xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 895f86f15fbf6540071feb9328c3c50ed1f027b8)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*-
25  * Ralink Technology RT2501USB/RT2601USB chipset driver
26  * http://www.ralinktech.com.tw/
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #ifdef INET
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #include <netinet/ip.h>
63 #endif
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/usb/usb.h>
71 #include <dev/usb/usbdi.h>
72 #include "usbdevs.h"
73 
74 #define	USB_DEBUG_VAR rum_debug
75 #include <dev/usb/usb_debug.h>
76 
77 #include <dev/usb/wlan/if_rumreg.h>
78 #include <dev/usb/wlan/if_rumvar.h>
79 #include <dev/usb/wlan/if_rumfw.h>
80 
81 #ifdef USB_DEBUG
82 static int rum_debug = 0;
83 
84 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
86     "Debug level");
87 #endif
88 
89 static const STRUCT_USB_HOST_ID rum_devs[] = {
90 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
91     RUM_DEV(ABOCOM, HWU54DM),
92     RUM_DEV(ABOCOM, RT2573_2),
93     RUM_DEV(ABOCOM, RT2573_3),
94     RUM_DEV(ABOCOM, RT2573_4),
95     RUM_DEV(ABOCOM, WUG2700),
96     RUM_DEV(AMIT, CGWLUSB2GO),
97     RUM_DEV(ASUS, RT2573_1),
98     RUM_DEV(ASUS, RT2573_2),
99     RUM_DEV(BELKIN, F5D7050A),
100     RUM_DEV(BELKIN, F5D9050V3),
101     RUM_DEV(CISCOLINKSYS, WUSB54GC),
102     RUM_DEV(CISCOLINKSYS, WUSB54GR),
103     RUM_DEV(CONCEPTRONIC2, C54RU2),
104     RUM_DEV(COREGA, CGWLUSB2GL),
105     RUM_DEV(COREGA, CGWLUSB2GPX),
106     RUM_DEV(DICKSMITH, CWD854F),
107     RUM_DEV(DICKSMITH, RT2573),
108     RUM_DEV(EDIMAX, EW7318USG),
109     RUM_DEV(DLINK2, DWLG122C1),
110     RUM_DEV(DLINK2, WUA1340),
111     RUM_DEV(DLINK2, DWA111),
112     RUM_DEV(DLINK2, DWA110),
113     RUM_DEV(GIGABYTE, GNWB01GS),
114     RUM_DEV(GIGABYTE, GNWI05GS),
115     RUM_DEV(GIGASET, RT2573),
116     RUM_DEV(GOODWAY, RT2573),
117     RUM_DEV(GUILLEMOT, HWGUSB254LB),
118     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
119     RUM_DEV(HUAWEI3COM, WUB320G),
120     RUM_DEV(MELCO, G54HP),
121     RUM_DEV(MELCO, SG54HP),
122     RUM_DEV(MELCO, SG54HG),
123     RUM_DEV(MELCO, WLIUCG),
124     RUM_DEV(MELCO, WLRUCG),
125     RUM_DEV(MELCO, WLRUCGAOSS),
126     RUM_DEV(MSI, RT2573_1),
127     RUM_DEV(MSI, RT2573_2),
128     RUM_DEV(MSI, RT2573_3),
129     RUM_DEV(MSI, RT2573_4),
130     RUM_DEV(NOVATECH, RT2573),
131     RUM_DEV(PLANEX2, GWUS54HP),
132     RUM_DEV(PLANEX2, GWUS54MINI2),
133     RUM_DEV(PLANEX2, GWUSMM),
134     RUM_DEV(QCOM, RT2573),
135     RUM_DEV(QCOM, RT2573_2),
136     RUM_DEV(QCOM, RT2573_3),
137     RUM_DEV(RALINK, RT2573),
138     RUM_DEV(RALINK, RT2573_2),
139     RUM_DEV(RALINK, RT2671),
140     RUM_DEV(SITECOMEU, WL113R2),
141     RUM_DEV(SITECOMEU, WL172),
142     RUM_DEV(SPARKLAN, RT2573),
143     RUM_DEV(SURECOM, RT2573),
144 #undef RUM_DEV
145 };
146 
147 static device_probe_t rum_match;
148 static device_attach_t rum_attach;
149 static device_detach_t rum_detach;
150 
151 static usb_callback_t rum_bulk_read_callback;
152 static usb_callback_t rum_bulk_write_callback;
153 
154 static usb_error_t	rum_do_request(struct rum_softc *sc,
155 			    struct usb_device_request *req, void *data);
156 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
157 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
158 			    int, const uint8_t [IEEE80211_ADDR_LEN],
159 			    const uint8_t [IEEE80211_ADDR_LEN]);
160 static void		rum_vap_delete(struct ieee80211vap *);
161 static void		rum_cmdq_cb(void *, int);
162 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
163 			    size_t, uint8_t, CMD_FUNC_PROTO);
164 static void		rum_tx_free(struct rum_tx_data *, int);
165 static void		rum_setup_tx_list(struct rum_softc *);
166 static void		rum_unsetup_tx_list(struct rum_softc *);
167 static int		rum_newstate(struct ieee80211vap *,
168 			    enum ieee80211_state, int);
169 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
170 static void		rum_setup_tx_desc(struct rum_softc *,
171 			    struct rum_tx_desc *, struct ieee80211_key *,
172 			    uint32_t, uint8_t, uint8_t, int, int, int);
173 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
174 			    struct ieee80211_node *,
175 			    const struct ieee80211_key *);
176 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
177 			    struct ieee80211_node *);
178 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
179 			    struct ieee80211_node *,
180 			    const struct ieee80211_bpf_params *);
181 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
182 			    struct ieee80211_node *);
183 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
184 static void		rum_start(struct rum_softc *);
185 static void		rum_parent(struct ieee80211com *);
186 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
187 			    int);
188 static uint32_t		rum_read(struct rum_softc *, uint16_t);
189 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
190 			    int);
191 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
192 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
193 			    size_t);
194 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
195 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
196 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
197 			    uint32_t);
198 static int		rum_bbp_busy(struct rum_softc *);
199 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
200 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
201 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
202 static void		rum_select_antenna(struct rum_softc *);
203 static void		rum_enable_mrr(struct rum_softc *);
204 static void		rum_set_txpreamble(struct rum_softc *);
205 static void		rum_set_basicrates(struct rum_softc *);
206 static void		rum_select_band(struct rum_softc *,
207 			    struct ieee80211_channel *);
208 static void		rum_set_chan(struct rum_softc *,
209 			    struct ieee80211_channel *);
210 static void		rum_set_maxretry(struct rum_softc *,
211 			    struct ieee80211vap *);
212 static int		rum_enable_tsf_sync(struct rum_softc *);
213 static void		rum_enable_tsf(struct rum_softc *);
214 static void		rum_abort_tsf_sync(struct rum_softc *);
215 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
216 static void		rum_update_slot_cb(struct rum_softc *,
217 			    union sec_param *, uint8_t);
218 static void		rum_update_slot(struct ieee80211com *);
219 static int		rum_wme_update(struct ieee80211com *);
220 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
221 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
222 static void		rum_update_mcast(struct ieee80211com *);
223 static void		rum_update_promisc(struct ieee80211com *);
224 static void		rum_setpromisc(struct rum_softc *);
225 static const char	*rum_get_rf(int);
226 static void		rum_read_eeprom(struct rum_softc *);
227 static int		rum_bbp_wakeup(struct rum_softc *);
228 static int		rum_bbp_init(struct rum_softc *);
229 static void		rum_clr_shkey_regs(struct rum_softc *);
230 static int		rum_init(struct rum_softc *);
231 static void		rum_stop(struct rum_softc *);
232 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
233 			    size_t);
234 static int		rum_set_beacon(struct rum_softc *,
235 			    struct ieee80211vap *);
236 static int		rum_alloc_beacon(struct rum_softc *,
237 			    struct ieee80211vap *);
238 static void		rum_update_beacon_cb(struct rum_softc *,
239 			    union sec_param *, uint8_t);
240 static void		rum_update_beacon(struct ieee80211vap *, int);
241 static int		rum_common_key_set(struct rum_softc *,
242 			    struct ieee80211_key *, uint16_t);
243 static void		rum_group_key_set_cb(struct rum_softc *,
244 			    union sec_param *, uint8_t);
245 static void		rum_group_key_del_cb(struct rum_softc *,
246 			    union sec_param *, uint8_t);
247 static void		rum_pair_key_set_cb(struct rum_softc *,
248 			    union sec_param *, uint8_t);
249 static void		rum_pair_key_del_cb(struct rum_softc *,
250 			    union sec_param *, uint8_t);
251 static int		rum_key_alloc(struct ieee80211vap *,
252 			    struct ieee80211_key *, ieee80211_keyix *,
253 			    ieee80211_keyix *);
254 static int		rum_key_set(struct ieee80211vap *,
255 			    const struct ieee80211_key *);
256 static int		rum_key_delete(struct ieee80211vap *,
257 			    const struct ieee80211_key *);
258 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
259 			    const struct ieee80211_bpf_params *);
260 static void		rum_scan_start(struct ieee80211com *);
261 static void		rum_scan_end(struct ieee80211com *);
262 static void		rum_set_channel(struct ieee80211com *);
263 static int		rum_get_rssi(struct rum_softc *, uint8_t);
264 static void		rum_ratectl_start(struct rum_softc *,
265 			    struct ieee80211_node *);
266 static void		rum_ratectl_timeout(void *);
267 static void		rum_ratectl_task(void *, int);
268 static int		rum_pause(struct rum_softc *, int);
269 
270 static const struct {
271 	uint32_t	reg;
272 	uint32_t	val;
273 } rum_def_mac[] = {
274 	{ RT2573_TXRX_CSR0,  0x025fb032 },
275 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
276 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
277 	{ RT2573_TXRX_CSR3,  0x00858687 },
278 	{ RT2573_TXRX_CSR7,  0x2e31353b },
279 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
280 	{ RT2573_TXRX_CSR15, 0x0000000f },
281 	{ RT2573_MAC_CSR6,   0x00000fff },
282 	{ RT2573_MAC_CSR8,   0x016c030a },
283 	{ RT2573_MAC_CSR10,  0x00000718 },
284 	{ RT2573_MAC_CSR12,  0x00000004 },
285 	{ RT2573_MAC_CSR13,  0x00007f00 },
286 	{ RT2573_SEC_CSR2,   0x00000000 },
287 	{ RT2573_SEC_CSR3,   0x00000000 },
288 	{ RT2573_SEC_CSR4,   0x00000000 },
289 	{ RT2573_PHY_CSR1,   0x000023b0 },
290 	{ RT2573_PHY_CSR5,   0x00040a06 },
291 	{ RT2573_PHY_CSR6,   0x00080606 },
292 	{ RT2573_PHY_CSR7,   0x00000408 },
293 	{ RT2573_AIFSN_CSR,  0x00002273 },
294 	{ RT2573_CWMIN_CSR,  0x00002344 },
295 	{ RT2573_CWMAX_CSR,  0x000034aa }
296 };
297 
298 static const struct {
299 	uint8_t	reg;
300 	uint8_t	val;
301 } rum_def_bbp[] = {
302 	{   3, 0x80 },
303 	{  15, 0x30 },
304 	{  17, 0x20 },
305 	{  21, 0xc8 },
306 	{  22, 0x38 },
307 	{  23, 0x06 },
308 	{  24, 0xfe },
309 	{  25, 0x0a },
310 	{  26, 0x0d },
311 	{  32, 0x0b },
312 	{  34, 0x12 },
313 	{  37, 0x07 },
314 	{  39, 0xf8 },
315 	{  41, 0x60 },
316 	{  53, 0x10 },
317 	{  54, 0x18 },
318 	{  60, 0x10 },
319 	{  61, 0x04 },
320 	{  62, 0x04 },
321 	{  75, 0xfe },
322 	{  86, 0xfe },
323 	{  88, 0xfe },
324 	{  90, 0x0f },
325 	{  99, 0x00 },
326 	{ 102, 0x16 },
327 	{ 107, 0x04 }
328 };
329 
330 static const struct rfprog {
331 	uint8_t		chan;
332 	uint32_t	r1, r2, r3, r4;
333 }  rum_rf5226[] = {
334 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
335 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
336 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
337 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
338 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
339 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
340 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
341 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
342 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
343 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
