xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*-
25  * Ralink Technology RT2501USB/RT2601USB chipset driver
26  * http://www.ralinktech.com.tw/
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_ratectl.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include "usbdevs.h"
72 
73 #define	USB_DEBUG_VAR rum_debug
74 #include <dev/usb/usb_debug.h>
75 
76 #include <dev/usb/wlan/if_rumreg.h>
77 #include <dev/usb/wlan/if_rumvar.h>
78 #include <dev/usb/wlan/if_rumfw.h>
79 
80 #ifdef USB_DEBUG
81 static int rum_debug = 0;
82 
83 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
85     "Debug level");
86 #endif
87 
88 static const struct usb_device_id rum_devs[] = {
89 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
90     RUM_DEV(ABOCOM, HWU54DM),
91     RUM_DEV(ABOCOM, RT2573_2),
92     RUM_DEV(ABOCOM, RT2573_3),
93     RUM_DEV(ABOCOM, RT2573_4),
94     RUM_DEV(ABOCOM, WUG2700),
95     RUM_DEV(AMIT, CGWLUSB2GO),
96     RUM_DEV(ASUS, RT2573_1),
97     RUM_DEV(ASUS, RT2573_2),
98     RUM_DEV(BELKIN, F5D7050A),
99     RUM_DEV(BELKIN, F5D9050V3),
100     RUM_DEV(CISCOLINKSYS, WUSB54GC),
101     RUM_DEV(CISCOLINKSYS, WUSB54GR),
102     RUM_DEV(CONCEPTRONIC2, C54RU2),
103     RUM_DEV(COREGA, CGWLUSB2GL),
104     RUM_DEV(COREGA, CGWLUSB2GPX),
105     RUM_DEV(DICKSMITH, CWD854F),
106     RUM_DEV(DICKSMITH, RT2573),
107     RUM_DEV(EDIMAX, EW7318USG),
108     RUM_DEV(DLINK2, DWLG122C1),
109     RUM_DEV(DLINK2, WUA1340),
110     RUM_DEV(DLINK2, DWA111),
111     RUM_DEV(DLINK2, DWA110),
112     RUM_DEV(GIGABYTE, GNWB01GS),
113     RUM_DEV(GIGABYTE, GNWI05GS),
114     RUM_DEV(GIGASET, RT2573),
115     RUM_DEV(GOODWAY, RT2573),
116     RUM_DEV(GUILLEMOT, HWGUSB254LB),
117     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
118     RUM_DEV(HUAWEI3COM, WUB320G),
119     RUM_DEV(MELCO, G54HP),
120     RUM_DEV(MELCO, SG54HP),
121     RUM_DEV(MELCO, WLIUCG),
122     RUM_DEV(MELCO, WLRUCG),
123     RUM_DEV(MELCO, WLRUCGAOSS),
124     RUM_DEV(MSI, RT2573_1),
125     RUM_DEV(MSI, RT2573_2),
126     RUM_DEV(MSI, RT2573_3),
127     RUM_DEV(MSI, RT2573_4),
128     RUM_DEV(NOVATECH, RT2573),
129     RUM_DEV(PLANEX2, GWUS54HP),
130     RUM_DEV(PLANEX2, GWUS54MINI2),
131     RUM_DEV(PLANEX2, GWUSMM),
132     RUM_DEV(QCOM, RT2573),
133     RUM_DEV(QCOM, RT2573_2),
134     RUM_DEV(QCOM, RT2573_3),
135     RUM_DEV(RALINK, RT2573),
136     RUM_DEV(RALINK, RT2573_2),
137     RUM_DEV(RALINK, RT2671),
138     RUM_DEV(SITECOMEU, WL113R2),
139     RUM_DEV(SITECOMEU, WL172),
140     RUM_DEV(SPARKLAN, RT2573),
141     RUM_DEV(SURECOM, RT2573),
142 #undef RUM_DEV
143 };
144 
145 static device_probe_t rum_match;
146 static device_attach_t rum_attach;
147 static device_detach_t rum_detach;
148 
149 static usb_callback_t rum_bulk_read_callback;
150 static usb_callback_t rum_bulk_write_callback;
151 
152 static usb_error_t	rum_do_request(struct rum_softc *sc,
153 			    struct usb_device_request *req, void *data);
154 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
155 			    const char name[IFNAMSIZ], int unit, int opmode,
156 			    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
157 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
158 static void		rum_vap_delete(struct ieee80211vap *);
159 static void		rum_tx_free(struct rum_tx_data *, int);
160 static void		rum_setup_tx_list(struct rum_softc *);
161 static void		rum_unsetup_tx_list(struct rum_softc *);
162 static int		rum_newstate(struct ieee80211vap *,
163 			    enum ieee80211_state, int);
164 static void		rum_setup_tx_desc(struct rum_softc *,
165 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
166 			    int);
167 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
168 			    struct ieee80211_node *);
169 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
170 			    struct ieee80211_node *,
171 			    const struct ieee80211_bpf_params *);
172 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
173 			    struct ieee80211_node *);
174 static void		rum_start(struct ifnet *);
175 static int		rum_ioctl(struct ifnet *, u_long, caddr_t);
176 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
177 			    int);
178 static uint32_t		rum_read(struct rum_softc *, uint16_t);
179 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
180 			    int);
181 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
182 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
183 			    size_t);
184 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
185 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
186 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
187 static void		rum_select_antenna(struct rum_softc *);
188 static void		rum_enable_mrr(struct rum_softc *);
189 static void		rum_set_txpreamble(struct rum_softc *);
190 static void		rum_set_basicrates(struct rum_softc *);
191 static void		rum_select_band(struct rum_softc *,
192 			    struct ieee80211_channel *);
193 static void		rum_set_chan(struct rum_softc *,
194 			    struct ieee80211_channel *);
195 static void		rum_enable_tsf_sync(struct rum_softc *);
196 static void		rum_enable_tsf(struct rum_softc *);
197 static void		rum_update_slot(struct ifnet *);
198 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
199 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
200 static void		rum_update_mcast(struct ifnet *);
201 static void		rum_update_promisc(struct ifnet *);
202 static void		rum_setpromisc(struct rum_softc *);
203 static const char	*rum_get_rf(int);
204 static void		rum_read_eeprom(struct rum_softc *);
205 static int		rum_bbp_init(struct rum_softc *);
206 static void		rum_init_locked(struct rum_softc *);
207 static void		rum_init(void *);
208 static void		rum_stop(struct rum_softc *);
209 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
210 			    size_t);
211 static void		rum_prepare_beacon(struct rum_softc *,
212 			    struct ieee80211vap *);
213 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
214 			    const struct ieee80211_bpf_params *);
215 static void		rum_scan_start(struct ieee80211com *);
216 static void		rum_scan_end(struct ieee80211com *);
217 static void		rum_set_channel(struct ieee80211com *);
218 static int		rum_get_rssi(struct rum_softc *, uint8_t);
219 static void		rum_ratectl_start(struct rum_softc *,
220 			    struct ieee80211_node *);
221 static void		rum_ratectl_timeout(void *);
222 static void		rum_ratectl_task(void *, int);
223 static int		rum_pause(struct rum_softc *, int);
224 
225 static const struct {
226 	uint32_t	reg;
227 	uint32_t	val;
228 } rum_def_mac[] = {
229 	{ RT2573_TXRX_CSR0,  0x025fb032 },
230 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
231 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
232 	{ RT2573_TXRX_CSR3,  0x00858687 },
233 	{ RT2573_TXRX_CSR7,  0x2e31353b },
234 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
235 	{ RT2573_TXRX_CSR15, 0x0000000f },
236 	{ RT2573_MAC_CSR6,   0x00000fff },
237 	{ RT2573_MAC_CSR8,   0x016c030a },
238 	{ RT2573_MAC_CSR10,  0x00000718 },
239 	{ RT2573_MAC_CSR12,  0x00000004 },
240 	{ RT2573_MAC_CSR13,  0x00007f00 },
241 	{ RT2573_SEC_CSR0,   0x00000000 },
242 	{ RT2573_SEC_CSR1,   0x00000000 },
243 	{ RT2573_SEC_CSR5,   0x00000000 },
244 	{ RT2573_PHY_CSR1,   0x000023b0 },
245 	{ RT2573_PHY_CSR5,   0x00040a06 },
246 	{ RT2573_PHY_CSR6,   0x00080606 },
247 	{ RT2573_PHY_CSR7,   0x00000408 },
248 	{ RT2573_AIFSN_CSR,  0x00002273 },
249 	{ RT2573_CWMIN_CSR,  0x00002344 },
250 	{ RT2573_CWMAX_CSR,  0x000034aa }
251 };
252 
253 static const struct {
254 	uint8_t	reg;
255 	uint8_t	val;
256 } rum_def_bbp[] = {
257 	{   3, 0x80 },
258 	{  15, 0x30 },
259 	{  17, 0x20 },
260 	{  21, 0xc8 },
261 	{  22, 0x38 },
262 	{  23, 0x06 },
263 	{  24, 0xfe },
264 	{  25, 0x0a },
265 	{  26, 0x0d },
266 	{  32, 0x0b },
267 	{  34, 0x12 },
268 	{  37, 0x07 },
269 	{  39, 0xf8 },
270 	{  41, 0x60 },
271 	{  53, 0x10 },
272 	{  54, 0x18 },
273 	{  60, 0x10 },
274 	{  61, 0x04 },
275 	{  62, 0x04 },
276 	{  75, 0xfe },
277 	{  86, 0xfe },
278 	{  88, 0xfe },
279 	{  90, 0x0f },
280 	{  99, 0x00 },
281 	{ 102, 0x16 },
282 	{ 107, 0x04 }
283 };
284 
285 static const struct rfprog {
286 	uint8_t		chan;
287 	uint32_t	r1, r2, r3, r4;
288 }  rum_rf5226[] = {
289 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
290 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
291 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
292 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
293 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
294 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
295 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
296 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
297 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
298 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
299 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
300 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
301 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
302 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
303 
304 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
305 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
306 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
307 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
308 
309 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
310 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
311 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
312 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
313 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
