1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include "usbdevs.h" 73 74 #define USB_DEBUG_VAR rum_debug 75 #include <dev/usb/usb_debug.h> 76 77 #include <dev/usb/wlan/if_rumreg.h> 78 #include <dev/usb/wlan/if_rumvar.h> 79 #include <dev/usb/wlan/if_rumfw.h> 80 81 #ifdef USB_DEBUG 82 static int rum_debug = 0; 83 84 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 86 "Debug level"); 87 #endif 88 89 static const STRUCT_USB_HOST_ID rum_devs[] = { 90 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 91 RUM_DEV(ABOCOM, HWU54DM), 92 RUM_DEV(ABOCOM, RT2573_2), 93 RUM_DEV(ABOCOM, RT2573_3), 94 RUM_DEV(ABOCOM, RT2573_4), 95 RUM_DEV(ABOCOM, WUG2700), 96 RUM_DEV(AMIT, CGWLUSB2GO), 97 RUM_DEV(ASUS, RT2573_1), 98 RUM_DEV(ASUS, RT2573_2), 99 RUM_DEV(BELKIN, F5D7050A), 100 RUM_DEV(BELKIN, F5D9050V3), 101 RUM_DEV(CISCOLINKSYS, WUSB54GC), 102 RUM_DEV(CISCOLINKSYS, WUSB54GR), 103 RUM_DEV(CONCEPTRONIC2, C54RU2), 104 RUM_DEV(COREGA, CGWLUSB2GL), 105 RUM_DEV(COREGA, CGWLUSB2GPX), 106 RUM_DEV(DICKSMITH, CWD854F), 107 RUM_DEV(DICKSMITH, RT2573), 108 RUM_DEV(EDIMAX, EW7318USG), 109 RUM_DEV(DLINK2, DWLG122C1), 110 RUM_DEV(DLINK2, WUA1340), 111 RUM_DEV(DLINK2, DWA111), 112 RUM_DEV(DLINK2, DWA110), 113 RUM_DEV(GIGABYTE, GNWB01GS), 114 RUM_DEV(GIGABYTE, GNWI05GS), 115 RUM_DEV(GIGASET, RT2573), 116 RUM_DEV(GOODWAY, RT2573), 117 RUM_DEV(GUILLEMOT, HWGUSB254LB), 118 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 119 RUM_DEV(HUAWEI3COM, WUB320G), 120 RUM_DEV(MELCO, G54HP), 121 RUM_DEV(MELCO, SG54HP), 122 RUM_DEV(MELCO, SG54HG), 123 RUM_DEV(MELCO, WLIUCG), 124 RUM_DEV(MELCO, WLRUCG), 125 RUM_DEV(MELCO, WLRUCGAOSS), 126 RUM_DEV(MSI, RT2573_1), 127 RUM_DEV(MSI, RT2573_2), 128 RUM_DEV(MSI, RT2573_3), 129 RUM_DEV(MSI, RT2573_4), 130 RUM_DEV(NOVATECH, RT2573), 131 RUM_DEV(PLANEX2, GWUS54HP), 132 RUM_DEV(PLANEX2, GWUS54MINI2), 133 RUM_DEV(PLANEX2, GWUSMM), 134 RUM_DEV(QCOM, RT2573), 135 RUM_DEV(QCOM, RT2573_2), 136 RUM_DEV(QCOM, RT2573_3), 137 RUM_DEV(RALINK, RT2573), 138 RUM_DEV(RALINK, RT2573_2), 139 RUM_DEV(RALINK, RT2671), 140 RUM_DEV(SITECOMEU, WL113R2), 141 RUM_DEV(SITECOMEU, WL172), 142 RUM_DEV(SPARKLAN, RT2573), 143 RUM_DEV(SURECOM, RT2573), 144 #undef RUM_DEV 145 }; 146 147 static device_probe_t rum_match; 148 static device_attach_t rum_attach; 149 static device_detach_t rum_detach; 150 151 static usb_callback_t rum_bulk_read_callback; 152 static usb_callback_t rum_bulk_write_callback; 153 154 static usb_error_t rum_do_request(struct rum_softc *sc, 155 struct usb_device_request *req, void *data); 156 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 157 const char [IFNAMSIZ], int, enum ieee80211_opmode, 158 int, const uint8_t [IEEE80211_ADDR_LEN], 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void rum_vap_delete(struct ieee80211vap *); 161 static void rum_cmdq_cb(void *, int); 162 static int rum_cmd_sleepable(struct rum_softc *, const void *, 163 size_t, uint8_t, CMD_FUNC_PROTO); 164 static void rum_tx_free(struct rum_tx_data *, int); 165 static void rum_setup_tx_list(struct rum_softc *); 166 static void rum_unsetup_tx_list(struct rum_softc *); 167 static int rum_newstate(struct ieee80211vap *, 168 enum ieee80211_state, int); 169 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 170 static void rum_setup_tx_desc(struct rum_softc *, 171 struct rum_tx_desc *, struct ieee80211_key *, 172 uint32_t, uint8_t, uint8_t, int, int, int); 173 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 174 struct ieee80211_node *, 175 const struct ieee80211_key *); 176 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 177 struct ieee80211_node *); 178 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 179 struct ieee80211_node *, 180 const struct ieee80211_bpf_params *); 181 static int rum_tx_data(struct rum_softc *, struct mbuf *, 182 struct ieee80211_node *); 183 static int rum_transmit(struct ieee80211com *, struct mbuf *); 184 static void rum_start(struct rum_softc *); 185 static void rum_parent(struct ieee80211com *); 186 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 187 int); 188 static uint32_t rum_read(struct rum_softc *, uint16_t); 189 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 190 int); 191 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 192 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 193 size_t); 194 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 195 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 196 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 197 uint32_t); 198 static int rum_bbp_busy(struct rum_softc *); 199 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 200 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 201 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 202 static void rum_select_antenna(struct rum_softc *); 203 static void rum_enable_mrr(struct rum_softc *); 204 static void rum_set_txpreamble(struct rum_softc *); 205 static void rum_set_basicrates(struct rum_softc *); 206 static void rum_select_band(struct rum_softc *, 207 struct ieee80211_channel *); 208 static void rum_set_chan(struct rum_softc *, 209 struct ieee80211_channel *); 210 static void rum_set_maxretry(struct rum_softc *, 211 struct ieee80211vap *); 212 static int rum_enable_tsf_sync(struct rum_softc *); 213 static void rum_enable_tsf(struct rum_softc *); 214 static void rum_abort_tsf_sync(struct rum_softc *); 215 static void rum_get_tsf(struct rum_softc *, uint64_t *); 216 static void rum_update_slot_cb(struct rum_softc *, 217 union sec_param *, uint8_t); 218 static void rum_update_slot(struct ieee80211com *); 219 static int rum_wme_update(struct ieee80211com *); 220 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 221 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 222 static void rum_update_mcast(struct ieee80211com *); 223 static void rum_update_promisc(struct ieee80211com *); 224 static void rum_setpromisc(struct rum_softc *); 225 static const char *rum_get_rf(int); 226 static void rum_read_eeprom(struct rum_softc *); 227 static int rum_bbp_wakeup(struct rum_softc *); 228 static int rum_bbp_init(struct rum_softc *); 229 static void rum_clr_shkey_regs(struct rum_softc *); 230 static int rum_init(struct rum_softc *); 231 static void rum_stop(struct rum_softc *); 232 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 233 size_t); 234 static int rum_set_beacon(struct rum_softc *, 235 struct ieee80211vap *); 236 static int rum_alloc_beacon(struct rum_softc *, 237 struct ieee80211vap *); 238 static void rum_update_beacon_cb(struct rum_softc *, 239 union sec_param *, uint8_t); 240 static void rum_update_beacon(struct ieee80211vap *, int); 241 static int rum_common_key_set(struct rum_softc *, 242 struct ieee80211_key *, uint16_t); 243 static void rum_group_key_set_cb(struct rum_softc *, 244 union sec_param *, uint8_t); 245 static void rum_group_key_del_cb(struct rum_softc *, 246 union sec_param *, uint8_t); 247 static void rum_pair_key_set_cb(struct rum_softc *, 248 union sec_param *, uint8_t); 249 static void rum_pair_key_del_cb(struct rum_softc *, 250 union sec_param *, uint8_t); 251 static int rum_key_alloc(struct ieee80211vap *, 252 struct ieee80211_key *, ieee80211_keyix *, 253 ieee80211_keyix *); 254 static int rum_key_set(struct ieee80211vap *, 255 const struct ieee80211_key *); 256 static int rum_key_delete(struct ieee80211vap *, 257 const struct ieee80211_key *); 258 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 259 const struct ieee80211_bpf_params *); 260 static void rum_scan_start(struct ieee80211com *); 261 static void rum_scan_end(struct ieee80211com *); 262 static void rum_set_channel(struct ieee80211com *); 263 static int rum_get_rssi(struct rum_softc *, uint8_t); 264 static void rum_ratectl_start(struct rum_softc *, 265 struct ieee80211_node *); 266 static void rum_ratectl_timeout(void *); 267 static void rum_ratectl_task(void *, int); 268 static int rum_pause(struct rum_softc *, int); 269 270 static const struct { 271 uint32_t reg; 272 uint32_t val; 273 } rum_def_mac[] = { 274 { RT2573_TXRX_CSR0, 0x025fb032 }, 275 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 276 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 277 { RT2573_TXRX_CSR3, 0x00858687 }, 278 { RT2573_TXRX_CSR7, 0x2e31353b }, 279 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 280 { RT2573_TXRX_CSR15, 0x0000000f }, 281 { RT2573_MAC_CSR6, 0x00000fff }, 282 { RT2573_MAC_CSR8, 0x016c030a }, 283 { RT2573_MAC_CSR10, 0x00000718 }, 284 { RT2573_MAC_CSR12, 0x00000004 }, 285 { RT2573_MAC_CSR13, 0x00007f00 }, 286 { RT2573_SEC_CSR2, 0x00000000 }, 287 { RT2573_SEC_CSR3, 0x00000000 }, 288 { RT2573_SEC_CSR4, 0x00000000 }, 289 { RT2573_PHY_CSR1, 0x000023b0 }, 290 { RT2573_PHY_CSR5, 0x00040a06 }, 291 { RT2573_PHY_CSR6, 0x00080606 }, 292 { RT2573_PHY_CSR7, 0x00000408 }, 293 { RT2573_AIFSN_CSR, 0x00002273 }, 294 { RT2573_CWMIN_CSR, 0x00002344 }, 295 { RT2573_CWMAX_CSR, 0x000034aa } 296 }; 297 298 static const struct { 299 uint8_t reg; 300 uint8_t val; 301 } rum_def_bbp[] = { 302 { 3, 0x80 }, 303 { 15, 0x30 }, 304 { 17, 0x20 }, 305 { 21, 0xc8 }, 306 { 22, 0x38 }, 307 { 23, 0x06 }, 308 { 24, 0xfe }, 309 { 25, 0x0a }, 310 { 26, 0x0d }, 311 { 32, 0x0b }, 312 { 34, 0x12 }, 313 { 37, 0x07 }, 314 { 39, 0xf8 }, 315 { 41, 0x60 }, 316 { 53, 0x10 }, 317 { 54, 0x18 }, 318 { 60, 0x10 }, 319 { 61, 0x04 }, 320 { 62, 0x04 }, 321 { 75, 0xfe }, 322 { 86, 0xfe }, 323 { 88, 0xfe }, 324 { 90, 0x0f }, 325 { 99, 0x00 }, 326 { 102, 0x16 }, 327 { 107, 0x04 } 328 }; 329 330 static const struct rfprog { 331 uint8_t chan; 332 uint32_t r1, r2, r3, r4; 333 } rum_rf5226[] = { 334 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 335 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 336 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 337 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 338 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 339 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 340 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 341 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 342 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 343 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 344 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 345 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 346 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 347 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 348 349 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 350 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 351 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 352 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 353 354 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 355 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 