1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/if_arp.h> 52 #include <net/ethernet.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #ifdef INET 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/if_ether.h> 62 #include <netinet/ip.h> 63 #endif 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_regdomain.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/usb/usb.h> 71 #include <dev/usb/usbdi.h> 72 #include "usbdevs.h" 73 74 #define USB_DEBUG_VAR rum_debug 75 #include <dev/usb/usb_debug.h> 76 77 #include <dev/usb/wlan/if_rumreg.h> 78 #include <dev/usb/wlan/if_rumvar.h> 79 #include <dev/usb/wlan/if_rumfw.h> 80 81 #ifdef USB_DEBUG 82 static int rum_debug = 0; 83 84 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 86 "Debug level"); 87 #endif 88 89 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 90 91 static const STRUCT_USB_HOST_ID rum_devs[] = { 92 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 93 RUM_DEV(ABOCOM, HWU54DM), 94 RUM_DEV(ABOCOM, RT2573_2), 95 RUM_DEV(ABOCOM, RT2573_3), 96 RUM_DEV(ABOCOM, RT2573_4), 97 RUM_DEV(ABOCOM, WUG2700), 98 RUM_DEV(AMIT, CGWLUSB2GO), 99 RUM_DEV(ASUS, RT2573_1), 100 RUM_DEV(ASUS, RT2573_2), 101 RUM_DEV(BELKIN, F5D7050A), 102 RUM_DEV(BELKIN, F5D9050V3), 103 RUM_DEV(CISCOLINKSYS, WUSB54GC), 104 RUM_DEV(CISCOLINKSYS, WUSB54GR), 105 RUM_DEV(CONCEPTRONIC2, C54RU2), 106 RUM_DEV(COREGA, CGWLUSB2GL), 107 RUM_DEV(COREGA, CGWLUSB2GPX), 108 RUM_DEV(DICKSMITH, CWD854F), 109 RUM_DEV(DICKSMITH, RT2573), 110 RUM_DEV(EDIMAX, EW7318USG), 111 RUM_DEV(DLINK2, DWLG122C1), 112 RUM_DEV(DLINK2, WUA1340), 113 RUM_DEV(DLINK2, DWA111), 114 RUM_DEV(DLINK2, DWA110), 115 RUM_DEV(GIGABYTE, GNWB01GS), 116 RUM_DEV(GIGABYTE, GNWI05GS), 117 RUM_DEV(GIGASET, RT2573), 118 RUM_DEV(GOODWAY, RT2573), 119 RUM_DEV(GUILLEMOT, HWGUSB254LB), 120 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 121 RUM_DEV(HUAWEI3COM, WUB320G), 122 RUM_DEV(MELCO, G54HP), 123 RUM_DEV(MELCO, SG54HP), 124 RUM_DEV(MELCO, SG54HG), 125 RUM_DEV(MELCO, WLIUCG), 126 RUM_DEV(MELCO, WLRUCG), 127 RUM_DEV(MELCO, WLRUCGAOSS), 128 RUM_DEV(MSI, RT2573_1), 129 RUM_DEV(MSI, RT2573_2), 130 RUM_DEV(MSI, RT2573_3), 131 RUM_DEV(MSI, RT2573_4), 132 RUM_DEV(NOVATECH, RT2573), 133 RUM_DEV(PLANEX2, GWUS54HP), 134 RUM_DEV(PLANEX2, GWUS54MINI2), 135 RUM_DEV(PLANEX2, GWUSMM), 136 RUM_DEV(QCOM, RT2573), 137 RUM_DEV(QCOM, RT2573_2), 138 RUM_DEV(QCOM, RT2573_3), 139 RUM_DEV(RALINK, RT2573), 140 RUM_DEV(RALINK, RT2573_2), 141 RUM_DEV(RALINK, RT2671), 142 RUM_DEV(SITECOMEU, WL113R2), 143 RUM_DEV(SITECOMEU, WL172), 144 RUM_DEV(SPARKLAN, RT2573), 145 RUM_DEV(SURECOM, RT2573), 146 #undef RUM_DEV 147 }; 148 149 static device_probe_t rum_match; 150 static device_attach_t rum_attach; 151 static device_detach_t rum_detach; 152 153 static usb_callback_t rum_bulk_read_callback; 154 static usb_callback_t rum_bulk_write_callback; 155 156 static usb_error_t rum_do_request(struct rum_softc *sc, 157 struct usb_device_request *req, void *data); 158 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 159 const char [IFNAMSIZ], int, enum ieee80211_opmode, 160 int, const uint8_t [IEEE80211_ADDR_LEN], 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void rum_vap_delete(struct ieee80211vap *); 163 static void rum_tx_free(struct rum_tx_data *, int); 164 static void rum_setup_tx_list(struct rum_softc *); 165 static void rum_unsetup_tx_list(struct rum_softc *); 166 static int rum_newstate(struct ieee80211vap *, 167 enum ieee80211_state, int); 168 static void rum_setup_tx_desc(struct rum_softc *, 169 struct rum_tx_desc *, uint32_t, uint16_t, int, 170 int); 171 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 172 struct ieee80211_node *); 173 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 174 struct ieee80211_node *, 175 const struct ieee80211_bpf_params *); 176 static int rum_tx_data(struct rum_softc *, struct mbuf *, 177 struct ieee80211_node *); 178 static int rum_transmit(struct ieee80211com *, struct mbuf *); 179 static void rum_start(struct rum_softc *); 180 static void rum_parent(struct ieee80211com *); 181 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 182 int); 183 static uint32_t rum_read(struct rum_softc *, uint16_t); 184 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 185 int); 186 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 187 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 188 size_t); 189 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 190 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 191 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 192 static void rum_select_antenna(struct rum_softc *); 193 static void rum_enable_mrr(struct rum_softc *); 194 static void rum_set_txpreamble(struct rum_softc *); 195 static void rum_set_basicrates(struct rum_softc *); 196 static void rum_select_band(struct rum_softc *, 197 struct ieee80211_channel *); 198 static void rum_set_chan(struct rum_softc *, 199 struct ieee80211_channel *); 200 static void rum_enable_tsf_sync(struct rum_softc *); 201 static void rum_enable_tsf(struct rum_softc *); 202 static void rum_update_slot(struct rum_softc *); 203 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 204 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 205 static void rum_update_mcast(struct ieee80211com *); 206 static void rum_update_promisc(struct ieee80211com *); 207 static void rum_setpromisc(struct rum_softc *); 208 static const char *rum_get_rf(int); 209 static void rum_read_eeprom(struct rum_softc *); 210 static int rum_bbp_init(struct rum_softc *); 211 static void rum_init(struct rum_softc *); 212 static void rum_stop(struct rum_softc *); 213 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 214 size_t); 215 static void rum_prepare_beacon(struct rum_softc *, 216 struct ieee80211vap *); 217 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 218 const struct ieee80211_bpf_params *); 219 static void rum_scan_start(struct ieee80211com *); 220 static void rum_scan_end(struct ieee80211com *); 221 static void rum_set_channel(struct ieee80211com *); 222 static int rum_get_rssi(struct rum_softc *, uint8_t); 223 static void rum_ratectl_start(struct rum_softc *, 224 struct ieee80211_node *); 225 static void rum_ratectl_timeout(void *); 226 static void rum_ratectl_task(void *, int); 227 static int rum_pause(struct rum_softc *, int); 228 229 static const struct { 230 uint32_t reg; 231 uint32_t val; 232 } rum_def_mac[] = { 233 { RT2573_TXRX_CSR0, 0x025fb032 }, 234 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 235 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 236 { RT2573_TXRX_CSR3, 0x00858687 }, 237 { RT2573_TXRX_CSR7, 0x2e31353b }, 238 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 239 { RT2573_TXRX_CSR15, 0x0000000f }, 240 { RT2573_MAC_CSR6, 0x00000fff }, 241 { RT2573_MAC_CSR8, 0x016c030a }, 242 { RT2573_MAC_CSR10, 0x00000718 }, 243 { RT2573_MAC_CSR12, 0x00000004 }, 244 { RT2573_MAC_CSR13, 0x00007f00 }, 245 { RT2573_SEC_CSR0, 0x00000000 }, 246 { RT2573_SEC_CSR1, 0x00000000 }, 247 { RT2573_SEC_CSR5, 0x00000000 }, 248 { RT2573_PHY_CSR1, 0x000023b0 }, 249 { RT2573_PHY_CSR5, 0x00040a06 }, 250 { RT2573_PHY_CSR6, 0x00080606 }, 251 { RT2573_PHY_CSR7, 0x00000408 }, 252 { RT2573_AIFSN_CSR, 0x00002273 }, 253 { RT2573_CWMIN_CSR, 0x00002344 }, 254 { RT2573_CWMAX_CSR, 0x000034aa } 255 }; 256 257 static const struct { 258 uint8_t reg; 259 uint8_t val; 260 } rum_def_bbp[] = { 261 { 3, 0x80 }, 262 { 15, 0x30 }, 263 { 17, 0x20 }, 264 { 21, 0xc8 }, 265 { 22, 0x38 }, 266 { 23, 0x06 }, 267 { 24, 0xfe }, 268 { 25, 0x0a }, 269 { 26, 0x0d }, 270 { 32, 0x0b }, 271 { 34, 0x12 }, 272 { 37, 0x07 }, 273 { 39, 0xf8 }, 274 { 41, 0x60 }, 275 { 53, 0x10 }, 276 { 54, 0x18 }, 277 { 60, 0x10 }, 278 { 61, 0x04 }, 279 { 62, 0x04 }, 280 { 75, 0xfe }, 281 { 86, 0xfe }, 282 { 88, 0xfe }, 283 { 90, 0x0f }, 284 { 99, 0x00 }, 285 { 102, 0x16 }, 286 { 107, 0x04 } 287 }; 288 289 static const struct rfprog { 290 uint8_t chan; 291 uint32_t r1, r2, r3, r4; 292 } rum_rf5226[] = { 293 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 294 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 295 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 296 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 297 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 298 