314 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
315 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
316 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
317 
318 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
319 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
320 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
321 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
322 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
323 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
324 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
325 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
326 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
327 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
328 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
329 
330 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
331 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
332 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
333 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
334 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
335 }, rum_rf5225[] = {
336 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
337 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
338 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
339 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
340 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
341 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
342 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
343 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
344 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
345 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
346 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
347 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
348 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
349 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
350 
351 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
352 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
353 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
354 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
355 
356 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
357 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
358 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
359 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
360 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
361 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
362 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
363 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
364 
365 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
366 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
367 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
368 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
369 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
370 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
371 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
372 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
373 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
374 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
375 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
376 
377 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
378 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
379 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
380 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
381 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
382 };
383 
384 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
385 	[RUM_BULK_WR] = {
386 		.type = UE_BULK,
387 		.endpoint = UE_ADDR_ANY,
388 		.direction = UE_DIR_OUT,
389 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
390 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
391 		.callback = rum_bulk_write_callback,
392 		.timeout = 5000,	/* ms */
393 	},
394 	[RUM_BULK_RD] = {
395 		.type = UE_BULK,
396 		.endpoint = UE_ADDR_ANY,
397 		.direction = UE_DIR_IN,
398 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
399 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
400 		.callback = rum_bulk_read_callback,
401 	},
402 };
403 
404 static int
405 rum_match(device_t self)
406 {
407 	struct usb_attach_arg *uaa = device_get_ivars(self);
408 
409 	if (uaa->usb_mode != USB_MODE_HOST)
410 		return (ENXIO);
411 	if (uaa->info.bConfigIndex != 0)
412 		return (ENXIO);
413 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
414 		return (ENXIO);
415 
416 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
417 }
418 
419 static int
420 rum_attach(device_t self)
421 {
422 	struct usb_attach_arg *uaa = device_get_ivars(self);
423 	struct rum_softc *sc = device_get_softc(self);
424 	struct ieee80211com *ic;
425 	struct ifnet *ifp;
426 	uint8_t iface_index, bands;
427 	uint32_t tmp;
428 	int error, ntries;
429 
430 	device_set_usb_desc(self);
431 	sc->sc_udev = uaa->device;
432 	sc->sc_dev = self;
433 
434 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
435 	    MTX_NETWORK_LOCK, MTX_DEF);
436 
437 	iface_index = RT2573_IFACE_INDEX;
438 	error = usbd_transfer_setup(uaa->device, &iface_index,
439 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
440 	if (error) {
441 		device_printf(self, "could not allocate USB transfers, "
442 		    "err=%s\n", usbd_errstr(error));
443 		goto detach;
444 	}
445 
446 	RUM_LOCK(sc);
447 	/* retrieve RT2573 rev. no */
448 	for (ntries = 0; ntries < 100; ntries++) {
449 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
450 			break;
451 		if (rum_pause(sc, hz / 100))
452 			break;
453 	}
454 	if (ntries == 100) {
455 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
456 		RUM_UNLOCK(sc);
457 		goto detach;
458 	}
459 
460 	/* retrieve MAC address and various other things from EEPROM */
461 	rum_read_eeprom(sc);
462 
463 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
464 	    tmp, rum_get_rf(sc->rf_rev));
465 
466 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
467 	RUM_UNLOCK(sc);
468 
469 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
470 	if (ifp == NULL) {
471 		device_printf(sc->sc_dev, "can not if_alloc()\n");
472 		goto detach;
473 	}
474 	ic = ifp->if_l2com;
475 
476 	ifp->if_softc = sc;
477 	if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
478 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
479 	ifp->if_init = rum_init;
480 	ifp->if_ioctl = rum_ioctl;
481 	ifp->if_start = rum_start;
482 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
483 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
484 	IFQ_SET_READY(&ifp->if_snd);
485 
486 	ic->ic_ifp = ifp;
487 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
488 
489 	/* set device capabilities */
490 	ic->ic_caps =
491 	      IEEE80211_C_STA		/* station mode supported */
492 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
493 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
494 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
495 	    | IEEE80211_C_TXPMGT	/* tx power management */
496 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
497 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
498 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
499 	    | IEEE80211_C_WPA		/* 802.11i */
500 	    ;
501 
502 	bands = 0;
503 	setbit(&bands, IEEE80211_MODE_11B);
504 	setbit(&bands, IEEE80211_MODE_11G);
505 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
506 		setbit(&bands, IEEE80211_MODE_11A);
507 	ieee80211_init_channels(ic, NULL, &bands);
508 
509 	ieee80211_ifattach(ic, sc->sc_bssid);
510 	ic->ic_update_promisc = rum_update_promisc;
511 	ic->ic_raw_xmit = rum_raw_xmit;
512 	ic->ic_scan_start = rum_scan_start;
513 	ic->ic_scan_end = rum_scan_end;
514 	ic->ic_set_channel = rum_set_channel;
515 
516 	ic->ic_vap_create = rum_vap_create;
517 	ic->ic_vap_delete = rum_vap_delete;
518 	ic->ic_update_mcast = rum_update_mcast;
519 
520 	ieee80211_radiotap_attach(ic,
521 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
522 		RT2573_TX_RADIOTAP_PRESENT,
523 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
524 		RT2573_RX_RADIOTAP_PRESENT);
525 
526 	if (bootverbose)
527 		ieee80211_announce(ic);
528 
529 	return (0);
530 
531 detach:
532 	rum_detach(self);
533 	return (ENXIO);			/* failure */
534 }
535 
536 static int
537 rum_detach(device_t self)
538 {
539 	struct rum_softc *sc = device_get_softc(self);
540 	struct ifnet *ifp = sc->sc_ifp;
541 	struct ieee80211com *ic;
542 
543 	/* stop all USB transfers */
544 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
545 
546 	/* free TX list, if any */
547 	RUM_LOCK(sc);
548 	rum_unsetup_tx_list(sc);
549 	RUM_UNLOCK(sc);
550 
551 	if (ifp) {
552 		ic = ifp->if_l2com;
553 		ieee80211_ifdetach(ic);
554 		if_free(ifp);
555 	}
556 	mtx_destroy(&sc->sc_mtx);
557 
558 	return (0);
559 }
560 
561 static usb_error_t
562 rum_do_request(struct rum_softc *sc,
563     struct usb_device_request *req, void *data)
564 {
565 	usb_error_t err;
566 	int ntries = 10;
567 
568 	while (ntries--) {
569 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
570 		    req, data, 0, NULL, 250 /* ms */);
571 		if (err == 0)
572 			break;
573 
574 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
575 		    usbd_errstr(err));
576 		if (rum_pause(sc, hz / 100))
577 			break;
578 	}
579 	return (err);
580 }
581 
582 static struct ieee80211vap *
583 rum_vap_create(struct ieee80211com *ic,
584 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
585 	const uint8_t bssid[IEEE80211_ADDR_LEN],