344 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
345 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
346 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
347 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
348 
349 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
350 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
351 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
352 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
353 
354 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
355 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
356 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
357 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
358 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
359 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
360 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
361 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
362 
363 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
364 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
365 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
366 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
367 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
368 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
369 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
370 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
371 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
372 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
373 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
374 
375 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
376 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
377 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
378 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
379 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
380 }, rum_rf5225[] = {
381 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
382 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
383 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
384 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
385 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
386 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
387 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
388 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
389 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
390 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
391 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
392 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
393 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
394 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
395 
396 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
397 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
398 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
399 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
400 
401 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
402 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
403 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
404 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
405 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
406 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
407 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
408 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
409 
410 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
411 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
412 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
413 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
414 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
415 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
416 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
417 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
418 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
419 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
420 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
421 
422 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
423 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
424 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
425 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
426 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
427 };
428 
429 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
430 	[RUM_BULK_WR] = {
431 		.type = UE_BULK,
432 		.endpoint = UE_ADDR_ANY,
433 		.direction = UE_DIR_OUT,
434 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
435 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
436 		.callback = rum_bulk_write_callback,
437 		.timeout = 5000,	/* ms */
438 	},
439 	[RUM_BULK_RD] = {
440 		.type = UE_BULK,
441 		.endpoint = UE_ADDR_ANY,
442 		.direction = UE_DIR_IN,
443 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
444 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
445 		.callback = rum_bulk_read_callback,
446 	},
447 };
448 
449 static int
450 rum_match(device_t self)
451 {
452 	struct usb_attach_arg *uaa = device_get_ivars(self);
453 
454 	if (uaa->usb_mode != USB_MODE_HOST)
455 		return (ENXIO);
456 	if (uaa->info.bConfigIndex != 0)
457 		return (ENXIO);
458 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
459 		return (ENXIO);
460 
461 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
462 }
463 
464 static int
465 rum_attach(device_t self)
466 {
467 	struct usb_attach_arg *uaa = device_get_ivars(self);
468 	struct rum_softc *sc = device_get_softc(self);
469 	struct ieee80211com *ic = &sc->sc_ic;
470 	uint8_t iface_index, bands;
471 	uint32_t tmp;
472 	int error, ntries;
473 
474 	device_set_usb_desc(self);
475 	sc->sc_udev = uaa->device;
476 	sc->sc_dev = self;
477 
478 	RUM_LOCK_INIT(sc);
479 	RUM_CMDQ_LOCK_INIT(sc);
480 	mbufq_init(&sc->sc_snd, ifqmaxlen);
481 
482 	iface_index = RT2573_IFACE_INDEX;
483 	error = usbd_transfer_setup(uaa->device, &iface_index,
484 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
485 	if (error) {
486 		device_printf(self, "could not allocate USB transfers, "
487 		    "err=%s\n", usbd_errstr(error));
488 		goto detach;
489 	}
490 
491 	RUM_LOCK(sc);
492 	/* retrieve RT2573 rev. no */
493 	for (ntries = 0; ntries < 100; ntries++) {
494 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
495 			break;
496 		if (rum_pause(sc, hz / 100))
497 			break;
498 	}
499 	if (ntries == 100) {
500 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
501 		RUM_UNLOCK(sc);
502 		goto detach;
503 	}
504 
505 	/* retrieve MAC address and various other things from EEPROM */
506 	rum_read_eeprom(sc);
507 
508 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
509 	    tmp, rum_get_rf(sc->rf_rev));
510 
511 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
512 	RUM_UNLOCK(sc);
513 
514 	ic->ic_softc = sc;
515 	ic->ic_name = device_get_nameunit(self);
516 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
517 
518 	/* set device capabilities */
519 	ic->ic_caps =
520 	      IEEE80211_C_STA		/* station mode supported */
521 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
522 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
523 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
524 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
525 	    | IEEE80211_C_TXPMGT	/* tx power management */
526 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
527 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
528 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
529 	    | IEEE80211_C_WPA		/* 802.11i */
530 	    | IEEE80211_C_WME		/* 802.11e */
531 	    ;
532 
533 	ic->ic_cryptocaps =
534 	    IEEE80211_CRYPTO_WEP |
535 	    IEEE80211_CRYPTO_AES_CCM |
536 	    IEEE80211_CRYPTO_TKIPMIC |
537 	    IEEE80211_CRYPTO_TKIP;
538 
539 	bands = 0;
540 	setbit(&bands, IEEE80211_MODE_11B);
541 	setbit(&bands, IEEE80211_MODE_11G);
542 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
543 		setbit(&bands, IEEE80211_MODE_11A);
544 	ieee80211_init_channels(ic, NULL, &bands);
545 
546 	ieee80211_ifattach(ic);
547 	ic->ic_update_promisc = rum_update_promisc;
548 	ic->ic_raw_xmit = rum_raw_xmit;
549 	ic->ic_scan_start = rum_scan_start;
550 	ic->ic_scan_end = rum_scan_end;
551 	ic->ic_set_channel = rum_set_channel;
552 	ic->ic_transmit = rum_transmit;
553 	ic->ic_parent = rum_parent;
554 	ic->ic_vap_create = rum_vap_create;
555 	ic->ic_vap_delete = rum_vap_delete;
556 	ic->ic_updateslot = rum_update_slot;
557 	ic->ic_wme.wme_update = rum_wme_update;
558 	ic->ic_update_mcast = rum_update_mcast;
559 
560 	ieee80211_radiotap_attach(ic,
561 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
562 		RT2573_TX_RADIOTAP_PRESENT,
563 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
564 		RT2573_RX_RADIOTAP_PRESENT);
565 
566 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
567 
568 	if (bootverbose)
569 		ieee80211_announce(ic);
570 
571 	return (0);
572 
573 detach:
574 	rum_detach(self);
575 	return (ENXIO);			/* failure */
576 }
577 
578 static int
579 rum_detach(device_t self)
580 {
581 	struct rum_softc *sc = device_get_softc(self);
582 	struct ieee80211com *ic = &sc->sc_ic;
583 
584 	/* Prevent further ioctls */
585 	RUM_LOCK(sc);
586 	sc->sc_detached = 1;
587 	RUM_UNLOCK(sc);
588 
589 	/* stop all USB transfers */
590 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
591 
592 	/* free TX list, if any */
593 	RUM_LOCK(sc);
594 	rum_unsetup_tx_list(sc);
595 	RUM_UNLOCK(sc);
596 
597 	if (ic->ic_softc == sc) {
598 		ieee80211_draintask(ic, &sc->cmdq_task);
599 		ieee80211_ifdetach(ic);
600 	}
601 
602 	mbufq_drain(&sc->sc_snd);
603 	RUM_CMDQ_LOCK_DESTROY(sc);
604 	RUM_LOCK_DESTROY(sc);
605 
606 	return (0);
607 }
608 
609 static usb_error_t
610 rum_do_request(struct rum_softc *sc,
611     struct usb_device_request *req, void *data)
612 {
613 	usb_error_t err;
614 	int ntries = 10;
615 
616 	while (ntries--) {
617 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
618 		    req, data, 0, NULL, 250 /* ms */);
619 		if (err == 0)
620 			break;
621 
622 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
623 		    usbd_errstr(err));
624 		if (rum_pause(sc, hz / 100))
625 			break;
626 	}
627 	return (err);
628 }
629 
630 static struct ieee80211vap *
631 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
632     enum ieee80211_opmode opmode, int flags,
633     const uint8_t bssid[IEEE80211_ADDR_LEN],
634     const uint8_t mac[IEEE80211_ADDR_LEN])
635 {
636 	struct rum_softc *sc = ic->ic_softc;
637 	struct rum_vap *rvp;
638 	struct ieee80211vap *vap;
639 
640 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
641 		return NULL;
642 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
643 	vap = &rvp->vap;
644 	/* enable s/w bmiss handling for sta mode */
645 
646 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
647 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
648 		/* out of memory */
649 		free(rvp, M_80211_VAP);
650 		return (NULL);
651 	}
652 
653 	/* override state transition machine */
654 	rvp->newstate = vap->iv_newstate;
655 	vap->iv_newstate = rum_newstate;
656 	vap->iv_key_alloc = rum_key_alloc;
657 	vap->iv_key_set = rum_key_set;
658 	vap->iv_key_delete = rum_key_delete;