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 299 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 300 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 301 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 302 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 303 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 304 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 305 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 306 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 307 308 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 309 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 310 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 311 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 312 313 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 314 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 315 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 316 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 317 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 318 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 319 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 320 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 321 322 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 323 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 324 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 325 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 326 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 327 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 328 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 329 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 330 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 331 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 332 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 333 334 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 335 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 336 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 337 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 338 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 339 }, rum_rf5225[] = { 340 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 341 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 342 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 343 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 344 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 345 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 346 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 347 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 348 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 349 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 350 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 351 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 352 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 353 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 354 355 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 356 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 357 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 358 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 359 360 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 361 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 362 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 363 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 364 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 365 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 366 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 367 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 368 369 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 370 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 371 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 372 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 373 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 374 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 375 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 376 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 377 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 378 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 379 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 380 381 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 382 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 383 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 384 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 385 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 386 }; 387 388 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 389 [RUM_BULK_WR] = { 390 .type = UE_BULK, 391 .endpoint = UE_ADDR_ANY, 392 .direction = UE_DIR_OUT, 393 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 394 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 395 .callback = rum_bulk_write_callback, 396 .timeout = 5000, /* ms */ 397 }, 398 [RUM_BULK_RD] = { 399 .type = UE_BULK, 400 .endpoint = UE_ADDR_ANY, 401 .direction = UE_DIR_IN, 402 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 403 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 404 .callback = rum_bulk_read_callback, 405 }, 406 }; 407 408 static int 409 rum_match(device_t self) 410 { 411 struct usb_attach_arg *uaa = device_get_ivars(self); 412 413 if (uaa->usb_mode != USB_MODE_HOST) 414 return (ENXIO); 415 if (uaa->info.bConfigIndex != 0) 416 return (ENXIO); 417 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 418 return (ENXIO); 419 420 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 421 } 422 423 static int 424 rum_attach(device_t self) 425 { 426 struct usb_attach_arg *uaa = device_get_ivars(self); 427 struct rum_softc *sc = device_get_softc(self); 428 struct ieee80211com *ic = &sc->sc_ic; 429 uint8_t iface_index, bands; 430 uint32_t tmp; 431 int error, ntries; 432 433 device_set_usb_desc(self); 434 sc->sc_udev = uaa->device; 435 sc->sc_dev = self; 436 437 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 438 MTX_NETWORK_LOCK, MTX_DEF); 439 mbufq_init(&sc->sc_snd, ifqmaxlen); 440 441 iface_index = RT2573_IFACE_INDEX; 442 error = usbd_transfer_setup(uaa->device, &iface_index, 443 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 444 if (error) { 445 device_printf(self, "could not allocate USB transfers, " 446 "err=%s\n", usbd_errstr(error)); 447 goto detach; 448 } 449 450 RUM_LOCK(sc); 451 /* retrieve RT2573 rev. no */ 452 for (ntries = 0; ntries < 100; ntries++) { 453 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 454 break; 455 if (rum_pause(sc, hz / 100)) 456 break; 457 } 458 if (ntries == 100) { 459 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 460 RUM_UNLOCK(sc); 461 goto detach; 462 } 463 464 /* retrieve MAC address and various other things from EEPROM */ 465 rum_read_eeprom(sc); 466 467 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 468 tmp, rum_get_rf(sc->rf_rev)); 469 470 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 471 RUM_UNLOCK(sc); 472 473 ic->ic_softc = sc; 474 ic->ic_name = device_get_nameunit(self); 475 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 476 477 /* set device capabilities */ 478 ic->ic_caps = 479 IEEE80211_C_STA /* station mode supported */ 480 | IEEE80211_C_IBSS /* IBSS mode supported */ 481 | IEEE80211_C_MONITOR /* monitor mode supported */ 482 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 483 | IEEE80211_C_TXPMGT /* tx power management */ 484 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 485 | IEEE80211_C_SHSLOT /* short slot time supported */ 486 | IEEE80211_C_BGSCAN /* bg scanning supported */ 487 | IEEE80211_C_WPA /* 802.11i */ 488 ; 489 490 bands = 0; 491 setbit(&bands, IEEE80211_MODE_11B); 492 setbit(&bands, IEEE80211_MODE_11G); 493 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 494 setbit(&bands, IEEE80211_MODE_11A); 495 ieee80211_init_channels(ic, NULL, &bands); 496 497 ieee80211_ifattach(ic); 498 ic->ic_update_promisc = rum_update_promisc; 499 ic->ic_raw_xmit = rum_raw_xmit; 500 ic->ic_scan_start = rum_scan_start; 501 ic->ic_scan_end = rum_scan_end; 502 ic->ic_set_channel = rum_set_channel; 503 ic->ic_transmit = rum_transmit; 504 ic->ic_parent = rum_parent; 505 ic->ic_vap_create = rum_vap_create; 506 