ieee80211_frame *wh; 1461 const struct ieee80211_txparam *tp; 1462 struct ieee80211_key *k = NULL; 1463 uint32_t flags = 0; 1464 uint16_t dur; 1465 uint8_t ac, type, xflags = 0; 1466 int hdrlen; 1467 1468 RUM_LOCK_ASSERT(sc); 1469 1470 data = STAILQ_FIRST(&sc->tx_free); 1471 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1472 sc->tx_nfree--; 1473 1474 wh = mtod(m0, struct ieee80211_frame *); 1475 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1476 hdrlen = ieee80211_anyhdrsize(wh); 1477 ac = M_WME_GETAC(m0); 1478 1479 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1480 k = ieee80211_crypto_get_txkey(ni, m0); 1481 if (k == NULL) 1482 return (ENOENT); 1483 1484 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1485 !k->wk_cipher->ic_encap(k, m0)) 1486 return (ENOBUFS); 1487 1488 wh = mtod(m0, struct ieee80211_frame *); 1489 } 1490 1491 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1492 1493 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1494 flags |= RT2573_TX_NEED_ACK; 1495 1496 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1497 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1498 USETW(wh->i_dur, dur); 1499 1500 /* tell hardware to add timestamp for probe responses */ 1501 if (type == IEEE80211_FC0_TYPE_MGT && 1502 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1503 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1504 flags |= RT2573_TX_TIMESTAMP; 1505 } 1506 1507 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1508 xflags |= RT2573_TX_HWSEQ; 1509 1510 if (k != NULL) 1511 flags |= rum_tx_crypto_flags(sc, ni, k); 1512 1513 data->m = m0; 1514 data->ni = ni; 1515 data->rate = tp->mgmtrate; 1516 1517 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1518 m0->m_pkthdr.len, tp->mgmtrate); 1519 1520 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1521 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1522 1523 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1524 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1525 1526 return (0); 1527 } 1528 1529 static int 1530 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1531 const struct ieee80211_bpf_params *params) 1532 { 1533 struct ieee80211com *ic = ni->ni_ic; 1534 struct ieee80211_frame *wh; 1535 struct rum_tx_data *data; 1536 uint32_t flags; 1537 uint8_t ac, type, xflags = 0; 1538 int rate, error; 1539 1540 RUM_LOCK_ASSERT(sc); 1541 1542 wh = mtod(m0, struct ieee80211_frame *); 1543 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1544 1545 ac = params->ibp_pri & 3; 1546 1547 rate = params->ibp_rate0; 1548 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1549 return (EINVAL); 1550 1551 flags = 0; 1552 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1553 flags |= RT2573_TX_NEED_ACK; 1554 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1555 error = rum_sendprot(sc, m0, ni, 1556 params->ibp_flags & IEEE80211_BPF_RTS ? 1557 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1558 rate); 1559 if (error || sc->tx_nfree == 0) 1560 return (ENOBUFS); 1561 1562 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1563 } 1564 1565 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1566 xflags |= RT2573_TX_HWSEQ; 1567 1568 data = STAILQ_FIRST(&sc->tx_free); 1569 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1570 sc->tx_nfree--; 1571 1572 data->m = m0; 1573 data->ni = ni; 1574 data->rate = rate; 1575 1576 /* XXX need to setup descriptor ourself */ 1577 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1578 m0->m_pkthdr.len, rate); 1579 1580 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1581 m0->m_pkthdr.len, rate); 1582 1583 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1584 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1585 1586 return 0; 1587 } 1588 1589 static int 1590 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1591 { 1592 struct ieee80211vap *vap = ni->ni_vap; 1593 struct ieee80211com *ic = &sc->sc_ic; 1594 struct rum_tx_data *data; 1595 struct ieee80211_frame *wh; 1596 const struct ieee80211_txparam *tp; 1597 struct ieee80211_key *k = NULL; 1598 uint32_t flags = 0; 1599 uint16_t dur; 1600 uint8_t ac, type, qos, xflags = 0; 1601 int error, hdrlen, rate; 1602 1603 RUM_LOCK_ASSERT(sc); 1604 1605 wh = mtod(m0, struct ieee80211_frame *); 1606 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1607 hdrlen = ieee80211_anyhdrsize(wh); 1608 1609 if (IEEE80211_QOS_HAS_SEQ(wh)) 1610 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1611 else 1612 qos = 0; 1613 ac = M_WME_GETAC(m0); 1614 1615 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1616 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1617 rate = tp->mcastrate; 1618 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1619 rate = tp->ucastrate; 1620 else 1621 rate = ni->ni_txrate; 1622 1623 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1624 k = ieee80211_crypto_get_txkey(ni, m0); 1625 if (k == NULL) { 1626 m_freem(m0); 1627 return (ENOENT); 1628 } 1629 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1630 !k->wk_cipher->ic_encap(k, m0)) { 1631 m_freem(m0); 1632 return (ENOBUFS); 1633 } 1634 1635 /* packet header may have moved, reset our local pointer */ 1636 wh = mtod(m0, struct ieee80211_frame *); 1637 } 1638 1639 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1640 xflags |= RT2573_TX_HWSEQ; 1641 1642 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1643 int prot = IEEE80211_PROT_NONE; 1644 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1645 prot = IEEE80211_PROT_RTSCTS; 1646 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1647 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1648 prot = ic->ic_protmode; 1649 if (prot != IEEE80211_PROT_NONE) { 1650 error = rum_sendprot(sc, m0, ni, prot, rate); 1651 if (error || sc->tx_nfree == 0) { 1652 m_freem(m0); 1653 return ENOBUFS; 1654 } 1655 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1656 } 1657 } 1658 1659 if (k != NULL) 1660 flags |= rum_tx_crypto_flags(sc, ni, k); 1661 1662 data = STAILQ_FIRST(&sc->tx_free); 1663 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1664 sc->tx_nfree--; 1665 1666 data->m = m0; 1667 data->ni = ni; 1668 data->rate = rate; 1669 1670 