1 2 /*- 3 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 4 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 5 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 6 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 /*- 23 * Ralink Technology RT2501USB/RT2601USB chipset driver 24 * http://www.ralinktech.com.tw/ 25 */ 26 27 #include "opt_wlan.h" 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #ifdef INET 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/if_ether.h> 58 #include <netinet/ip.h> 59 #endif 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_regdomain.h> 63 #include <net80211/ieee80211_radiotap.h> 64 #include <net80211/ieee80211_ratectl.h> 65 66 #include <dev/usb/usb.h> 67 #include <dev/usb/usbdi.h> 68 #include "usbdevs.h" 69 70 #define USB_DEBUG_VAR rum_debug 71 #include <dev/usb/usb_debug.h> 72 73 #include <dev/usb/wlan/if_rumreg.h> 74 #include <dev/usb/wlan/if_rumvar.h> 75 #include <dev/usb/wlan/if_rumfw.h> 76 77 #ifdef USB_DEBUG 78 static int rum_debug = 0; 79 80 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 81 "USB rum"); 82 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 83 "Debug level"); 84 #endif 85 86 static const STRUCT_USB_HOST_ID rum_devs[] = { 87 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 88 RUM_DEV(ABOCOM, HWU54DM), 89 RUM_DEV(ABOCOM, RT2573_2), 90 RUM_DEV(ABOCOM, RT2573_3), 91 RUM_DEV(ABOCOM, RT2573_4), 92 RUM_DEV(ABOCOM, WUG2700), 93 RUM_DEV(AMIT, CGWLUSB2GO), 94 RUM_DEV(ASUS, RT2573_1), 95 RUM_DEV(ASUS, RT2573_2), 96 RUM_DEV(BELKIN, F5D7050A), 97 RUM_DEV(BELKIN, F5D9050V3), 98 RUM_DEV(CISCOLINKSYS, WUSB54GC), 99 RUM_DEV(CISCOLINKSYS, WUSB54GR), 100 RUM_DEV(CONCEPTRONIC2, C54RU2), 101 RUM_DEV(COREGA, CGWLUSB2GL), 102 RUM_DEV(COREGA, CGWLUSB2GPX), 103 RUM_DEV(DICKSMITH, CWD854F), 104 RUM_DEV(DICKSMITH, RT2573), 105 RUM_DEV(EDIMAX, EW7318USG), 106 RUM_DEV(DLINK2, DWLG122C1), 107 RUM_DEV(DLINK2, WUA1340), 108 RUM_DEV(DLINK2, DWA111), 109 RUM_DEV(DLINK2, DWA110), 110 RUM_DEV(GIGABYTE, GNWB01GS), 111 RUM_DEV(GIGABYTE, GNWI05GS), 112 RUM_DEV(GIGASET, RT2573), 113 RUM_DEV(GOODWAY, RT2573), 114 RUM_DEV(GUILLEMOT, HWGUSB254LB), 115 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 116 RUM_DEV(HUAWEI3COM, WUB320G), 117 RUM_DEV(MELCO, G54HP), 118 RUM_DEV(MELCO, SG54HP), 119 RUM_DEV(MELCO, SG54HG), 120 RUM_DEV(MELCO, WLIUCG), 121 RUM_DEV(MELCO, WLRUCG), 122 RUM_DEV(MELCO, WLRUCGAOSS), 123 RUM_DEV(MSI, RT2573_1), 124 RUM_DEV(MSI, RT2573_2), 125 RUM_DEV(MSI, RT2573_3), 126 RUM_DEV(MSI, RT2573_4), 127 RUM_DEV(NOVATECH, RT2573), 128 RUM_DEV(PLANEX2, GWUS54HP), 129 RUM_DEV(PLANEX2, GWUS54MINI2), 130 RUM_DEV(PLANEX2, GWUSMM), 131 RUM_DEV(QCOM, RT2573), 132 RUM_DEV(QCOM, RT2573_2), 133 RUM_DEV(QCOM, RT2573_3), 134 RUM_DEV(RALINK, RT2573), 135 RUM_DEV(RALINK, RT2573_2), 136 RUM_DEV(RALINK, RT2671), 137 RUM_DEV(SITECOMEU, WL113R2), 138 RUM_DEV(SITECOMEU, WL172), 139 RUM_DEV(SPARKLAN, RT2573), 140 RUM_DEV(SURECOM, RT2573), 141 #undef RUM_DEV 142 }; 143 144 static device_probe_t rum_match; 145 static device_attach_t rum_attach; 146 static device_detach_t rum_detach; 147 148 static usb_callback_t rum_bulk_read_callback; 149 static usb_callback_t rum_bulk_write_callback; 150 151 static usb_error_t rum_do_request(struct rum_softc *sc, 152 struct usb_device_request *req, void *data); 153 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 154 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, 156 int, const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void rum_vap_delete(struct ieee80211vap *); 159 static void rum_cmdq_cb(void *, int); 160 static int rum_cmd_sleepable(struct rum_softc *, const void *, 161 size_t, uint8_t, CMD_FUNC_PROTO); 162 static void rum_tx_free(struct rum_tx_data *, int); 163 static void rum_setup_tx_list(struct rum_softc *); 164 static void rum_reset_tx_list(struct rum_softc *, 165 struct ieee80211vap *); 166 static void rum_unsetup_tx_list(struct rum_softc *); 167 static void rum_beacon_miss(struct ieee80211vap *); 168 static void rum_sta_recv_mgmt(struct ieee80211_node *, 169 struct mbuf *, int, 170 const struct ieee80211_rx_stats *, int, int); 171 static int rum_set_power_state(struct rum_softc *, int); 172 static int rum_newstate(struct ieee80211vap *, 173 enum ieee80211_state, int); 174 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 175 static void rum_setup_tx_desc(struct rum_softc *, 176 struct rum_tx_desc *, struct ieee80211_key *, 177 uint32_t, uint8_t, uint8_t, int, int, int); 178 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 179 struct ieee80211_node *, 180 const struct ieee80211_key *); 181 