ic->ic_vap_delete = rum_vap_delete; 507 ic->ic_update_mcast = rum_update_mcast; 508 509 ieee80211_radiotap_attach(ic, 510 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 511 RT2573_TX_RADIOTAP_PRESENT, 512 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 513 RT2573_RX_RADIOTAP_PRESENT); 514 515 if (bootverbose) 516 ieee80211_announce(ic); 517 518 return (0); 519 520 detach: 521 rum_detach(self); 522 return (ENXIO); /* failure */ 523 } 524 525 static int 526 rum_detach(device_t self) 527 { 528 struct rum_softc *sc = device_get_softc(self); 529 530 /* Prevent further ioctls */ 531 RUM_LOCK(sc); 532 sc->sc_detached = 1; 533 RUM_UNLOCK(sc); 534 535 /* stop all USB transfers */ 536 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 537 538 /* free TX list, if any */ 539 RUM_LOCK(sc); 540 rum_unsetup_tx_list(sc); 541 RUM_UNLOCK(sc); 542 543 if (sc->sc_ic.ic_softc == sc) 544 ieee80211_ifdetach(&sc->sc_ic); 545 mbufq_drain(&sc->sc_snd); 546 mtx_destroy(&sc->sc_mtx); 547 return (0); 548 } 549 550 static usb_error_t 551 rum_do_request(struct rum_softc *sc, 552 struct usb_device_request *req, void *data) 553 { 554 usb_error_t err; 555 int ntries = 10; 556 557 while (ntries--) { 558 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 559 req, data, 0, NULL, 250 /* ms */); 560 if (err == 0) 561 break; 562 563 DPRINTFN(1, "Control request failed, %s (retrying)\n", 564 usbd_errstr(err)); 565 if (rum_pause(sc, hz / 100)) 566 break; 567 } 568 return (err); 569 } 570 571 static struct ieee80211vap * 572 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 573 enum ieee80211_opmode opmode, int flags, 574 const uint8_t bssid[IEEE80211_ADDR_LEN], 575 const uint8_t mac[IEEE80211_ADDR_LEN]) 576 { 577 struct rum_softc *sc = ic->ic_softc; 578 struct rum_vap *rvp; 579 struct ieee80211vap *vap; 580 581 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 582 return NULL; 583 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 584 vap = &rvp->vap; 585 /* enable s/w bmiss handling for sta mode */ 586 587 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 588 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 589 /* out of memory */ 590 free(rvp, M_80211_VAP); 591 return (NULL); 592 } 593 594 /* override state transition machine */ 595 rvp->newstate = vap->iv_newstate; 596 vap->iv_newstate = rum_newstate; 597 598 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 599 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 600 ieee80211_ratectl_init(vap); 601 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 602 /* complete setup */ 603 ieee80211_vap_attach(vap, ieee80211_media_change, 604 ieee80211_media_status, mac); 605 ic->ic_opmode = opmode; 606 return vap; 607 } 608 609 static void 610 rum_vap_delete(struct ieee80211vap *vap) 611 { 612 struct rum_vap *rvp = RUM_VAP(vap); 613 struct ieee80211com *ic = vap->iv_ic; 614 615 usb_callout_drain(&rvp->ratectl_ch); 616 ieee80211_draintask(ic, &rvp->ratectl_task); 617 ieee80211_ratectl_deinit(vap); 618 ieee80211_vap_detach(vap); 619 free(rvp, M_80211_VAP); 620 } 621 622 static void 623 rum_tx_free(struct rum_tx_data *data, int txerr) 624 { 625 struct rum_softc *sc = data->sc; 626 627 if (data->m != NULL) { 628 ieee80211_tx_complete(data->ni, data->m, txerr); 629 data->m = NULL; 630 data->ni = NULL; 631 } 632 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 633 sc->tx_nfree++; 634 } 635 636 static void 637 rum_setup_tx_list(struct rum_softc *sc) 638 { 639 struct rum_tx_data *data; 640 int i; 641 642 sc->tx_nfree = 0; 643 STAILQ_INIT(&sc->tx_q); 644 STAILQ_INIT(&sc->tx_free); 645 646 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 647 data = &sc->tx_data[i]; 648 649 data->sc = sc; 650 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 651 sc->tx_nfree++; 652 } 653 } 654 655 static void 656 rum_unsetup_tx_list(struct rum_softc *sc) 657 { 658 struct rum_tx_data *data; 659 int i; 660 661 /* make sure any subsequent use of the queues will fail */ 662 sc->tx_nfree = 0; 663 STAILQ_INIT(&sc->tx_q); 664 STAILQ_INIT(&sc->tx_free); 665 666 /* free up all node references and mbufs */ 667 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 668 data = &sc->tx_data[i]; 669 670 if (data->m != NULL) { 671 m_freem(data->m); 672 data->m = NULL; 673 } 674 if (data->ni != NULL) { 675 ieee80211_free_node(data->ni); 676 data->ni = NULL; 677 } 678 } 679 } 680 681 static int 682 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 683 { 684 struct rum_vap *rvp = RUM_VAP(vap); 685 struct ieee80211com *ic = vap->iv_ic; 686 struct rum_softc *sc = ic->ic_softc; 687 const struct ieee80211_txparam *tp; 688 enum ieee80211_state ostate; 689 struct ieee80211_node *ni; 690 uint32_t tmp; 691 692 ostate = vap->iv_state; 693 DPRINTF("%s -> %s\n", 694 ieee80211_state_name[ostate], 695 ieee80211_state_name[nstate]); 696 697 IEEE80211_UNLOCK(ic); 698 RUM_LOCK(sc); 699 usb_callout_stop(&rvp->ratectl_ch); 700 701 switch (nstate) { 702 case IEEE80211_S_INIT: 703 if (ostate == IEEE80211_S_RUN) { 704 /* abort TSF synchronization */ 705 tmp = rum_read(sc, RT2573_TXRX_CSR9); 706 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 707 } 708 break; 709 710 case IEEE80211_S_RUN: 711 ni = ieee80211_ref_node(vap->iv_bss); 712 713 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 714 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 715 RUM_UNLOCK(sc); 716 IEEE80211_LOCK(ic); 717 ieee80211_free_node(ni); 718 return (-1); 719 } 720 rum_update_slot(sc); 721 rum_enable_mrr(sc); 722 rum_set_txpreamble(sc); 723 rum_set_basicrates(sc); 724 IEEE80211_ADDR_COPY(ic->ic_macaddr, ni->ni_bssid); 725 rum_set_bssid(sc, ic->ic_macaddr); 726 } 727 728 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 729 vap->iv_opmode == IEEE80211_M_IBSS) 730 rum_prepare_beacon(sc, vap); 731 732 if (vap->iv_opmode != IEEE80211_M_MONITOR) 733 rum_enable_tsf_sync(sc); 734 else 735 rum_enable_tsf(sc); 736 737 /* enable automatic rate adaptation */ 738 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 739 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 740 rum_ratectl_start(sc, ni); 741 ieee80211_free_node(ni); 742 break; 743 default: 744 break; 745 } 746 RUM_UNLOCK(sc); 747 IEEE80211_LOCK(ic); 748 return (rvp->newstate(vap, nstate, arg)); 749 } 750 751 static void 752 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 753 { 754 struct rum_softc *sc = usbd_xfer_softc(xfer); 755 struct ieee80211vap *vap; 756 struct rum_tx_data *data; 757 struct mbuf *m; 758 struct usb_page_cache *pc; 759 unsigned int len; 760 int actlen, sumlen; 761 762 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 763 764 switch (USB_GET_STATE(xfer)) { 765 case USB_ST_TRANSFERRED: 766 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 767 768 /* free resources */ 769 data = usbd_xfer_get_priv(xfer); 770 rum_tx_free(data, 0); 771 usbd_xfer_set_priv(xfer, NULL); 772 773 /* FALLTHROUGH */ 774 case USB_ST_SETUP: 775 tr_setup: 776 data = STAILQ_FIRST(&sc->tx_q); 777 if (data) { 778 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 779 m = data->m; 780 781 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 782 DPRINTFN(0, "data overflow, %u bytes\n", 783 m->m_pkthdr.len); 784 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 785 } 786 pc = usbd_xfer_get_frame(xfer, 0); 787 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 788 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 789 m->m_pkthdr.len); 790 791 vap = data->ni->ni_vap; 792 if (ieee80211_radiotap_active_vap(vap)) { 793 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 794 795 tap->wt_flags = 0; 796 tap->wt_rate = data->rate; 797 tap->wt_antenna = sc->tx_ant; 798 799 ieee80211_radiotap_tx(vap, m); 800 } 801 802 /* align end on a 4-bytes boundary */ 803 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 804 if ((len % 64) == 0) 805 len += 4; 806 807 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 808 m->m_pkthdr.len, len); 809 810 usbd_xfer_set_frame_len(xfer, 0, len); 811 usbd_xfer_set_priv(xfer, data); 812 813 usbd_transfer_submit(xfer); 814 } 815 rum_start(sc); 816 break; 817 818 default: /* Error */ 819 DPRINTFN(11, "transfer error, %s\n", 820 usbd_errstr(error)); 821 822 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 823 data = usbd_xfer_get_priv(xfer); 824 if (data != NULL) { 825 rum_tx_free(data, error); 826 usbd_xfer_set_priv(xfer, NULL); 827 } 828 829 if (error != USB_ERR_CANCELLED) { 830 if (error == USB_ERR_TIMEOUT) 831 device_printf(sc->sc_dev, "device timeout\n"); 832 833 /* 834 * Try to clear stall first, also if other 835 * errors occur, hence clearing stall 836 * introduces a 50 ms delay: 837 */ 838 usbd_xfer_set_stall(xfer); 839 goto tr_setup; 840 } 841 break; 842 } 843 } 844 845 static void 846 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 847 { 848 struct rum_softc *sc = usbd_xfer_softc(xfer); 849 struct ieee80211com *ic = &sc->sc_ic; 850 struct ieee80211_node *ni; 851 struct mbuf *m = NULL; 852 struct usb_page_cache *pc; 853 uint32_t flags; 854 uint8_t rssi = 0; 855 int len; 856 857 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 858 859 switch (USB_GET_STATE(xfer)) { 860 case USB_ST_TRANSFERRED: 861 862 DPRINTFN(15, "rx done, actlen=%d\n", len); 863 864 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 865 DPRINTF("%s: xfer too short %d\n", 866 device_get_nameunit(sc->sc_dev), len); 867 counter_u64_add(ic->ic_ierrors, 1); 868 goto tr_setup; 869 } 870 871 len -= RT2573_RX_DESC_SIZE; 872 pc = usbd_xfer_get_frame(xfer, 0); 873 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 874 875 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 876 flags = le32toh(sc->sc_rx_desc.flags); 877 if (flags & RT2573_RX_CRC_ERROR) { 878 /* 879 * This should not happen since we did not 880 * request to receive those frames when we 881 * filled RUM_TXRX_CSR2: 882 */ 883 DPRINTFN(5, "PHY or CRC error\n"); 884 counter_u64_add(ic->ic_ierrors, 1); 885 goto tr_setup; 886 } 887 888 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 889 if (m == NULL) { 890 DPRINTF("could not allocate mbuf\n"); 891 counter_u64_add(ic->ic_ierrors, 1); 892 goto tr_setup; 893 } 894 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 895 mtod(m, uint8_t *), len); 896 897 /* finalize mbuf */ 898 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 899 900 if (ieee80211_radiotap_active(ic)) { 901 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 902 903 /* XXX read tsf */ 904 tap->wr_flags = 0; 905 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 906 (flags & RT2573_RX_OFDM) ? 907 IEEE80211_T_OFDM : IEEE80211_T_CCK); 908 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 909 tap->wr_antnoise = RT2573_NOISE_FLOOR; 910 tap->wr_antenna = sc->rx_ant; 911 } 912 /* FALLTHROUGH */ 913 case USB_ST_SETUP: 914 tr_setup: 915 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 916 usbd_transfer_submit(xfer); 917 918 /* 919 * At the end of a USB callback it is always safe to unlock 920 * the private mutex of a device! That is why we do the 921 * "ieee80211_input" here, and not some lines up! 922 */ 923 RUM_UNLOCK(sc); 924 if (m) { 925 ni = ieee80211_find_rxnode(ic, 926 mtod(m, struct ieee80211_frame_min *)); 927 if (ni != NULL) { 928 (void) ieee80211_input(ni, m, rssi, 929 RT2573_NOISE_FLOOR); 930 ieee80211_free_node(ni); 931 } else 932 (void) ieee80211_input_all(ic, m, rssi, 933 RT2573_NOISE_FLOOR); 934 } 935 RUM_LOCK(sc); 936 rum_start(sc); 937 return; 938 939 default: /* Error */ 940 if (error != USB_ERR_CANCELLED) { 941 /* try to clear stall first */ 942 usbd_xfer_set_stall(xfer); 943 goto tr_setup; 944 } 945 return; 946 } 947 } 948 949 static uint8_t 950 rum_plcp_signal(int rate) 951 { 952 switch (rate) { 953 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 954 case 12: return 0xb; 955 case 18: return 0xf; 956 case 24: return 0xa; 957 case 36: return 0xe; 958 case 48: return 0x9; 959 case 72: return 0xd; 960 case 96: return 0x8; 961 case 108: return 0xc; 962 963 /* CCK rates (NB: not IEEE std, device-specific) */ 964 case 2: return 0x0; 965 case 4: return 0x1; 966 case 11: return 0x2; 967 case 22: return 0x3; 968 } 969 return 0xff; /* XXX unsupported/unknown rate */ 970 } 971 972 static void 973 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 974 uint32_t flags, uint16_t xflags, int len, int rate) 975 { 976 struct ieee80211com *ic = &sc->sc_ic; 977 uint16_t plcp_length; 978 int remainder; 979 980 desc->flags = htole32(flags); 981 desc->flags |= htole32(RT2573_TX_VALID); 982 desc->flags |= htole32(len << 16); 983 984 desc->xflags = htole16(xflags); 985 986 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 987 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 988 989 /* setup PLCP fields */ 990 desc->plcp_signal = rum_plcp_signal(rate); 991 desc->plcp_service = 4; 992 993 len += IEEE80211_CRC_LEN; 994 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 995 desc->flags |= htole32(RT2573_TX_OFDM); 996 997 plcp_length = len & 0xfff; 998 desc->plcp_length_hi = plcp_length >> 6; 999 desc->plcp_length_lo = plcp_length & 0x3f; 1000 } else { 1001 if (rate == 0) 1002 rate = 2; /* avoid division by zero */ 1003 plcp_length = (16 * len + rate - 1) / rate; 1004 if (rate == 22) { 1005 remainder = (16 * len) % 22; 1006 if (remainder != 0 && remainder < 7) 1007 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1008 } 1009 desc->plcp_length_hi = plcp_length >> 8; 1010 desc->plcp_length_lo = plcp_length & 0xff; 1011 1012 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1013 desc->plcp_signal |= 0x08; 1014 } 1015 } 1016 1017 static int 1018 rum_sendprot(struct rum_softc *sc, 1019 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1020 { 1021 struct ieee80211com *ic = ni->ni_ic; 1022 const struct ieee80211_frame *wh; 1023 struct rum_tx_data *data; 1024 struct mbuf *mprot; 1025 int protrate, ackrate, pktlen, flags, isshort; 1026 uint16_t dur; 1027 1028 RUM_LOCK_ASSERT(sc, MA_OWNED); 1029 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1030 ("protection %d", prot)); 1031 1032 wh = mtod(m, const struct ieee80211_frame *); 1033 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1034 1035 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1036 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1037 1038 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1039 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1040 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1041 flags = RT2573_TX_MORE_FRAG; 1042 if (prot == IEEE80211_PROT_RTSCTS) { 1043 /* NB: CTS is the same size as an ACK */ 1044 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1045 flags |= RT2573_TX_NEED_ACK; 1046 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1047 } else { 1048 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1049 } 1050 if (mprot == NULL) { 1051 /* XXX stat + msg */ 1052 return (ENOBUFS); 1053 } 1054 data = STAILQ_FIRST(&sc->tx_free); 1055 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1056 sc->tx_nfree--; 1057 1058 data->m = mprot; 1059 data->ni = ieee80211_ref_node(ni); 1060 data->rate = protrate; 1061 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1062 1063 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1064 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1065 1066 return 0; 1067 } 1068 1069 static int 1070 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1071 { 1072 struct ieee80211vap *vap = ni->ni_vap; 1073 struct ieee80211com *ic = &sc->sc_ic; 1074 struct rum_tx_data *data; 1075 struct ieee80211_frame *wh; 1076 const struct ieee80211_txparam *tp; 1077 struct ieee80211_key *k; 1078 uint32_t flags = 0; 1079 uint16_t dur; 1080 1081 RUM_LOCK_ASSERT(sc, MA_OWNED); 1082 1083 data = STAILQ_FIRST(&sc->tx_free); 1084 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1085 sc->tx_nfree--; 1086 1087 wh = mtod(m0, struct ieee80211_frame *); 1088 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1089 k = ieee80211_crypto_encap(ni, m0); 1090 if (k == NULL) { 1091 m_freem(m0); 1092 return ENOBUFS; 1093 } 1094 wh = mtod(m0, struct ieee80211_frame *); 1095 } 1096 1097 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1098 1099 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1100 flags |= RT2573_TX_NEED_ACK; 1101 1102 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1103 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1104 USETW(wh->i_dur, dur); 1105 1106 /* tell hardware to add timestamp for probe responses */ 1107 if ((wh->i_fc[0] & 1108 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1109 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1110 flags |= RT2573_TX_TIMESTAMP; 1111 } 1112 1113 data->m = m0; 1114 data->ni = ni; 1115 data->rate = tp->mgmtrate; 1116 1117 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1118 1119 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1120 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1121 1122 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1123 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1124 1125 return (0); 1126 } 1127 1128 static int 1129 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1130 const struct ieee80211_bpf_params *params) 1131 { 1132 struct ieee80211com *ic = ni->ni_ic; 1133 struct rum_tx_data *data; 1134 uint32_t flags; 1135 int rate, error; 1136 1137 RUM_LOCK_ASSERT(sc, MA_OWNED); 1138 KASSERT(params != NULL, ("no raw xmit params")); 1139 1140 rate = params->ibp_rate0; 1141 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1142 m_freem(m0); 1143 return EINVAL; 1144 } 1145 flags = 0; 1146 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1147 flags |= RT2573_TX_NEED_ACK; 1148 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1149 error = rum_sendprot(sc, m0, ni, 1150 params->ibp_flags & IEEE80211_BPF_RTS ? 