356 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 357 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 358 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 359 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 360 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 361 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 362 363 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 364 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 365 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 366 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 367 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 368 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 369 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 370 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 371 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 372 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 373 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 374 375 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 376 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 377 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 378 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 379 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 380 }, rum_rf5225[] = { 381 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 382 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 383 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 384 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 385 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 386 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 387 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 388 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 389 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 390 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 391 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 392 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 393 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 394 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 395 396 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 397 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 398 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 399 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 400 401 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 402 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 403 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 404 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 405 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 406 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 407 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 408 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 409 410 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 411 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 412 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 413 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 414 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 415 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 416 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 417 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 418 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 419 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 420 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 421 422 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 423 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 424 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 425 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 426 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 427 }; 428 429 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 430 [RUM_BULK_WR] = { 431 .type = UE_BULK, 432 .endpoint = UE_ADDR_ANY, 433 .direction = UE_DIR_OUT, 434 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 435 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 436 .callback = rum_bulk_write_callback, 437 .timeout = 5000, /* ms */ 438 }, 439 [RUM_BULK_RD] = { 440 .type = UE_BULK, 441 .endpoint = UE_ADDR_ANY, 442 .direction = UE_DIR_IN, 443 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 444 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 445 .callback = rum_bulk_read_callback, 446 }, 447 }; 448 449 static int 450 rum_match(device_t self) 451 { 452 struct usb_attach_arg *uaa = device_get_ivars(self); 453 454 if (uaa->usb_mode != USB_MODE_HOST) 455 return (ENXIO); 456 if (uaa->info.bConfigIndex != 0) 457 return (ENXIO); 458 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 459 return (ENXIO); 460 461 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 462 } 463 464 static int 465 rum_attach(device_t self) 466 { 467 struct usb_attach_arg *uaa = device_get_ivars(self); 468 struct rum_softc *sc = device_get_softc(self); 469 struct ieee80211com *ic = &sc->sc_ic; 470 uint8_t iface_index, bands; 471 uint32_t tmp; 472 int error, ntries; 473 474 device_set_usb_desc(self); 475 sc->sc_udev = uaa->device; 476 sc->sc_dev = self; 477 478 RUM_LOCK_INIT(sc); 479 RUM_CMDQ_LOCK_INIT(sc); 480 mbufq_init(&sc->sc_snd, ifqmaxlen); 481 482 iface_index = RT2573_IFACE_INDEX; 483 error = usbd_transfer_setup(uaa->device, &iface_index, 484 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 485 if (error) { 486 device_printf(self, "could not allocate USB transfers, " 487 "err=%s\n", usbd_errstr(error)); 488 goto detach; 489 } 490 491 RUM_LOCK(sc); 492 /* retrieve RT2573 rev. no */ 493 for (ntries = 0; ntries < 100; ntries++) { 494 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 495 break; 496 if (rum_pause(sc, hz / 100)) 497 break; 498 } 499 if (ntries == 100) { 500 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 501 RUM_UNLOCK(sc); 502 goto detach; 503 } 504 505 /* retrieve MAC address and various other things from EEPROM */ 506 rum_read_eeprom(sc); 507 508 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 509 tmp, rum_get_rf(sc->rf_rev)); 510 511 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 512 RUM_UNLOCK(sc); 513 514 ic->ic_softc = sc; 515 ic->ic_name = device_get_nameunit(self); 516 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 517 518 /* set device capabilities */ 519 ic->ic_caps = 520 IEEE80211_C_STA /* station mode supported */ 521 | IEEE80211_C_IBSS /* IBSS mode supported */ 522 | IEEE80211_C_MONITOR /* monitor mode supported */ 523 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 524 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 525 | IEEE80211_C_TXPMGT /* tx power management */ 526 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 527 | IEEE80211_C_SHSLOT /* short slot time supported */ 528 | IEEE80211_C_BGSCAN /* bg scanning supported */ 529 | IEEE80211_C_WPA /* 802.11i */ 530 | IEEE80211_C_WME /* 802.11e */ 531 ; 532 533 ic->ic_cryptocaps = 534 IEEE80211_CRYPTO_WEP | 535 IEEE80211_CRYPTO_AES_CCM | 536 IEEE80211_CRYPTO_TKIPMIC | 537 IEEE80211_CRYPTO_TKIP; 538 539 bands = 0; 540 setbit(&bands, IEEE80211_MODE_11B); 541 setbit(&bands, IEEE80211_MODE_11G); 542 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 543 setbit(&bands, IEEE80211_MODE_11A); 544 ieee80211_init_channels(ic, NULL, &bands); 545 546 ieee80211_ifattach(ic); 547 ic->ic_update_promisc = rum_update_promisc; 548 ic->ic_raw_xmit = rum_raw_xmit; 549 ic->ic_scan_start = rum_scan_start; 550 ic->ic_scan_end = rum_scan_end; 551 ic->ic_set_channel = rum_set_channel; 552 ic->ic_transmit = rum_transmit; 553 ic->ic_parent = rum_parent; 554 ic->ic_vap_create = rum_vap_create; 555 ic->ic_vap_delete = rum_vap_delete; 556 ic->ic_updateslot = rum_update_slot; 557 ic->ic_wme.wme_update = rum_wme_update; 558 ic->ic_update_mcast = rum_update_mcast; 559 560 ieee80211_radiotap_attach(ic, 561 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 562 RT2573_TX_RADIOTAP_PRESENT, 563 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 564 RT2573_RX_RADIOTAP_PRESENT); 565 566 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 567 568 if (bootverbose) 569 ieee80211_announce(ic); 570 571 return (0); 572 573 detach: 574 rum_detach(self); 575 return (ENXIO); /* failure */ 576 } 577 578 static int 579 rum_detach(device_t self) 580 { 581 struct rum_softc *sc = device_get_softc(self); 582 struct ieee80211com *ic = &sc->sc_ic; 583 584 /* Prevent further ioctls */ 585 RUM_LOCK(sc); 586 sc->sc_detached = 1; 587 RUM_UNLOCK(sc); 588 589 /* stop all USB transfers */ 590 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 591 592 /* free TX list, if any */ 593 RUM_LOCK(sc); 594 rum_unsetup_tx_list(sc); 595 RUM_UNLOCK(sc); 596 597 if (ic->ic_softc == sc) { 598 ieee80211_draintask(ic, &sc->cmdq_task); 599 ieee80211_ifdetach(ic); 600 } 601 602 mbufq_drain(&sc->sc_snd); 603 RUM_CMDQ_LOCK_DESTROY(sc); 604 RUM_LOCK_DESTROY(sc); 605 606 return (0); 607 } 608 609 static usb_error_t 610 rum_do_request(struct rum_softc *sc, 611 struct usb_device_request *req, void *data) 612 { 613 usb_error_t err; 614 int ntries = 10; 615 616 while (ntries--) { 617 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 618 req, data, 0, NULL, 250 /* ms */); 619 if (err == 0) 620 break; 621 622 DPRINTFN(1, "Control request failed, %s (retrying)\n", 623 usbd_errstr(err)); 624 if (rum_pause(sc, hz / 100)) 625 break; 626 } 627 return (err); 628 } 629 630 static struct ieee80211vap * 631 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 632 enum ieee80211_opmode opmode, int flags, 633 const uint8_t bssid[IEEE80211_ADDR_LEN], 634 const uint8_t mac[IEEE80211_ADDR_LEN]) 635 { 636 struct rum_softc *sc = ic->ic_softc; 637 struct rum_vap *rvp; 638 struct ieee80211vap *vap; 639 640 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 641 return NULL; 642 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 643 vap = &rvp->vap; 644 /* enable s/w bmiss handling for sta mode */ 645 646 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 647 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 648 /* out of memory */ 649 free(rvp, M_80211_VAP); 650 return (NULL); 651 } 652 653 /* override state transition machine */ 654 rvp->newstate = vap->iv_newstate; 655 vap->iv_newstate = rum_newstate; 656 vap->iv_key_alloc = rum_key_alloc; 657 vap->iv_key_set = rum_key_set; 658 vap->iv_key_delete = rum_key_delete; 659 vap->iv_update_beacon = rum_update_beacon; 660 vap->iv_max_aid = RT2573_ADDR_MAX; 661 662 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 663 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 664 ieee80211_ratectl_init(vap); 665 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 666 /* complete setup */ 667 ieee80211_vap_attach(vap, ieee80211_media_change, 668 