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1671 /* Unicast frame, check if an ACK is expected. */ 1672 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1673 IEEE80211_QOS_ACKPOLICY_NOACK) 1674 flags |= RT2573_TX_NEED_ACK; 1675 1676 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1677 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1678 USETW(wh->i_dur, dur); 1679 } 1680 1681 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1682 m0->m_pkthdr.len, rate); 1683 1684 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1685 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1686 1687 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1688 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1689 1690 return 0; 1691 } 1692 1693 static int 1694 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1695 { 1696 struct rum_softc *sc = ic->ic_softc; 1697 int error; 1698 1699 RUM_LOCK(sc); 1700 if (!sc->sc_running) { 1701 RUM_UNLOCK(sc); 1702 return (ENXIO); 1703 } 1704 error = mbufq_enqueue(&sc->sc_snd, m); 1705 if (error) { 1706 RUM_UNLOCK(sc); 1707 return (error); 1708 } 1709 rum_start(sc); 1710 RUM_UNLOCK(sc); 1711 1712 return (0); 1713 } 1714 1715 static void 1716 rum_start(struct rum_softc *sc) 1717 { 1718 struct ieee80211_node *ni; 1719 struct mbuf *m; 1720 1721 RUM_LOCK_ASSERT(sc); 1722 1723 if (!sc->sc_running) 1724 return; 1725 1726 while (sc->tx_nfree >= RUM_TX_MINFREE && 1727 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1728 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1729 if (rum_tx_data(sc, m, ni) != 0) { 1730 if_inc_counter(ni->ni_vap->iv_ifp, 1731 IFCOUNTER_OERRORS, 1); 1732 ieee80211_free_node(ni); 1733 break; 1734 } 1735 } 1736 } 1737 1738 static void 1739 rum_parent(struct ieee80211com *ic) 1740 { 1741 struct rum_softc *sc = ic->ic_softc; 1742 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1743 1744 RUM_LOCK(sc); 1745 if (sc->sc_detached) { 1746 RUM_UNLOCK(sc); 1747 return; 1748 } 1749 RUM_UNLOCK(sc); 1750 1751 if (ic->ic_nrunning > 0) { 1752 if (rum_init(sc) == 0) 1753 ieee80211_start_all(ic); 1754 else 1755 ieee80211_stop(vap); 1756 } else 1757 rum_stop(sc); 1758 } 1759 1760 static void 1761 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1762 { 1763 struct usb_device_request req; 1764 usb_error_t error; 1765 1766 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1767 req.bRequest = RT2573_READ_EEPROM; 1768 USETW(req.wValue, 0); 1769 USETW(req.wIndex, addr); 1770 USETW(req.wLength, len); 1771 1772 error = rum_do_request(sc, &req, buf); 1773 if (error != 0) { 1774 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1775 usbd_errstr(error)); 1776 } 1777 } 1778 1779 static uint32_t 1780 rum_read(struct rum_softc *sc, uint16_t reg) 1781 { 1782 uint32_t val; 1783 1784 rum_read_multi(sc, reg, &val, sizeof val); 1785 1786 return le32toh(val); 1787 } 1788 1789 static void 1790 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1791 { 1792 struct usb_device_request req; 1793 usb_error_t error; 1794 1795 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1796 req.bRequest = RT2573_READ_MULTI_MAC; 1797 USETW(req.wValue, 0); 1798 USETW(req.wIndex, reg); 1799 USETW(req.wLength, len); 1800 1801 error = rum_do_request(sc, &req, buf); 1802 if (error != 0) { 1803 device_printf(sc->sc_dev, 1804 "could not multi read MAC register: %s\n", 1805 usbd_errstr(error)); 1806 } 1807 } 1808 1809 static usb_error_t 1810 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1811 { 1812 uint32_t tmp = htole32(val); 1813 1814 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1815 } 1816 1817 static usb_error_t 1818 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1819 { 1820 struct usb_device_request req; 1821 usb_error_t error; 1822 size_t offset; 1823 1824 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1825 req.bRequest = RT2573_WRITE_MULTI_MAC; 1826 USETW(req.wValue, 0); 1827 1828 /* write at most 64 bytes at a time */ 1829 for (offset = 0; offset < len; offset += 64) { 1830 USETW(req.wIndex, reg + offset); 1831 USETW(req.wLength, MIN(len - offset, 64)); 1832 1833 error = rum_do_request(sc, &req, (char *)buf + offset); 1834 if (error != 0) { 1835 device_printf(sc->sc_dev, 1836 "could not multi write MAC register: %s\n", 1837 usbd_errstr(error)); 1838 return (error); 1839 } 1840 } 1841 1842 return (USB_ERR_NORMAL_COMPLETION); 1843 } 1844 1845 static usb_error_t 1846 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1847 { 1848 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1849 } 1850 1851 static usb_error_t 1852 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1853 { 1854 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1855 } 1856 1857 static usb_error_t 1858 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1859 { 1860 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1861 } 1862 1863 static int 1864 rum_bbp_busy(struct rum_softc *sc) 1865 { 1866 int ntries; 1867 1868 for (ntries = 0; ntries < 100; ntries++) { 1869 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1870 break; 1871 if (rum_pause(sc, hz / 100)) 1872 break; 1873 } 1874 if (ntries == 100) 1875 return (ETIMEDOUT); 1876 1877 return (0); 1878 } 1879 1880 static void 1881 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1882 { 1883 uint32_t tmp; 1884 1885 DPRINTFN(2, "reg=0x%08x\n", reg); 1886 1887 if (rum_bbp_busy(sc) != 0) { 1888 device_printf(sc->sc_dev, "could not write to BBP\n"); 1889 return; 1890 } 1891 1892 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1893 rum_write(sc, RT2573_PHY_CSR3, tmp); 1894 } 1895 1896 static uint8_t 1897 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1898 { 1899 uint32_t val; 1900 int ntries; 1901 1902 DPRINTFN(2, "reg=0x%08x\n", reg); 1903 1904 if (rum_bbp_busy(sc) != 0) { 1905 device_printf(sc->sc_dev, "could not read BBP\n"); 1906 return 0; 1907 } 1908 1909 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1910 rum_write(sc, RT2573_PHY_CSR3, val); 1911 1912 for (ntries = 0; ntries < 100; ntries++) { 1913 val = rum_read(sc, RT2573_PHY_CSR3); 1914 if (!