586 	const uint8_t mac[IEEE80211_ADDR_LEN])
587 {
588 	struct rum_softc *sc = ic->ic_ifp->if_softc;
589 	struct rum_vap *rvp;
590 	struct ieee80211vap *vap;
591 
592 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
593 		return NULL;
594 	rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap),
595 	    M_80211_VAP, M_NOWAIT | M_ZERO);
596 	if (rvp == NULL)
597 		return NULL;
598 	vap = &rvp->vap;
599 	/* enable s/w bmiss handling for sta mode */
600 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
601 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
602 
603 	/* override state transition machine */
604 	rvp->newstate = vap->iv_newstate;
605 	vap->iv_newstate = rum_newstate;
606 
607 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
608 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
609 	ieee80211_ratectl_init(vap);
610 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
611 	/* complete setup */
612 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
613 	ic->ic_opmode = opmode;
614 	return vap;
615 }
616 
617 static void
618 rum_vap_delete(struct ieee80211vap *vap)
619 {
620 	struct rum_vap *rvp = RUM_VAP(vap);
621 	struct ieee80211com *ic = vap->iv_ic;
622 
623 	usb_callout_drain(&rvp->ratectl_ch);
624 	ieee80211_draintask(ic, &rvp->ratectl_task);
625 	ieee80211_ratectl_deinit(vap);
626 	ieee80211_vap_detach(vap);
627 	free(rvp, M_80211_VAP);
628 }
629 
630 static void
631 rum_tx_free(struct rum_tx_data *data, int txerr)
632 {
633 	struct rum_softc *sc = data->sc;
634 
635 	if (data->m != NULL) {
636 		if (data->m->m_flags & M_TXCB)
637 			ieee80211_process_callback(data->ni, data->m,
638 			    txerr ? ETIMEDOUT : 0);
639 		m_freem(data->m);
640 		data->m = NULL;
641 
642 		ieee80211_free_node(data->ni);
643 		data->ni = NULL;
644 	}
645 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
646 	sc->tx_nfree++;
647 }
648 
649 static void
650 rum_setup_tx_list(struct rum_softc *sc)
651 {
652 	struct rum_tx_data *data;
653 	int i;
654 
655 	sc->tx_nfree = 0;
656 	STAILQ_INIT(&sc->tx_q);
657 	STAILQ_INIT(&sc->tx_free);
658 
659 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
660 		data = &sc->tx_data[i];
661 
662 		data->sc = sc;
663 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
664 		sc->tx_nfree++;
665 	}
666 }
667 
668 static void
669 rum_unsetup_tx_list(struct rum_softc *sc)
670 {
671 	struct rum_tx_data *data;
672 	int i;
673 
674 	/* make sure any subsequent use of the queues will fail */
675 	sc->tx_nfree = 0;
676 	STAILQ_INIT(&sc->tx_q);
677 	STAILQ_INIT(&sc->tx_free);
678 
679 	/* free up all node references and mbufs */
680 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
681 		data = &sc->tx_data[i];
682 
683 		if (data->m != NULL) {
684 			m_freem(data->m);
685 			data->m = NULL;
686 		}
687 		if (data->ni != NULL) {
688 			ieee80211_free_node(data->ni);
689 			data->ni = NULL;
690 		}
691 	}
692 }
693 
694 static int
695 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
696 {
697 	struct rum_vap *rvp = RUM_VAP(vap);
698 	struct ieee80211com *ic = vap->iv_ic;
699 	struct rum_softc *sc = ic->ic_ifp->if_softc;
700 	const struct ieee80211_txparam *tp;
701 	enum ieee80211_state ostate;
702 	struct ieee80211_node *ni;
703 	uint32_t tmp;
704 
705 	ostate = vap->iv_state;
706 	DPRINTF("%s -> %s\n",
707 		ieee80211_state_name[ostate],
708 		ieee80211_state_name[nstate]);
709 
710 	IEEE80211_UNLOCK(ic);
711 	RUM_LOCK(sc);
712 	usb_callout_stop(&rvp->ratectl_ch);
713 
714 	switch (nstate) {
715 	case IEEE80211_S_INIT:
716 		if (ostate == IEEE80211_S_RUN) {
717 			/* abort TSF synchronization */
718 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
719 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
720 		}
721 		break;
722 
723 	case IEEE80211_S_RUN:
724 		ni = ieee80211_ref_node(vap->iv_bss);
725 
726 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
727 			rum_update_slot(ic->ic_ifp);
728 			rum_enable_mrr(sc);
729 			rum_set_txpreamble(sc);
730 			rum_set_basicrates(sc);
731 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
732 			rum_set_bssid(sc, sc->sc_bssid);
733 		}
734 
735 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
736 		    vap->iv_opmode == IEEE80211_M_IBSS)
737 			rum_prepare_beacon(sc, vap);
738 
739 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
740 			rum_enable_tsf_sync(sc);
741 		else
742 			rum_enable_tsf(sc);
743 
744 		/* enable automatic rate adaptation */
745 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
746 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
747 			rum_ratectl_start(sc, ni);
748 		ieee80211_free_node(ni);
749 		break;
750 	default:
751 		break;
752 	}
753 	RUM_UNLOCK(sc);
754 	IEEE80211_LOCK(ic);
755 	return (rvp->newstate(vap, nstate, arg));
756 }
757 
758 static void
759 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
760 {
761 	struct rum_softc *sc = usbd_xfer_softc(xfer);
762 	struct ifnet *ifp = sc->sc_ifp;
763 	struct ieee80211vap *vap;
764 	struct rum_tx_data *data;
765 	struct mbuf *m;
766 	struct usb_page_cache *pc;
767 	unsigned int len;
768 	int actlen, sumlen;
769 
770 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
771 
772 	switch (USB_GET_STATE(xfer)) {
773 	case USB_ST_TRANSFERRED:
774 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
775 
776 		/* free resources */
777 		data = usbd_xfer_get_priv(xfer);
778 		rum_tx_free(data, 0);
779 		usbd_xfer_set_priv(xfer, NULL);
780 
781 		ifp->if_opackets++;
782 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
783 
784 		/* FALLTHROUGH */
785 	case USB_ST_SETUP:
786 tr_setup:
787 		data = STAILQ_FIRST(&sc->tx_q);
788 		if (data) {
789 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
790 			m = data->m;
791 
792 			if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) {
793 				DPRINTFN(0, "data overflow, %u bytes\n",
794 				    m->m_pkthdr.len);
795 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
796 			}
797 			pc = usbd_xfer_get_frame(xfer, 0);
798 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
799 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
800 			    m->m_pkthdr.len);
801 
802 			vap = data->ni->ni_vap;
803 			if (ieee80211_radiotap_active_vap(vap)) {
804 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
805 
806 				tap->wt_flags = 0;
807 				tap->wt_rate = data->rate;
808 				tap->wt_antenna = sc->tx_ant;
809 
810 				ieee80211_radiotap_tx(vap, m);
811 			}
812 
813 			/* align end on a 4-bytes boundary */
814 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
815 			if ((len % 64) == 0)
816 				len += 4;
817 
818 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
819 			    m->m_pkthdr.len, len);
820 
821 			usbd_xfer_set_frame_len(xfer, 0, len);
822 			usbd_xfer_set_priv(xfer, data);
823 
824 			usbd_transfer_submit(xfer);
825 		}
826 		RUM_UNLOCK(sc);
827 		rum_start(ifp);
828 		RUM_LOCK(sc);
829 		break;
830 
831 	default:			/* Error */
832 		DPRINTFN(11, "transfer error, %s\n",
833 		    usbd_errstr(error));
834 
835 		ifp->if_oerrors++;
836 		data = usbd_xfer_get_priv(xfer);
837 		if (data != NULL) {
838 			rum_tx_free(data, error);
839 			usbd_xfer_set_priv(xfer, NULL);
840 		}
841 
842 		if (error != USB_ERR_CANCELLED) {
843 			if (error == USB_ERR_TIMEOUT)
844 				device_printf(sc->sc_dev, "device timeout\n");
845 
846 			/*
847 			 * Try to clear stall first, also if other
848 			 * errors occur, hence clearing stall
849 			 * introduces a 50 ms delay:
850 			 */
851 			usbd_xfer_set_stall(xfer);
852 			goto tr_setup;
853 		}
854 		break;
855 	}
856 }
857 
858 static void
859 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
860 {
861 	struct rum_softc *sc = usbd_xfer_softc(xfer);
862 	struct ifnet *ifp = sc->sc_ifp;
863 	struct ieee80211com *ic = ifp->if_l2com;
864 	struct ieee80211_node *ni;
865 	struct mbuf *m = NULL;
866 	struct usb_page_cache *pc;
867 	uint32_t flags;
868 	uint8_t rssi = 0;
869 	int len;
870 
871 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
872 
873 	switch (USB_GET_STATE(xfer)) {
874 	case USB_ST_TRANSFERRED:
875 
876 		DPRINTFN(15, "rx done, actlen=%d\n", len);
877 
878 		if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
879 			DPRINTF("%s: xfer too short %d\n",
880 			    device_get_nameunit(sc->sc_dev), len);
881 			ifp->if_ierrors++;
882 			goto tr_setup;
883 		}
884 
885 		len -= RT2573_RX_DESC_SIZE;
886 		pc = usbd_xfer_get_frame(xfer, 0);
887 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
888 
889 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
890 		flags = le32toh(sc->sc_rx_desc.flags);
891 		if (flags & RT2573_RX_CRC_ERROR) {
892 			/*
893 		         * This should not happen since we did not
894 		         * request to receive those frames when we
895 		         * filled RUM_TXRX_CSR2:
896 		         */
897 			DPRINTFN(5, "PHY or CRC error\n");
898 			ifp->if_ierrors++;
899 			goto tr_setup;
900 		}
901 
902 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
903 		if (m == NULL) {
904 			DPRINTF("could not allocate mbuf\n");
905 			ifp->if_ierrors++;
906 			goto tr_setup;
907 		}
908 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
909 		    mtod(m, uint8_t *), len);
910 
911 		/* finalize mbuf */
912 		m->m_pkthdr.rcvif = ifp;
913 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
914 
915 		if (ieee80211_radiotap_active(ic)) {
916 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
917 
918 			/* XXX read tsf */
919 			tap->wr_flags = 0;
920 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
921 			    (flags & RT2573_RX_OFDM) ?