ieee80211_media_status, mac); 669 ic->ic_opmode = opmode; 670 return vap; 671 } 672 673 static void 674 rum_vap_delete(struct ieee80211vap *vap) 675 { 676 struct rum_vap *rvp = RUM_VAP(vap); 677 struct ieee80211com *ic = vap->iv_ic; 678 679 m_freem(rvp->bcn_mbuf); 680 usb_callout_drain(&rvp->ratectl_ch); 681 ieee80211_draintask(ic, &rvp->ratectl_task); 682 ieee80211_ratectl_deinit(vap); 683 ieee80211_vap_detach(vap); 684 free(rvp, M_80211_VAP); 685 } 686 687 static void 688 rum_cmdq_cb(void *arg, int pending) 689 { 690 struct rum_softc *sc = arg; 691 struct rum_cmdq *rc; 692 693 RUM_CMDQ_LOCK(sc); 694 while (sc->cmdq[sc->cmdq_first].func != NULL) { 695 rc = &sc->cmdq[sc->cmdq_first]; 696 RUM_CMDQ_UNLOCK(sc); 697 698 RUM_LOCK(sc); 699 rc->func(sc, &rc->data, rc->rvp_id); 700 RUM_UNLOCK(sc); 701 702 RUM_CMDQ_LOCK(sc); 703 memset(rc, 0, sizeof (*rc)); 704 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 705 } 706 RUM_CMDQ_UNLOCK(sc); 707 } 708 709 static int 710 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 711 uint8_t rvp_id, CMD_FUNC_PROTO) 712 { 713 struct ieee80211com *ic = &sc->sc_ic; 714 715 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 716 717 RUM_CMDQ_LOCK(sc); 718 if (sc->cmdq[sc->cmdq_last].func != NULL) { 719 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 720 RUM_CMDQ_UNLOCK(sc); 721 722 return EAGAIN; 723 } 724 725 if (ptr != NULL) 726 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 727 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 728 sc->cmdq[sc->cmdq_last].func = func; 729 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 730 RUM_CMDQ_UNLOCK(sc); 731 732 ieee80211_runtask(ic, &sc->cmdq_task); 733 734 return 0; 735 } 736 737 static void 738 rum_tx_free(struct rum_tx_data *data, int txerr) 739 { 740 struct rum_softc *sc = data->sc; 741 742 if (data->m != NULL) { 743 ieee80211_tx_complete(data->ni, data->m, txerr); 744 data->m = NULL; 745 data->ni = NULL; 746 } 747 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 748 sc->tx_nfree++; 749 } 750 751 static void 752 rum_setup_tx_list(struct rum_softc *sc) 753 { 754 struct rum_tx_data *data; 755 int i; 756 757 sc->tx_nfree = 0; 758 STAILQ_INIT(&sc->tx_q); 759 STAILQ_INIT(&sc->tx_free); 760 761 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 762 data = &sc->tx_data[i]; 763 764 data->sc = sc; 765 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 766 sc->tx_nfree++; 767 } 768 } 769 770 static void 771 rum_unsetup_tx_list(struct rum_softc *sc) 772 { 773 struct rum_tx_data *data; 774 int i; 775 776 /* make sure any subsequent use of the queues will fail */ 777 sc->tx_nfree = 0; 778 STAILQ_INIT(&sc->tx_q); 779 STAILQ_INIT(&sc->tx_free); 780 781 /* free up all node references and mbufs */ 782 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 783 data = &sc->tx_data[i]; 784 785 if (data->m != NULL) { 786 m_freem(data->m); 787 data->m = NULL; 788 } 789 if (data->ni != NULL) { 790 ieee80211_free_node(data->ni); 791 data->ni = NULL; 792 } 793 } 794 } 795 796 static int 797 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 798 { 799 struct rum_vap *rvp = RUM_VAP(vap); 800 struct ieee80211com *ic = vap->iv_ic; 801 struct rum_softc *sc = ic->ic_softc; 802 const struct ieee80211_txparam *tp; 803 enum ieee80211_state ostate; 804 struct ieee80211_node *ni; 805 int ret; 806 807 ostate = vap->iv_state; 808 DPRINTF("%s -> %s\n", 809 ieee80211_state_name[ostate], 810 ieee80211_state_name[nstate]); 811 812 IEEE80211_UNLOCK(ic); 813 RUM_LOCK(sc); 814 usb_callout_stop(&rvp->ratectl_ch); 815 816 switch (nstate) { 817 case IEEE80211_S_INIT: 818 if (ostate == IEEE80211_S_RUN) 819 rum_abort_tsf_sync(sc); 820 821 break; 822 823 case IEEE80211_S_RUN: 824 ni = ieee80211_ref_node(vap->iv_bss); 825 826 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 827 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 828 ni->ni_chan == IEEE80211_CHAN_ANYC) { 829 ret = EINVAL; 830 goto run_fail; 831 } 832 rum_update_slot_cb(sc, NULL, 0); 833 rum_enable_mrr(sc); 834 rum_set_txpreamble(sc); 835 rum_set_basicrates(sc); 836 rum_set_maxretry(sc, vap); 837 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 838 rum_set_bssid(sc, sc->sc_bssid); 839 } 840 841 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 842 vap->iv_opmode == IEEE80211_M_IBSS) { 843 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 844 goto run_fail; 845 } 846 847 if (vap->iv_opmode != IEEE80211_M_MONITOR && 848 vap->iv_opmode != IEEE80211_M_AHDEMO) { 849 if ((ret = rum_enable_tsf_sync(sc)) != 0) 850 goto run_fail; 851 } else 852 rum_enable_tsf(sc); 853 854 /* enable automatic rate adaptation */ 855 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 856 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 857 rum_ratectl_start(sc, ni); 858 ieee80211_free_node(ni); 859 break; 860 default: 861 break; 862 } 863 RUM_UNLOCK(sc); 864 IEEE80211_LOCK(ic); 865 return (rvp->newstate(vap, nstate, arg)); 866 867 run_fail: 868 RUM_UNLOCK(sc); 869 IEEE80211_LOCK(ic); 870 ieee80211_free_node(ni); 871 return ret; 872 } 873 874 static void 875 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 876 { 877 struct rum_softc *sc = usbd_xfer_softc(xfer); 878 struct ieee80211vap *vap; 879 struct rum_tx_data *data; 880 struct mbuf *m; 881 struct usb_page_cache *pc; 882 unsigned int len; 883 int actlen, sumlen; 884 885 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 886 887 switch (USB_GET_STATE(xfer)) { 888 case USB_ST_TRANSFERRED: 889 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 890 891 /* free resources */ 892 data = usbd_xfer_get_priv(xfer); 893 rum_tx_free(data, 0); 894 usbd_xfer_set_priv(xfer, NULL); 895 896 /* FALLTHROUGH */ 897 case USB_ST_SETUP: 898 tr_setup: 899 data = STAILQ_FIRST(&sc->tx_q); 900 if (data) { 901 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 902 m = data->m; 903 904 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 905 DPRINTFN(0, "data overflow, %u bytes\n", 906 m->m_pkthdr.len); 907 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 908 } 909 pc = usbd_xfer_get_frame(xfer, 0); 910 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 911 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 912 m->m_pkthdr.len); 913 914 vap = data->ni->ni_vap; 915 if (ieee80211_radiotap_active_vap(vap)) { 916 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 917 918 tap->wt_flags = 0; 919 tap->wt_rate = data->rate; 920 rum_get_tsf(sc, &tap->wt_tsf); 921 tap->wt_antenna = sc->tx_ant; 922 923 ieee80211_radiotap_tx(vap, m); 924 } 925 926 /* align end on a 4-bytes boundary */ 927 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 928 if ((len % 64) == 0) 929 len += 4; 930 931 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 932 m->m_pkthdr.len, len); 933 934 usbd_xfer_set_frame_len(xfer, 0, len); 935 usbd_xfer_set_priv(xfer, data); 936 937 usbd_transfer_submit(xfer); 938 } 939 rum_start(sc); 940 break; 941 942 default: /* Error */ 943 DPRINTFN(11, "transfer error, %s\n", 944 usbd_errstr(error)); 945 946 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 947 data = usbd_xfer_get_priv(xfer); 948 if (data != NULL) { 949 rum_tx_free(data, error); 950 usbd_xfer_set_priv(xfer, NULL); 951 } 952 953 if (error != USB_ERR_CANCELLED) { 954 if (error == USB_ERR_TIMEOUT) 955 device_printf(sc->sc_dev, "device timeout\n"); 956 957 /* 958 * Try to clear stall first, also if other 959 * errors occur, hence clearing stall 960 * introduces a 50 ms delay: 961 */ 962 usbd_xfer_set_stall(xfer); 963 goto tr_setup; 964 } 965 break; 966 } 967 } 968 969 static void 970 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 971 { 972 struct rum_softc *sc = usbd_xfer_softc(xfer); 973 struct ieee80211com *ic = &sc->sc_ic; 974 struct ieee80211_frame_min *wh; 975 struct ieee80211_node *ni; 976 struct mbuf *m = NULL; 977 struct usb_page_cache *pc; 978 uint32_t flags; 979 uint8_t rssi = 0; 980 int len; 981 982 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 983 984 switch (USB_GET_STATE(xfer)) { 985 case USB_ST_TRANSFERRED: 986 987 DPRINTFN(15, "rx done, actlen=%d\n", len); 988 989 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 990 DPRINTF("%s: xfer too short %d\n", 991 device_get_nameunit(sc->sc_dev), len); 992 counter_u64_add(ic->ic_ierrors, 1); 993 goto tr_setup; 994 } 995 996 len -= RT2573_RX_DESC_SIZE; 997 pc = usbd_xfer_get_frame(xfer, 0); 998 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 999 1000 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1001 flags = le32toh(sc->sc_rx_desc.flags); 1002 if (flags & RT2573_RX_CRC_ERROR) { 1003 /* 1004 * This should not happen since we did not 1005 * request to receive those frames when we 1006 * filled RUM_TXRX_CSR2: 1007 */ 1008 DPRINTFN(5, "PHY or CRC error\n"); 1009 counter_u64_add(ic->ic_ierrors, 1); 1010 goto tr_setup; 1011 } 1012 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1013 switch (flags & RT2573_RX_DEC_MASK) { 1014 case RT2573_RX_IV_ERROR: 1015 DPRINTFN(5, "IV/EIV error\n"); 1016 break; 1017 case RT2573_RX_MIC_ERROR: 1018 DPRINTFN(5, "MIC error\n"); 1019 break; 1020 case RT2573_RX_KEY_ERROR: 1021 DPRINTFN(5, "Key error\n"); 1022 break; 1023 } 1024 counter_u64_add(ic->ic_ierrors, 1); 1025 goto tr_setup; 1026 } 1027 1028 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1029 if (m == NULL) { 1030 DPRINTF("could not allocate mbuf\n"); 1031 counter_u64_add(ic->ic_ierrors, 1); 1032 goto tr_setup; 1033 } 1034 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1035 mtod(m, uint8_t *), len); 1036 1037 wh = mtod(m, struct ieee80211_frame_min *); 1038 1039 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1040 (flags & RT2573_RX_CIP_MASK) != 1041 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1042 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1043 m->m_flags |= M_WEP; 1044 } 1045 1046 /* finalize mbuf */ 1047 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 1048 1049 if (ieee80211_radiotap_active(ic)) { 1050 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1051 1052 tap->wr_flags = 0; 1053 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1054 (flags & RT2573_RX_OFDM) ? 