(val & RT2573_BBP_BUSY)) 1915 return val & 0xff; 1916 if (rum_pause(sc, hz / 100)) 1917 break; 1918 } 1919 1920 device_printf(sc->sc_dev, "could not read BBP\n"); 1921 return 0; 1922 } 1923 1924 static void 1925 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1926 { 1927 uint32_t tmp; 1928 int ntries; 1929 1930 for (ntries = 0; ntries < 100; ntries++) { 1931 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1932 break; 1933 if (rum_pause(sc, hz / 100)) 1934 break; 1935 } 1936 if (ntries == 100) { 1937 device_printf(sc->sc_dev, "could not write to RF\n"); 1938 return; 1939 } 1940 1941 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1942 (reg & 3); 1943 rum_write(sc, RT2573_PHY_CSR4, tmp); 1944 1945 /* remember last written value in sc */ 1946 sc->rf_regs[reg] = val; 1947 1948 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1949 } 1950 1951 static void 1952 rum_select_antenna(struct rum_softc *sc) 1953 { 1954 uint8_t bbp4, bbp77; 1955 uint32_t tmp; 1956 1957 bbp4 = rum_bbp_read(sc, 4); 1958 bbp77 = rum_bbp_read(sc, 77); 1959 1960 /* TBD */ 1961 1962 /* make sure Rx is disabled before switching antenna */ 1963 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1964 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1965 1966 rum_bbp_write(sc, 4, bbp4); 1967 rum_bbp_write(sc, 77, bbp77); 1968 1969 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1970 } 1971 1972 /* 1973 * Enable multi-rate retries for frames sent at OFDM rates. 1974 * In 802.11b/g mode, allow fallback to CCK rates. 1975 */ 1976 static void 1977 rum_enable_mrr(struct rum_softc *sc) 1978 { 1979 struct ieee80211com *ic = &sc->sc_ic; 1980 1981 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1982 rum_setbits(sc, RT2573_TXRX_CSR4, 1983 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 1984 } else { 1985 rum_modbits(sc, RT2573_TXRX_CSR4, 1986 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 1987 } 1988 } 1989 1990 static void 1991 rum_set_txpreamble(struct rum_softc *sc) 1992 { 1993 struct ieee80211com *ic = &sc->sc_ic; 1994 1995 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1996 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1997 else 1998 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1999 } 2000 2001 static void 2002 rum_set_basicrates(struct rum_softc *sc) 2003 { 2004 struct ieee80211com *ic = &sc->sc_ic; 2005 2006 /* update basic rate set */ 2007 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2008 /* 11b basic rates: 1, 2Mbps */ 2009 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2010 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2011 /* 11a basic rates: 6, 12, 24Mbps */ 2012 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2013 } else { 2014 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2015 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2016 } 2017 } 2018 2019 /* 2020 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2021 * driver. 2022 */ 2023 static void 2024 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2025 { 2026 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2027 2028 /* update all BBP registers that depend on the band */ 2029 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2030 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2031 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2032 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2033 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2034 } 2035 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2036 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2037 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2038 } 2039 2040 sc->bbp17 = bbp17; 2041 rum_bbp_write(sc, 17, bbp17); 2042 rum_bbp_write(sc, 96, bbp96); 2043 rum_bbp_write(sc, 104, bbp104); 2044 2045 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2046 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2047 rum_bbp_write(sc, 75, 0x80); 2048 rum_bbp_write(sc, 86, 0x80); 2049 rum_bbp_write(sc, 88, 0x80); 2050 } 2051 2052 rum_bbp_write(sc, 35, bbp35); 2053 rum_bbp_write(sc, 97, bbp97); 2054 rum_bbp_write(sc, 98, bbp98); 2055 2056 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2057 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2058 RT2573_PA_PE_5GHZ); 2059 } else { 2060 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2061 RT2573_PA_PE_2GHZ); 2062 } 2063 } 2064 2065 static void 2066 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2067 { 2068 struct ieee80211com *ic = &sc->sc_ic; 2069 const struct rfprog *rfprog; 2070 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2071 int8_t power; 2072 int i, chan; 2073 2074 chan = ieee80211_chan2ieee(ic, c); 2075 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2076 return; 2077 2078 /* select the appropriate RF settings based on what EEPROM says */ 2079 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2080 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2081 2082 /* find the settings for this channel (we know it exists) */ 2083 for (i = 0; rfprog[i].chan != chan; i++); 2084 2085 power = sc->txpow[i]; 2086 if (power < 0) { 2087 bbp94 += power; 2088 power = 0; 2089 } else if (power > 31) { 2090 bbp94 += power - 31; 2091 power = 31; 2092 } 2093 2094 /* 2095 * If we are switching from the 2GHz band to the 5GHz band or 2096 * vice-versa, BBP registers need to be reprogrammed. 2097 */ 2098 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2099 rum_select_band(sc, c); 2100 rum_select_antenna(sc); 2101 } 2102 ic->ic_curchan = c; 2103 2104 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2105 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2106 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2107 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2108 2109 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2110 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2111 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2112 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2113 2114 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2115 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2116 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2117 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2118 2119 rum_pause(sc, hz / 100); 2120 2121 /* enable smart mode for MIMO-capable RFs */ 2122 bbp3 = rum_bbp_read(sc, 3); 2123 2124 bbp3 &= ~RT2573_SMART_MODE; 2125 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2126 bbp3 |= RT2573_SMART_MODE; 2127 2128 rum_bbp_write(sc, 3, bbp3); 2129 2130 if (bbp94 != RT2573_BBPR94_DEFAULT) 2131 rum_bbp_write(sc, 94, bbp94); 2132 2133 /* give the chip some extra time to do the switchover */ 2134 rum_pause(sc, hz / 100); 2135 } 2136 2137 static void 2138 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2139 { 2140 const struct ieee80211_txparam *tp; 2141 struct ieee80211_node *ni = vap->iv_bss; 2142 struct rum_vap *rvp = RUM_VAP(vap); 2143 2144 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2145 rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; 2146 2147 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2148 RT2573_LONG_RETRY(rvp->maxretry), 2149 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2150 } 2151 2152 /* 2153 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2154 * and HostAP operating modes. 