922 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
923 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
924 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
925 			tap->wr_antenna = sc->rx_ant;
926 		}
927 		/* FALLTHROUGH */
928 	case USB_ST_SETUP:
929 tr_setup:
930 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
931 		usbd_transfer_submit(xfer);
932 
933 		/*
934 		 * At the end of a USB callback it is always safe to unlock
935 		 * the private mutex of a device! That is why we do the
936 		 * "ieee80211_input" here, and not some lines up!
937 		 */
938 		RUM_UNLOCK(sc);
939 		if (m) {
940 			ni = ieee80211_find_rxnode(ic,
941 			    mtod(m, struct ieee80211_frame_min *));
942 			if (ni != NULL) {
943 				(void) ieee80211_input(ni, m, rssi,
944 				    RT2573_NOISE_FLOOR);
945 				ieee80211_free_node(ni);
946 			} else
947 				(void) ieee80211_input_all(ic, m, rssi,
948 				    RT2573_NOISE_FLOOR);
949 		}
950 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
951 		    !IFQ_IS_EMPTY(&ifp->if_snd))
952 			rum_start(ifp);
953 		RUM_LOCK(sc);
954 		return;
955 
956 	default:			/* Error */
957 		if (error != USB_ERR_CANCELLED) {
958 			/* try to clear stall first */
959 			usbd_xfer_set_stall(xfer);
960 			goto tr_setup;
961 		}
962 		return;
963 	}
964 }
965 
966 static uint8_t
967 rum_plcp_signal(int rate)
968 {
969 	switch (rate) {
970 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
971 	case 12:	return 0xb;
972 	case 18:	return 0xf;
973 	case 24:	return 0xa;
974 	case 36:	return 0xe;
975 	case 48:	return 0x9;
976 	case 72:	return 0xd;
977 	case 96:	return 0x8;
978 	case 108:	return 0xc;
979 
980 	/* CCK rates (NB: not IEEE std, device-specific) */
981 	case 2:		return 0x0;
982 	case 4:		return 0x1;
983 	case 11:	return 0x2;
984 	case 22:	return 0x3;
985 	}
986 	return 0xff;		/* XXX unsupported/unknown rate */
987 }
988 
989 static void
990 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
991     uint32_t flags, uint16_t xflags, int len, int rate)
992 {
993 	struct ifnet *ifp = sc->sc_ifp;
994 	struct ieee80211com *ic = ifp->if_l2com;
995 	uint16_t plcp_length;
996 	int remainder;
997 
998 	desc->flags = htole32(flags);
999 	desc->flags |= htole32(RT2573_TX_VALID);
1000 	desc->flags |= htole32(len << 16);
1001 
1002 	desc->xflags = htole16(xflags);
1003 
1004 	desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) |
1005 	    RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
1006 
1007 	/* setup PLCP fields */
1008 	desc->plcp_signal  = rum_plcp_signal(rate);
1009 	desc->plcp_service = 4;
1010 
1011 	len += IEEE80211_CRC_LEN;
1012 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1013 		desc->flags |= htole32(RT2573_TX_OFDM);
1014 
1015 		plcp_length = len & 0xfff;
1016 		desc->plcp_length_hi = plcp_length >> 6;
1017 		desc->plcp_length_lo = plcp_length & 0x3f;
1018 	} else {
1019 		plcp_length = (16 * len + rate - 1) / rate;
1020 		if (rate == 22) {
1021 			remainder = (16 * len) % 22;
1022 			if (remainder != 0 && remainder < 7)
1023 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1024 		}
1025 		desc->plcp_length_hi = plcp_length >> 8;
1026 		desc->plcp_length_lo = plcp_length & 0xff;
1027 
1028 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1029 			desc->plcp_signal |= 0x08;
1030 	}
1031 }
1032 
1033 static int
1034 rum_sendprot(struct rum_softc *sc,
1035     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1036 {
1037 	struct ieee80211com *ic = ni->ni_ic;
1038 	const struct ieee80211_frame *wh;
1039 	struct rum_tx_data *data;
1040 	struct mbuf *mprot;
1041 	int protrate, ackrate, pktlen, flags, isshort;
1042 	uint16_t dur;
1043 
1044 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1045 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1046 	    ("protection %d", prot));
1047 
1048 	wh = mtod(m, const struct ieee80211_frame *);
1049 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1050 
1051 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1052 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1053 
1054 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1055 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1056 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1057 	flags = RT2573_TX_MORE_FRAG;
1058 	if (prot == IEEE80211_PROT_RTSCTS) {
1059 		/* NB: CTS is the same size as an ACK */
1060 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1061 		flags |= RT2573_TX_NEED_ACK;
1062 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1063 	} else {
1064 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1065 	}
1066 	if (mprot == NULL) {
1067 		/* XXX stat + msg */
1068 		return (ENOBUFS);
1069 	}
1070 	data = STAILQ_FIRST(&sc->tx_free);
1071 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1072 	sc->tx_nfree--;
1073 
1074 	data->m = mprot;
1075 	data->ni = ieee80211_ref_node(ni);
1076 	data->rate = protrate;
1077 	rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);
1078 
1079 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1080 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1081 
1082 	return 0;
1083 }
1084 
1085 static int
1086 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1087 {
1088 	struct ieee80211vap *vap = ni->ni_vap;
1089 	struct ifnet *ifp = sc->sc_ifp;
1090 	struct ieee80211com *ic = ifp->if_l2com;
1091 	struct rum_tx_data *data;
1092 	struct ieee80211_frame *wh;
1093 	const struct ieee80211_txparam *tp;
1094 	struct ieee80211_key *k;
1095 	uint32_t flags = 0;
1096 	uint16_t dur;
1097 
1098 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1099 
1100 	data = STAILQ_FIRST(&sc->tx_free);
1101 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1102 	sc->tx_nfree--;
1103 
1104 	wh = mtod(m0, struct ieee80211_frame *);
1105 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1106 		k = ieee80211_crypto_encap(ni, m0);
1107 		if (k == NULL) {
1108 			m_freem(m0);
1109 			return ENOBUFS;
1110 		}
1111 		wh = mtod(m0, struct ieee80211_frame *);
1112 	}
1113 
1114 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1115 
1116 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1117 		flags |= RT2573_TX_NEED_ACK;
1118 
1119 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1120 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1121 		*(uint16_t *)wh->i_dur = htole16(dur);
1122 
1123 		/* tell hardware to add timestamp for probe responses */
1124 		if ((wh->i_fc[0] &
1125 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1126 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1127 			flags |= RT2573_TX_TIMESTAMP;
1128 	}
1129 
1130 	data->m = m0;
1131 	data->ni = ni;
1132 	data->rate = tp->mgmtrate;
1133 
1134 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);
1135 
1136 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1137 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1138 
1139 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1140 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1141 
1142 	return (0);
1143 }
1144 
1145 static int
1146 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1147     const struct ieee80211_bpf_params *params)
1148 {
1149 	struct ieee80211com *ic = ni->ni_ic;
1150 	struct rum_tx_data *data;
1151 	uint32_t flags;
1152 	int rate, error;
1153 
1154 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1155 	KASSERT(params != NULL, ("no raw xmit params"));
1156 
1157 	rate = params->ibp_rate0;
1158 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1159 		m_freem(m0);
1160 		return EINVAL;
1161 	}
1162 	flags = 0;
1163 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1164 		flags |= RT2573_TX_NEED_ACK;
1165 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1166 		error = rum_sendprot(sc, m0, ni,
1167 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1168 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1169 		    rate);
1170 		if (error || sc->tx_nfree == 0) {
1171 			m_freem(m0);
1172 			return ENOBUFS;
1173 		}
1174 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1175 	}
1176 
1177 	data = STAILQ_FIRST(&sc->tx_free);
1178 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1179 	sc->tx_nfree--;
1180 
1181 	data->m = m0;
1182 	data->ni = ni;
1183 	data->rate = rate;
1184 
1185 	/* XXX need to setup descriptor ourself */
1186 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1187 
1188 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1189 	    m0->m_pkthdr.len, rate);
1190 
1191 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1192 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1193 
1194 	return 0;
1195 }
1196 
1197 static int
1198 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1199 {
1200 	struct ieee80211vap *vap = ni->ni_vap;
1201 	struct ifnet *ifp = sc->sc_ifp;
1202 	struct ieee80211com *ic = ifp->if_l2com;
1203 	struct rum_tx_data *data;
1204 	struct ieee80211_frame *wh;
1205 	const struct ieee80211_txparam *tp;
1206 	struct ieee80211_key *k;