1055 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1056 rum_get_tsf(sc, &tap->wr_tsf); 1057 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1058 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1059 tap->wr_antenna = sc->rx_ant; 1060 } 1061 /* FALLTHROUGH */ 1062 case USB_ST_SETUP: 1063 tr_setup: 1064 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1065 usbd_transfer_submit(xfer); 1066 1067 /* 1068 * At the end of a USB callback it is always safe to unlock 1069 * the private mutex of a device! That is why we do the 1070 * "ieee80211_input" here, and not some lines up! 1071 */ 1072 RUM_UNLOCK(sc); 1073 if (m) { 1074 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1075 ni = ieee80211_find_rxnode(ic, wh); 1076 else 1077 ni = NULL; 1078 1079 if (ni != NULL) { 1080 (void) ieee80211_input(ni, m, rssi, 1081 RT2573_NOISE_FLOOR); 1082 ieee80211_free_node(ni); 1083 } else 1084 (void) ieee80211_input_all(ic, m, rssi, 1085 RT2573_NOISE_FLOOR); 1086 } 1087 RUM_LOCK(sc); 1088 rum_start(sc); 1089 return; 1090 1091 default: /* Error */ 1092 if (error != USB_ERR_CANCELLED) { 1093 /* try to clear stall first */ 1094 usbd_xfer_set_stall(xfer); 1095 goto tr_setup; 1096 } 1097 return; 1098 } 1099 } 1100 1101 static uint8_t 1102 rum_plcp_signal(int rate) 1103 { 1104 switch (rate) { 1105 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1106 case 12: return 0xb; 1107 case 18: return 0xf; 1108 case 24: return 0xa; 1109 case 36: return 0xe; 1110 case 48: return 0x9; 1111 case 72: return 0xd; 1112 case 96: return 0x8; 1113 case 108: return 0xc; 1114 1115 /* CCK rates (NB: not IEEE std, device-specific) */ 1116 case 2: return 0x0; 1117 case 4: return 0x1; 1118 case 11: return 0x2; 1119 case 22: return 0x3; 1120 } 1121 return 0xff; /* XXX unsupported/unknown rate */ 1122 } 1123 1124 /* 1125 * Map net80211 cipher to RT2573 security mode. 1126 */ 1127 static uint8_t 1128 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1129 { 1130 switch (cipher) { 1131 case IEEE80211_CIPHER_WEP: 1132 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1133 case IEEE80211_CIPHER_TKIP: 1134 return RT2573_MODE_TKIP; 1135 case IEEE80211_CIPHER_AES_CCM: 1136 return RT2573_MODE_AES_CCMP; 1137 default: 1138 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1139 return 0; 1140 } 1141 } 1142 1143 static void 1144 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1145 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1146 int hdrlen, int len, int rate) 1147 { 1148 struct ieee80211com *ic = &sc->sc_ic; 1149 struct wmeParams *wmep = &sc->wme_params[qid]; 1150 uint16_t plcp_length; 1151 int remainder; 1152 1153 flags |= RT2573_TX_VALID; 1154 flags |= len << 16; 1155 1156 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1157 const struct ieee80211_cipher *cip = k->wk_cipher; 1158 1159 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1160 1161 desc->eiv = 0; /* for WEP */ 1162 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1163 } 1164 1165 /* setup PLCP fields */ 1166 desc->plcp_signal = rum_plcp_signal(rate); 1167 desc->plcp_service = 4; 1168 1169 len += IEEE80211_CRC_LEN; 1170 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1171 flags |= RT2573_TX_OFDM; 1172 1173 plcp_length = len & 0xfff; 1174 desc->plcp_length_hi = plcp_length >> 6; 1175 desc->plcp_length_lo = plcp_length & 0x3f; 1176 } else { 1177 if (rate == 0) 1178 rate = 2; /* avoid division by zero */ 1179 plcp_length = (16 * len + rate - 1) / rate; 1180 if (rate == 22) { 1181 remainder = (16 * len) % 22; 1182 if (remainder != 0 && remainder < 7) 1183 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1184 } 1185 desc->plcp_length_hi = plcp_length >> 8; 1186 desc->plcp_length_lo = plcp_length & 0xff; 1187 1188 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1189 desc->plcp_signal |= 0x08; 1190 } 1191 1192 desc->flags = htole32(flags); 1193 desc->hdrlen = hdrlen; 1194 desc->xflags = xflags; 1195 1196 desc->wme = htole16(RT2573_QID(qid) | 1197 RT2573_AIFSN(wmep->wmep_aifsn) | 1198 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1199 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1200 } 1201 1202 static int 1203 rum_sendprot(struct rum_softc *sc, 1204 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1205 { 1206 struct ieee80211com *ic = ni->ni_ic; 1207 const struct ieee80211_frame *wh; 1208 struct rum_tx_data *data; 1209 struct mbuf *mprot; 1210 int protrate, pktlen, flags, isshort; 1211 uint16_t dur; 1212 1213 RUM_LOCK_ASSERT(sc); 1214 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1215 ("protection %d", prot)); 1216 1217 wh = mtod(m, const struct ieee80211_frame *); 1218 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1219 1220 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1221 1222 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1223 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1224 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1225 flags = 0; 1226 if (prot == IEEE80211_PROT_RTSCTS) { 1227 /* NB: CTS is the same size as an ACK */ 1228 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1229 flags |= RT2573_TX_NEED_ACK; 1230 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1231 } else { 1232 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1233 } 1234 if (mprot == NULL) { 1235 /* XXX stat + msg */ 1236 return (ENOBUFS); 1237 } 1238 data = STAILQ_FIRST(&sc->tx_free); 1239 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1240 sc->tx_nfree--; 1241 1242 data->m = mprot; 1243 data->ni = ieee80211_ref_node(ni); 1244 data->rate = protrate; 1245 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1246 mprot->m_pkthdr.len, protrate); 1247 1248 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1249 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1250 1251 return 0; 1252 } 1253 1254 static uint32_t 1255 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1256 const struct ieee80211_key *k) 1257 { 1258 struct ieee80211vap *vap = ni->ni_vap; 1259 u_int cipher; 1260 uint32_t flags = 0; 1261 uint8_t mode, pos; 1262 1263 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1264 cipher = k->wk_cipher->ic_cipher; 1265 pos = k->wk_keyix; 1266 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1267 if (mode == 0) 1268 return 0; 1269 1270 flags |= RT2573_TX_CIP_MODE(mode); 1271 1272 /* Do not trust GROUP flag */ 1273 if (!(k >= &vap->iv_nw_keys[0] && 1274 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1275 flags |= RT2573_TX_KEY_PAIR; 1276 else 1277 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1278 1279 flags |= RT2573_TX_KEY_ID(pos); 1280 1281 if (cipher == IEEE80211_CIPHER_TKIP) 1282 flags |= RT2573_TX_TKIPMIC; 1283 } 1284 1285 return flags; 1286 } 1287 1288 static int 1289 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1290 { 1291 struct ieee80211vap *vap = ni->ni_vap; 1292 struct ieee80211com *ic = &sc->sc_ic; 1293 struct rum_tx_data *data; 1294 struct ieee80211_frame *wh; 1295 const struct ieee80211_txparam *tp; 1296 struct ieee80211_key *k = NULL; 1297 uint32_t flags = 0; 1298 uint16_t dur; 1299 uint8_t ac, type, xflags = 0; 1300 int hdrlen; 1301 1302 RUM_LOCK_ASSERT(sc); 1303 1304 data = STAILQ_FIRST(&sc->tx_free); 1305 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1306 sc->tx_nfree--; 1307 1308 wh = mtod(m0, struct ieee80211_frame *); 1309 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1310 hdrlen = ieee80211_anyhdrsize(wh); 1311 ac = M_WME_GETAC(m0); 1312 1313 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1314 k = ieee80211_crypto_get_txkey(ni, m0); 1315 if (k == NULL) 1316 return (ENOENT); 1317 1318 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1319 !k->wk_cipher->ic_encap(k, m0)) 1320 return (ENOBUFS); 1321 1322 wh = mtod(m0, struct ieee80211_frame *); 1323 } 1324 1325 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1326 1327 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1328 flags |= RT2573_TX_NEED_ACK; 1329 1330 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1331 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1332 USETW(wh->i_dur, dur); 1333 1334 /* tell hardware to add timestamp for probe responses */ 1335 if (type == IEEE80211_FC0_TYPE_MGT && 1336 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1337 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1338 flags |= RT2573_TX_TIMESTAMP; 1339 } 1340 1341 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1342 xflags |= RT2573_TX_HWSEQ; 1343 1344 if (k != NULL) 1345 flags |= rum_tx_crypto_flags(sc, ni, k); 1346 1347 data->m = m0; 1348 data->ni = ni; 1349 data->rate = tp->mgmtrate; 1350 1351 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1352 m0->m_pkthdr.len, tp->mgmtrate); 1353 1354 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1355 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1356 1357 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1358 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1359 1360 return (0); 1361 } 1362 1363 static int 1364 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1365 const struct ieee80211_bpf_params *params) 1366 { 1367 struct ieee80211com *ic = ni->ni_ic; 1368 struct ieee80211_frame *wh; 1369 struct rum_tx_data *data; 1370 uint32_t flags; 1371 uint8_t ac, type, xflags = 0; 1372 int rate, error; 1373 1374 RUM_LOCK_ASSERT(sc); 1375 1376 wh = mtod(m0, struct ieee80211_frame *); 1377 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1378 1379 ac = params->ibp_pri & 3; 1380 1381 rate = params->ibp_rate0; 1382 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1383 return (EINVAL); 1384 1385 flags = 0; 1386 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1387 flags |= RT2573_TX_NEED_ACK; 1388 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1389 error = rum_sendprot(sc, m0, ni, 1390 params->ibp_flags & IEEE80211_BPF_RTS ? 