659 	vap->iv_update_beacon = rum_update_beacon;
660 	vap->iv_max_aid = RT2573_ADDR_MAX;
661 
662 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
663 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
664 	ieee80211_ratectl_init(vap);
665 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
666 	/* complete setup */
667 	ieee80211_vap_attach(vap, ieee80211_media_change,
668 	    ieee80211_media_status, mac);
669 	ic->ic_opmode = opmode;
670 	return vap;
671 }
672 
673 static void
674 rum_vap_delete(struct ieee80211vap *vap)
675 {
676 	struct rum_vap *rvp = RUM_VAP(vap);
677 	struct ieee80211com *ic = vap->iv_ic;
678 
679 	m_freem(rvp->bcn_mbuf);
680 	usb_callout_drain(&rvp->ratectl_ch);
681 	ieee80211_draintask(ic, &rvp->ratectl_task);
682 	ieee80211_ratectl_deinit(vap);
683 	ieee80211_vap_detach(vap);
684 	free(rvp, M_80211_VAP);
685 }
686 
687 static void
688 rum_cmdq_cb(void *arg, int pending)
689 {
690 	struct rum_softc *sc = arg;
691 	struct rum_cmdq *rc;
692 
693 	RUM_CMDQ_LOCK(sc);
694 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
695 		rc = &sc->cmdq[sc->cmdq_first];
696 		RUM_CMDQ_UNLOCK(sc);
697 
698 		RUM_LOCK(sc);
699 		rc->func(sc, &rc->data, rc->rvp_id);
700 		RUM_UNLOCK(sc);
701 
702 		RUM_CMDQ_LOCK(sc);
703 		memset(rc, 0, sizeof (*rc));
704 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
705 	}
706 	RUM_CMDQ_UNLOCK(sc);
707 }
708 
709 static int
710 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
711     uint8_t rvp_id, CMD_FUNC_PROTO)
712 {
713 	struct ieee80211com *ic = &sc->sc_ic;
714 
715 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
716 
717 	RUM_CMDQ_LOCK(sc);
718 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
719 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
720 		RUM_CMDQ_UNLOCK(sc);
721 
722 		return EAGAIN;
723 	}
724 
725 	if (ptr != NULL)
726 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
727 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
728 	sc->cmdq[sc->cmdq_last].func = func;
729 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
730 	RUM_CMDQ_UNLOCK(sc);
731 
732 	ieee80211_runtask(ic, &sc->cmdq_task);
733 
734 	return 0;
735 }
736 
737 static void
738 rum_tx_free(struct rum_tx_data *data, int txerr)
739 {
740 	struct rum_softc *sc = data->sc;
741 
742 	if (data->m != NULL) {
743 		ieee80211_tx_complete(data->ni, data->m, txerr);
744 		data->m = NULL;
745 		data->ni = NULL;
746 	}
747 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
748 	sc->tx_nfree++;
749 }
750 
751 static void
752 rum_setup_tx_list(struct rum_softc *sc)
753 {
754 	struct rum_tx_data *data;
755 	int i;
756 
757 	sc->tx_nfree = 0;
758 	STAILQ_INIT(&sc->tx_q);
759 	STAILQ_INIT(&sc->tx_free);
760 
761 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
762 		data = &sc->tx_data[i];
763 
764 		data->sc = sc;
765 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
766 		sc->tx_nfree++;
767 	}
768 }
769 
770 static void
771 rum_unsetup_tx_list(struct rum_softc *sc)
772 {
773 	struct rum_tx_data *data;
774 	int i;
775 
776 	/* make sure any subsequent use of the queues will fail */
777 	sc->tx_nfree = 0;
778 	STAILQ_INIT(&sc->tx_q);
779 	STAILQ_INIT(&sc->tx_free);
780 
781 	/* free up all node references and mbufs */
782 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
783 		data = &sc->tx_data[i];
784 
785 		if (data->m != NULL) {
786 			m_freem(data->m);
787 			data->m = NULL;
788 		}
789 		if (data->ni != NULL) {
790 			ieee80211_free_node(data->ni);
791 			data->ni = NULL;
792 		}
793 	}
794 }
795 
796 static int
797 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
798 {
799 	struct rum_vap *rvp = RUM_VAP(vap);
800 	struct ieee80211com *ic = vap->iv_ic;
801 	struct rum_softc *sc = ic->ic_softc;
802 	const struct ieee80211_txparam *tp;
803 	enum ieee80211_state ostate;
804 	struct ieee80211_node *ni;
805 	int ret;
806 
807 	ostate = vap->iv_state;
808 	DPRINTF("%s -> %s\n",
809 		ieee80211_state_name[ostate],
810 		ieee80211_state_name[nstate]);
811 
812 	IEEE80211_UNLOCK(ic);
813 	RUM_LOCK(sc);
814 	usb_callout_stop(&rvp->ratectl_ch);
815 
816 	switch (nstate) {
817 	case IEEE80211_S_INIT:
818 		if (ostate == IEEE80211_S_RUN)
819 			rum_abort_tsf_sync(sc);
820 
821 		break;
822 
823 	case IEEE80211_S_RUN:
824 		ni = ieee80211_ref_node(vap->iv_bss);
825 
826 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
827 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
828 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
829 				ret = EINVAL;
830 				goto run_fail;
831 			}
832 			rum_update_slot_cb(sc, NULL, 0);
833 			rum_enable_mrr(sc);
834 			rum_set_txpreamble(sc);
835 			rum_set_basicrates(sc);
836 			rum_set_maxretry(sc, vap);
837 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
838 			rum_set_bssid(sc, sc->sc_bssid);
839 		}
840 
841 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
842 		    vap->iv_opmode == IEEE80211_M_IBSS) {
843 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
844 				goto run_fail;
845 		}
846 
847 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
848 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
849 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
850 				goto run_fail;
851 		} else
852 			rum_enable_tsf(sc);
853 
854 		/* enable automatic rate adaptation */
855 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
856 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
857 			rum_ratectl_start(sc, ni);
858 		ieee80211_free_node(ni);
859 		break;
860 	default:
861 		break;
862 	}
863 	RUM_UNLOCK(sc);
864 	IEEE80211_LOCK(ic);
865 	return (rvp->newstate(vap, nstate, arg));
866 
867 run_fail:
868 	RUM_UNLOCK(sc);
869 	IEEE80211_LOCK(ic);
870 	ieee80211_free_node(ni);
871 	return ret;
872 }
873 
874 static void
875 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
876 {
877 	struct rum_softc *sc = usbd_xfer_softc(xfer);
878 	struct ieee80211vap *vap;
879 	struct rum_tx_data *data;
880 	struct mbuf *m;
881 	struct usb_page_cache *pc;
882 	unsigned int len;
883 	int actlen, sumlen;
884 
885 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
886 
887 	switch (USB_GET_STATE(xfer)) {
888 	case USB_ST_TRANSFERRED:
889 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
890 
891 		/* free resources */
892 		data = usbd_xfer_get_priv(xfer);
893 		rum_tx_free(data, 0);
894 		usbd_xfer_set_priv(xfer, NULL);
895 
896 		/* FALLTHROUGH */
897 	case USB_ST_SETUP:
898 tr_setup:
899 		data = STAILQ_FIRST(&sc->tx_q);
900 		if (data) {
901 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
902 			m = data->m;
903 
904 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
905 				DPRINTFN(0, "data overflow, %u bytes\n",
906 				    m->m_pkthdr.len);
907 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
908 			}
909 			pc = usbd_xfer_get_frame(xfer, 0);
910 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
911 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
912 			    m->m_pkthdr.len);
913 
914 			vap = data->ni->ni_vap;
915 			if (ieee80211_radiotap_active_vap(vap)) {
916 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
917 
918 				tap->wt_flags = 0;
919 				tap->wt_rate = data->rate;
920 				rum_get_tsf(sc, &tap->wt_tsf);
921 				tap->wt_antenna = sc->tx_ant;
922 
923 				ieee80211_radiotap_tx(vap, m);
924 			}
925 
926 			/* align end on a 4-bytes boundary */
927 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
928 			if ((len % 64) == 0)
929 				len += 4;
930 
931 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
932 			    m->m_pkthdr.len, len);
933 
934 			usbd_xfer_set_frame_len(xfer, 0, len);
935 			usbd_xfer_set_priv(xfer, data);
936 
937 			usbd_transfer_submit(xfer);
938 		}
939 		rum_start(sc);
940 		break;
941 
942 	default:			/* Error */
943 		DPRINTFN(11, "transfer error, %s\n",
944 		    usbd_errstr(error));
945 
946 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
947 		data = usbd_xfer_get_priv(xfer);
948 		if (data != NULL) {
949 			rum_tx_free(data, error);
950 			usbd_xfer_set_priv(xfer, NULL);
951 		}
952 
953 		if (error != USB_ERR_CANCELLED) {
954 			if (error == USB_ERR_TIMEOUT)
955 				device_printf(sc->sc_dev, "device timeout\n");
956 
957 			/*
958 			 * Try to clear stall first, also if other
959 			 * errors occur, hence clearing stall
960 			 * introduces a 50 ms delay:
961 			 */
962 			usbd_xfer_set_stall(xfer);
963 			goto tr_setup;
964 		}
965 		break;
966 	}
967 }
968 
969 static void
970 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
971 {
972 	struct rum_softc *sc = usbd_xfer_softc(xfer);
973 	struct ieee80211com *ic = &sc->sc_ic;
974 	struct ieee80211_frame_min *wh;
975 	struct ieee80211_node *ni;
976 	struct mbuf *m = NULL;
977 	struct usb_page_cache *pc;
978 	uint32_t flags;
979 	uint8_t rssi = 0;
980 	int len;
981 
982 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
983 
984 	switch (USB_GET_STATE(xfer)) {
985 	case USB_ST_TRANSFERRED:
986 
987 		DPRINTFN(15, "rx done, actlen=%d\n", len);
988 
989 		if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
990 			DPRINTF("%s: xfer too short %d\n",
991 			    device_get_nameunit(sc->sc_dev), len);
992 			counter_u64_add(ic->ic_ierrors, 1);
993 			goto tr_setup;
994 		}
995 
996 		len -= RT2573_RX_DESC_SIZE;
997 		pc = usbd_xfer_get_frame(xfer, 0);
998 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
999 
1000 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1001 		flags = le32toh(sc->sc_rx_desc.flags);
1002 		if (flags & RT2573_RX_CRC_ERROR) {
1003 			/*
1004 		         * This should not happen since we did not
1005 		         * request to receive those frames when we
1006 		         * filled RUM_TXRX_CSR2:
1007 		         */
1008 			DPRINTFN(5, "PHY or CRC error\n");
1009 			counter_u64_add(ic->ic_ierrors, 1);
1010 			goto tr_setup;
1011 		}
1012 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1013 			switch (flags & RT2573_RX_DEC_MASK) {
1014 			case RT2573_RX_IV_ERROR:
1015 				DPRINTFN(5, "IV/EIV error\n");
1016 				break;
1017 			case RT2573_RX_MIC_ERROR:
1018 				DPRINTFN(5, "MIC error\n");
1019 				break;
1020 			case RT2573_RX_KEY_ERROR:
1021 				DPRINTFN(5, "Key error\n");
1022 				break;
1023 			}
1024 			counter_u64_add(ic->ic_ierrors, 1);
1025 			goto tr_setup;
1026 		}
1027 
1028 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1029 		if (m == NULL) {
1030 			DPRINTF("could not allocate mbuf\n");
1031 			counter_u64_add(ic->ic_ierrors, 1);
1032 			goto tr_setup;
1033 		}
1034 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1035 		    mtod(m, uint8_t *), len);
1036 
1037 		wh = mtod(m, struct ieee80211_frame_min *);
1038 
1039 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1040 		    (flags & RT2573_RX_CIP_MASK) !=
1041 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1042 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1043 			m->m_flags |= M_WEP;
1044 		}
1045 
1046 		/* finalize mbuf */
1047 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1048 
1049 		if (ieee80211_radiotap_active(ic)) {
1050 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1051 
1052 			tap->wr_flags = 0;
1053 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1054 			    (flags & RT2573_RX_OFDM) ?