1207 	uint32_t flags = 0;
1208 	uint16_t dur;
1209 	int error, rate;
1210 
1211 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1212 
1213 	wh = mtod(m0, struct ieee80211_frame *);
1214 
1215 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1216 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1217 		rate = tp->mcastrate;
1218 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1219 		rate = tp->ucastrate;
1220 	else
1221 		rate = ni->ni_txrate;
1222 
1223 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1224 		k = ieee80211_crypto_encap(ni, m0);
1225 		if (k == NULL) {
1226 			m_freem(m0);
1227 			return ENOBUFS;
1228 		}
1229 
1230 		/* packet header may have moved, reset our local pointer */
1231 		wh = mtod(m0, struct ieee80211_frame *);
1232 	}
1233 
1234 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1235 		int prot = IEEE80211_PROT_NONE;
1236 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1237 			prot = IEEE80211_PROT_RTSCTS;
1238 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1239 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1240 			prot = ic->ic_protmode;
1241 		if (prot != IEEE80211_PROT_NONE) {
1242 			error = rum_sendprot(sc, m0, ni, prot, rate);
1243 			if (error || sc->tx_nfree == 0) {
1244 				m_freem(m0);
1245 				return ENOBUFS;
1246 			}
1247 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1248 		}
1249 	}
1250 
1251 	data = STAILQ_FIRST(&sc->tx_free);
1252 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1253 	sc->tx_nfree--;
1254 
1255 	data->m = m0;
1256 	data->ni = ni;
1257 	data->rate = rate;
1258 
1259 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1260 		flags |= RT2573_TX_NEED_ACK;
1261 		flags |= RT2573_TX_MORE_FRAG;
1262 
1263 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1264 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1265 		*(uint16_t *)wh->i_dur = htole16(dur);
1266 	}
1267 
1268 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1269 
1270 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1271 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1272 
1273 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1274 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1275 
1276 	return 0;
1277 }
1278 
1279 static void
1280 rum_start(struct ifnet *ifp)
1281 {
1282 	struct rum_softc *sc = ifp->if_softc;
1283 	struct ieee80211_node *ni;
1284 	struct mbuf *m;
1285 
1286 	RUM_LOCK(sc);
1287 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1288 		RUM_UNLOCK(sc);
1289 		return;
1290 	}
1291 	for (;;) {
1292 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1293 		if (m == NULL)
1294 			break;
1295 		if (sc->tx_nfree < RUM_TX_MINFREE) {
1296 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1297 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1298 			break;
1299 		}
1300 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1301 		if (rum_tx_data(sc, m, ni) != 0) {
1302 			ieee80211_free_node(ni);
1303 			ifp->if_oerrors++;
1304 			break;
1305 		}
1306 	}
1307 	RUM_UNLOCK(sc);
1308 }
1309 
1310 static int
1311 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1312 {
1313 	struct rum_softc *sc = ifp->if_softc;
1314 	struct ieee80211com *ic = ifp->if_l2com;
1315 	struct ifreq *ifr = (struct ifreq *) data;
1316 	int error = 0, startall = 0;
1317 
1318 	switch (cmd) {
1319 	case SIOCSIFFLAGS:
1320 		RUM_LOCK(sc);
1321 		if (ifp->if_flags & IFF_UP) {
1322 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1323 				rum_init_locked(sc);
1324 				startall = 1;
1325 			} else
1326 				rum_setpromisc(sc);
1327 		} else {
1328 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1329 				rum_stop(sc);
1330 		}
1331 		RUM_UNLOCK(sc);
1332 		if (startall)
1333 			ieee80211_start_all(ic);
1334 		break;
1335 	case SIOCGIFMEDIA:
1336 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1337 		break;
1338 	case SIOCGIFADDR:
1339 		error = ether_ioctl(ifp, cmd, data);
1340 		break;
1341 	default:
1342 		error = EINVAL;
1343 		break;
1344 	}
1345 	return error;
1346 }
1347 
1348 static void
1349 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1350 {
1351 	struct usb_device_request req;
1352 	usb_error_t error;
1353 
1354 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1355 	req.bRequest = RT2573_READ_EEPROM;
1356 	USETW(req.wValue, 0);
1357 	USETW(req.wIndex, addr);
1358 	USETW(req.wLength, len);
1359 
1360 	error = rum_do_request(sc, &req, buf);
1361 	if (error != 0) {
1362 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1363 		    usbd_errstr(error));
1364 	}
1365 }
1366 
1367 static uint32_t
1368 rum_read(struct rum_softc *sc, uint16_t reg)
1369 {
1370 	uint32_t val;
1371 
1372 	rum_read_multi(sc, reg, &val, sizeof val);
1373 
1374 	return le32toh(val);
1375 }
1376 
1377 static void
1378 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1379 {
1380 	struct usb_device_request req;
1381 	usb_error_t error;
1382 
1383 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1384 	req.bRequest = RT2573_READ_MULTI_MAC;
1385 	USETW(req.wValue, 0);
1386 	USETW(req.wIndex, reg);
1387 	USETW(req.wLength, len);
1388 
1389 	error = rum_do_request(sc, &req, buf);
1390 	if (error != 0) {
1391 		device_printf(sc->sc_dev,
1392 		    "could not multi read MAC register: %s\n",
1393 		    usbd_errstr(error));
1394 	}
1395 }
1396 
1397 static usb_error_t
1398 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1399 {
1400 	uint32_t tmp = htole32(val);
1401 
1402 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1403 }
1404 
1405 static usb_error_t
1406 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1407 {
1408 	struct usb_device_request req;
1409 	usb_error_t error;
1410 
1411 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1412 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1413 	USETW(req.wValue, 0);
1414 	USETW(req.wIndex, reg);
1415 	USETW(req.wLength, len);
1416 
1417 	error = rum_do_request(sc, &req, buf);
1418 	if (error != 0) {
1419 		device_printf(sc->sc_dev,
1420 		    "could not multi write MAC register: %s\n",
1421 		    usbd_errstr(error));
1422 	}
1423 	return (error);
1424 }
1425 
1426 static void
1427 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1428 {
1429 	uint32_t tmp;
1430 	int ntries;
1431 
1432 	DPRINTFN(2, "reg=0x%08x\n", reg);
1433 
1434 	for (ntries = 0; ntries < 100; ntries++) {
1435 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1436 			break;
1437 		if (rum_pause(sc, hz / 100))
1438 			break;
1439 	}
1440 	if (ntries == 100) {
1441 		device_printf(sc->sc_dev, "could not write to BBP\n");
1442 		return;
1443 	}
1444 
1445 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1446 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1447 }
1448 
1449 static uint8_t
1450 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1451 {
1452 	uint32_t val;
1453 	int ntries;
1454 
1455 	DPRINTFN(2, "reg=0x%08x\n", reg);
1456 
1457 	for (ntries = 0; ntries < 100; ntries++) {
1458 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1459 			break;
1460 		if (rum_pause(sc, hz / 100))
1461 			break;
1462 	}
1463 	if (ntries == 100) {
1464 		device_printf(sc->sc_dev, "could not read BBP\n");
1465 		return 0;
1466 	}
1467 
1468 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1469 	rum_write(sc, RT2573_PHY_CSR3, val);
1470 
1471 	for (ntries = 0; ntries < 100; ntries++) {
1472 		val = rum_read(sc, RT2573_PHY_CSR3);
1473 		if (!(val & RT2573_BBP_BUSY))
1474 			return val & 0xff;
1475 		if (rum_pause(sc, hz / 100))
1476 			break;
1477 	}
1478 
1479 	device_printf(sc->sc_dev, "could not read BBP\n");
1480 	return 0;
1481 }
1482 
1483 static void
1484 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1485 {
1486 	uint32_t tmp;
1487 	int ntries;
1488 
1489 	for (ntries = 0; ntries < 100; ntries++) {
1490 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1491 			break;
1492 		if (rum_pause(sc, hz / 100))
1493 			break;
1494 	}
1495 	if (ntries == 100) {
1496 		device_printf(sc->sc_dev, "could not write to RF\n");
1497 		return;
1498 	}
1499 
1500 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1501 	    (reg & 3);
1502 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1503 
1504 	/* remember last written value in sc */
1505 	sc->rf_regs[reg] = val;
1506 
1507 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1508 }
1509 
1510 static void
1511 rum_select_antenna(struct rum_softc *sc)
1512 {
1513 	uint8_t bbp4, bbp77;
1514 	uint32_t tmp;
1515 
1516 	bbp4  = rum_bbp_read(sc, 4);
1517 	bbp77 = rum_bbp_read(sc, 77);
1518 
1519 	/* TBD */
1520 
1521 	/* make sure Rx is disabled before switching antenna */
1522 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1523 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1524 
1525 	rum_bbp_write(sc,  4, bbp4);
1526 	rum_bbp_write(sc, 77, bbp77);
1527 
1528 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1529 }
1530 
1531 /*
1532  * Enable multi-rate retries for frames sent at OFDM rates.