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 182 struct ieee80211_node *); 183 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 184 struct ieee80211_node *, 185 const struct ieee80211_bpf_params *); 186 static int rum_tx_data(struct rum_softc *, struct mbuf *, 187 struct ieee80211_node *); 188 static int rum_transmit(struct ieee80211com *, struct mbuf *); 189 static void rum_start(struct rum_softc *); 190 static void rum_parent(struct ieee80211com *); 191 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 192 int); 193 static uint32_t rum_read(struct rum_softc *, uint16_t); 194 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 195 int); 196 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 197 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 198 size_t); 199 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 200 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 201 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 202 uint32_t); 203 static int rum_bbp_busy(struct rum_softc *); 204 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 205 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 206 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 207 static void rum_select_antenna(struct rum_softc *); 208 static void rum_enable_mrr(struct rum_softc *); 209 static void rum_set_txpreamble(struct rum_softc *); 210 static void rum_set_basicrates(struct rum_softc *); 211 static void rum_select_band(struct rum_softc *, 212 struct ieee80211_channel *); 213 static void rum_set_chan(struct rum_softc *, 214 struct ieee80211_channel *); 215 static void rum_set_maxretry(struct rum_softc *, 216 struct ieee80211vap *); 217 static int rum_enable_tsf_sync(struct rum_softc *); 218 static void rum_enable_tsf(struct rum_softc *); 219 static void rum_abort_tsf_sync(struct rum_softc *); 220 static void rum_get_tsf(struct rum_softc *, uint64_t *); 221 static void rum_update_slot_cb(struct rum_softc *, 222 union sec_param *, uint8_t); 223 static void rum_update_slot(struct ieee80211com *); 224 static int rum_wme_update(struct ieee80211com *); 225 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 226 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 227 static void rum_update_mcast(struct ieee80211com *); 228 static void rum_update_promisc(struct ieee80211com *); 229 static void rum_setpromisc(struct rum_softc *); 230 static const char *rum_get_rf(int); 231 static void rum_read_eeprom(struct rum_softc *); 232 static int rum_bbp_wakeup(struct rum_softc *); 233 static int rum_bbp_init(struct rum_softc *); 234 static void rum_clr_shkey_regs(struct rum_softc *); 235 static int rum_init(struct rum_softc *); 236 static void rum_stop(struct rum_softc *); 237 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 238 size_t); 239 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 240 static int rum_reset(struct ieee80211vap *, u_long); 241 static int rum_set_beacon(struct rum_softc *, 242 struct ieee80211vap *); 243 static int rum_alloc_beacon(struct rum_softc *, 244 struct ieee80211vap *); 245 static void rum_update_beacon_cb(struct rum_softc *, 246 union sec_param *, uint8_t); 247 static void rum_update_beacon(struct ieee80211vap *, int); 248 static int rum_common_key_set(struct rum_softc *, 249 struct ieee80211_key *, uint16_t); 250 static void rum_group_key_set_cb(struct rum_softc *, 251 union sec_param *, uint8_t); 252 static void rum_group_key_del_cb(struct rum_softc *, 253 union sec_param *, uint8_t); 254 static void rum_pair_key_set_cb(struct rum_softc *, 255 union sec_param *, uint8_t); 256 static void rum_pair_key_del_cb(struct rum_softc *, 257 union sec_param *, uint8_t); 258 static int rum_key_alloc(struct ieee80211vap *, 259 struct ieee80211_key *, ieee80211_keyix *, 260 ieee80211_keyix *); 261 static int rum_key_set(struct ieee80211vap *, 262 const struct ieee80211_key *); 263 static int rum_key_delete(struct ieee80211vap *, 264 const struct ieee80211_key *); 265 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 266 const struct ieee80211_bpf_params *); 267 static void rum_scan_start(struct ieee80211com *); 268 static void rum_scan_end(struct ieee80211com *); 269 static void rum_set_channel(struct ieee80211com *); 270 static void rum_getradiocaps(struct ieee80211com *, int, int *, 271 struct ieee80211_channel[]); 272 static int rum_get_rssi(struct rum_softc *, uint8_t); 273 static void rum_ratectl_start(struct rum_softc *, 274 struct ieee80211_node *); 275 static void rum_ratectl_timeout(void *); 276 static void rum_ratectl_task(void *, int); 277 static int rum_pause(struct rum_softc *, int); 278 279 static