1055 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1056 			rum_get_tsf(sc, &tap->wr_tsf);
1057 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1058 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1059 			tap->wr_antenna = sc->rx_ant;
1060 		}
1061 		/* FALLTHROUGH */
1062 	case USB_ST_SETUP:
1063 tr_setup:
1064 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1065 		usbd_transfer_submit(xfer);
1066 
1067 		/*
1068 		 * At the end of a USB callback it is always safe to unlock
1069 		 * the private mutex of a device! That is why we do the
1070 		 * "ieee80211_input" here, and not some lines up!
1071 		 */
1072 		RUM_UNLOCK(sc);
1073 		if (m) {
1074 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1075 				ni = ieee80211_find_rxnode(ic, wh);
1076 			else
1077 				ni = NULL;
1078 
1079 			if (ni != NULL) {
1080 				(void) ieee80211_input(ni, m, rssi,
1081 				    RT2573_NOISE_FLOOR);
1082 				ieee80211_free_node(ni);
1083 			} else
1084 				(void) ieee80211_input_all(ic, m, rssi,
1085 				    RT2573_NOISE_FLOOR);
1086 		}
1087 		RUM_LOCK(sc);
1088 		rum_start(sc);
1089 		return;
1090 
1091 	default:			/* Error */
1092 		if (error != USB_ERR_CANCELLED) {
1093 			/* try to clear stall first */
1094 			usbd_xfer_set_stall(xfer);
1095 			goto tr_setup;
1096 		}
1097 		return;
1098 	}
1099 }
1100 
1101 static uint8_t
1102 rum_plcp_signal(int rate)
1103 {
1104 	switch (rate) {
1105 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1106 	case 12:	return 0xb;
1107 	case 18:	return 0xf;
1108 	case 24:	return 0xa;
1109 	case 36:	return 0xe;
1110 	case 48:	return 0x9;
1111 	case 72:	return 0xd;
1112 	case 96:	return 0x8;
1113 	case 108:	return 0xc;
1114 
1115 	/* CCK rates (NB: not IEEE std, device-specific) */
1116 	case 2:		return 0x0;
1117 	case 4:		return 0x1;
1118 	case 11:	return 0x2;
1119 	case 22:	return 0x3;
1120 	}
1121 	return 0xff;		/* XXX unsupported/unknown rate */
1122 }
1123 
1124 /*
1125  * Map net80211 cipher to RT2573 security mode.
1126  */
1127 static uint8_t
1128 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1129 {
1130 	switch (cipher) {
1131 	case IEEE80211_CIPHER_WEP:
1132 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1133 	case IEEE80211_CIPHER_TKIP:
1134 		return RT2573_MODE_TKIP;
1135 	case IEEE80211_CIPHER_AES_CCM:
1136 		return RT2573_MODE_AES_CCMP;
1137 	default:
1138 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1139 		return 0;
1140 	}
1141 }
1142 
1143 static void
1144 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1145     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1146     int hdrlen, int len, int rate)
1147 {
1148 	struct ieee80211com *ic = &sc->sc_ic;
1149 	struct wmeParams *wmep = &sc->wme_params[qid];
1150 	uint16_t plcp_length;
1151 	int remainder;
1152 
1153 	flags |= RT2573_TX_VALID;
1154 	flags |= len << 16;
1155 
1156 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1157 		const struct ieee80211_cipher *cip = k->wk_cipher;
1158 
1159 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1160 
1161 		desc->eiv = 0;		/* for WEP */
1162 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1163 	}
1164 
1165 	/* setup PLCP fields */
1166 	desc->plcp_signal  = rum_plcp_signal(rate);
1167 	desc->plcp_service = 4;
1168 
1169 	len += IEEE80211_CRC_LEN;
1170 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1171 		flags |= RT2573_TX_OFDM;
1172 
1173 		plcp_length = len & 0xfff;
1174 		desc->plcp_length_hi = plcp_length >> 6;
1175 		desc->plcp_length_lo = plcp_length & 0x3f;
1176 	} else {
1177 		if (rate == 0)
1178 			rate = 2;	/* avoid division by zero */
1179 		plcp_length = (16 * len + rate - 1) / rate;
1180 		if (rate == 22) {
1181 			remainder = (16 * len) % 22;
1182 			if (remainder != 0 && remainder < 7)
1183 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1184 		}
1185 		desc->plcp_length_hi = plcp_length >> 8;
1186 		desc->plcp_length_lo = plcp_length & 0xff;
1187 
1188 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1189 			desc->plcp_signal |= 0x08;
1190 	}
1191 
1192 	desc->flags = htole32(flags);
1193 	desc->hdrlen = hdrlen;
1194 	desc->xflags = xflags;
1195 
1196 	desc->wme = htole16(RT2573_QID(qid) |
1197 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1198 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1199 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1200 }
1201 
1202 static int
1203 rum_sendprot(struct rum_softc *sc,
1204     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1205 {
1206 	struct ieee80211com *ic = ni->ni_ic;
1207 	const struct ieee80211_frame *wh;
1208 	struct rum_tx_data *data;
1209 	struct mbuf *mprot;
1210 	int protrate, pktlen, flags, isshort;
1211 	uint16_t dur;
1212 
1213 	RUM_LOCK_ASSERT(sc);
1214 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1215 	    ("protection %d", prot));
1216 
1217 	wh = mtod(m, const struct ieee80211_frame *);
1218 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1219 
1220 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1221 
1222 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1223 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1224 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1225 	flags = 0;
1226 	if (prot == IEEE80211_PROT_RTSCTS) {
1227 		/* NB: CTS is the same size as an ACK */
1228 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1229 		flags |= RT2573_TX_NEED_ACK;
1230 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1231 	} else {
1232 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1233 	}
1234 	if (mprot == NULL) {
1235 		/* XXX stat + msg */
1236 		return (ENOBUFS);
1237 	}
1238 	data = STAILQ_FIRST(&sc->tx_free);
1239 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1240 	sc->tx_nfree--;
1241 
1242 	data->m = mprot;
1243 	data->ni = ieee80211_ref_node(ni);
1244 	data->rate = protrate;
1245 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1246 	    mprot->m_pkthdr.len, protrate);
1247 
1248 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1249 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1250 
1251 	return 0;
1252 }
1253 
1254 static uint32_t
1255 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1256     const struct ieee80211_key *k)
1257 {
1258 	struct ieee80211vap *vap = ni->ni_vap;
1259 	u_int cipher;
1260 	uint32_t flags = 0;
1261 	uint8_t mode, pos;
1262 
1263 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1264 		cipher = k->wk_cipher->ic_cipher;
1265 		pos = k->wk_keyix;
1266 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1267 		if (mode == 0)
1268 			return 0;
1269 
1270 		flags |= RT2573_TX_CIP_MODE(mode);
1271 
1272 		/* Do not trust GROUP flag */
1273 		if (!(k >= &vap->iv_nw_keys[0] &&
1274 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1275 			flags |= RT2573_TX_KEY_PAIR;
1276 		else
1277 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1278 
1279 		flags |= RT2573_TX_KEY_ID(pos);
1280 
1281 		if (cipher == IEEE80211_CIPHER_TKIP)
1282 			flags |= RT2573_TX_TKIPMIC;
1283 	}
1284 
1285 	return flags;
1286 }
1287 
1288 static int
1289 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1290 {
1291 	struct ieee80211vap *vap = ni->ni_vap;
1292 	struct ieee80211com *ic = &sc->sc_ic;
1293 	struct rum_tx_data *data;
1294 	struct ieee80211_frame *wh;
1295 	const struct ieee80211_txparam *tp;
1296 	struct ieee80211_key *k = NULL;
1297 	uint32_t flags = 0;
1298 	uint16_t dur;
1299 	uint8_t ac, type, xflags = 0;
1300 	int hdrlen;
1301 
1302 	RUM_LOCK_ASSERT(sc);
1303 
1304 	data = STAILQ_FIRST(&sc->tx_free);
1305 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1306 	sc->tx_nfree--;
1307 
1308 	wh = mtod(m0, struct ieee80211_frame *);
1309 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1310 	hdrlen = ieee80211_anyhdrsize(wh);
1311 	ac = M_WME_GETAC(m0);
1312 
1313 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1314 		k = ieee80211_crypto_get_txkey(ni, m0);
1315 		if (k == NULL)
1316 			return (ENOENT);
1317 
1318 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1319 		    !k->wk_cipher->ic_encap(k, m0))
1320 			return (ENOBUFS);
1321 
1322 		wh = mtod(m0, struct ieee80211_frame *);
1323 	}
1324 
1325 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1326 
1327 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1328 		flags |= RT2573_TX_NEED_ACK;
1329 
1330 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1331 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1332 		USETW(wh->i_dur, dur);
1333 
1334 		/* tell hardware to add timestamp for probe responses */
1335 		if (type == IEEE80211_FC0_TYPE_MGT &&
1336 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1337 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1338 			flags |= RT2573_TX_TIMESTAMP;
1339 	}
1340 
1341 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1342 		xflags |= RT2573_TX_HWSEQ;
1343 
1344 	if (k != NULL)
1345 		flags |= rum_tx_crypto_flags(sc, ni, k);
1346 
1347 	data->m = m0;
1348 	data->ni = ni;
1349 	data->rate = tp->mgmtrate;
1350 
1351 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1352 	    m0->m_pkthdr.len, tp->mgmtrate);
1353 
1354 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1355 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1356 
1357 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1358 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1359 
1360 	return (0);
1361 }
1362 
1363 static int
1364 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1365     const struct ieee80211_bpf_params *params)
1366 {
1367 	struct ieee80211com *ic = ni->ni_ic;
1368 	struct ieee80211_frame *wh;
1369 	struct rum_tx_data *data;
1370 	uint32_t flags;
1371 	uint8_t ac, type, xflags = 0;
1372 	int rate, error;
1373 
1374 	RUM_LOCK_ASSERT(sc);
1375 
1376 	wh = mtod(m0, struct ieee80211_frame *);
1377 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1378 
1379 	ac = params->ibp_pri & 3;
1380 
1381 	rate = params->ibp_rate0;
1382 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1383 		return (EINVAL);
1384 
1385 	flags = 0;
1386 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1387 		flags |= RT2573_TX_NEED_ACK;
1388 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1389 		error = rum_sendprot(sc, m0, ni,
1390 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1391 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1392 		    rate);
1393 		if (error || sc->tx_nfree == 0)
1394 			return (ENOBUFS);
1395 
1396 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1397 	}
1398 
1399 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1400 		xflags |= RT2573_TX_HWSEQ;
1401 
1402 	data = STAILQ_FIRST(&sc->tx_free);
1403 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1404 	sc->tx_nfree--;
1405 
1406 	data->m = m0;
1407 	data->ni = ni;
1408 	data->rate = rate;
1409 
1410 	/* XXX need to setup descriptor ourself */