1391 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1392 rate); 1393 if (error || sc->tx_nfree == 0) 1394 return (ENOBUFS); 1395 1396 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1397 } 1398 1399 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1400 xflags |= RT2573_TX_HWSEQ; 1401 1402 data = STAILQ_FIRST(&sc->tx_free); 1403 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1404 sc->tx_nfree--; 1405 1406 data->m = m0; 1407 data->ni = ni; 1408 data->rate = rate; 1409 1410 /* XXX need to setup descriptor ourself */ 1411 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1412 m0->m_pkthdr.len, rate); 1413 1414 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1415 m0->m_pkthdr.len, rate); 1416 1417 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1418 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1419 1420 return 0; 1421 } 1422 1423 static int 1424 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1425 { 1426 struct ieee80211vap *vap = ni->ni_vap; 1427 struct ieee80211com *ic = &sc->sc_ic; 1428 struct rum_tx_data *data; 1429 struct ieee80211_frame *wh; 1430 const struct ieee80211_txparam *tp; 1431 struct ieee80211_key *k = NULL; 1432 uint32_t flags = 0; 1433 uint16_t dur; 1434 uint8_t ac, type, qos, xflags = 0; 1435 int error, hdrlen, rate; 1436 1437 RUM_LOCK_ASSERT(sc); 1438 1439 wh = mtod(m0, struct ieee80211_frame *); 1440 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1441 hdrlen = ieee80211_anyhdrsize(wh); 1442 1443 if (IEEE80211_QOS_HAS_SEQ(wh)) 1444 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1445 else 1446 qos = 0; 1447 ac = M_WME_GETAC(m0); 1448 1449 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1450 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1451 rate = tp->mcastrate; 1452 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1453 rate = tp->ucastrate; 1454 else 1455 rate = ni->ni_txrate; 1456 1457 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1458 k = ieee80211_crypto_get_txkey(ni, m0); 1459 if (k == NULL) { 1460 m_freem(m0); 1461 return (ENOENT); 1462 } 1463 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1464 !k->wk_cipher->ic_encap(k, m0)) { 1465 m_freem(m0); 1466 return (ENOBUFS); 1467 } 1468 1469 /* packet header may have moved, reset our local pointer */ 1470 wh = mtod(m0, struct ieee80211_frame *); 1471 } 1472 1473 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1474 xflags |= RT2573_TX_HWSEQ; 1475 1476 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1477 int prot = IEEE80211_PROT_NONE; 1478 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1479 prot = IEEE80211_PROT_RTSCTS; 1480 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1481 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1482 prot = ic->ic_protmode; 1483 if (prot != IEEE80211_PROT_NONE) { 1484 error = rum_sendprot(sc, m0, ni, prot, rate); 1485 if (error || sc->tx_nfree == 0) { 1486 m_freem(m0); 1487 return ENOBUFS; 1488 } 1489 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1490 } 1491 } 1492 1493 if (k != NULL) 1494 flags |= rum_tx_crypto_flags(sc, ni, k); 1495 1496 data = STAILQ_FIRST(&sc->tx_free); 1497 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1498 sc->tx_nfree--; 1499 1500 data->m = m0; 1501 data->ni = ni; 1502 data->rate = rate; 1503 1504 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1505 /* Unicast frame, check if an ACK is expected. */ 1506 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1507 IEEE80211_QOS_ACKPOLICY_NOACK) 1508 flags |= RT2573_TX_NEED_ACK; 1509 1510 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1511 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1512 USETW(wh->i_dur, dur); 1513 } 1514 1515 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1516 m0->m_pkthdr.len, rate); 1517 1518 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1519 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1520 1521 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1522 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1523 1524 return 0; 1525 } 1526 1527 static int 1528 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1529 { 1530 struct rum_softc *sc = ic->ic_softc; 1531 int error; 1532 1533 RUM_LOCK(sc); 1534 if (!sc->sc_running) { 1535 RUM_UNLOCK(sc); 1536 return (ENXIO); 1537 } 1538 error = mbufq_enqueue(&sc->sc_snd, m); 1539 if (error) { 1540 RUM_UNLOCK(sc); 1541 return (error); 1542 } 1543 rum_start(sc); 1544 RUM_UNLOCK(sc); 1545 1546 return (0); 1547 } 1548 1549 static void 1550 rum_start(struct rum_softc *sc) 1551 { 1552 struct ieee80211_node *ni; 1553 struct mbuf *m; 1554 1555 RUM_LOCK_ASSERT(sc); 1556 1557 if (!sc->sc_running) 1558 return; 1559 1560 while (sc->tx_nfree >= RUM_TX_MINFREE && 1561 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1562 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1563 if (rum_tx_data(sc, m, ni) != 0) { 1564 if_inc_counter(ni->ni_vap->iv_ifp, 1565 IFCOUNTER_OERRORS, 1); 1566 ieee80211_free_node(ni); 1567 break; 1568 } 1569 } 1570 } 1571 1572 static void 1573 rum_parent(struct ieee80211com *ic) 1574 { 1575 struct rum_softc *sc = ic->ic_softc; 1576 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1577 1578 RUM_LOCK(sc); 1579 if (sc->sc_detached) { 1580 RUM_UNLOCK(sc); 1581 return; 1582 } 1583 RUM_UNLOCK(sc); 1584 1585 if (ic->ic_nrunning > 0) { 1586 if (rum_init(sc) == 0) 1587 ieee80211_start_all(ic); 1588 else 1589 ieee80211_stop(vap); 1590 } else 1591 rum_stop(sc); 1592 } 1593 1594 static void 1595 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1596 { 1597 struct usb_device_request req; 1598 usb_error_t error; 1599 1600 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1601 req.bRequest = RT2573_READ_EEPROM; 1602 USETW(req.wValue, 0); 1603 USETW(req.wIndex, addr); 1604 USETW(req.wLength, len); 1605 1606 error = rum_do_request(sc, &req, buf); 1607 if (error != 0) { 1608 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1609 usbd_errstr(error)); 1610 } 1611 } 1612 1613 static uint32_t 1614 rum_read(struct rum_softc *sc, uint16_t reg) 1615 { 1616 uint32_t val; 1617 1618 rum_read_multi(sc, reg, &val, sizeof val); 1619 1620 return le32toh(val); 1621 } 1622 1623 static void 1624 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1625 { 1626 struct usb_device_request req; 1627 usb_error_t error; 1628 1629 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1630 req.bRequest = RT2573_READ_MULTI_MAC; 1631 USETW(req.wValue, 0); 1632 USETW(req.wIndex, reg); 1633 USETW(req.wLength, len); 1634 1635 error = rum_do_request(sc, &req, buf); 1636 if (error != 0) { 1637 device_printf(sc->sc_dev, 1638 "could not multi read MAC register: %s\n", 1639 usbd_errstr(error)); 1640 } 1641 } 1642 1643 static usb_error_t 1644 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1645 { 1646 uint32_t tmp = htole32(val); 1647 1648 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1649 } 1650 1651 static usb_error_t 1652 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1653 { 1654 struct usb_device_request req; 1655 usb_error_t error; 1656 size_t offset; 1657 1658 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1659 req.bRequest = RT2573_WRITE_MULTI_MAC; 1660 USETW(req.wValue, 0); 1661 1662 /* write at most 64 bytes at a time */ 1663 for (offset = 0; offset < len; offset += 64) { 1664 USETW(req.wIndex, reg + offset); 1665 USETW(req.wLength, MIN(len - offset, 64)); 1666 1667 error = rum_do_request(sc, &req, (char *)buf + offset); 1668 if (error != 0) { 1669 device_printf(sc->sc_dev, 1670 "could not multi write MAC register: %s\n", 1671 usbd_errstr(error)); 1672 return (error); 1673 } 1674 } 1675 1676 return (USB_ERR_NORMAL_COMPLETION); 1677 } 1678 1679 static usb_error_t 1680 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1681 { 1682 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1683 } 1684 1685 static usb_error_t 1686 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1687 { 1688 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1689 } 1690 1691 static usb_error_t 1692 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1693 { 1694 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1695 } 1696 1697 static int 1698 rum_bbp_busy(struct rum_softc *sc) 1699 { 1700 int ntries; 1701 1702 for (ntries = 0; ntries < 100; ntries++) { 1703 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1704 break; 1705 if (rum_pause(sc, hz / 100)) 1706 break; 1707 } 1708 if (ntries == 100) 1709 return (ETIMEDOUT); 1710 1711 return (0); 1712 } 1713 1714 static void 1715 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1716 { 1717 uint32_t tmp; 1718 1719 DPRINTFN(2, "reg=0x%08x\n", reg); 1720 1721 if (rum_bbp_busy(sc) != 0) { 1722 device_printf(sc->sc_dev, "could not write to BBP\n"); 1723 return; 1724 } 1725 1726 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1727 rum_write(sc, RT2573_PHY_CSR3, tmp); 1728 } 1729 1730 static uint8_t 1731 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1732 { 1733 uint32_t val; 1734 int ntries; 1735 1736 DPRINTFN(2, "reg=0x%08x\n", reg); 1737 1738 if (rum_bbp_busy(sc) != 0) { 1739 device_printf(sc->sc_dev, "could not read BBP\n"); 1740 return 0; 1741 } 1742 1743 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1744 rum_write(sc, RT2573_PHY_CSR3, val); 1745 1746 for (ntries = 0; ntries < 100; ntries++) { 1747 val = rum_read(sc, RT2573_PHY_CSR3); 1748 if (!(val & RT2573_BBP_BUSY)) 1749 return val & 0xff; 1750 if (rum_pause(sc, hz / 100)) 1751 break; 1752 } 1753 1754 device_printf(sc->sc_dev, "could not read BBP\n"); 1755 return 0; 1756 } 1757 1758 static void 1759 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1760 { 1761 uint32_t tmp; 1762 int ntries; 1763 1764 for (ntries = 0; ntries < 100; ntries++) { 1765 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1766 break; 1767 if (rum_pause(sc, hz / 100)) 1768 break; 1769 } 1770 if (ntries == 100) { 1771 device_printf(sc->sc_dev, "could not write to RF\n"); 1772 return; 1773 } 1774 1775 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1776 (reg & 3); 1777 rum_write(sc, RT2573_PHY_CSR4, tmp); 1778 1779 /* remember last written value in sc */ 1780 sc->rf_regs[reg] = val; 1781 1782 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1783 } 1784 1785 static void 1786 rum_select_antenna(struct rum_softc *sc) 1787 { 1788 uint8_t bbp4, bbp77; 1789 uint32_t tmp; 1790 1791 bbp4 = rum_bbp_read(sc, 4); 1792 bbp77 = rum_bbp_read(sc, 77); 1793 1794 /* TBD */ 1795 1796 /* make sure Rx is disabled before switching antenna */ 1797 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1798 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1799 1800 rum_bbp_write(sc, 4, bbp4); 1801 rum_bbp_write(sc, 77, bbp77); 1802 1803 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1804 } 1805 1806 /* 1807 * Enable multi-rate retries for frames sent at OFDM rates. 1808 * In 802.11b/g mode, allow fallback to CCK rates. 1809 */ 1810 static void 1811 rum_enable_mrr(struct rum_softc *sc) 1812 { 1813 struct ieee80211com *ic = &sc->sc_ic; 1814 1815 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1816 rum_setbits(sc, RT2573_TXRX_CSR4, 1817 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 1818 } else { 1819 rum_modbits(sc, RT2573_TXRX_CSR4, 1820 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 1821 } 1822 } 1823 1824 static void 1825 rum_set_txpreamble(struct rum_softc *sc) 1826 { 1827 struct ieee80211com *ic = &sc->sc_ic; 1828 1829 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1830 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1831 else 1832 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 1833 } 1834 1835 static void 1836 rum_set_basicrates(struct rum_softc *sc) 1837 { 1838 struct ieee80211com *ic = &sc->sc_ic; 1839 1840 /* update basic rate set */ 1841 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1842 /* 11b basic rates: 1, 2Mbps */ 1843 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1844 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1845 /* 11a basic rates: 6, 12, 24Mbps */ 1846 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1847 } else { 1848 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1849 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1850 } 1851 } 1852 1853 /* 1854 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1855 * driver. 