const struct { 280 uint32_t reg; 281 uint32_t val; 282 } rum_def_mac[] = { 283 { RT2573_TXRX_CSR0, 0x025fb032 }, 284 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 285 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 286 { RT2573_TXRX_CSR3, 0x00858687 }, 287 { RT2573_TXRX_CSR7, 0x2e31353b }, 288 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 289 { RT2573_TXRX_CSR15, 0x0000000f }, 290 { RT2573_MAC_CSR6, 0x00000fff }, 291 { RT2573_MAC_CSR8, 0x016c030a }, 292 { RT2573_MAC_CSR10, 0x00000718 }, 293 { RT2573_MAC_CSR12, 0x00000004 }, 294 { RT2573_MAC_CSR13, 0x00007f00 }, 295 { RT2573_SEC_CSR2, 0x00000000 }, 296 { RT2573_SEC_CSR3, 0x00000000 }, 297 { RT2573_SEC_CSR4, 0x00000000 }, 298 { RT2573_PHY_CSR1, 0x000023b0 }, 299 { RT2573_PHY_CSR5, 0x00040a06 }, 300 { RT2573_PHY_CSR6, 0x00080606 }, 301 { RT2573_PHY_CSR7, 0x00000408 }, 302 { RT2573_AIFSN_CSR, 0x00002273 }, 303 { RT2573_CWMIN_CSR, 0x00002344 }, 304 { RT2573_CWMAX_CSR, 0x000034aa } 305 }; 306 307 static const struct { 308 uint8_t reg; 309 uint8_t val; 310 } rum_def_bbp[] = { 311 { 3, 0x80 }, 312 { 15, 0x30 }, 313 { 17, 0x20 }, 314 { 21, 0xc8 }, 315 { 22, 0x38 }, 316 { 23, 0x06 }, 317 { 24, 0xfe }, 318 { 25, 0x0a }, 319 { 26, 0x0d }, 320 { 32, 0x0b }, 321 { 34, 0x12 }, 322 { 37, 0x07 }, 323 { 39, 0xf8 }, 324 { 41, 0x60 }, 325 { 53, 0x10 }, 326 { 54, 0x18 }, 327 { 60, 0x10 }, 328 { 61, 0x04 }, 329 { 62, 0x04 }, 330 { 75, 0xfe }, 331 { 86, 0xfe }, 332 { 88, 0xfe }, 333 { 90, 0x0f }, 334 { 99, 0x00 }, 335 { 102, 0x16 }, 336 { 107, 0x04 } 337 }; 338 339 static const uint8_t rum_chan_5ghz[] = 340 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 341 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 342 149, 153, 157, 161, 165 }; 343 344 static const struct rfprog { 345 uint8_t chan; 346 uint32_t r1, r2, r3, r4; 347 } rum_rf5226[] = { 348 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 349 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 350 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 351 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 352 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 353 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 354 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 355 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 356 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 357 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 358 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 359 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 360 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 361 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 362 363 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 364 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 365 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 366 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 367 368 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 369 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 370 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 371 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 372 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 373 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 374 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 375 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 376 377 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 378 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 379 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 380 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 381 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 382 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 383 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 384 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 385 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 386 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 387 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 388 389 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 390 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 391 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 392 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 393 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 394 }, rum_rf5225[] = { 395 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 396 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 397 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 398 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 399 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 400 