1533  * In 802.11b/g mode, allow fallback to CCK rates.
1534  */
1535 static void
1536 rum_enable_mrr(struct rum_softc *sc)
1537 {
1538 	struct ifnet *ifp = sc->sc_ifp;
1539 	struct ieee80211com *ic = ifp->if_l2com;
1540 	uint32_t tmp;
1541 
1542 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1543 
1544 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1545 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
1546 		tmp |= RT2573_MRR_CCK_FALLBACK;
1547 	tmp |= RT2573_MRR_ENABLED;
1548 
1549 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1550 }
1551 
1552 static void
1553 rum_set_txpreamble(struct rum_softc *sc)
1554 {
1555 	struct ifnet *ifp = sc->sc_ifp;
1556 	struct ieee80211com *ic = ifp->if_l2com;
1557 	uint32_t tmp;
1558 
1559 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1560 
1561 	tmp &= ~RT2573_SHORT_PREAMBLE;
1562 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1563 		tmp |= RT2573_SHORT_PREAMBLE;
1564 
1565 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1566 }
1567 
1568 static void
1569 rum_set_basicrates(struct rum_softc *sc)
1570 {
1571 	struct ifnet *ifp = sc->sc_ifp;
1572 	struct ieee80211com *ic = ifp->if_l2com;
1573 
1574 	/* update basic rate set */
1575 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1576 		/* 11b basic rates: 1, 2Mbps */
1577 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1578 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1579 		/* 11a basic rates: 6, 12, 24Mbps */
1580 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1581 	} else {
1582 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1583 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1584 	}
1585 }
1586 
1587 /*
1588  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1589  * driver.
1590  */
1591 static void
1592 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1593 {
1594 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1595 	uint32_t tmp;
1596 
1597 	/* update all BBP registers that depend on the band */
1598 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1599 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1600 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1601 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1602 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1603 	}
1604 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1605 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1606 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1607 	}
1608 
1609 	sc->bbp17 = bbp17;
1610 	rum_bbp_write(sc,  17, bbp17);
1611 	rum_bbp_write(sc,  96, bbp96);
1612 	rum_bbp_write(sc, 104, bbp104);
1613 
1614 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1615 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1616 		rum_bbp_write(sc, 75, 0x80);
1617 		rum_bbp_write(sc, 86, 0x80);
1618 		rum_bbp_write(sc, 88, 0x80);
1619 	}
1620 
1621 	rum_bbp_write(sc, 35, bbp35);
1622 	rum_bbp_write(sc, 97, bbp97);
1623 	rum_bbp_write(sc, 98, bbp98);
1624 
1625 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1626 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1627 	if (IEEE80211_IS_CHAN_2GHZ(c))
1628 		tmp |= RT2573_PA_PE_2GHZ;
1629 	else
1630 		tmp |= RT2573_PA_PE_5GHZ;
1631 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1632 }
1633 
1634 static void
1635 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1636 {
1637 	struct ifnet *ifp = sc->sc_ifp;
1638 	struct ieee80211com *ic = ifp->if_l2com;
1639 	const struct rfprog *rfprog;
1640 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1641 	int8_t power;
1642 	int i, chan;
1643 
1644 	chan = ieee80211_chan2ieee(ic, c);
1645 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1646 		return;
1647 
1648 	/* select the appropriate RF settings based on what EEPROM says */
1649 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1650 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1651 
1652 	/* find the settings for this channel (we know it exists) */
1653 	for (i = 0; rfprog[i].chan != chan; i++);
1654 
1655 	power = sc->txpow[i];
1656 	if (power < 0) {
1657 		bbp94 += power;
1658 		power = 0;
1659 	} else if (power > 31) {
1660 		bbp94 += power - 31;
1661 		power = 31;
1662 	}
1663 
1664 	/*
1665 	 * If we are switching from the 2GHz band to the 5GHz band or
1666 	 * vice-versa, BBP registers need to be reprogrammed.
1667 	 */
1668 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1669 		rum_select_band(sc, c);
1670 		rum_select_antenna(sc);
1671 	}
1672 	ic->ic_curchan = c;
1673 
1674 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1675 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1676 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1677 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1678 
1679 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1680 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1681 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1682 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1683 
1684 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1685 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1686 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1687 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1688 
1689 	rum_pause(sc, hz / 100);
1690 
1691 	/* enable smart mode for MIMO-capable RFs */
1692 	bbp3 = rum_bbp_read(sc, 3);
1693 
1694 	bbp3 &= ~RT2573_SMART_MODE;
1695 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1696 		bbp3 |= RT2573_SMART_MODE;
1697 
1698 	rum_bbp_write(sc, 3, bbp3);
1699 
1700 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1701 		rum_bbp_write(sc, 94, bbp94);
1702 
1703 	/* give the chip some extra time to do the switchover */
1704 	rum_pause(sc, hz / 100);
1705 }
1706 
1707 /*
1708  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1709  * and HostAP operating modes.
1710  */
1711 static void
1712 rum_enable_tsf_sync(struct rum_softc *sc)
1713 {
1714 	struct ifnet *ifp = sc->sc_ifp;
1715 	struct ieee80211com *ic = ifp->if_l2com;
1716 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1717 	uint32_t tmp;
1718 
1719 	if (vap->iv_opmode != IEEE80211_M_STA) {
1720 		/*
1721 		 * Change default 16ms TBTT adjustment to 8ms.
1722 		 * Must be done before enabling beacon generation.