2155 */ 2156 static int 2157 rum_enable_tsf_sync(struct rum_softc *sc) 2158 { 2159 struct ieee80211com *ic = &sc->sc_ic; 2160 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2161 uint32_t tmp; 2162 uint16_t bintval; 2163 2164 if (vap->iv_opmode != IEEE80211_M_STA) { 2165 /* 2166 * Change default 16ms TBTT adjustment to 8ms. 2167 * Must be done before enabling beacon generation. 2168 */ 2169 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2170 return EIO; 2171 } 2172 2173 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2174 2175 /* set beacon interval (in 1/16ms unit) */ 2176 bintval = vap->iv_bss->ni_intval; 2177 tmp |= bintval * 16; 2178 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2179 2180 switch (vap->iv_opmode) { 2181 case IEEE80211_M_STA: 2182 /* 2183 * Local TSF is always updated with remote TSF on beacon 2184 * reception. 2185 */ 2186 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2187 break; 2188 case IEEE80211_M_IBSS: 2189 /* 2190 * Local TSF is updated with remote TSF on beacon reception 2191 * only if the remote TSF is greater than local TSF. 2192 */ 2193 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2194 tmp |= RT2573_BCN_TX_EN; 2195 break; 2196 case IEEE80211_M_HOSTAP: 2197 /* SYNC with nobody */ 2198 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2199 tmp |= RT2573_BCN_TX_EN; 2200 break; 2201 default: 2202 device_printf(sc->sc_dev, 2203 "Enabling TSF failed. undefined opmode %d\n", 2204 vap->iv_opmode); 2205 return EINVAL; 2206 } 2207 2208 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2209 return EIO; 2210 2211 /* refresh current sleep time */ 2212 return (rum_set_sleep_time(sc, bintval)); 2213 } 2214 2215 static void 2216 rum_enable_tsf(struct rum_softc *sc) 2217 { 2218 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2219 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2220 } 2221 2222 static void 2223 rum_abort_tsf_sync(struct rum_softc *sc) 2224 { 2225 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2226 } 2227 2228 static void 2229 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2230 { 2231 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2232 } 2233 2234 static void 2235 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2236 { 2237 struct ieee80211com *ic = &sc->sc_ic; 2238 uint8_t slottime; 2239 2240 slottime = IEEE80211_GET_SLOTTIME(ic); 2241 2242 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2243 2244 DPRINTF("setting slot time to %uus\n", slottime); 2245 } 2246 2247 static void 2248 rum_update_slot(struct ieee80211com *ic) 2249 { 2250 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2251 } 2252 2253 static int 2254 rum_wme_update(struct ieee80211com *ic) 2255 { 2256 const struct wmeParams *chanp = 2257 ic->ic_wme.wme_chanParams.cap_wmeParams; 2258 struct rum_softc *sc = ic->ic_softc; 2259 int error = 0; 2260 2261 RUM_LOCK(sc); 2262 error = rum_write(sc, RT2573_AIFSN_CSR, 2263 chanp[WME_AC_VO].wmep_aifsn << 12 | 2264 chanp[WME_AC_VI].wmep_aifsn << 8 | 2265 chanp[WME_AC_BK].wmep_aifsn << 4 | 2266 chanp[WME_AC_BE].wmep_aifsn); 2267 if (error) 2268 goto print_err; 2269 error = rum_write(sc, RT2573_CWMIN_CSR, 2270 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2271 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2272 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2273 chanp[WME_AC_BE].wmep_logcwmin); 2274 if (error) 2275 goto print_err; 2276 error = rum_write(sc, RT2573_CWMAX_CSR, 2277 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2278 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2279 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2280 chanp[WME_AC_BE].wmep_logcwmax); 2281 if (error) 2282 goto print_err; 2283 error = rum_write(sc, RT2573_TXOP01_CSR, 2284 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2285 chanp[WME_AC_BE].wmep_txopLimit); 2286 if (error) 2287 goto print_err; 2288 error = rum_write(sc, RT2573_TXOP23_CSR, 2289 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2290 chanp[WME_AC_VI].wmep_txopLimit); 2291 if (error) 2292 goto print_err; 2293 2294 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2295 2296 print_err: 2297 RUM_UNLOCK(sc); 2298 if (error != 0) { 2299 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2300 __func__, error); 2301 } 2302 2303 return (error); 2304 } 2305 2306 static void 2307 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2308 { 2309 2310 rum_write(sc, RT2573_MAC_CSR4, 2311 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2312 rum_write(sc, RT2573_MAC_CSR5, 2313 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2314 } 2315 2316 static void 2317 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2318 { 2319 2320 rum_write(sc, RT2573_MAC_CSR2, 2321 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2322 rum_write(sc, RT2573_MAC_CSR3, 2323 addr[4] | addr[5] << 8 | 0xff << 16); 2324 } 2325 2326 static void 2327 rum_setpromisc(struct rum_softc *sc) 2328 { 2329 struct ieee80211com *ic = &sc->sc_ic; 2330 2331 if (ic->ic_promisc == 0) 2332 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2333 else 2334 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2335 2336 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2337 "entering" : "leaving"); 2338 } 2339 2340 static void 2341 rum_update_promisc(struct ieee80211com *ic) 2342 { 2343 struct rum_softc *sc = ic->ic_softc; 2344 2345 RUM_LOCK(sc); 2346 if (sc->sc_running) 2347 rum_setpromisc(sc); 2348 RUM_UNLOCK(sc); 2349 } 2350 2351 static void 2352 rum_update_mcast(struct ieee80211com *ic) 2353 { 2354 /* Ignore. */ 2355 } 2356 2357 static const char * 2358 rum_get_rf(int rev) 2359 { 2360 switch (rev) { 2361 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2362 case RT2573_RF_2528: return "RT2528"; 2363 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2364 case RT2573_RF_5226: return "RT5226"; 2365 default: return "unknown"; 2366 } 2367 } 2368 2369 static void 2370 rum_read_eeprom(struct rum_softc *sc) 2371 { 2372 uint16_t val; 2373 #ifdef RUM_DEBUG 2374 int i; 2375 #endif 2376 2377 /* read MAC address */ 2378 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2379 2380 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2381 val = le16toh(val); 2382 sc->rf_rev = (val >> 11) & 0x1f; 2383 sc->hw_radio = (val >> 10) & 0x1; 2384 sc->rx_ant = (val >> 4) & 0x3; 2385 sc->tx_ant = (val >> 2) & 0x3; 2386 sc->nb_ant = val & 0x3; 2387 2388 DPRINTF("RF revision=%d\n", sc->rf_rev); 2389 2390 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2391 val = le16toh(val); 2392 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2393 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2394 2395 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2396 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2397 2398 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2399 val = le16toh(val); 2400 if ((val & 0xff) != 0xff) 2401 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2402 2403 /* Only [-10, 10] is valid */ 2404 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2405 sc->rssi_2ghz_corr = 0; 2406 2407 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2408 val = le16toh(val); 2409 if ((val & 0xff) != 0xff) 2410 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2411 2412 /* Only [-10, 10] is valid */ 2413 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2414 sc->rssi_5ghz_corr = 0; 2415 2416 if (sc->ext_2ghz_lna) 2417 sc->rssi_2ghz_corr -= 14; 2418 if (sc->ext_5ghz_lna) 2419 sc->rssi_5ghz_corr -= 14; 2420 2421 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2422 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2423 2424 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2425 val = le16toh(val); 2426 if ((val & 0xff) != 0xff) 2427 sc->rffreq = val & 0xff; 2428 2429 DPRINTF("RF freq=%d\n", sc->rffreq); 2430 2431 /* read Tx power for all a/b/g channels */ 2432 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2433 /* XXX default Tx power for 802.11a channels */ 2434 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2435 #ifdef RUM_DEBUG 2436 for (i = 0; i < 14; i++) 2437 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2438 #endif 2439 2440 /* read default values for BBP registers */ 2441 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2442 #ifdef RUM_DEBUG 2443 for (i = 0; i < 14; i++) { 2444 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2445 continue; 2446 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2447 sc->bbp_prom[i].val); 2448 } 2449 #endif 2450 } 2451 2452 static int 2453 rum_bbp_wakeup(struct rum_softc *sc) 2454 { 2455 unsigned int ntries; 2456 2457 for (ntries = 0; ntries < 100; ntries++) { 2458 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2459 break; 2460 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2461 if (rum_pause(sc, hz / 100)) 2462 break; 2463 } 2464 if (ntries == 100) { 2465 device_printf(sc->sc_dev, 2466 "timeout waiting for BBP/RF to wakeup\n"); 2467 return (ETIMEDOUT); 2468 } 2469 2470 return (0); 2471 } 2472 2473 static int 2474 rum_bbp_init(struct rum_softc *sc) 2475 { 2476 int i, ntries; 2477 2478 /* wait for BBP to be ready */ 2479 for (ntries = 0; ntries < 100; ntries++) { 2480 const uint8_t val = rum_bbp_read(sc, 0); 2481 if (val != 0 && val != 0xff) 2482 break; 2483 if (rum_pause(sc, hz / 100)) 2484 break; 2485 } 2486 if (ntries == 100) { 2487 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2488 return EIO; 2489 } 2490 2491 /* initialize BBP registers to default values */ 2492 for (i = 0; i < nitems(rum_def_bbp); i++) 2493 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2494 2495 /* write vendor-specific BBP values (from EEPROM) */ 2496 for (i = 0; i < 16; i++) { 2497 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2498 continue; 2499 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2500 } 2501 2502 return 0; 2503 } 2504 2505 static void 2506 rum_clr_shkey_regs(struct rum_softc *sc) 2507 { 2508 rum_write(sc, RT2573_SEC_CSR0, 0); 2509 rum_write(sc, RT2573_SEC_CSR1, 0); 2510 rum_write(sc, RT2573_SEC_CSR5, 0); 2511 } 2512 2513 static int 2514 rum_init(struct rum_softc *sc) 2515 { 2516 struct ieee80211com *ic = &sc->sc_ic; 2517 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2518 uint32_t tmp; 2519 int i, ret; 2520 2521 RUM_LOCK(sc); 2522 if (sc->sc_running) { 2523 ret = 0; 2524 goto end; 2525 } 2526 2527 /* initialize MAC registers to default values */ 2528 for (i = 0; i < nitems(rum_def_mac); i++) 2529 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2530 2531 /* reset some WME parameters to default values */ 2532 sc->wme_params[0].wmep_aifsn = 2; 2533 sc->wme_params[0].wmep_logcwmin = 4; 2534 sc->wme_params[0].wmep_logcwmax = 10; 2535 2536 /* set host ready */ 2537 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2538 rum_write(sc, RT2573_MAC_CSR1, 0); 2539 2540 /* wait for BBP/RF to wakeup */ 2541 if ((ret = rum_bbp_wakeup(sc)) != 0) 2542 goto end; 2543 2544 if ((ret = rum_bbp_init(sc)) != 0) 2545 goto end; 2546 2547 /* select default channel */ 2548 rum_select_band(sc, ic->ic_curchan); 2549 rum_select_antenna(sc); 2550 rum_set_chan(sc, ic->ic_curchan); 2551 2552 /* clear STA registers */ 2553 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2554 2555 /* clear security registers (if required) */ 2556 if (sc->sc_clr_shkeys == 0) { 2557 rum_clr_shkey_regs(sc); 2558 sc->sc_clr_shkeys = 1; 2559 } 2560 2561 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2562 2563 /* initialize ASIC */ 2564 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2565 2566 /* 2567 * Allocate Tx and Rx xfer queues. 