1856 */ 1857 static void 1858 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1859 { 1860 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1861 1862 /* update all BBP registers that depend on the band */ 1863 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1864 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1865 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1866 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1867 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1868 } 1869 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1870 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1871 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1872 } 1873 1874 sc->bbp17 = bbp17; 1875 rum_bbp_write(sc, 17, bbp17); 1876 rum_bbp_write(sc, 96, bbp96); 1877 rum_bbp_write(sc, 104, bbp104); 1878 1879 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1880 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1881 rum_bbp_write(sc, 75, 0x80); 1882 rum_bbp_write(sc, 86, 0x80); 1883 rum_bbp_write(sc, 88, 0x80); 1884 } 1885 1886 rum_bbp_write(sc, 35, bbp35); 1887 rum_bbp_write(sc, 97, bbp97); 1888 rum_bbp_write(sc, 98, bbp98); 1889 1890 if (IEEE80211_IS_CHAN_2GHZ(c)) { 1891 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 1892 RT2573_PA_PE_5GHZ); 1893 } else { 1894 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 1895 RT2573_PA_PE_2GHZ); 1896 } 1897 } 1898 1899 static void 1900 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1901 { 1902 struct ieee80211com *ic = &sc->sc_ic; 1903 const struct rfprog *rfprog; 1904 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1905 int8_t power; 1906 int i, chan; 1907 1908 chan = ieee80211_chan2ieee(ic, c); 1909 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1910 return; 1911 1912 /* select the appropriate RF settings based on what EEPROM says */ 1913 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1914 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1915 1916 /* find the settings for this channel (we know it exists) */ 1917 for (i = 0; rfprog[i].chan != chan; i++); 1918 1919 power = sc->txpow[i]; 1920 if (power < 0) { 1921 bbp94 += power; 1922 power = 0; 1923 } else if (power > 31) { 1924 bbp94 += power - 31; 1925 power = 31; 1926 } 1927 1928 /* 1929 * If we are switching from the 2GHz band to the 5GHz band or 1930 * vice-versa, BBP registers need to be reprogrammed. 1931 */ 1932 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1933 rum_select_band(sc, c); 1934 rum_select_antenna(sc); 1935 } 1936 ic->ic_curchan = c; 1937 1938 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1939 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1940 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1941 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1942 1943 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1944 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1945 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1946 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1947 1948 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1949 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1950 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1951 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1952 1953 rum_pause(sc, hz / 100); 1954 1955 /* enable smart mode for MIMO-capable RFs */ 1956 bbp3 = rum_bbp_read(sc, 3); 1957 1958 bbp3 &= ~RT2573_SMART_MODE; 1959 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1960 bbp3 |= RT2573_SMART_MODE; 1961 1962 rum_bbp_write(sc, 3, bbp3); 1963 1964 if (bbp94 != RT2573_BBPR94_DEFAULT) 1965 rum_bbp_write(sc, 94, bbp94); 1966 1967 /* give the chip some extra time to do the switchover */ 1968 rum_pause(sc, hz / 100); 1969 } 1970 1971 static void 1972 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 1973 { 1974 const struct ieee80211_txparam *tp; 1975 struct ieee80211_node *ni = vap->iv_bss; 1976 struct rum_vap *rvp = RUM_VAP(vap); 1977 1978 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1979 rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; 1980 1981 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 1982 RT2573_LONG_RETRY(rvp->maxretry), 1983 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 1984 } 1985 1986 /* 1987 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1988 * and HostAP operating modes. 1989 */ 1990 static int 1991 rum_enable_tsf_sync(struct rum_softc *sc) 1992 { 1993 struct ieee80211com *ic = &sc->sc_ic; 1994 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1995 uint32_t tmp; 1996 1997 if (vap->iv_opmode != IEEE80211_M_STA) { 1998 /* 1999 * Change default 16ms TBTT adjustment to 8ms. 2000 * Must be done before enabling beacon generation. 2001 */ 2002 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2003 return EIO; 2004 } 2005 2006 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2007 2008 /* set beacon interval (in 1/16ms unit) */ 2009 tmp |= vap->iv_bss->ni_intval * 16; 2010 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2011 2012 switch (vap->iv_opmode) { 2013 case IEEE80211_M_STA: 2014 /* 2015 * Local TSF is always updated with remote TSF on beacon 2016 * reception. 2017 */ 2018 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2019 break; 2020 case IEEE80211_M_IBSS: 2021 /* 2022 * Local TSF is updated with remote TSF on beacon reception 2023 * only if the remote TSF is greater than local TSF. 2024 */ 2025 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2026 tmp |= RT2573_BCN_TX_EN; 2027 break; 2028 case IEEE80211_M_HOSTAP: 2029 /* SYNC with nobody */ 2030 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2031 tmp |= RT2573_BCN_TX_EN; 2032 break; 2033 default: 2034 device_printf(sc->sc_dev, 2035 "Enabling TSF failed. undefined opmode %d\n", 2036 vap->iv_opmode); 2037 return EINVAL; 2038 } 2039 2040 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2041 return EIO; 2042 2043 return 0; 2044 } 2045 2046 static void 2047 rum_enable_tsf(struct rum_softc *sc) 2048 { 2049 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2050 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2051 } 2052 2053 static void 2054 rum_abort_tsf_sync(struct rum_softc *sc) 2055 { 2056 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2057 } 2058 2059 static void 2060 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2061 { 2062 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2063 } 2064 2065 static void 2066 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2067 { 2068 struct ieee80211com *ic = &sc->sc_ic; 2069 uint8_t slottime; 2070 2071 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2072 2073 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2074 2075 DPRINTF("setting slot time to %uus\n", slottime); 2076 } 2077 2078 static void 2079 rum_update_slot(struct ieee80211com *ic) 2080 { 2081 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2082 } 2083 2084 static int 2085 rum_wme_update(struct ieee80211com *ic) 2086 { 2087 const struct wmeParams *chanp = 2088 ic->ic_wme.wme_chanParams.cap_wmeParams; 2089 struct rum_softc *sc = ic->ic_softc; 2090 int error = 0; 2091 2092 RUM_LOCK(sc); 2093 error = rum_write(sc, RT2573_AIFSN_CSR, 2094 chanp[WME_AC_VO].wmep_aifsn << 12 | 2095 chanp[WME_AC_VI].wmep_aifsn << 8 | 2096 chanp[WME_AC_BK].wmep_aifsn << 4 | 2097 chanp[WME_AC_BE].wmep_aifsn); 2098 if (error) 2099 goto print_err; 2100 error = rum_write(sc, RT2573_CWMIN_CSR, 2101 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2102 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2103 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2104 chanp[WME_AC_BE].wmep_logcwmin); 2105 if (error) 2106 goto print_err; 2107 error = rum_write(sc, RT2573_CWMAX_CSR, 2108 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2109 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2110 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2111 chanp[WME_AC_BE].wmep_logcwmax); 2112 if (error) 2113 goto print_err; 2114 error = rum_write(sc, RT2573_TXOP01_CSR, 2115 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2116 chanp[WME_AC_BE].wmep_txopLimit); 2117 if (error) 2118 goto print_err; 2119 error = rum_write(sc, RT2573_TXOP23_CSR, 2120 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2121 chanp[WME_AC_VI].wmep_txopLimit); 2122 if (error) 2123 goto print_err; 2124 2125 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2126 2127 print_err: 2128 RUM_UNLOCK(sc); 2129 if (error != 0) { 2130 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2131 __func__, error); 2132 } 2133 2134 return (error); 2135 } 2136 2137 static void 2138 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2139 { 2140 2141 rum_write(sc, RT2573_MAC_CSR4, 2142 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2143 rum_write(sc, RT2573_MAC_CSR5, 2144 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2145 } 2146 2147 static void 2148 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2149 { 2150 2151 rum_write(sc, RT2573_MAC_CSR2, 2152 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2153 rum_write(sc, RT2573_MAC_CSR3, 2154 addr[4] | addr[5] << 8 | 0xff << 16); 2155 } 2156 2157 static void 2158 rum_setpromisc(struct rum_softc *sc) 2159 { 2160 struct ieee80211com *ic = &sc->sc_ic; 2161 2162 if (ic->ic_promisc == 0) 2163 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2164 else 2165 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2166 2167 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2168 "entering" : "leaving"); 2169 } 2170 2171 static void 2172 rum_update_promisc(struct ieee80211com *ic) 2173 { 2174 struct rum_softc *sc = ic->ic_softc; 2175 2176 RUM_LOCK(sc); 2177 if (sc->sc_running) 2178 rum_setpromisc(sc); 2179 RUM_UNLOCK(sc); 2180 } 2181 2182 static void 2183 rum_update_mcast(struct ieee80211com *ic) 2184 { 2185 /* Ignore. */ 2186 } 2187 2188 static const char * 2189 rum_get_rf(int rev) 2190 { 2191 switch (rev) { 2192 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2193 case RT2573_RF_2528: return "RT2528"; 2194 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2195 case RT2573_RF_5226: return "RT5226"; 2196 default: return "unknown"; 2197 } 2198 } 2199 2200 static void 2201 rum_read_eeprom(struct rum_softc *sc) 2202 { 2203 uint16_t val; 2204 #ifdef RUM_DEBUG 2205 int i; 2206 #endif 2207 2208 /* read MAC address */ 2209 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2210 2211 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2212 val = le16toh(val); 2213 sc->rf_rev = (val >> 11) & 0x1f; 2214 sc->hw_radio = (val >> 10) & 0x1; 2215 sc->rx_ant = (val >> 4) & 0x3; 2216 sc->tx_ant = (val >> 2) & 0x3; 2217 sc->nb_ant = val & 0x3; 2218 2219 DPRINTF("RF revision=%d\n", sc->rf_rev); 