1411 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1412 	    m0->m_pkthdr.len, rate);
1413 
1414 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1415 	    m0->m_pkthdr.len, rate);
1416 
1417 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1418 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1419 
1420 	return 0;
1421 }
1422 
1423 static int
1424 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1425 {
1426 	struct ieee80211vap *vap = ni->ni_vap;
1427 	struct ieee80211com *ic = &sc->sc_ic;
1428 	struct rum_tx_data *data;
1429 	struct ieee80211_frame *wh;
1430 	const struct ieee80211_txparam *tp;
1431 	struct ieee80211_key *k = NULL;
1432 	uint32_t flags = 0;
1433 	uint16_t dur;
1434 	uint8_t ac, type, qos, xflags = 0;
1435 	int error, hdrlen, rate;
1436 
1437 	RUM_LOCK_ASSERT(sc);
1438 
1439 	wh = mtod(m0, struct ieee80211_frame *);
1440 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1441 	hdrlen = ieee80211_anyhdrsize(wh);
1442 
1443 	if (IEEE80211_QOS_HAS_SEQ(wh))
1444 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1445 	else
1446 		qos = 0;
1447 	ac = M_WME_GETAC(m0);
1448 
1449 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1450 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1451 		rate = tp->mcastrate;
1452 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1453 		rate = tp->ucastrate;
1454 	else
1455 		rate = ni->ni_txrate;
1456 
1457 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1458 		k = ieee80211_crypto_get_txkey(ni, m0);
1459 		if (k == NULL) {
1460 			m_freem(m0);
1461 			return (ENOENT);
1462 		}
1463 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1464 		    !k->wk_cipher->ic_encap(k, m0)) {
1465 			m_freem(m0);
1466 			return (ENOBUFS);
1467 		}
1468 
1469 		/* packet header may have moved, reset our local pointer */
1470 		wh = mtod(m0, struct ieee80211_frame *);
1471 	}
1472 
1473 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1474 		xflags |= RT2573_TX_HWSEQ;
1475 
1476 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1477 		int prot = IEEE80211_PROT_NONE;
1478 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1479 			prot = IEEE80211_PROT_RTSCTS;
1480 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1481 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1482 			prot = ic->ic_protmode;
1483 		if (prot != IEEE80211_PROT_NONE) {
1484 			error = rum_sendprot(sc, m0, ni, prot, rate);
1485 			if (error || sc->tx_nfree == 0) {
1486 				m_freem(m0);
1487 				return ENOBUFS;
1488 			}
1489 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1490 		}
1491 	}
1492 
1493 	if (k != NULL)
1494 		flags |= rum_tx_crypto_flags(sc, ni, k);
1495 
1496 	data = STAILQ_FIRST(&sc->tx_free);
1497 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1498 	sc->tx_nfree--;
1499 
1500 	data->m = m0;
1501 	data->ni = ni;
1502 	data->rate = rate;
1503 
1504 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1505 		/* Unicast frame, check if an ACK is expected. */
1506 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1507 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1508 			flags |= RT2573_TX_NEED_ACK;
1509 
1510 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1511 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1512 		USETW(wh->i_dur, dur);
1513 	}
1514 
1515 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1516 	    m0->m_pkthdr.len, rate);
1517 
1518 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1519 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1520 
1521 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1522 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1523 
1524 	return 0;
1525 }
1526 
1527 static int
1528 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1529 {
1530 	struct rum_softc *sc = ic->ic_softc;
1531 	int error;
1532 
1533 	RUM_LOCK(sc);
1534 	if (!sc->sc_running) {
1535 		RUM_UNLOCK(sc);
1536 		return (ENXIO);
1537 	}
1538 	error = mbufq_enqueue(&sc->sc_snd, m);
1539 	if (error) {
1540 		RUM_UNLOCK(sc);
1541 		return (error);
1542 	}
1543 	rum_start(sc);
1544 	RUM_UNLOCK(sc);
1545 
1546 	return (0);
1547 }
1548 
1549 static void
1550 rum_start(struct rum_softc *sc)
1551 {
1552 	struct ieee80211_node *ni;
1553 	struct mbuf *m;
1554 
1555 	RUM_LOCK_ASSERT(sc);
1556 
1557 	if (!sc->sc_running)
1558 		return;
1559 
1560 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1561 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1562 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1563 		if (rum_tx_data(sc, m, ni) != 0) {
1564 			if_inc_counter(ni->ni_vap->iv_ifp,
1565 			    IFCOUNTER_OERRORS, 1);
1566 			ieee80211_free_node(ni);
1567 			break;
1568 		}
1569 	}
1570 }
1571 
1572 static void
1573 rum_parent(struct ieee80211com *ic)
1574 {
1575 	struct rum_softc *sc = ic->ic_softc;
1576 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1577 
1578 	RUM_LOCK(sc);
1579 	if (sc->sc_detached) {
1580 		RUM_UNLOCK(sc);
1581 		return;
1582 	}
1583 	RUM_UNLOCK(sc);
1584 
1585 	if (ic->ic_nrunning > 0) {
1586 		if (rum_init(sc) == 0)
1587 			ieee80211_start_all(ic);
1588 		else
1589 			ieee80211_stop(vap);
1590 	} else
1591 		rum_stop(sc);
1592 }
1593 
1594 static void
1595 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1596 {
1597 	struct usb_device_request req;
1598 	usb_error_t error;
1599 
1600 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1601 	req.bRequest = RT2573_READ_EEPROM;
1602 	USETW(req.wValue, 0);
1603 	USETW(req.wIndex, addr);
1604 	USETW(req.wLength, len);
1605 
1606 	error = rum_do_request(sc, &req, buf);
1607 	if (error != 0) {
1608 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1609 		    usbd_errstr(error));
1610 	}
1611 }
1612 
1613 static uint32_t
1614 rum_read(struct rum_softc *sc, uint16_t reg)
1615 {
1616 	uint32_t val;
1617 
1618 	rum_read_multi(sc, reg, &val, sizeof val);
1619 
1620 	return le32toh(val);
1621 }
1622 
1623 static void
1624 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1625 {
1626 	struct usb_device_request req;
1627 	usb_error_t error;
1628 
1629 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1630 	req.bRequest = RT2573_READ_MULTI_MAC;
1631 	USETW(req.wValue, 0);
1632 	USETW(req.wIndex, reg);
1633 	USETW(req.wLength, len);
1634 
1635 	error = rum_do_request(sc, &req, buf);
1636 	if (error != 0) {
1637 		device_printf(sc->sc_dev,
1638 		    "could not multi read MAC register: %s\n",
1639 		    usbd_errstr(error));
1640 	}
1641 }
1642 
1643 static usb_error_t
1644 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1645 {
1646 	uint32_t tmp = htole32(val);
1647 
1648 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1649 }
1650 
1651 static usb_error_t
1652 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1653 {
1654 	struct usb_device_request req;
1655 	usb_error_t error;
1656 	size_t offset;
1657 
1658 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1659 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1660 	USETW(req.wValue, 0);
1661 
1662 	/* write at most 64 bytes at a time */
1663 	for (offset = 0; offset < len; offset += 64) {
1664 		USETW(req.wIndex, reg + offset);
1665 		USETW(req.wLength, MIN(len - offset, 64));
1666 
1667 		error = rum_do_request(sc, &req, (char *)buf + offset);
1668 		if (error != 0) {
1669 			device_printf(sc->sc_dev,
1670 			    "could not multi write MAC register: %s\n",
1671 			    usbd_errstr(error));
1672 			return (error);
1673 		}
1674 	}
1675 
1676 	return (USB_ERR_NORMAL_COMPLETION);
1677 }
1678 
1679 static usb_error_t
1680 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1681 {
1682 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1683 }
1684 
1685 static usb_error_t
1686 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1687 {
1688 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1689 }
1690 
1691 static usb_error_t
1692 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1693 {
1694 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1695 }
1696 
1697 static int
1698 rum_bbp_busy(struct rum_softc *sc)
1699 {
1700 	int ntries;
1701 
1702 	for (ntries = 0; ntries < 100; ntries++) {
1703 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1704 			break;
1705 		if (rum_pause(sc, hz / 100))
1706 			break;
1707 	}
1708 	if (ntries == 100)
1709 		return (ETIMEDOUT);
1710 
1711 	return (0);
1712 }
1713 
1714 static void
1715 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1716 {
1717 	uint32_t tmp;
1718 
1719 	DPRINTFN(2, "reg=0x%08x\n", reg);
1720 
1721 	if (rum_bbp_busy(sc) != 0) {
1722 		device_printf(sc->sc_dev, "could not write to BBP\n");
1723 		return;
1724 	}
1725 
1726 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1727 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1728 }
1729 
1730 static uint8_t
1731 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1732 {
1733 	uint32_t val;
1734 	int ntries;
1735 
1736 	DPRINTFN(2, "reg=0x%08x\n", reg);
1737 
1738 	if (rum_bbp_busy(sc) != 0) {
1739 		device_printf(sc->sc_dev, "could not read BBP\n");
1740 		return 0;
1741 	}
1742 
1743 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1744 	rum_write(sc, RT2573_PHY_CSR3, val);
1745 
1746 	for (ntries = 0; ntries < 100; ntries++) {
1747 		val = rum_read(sc, RT2573_PHY_CSR3);
1748 		if (!(val & RT2573_BBP_BUSY))
1749 			return val & 0xff;
1750 		if (rum_pause(sc, hz / 100))
1751 			break;
1752 	}
1753 
1754 	device_printf(sc->sc_dev, "could not read BBP\n");
1755 	return 0;
1756 }
1757 
1758 static void
1759 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1760 {
1761 	uint32_t tmp;
1762 	int ntries;
1763 
1764 	for (ntries = 0; ntries < 100; ntries++) {
1765 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1766 			break;
1767 		if (rum_pause(sc, hz / 100))
1768 			break;
1769 	}
1770 	if (ntries == 100) {
1771 		device_printf(sc->sc_dev, "could not write to RF\n");
1772 		return;
1773 	}
1774 
1775 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1776 	    (reg & 3);
1777 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1778 
1779 	/* remember last written value in sc */
1780 	sc->rf_regs[reg] = val;
1781 
1782 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1783 }
1784 
1785 static void
1786 rum_select_antenna(struct rum_softc *sc)
1787 {
1788 	uint8_t bbp4, bbp77;
1789 	uint32_t tmp;
1790 
1791 	bbp4  = rum_bbp_read(sc, 4);
1792 	bbp77 = rum_bbp_read(sc, 77);
1793 
1794 	/* TBD */
1795 
1796 	/* make sure Rx is disabled before switching antenna */
1797 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1798 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1799 
1800 	rum_bbp_write(sc,  4, bbp4);
1801 	rum_bbp_write(sc, 77, bbp77);
1802 
1803 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1804 }
1805 
1806 /*
1807  * Enable multi-rate retries for frames sent at OFDM rates.
1808  * In 802.11b/g mode, allow fallback to CCK rates.