2568 */ 2569 rum_setup_tx_list(sc); 2570 2571 /* update Rx filter */ 2572 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2573 2574 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2575 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2576 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2577 RT2573_DROP_ACKCTS; 2578 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2579 tmp |= RT2573_DROP_TODS; 2580 if (ic->ic_promisc == 0) 2581 tmp |= RT2573_DROP_NOT_TO_ME; 2582 } 2583 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2584 2585 sc->sc_running = 1; 2586 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2587 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2588 2589 end: RUM_UNLOCK(sc); 2590 2591 if (ret != 0) 2592 rum_stop(sc); 2593 2594 return ret; 2595 } 2596 2597 static void 2598 rum_stop(struct rum_softc *sc) 2599 { 2600 2601 RUM_LOCK(sc); 2602 if (!sc->sc_running) { 2603 RUM_UNLOCK(sc); 2604 return; 2605 } 2606 sc->sc_running = 0; 2607 RUM_UNLOCK(sc); 2608 2609 /* 2610 * Drain the USB transfers, if not already drained: 2611 */ 2612 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2613 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2614 2615 RUM_LOCK(sc); 2616 rum_unsetup_tx_list(sc); 2617 2618 /* disable Rx */ 2619 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2620 2621 /* reset ASIC */ 2622 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2623 rum_write(sc, RT2573_MAC_CSR1, 0); 2624 RUM_UNLOCK(sc); 2625 } 2626 2627 static void 2628 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2629 { 2630 uint16_t reg = RT2573_MCU_CODE_BASE; 2631 usb_error_t err; 2632 2633 /* copy firmware image into NIC */ 2634 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2635 err = rum_write(sc, reg, UGETDW(ucode)); 2636 if (err) { 2637 /* firmware already loaded ? */ 2638 device_printf(sc->sc_dev, "Firmware load " 2639 "failure! (ignored)\n"); 2640 break; 2641 } 2642 } 2643 2644 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2645 if (err != USB_ERR_NORMAL_COMPLETION) { 2646 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2647 usbd_errstr(err)); 2648 } 2649 2650 /* give the chip some time to boot */ 2651 rum_pause(sc, hz / 8); 2652 } 2653 2654 static int 2655 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2656 { 2657 struct ieee80211com *ic = &sc->sc_ic; 2658 usb_error_t uerror; 2659 int exp, delay; 2660 2661 RUM_LOCK_ASSERT(sc); 2662 2663 exp = ic->ic_lintval / bintval; 2664 delay = ic->ic_lintval % bintval; 2665 2666 if (exp > RT2573_TBCN_EXP_MAX) 2667 exp = RT2573_TBCN_EXP_MAX; 2668 if (delay > RT2573_TBCN_DELAY_MAX) 2669 delay = RT2573_TBCN_DELAY_MAX; 2670 2671 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2672 RT2573_TBCN_EXP(exp) | 2673 RT2573_TBCN_DELAY(delay), 2674 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2675 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2676 2677 if (uerror != USB_ERR_NORMAL_COMPLETION) 2678 return (EIO); 2679 2680 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2681 2682 return (0); 2683 } 2684 2685 static int 2686 rum_reset(struct ieee80211vap *vap, u_long cmd) 2687 { 2688 struct ieee80211com *ic = vap->iv_ic; 2689 struct ieee80211_node *ni; 2690 struct rum_softc *sc = ic->ic_softc; 2691 int error; 2692 2693 switch (cmd) { 2694 case IEEE80211_IOC_POWERSAVE: 2695 error = 0; 2696 break; 2697 case IEEE80211_IOC_POWERSAVESLEEP: 2698 ni = ieee80211_ref_node(vap->iv_bss); 2699 2700 RUM_LOCK(sc); 2701 error = rum_set_sleep_time(sc, ni->ni_intval); 2702 if (vap->iv_state == IEEE80211_S_SLEEP) { 2703 /* Use new values for wakeup timer. */ 2704 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2705 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2706 } 2707 /* XXX send reassoc */ 2708 RUM_UNLOCK(sc); 2709 2710 ieee80211_free_node(ni); 2711 break; 2712 default: 2713 error = ENETRESET; 2714 break; 2715 } 2716 2717 return (error); 2718 } 2719 2720 static int 2721 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2722 { 2723 struct ieee80211com *ic = vap->iv_ic; 2724 struct rum_vap *rvp = RUM_VAP(vap); 2725 struct mbuf *m = rvp->bcn_mbuf; 2726 const struct ieee80211_txparam *tp; 2727 struct rum_tx_desc desc; 2728 2729 RUM_LOCK_ASSERT(sc); 2730 2731 if (m == NULL) 2732 return EINVAL; 2733 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2734 return EINVAL; 2735 2736 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2737 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2738 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2739 2740 /* copy the Tx descriptor into NIC memory */ 2741 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2742 RT2573_TX_DESC_SIZE) != 0) 2743 return EIO; 2744 2745 /* copy beacon header and payload into NIC memory */ 2746 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2747 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2748 return EIO; 2749 2750 return 0; 2751 } 2752 2753 static int 2754 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2755 { 2756 struct rum_vap *rvp = RUM_VAP(vap); 2757 struct ieee80211_node *ni = vap->iv_bss; 2758 struct mbuf *m; 2759 2760 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2761 return EINVAL; 2762 2763 m = ieee80211_beacon_alloc(ni); 2764 if (m == NULL) 2765 return ENOMEM; 2766 2767 if (rvp->bcn_mbuf != NULL) 2768 m_freem(rvp->bcn_mbuf); 2769 2770 rvp->bcn_mbuf = m; 2771 2772 return (rum_set_beacon(sc, vap)); 2773 } 2774 2775 static void 2776 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2777 uint8_t rvp_id) 2778 { 2779 struct ieee80211vap *vap = data->vap; 2780 2781 rum_set_beacon(sc, vap); 2782 } 2783 2784 static void 2785 rum_update_beacon(struct ieee80211vap *vap, int item) 2786 { 2787 struct ieee80211com *ic = vap->iv_ic; 2788 struct rum_softc *sc = ic->ic_softc; 2789 struct rum_vap *rvp = RUM_VAP(vap); 2790 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2791 struct ieee80211_node *ni = vap->iv_bss; 2792 struct mbuf *m = rvp->bcn_mbuf; 2793 int mcast = 0; 2794 2795 RUM_LOCK(sc); 2796 if (m == NULL) { 2797 m = ieee80211_beacon_alloc(ni); 2798 if (m == NULL) { 2799 device_printf(sc->sc_dev, 2800 "%s: could not allocate beacon