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 401 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 402 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 403 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 404 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 405 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 406 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 407 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 408 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 409 410 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 411 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 412 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 413 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 414 415 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 416 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 417 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 418 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 419 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 420 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 421 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 422 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 423 424 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 425 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 426 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 427 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 428 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 429 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 430 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 431 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 432 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 433 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 434 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 435 436 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 437 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 438 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 439 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 440 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 441 }; 442 443 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 444 [RUM_BULK_WR] = { 445 .type = UE_BULK, 446 .endpoint = UE_ADDR_ANY, 447 .direction = UE_DIR_OUT, 448 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 449 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 450 .callback = rum_bulk_write_callback, 451 .timeout = 5000, /* ms */ 452 }, 453 [RUM_BULK_RD] = { 454 .type = UE_BULK, 455 .endpoint = UE_ADDR_ANY, 456 .direction = UE_DIR_IN, 457 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 458 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 459 .callback = rum_bulk_read_callback, 460 }, 461 }; 462 463 static int 464 rum_match(device_t self) 465 { 466 struct usb_attach_arg *uaa = device_get_ivars(self); 467 468 if (uaa->usb_mode != USB_MODE_HOST) 469 return (ENXIO); 470 if (uaa->info.bConfigIndex != 0) 471 return (ENXIO); 472 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 473 return (ENXIO); 474 475 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 476 } 477 478 static int 479 rum_attach(device_t self) 480 { 481 struct usb_attach_arg *uaa = device_get_ivars(self); 482 struct rum_softc *sc = device_get_softc(self); 483 struct ieee80211com *ic = &sc->sc_ic; 484 uint32_t tmp; 485 uint8_t iface_index; 486 int error, ntries; 487 488 device_set_usb_desc(self); 489 sc->sc_udev = uaa->device; 490 sc->sc_dev = self; 491 492 RUM_LOCK_INIT(sc); 493 RUM_CMDQ_LOCK_INIT(sc); 494 mbufq_init(&sc->sc_snd, ifqmaxlen); 495 496 iface_index = RT2573_IFACE_INDEX; 497 error = usbd_transfer_setup(uaa->device, &iface_index, 498 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 499 if (error) { 500 device_printf(self, "could not allocate USB transfers, " 501 "err=%s\n", usbd_errstr(error)); 502 goto detach; 503 } 504 505 RUM_LOCK(sc); 506 /* retrieve RT2573 rev. no */ 507 for (ntries = 0; ntries < 100; ntries++) { 508 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 509 break; 510 if (rum_pause(sc, hz / 100)) 511 break; 512 } 513 if (ntries == 100) { 514 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 515 RUM_UNLOCK(sc); 516 goto detach; 517 } 518 519 /* retrieve MAC address and various other things from EEPROM */ 520 rum_read_eeprom(sc); 521 522 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 523 tmp, rum_get_rf(sc->rf_rev)); 524 525 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 526 RUM_UNLOCK(sc); 527 528 ic->ic_softc = sc; 529 ic->ic_name = device_get_nameunit(self); 