2220 2221 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2222 val = le16toh(val); 2223 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2224 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2225 2226 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2227 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2228 2229 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2230 val = le16toh(val); 2231 if ((val & 0xff) != 0xff) 2232 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2233 2234 /* Only [-10, 10] is valid */ 2235 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2236 sc->rssi_2ghz_corr = 0; 2237 2238 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2239 val = le16toh(val); 2240 if ((val & 0xff) != 0xff) 2241 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2242 2243 /* Only [-10, 10] is valid */ 2244 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2245 sc->rssi_5ghz_corr = 0; 2246 2247 if (sc->ext_2ghz_lna) 2248 sc->rssi_2ghz_corr -= 14; 2249 if (sc->ext_5ghz_lna) 2250 sc->rssi_5ghz_corr -= 14; 2251 2252 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2253 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2254 2255 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2256 val = le16toh(val); 2257 if ((val & 0xff) != 0xff) 2258 sc->rffreq = val & 0xff; 2259 2260 DPRINTF("RF freq=%d\n", sc->rffreq); 2261 2262 /* read Tx power for all a/b/g channels */ 2263 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2264 /* XXX default Tx power for 802.11a channels */ 2265 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2266 #ifdef RUM_DEBUG 2267 for (i = 0; i < 14; i++) 2268 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2269 #endif 2270 2271 /* read default values for BBP registers */ 2272 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2273 #ifdef RUM_DEBUG 2274 for (i = 0; i < 14; i++) { 2275 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2276 continue; 2277 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2278 sc->bbp_prom[i].val); 2279 } 2280 #endif 2281 } 2282 2283 static int 2284 rum_bbp_wakeup(struct rum_softc *sc) 2285 { 2286 unsigned int ntries; 2287 2288 for (ntries = 0; ntries < 100; ntries++) { 2289 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2290 break; 2291 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2292 if (rum_pause(sc, hz / 100)) 2293 break; 2294 } 2295 if (ntries == 100) { 2296 device_printf(sc->sc_dev, 2297 "timeout waiting for BBP/RF to wakeup\n"); 2298 return (ETIMEDOUT); 2299 } 2300 2301 return (0); 2302 } 2303 2304 static int 2305 rum_bbp_init(struct rum_softc *sc) 2306 { 2307 int i, ntries; 2308 2309 /* wait for BBP to be ready */ 2310 for (ntries = 0; ntries < 100; ntries++) { 2311 const uint8_t val = rum_bbp_read(sc, 0); 2312 if (val != 0 && val != 0xff) 2313 break; 2314 if (rum_pause(sc, hz / 100)) 2315 break; 2316 } 2317 if (ntries == 100) { 2318 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2319 return EIO; 2320 } 2321 2322 /* initialize BBP registers to default values */ 2323 for (i = 0; i < nitems(rum_def_bbp); i++) 2324 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2325 2326 /* write vendor-specific BBP values (from EEPROM) */ 2327 for (i = 0; i < 16; i++) { 2328 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2329 continue; 2330 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2331 } 2332 2333 return 0; 2334 } 2335 2336 static void 2337 rum_clr_shkey_regs(struct rum_softc *sc) 2338 { 2339 rum_write(sc, RT2573_SEC_CSR0, 0); 2340 rum_write(sc, RT2573_SEC_CSR1, 0); 2341 rum_write(sc, RT2573_SEC_CSR5, 0); 2342 } 2343 2344 static int 2345 rum_init(struct rum_softc *sc) 2346 { 2347 struct ieee80211com *ic = &sc->sc_ic; 2348 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2349 uint32_t tmp; 2350 int i, ret; 2351 2352 RUM_LOCK(sc); 2353 if (sc->sc_running) { 2354 ret = 0; 2355 goto end; 2356 } 2357 2358 /* initialize MAC registers to default values */ 2359 for (i = 0; i < nitems(rum_def_mac); i++) 2360 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2361 2362 /* reset some WME parameters to default values */ 2363 sc->wme_params[0].wmep_aifsn = 2; 2364 sc->wme_params[0].wmep_logcwmin = 4; 2365 sc->wme_params[0].wmep_logcwmax = 10; 2366 2367 /* set host ready */ 2368 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2369 rum_write(sc, RT2573_MAC_CSR1, 0); 2370 2371 /* wait for BBP/RF to wakeup */ 2372 if ((ret = rum_bbp_wakeup(sc)) != 0) 2373 goto end; 2374 2375 if ((ret = rum_bbp_init(sc)) != 0) 2376 goto end; 2377 2378 /* select default channel */ 2379 rum_select_band(sc, ic->ic_curchan); 2380 rum_select_antenna(sc); 2381 rum_set_chan(sc, ic->ic_curchan); 2382 2383 /* clear STA registers */ 2384 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2385 2386 /* clear security registers (if required) */ 2387 if (sc->sc_clr_shkeys == 0) { 2388 rum_clr_shkey_regs(sc); 2389 sc->sc_clr_shkeys = 1; 2390 } 2391 2392 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2393 2394 /* initialize ASIC */ 2395 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2396 2397 /* 2398 * Allocate Tx and Rx xfer queues. 2399 */ 2400 rum_setup_tx_list(sc); 2401 2402 /* update Rx filter */ 2403 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2404 2405 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2406 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2407 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2408 RT2573_DROP_ACKCTS; 2409 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2410 tmp |= RT2573_DROP_TODS; 2411 if (ic->ic_promisc == 0) 2412 tmp |= RT2573_DROP_NOT_TO_ME; 2413 } 2414 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2415 2416 sc->sc_running = 1; 2417 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2418 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2419 2420 end: RUM_UNLOCK(sc); 2421 2422 if (ret != 0) 2423 rum_stop(sc); 2424 2425 return ret; 2426 } 2427 2428 static void 2429 rum_stop(struct rum_softc *sc) 2430 { 2431 2432 RUM_LOCK(sc); 2433 if (!sc->sc_running) { 2434 RUM_UNLOCK(sc); 2435 return; 2436 } 2437 sc->sc_running = 0; 2438 RUM_UNLOCK(sc); 2439 2440 /* 2441 * Drain the USB transfers, if not already drained: 2442 */ 2443 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2444 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2445 2446 RUM_LOCK(sc); 2447 rum_unsetup_tx_list(sc); 2448 2449 /* disable Rx */ 2450 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2451 2452 /* reset ASIC */ 2453 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2454 rum_write(sc, RT2573_MAC_CSR1, 0); 2455 RUM_UNLOCK(sc); 2456 } 2457 2458 static void 2459 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2460 { 2461 struct usb_device_request req; 2462 uint16_t reg = RT2573_MCU_CODE_BASE; 2463 usb_error_t err; 2464 2465 /* copy firmware image into NIC */ 2466 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2467 err = rum_write(sc, reg, UGETDW(ucode)); 2468 if (err) { 2469 /* firmware already loaded ? */ 2470 device_printf(sc->sc_dev, "Firmware load " 2471 "failure! (ignored)\n"); 2472 break; 2473 } 2474 } 2475 2476 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2477 req.bRequest = RT2573_MCU_CNTL; 2478 USETW(req.wValue, RT2573_MCU_RUN); 2479 USETW(req.wIndex, 0); 2480 USETW(req.wLength, 0); 2481 2482 err = rum_do_request(sc, &req, NULL); 2483 if (err != 0) { 2484 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2485 usbd_errstr(err)); 2486 } 2487 2488 /* give the chip some time to boot */ 2489 rum_pause(sc, hz / 8); 2490 } 2491 2492 static int 2493 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2494 { 2495 struct ieee80211com *ic = vap->iv_ic; 2496 struct rum_vap *rvp = RUM_VAP(vap); 2497 struct mbuf *m = rvp->bcn_mbuf; 2498 const struct ieee80211_txparam *tp; 2499 struct rum_tx_desc desc; 2500 2501 RUM_LOCK_ASSERT(sc); 2502 2503 if (m == NULL) 2504 return EINVAL; 2505 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2506 return EINVAL; 2507 2508 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2509 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2510 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2511 2512 /* copy the Tx descriptor into NIC memory */ 2513 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2514 RT2573_TX_DESC_SIZE) != 0) 2515 return EIO; 2516 2517 /* copy beacon header and payload into NIC memory */ 2518 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2519 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2520 return EIO; 2521 2522 return 0; 2523 } 2524 2525 static int 2526 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2527 { 2528 struct rum_vap *rvp = RUM_VAP(vap); 2529 struct ieee80211_node *ni = vap->iv_bss; 2530 struct mbuf *m; 2531 2532 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2533 return EINVAL; 2534 2535 m = ieee80211_beacon_alloc(ni); 2536 if (m == NULL) 2537 return ENOMEM; 2538 2539 if (rvp->bcn_mbuf != NULL) 2540 m_freem(rvp->bcn_mbuf); 2541 2542 rvp->bcn_mbuf = m; 2543 2544 return (rum_set_beacon(sc, vap)); 2545 } 2546 2547 static void 2548 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2549 uint8_t rvp_id) 2550 { 2551 struct ieee80211vap *vap = data->vap; 2552 2553 rum_set_beacon(sc, vap); 2554 } 2555 2556 static void 2557 rum_update_beacon(struct ieee80211vap *vap, int item) 2558 { 2559 struct ieee80211com *ic = vap->iv_ic; 2560 struct rum_softc *sc = ic->ic_softc; 2561 struct rum_vap *rvp = RUM_VAP(vap); 2562 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2563 struct ieee80211_node *ni = vap->iv_bss; 2564 struct mbuf *m = rvp->bcn_mbuf; 2565 int mcast = 0; 2566 2567 RUM_LOCK(sc); 2568 if (m == NULL) { 2569 m = ieee80211_beacon_alloc(ni); 2570 if (m == NULL) { 2571 device_printf(sc->sc_dev, 2572 "%s: could not allocate beacon frame\n", __func__); 2573 RUM_UNLOCK(sc); 2574 return; 2575 } 2576 rvp->bcn_mbuf = m; 2577 } 2578 2579 switch (item) { 2580 case IEEE80211_BEACON_ERP: 2581 rum_update_slot(ic); 2582 break; 2583 case IEEE80211_BEACON_TIM: 2584 mcast = 1; /*TODO*/ 2585 break; 2586 default: 2587 break; 2588 } 2589 RUM_UNLOCK(sc); 2590 2591 setbit(bo->bo_flags, item); 2592 ieee80211_beacon_update(ni, m, mcast); 2593 2594 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2595 } 2596 2597 static int 2598 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2599 uint16_t base) 2600 { 2601 2602 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2603 return EIO; 2604 2605 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2606 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2607 k->wk_txmic, 8)) 2608 return EIO; 2609 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2610 k->wk_rxmic, 8)) 2611 return EIO; 2612 } 2613 2614 return 