1151 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1152 rate); 1153 if (error || sc->tx_nfree == 0) { 1154 m_freem(m0); 1155 return ENOBUFS; 1156 } 1157 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1158 } 1159 1160 data = STAILQ_FIRST(&sc->tx_free); 1161 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1162 sc->tx_nfree--; 1163 1164 data->m = m0; 1165 data->ni = ni; 1166 data->rate = rate; 1167 1168 /* XXX need to setup descriptor ourself */ 1169 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1170 1171 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1172 m0->m_pkthdr.len, rate); 1173 1174 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1175 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1176 1177 return 0; 1178 } 1179 1180 static int 1181 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1182 { 1183 struct ieee80211vap *vap = ni->ni_vap; 1184 struct ieee80211com *ic = &sc->sc_ic; 1185 struct rum_tx_data *data; 1186 struct ieee80211_frame *wh; 1187 const struct ieee80211_txparam *tp; 1188 struct ieee80211_key *k; 1189 uint32_t flags = 0; 1190 uint16_t dur; 1191 int error, rate; 1192 1193 RUM_LOCK_ASSERT(sc, MA_OWNED); 1194 1195 wh = mtod(m0, struct ieee80211_frame *); 1196 1197 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1198 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1199 rate = tp->mcastrate; 1200 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1201 rate = tp->ucastrate; 1202 else 1203 rate = ni->ni_txrate; 1204 1205 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1206 k = ieee80211_crypto_encap(ni, m0); 1207 if (k == NULL) { 1208 m_freem(m0); 1209 return ENOBUFS; 1210 } 1211 1212 /* packet header may have moved, reset our local pointer */ 1213 wh = mtod(m0, struct ieee80211_frame *); 1214 } 1215 1216 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1217 int prot = IEEE80211_PROT_NONE; 1218 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1219 prot = IEEE80211_PROT_RTSCTS; 1220 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1221 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1222 prot = ic->ic_protmode; 1223 if (prot != IEEE80211_PROT_NONE) { 1224 error = rum_sendprot(sc, m0, ni, prot, rate); 1225 if (error || sc->tx_nfree == 0) { 1226 m_freem(m0); 1227 return ENOBUFS; 1228 } 1229 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1230 } 1231 } 1232 1233 data = STAILQ_FIRST(&sc->tx_free); 1234 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1235 sc->tx_nfree--; 1236 1237 data->m = m0; 1238 data->ni = ni; 1239 data->rate = rate; 1240 1241 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1242 flags |= RT2573_TX_NEED_ACK; 1243 flags |= RT2573_TX_MORE_FRAG; 1244 1245 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1246 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1247 USETW(wh->i_dur, dur); 1248 } 1249 1250 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1251 1252 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1253 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1254 1255 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1256 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1257 1258 return 0; 1259 } 1260 1261 static int 1262 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1263 { 1264 struct rum_softc *sc = ic->ic_softc; 1265 int error; 1266 1267 RUM_LOCK(sc); 1268 if (!sc->sc_running) { 1269 RUM_UNLOCK(sc); 1270 return (ENXIO); 1271 } 1272 error = mbufq_enqueue(&sc->sc_snd, m); 1273 if (error) { 1274 RUM_UNLOCK(sc); 1275 return (error); 1276 } 1277 rum_start(sc); 1278 RUM_UNLOCK(sc); 1279 1280 return (0); 1281 } 1282 1283 static void 1284 rum_start(struct rum_softc *sc) 1285 { 1286 struct ieee80211_node *ni; 1287 struct mbuf *m; 1288 1289 RUM_LOCK_ASSERT(sc, MA_OWNED); 1290 1291 if (!sc->sc_running) 1292 return; 1293 1294 while (sc->tx_nfree >= RUM_TX_MINFREE && 1295 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1296 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1297 if (rum_tx_data(sc, m, ni) != 0) { 1298 if_inc_counter(ni->ni_vap->iv_ifp, 1299 IFCOUNTER_OERRORS, 1); 1300 ieee80211_free_node(ni); 1301 break; 1302 } 1303 } 1304 } 1305 1306 static void 1307 rum_parent(struct ieee80211com *ic) 1308 { 1309 struct rum_softc *sc = ic->ic_softc; 1310 int startall = 0; 1311 1312 RUM_LOCK(sc); 1313 if (sc->sc_detached) { 1314 RUM_UNLOCK(sc); 1315 return; 1316 } 1317 if (ic->ic_nrunning > 0) { 1318 if (!sc->sc_running) { 1319 rum_init(sc); 1320 startall = 1; 1321 } else 1322 rum_setpromisc(sc); 1323 } else if (sc->sc_running) 1324 rum_stop(sc); 1325 RUM_UNLOCK(sc); 1326 if (startall) 1327 ieee80211_start_all(ic); 1328 } 1329 1330 static void 1331 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1332 { 1333 struct usb_device_request req; 1334 usb_error_t error; 1335 1336 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1337 req.bRequest = RT2573_READ_EEPROM; 1338 USETW(req.wValue, 0); 1339 USETW(req.wIndex, addr); 1340 USETW(req.wLength, len); 1341 1342 error = rum_do_request(sc, &req, buf); 1343 if (error != 0) { 1344 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1345 usbd_errstr(error)); 1346 } 1347 } 1348 1349 static uint32_t 1350 rum_read(struct rum_softc *sc, uint16_t reg) 1351 { 1352 uint32_t val; 1353 1354 rum_read_multi(sc, reg, &val, sizeof val); 1355 1356 return le32toh(val); 1357 } 1358 1359 static void 1360 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1361 { 1362 struct usb_device_request req; 1363 usb_error_t error; 1364 1365 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1366 req.bRequest = RT2573_READ_MULTI_MAC; 1367 USETW(req.wValue, 0); 1368 USETW(req.wIndex, reg); 1369 USETW(req.wLength, len); 1370 1371 error = rum_do_request(sc, &req, buf); 1372 if (error != 0) { 1373 device_printf(sc->sc_dev, 1374 "could not multi read MAC register: %s\n", 1375 usbd_errstr(error)); 1376 } 1377 } 1378 1379 static usb_error_t 1380 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1381 { 1382 uint32_t tmp = htole32(val); 1383 1384 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1385 } 1386 1387 static usb_error_t 1388 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1389 { 1390 struct usb_device_request req; 1391 usb_error_t error; 1392 size_t offset; 1393 1394 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1395 req.bRequest = RT2573_WRITE_MULTI_MAC; 1396 USETW(req.wValue, 0); 1397 1398 /* write at most 64 bytes at a time */ 1399 for (offset = 0; offset < len; offset += 64) { 1400 USETW(req.wIndex, reg + offset); 1401 USETW(req.wLength, MIN(len - offset, 64)); 1402 1403 error = rum_do_request(sc, &req, (char *)buf + offset); 1404 if (error != 0) { 1405 device_printf(sc->sc_dev, 1406 "could not multi write MAC register: %s\n", 1407 usbd_errstr(error)); 1408 return (error); 1409 } 1410 } 1411 1412 return (USB_ERR_NORMAL_COMPLETION); 1413 } 1414 1415 static void 1416 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1417 { 1418 uint32_t tmp; 1419 int ntries; 1420 1421 DPRINTFN(2, "reg=0x%08x\n", reg); 1422 1423 for (ntries = 0; ntries < 100; ntries++) { 1424 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1425 break; 1426 if (rum_pause(sc, hz / 100)) 1427 break; 1428 } 1429 if (ntries == 100) { 1430 device_printf(sc->sc_dev, "could not write to BBP\n"); 1431 return; 1432 } 1433 1434 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1435 rum_write(sc, RT2573_PHY_CSR3, tmp); 1436 } 1437 1438 static uint8_t 1439 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1440 { 1441 uint32_t val; 1442 int ntries; 1443 1444 DPRINTFN(2, "reg=0x%08x\n", reg); 1445 1446 for (ntries = 0; ntries < 100; ntries++) { 1447 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1448 break; 1449 if (rum_pause(sc, hz / 100)) 1450 break; 1451 } 1452 if (ntries == 100) { 1453 device_printf(sc->sc_dev, "could not read BBP\n"); 1454 return 0; 1455 } 1456 1457 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1458 rum_write(sc, RT2573_PHY_CSR3, val); 1459 1460 for (ntries = 0; ntries < 100; ntries++) { 1461 val = rum_read(sc, RT2573_PHY_CSR3); 1462 if (!