1809  */
1810 static void
1811 rum_enable_mrr(struct rum_softc *sc)
1812 {
1813 	struct ieee80211com *ic = &sc->sc_ic;
1814 
1815 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1816 		rum_setbits(sc, RT2573_TXRX_CSR4,
1817 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
1818 	} else {
1819 		rum_modbits(sc, RT2573_TXRX_CSR4,
1820 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
1821 	}
1822 }
1823 
1824 static void
1825 rum_set_txpreamble(struct rum_softc *sc)
1826 {
1827 	struct ieee80211com *ic = &sc->sc_ic;
1828 
1829 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1830 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
1831 	else
1832 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
1833 }
1834 
1835 static void
1836 rum_set_basicrates(struct rum_softc *sc)
1837 {
1838 	struct ieee80211com *ic = &sc->sc_ic;
1839 
1840 	/* update basic rate set */
1841 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1842 		/* 11b basic rates: 1, 2Mbps */
1843 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1844 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1845 		/* 11a basic rates: 6, 12, 24Mbps */
1846 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1847 	} else {
1848 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1849 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1850 	}
1851 }
1852 
1853 /*
1854  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1855  * driver.
1856  */
1857 static void
1858 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1859 {
1860 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1861 
1862 	/* update all BBP registers that depend on the band */
1863 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1864 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1865 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1866 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1867 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1868 	}
1869 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1870 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1871 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1872 	}
1873 
1874 	sc->bbp17 = bbp17;
1875 	rum_bbp_write(sc,  17, bbp17);
1876 	rum_bbp_write(sc,  96, bbp96);
1877 	rum_bbp_write(sc, 104, bbp104);
1878 
1879 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1880 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1881 		rum_bbp_write(sc, 75, 0x80);
1882 		rum_bbp_write(sc, 86, 0x80);
1883 		rum_bbp_write(sc, 88, 0x80);
1884 	}
1885 
1886 	rum_bbp_write(sc, 35, bbp35);
1887 	rum_bbp_write(sc, 97, bbp97);
1888 	rum_bbp_write(sc, 98, bbp98);
1889 
1890 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
1891 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
1892 		    RT2573_PA_PE_5GHZ);
1893 	} else {
1894 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
1895 		    RT2573_PA_PE_2GHZ);
1896 	}
1897 }
1898 
1899 static void
1900 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1901 {
1902 	struct ieee80211com *ic = &sc->sc_ic;
1903 	const struct rfprog *rfprog;
1904 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1905 	int8_t power;
1906 	int i, chan;
1907 
1908 	chan = ieee80211_chan2ieee(ic, c);
1909 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1910 		return;
1911 
1912 	/* select the appropriate RF settings based on what EEPROM says */
1913 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1914 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1915 
1916 	/* find the settings for this channel (we know it exists) */
1917 	for (i = 0; rfprog[i].chan != chan; i++);
1918 
1919 	power = sc->txpow[i];
1920 	if (power < 0) {
1921 		bbp94 += power;
1922 		power = 0;
1923 	} else if (power > 31) {
1924 		bbp94 += power - 31;
1925 		power = 31;
1926 	}
1927 
1928 	/*
1929 	 * If we are switching from the 2GHz band to the 5GHz band or
1930 	 * vice-versa, BBP registers need to be reprogrammed.
1931 	 */
1932 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1933 		rum_select_band(sc, c);
1934 		rum_select_antenna(sc);
1935 	}
1936 	ic->ic_curchan = c;
1937 
1938 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1939 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1940 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1941 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1942 
1943 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1944 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1945 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1946 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1947 
1948 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1949 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1950 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1951 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1952 
1953 	rum_pause(sc, hz / 100);
1954 
1955 	/* enable smart mode for MIMO-capable RFs */
1956 	bbp3 = rum_bbp_read(sc, 3);
1957 
1958 	bbp3 &= ~RT2573_SMART_MODE;
1959 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1960 		bbp3 |= RT2573_SMART_MODE;
1961 
1962 	rum_bbp_write(sc, 3, bbp3);
1963 
1964 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1965 		rum_bbp_write(sc, 94, bbp94);
1966 
1967 	/* give the chip some extra time to do the switchover */
1968 	rum_pause(sc, hz / 100);
1969 }
1970 
1971 static void
1972 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
1973 {
1974 	const struct ieee80211_txparam *tp;
1975 	struct ieee80211_node *ni = vap->iv_bss;
1976 	struct rum_vap *rvp = RUM_VAP(vap);
1977 
1978 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1979 	rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf;
1980 
1981 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
1982 	    RT2573_LONG_RETRY(rvp->maxretry),
1983 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
1984 }
1985 
1986 /*
1987  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1988  * and HostAP operating modes.
1989  */
1990 static int
1991 rum_enable_tsf_sync(struct rum_softc *sc)
1992 {
1993 	struct ieee80211com *ic = &sc->sc_ic;
1994 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1995 	uint32_t tmp;
1996 
1997 	if (vap->iv_opmode != IEEE80211_M_STA) {
1998 		/*
1999 		 * Change default 16ms TBTT adjustment to 8ms.
2000 		 * Must be done before enabling beacon generation.
2001 		 */
2002 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2003 			return EIO;
2004 	}
2005 
2006 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2007 
2008 	/* set beacon interval (in 1/16ms unit) */
2009 	tmp |= vap->iv_bss->ni_intval * 16;
2010 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2011 
2012 	switch (vap->iv_opmode) {
2013 	case IEEE80211_M_STA:
2014 		/*
2015 		 * Local TSF is always updated with remote TSF on beacon
2016 		 * reception.
2017 		 */
2018 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2019 		break;
2020 	case IEEE80211_M_IBSS:
2021 		/*
2022 		 * Local TSF is updated with remote TSF on beacon reception
2023 		 * only if the remote TSF is greater than local TSF.
2024 		 */
2025 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2026 		tmp |= RT2573_BCN_TX_EN;
2027 		break;
2028 	case IEEE80211_M_HOSTAP:
2029 		/* SYNC with nobody */
2030 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2031 		tmp |= RT2573_BCN_TX_EN;
2032 		break;
2033 	default:
2034 		device_printf(sc->sc_dev,
2035 		    "Enabling TSF failed. undefined opmode %d\n",
2036 		    vap->iv_opmode);
2037 		return EINVAL;
2038 	}
2039 
2040 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2041 		return EIO;
2042 
2043 	return 0;
2044 }
2045 
2046 static void
2047 rum_enable_tsf(struct rum_softc *sc)
2048 {
2049 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2050 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2051 }
2052 
2053 static void
2054 rum_abort_tsf_sync(struct rum_softc *sc)
2055 {
2056 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2057 }
2058 
2059 static void
2060 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2061 {
2062 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2063 }
2064 
2065 static void
2066 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2067 {
2068 	struct ieee80211com *ic = &sc->sc_ic;
2069 	uint8_t slottime;
2070 
2071 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2072 
2073 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2074 
2075 	DPRINTF("setting slot time to %uus\n", slottime);
2076 }
2077 
2078 static void
2079 rum_update_slot(struct ieee80211com *ic)
2080 {
2081 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2082 }
2083 
2084 static int
2085 rum_wme_update(struct ieee80211com *ic)
2086 {
2087 	const struct wmeParams *chanp =
2088 	    ic->ic_wme.wme_chanParams.cap_wmeParams;
2089 	struct rum_softc *sc = ic->ic_softc;
2090 	int error = 0;
2091 
2092 	RUM_LOCK(sc);
2093 	error = rum_write(sc, RT2573_AIFSN_CSR,
2094 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2095 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2096 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2097 	    chanp[WME_AC_BE].wmep_aifsn);
2098 	if (error)
2099 		goto print_err;
2100 	error = rum_write(sc, RT2573_CWMIN_CSR,
2101 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2102 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2103 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2104 	    chanp[WME_AC_BE].wmep_logcwmin);
2105 	if (error)
2106 		goto print_err;
2107 	error = rum_write(sc, RT2573_CWMAX_CSR,
2108 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2109 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2110 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2111 	    chanp[WME_AC_BE].wmep_logcwmax);
2112 	if (error)
2113 		goto print_err;
2114 	error = rum_write(sc, RT2573_TXOP01_CSR,
2115 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2116 	    chanp[WME_AC_BE].wmep_txopLimit);
2117 	if (error)
2118 		goto print_err;
2119 	error = rum_write(sc, RT2573_TXOP23_CSR,
2120 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2121 	    chanp[WME_AC_VI].wmep_txopLimit);
2122 	if (error)
2123 		goto print_err;
2124 
2125 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2126 
2127 print_err:
2128 	RUM_UNLOCK(sc);
2129 	if (error != 0) {
2130 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2131 		    __func__, error);
2132 	}
2133 
2134 	return (error);
2135 }
2136 
2137 static void
2138 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2139 {
2140 
2141 	rum_write(sc, RT2573_MAC_CSR4,
2142 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2143 	rum_write(sc, RT2573_MAC_CSR5,
2144 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2145 }
2146 
2147 static void
2148 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2149 {
2150 
2151 	rum_write(sc, RT2573_MAC_CSR2,
2152 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2153 	rum_write(sc, RT2573_MAC_CSR3,
2154 	    addr[4] | addr[5] << 8 | 0xff << 16);
2155 }
2156 
2157 static void
2158 rum_setpromisc(struct rum_softc *sc)
2159 {
2160 	struct ieee80211com *ic = &sc->sc_ic;
2161 
2162 	if (ic->ic_promisc == 0)
2163 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2164 	else
2165 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2166 
2167 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2168 	    "entering" : "leaving");
2169 }
2170 
2171 static void
2172 rum_update_promisc(struct ieee80211com *ic)
2173 {
2174 	struct rum_softc *sc = ic->ic_softc;
2175 
2176 	RUM_LOCK(sc);
2177 	if (sc->sc_running)
2178 		rum_setpromisc(sc);
2179 	RUM_UNLOCK(sc);
2180 }
2181 
2182 static void
2183 rum_update_mcast(struct ieee80211com *ic)
2184 {