frame\n", __func__); 2801 RUM_UNLOCK(sc); 2802 return; 2803 } 2804 rvp->bcn_mbuf = m; 2805 } 2806 2807 switch (item) { 2808 case IEEE80211_BEACON_ERP: 2809 rum_update_slot(ic); 2810 break; 2811 case IEEE80211_BEACON_TIM: 2812 mcast = 1; /*TODO*/ 2813 break; 2814 default: 2815 break; 2816 } 2817 RUM_UNLOCK(sc); 2818 2819 setbit(bo->bo_flags, item); 2820 ieee80211_beacon_update(ni, m, mcast); 2821 2822 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2823 } 2824 2825 static int 2826 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2827 uint16_t base) 2828 { 2829 2830 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2831 return EIO; 2832 2833 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2834 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2835 k->wk_txmic, 8)) 2836 return EIO; 2837 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2838 k->wk_rxmic, 8)) 2839 return EIO; 2840 } 2841 2842 return 0; 2843 } 2844 2845 static void 2846 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2847 uint8_t rvp_id) 2848 { 2849 struct ieee80211_key *k = &data->key; 2850 uint8_t mode; 2851 2852 if (sc->sc_clr_shkeys == 0) { 2853 rum_clr_shkey_regs(sc); 2854 sc->sc_clr_shkeys = 1; 2855 } 2856 2857 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2858 if (mode == 0) 2859 goto print_err; 2860 2861 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2862 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2863 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2864 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2865 2866 /* Install the key. */ 2867 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2868 goto print_err; 2869 2870 /* Set cipher mode. */ 2871 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2872 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2873 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2874 != 0) 2875 goto print_err; 2876 2877 /* Mark this key as valid. */ 2878 if (rum_setbits(sc, RT2573_SEC_CSR0, 2879 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2880 goto print_err; 2881 2882 return; 2883 2884 print_err: 2885 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2886 __func__, k->wk_keyix, rvp_id); 2887 } 2888 2889 static void 2890 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2891 uint8_t rvp_id) 2892 { 2893 struct ieee80211_key *k = &data->key; 2894 2895 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2896 k->wk_keyix, rvp_id); 2897 rum_clrbits(sc, 2898 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2899 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2900 rum_clrbits(sc, RT2573_SEC_CSR0, 2901 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2902 } 2903 2904 static void 2905 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2906 uint8_t rvp_id) 2907 { 2908 struct ieee80211_key *k = &data->key; 2909 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2910 uint8_t mode; 2911 2912 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2913 if (mode == 0) 2914 goto print_err; 2915 2916 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2917 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2918 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2919 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2920 2921 /* Install the key. */ 2922 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2923 goto print_err; 2924 2925 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2926 buf[IEEE80211_ADDR_LEN] = mode; 2927 2928 /* Set transmitter address and cipher mode. */ 2929 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2930 buf, sizeof buf) != 0) 2931 goto print_err; 2932 2933 /* Enable key table lookup for this vap. */ 2934 if (sc->vap_key_count[rvp_id]++ == 0) 2935 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2936 goto print_err; 2937 2938 /* Mark this key as valid. */ 2939 if (rum_setbits(sc, 2940 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2941 1 << (k->wk_keyix % 32)) != 0) 2942 goto print_err; 2943 2944 return; 2945 2946 print_err: 2947 device_printf(sc->sc_dev, 2948 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2949 rvp_id); 2950 } 2951 2952 static void 2953 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2954 uint8_t rvp_id) 2955 { 2956 struct ieee80211_key *k = &data->key; 2957 2958 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2959 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2960 1 << (k->wk_keyix % 32)); 2961 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 2962 if (--sc->vap_key_count[rvp_id] == 0) 2963 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2964 } 2965 2966 static int 2967 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2968 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2969 { 2970 struct rum_softc *sc = vap->iv_ic->ic_softc; 2971 uint8_t i; 2972 2973 if (!(&vap->iv_nw_keys[0] <= k && 2974 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2975 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 2976 RUM_LOCK(sc); 2977 for (i = 0; i < RT2573_ADDR_MAX; i++) { 2978 if ((sc->keys_bmap & (1ULL << i)) == 0) { 2979 sc->keys_bmap |= (1ULL << i); 2980 *keyix = i; 2981 break; 2982 } 2983 } 2984 RUM_UNLOCK(sc); 2985 if (i == RT2573_ADDR_MAX) { 2986 device_printf(sc->sc_dev, 2987 "%s: no free space in the key table\n", 2988 __func__); 2989 return 0; 2990 } 2991 } else 2992 *keyix = 0; 2993 } else { 2994 *keyix = k - vap->iv_nw_keys; 2995 } 2996 *rxkeyix = *keyix; 2997 return 1; 2998 } 2999 3000 static int 3001 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3002 { 3003 struct rum_softc *sc = vap->iv_ic->ic_softc; 3004 int group; 3005 3006 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3007 /* Not for us. */ 3008 return 1; 3009 } 3010 3011 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3012 3013 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3014 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3015 } 3016 3017 static int 3018 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3019 { 3020 struct rum_softc *sc = vap->iv_ic->ic_softc; 3021 int group; 3022 3023 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3024 /* Not for us. */ 3025 return 1; 3026 } 3027 3028 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3029 3030 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3031 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3032 } 3033 3034 static int 3035 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3036 const struct ieee80211_bpf_params *params) 3037 { 3038 struct rum_softc *sc = ni->ni_ic->ic_softc; 3039 int ret; 3040 3041 RUM_LOCK(sc); 3042 /* prevent management frames from being sent if we're not ready */ 3043 if (!sc->sc_running) { 3044 ret = ENETDOWN; 3045 goto bad; 3046 } 3047 if (sc->tx_nfree < RUM_TX_MINFREE) { 3048 ret = EIO; 3049 goto bad; 3050 } 3051 3052 if (params == NULL) { 3053 /* 3054 * Legacy path; interpret frame contents to decide 3055 * precisely how to send the frame. 