(val & RT2573_BBP_BUSY)) 1463 return val & 0xff; 1464 if (rum_pause(sc, hz / 100)) 1465 break; 1466 } 1467 1468 device_printf(sc->sc_dev, "could not read BBP\n"); 1469 return 0; 1470 } 1471 1472 static void 1473 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1474 { 1475 uint32_t tmp; 1476 int ntries; 1477 1478 for (ntries = 0; ntries < 100; ntries++) { 1479 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1480 break; 1481 if (rum_pause(sc, hz / 100)) 1482 break; 1483 } 1484 if (ntries == 100) { 1485 device_printf(sc->sc_dev, "could not write to RF\n"); 1486 return; 1487 } 1488 1489 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1490 (reg & 3); 1491 rum_write(sc, RT2573_PHY_CSR4, tmp); 1492 1493 /* remember last written value in sc */ 1494 sc->rf_regs[reg] = val; 1495 1496 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1497 } 1498 1499 static void 1500 rum_select_antenna(struct rum_softc *sc) 1501 { 1502 uint8_t bbp4, bbp77; 1503 uint32_t tmp; 1504 1505 bbp4 = rum_bbp_read(sc, 4); 1506 bbp77 = rum_bbp_read(sc, 77); 1507 1508 /* TBD */ 1509 1510 /* make sure Rx is disabled before switching antenna */ 1511 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1512 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1513 1514 rum_bbp_write(sc, 4, bbp4); 1515 rum_bbp_write(sc, 77, bbp77); 1516 1517 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1518 } 1519 1520 /* 1521 * Enable multi-rate retries for frames sent at OFDM rates. 1522 * In 802.11b/g mode, allow fallback to CCK rates. 1523 */ 1524 static void 1525 rum_enable_mrr(struct rum_softc *sc) 1526 { 1527 struct ieee80211com *ic = &sc->sc_ic; 1528 uint32_t tmp; 1529 1530 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1531 1532 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1533 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1534 tmp |= RT2573_MRR_CCK_FALLBACK; 1535 tmp |= RT2573_MRR_ENABLED; 1536 1537 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1538 } 1539 1540 static void 1541 rum_set_txpreamble(struct rum_softc *sc) 1542 { 1543 struct ieee80211com *ic = &sc->sc_ic; 1544 uint32_t tmp; 1545 1546 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1547 1548 tmp &= ~RT2573_SHORT_PREAMBLE; 1549 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1550 tmp |= RT2573_SHORT_PREAMBLE; 1551 1552 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1553 } 1554 1555 static void 1556 rum_set_basicrates(struct rum_softc *sc) 1557 { 1558 struct ieee80211com *ic = &sc->sc_ic; 1559 1560 /* update basic rate set */ 1561 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1562 /* 11b basic rates: 1, 2Mbps */ 1563 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1564 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1565 /* 11a basic rates: 6, 12, 24Mbps */ 1566 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1567 } else { 1568 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1569 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1570 } 1571 } 1572 1573 /* 1574 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1575 * driver. 1576 */ 1577 static void 1578 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1579 { 1580 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1581 uint32_t tmp; 1582 1583 /* update all BBP registers that depend on the band */ 1584 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1585 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1586 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1587 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1588 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1589 } 1590 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1591 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1592 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1593 } 1594 1595 sc->bbp17 = bbp17; 1596 rum_bbp_write(sc, 17, bbp17); 1597 rum_bbp_write(sc, 96, bbp96); 1598 rum_bbp_write(sc, 104, bbp104); 1599 1600 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1601 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1602 rum_bbp_write(sc, 75, 0x80); 1603 rum_bbp_write(sc, 86, 0x80); 1604 rum_bbp_write(sc, 88, 0x80); 1605 } 1606 1607 rum_bbp_write(sc, 35, bbp35); 1608 rum_bbp_write(sc, 97, bbp97); 1609 rum_bbp_write(sc, 98, bbp98); 1610 1611 tmp = rum_read(sc, RT2573_PHY_CSR0); 1612 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1613 if (IEEE80211_IS_CHAN_2GHZ(c)) 1614 tmp |= RT2573_PA_PE_2GHZ; 1615 else 1616 tmp |= RT2573_PA_PE_5GHZ; 1617 rum_write(sc, RT2573_PHY_CSR0, tmp); 1618 } 1619 1620 static void 1621 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1622 { 1623 struct ieee80211com *ic = &sc->sc_ic; 1624 const struct rfprog *rfprog; 1625 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1626 int8_t power; 1627 int i, chan; 1628 1629 chan = ieee80211_chan2ieee(ic, c); 1630 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1631 return; 1632 1633 /* select the appropriate RF settings based on what EEPROM says */ 1634 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1635 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1636 1637 /* find the settings for this channel (we know it exists) */ 1638 for (i = 0; rfprog[i].chan != chan; i++); 1639 1640 power = sc->txpow[i]; 1641 if (power < 0) { 1642 bbp94 += power; 1643 power = 0; 1644 } else if (power > 31) { 1645 bbp94 += power - 31; 1646 power = 31; 1647 } 1648 1649 /* 1650 * If we are switching from the 2GHz band to the 5GHz band or 1651 * vice-versa, BBP registers need to be reprogrammed. 1652 */ 1653 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1654 rum_select_band(sc, c); 1655 rum_select_antenna(sc); 1656 } 1657 ic->ic_curchan = c; 1658 1659 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1660 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1661 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1662 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1663 1664 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1665 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1666 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1667 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1668 1669 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1670 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1671 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1672 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1673 1674 rum_pause(sc, hz / 100); 1675 1676 /* enable smart mode for MIMO-capable RFs */ 1677 bbp3 = rum_bbp_read(sc, 3); 1678 1679 bbp3 &= ~RT2573_SMART_MODE; 1680 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1681 bbp3 |= RT2573_SMART_MODE; 1682 1683 rum_bbp_write(sc, 3, bbp3); 1684 1685 if (bbp94 != RT2573_BBPR94_DEFAULT) 1686 rum_bbp_write(sc, 94, bbp94); 1687 1688 /* give the chip some extra time to do the switchover */ 1689 rum_pause(sc, hz / 100); 1690 } 1691 1692 /* 1693 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1694 * and HostAP operating modes. 1695 */ 1696 static void 1697 rum_enable_tsf_sync(struct rum_softc *sc) 1698 { 1699 struct ieee80211com *ic = &sc->sc_ic; 1700 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1701 uint32_t tmp; 1702 1703 if (vap->iv_opmode != IEEE80211_M_STA) { 1704 /* 1705 * Change default 16ms TBTT adjustment to 8ms. 1706 * Must be done before enabling beacon generation. 