2185 	/* Ignore. */
2186 }
2187 
2188 static const char *
2189 rum_get_rf(int rev)
2190 {
2191 	switch (rev) {
2192 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2193 	case RT2573_RF_2528:	return "RT2528";
2194 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2195 	case RT2573_RF_5226:	return "RT5226";
2196 	default:		return "unknown";
2197 	}
2198 }
2199 
2200 static void
2201 rum_read_eeprom(struct rum_softc *sc)
2202 {
2203 	uint16_t val;
2204 #ifdef RUM_DEBUG
2205 	int i;
2206 #endif
2207 
2208 	/* read MAC address */
2209 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2210 
2211 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2212 	val = le16toh(val);
2213 	sc->rf_rev =   (val >> 11) & 0x1f;
2214 	sc->hw_radio = (val >> 10) & 0x1;
2215 	sc->rx_ant =   (val >> 4)  & 0x3;
2216 	sc->tx_ant =   (val >> 2)  & 0x3;
2217 	sc->nb_ant =   val & 0x3;
2218 
2219 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2220 
2221 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2222 	val = le16toh(val);
2223 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2224 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2225 
2226 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2227 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2228 
2229 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2230 	val = le16toh(val);
2231 	if ((val & 0xff) != 0xff)
2232 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2233 
2234 	/* Only [-10, 10] is valid */
2235 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2236 		sc->rssi_2ghz_corr = 0;
2237 
2238 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2239 	val = le16toh(val);
2240 	if ((val & 0xff) != 0xff)
2241 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2242 
2243 	/* Only [-10, 10] is valid */
2244 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2245 		sc->rssi_5ghz_corr = 0;
2246 
2247 	if (sc->ext_2ghz_lna)
2248 		sc->rssi_2ghz_corr -= 14;
2249 	if (sc->ext_5ghz_lna)
2250 		sc->rssi_5ghz_corr -= 14;
2251 
2252 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2253 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2254 
2255 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2256 	val = le16toh(val);
2257 	if ((val & 0xff) != 0xff)
2258 		sc->rffreq = val & 0xff;
2259 
2260 	DPRINTF("RF freq=%d\n", sc->rffreq);
2261 
2262 	/* read Tx power for all a/b/g channels */
2263 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2264 	/* XXX default Tx power for 802.11a channels */
2265 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2266 #ifdef RUM_DEBUG
2267 	for (i = 0; i < 14; i++)
2268 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2269 #endif
2270 
2271 	/* read default values for BBP registers */
2272 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2273 #ifdef RUM_DEBUG
2274 	for (i = 0; i < 14; i++) {
2275 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2276 			continue;
2277 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2278 		    sc->bbp_prom[i].val);
2279 	}
2280 #endif
2281 }
2282 
2283 static int
2284 rum_bbp_wakeup(struct rum_softc *sc)
2285 {
2286 	unsigned int ntries;
2287 
2288 	for (ntries = 0; ntries < 100; ntries++) {
2289 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2290 			break;
2291 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2292 		if (rum_pause(sc, hz / 100))
2293 			break;
2294 	}
2295 	if (ntries == 100) {
2296 		device_printf(sc->sc_dev,
2297 		    "timeout waiting for BBP/RF to wakeup\n");
2298 		return (ETIMEDOUT);
2299 	}
2300 
2301 	return (0);
2302 }
2303 
2304 static int
2305 rum_bbp_init(struct rum_softc *sc)
2306 {
2307 	int i, ntries;
2308 
2309 	/* wait for BBP to be ready */
2310 	for (ntries = 0; ntries < 100; ntries++) {
2311 		const uint8_t val = rum_bbp_read(sc, 0);
2312 		if (val != 0 && val != 0xff)
2313 			break;
2314 		if (rum_pause(sc, hz / 100))
2315 			break;
2316 	}
2317 	if (ntries == 100) {
2318 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2319 		return EIO;
2320 	}
2321 
2322 	/* initialize BBP registers to default values */
2323 	for (i = 0; i < nitems(rum_def_bbp); i++)
2324 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2325 
2326 	/* write vendor-specific BBP values (from EEPROM) */
2327 	for (i = 0; i < 16; i++) {
2328 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2329 			continue;
2330 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static void
2337 rum_clr_shkey_regs(struct rum_softc *sc)
2338 {
2339 	rum_write(sc, RT2573_SEC_CSR0, 0);
2340 	rum_write(sc, RT2573_SEC_CSR1, 0);
2341 	rum_write(sc, RT2573_SEC_CSR5, 0);
2342 }
2343 
2344 static int
2345 rum_init(struct rum_softc *sc)
2346 {
2347 	struct ieee80211com *ic = &sc->sc_ic;
2348 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2349 	uint32_t tmp;
2350 	int i, ret;
2351 
2352 	RUM_LOCK(sc);
2353 	if (sc->sc_running) {
2354 		ret = 0;
2355 		goto end;
2356 	}
2357 
2358 	/* initialize MAC registers to default values */
2359 	for (i = 0; i < nitems(rum_def_mac); i++)
2360 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2361 
2362 	/* reset some WME parameters to default values */
2363 	sc->wme_params[0].wmep_aifsn = 2;
2364 	sc->wme_params[0].wmep_logcwmin = 4;
2365 	sc->wme_params[0].wmep_logcwmax = 10;
2366 
2367 	/* set host ready */
2368 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2369 	rum_write(sc, RT2573_MAC_CSR1, 0);
2370 
2371 	/* wait for BBP/RF to wakeup */
2372 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2373 		goto end;
2374 
2375 	if ((ret = rum_bbp_init(sc)) != 0)
2376 		goto end;
2377 
2378 	/* select default channel */
2379 	rum_select_band(sc, ic->ic_curchan);
2380 	rum_select_antenna(sc);
2381 	rum_set_chan(sc, ic->ic_curchan);
2382 
2383 	/* clear STA registers */
2384 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2385 
2386 	/* clear security registers (if required) */
2387 	if (sc->sc_clr_shkeys == 0) {
2388 		rum_clr_shkey_regs(sc);
2389 		sc->sc_clr_shkeys = 1;
2390 	}
2391 
2392 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2393 
2394 	/* initialize ASIC */
2395 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2396 
2397 	/*
2398 	 * Allocate Tx and Rx xfer queues.
2399 	 */
2400 	rum_setup_tx_list(sc);
2401 
2402 	/* update Rx filter */
2403 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2404 
2405 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2406 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2407 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2408 		       RT2573_DROP_ACKCTS;
2409 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2410 			tmp |= RT2573_DROP_TODS;
2411 		if (ic->ic_promisc == 0)
2412 			tmp |= RT2573_DROP_NOT_TO_ME;
2413 	}
2414 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2415 
2416 	sc->sc_running = 1;
2417 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2418 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2419 
2420 end:	RUM_UNLOCK(sc);
2421 
2422 	if (ret != 0)
2423 		rum_stop(sc);
2424 
2425 	return ret;
2426 }
2427 
2428 static void
2429 rum_stop(struct rum_softc *sc)
2430 {
2431 
2432 	RUM_LOCK(sc);
2433 	if (!sc->sc_running) {
2434 		RUM_UNLOCK(sc);
2435 		return;
2436 	}
2437 	sc->sc_running = 0;
2438 	RUM_UNLOCK(sc);
2439 
2440 	/*
2441 	 * Drain the USB transfers, if not already drained:
2442 	 */
2443 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2444 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2445 
2446 	RUM_LOCK(sc);
2447 	rum_unsetup_tx_list(sc);
2448 
2449 	/* disable Rx */
2450 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2451 
2452 	/* reset ASIC */
2453 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2454 	rum_write(sc, RT2573_MAC_CSR1, 0);
2455 	RUM_UNLOCK(sc);
2456 }
2457 
2458 static void
2459 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2460 {
2461 	struct usb_device_request req;
2462 	uint16_t reg = RT2573_MCU_CODE_BASE;
2463 	usb_error_t err;
2464 
2465 	/* copy firmware image into NIC */
2466 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2467 		err = rum_write(sc, reg, UGETDW(ucode));
2468 		if (err) {
2469 			/* firmware already loaded ? */
2470 			device_printf(sc->sc_dev, "Firmware load "
2471 			    "failure! (ignored)\n");
2472 			break;
2473 		}
2474 	}
2475 
2476 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2477 	req.bRequest = RT2573_MCU_CNTL;
2478 	USETW(req.wValue, RT2573_MCU_RUN);
2479 	USETW(req.wIndex, 0);
2480 	USETW(req.wLength, 0);
2481 
2482 	err = rum_do_request(sc, &req, NULL);
2483 	if (err != 0) {
2484 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2485 		    usbd_errstr(err));
2486 	}
2487 
2488 	/* give the chip some time to boot */
2489 	rum_pause(sc, hz / 8);
2490 }
2491 
2492 static int
2493 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2494 {
2495 	struct ieee80211com *ic = vap->iv_ic;
2496 	struct rum_vap *rvp = RUM_VAP(vap);
2497 	struct mbuf *m = rvp->bcn_mbuf;
2498 	const struct ieee80211_txparam *tp;
2499 	struct rum_tx_desc desc;
2500 
2501 	RUM_LOCK_ASSERT(sc);
2502 
2503 	if (m == NULL)
2504 		return EINVAL;
2505 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2506 		return EINVAL;
2507 
2508 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2509 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2510 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2511 
2512 	/* copy the Tx descriptor into NIC memory */
2513 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2514 	    RT2573_TX_DESC_SIZE) != 0)
2515 		return EIO;
2516 
2517 	/* copy beacon header and payload into NIC memory */
2518 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2519 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2520 		return EIO;
2521 
2522 	return 0;
2523 }
2524 
2525 static int
2526 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2527 {
2528 	struct rum_vap *rvp = RUM_VAP(vap);
2529 	struct ieee80211_node *ni = vap->iv_bss;
2530 	struct mbuf *m;
2531 
2532 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2533 		return EINVAL;
2534 
2535 	m = ieee80211_beacon_alloc(ni);
2536 	if (m == NULL)
2537 		return ENOMEM;
2538 
2539 	if (rvp->bcn_mbuf != NULL)
2540 		m_freem(rvp->bcn_mbuf);
2541 
2542 	rvp->bcn_mbuf = m;
2543 
2544 	return (rum_set_beacon(sc, vap));
2545 }
2546 
2547 static void
2548 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2549     uint8_t rvp_id)
2550 {
2551 	struct ieee80211vap *vap = data->vap;
2552 
2553 	rum_set_beacon(sc, vap);
2554 }
2555 
2556 static void
2557 rum_update_beacon(struct ieee80211vap *vap, int item)
2558 {
2559 	struct ieee80211com *ic = vap->iv_ic;
2560 	struct rum_softc *sc = ic->ic_softc;
2561 	struct rum_vap *rvp = RUM_VAP(vap);
2562 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2563 	struct ieee80211_node *ni = vap->iv_bss;
2564 	struct mbuf *m = rvp->bcn_mbuf;
2565 	int mcast = 0;
2566 
2567 	RUM_LOCK(sc);
2568 	if (m == NULL) {
2569 		m = ieee80211_beacon_alloc(ni);
2570 		if (m == NULL) {
2571 			device_printf(sc->sc_dev,
2572 			    "%s: could not allocate beacon frame\n", __func__);
2573 			RUM_UNLOCK(sc);
2574 			return;
2575 		}
2576 		rvp->bcn_mbuf = m;
2577 	}
2578 
2579 	switch (item) {
2580 	case IEEE80211_BEACON_ERP:
2581 		rum_update_slot(ic);
2582 		break;
2583 	case IEEE80211_BEACON_TIM:
2584 		mcast = 1;	/*TODO*/
2585 		break;
2586 	default:
2587 		break;
2588 	}
2589 	RUM_UNLOCK(sc);
2590 
2591 	setbit(bo->bo_flags, item);
2592 	ieee80211_beacon_update(ni, m, mcast);
2593 
2594 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2595 }
2596 
2597 static int
2598 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2599     uint16_t base)