3056 */ 3057 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3058 goto bad; 3059 } else { 3060 /* 3061 * Caller supplied explicit parameters to use in 3062 * sending the frame. 3063 */ 3064 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3065 goto bad; 3066 } 3067 RUM_UNLOCK(sc); 3068 3069 return 0; 3070 bad: 3071 RUM_UNLOCK(sc); 3072 m_freem(m); 3073 return ret; 3074 } 3075 3076 static void 3077 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3078 { 3079 struct ieee80211vap *vap = ni->ni_vap; 3080 struct rum_vap *rvp = RUM_VAP(vap); 3081 3082 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3083 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3084 3085 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3086 } 3087 3088 static void 3089 rum_ratectl_timeout(void *arg) 3090 { 3091 struct rum_vap *rvp = arg; 3092 struct ieee80211vap *vap = &rvp->vap; 3093 struct ieee80211com *ic = vap->iv_ic; 3094 3095 ieee80211_runtask(ic, &rvp->ratectl_task); 3096 } 3097 3098 static void 3099 rum_ratectl_task(void *arg, int pending) 3100 { 3101 struct rum_vap *rvp = arg; 3102 struct ieee80211vap *vap = &rvp->vap; 3103 struct rum_softc *sc = vap->iv_ic->ic_softc; 3104 struct ieee80211_node *ni; 3105 int ok[3], fail; 3106 int sum, success, retrycnt; 3107 3108 RUM_LOCK(sc); 3109 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3110 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3111 3112 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3113 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3114 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3115 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3116 3117 success = ok[0] + ok[1] + ok[2]; 3118 sum = success + fail; 3119 /* XXX at least */ 3120 retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3121 3122 if (sum != 0) { 3123 ni = ieee80211_ref_node(vap->iv_bss); 3124 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 3125 (void) ieee80211_ratectl_rate(ni, NULL, 0); 3126 ieee80211_free_node(ni); 3127 } 3128 3129 /* count TX retry-fail as Tx errors */ 3130 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3131 3132 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3133 RUM_UNLOCK(sc); 3134 } 3135 3136 static void 3137 rum_scan_start(struct ieee80211com *ic) 3138 { 3139 struct rum_softc *sc = ic->ic_softc; 3140 3141 RUM_LOCK(sc); 3142 rum_abort_tsf_sync(sc); 3143 rum_set_bssid(sc, ieee80211broadcastaddr); 3144 RUM_UNLOCK(sc); 3145 3146 } 3147 3148 static void 3149 rum_scan_end(struct ieee80211com *ic) 3150 { 3151 struct rum_softc *sc = ic->ic_softc; 3152 3153 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3154 RUM_LOCK(sc); 3155 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3156 rum_enable_tsf_sync(sc); 3157 else 3158 rum_enable_tsf(sc); 3159 rum_set_bssid(sc, sc->sc_bssid); 3160 RUM_UNLOCK(sc); 3161 } 3162 } 3163 3164 static void 3165 rum_set_channel(struct ieee80211com *ic) 3166 { 3167 struct rum_softc *sc = ic->ic_softc; 3168 3169 RUM_LOCK(sc); 3170 rum_set_chan(sc, ic->ic_curchan); 3171 RUM_UNLOCK(sc); 3172 } 3173 3174 static void 3175 rum_getradiocaps(struct ieee80211com *ic, 3176 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3177 { 3178 struct rum_softc *sc = ic->ic_softc; 3179 uint8_t bands[IEEE80211_MODE_BYTES]; 3180 3181 memset(bands, 0, sizeof(bands)); 3182 setbit(bands, IEEE80211_MODE_11B); 3183 setbit(bands, IEEE80211_MODE_11G); 3184 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 3185 rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0); 3186 3187 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3188 setbit(bands, IEEE80211_MODE_11A); 3189 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3190 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3191 } 3192 } 3193 3194 static int 3195 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3196 { 3197 struct ieee80211com *ic = &sc->sc_ic; 3198 int lna, agc, rssi; 3199 3200 lna = (raw >> 5) & 0x3; 3201 agc = raw & 0x1f; 3202 3203 if (lna == 0) { 3204 /* 3205 * No RSSI mapping 3206 * 3207 * NB: Since RSSI is relative to noise floor, -1 is 3208 * adequate for caller to know error happened. 3209 */ 3210 return -1; 3211 } 3212 3213 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3214 3215 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3216 rssi += sc->rssi_2ghz_corr; 3217 3218 if (lna == 1) 3219 rssi -= 64; 3220 else if (lna == 2) 3221 rssi -= 74; 3222 else if (lna == 3) 3223 rssi -= 90; 3224 } else { 3225 rssi += sc->rssi_5ghz_corr; 3226 3227 if (!sc->ext_5ghz_lna && lna != 1) 3228 rssi += 4; 3229 3230 if (lna == 1) 3231 rssi -= 64; 3232 else if (lna == 2) 3233 rssi -= 86; 3234 else if (lna == 3) 3235 rssi -= 100; 3236 } 3237 return rssi; 3238 } 3239 3240 static int 3241 rum_pause(struct rum_softc *sc, int timeout) 3242 { 3243 3244 usb_pause_mtx(&sc->sc_mtx, timeout); 3245 return (0); 3246 } 3247 3248 static device_method_t rum_methods[] = { 3249 /* Device interface */ 3250 DEVMETHOD(device_probe, rum_match), 3251 DEVMETHOD(device_attach, rum_attach), 3252 DEVMETHOD(device_detach, rum_detach), 3253 DEVMETHOD_END 3254 }; 3255 3256 static driver_t rum_driver = { 3257 .name = "rum", 3258 .methods = rum_methods, 3259 .size = sizeof(struct rum_softc), 3260 }; 3261 3262 static devclass_t rum_devclass; 3263 3264 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 3265 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3266 MODULE_DEPEND(rum, usb, 1, 1, 1); 3267 MODULE_VERSION(rum, 1); 3268 USB_PNP_HOST_INFO(rum_devs); 3269