1707 */ 1708 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1709 } 1710 1711 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1712 1713 /* set beacon interval (in 1/16ms unit) */ 1714 tmp |= vap->iv_bss->ni_intval * 16; 1715 1716 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1717 if (vap->iv_opmode == IEEE80211_M_STA) 1718 tmp |= RT2573_TSF_MODE(1); 1719 else 1720 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1721 1722 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1723 } 1724 1725 static void 1726 rum_enable_tsf(struct rum_softc *sc) 1727 { 1728 rum_write(sc, RT2573_TXRX_CSR9, 1729 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1730 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1731 } 1732 1733 static void 1734 rum_update_slot(struct rum_softc *sc) 1735 { 1736 struct ieee80211com *ic = &sc->sc_ic; 1737 uint8_t slottime; 1738 uint32_t tmp; 1739 1740 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1741 1742 tmp = rum_read(sc, RT2573_MAC_CSR9); 1743 tmp = (tmp & ~0xff) | slottime; 1744 rum_write(sc, RT2573_MAC_CSR9, tmp); 1745 1746 DPRINTF("setting slot time to %uus\n", slottime); 1747 } 1748 1749 static void 1750 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1751 { 1752 uint32_t tmp; 1753 1754 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1755 rum_write(sc, RT2573_MAC_CSR4, tmp); 1756 1757 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1758 rum_write(sc, RT2573_MAC_CSR5, tmp); 1759 } 1760 1761 static void 1762 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1763 { 1764 uint32_t tmp; 1765 1766 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1767 rum_write(sc, RT2573_MAC_CSR2, tmp); 1768 1769 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1770 rum_write(sc, RT2573_MAC_CSR3, tmp); 1771 } 1772 1773 static void 1774 rum_setpromisc(struct rum_softc *sc) 1775 { 1776 uint32_t tmp; 1777 1778 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1779 1780 tmp &= ~RT2573_DROP_NOT_TO_ME; 1781 if (sc->sc_ic.ic_promisc == 0) 1782 tmp |= RT2573_DROP_NOT_TO_ME; 1783 1784 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1785 1786 DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc > 0 ? 1787 "entering" : "leaving"); 1788 } 1789 1790 static void 1791 rum_update_promisc(struct ieee80211com *ic) 1792 { 1793 struct rum_softc *sc = ic->ic_softc; 1794 1795 RUM_LOCK(sc); 1796 if (!sc->sc_running) { 1797 RUM_UNLOCK(sc); 1798 return; 1799 } 1800 rum_setpromisc(sc); 1801 RUM_UNLOCK(sc); 1802 } 1803 1804 static void 1805 rum_update_mcast(struct ieee80211com *ic) 1806 { 1807 static int warning_printed; 1808 1809 if (warning_printed == 0) { 1810 ic_printf(ic, "need to implement %s\n", __func__); 1811 warning_printed = 1; 1812 } 1813 } 1814 1815 static const char * 1816 rum_get_rf(int rev) 1817 { 1818 switch (rev) { 1819 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1820 case RT2573_RF_2528: return "RT2528"; 1821 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1822 case RT2573_RF_5226: return "RT5226"; 1823 default: return "unknown"; 1824 } 1825 } 1826 1827 static void 1828 rum_read_eeprom(struct rum_softc *sc) 1829 { 1830 uint16_t val; 1831 #ifdef RUM_DEBUG 1832 int i; 1833 #endif 1834 1835 /* read MAC address */ 1836 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 1837 1838 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1839 val = le16toh(val); 1840 sc->rf_rev = (val >> 11) & 0x1f; 1841 sc->hw_radio = (val >> 10) & 0x1; 1842 sc->rx_ant = (val >> 4) & 0x3; 1843 sc->tx_ant = (val >> 2) & 0x3; 1844 sc->nb_ant = val & 0x3; 1845 1846 DPRINTF("RF revision=%d\n", sc->rf_rev); 1847 1848 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1849 val = le16toh(val); 1850 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1851 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1852 1853 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1854 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1855 1856 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1857 val = le16toh(val); 1858 if ((val & 0xff) != 0xff) 1859 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1860 1861 /* Only [-10, 10] is valid */ 1862 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1863 sc->rssi_2ghz_corr = 0; 1864 1865 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1866 val = le16toh(val); 1867 if ((val & 0xff) != 0xff) 1868 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1869 1870 /* Only [-10, 10] is valid */ 1871 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1872 sc->rssi_5ghz_corr = 0; 1873 1874 if (sc->ext_2ghz_lna) 1875 sc->rssi_2ghz_corr -= 14; 1876 if (sc->ext_5ghz_lna) 1877 sc->rssi_5ghz_corr -= 14; 1878 1879 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1880 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1881 1882 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1883 val = le16toh(val); 1884 if ((val & 0xff) != 0xff) 1885 sc->rffreq = val & 0xff; 1886 1887 DPRINTF("RF freq=%d\n", sc->rffreq); 1888 1889 /* read Tx power for all a/b/g channels */ 1890 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1891 /* XXX default Tx power for 802.11a channels */ 1892 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1893 #ifdef RUM_DEBUG 1894 for (i = 0; i < 14; i++) 1895 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1896 #endif 1897 1898 /* read default values for BBP registers */ 1899 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1900 #ifdef RUM_DEBUG 1901 for (i = 0; i < 14; i++) { 1902 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1903 continue; 1904 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1905 sc->bbp_prom[i].val); 1906 } 1907 #endif 1908 } 1909 1910 static int 1911 rum_bbp_init(struct rum_softc *sc) 1912 { 1913 int i, ntries; 1914 1915 /* wait for BBP to be ready */ 1916 for (ntries = 0; ntries < 100; ntries++) { 1917 const uint8_t val = rum_bbp_read(sc, 0); 1918 if (val != 0 && val != 0xff) 1919 break; 1920 if (rum_pause(sc, hz / 100)) 1921 break; 1922 } 1923 if (ntries == 100) { 1924 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1925 return EIO; 1926 } 1927 1928 /* initialize BBP registers to default values */ 1929 for (i = 0; i < N(rum_def_bbp); i++) 1930 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1931 1932 /* write vendor-specific BBP values (from EEPROM) */ 1933 for (i = 0; i < 16; i++) { 1934 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1935 continue; 1936 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1937 } 1938 1939 return 0; 1940 } 1941 1942 static void 1943 rum_init(struct rum_softc *sc) 1944 { 1945 struct ieee80211com *ic = &sc->sc_ic; 1946 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1947 uint32_t tmp; 1948 usb_error_t error; 1949 int i, ntries; 1950 1951 RUM_LOCK_ASSERT(sc, MA_OWNED); 1952 1953 rum_stop(sc); 1954 1955 /* initialize MAC registers to default values */ 1956 for (i = 0; i < N(rum_def_mac); i++) 1957 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1958 1959 /* set host ready */ 1960 rum_write(sc, RT2573_MAC_CSR1, 3); 1961 rum_write(sc, RT2573_MAC_CSR1, 0); 1962 1963 /* wait for BBP/RF to wakeup */ 1964 for (ntries = 0; ntries < 100; ntries++) { 1965 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1966 break; 1967 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1968 if (rum_pause(sc, hz / 100)) 1969 break; 1970 } 1971 if (ntries == 100) { 1972 device_printf(sc->sc_dev, 1973 "timeout waiting for BBP/RF to wakeup\n"); 1974 goto fail; 1975 } 1976 1977 if ((error = rum_bbp_init(sc)) != 0) 1978 goto fail; 1979 1980 /* select default channel */ 1981 rum_select_band(sc, ic->ic_curchan); 1982 rum_select_antenna(sc); 1983 rum_set_chan(sc, ic->ic_curchan); 1984 1985 /* clear STA registers */ 1986 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 1987 1988 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 1989 1990 /* initialize ASIC */ 1991 rum_write(sc, RT2573_MAC_CSR1, 4); 1992 1993 /* 1994 * Allocate Tx and Rx xfer queues. 