2600 {
2601 
2602 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2603 		return EIO;
2604 
2605 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2606 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2607 		    k->wk_txmic, 8))
2608 			return EIO;
2609 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2610 		    k->wk_rxmic, 8))
2611 			return EIO;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static void
2618 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2619     uint8_t rvp_id)
2620 {
2621 	struct ieee80211_key *k = &data->key;
2622 	uint8_t mode;
2623 
2624 	if (sc->sc_clr_shkeys == 0) {
2625 		rum_clr_shkey_regs(sc);
2626 		sc->sc_clr_shkeys = 1;
2627 	}
2628 
2629 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2630 	if (mode == 0)
2631 		goto print_err;
2632 
2633 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2634 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2635 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2636 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2637 
2638 	/* Install the key. */
2639 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2640 		goto print_err;
2641 
2642 	/* Set cipher mode. */
2643 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2644 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2645 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2646 	    != 0)
2647 		goto print_err;
2648 
2649 	/* Mark this key as valid. */
2650 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2651 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2652 		goto print_err;
2653 
2654 	return;
2655 
2656 print_err:
2657 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2658 	    __func__, k->wk_keyix, rvp_id);
2659 }
2660 
2661 static void
2662 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2663     uint8_t rvp_id)
2664 {
2665 	struct ieee80211_key *k = &data->key;
2666 
2667 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2668 	    k->wk_keyix, rvp_id);
2669 	rum_clrbits(sc,
2670 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2671 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2672 	rum_clrbits(sc, RT2573_SEC_CSR0,
2673 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2674 }
2675 
2676 static void
2677 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2678     uint8_t rvp_id)
2679 {
2680 	struct ieee80211_key *k = &data->key;
2681 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2682 	uint8_t mode;
2683 
2684 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2685 	if (mode == 0)
2686 		goto print_err;
2687 
2688 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2689 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2690 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2691 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2692 
2693 	/* Install the key. */
2694 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2695 		goto print_err;
2696 
2697 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2698 	buf[IEEE80211_ADDR_LEN] = mode;
2699 
2700 	/* Set transmitter address and cipher mode. */
2701 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2702 	      buf, sizeof buf) != 0)
2703 		goto print_err;
2704 
2705 	/* Enable key table lookup for this vap. */
2706 	if (sc->vap_key_count[rvp_id]++ == 0)
2707 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2708 			goto print_err;
2709 
2710 	/* Mark this key as valid. */
2711 	if (rum_setbits(sc,
2712 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2713 	      1 << (k->wk_keyix % 32)) != 0)
2714 		goto print_err;
2715 
2716 	return;
2717 
2718 print_err:
2719 	device_printf(sc->sc_dev,
2720 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2721 	    rvp_id);
2722 }
2723 
2724 static void
2725 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2726     uint8_t rvp_id)
2727 {
2728 	struct ieee80211_key *k = &data->key;
2729 
2730 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2731 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2732 	    1 << (k->wk_keyix % 32));
2733 	sc->keys_bmap &= ~(1 << k->wk_keyix);
2734 	if (--sc->vap_key_count[rvp_id] == 0)
2735 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
2736 }
2737 
2738 static int
2739 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2740     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2741 {
2742 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2743 	uint8_t i;
2744 
2745 	if (!(&vap->iv_nw_keys[0] <= k &&
2746 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2747 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2748 			RUM_LOCK(sc);
2749 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
2750 				if ((sc->keys_bmap & (1 << i)) == 0) {
2751 					sc->keys_bmap |= 1 << i;
2752 					*keyix = i;
2753 					break;
2754 				}
2755 			}
2756 			RUM_UNLOCK(sc);
2757 			if (i == RT2573_ADDR_MAX) {
2758 				device_printf(sc->sc_dev,
2759 				    "%s: no free space in the key table\n",
2760 				    __func__);
2761 				return 0;
2762 			}
2763 		} else
2764 			*keyix = 0;
2765 	} else {
2766 		*keyix = k - vap->iv_nw_keys;
2767 	}
2768 	*rxkeyix = *keyix;
2769 	return 1;
2770 }
2771 
2772 static int
2773 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
2774 {
2775 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2776 	int group;
2777 
2778 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2779 		/* Not for us. */
2780 		return 1;
2781 	}
2782 
2783 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
2784 
2785 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
2786 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
2787 }
2788 
2789 static int
2790 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2791 {
2792 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2793 	int group;
2794 
2795 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2796 		/* Not for us. */
2797 		return 1;
2798 	}
2799 
2800 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
2801 
2802 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
2803 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
2804 }
2805 
2806 static int
2807 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2808     const struct ieee80211_bpf_params *params)
2809 {
2810 	struct rum_softc *sc = ni->ni_ic->ic_softc;
2811 	int ret;
2812 
2813 	RUM_LOCK(sc);
2814 	/* prevent management frames from being sent if we're not ready */
2815 	if (!sc->sc_running) {
2816 		ret = ENETDOWN;
2817 		goto bad;
2818 	}
2819 	if (sc->tx_nfree < RUM_TX_MINFREE) {
2820 		ret = EIO;
2821 		goto bad;
2822 	}
2823 
2824 	if (params == NULL) {
2825 		/*
2826 		 * Legacy path; interpret frame contents to decide
2827 		 * precisely how to send the frame.
2828 		 */
2829 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
2830 			goto bad;
2831 	} else {
2832 		/*
2833 		 * Caller supplied explicit parameters to use in
2834 		 * sending the frame.
2835 		 */
2836 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
2837 			goto bad;
2838 	}
2839 	RUM_UNLOCK(sc);
2840 
2841 	return 0;
2842 bad:
2843 	RUM_UNLOCK(sc);
2844 	m_freem(m);
2845 	return ret;
2846 }
2847 
2848 static void
2849 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
2850 {
2851 	struct ieee80211vap *vap = ni->ni_vap;
2852 	struct rum_vap *rvp = RUM_VAP(vap);
2853 
2854 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2855 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2856 
2857 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2858 }
2859 
2860 static void
2861 rum_ratectl_timeout(void *arg)
2862 {
2863 	struct rum_vap *rvp = arg;
2864 	struct ieee80211vap *vap = &rvp->vap;
2865 	struct ieee80211com *ic = vap->iv_ic;
2866 
2867 	ieee80211_runtask(ic, &rvp->ratectl_task);
2868 }
2869 
2870 static void
2871 rum_ratectl_task(void *arg, int pending)
2872 {
2873 	struct rum_vap *rvp = arg;
2874 	struct ieee80211vap *vap = &rvp->vap;
2875 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2876 	struct ieee80211_node *ni;
2877 	int ok[3], fail;
2878 	int sum, success, retrycnt;
2879 
2880 	RUM_LOCK(sc);
2881 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
2882 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2883 
2884 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
2885 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
2886 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
2887 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2888 
2889 	success = ok[0] + ok[1] + ok[2];
2890 	sum = success + fail;
2891 	/* XXX at least */
2892 	retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
2893 
2894 	if (sum != 0) {
2895 		ni = ieee80211_ref_node(vap->iv_bss);
2896 		ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2897 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2898 		ieee80211_free_node(ni);
2899 	}
2900 
2901 	/* count TX retry-fail as Tx errors */
2902 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2903 
2904 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2905 	RUM_UNLOCK(sc);
2906 }
2907 
2908 static void
2909 rum_scan_start(struct ieee80211com *ic)
2910 {
2911 	struct rum_softc *sc = ic->ic_softc;
2912 
2913 	RUM_LOCK(sc);
2914 	rum_abort_tsf_sync(sc);
2915 	rum_set_bssid(sc, ieee80211broadcastaddr);
2916 	RUM_UNLOCK(sc);
2917 
2918 }
2919 
2920 static void
2921 rum_scan_end(struct ieee80211com *ic)
2922 {
2923 	struct rum_softc *sc = ic->ic_softc;
2924 
2925 	RUM_LOCK(sc);
2926 	if (ic->ic_opmode != IEEE80211_M_AHDEMO)
2927 		rum_enable_tsf_sync(sc);
2928 	else
2929 		rum_enable_tsf(sc);
2930 	rum_set_bssid(sc, sc->sc_bssid);
2931 	RUM_UNLOCK(sc);
2932 
2933 }
2934 
2935 static void
2936 rum_set_channel(struct ieee80211com *ic)
2937 {
2938 	struct rum_softc *sc = ic->ic_softc;
2939 
2940 	RUM_LOCK(sc);
2941 	rum_set_chan(sc, ic->ic_curchan);
2942 	RUM_UNLOCK(sc);
2943 }
2944 
2945 static int
2946 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2947 {
2948 	struct ieee80211com *ic = &sc->sc_ic;
2949 	int lna, agc, rssi;
2950 
2951 	lna = (raw >> 5) & 0x3;
2952 	agc = raw & 0x1f;
2953 
2954 	if (lna == 0) {
2955 		/*
2956 		 * No RSSI mapping
2957 		 *
2958 		 * NB: Since RSSI is relative to noise floor, -1 is
2959 		 *     adequate for caller to know error happened.
2960 		 */
2961 		return -1;
2962 	}
2963 
2964 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2965 
2966 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2967 		rssi += sc->rssi_2ghz_corr;
2968 
2969 		if (lna == 1)
2970 			rssi -= 64;
2971 		else if (lna == 2)
2972 			rssi -= 74;
2973 		else if (lna == 3)
2974 			rssi -= 90;
2975 	} else {
2976 		rssi += sc->rssi_5ghz_corr;
2977 
2978 		if (!sc->ext_5ghz_lna && lna != 1)
2979 			rssi += 4;
2980 
2981 		if (lna == 1)
2982 			rssi -= 64;
2983 		else if (lna == 2)
2984 			rssi -= 86;
2985 		else if (lna == 3)
2986 			rssi -= 100;
2987 	}
2988 	return rssi;
2989 }
2990 
2991 static int
2992 rum_pause(struct rum_softc *sc, int timeout)
2993 {
2994 
2995 	usb_pause_mtx(&sc->sc_mtx, timeout);
2996 	return (0);
2997 }
2998 
2999 static device_method_t rum_methods[] = {
3000 	/* Device interface */
3001 	DEVMETHOD(device_probe,		rum_match),
3002 	DEVMETHOD(device_attach,	rum_attach),
3003 	DEVMETHOD(device_detach,	rum_detach),
3004 	DEVMETHOD_END
3005 };
3006 
3007 static driver_t rum_driver = {
3008 	.name = "rum",
3009 	.methods = rum_methods,
3010 	.size = sizeof(struct rum_softc),
3011 };
3012 
3013 static devclass_t rum_devclass;
3014 
3015 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
3016 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3017 MODULE_DEPEND(rum, usb, 1, 1, 1);
3018 MODULE_VERSION(rum, 1);
3019