1723 		 */
1724 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1725 	}
1726 
1727 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1728 
1729 	/* set beacon interval (in 1/16ms unit) */
1730 	tmp |= vap->iv_bss->ni_intval * 16;
1731 
1732 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1733 	if (vap->iv_opmode == IEEE80211_M_STA)
1734 		tmp |= RT2573_TSF_MODE(1);
1735 	else
1736 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1737 
1738 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1739 }
1740 
1741 static void
1742 rum_enable_tsf(struct rum_softc *sc)
1743 {
1744 	rum_write(sc, RT2573_TXRX_CSR9,
1745 	    (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
1746 	    RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
1747 }
1748 
1749 static void
1750 rum_update_slot(struct ifnet *ifp)
1751 {
1752 	struct rum_softc *sc = ifp->if_softc;
1753 	struct ieee80211com *ic = ifp->if_l2com;
1754 	uint8_t slottime;
1755 	uint32_t tmp;
1756 
1757 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1758 
1759 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1760 	tmp = (tmp & ~0xff) | slottime;
1761 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1762 
1763 	DPRINTF("setting slot time to %uus\n", slottime);
1764 }
1765 
1766 static void
1767 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1768 {
1769 	uint32_t tmp;
1770 
1771 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1772 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1773 
1774 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1775 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1776 }
1777 
1778 static void
1779 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1780 {
1781 	uint32_t tmp;
1782 
1783 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1784 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1785 
1786 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1787 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1788 }
1789 
1790 static void
1791 rum_setpromisc(struct rum_softc *sc)
1792 {
1793 	struct ifnet *ifp = sc->sc_ifp;
1794 	uint32_t tmp;
1795 
1796 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1797 
1798 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1799 	if (!(ifp->if_flags & IFF_PROMISC))
1800 		tmp |= RT2573_DROP_NOT_TO_ME;
1801 
1802 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1803 
1804 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1805 	    "entering" : "leaving");
1806 }
1807 
1808 static void
1809 rum_update_promisc(struct ifnet *ifp)
1810 {
1811 	struct rum_softc *sc = ifp->if_softc;
1812 
1813 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1814 		return;
1815 
1816 	RUM_LOCK(sc);
1817 	rum_setpromisc(sc);
1818 	RUM_UNLOCK(sc);
1819 }
1820 
1821 static void
1822 rum_update_mcast(struct ifnet *ifp)
1823 {
1824 	static int warning_printed;
1825 
1826 	if (warning_printed == 0) {
1827 		if_printf(ifp, "need to implement %s\n", __func__);
1828 		warning_printed = 1;
1829 	}
1830 }
1831 
1832 static const char *
1833 rum_get_rf(int rev)
1834 {
1835 	switch (rev) {
1836 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1837 	case RT2573_RF_2528:	return "RT2528";
1838 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1839 	case RT2573_RF_5226:	return "RT5226";
1840 	default:		return "unknown";
1841 	}
1842 }
1843 
1844 static void
1845 rum_read_eeprom(struct rum_softc *sc)
1846 {
1847 	uint16_t val;
1848 #ifdef RUM_DEBUG
1849 	int i;
1850 #endif
1851 
1852 	/* read MAC address */
1853 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6);
1854 
1855 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1856 	val = le16toh(val);
1857 	sc->rf_rev =   (val >> 11) & 0x1f;
1858 	sc->hw_radio = (val >> 10) & 0x1;
1859 	sc->rx_ant =   (val >> 4)  & 0x3;
1860 	sc->tx_ant =   (val >> 2)  & 0x3;
1861 	sc->nb_ant =   val & 0x3;
1862 
1863 	DPRINTF("RF revision=%d\n", sc->rf_rev);
1864 
1865 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1866 	val = le16toh(val);
1867 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1868 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1869 
1870 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1871 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1872 
1873 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1874 	val = le16toh(val);
1875 	if ((val & 0xff) != 0xff)
1876 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1877 
1878 	/* Only [-10, 10] is valid */
1879 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1880 		sc->rssi_2ghz_corr = 0;
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1883 	val = le16toh(val);
1884 	if ((val & 0xff) != 0xff)
1885 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1886 
1887 	/* Only [-10, 10] is valid */
1888 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1889 		sc->rssi_5ghz_corr = 0;
1890 
1891 	if (sc->ext_2ghz_lna)
1892 		sc->rssi_2ghz_corr -= 14;
1893 	if (sc->ext_5ghz_lna)
1894 		sc->rssi_5ghz_corr -= 14;
1895 
1896 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1897 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1898 
1899 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1900 	val = le16toh(val);
1901 	if ((val & 0xff) != 0xff)
1902 		sc->rffreq = val & 0xff;
1903 
1904 	DPRINTF("RF freq=%d\n", sc->rffreq);
1905 
1906 	/* read Tx power for all a/b/g channels */
1907 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1908 	/* XXX default Tx power for 802.11a channels */
1909 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1910 #ifdef RUM_DEBUG
1911 	for (i = 0; i < 14; i++)
1912 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
1913 #endif
1914 
1915 	/* read default values for BBP registers */
1916 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1917 #ifdef RUM_DEBUG
1918 	for (i = 0; i < 14; i++) {
1919 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1920 			continue;
1921 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1922 		    sc->bbp_prom[i].val);
1923 	}
1924 #endif
1925 }
1926 
1927 static int
1928 rum_bbp_init(struct rum_softc *sc)
1929 {
1930 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1931 	int i, ntries;
1932 
1933 	/* wait for BBP to be ready */
1934 	for (ntries = 0; ntries < 100; ntries++) {
1935 		const uint8_t val = rum_bbp_read(sc, 0);
1936 		if (val != 0 && val != 0xff)
1937 			break;
1938 		if (rum_pause(sc, hz / 100))
1939 			break;
1940 	}
1941 	if (ntries == 100) {
1942 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1943 		return EIO;
1944 	}
1945 
1946 	/* initialize BBP registers to default values */
1947 	for (i = 0; i < N(rum_def_bbp); i++)
1948 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1949 
1950 	/* write vendor-specific BBP values (from EEPROM) */
1951 	for (i = 0; i < 16; i++) {
1952 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1953 			continue;
1954 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1955 	}
1956 
1957 	return 0;
1958 #undef N
1959 }
1960 
1961 static void
1962 rum_init_locked(struct rum_softc *sc)
1963 {
1964 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1965 	struct ifnet *ifp = sc->sc_ifp;
1966 	struct ieee80211com *ic = ifp->if_l2com;
1967 	uint32_t tmp;
1968 	usb_error_t error;
1969 	int i, ntries;
1970 
1971 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1972 
1973 	rum_stop(sc);
1974 
1975 	/* initialize MAC registers to default values */
1976 	for (i = 0; i < N(rum_def_mac); i++)
1977 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1978 
1979 	/* set host ready */
1980 	rum_write(sc, RT2573_MAC_CSR1, 3);
1981 	rum_write(sc, RT2573_MAC_CSR1, 0);
1982 
1983 	/* wait for BBP/RF to wakeup */
1984 	for (ntries = 0; ntries < 100; ntries++) {
1985 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1986 			break;
1987 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1988 		if (rum_pause(sc, hz / 100))
1989 			break;
1990 	}
1991 	if (ntries == 100) {
1992 		device_printf(sc->sc_dev,
1993 		    "timeout waiting for BBP/RF to wakeup\n");
1994 		goto fail;
1995 	}
1996 
1997 	if ((error = rum_bbp_init(sc)) != 0)
1998 		goto fail;
1999 
2000 	/* select default channel */
2001 	rum_select_band(sc, ic->ic_curchan);
2002 	rum_select_antenna(sc);
2003 	rum_set_chan(sc, ic->ic_curchan);
2004 
2005 	/* clear STA registers */
2006 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2007 
2008 	rum_set_macaddr(sc, IF_LLADDR(ifp));
2009 
2010 	/* initialize ASIC */
2011 	rum_write(sc, RT2573_MAC_CSR1, 4);
2012 
2013 	/*
2014 	 * Allocate Tx and Rx xfer queues.