0; 2615 } 2616 2617 static void 2618 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2619 uint8_t rvp_id) 2620 { 2621 struct ieee80211_key *k = &data->key; 2622 uint8_t mode; 2623 2624 if (sc->sc_clr_shkeys == 0) { 2625 rum_clr_shkey_regs(sc); 2626 sc->sc_clr_shkeys = 1; 2627 } 2628 2629 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2630 if (mode == 0) 2631 goto print_err; 2632 2633 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2634 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2635 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2636 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2637 2638 /* Install the key. */ 2639 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2640 goto print_err; 2641 2642 /* Set cipher mode. */ 2643 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2644 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2645 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2646 != 0) 2647 goto print_err; 2648 2649 /* Mark this key as valid. */ 2650 if (rum_setbits(sc, RT2573_SEC_CSR0, 2651 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2652 goto print_err; 2653 2654 return; 2655 2656 print_err: 2657 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2658 __func__, k->wk_keyix, rvp_id); 2659 } 2660 2661 static void 2662 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2663 uint8_t rvp_id) 2664 { 2665 struct ieee80211_key *k = &data->key; 2666 2667 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2668 k->wk_keyix, rvp_id); 2669 rum_clrbits(sc, 2670 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2671 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2672 rum_clrbits(sc, RT2573_SEC_CSR0, 2673 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2674 } 2675 2676 static void 2677 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2678 uint8_t rvp_id) 2679 { 2680 struct ieee80211_key *k = &data->key; 2681 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2682 uint8_t mode; 2683 2684 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2685 if (mode == 0) 2686 goto print_err; 2687 2688 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2689 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2690 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2691 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2692 2693 /* Install the key. */ 2694 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2695 goto print_err; 2696 2697 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2698 buf[IEEE80211_ADDR_LEN] = mode; 2699 2700 /* Set transmitter address and cipher mode. */ 2701 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2702 buf, sizeof buf) != 0) 2703 goto print_err; 2704 2705 /* Enable key table lookup for this vap. */ 2706 if (sc->vap_key_count[rvp_id]++ == 0) 2707 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2708 goto print_err; 2709 2710 /* Mark this key as valid. */ 2711 if (rum_setbits(sc, 2712 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2713 1 << (k->wk_keyix % 32)) != 0) 2714 goto print_err; 2715 2716 return; 2717 2718 print_err: 2719 device_printf(sc->sc_dev, 2720 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2721 rvp_id); 2722 } 2723 2724 static void 2725 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2726 uint8_t rvp_id) 2727 { 2728 struct ieee80211_key *k = &data->key; 2729 2730 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2731 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2732 1 << (k->wk_keyix % 32)); 2733 sc->keys_bmap &= ~(1 << k->wk_keyix); 2734 if (--sc->vap_key_count[rvp_id] == 0) 2735 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2736 } 2737 2738 static int 2739 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2740 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2741 { 2742 struct rum_softc *sc = vap->iv_ic->ic_softc; 2743 uint8_t i; 2744 2745 if (!(&vap->iv_nw_keys[0] <= k && 2746 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2747 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 2748 RUM_LOCK(sc); 2749 for (i = 0; i < RT2573_ADDR_MAX; i++) { 2750 if ((sc->keys_bmap & (1 << i)) == 0) { 2751 sc->keys_bmap |= 1 << i; 2752 *keyix = i; 2753 break; 2754 } 2755 } 2756 RUM_UNLOCK(sc); 2757 if (i == RT2573_ADDR_MAX) { 2758 device_printf(sc->sc_dev, 2759 "%s: no free space in the key table\n", 2760 __func__); 2761 return 0; 2762 } 2763 } else 2764 *keyix = 0; 2765 } else { 2766 *keyix = k - vap->iv_nw_keys; 2767 } 2768 *rxkeyix = *keyix; 2769 return 1; 2770 } 2771 2772 static int 2773 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 2774 { 2775 struct rum_softc *sc = vap->iv_ic->ic_softc; 2776 int group; 2777 2778 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2779 /* Not for us. */ 2780 return 1; 2781 } 2782 2783 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 2784 2785 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 2786 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 2787 } 2788 2789 static int 2790 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 2791 { 2792 struct rum_softc *sc = vap->iv_ic->ic_softc; 2793 int group; 2794 2795 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2796 /* Not for us. */ 2797 return 1; 2798 } 2799 2800 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 2801 2802 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 2803 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 2804 } 2805 2806 static int 2807 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2808 const struct ieee80211_bpf_params *params) 2809 { 2810 struct rum_softc *sc = ni->ni_ic->ic_softc; 2811 int ret; 2812 2813 RUM_LOCK(sc); 2814 /* prevent management frames from being sent if we're not ready */ 2815 if (!sc->sc_running) { 2816 ret = ENETDOWN; 2817 goto bad; 2818 } 2819 if (sc->tx_nfree < RUM_TX_MINFREE) { 2820 ret = EIO; 2821 goto bad; 2822 } 2823 2824 if (params == NULL) { 2825 /* 2826 * Legacy path; interpret frame contents to decide 2827 * precisely how to send the frame. 2828 */ 2829 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 2830 goto bad; 2831 } else { 2832 /* 2833 * Caller supplied explicit parameters to use in 2834 * sending the frame. 2835 */ 2836 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 2837 goto bad; 2838 } 2839 RUM_UNLOCK(sc); 2840 2841 return 0; 2842 bad: 2843 RUM_UNLOCK(sc); 2844 m_freem(m); 2845 return ret; 2846 } 2847 2848 static void 2849 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2850 { 2851 struct ieee80211vap *vap = ni->ni_vap; 2852 struct rum_vap *rvp = RUM_VAP(vap); 2853 2854 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2855 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2856 2857 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2858 } 2859 2860 static void 2861 rum_ratectl_timeout(void *arg) 2862 { 2863 struct rum_vap *rvp = arg; 2864 struct ieee80211vap *vap = &rvp->vap; 2865 struct ieee80211com *ic = vap->iv_ic; 2866 2867 ieee80211_runtask(ic, &rvp->ratectl_task); 2868 } 2869 2870 static void 2871 rum_ratectl_task(void *arg, int pending) 2872 { 2873 struct rum_vap *rvp = arg; 2874 struct ieee80211vap *vap = &rvp->vap; 2875 struct rum_softc *sc = vap->iv_ic->ic_softc; 2876 struct ieee80211_node *ni; 2877 int ok[3], fail; 2878 int sum, success, retrycnt; 2879 2880 RUM_LOCK(sc); 2881 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 2882 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2883 2884 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 2885 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 2886 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 2887 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2888 2889 success = ok[0] + ok[1] + ok[2]; 2890 sum = success + fail; 2891 /* XXX at least */ 2892 retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 2893 2894 if (sum != 0) { 2895 ni = ieee80211_ref_node(vap->iv_bss); 2896 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2897 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2898 ieee80211_free_node(ni); 2899 } 2900 2901 /* count TX retry-fail as Tx errors */ 2902 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 2903 2904 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2905 RUM_UNLOCK(sc); 2906 } 2907 2908 static void 2909 rum_scan_start(struct ieee80211com *ic) 2910 { 2911 struct rum_softc *sc = ic->ic_softc; 2912 2913 RUM_LOCK(sc); 2914 rum_abort_tsf_sync(sc); 2915 rum_set_bssid(sc, ieee80211broadcastaddr); 2916 RUM_UNLOCK(sc); 2917 2918 } 2919 2920 static void 2921 rum_scan_end(struct ieee80211com *ic) 2922 { 2923 struct rum_softc *sc = ic->ic_softc; 2924 2925 RUM_LOCK(sc); 2926 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 2927 rum_enable_tsf_sync(sc); 2928 else 2929 rum_enable_tsf(sc); 2930 rum_set_bssid(sc, sc->sc_bssid); 2931 RUM_UNLOCK(sc); 2932 2933 } 2934 2935 static void 2936 rum_set_channel(struct ieee80211com *ic) 2937 { 2938 struct rum_softc *sc = ic->ic_softc; 2939 2940 RUM_LOCK(sc); 2941 rum_set_chan(sc, ic->ic_curchan); 2942 RUM_UNLOCK(sc); 2943 } 2944 2945 static int 2946 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2947 { 2948 struct ieee80211com *ic = &sc->sc_ic; 2949 int lna, agc, rssi; 2950 2951 lna = (raw >> 5) & 0x3; 2952 agc = raw & 0x1f; 2953 2954 if (lna == 0) { 2955 /* 2956 * No RSSI mapping 2957 * 2958 * NB: Since RSSI is relative to noise floor, -1 is 2959 * adequate for caller to know error happened. 2960 */ 2961 return -1; 2962 } 2963 2964 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2965 2966 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2967 rssi += sc->rssi_2ghz_corr; 2968 2969 if (lna == 1) 2970 rssi -= 64; 2971 else if (lna == 2) 2972 rssi -= 74; 2973 else if (lna == 3) 2974 rssi -= 90; 2975 } else { 2976 rssi += sc->rssi_5ghz_corr; 2977 2978 if (!sc->ext_5ghz_lna && lna != 1) 2979 rssi += 4; 2980 2981 if (lna == 1) 2982 rssi -= 64; 2983 else if (lna == 2) 2984 rssi -= 86; 2985 else if (lna == 3) 2986 rssi -= 100; 2987 } 2988 return rssi; 2989 } 2990 2991 static int 2992 rum_pause(struct rum_softc *sc, int timeout) 2993 { 2994 2995 usb_pause_mtx(&sc->sc_mtx, timeout); 2996 return (0); 2997 } 2998 2999 static device_method_t rum_methods[] = { 3000 /* Device interface */ 3001 DEVMETHOD(device_probe, rum_match), 3002 DEVMETHOD(device_attach, rum_attach), 3003 DEVMETHOD(device_detach, rum_detach), 3004 DEVMETHOD_END 3005 }; 3006 3007 static driver_t rum_driver = { 3008 .name = "rum", 3009 .methods = rum_methods, 3010 .size = sizeof(struct rum_softc), 3011 }; 3012 3013 static devclass_t rum_devclass; 3014 3015 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 3016 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3017 MODULE_DEPEND(rum, usb, 1, 1, 1); 3018 MODULE_VERSION(rum, 1); 3019