1995 */ 1996 rum_setup_tx_list(sc); 1997 1998 /* update Rx filter */ 1999 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2000 2001 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2002 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2003 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2004 RT2573_DROP_ACKCTS; 2005 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2006 tmp |= RT2573_DROP_TODS; 2007 if (ic->ic_promisc == 0) 2008 tmp |= RT2573_DROP_NOT_TO_ME; 2009 } 2010 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2011 2012 sc->sc_running = 1; 2013 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2014 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2015 return; 2016 2017 fail: rum_stop(sc); 2018 #undef N 2019 } 2020 2021 static void 2022 rum_stop(struct rum_softc *sc) 2023 { 2024 uint32_t tmp; 2025 2026 RUM_LOCK_ASSERT(sc, MA_OWNED); 2027 2028 sc->sc_running = 0; 2029 2030 RUM_UNLOCK(sc); 2031 2032 /* 2033 * Drain the USB transfers, if not already drained: 2034 */ 2035 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2036 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2037 2038 RUM_LOCK(sc); 2039 2040 rum_unsetup_tx_list(sc); 2041 2042 /* disable Rx */ 2043 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2044 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2045 2046 /* reset ASIC */ 2047 rum_write(sc, RT2573_MAC_CSR1, 3); 2048 rum_write(sc, RT2573_MAC_CSR1, 0); 2049 } 2050 2051 static void 2052 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2053 { 2054 struct usb_device_request req; 2055 uint16_t reg = RT2573_MCU_CODE_BASE; 2056 usb_error_t err; 2057 2058 /* copy firmware image into NIC */ 2059 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2060 err = rum_write(sc, reg, UGETDW(ucode)); 2061 if (err) { 2062 /* firmware already loaded ? */ 2063 device_printf(sc->sc_dev, "Firmware load " 2064 "failure! (ignored)\n"); 2065 break; 2066 } 2067 } 2068 2069 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2070 req.bRequest = RT2573_MCU_CNTL; 2071 USETW(req.wValue, RT2573_MCU_RUN); 2072 USETW(req.wIndex, 0); 2073 USETW(req.wLength, 0); 2074 2075 err = rum_do_request(sc, &req, NULL); 2076 if (err != 0) { 2077 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2078 usbd_errstr(err)); 2079 } 2080 2081 /* give the chip some time to boot */ 2082 rum_pause(sc, hz / 8); 2083 } 2084 2085 static void 2086 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2087 { 2088 struct ieee80211com *ic = vap->iv_ic; 2089 const struct ieee80211_txparam *tp; 2090 struct rum_tx_desc desc; 2091 struct mbuf *m0; 2092 2093 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 2094 return; 2095 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2096 return; 2097 2098 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2099 if (m0 == NULL) 2100 return; 2101 2102 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2103 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2104 m0->m_pkthdr.len, tp->mgmtrate); 2105 2106 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2107 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2108 2109 /* copy beacon header and payload into NIC memory */ 2110 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2111 m0->m_pkthdr.len); 2112 2113 m_freem(m0); 2114 } 2115 2116 static int 2117 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2118 const struct ieee80211_bpf_params *params) 2119 { 2120 struct rum_softc *sc = ni->ni_ic->ic_softc; 2121 2122 RUM_LOCK(sc); 2123 /* prevent management frames from being sent if we're not ready */ 2124 if (!sc->sc_running) { 2125 RUM_UNLOCK(sc); 2126 m_freem(m); 2127 ieee80211_free_node(ni); 2128 return ENETDOWN; 2129 } 2130 if (sc->tx_nfree < RUM_TX_MINFREE) { 2131 RUM_UNLOCK(sc); 2132 m_freem(m); 2133 ieee80211_free_node(ni); 2134 return EIO; 2135 } 2136 2137 if (params == NULL) { 2138 /* 2139 * Legacy path; interpret frame contents to decide 2140 * precisely how to send the frame. 2141 */ 2142 if (rum_tx_mgt(sc, m, ni) != 0) 2143 goto bad; 2144 } else { 2145 /* 2146 * Caller supplied explicit parameters to use in 2147 * sending the frame. 2148 */ 2149 if (rum_tx_raw(sc, m, ni, params) != 0) 2150 goto bad; 2151 } 2152 RUM_UNLOCK(sc); 2153 2154 return 0; 2155 bad: 2156 RUM_UNLOCK(sc); 2157 ieee80211_free_node(ni); 2158 return EIO; 2159 } 2160 2161 static void 2162 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2163 { 2164 struct ieee80211vap *vap = ni->ni_vap; 2165 struct rum_vap *rvp = RUM_VAP(vap); 2166 2167 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2168 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2169 2170 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2171 } 2172 2173 static void 2174 rum_ratectl_timeout(void *arg) 2175 { 2176 struct rum_vap *rvp = arg; 2177 struct ieee80211vap *vap = &rvp->vap; 2178 struct ieee80211com *ic = vap->iv_ic; 2179 2180 ieee80211_runtask(ic, &rvp->ratectl_task); 2181 } 2182 2183 static void 2184 rum_ratectl_task(void *arg, int pending) 2185 { 2186 struct rum_vap *rvp = arg; 2187 struct ieee80211vap *vap = &rvp->vap; 2188 struct ieee80211com *ic = vap->iv_ic; 2189 struct rum_softc *sc = ic->ic_softc; 2190 struct ieee80211_node *ni; 2191 int ok, fail; 2192 int sum, retrycnt; 2193 2194 RUM_LOCK(sc); 2195 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2196 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2197 2198 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2199 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2200 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2201 sum = ok+fail; 2202 retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail; 2203 2204 ni = ieee80211_ref_node(vap->iv_bss); 2205 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2206 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2207 ieee80211_free_node(ni); 2208 2209 /* count TX retry-fail as Tx errors */ 2210 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, fail); 2211 2212 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2213 RUM_UNLOCK(sc); 2214 } 2215 2216 static void 2217 rum_scan_start(struct ieee80211com *ic) 2218 { 2219 struct rum_softc *sc = ic->ic_softc; 2220 uint32_t tmp; 2221 2222 RUM_LOCK(sc); 2223 /* abort TSF synchronization */ 2224 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2225 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2226 rum_set_bssid(sc, ieee80211broadcastaddr); 2227 RUM_UNLOCK(sc); 2228 2229 } 2230 2231 static void 2232 rum_scan_end(struct ieee80211com *ic) 2233 { 2234 struct rum_softc *sc = ic->ic_softc; 2235 2236 RUM_LOCK(sc); 2237 rum_enable_tsf_sync(sc); 2238 rum_set_bssid(sc, ic->ic_macaddr); 2239 RUM_UNLOCK(sc); 2240 2241 } 2242 2243 static void 2244 rum_set_channel(struct ieee80211com *ic) 2245 { 2246 struct rum_softc *sc = ic->ic_softc; 2247 2248 RUM_LOCK(sc); 2249 rum_set_chan(sc, ic->ic_curchan); 2250 RUM_UNLOCK(sc); 2251 } 2252 2253 static int 2254 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2255 { 2256 struct ieee80211com *ic = &sc->sc_ic; 2257 int lna, agc, rssi; 2258 2259 lna = (raw >> 5) & 0x3; 2260 agc = raw & 0x1f; 2261 2262 if (lna == 0) { 2263 /* 2264 * No RSSI mapping 2265 * 2266 * NB: Since RSSI is relative to noise floor, -1 is 2267 * adequate for caller to know error happened. 2268 */ 2269 return -1; 2270 } 2271 2272 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2273 2274 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2275 rssi += sc->rssi_2ghz_corr; 2276 2277 if (lna == 1) 2278 rssi -= 64; 2279 else if (lna == 2) 2280 rssi -= 74; 2281 else if (lna == 3) 2282 rssi -= 90; 2283 } else { 2284 rssi += sc->rssi_5ghz_corr; 2285 2286 if (!sc->ext_5ghz_lna && lna != 1) 2287 rssi += 4; 2288 2289 if (lna == 1) 2290 rssi -= 64; 2291 else if (lna == 2) 2292 rssi -= 86; 2293 else if (lna == 3) 2294 rssi -= 100; 2295 } 2296 return rssi; 2297 } 2298 2299 static int 2300 rum_pause(struct rum_softc *sc, int timeout) 2301 { 2302 2303 usb_pause_mtx(&sc->sc_mtx, timeout); 2304 return (0); 2305 } 2306 2307 static device_method_t rum_methods[] = { 2308 /* Device interface */ 2309 DEVMETHOD(device_probe, rum_match), 2310 DEVMETHOD(device_attach, rum_attach), 2311 DEVMETHOD(device_detach, rum_detach), 2312 DEVMETHOD_END 2313 }; 2314 2315 static driver_t rum_driver = { 2316 .name = "rum", 2317 .methods = rum_methods, 2318 .size = sizeof(struct rum_softc), 2319 }; 2320 2321 static devclass_t rum_devclass; 2322 2323 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2324 MODULE_DEPEND(rum, wlan, 1, 1, 1); 2325 MODULE_DEPEND(rum, usb, 1, 1, 1); 2326 MODULE_VERSION(rum, 1); 2327