2015 	 */
2016 	rum_setup_tx_list(sc);
2017 
2018 	/* update Rx filter */
2019 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2020 
2021 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2022 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2023 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2024 		       RT2573_DROP_ACKCTS;
2025 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2026 			tmp |= RT2573_DROP_TODS;
2027 		if (!(ifp->if_flags & IFF_PROMISC))
2028 			tmp |= RT2573_DROP_NOT_TO_ME;
2029 	}
2030 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2031 
2032 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2033 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2034 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2035 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2036 	return;
2037 
2038 fail:	rum_stop(sc);
2039 #undef N
2040 }
2041 
2042 static void
2043 rum_init(void *priv)
2044 {
2045 	struct rum_softc *sc = priv;
2046 	struct ifnet *ifp = sc->sc_ifp;
2047 	struct ieee80211com *ic = ifp->if_l2com;
2048 
2049 	RUM_LOCK(sc);
2050 	rum_init_locked(sc);
2051 	RUM_UNLOCK(sc);
2052 
2053 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2054 		ieee80211_start_all(ic);		/* start all vap's */
2055 }
2056 
2057 static void
2058 rum_stop(struct rum_softc *sc)
2059 {
2060 	struct ifnet *ifp = sc->sc_ifp;
2061 	uint32_t tmp;
2062 
2063 	RUM_LOCK_ASSERT(sc, MA_OWNED);
2064 
2065 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2066 
2067 	RUM_UNLOCK(sc);
2068 
2069 	/*
2070 	 * Drain the USB transfers, if not already drained:
2071 	 */
2072 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2073 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2074 
2075 	RUM_LOCK(sc);
2076 
2077 	rum_unsetup_tx_list(sc);
2078 
2079 	/* disable Rx */
2080 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2081 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2082 
2083 	/* reset ASIC */
2084 	rum_write(sc, RT2573_MAC_CSR1, 3);
2085 	rum_write(sc, RT2573_MAC_CSR1, 0);
2086 }
2087 
2088 static void
2089 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2090 {
2091 	struct usb_device_request req;
2092 	uint16_t reg = RT2573_MCU_CODE_BASE;
2093 	usb_error_t err;
2094 
2095 	/* copy firmware image into NIC */
2096 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2097 		err = rum_write(sc, reg, UGETDW(ucode));
2098 		if (err) {
2099 			/* firmware already loaded ? */
2100 			device_printf(sc->sc_dev, "Firmware load "
2101 			    "failure! (ignored)\n");
2102 			break;
2103 		}
2104 	}
2105 
2106 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2107 	req.bRequest = RT2573_MCU_CNTL;
2108 	USETW(req.wValue, RT2573_MCU_RUN);
2109 	USETW(req.wIndex, 0);
2110 	USETW(req.wLength, 0);
2111 
2112 	err = rum_do_request(sc, &req, NULL);
2113 	if (err != 0) {
2114 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2115 		    usbd_errstr(err));
2116 	}
2117 
2118 	/* give the chip some time to boot */
2119 	rum_pause(sc, hz / 8);
2120 }
2121 
2122 static void
2123 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2124 {
2125 	struct ieee80211com *ic = vap->iv_ic;
2126 	const struct ieee80211_txparam *tp;
2127 	struct rum_tx_desc desc;
2128 	struct mbuf *m0;
2129 
2130 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
2131 		return;
2132 
2133 	m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
2134 	if (m0 == NULL) {
2135 		return;
2136 	}
2137 
2138 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2139 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2140 	    m0->m_pkthdr.len, tp->mgmtrate);
2141 
2142 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2143 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2144 
2145 	/* copy beacon header and payload into NIC memory */
2146 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2147 	    m0->m_pkthdr.len);
2148 
2149 	m_freem(m0);
2150 }
2151 
2152 static int
2153 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2154     const struct ieee80211_bpf_params *params)
2155 {
2156 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
2157 	struct rum_softc *sc = ifp->if_softc;
2158 
2159 	RUM_LOCK(sc);
2160 	/* prevent management frames from being sent if we're not ready */
2161 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2162 		RUM_UNLOCK(sc);
2163 		m_freem(m);
2164 		ieee80211_free_node(ni);
2165 		return ENETDOWN;
2166 	}
2167 	if (sc->tx_nfree < RUM_TX_MINFREE) {
2168 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2169 		RUM_UNLOCK(sc);
2170 		m_freem(m);
2171 		ieee80211_free_node(ni);
2172 		return EIO;
2173 	}
2174 
2175 	ifp->if_opackets++;
2176 
2177 	if (params == NULL) {
2178 		/*
2179 		 * Legacy path; interpret frame contents to decide
2180 		 * precisely how to send the frame.
2181 		 */
2182 		if (rum_tx_mgt(sc, m, ni) != 0)
2183 			goto bad;
2184 	} else {
2185 		/*
2186 		 * Caller supplied explicit parameters to use in
2187 		 * sending the frame.
2188 		 */
2189 		if (rum_tx_raw(sc, m, ni, params) != 0)
2190 			goto bad;
2191 	}
2192 	RUM_UNLOCK(sc);
2193 
2194 	return 0;
2195 bad:
2196 	ifp->if_oerrors++;
2197 	RUM_UNLOCK(sc);
2198 	ieee80211_free_node(ni);
2199 	return EIO;
2200 }
2201 
2202 static void
2203 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
2204 {
2205 	struct ieee80211vap *vap = ni->ni_vap;
2206 	struct rum_vap *rvp = RUM_VAP(vap);
2207 
2208 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2209 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2210 
2211 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2212 }
2213 
2214 static void
2215 rum_ratectl_timeout(void *arg)
2216 {
2217 	struct rum_vap *rvp = arg;
2218 	struct ieee80211vap *vap = &rvp->vap;
2219 	struct ieee80211com *ic = vap->iv_ic;
2220 
2221 	ieee80211_runtask(ic, &rvp->ratectl_task);
2222 }
2223 
2224 static void
2225 rum_ratectl_task(void *arg, int pending)
2226 {
2227 	struct rum_vap *rvp = arg;
2228 	struct ieee80211vap *vap = &rvp->vap;
2229 	struct ieee80211com *ic = vap->iv_ic;
2230 	struct ifnet *ifp = ic->ic_ifp;
2231 	struct rum_softc *sc = ifp->if_softc;
2232 	struct ieee80211_node *ni;
2233 	int ok, fail;
2234 	int sum, retrycnt;
2235 
2236 	RUM_LOCK(sc);
2237 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2238 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2239 
2240 	ok = (le32toh(sc->sta[4]) >> 16) +	/* TX ok w/o retry */
2241 	    (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ retry */
2242 	fail = (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2243 	sum = ok+fail;
2244 	retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail;
2245 
2246 	ni = ieee80211_ref_node(vap->iv_bss);
2247 	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2248 	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2249 	ieee80211_free_node(ni);
2250 
2251 	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2252 
2253 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
2254 	RUM_UNLOCK(sc);
2255 }
2256 
2257 static void
2258 rum_scan_start(struct ieee80211com *ic)
2259 {
2260 	struct ifnet *ifp = ic->ic_ifp;
2261 	struct rum_softc *sc = ifp->if_softc;
2262 	uint32_t tmp;
2263 
2264 	RUM_LOCK(sc);
2265 	/* abort TSF synchronization */
2266 	tmp = rum_read(sc, RT2573_TXRX_CSR9);
2267 	rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2268 	rum_set_bssid(sc, ifp->if_broadcastaddr);
2269 	RUM_UNLOCK(sc);
2270 
2271 }
2272 
2273 static void
2274 rum_scan_end(struct ieee80211com *ic)
2275 {
2276 	struct rum_softc *sc = ic->ic_ifp->if_softc;
2277 
2278 	RUM_LOCK(sc);
2279 	rum_enable_tsf_sync(sc);
2280 	rum_set_bssid(sc, sc->sc_bssid);
2281 	RUM_UNLOCK(sc);
2282 
2283 }
2284 
2285 static void
2286 rum_set_channel(struct ieee80211com *ic)
2287 {
2288 	struct rum_softc *sc = ic->ic_ifp->if_softc;
2289 
2290 	RUM_LOCK(sc);
2291 	rum_set_chan(sc, ic->ic_curchan);
2292 	RUM_UNLOCK(sc);
2293 }
2294 
2295 static int
2296 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2297 {
2298 	struct ifnet *ifp = sc->sc_ifp;
2299 	struct ieee80211com *ic = ifp->if_l2com;
2300 	int lna, agc, rssi;
2301 
2302 	lna = (raw >> 5) & 0x3;
2303 	agc = raw & 0x1f;
2304 
2305 	if (lna == 0) {
2306 		/*
2307 		 * No RSSI mapping
2308 		 *
2309 		 * NB: Since RSSI is relative to noise floor, -1 is
2310 		 *     adequate for caller to know error happened.
2311 		 */
2312 		return -1;
2313 	}
2314 
2315 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2316 
2317 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2318 		rssi += sc->rssi_2ghz_corr;
2319 
2320 		if (lna == 1)
2321 			rssi -= 64;
2322 		else if (lna == 2)
2323 			rssi -= 74;
2324 		else if (lna == 3)
2325 			rssi -= 90;
2326 	} else {
2327 		rssi += sc->rssi_5ghz_corr;
2328 
2329 		if (!sc->ext_5ghz_lna && lna != 1)
2330 			rssi += 4;
2331 
2332 		if (lna == 1)
2333 			rssi -= 64;
2334 		else if (lna == 2)
2335 			rssi -= 86;
2336 		else if (lna == 3)
2337 			rssi -= 100;
2338 	}
2339 	return rssi;
2340 }
2341 
2342 static int
2343 rum_pause(struct rum_softc *sc, int timeout)
2344 {
2345 
2346 	usb_pause_mtx(&sc->sc_mtx, timeout);
2347 	return (0);
2348 }
2349 
2350 static device_method_t rum_methods[] = {
2351 	/* Device interface */
2352 	DEVMETHOD(device_probe,		rum_match),
2353 	DEVMETHOD(device_attach,	rum_attach),
2354 	DEVMETHOD(device_detach,	rum_detach),
2355 
2356 	{ 0, 0 }
2357 };
2358 
2359 static driver_t rum_driver = {
2360 	.name = "rum",
2361 	.methods = rum_methods,
2362 	.size = sizeof(struct rum_softc),
2363 };
2364 
2365 static devclass_t rum_devclass;
2366 
2367 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
2368 MODULE_DEPEND(rum, wlan, 1, 1, 1);
2369 MODULE_DEPEND(rum, usb, 1, 1, 1);
2370 MODULE_VERSION(rum, 1);
2371