530 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 531 532 /* set device capabilities */ 533 ic->ic_caps = 534 IEEE80211_C_STA /* station mode supported */ 535 | IEEE80211_C_IBSS /* IBSS mode supported */ 536 | IEEE80211_C_MONITOR /* monitor mode supported */ 537 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 538 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 539 | IEEE80211_C_TXPMGT /* tx power management */ 540 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 541 | IEEE80211_C_SHSLOT /* short slot time supported */ 542 | IEEE80211_C_BGSCAN /* bg scanning supported */ 543 | IEEE80211_C_WPA /* 802.11i */ 544 | IEEE80211_C_WME /* 802.11e */ 545 | IEEE80211_C_PMGT /* Station-side power mgmt */ 546 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 547 ; 548 549 ic->ic_cryptocaps = 550 IEEE80211_CRYPTO_WEP | 551 IEEE80211_CRYPTO_AES_CCM | 552 IEEE80211_CRYPTO_TKIPMIC | 553 IEEE80211_CRYPTO_TKIP; 554 555 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 556 ic->ic_channels); 557 558 ieee80211_ifattach(ic); 559 ic->ic_update_promisc = rum_update_promisc; 560 ic->ic_raw_xmit = rum_raw_xmit; 561 ic->ic_scan_start = rum_scan_start; 562 ic->ic_scan_end = rum_scan_end; 563 ic->ic_set_channel = rum_set_channel; 564 ic->ic_getradiocaps = rum_getradiocaps; 565 ic->ic_transmit = rum_transmit; 566 ic->ic_parent = rum_parent; 567 ic->ic_vap_create = rum_vap_create; 568 ic->ic_vap_delete = rum_vap_delete; 569 ic->ic_updateslot = rum_update_slot; 570 ic->ic_wme.wme_update = rum_wme_update; 571 ic->ic_update_mcast = rum_update_mcast; 572 573 ieee80211_radiotap_attach(ic, 574 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 575 RT2573_TX_RADIOTAP_PRESENT, 576 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 577 RT2573_RX_RADIOTAP_PRESENT); 578 579 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 580 581 if (bootverbose) 582 ieee80211_announce(ic); 583 584 return (0); 585 586 detach: 587 rum_detach(self); 588 return (ENXIO); /* failure */ 589 } 590 591 static int 592 rum_detach(device_t self) 593 { 594 struct rum_softc *sc = device_get_softc(self); 595 struct ieee80211com *ic = &sc->sc_ic; 596 597 /* Prevent further ioctls */ 598 RUM_LOCK(sc); 599 sc->sc_detached = 1; 600 RUM_UNLOCK(sc); 601 602 /* stop all USB transfers */ 603 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 604 605 /* free TX list, if any */ 606 RUM_LOCK(sc); 607 rum_unsetup_tx_list(sc); 608 RUM_UNLOCK(sc); 609 610 if (ic->ic_softc == sc) { 611 ieee80211_draintask(ic, &sc->cmdq_task); 612 ieee80211_ifdetach(ic); 613 } 614 615 mbufq_drain(&sc->sc_snd); 616 RUM_CMDQ_LOCK_DESTROY(sc); 617 RUM_LOCK_DESTROY(sc); 618 619 return (0); 620 } 621 622 static usb_error_t 623 rum_do_request(struct rum_softc *sc, 624 struct usb_device_request *req, void *data) 625 { 626 usb_error_t err; 627 int ntries = 10; 628 629 while (ntries--) { 630 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 631 req, data, 0, NULL, 250 /* ms */); 632 if (err == 0) 633 break; 634 635 DPRINTFN(1, "Control request failed, %s (retrying)\n", 636 usbd_errstr(err)); 637 if (rum_pause(sc, hz / 100)) 638 break; 639 } 640 return (err); 641 } 642 643 static usb_error_t 644 rum_do_mcu_request(struct rum_softc *sc, int request) 645 { 646 struct usb_device_request req; 647 648 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 649 req.bRequest = RT2573_MCU_CNTL; 650 USETW(req.wValue, request); 651 USETW(req.wIndex, 0); 652 USETW(req.wLength, 0); 653 654 return (rum_do_request(sc, &req, NULL)); 655 } 656 657 static struct ieee80211vap * 658 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 659 enum ieee80211_opmode opmode, int flags, 660 const uint8_t bssid[IEEE80211_ADDR_LEN], 661 const uint8_t mac[IEEE80211_ADDR_LEN]) 662 { 663 struct rum_softc *sc = ic->ic_softc; 664 struct rum_vap *rvp; 665 struct ieee80211vap *vap; 666 667 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 668 return NULL; 669 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 670 vap = &rvp->vap; 671 /* enable s/w bmiss handling for sta mode */ 672 673 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 674 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 675 /* out of memory */ 676 free(rvp, M_80211_VAP); 677 return (NULL); 678 } 679 680 /* override state transition machine */ 681 rvp->newstate = vap->iv_newstate; 682 vap->iv_newstate = rum_newstate; 683 vap->iv_key_alloc = rum_key_alloc; 684 vap->iv_key_set = rum_key_set; 685 vap->iv_key_delete = rum_key_delete; 686 vap->iv_update_beacon = rum_update_beacon; 687 vap->iv_reset = rum_reset; 688 vap->iv_max_aid = RT2573_ADDR_MAX; 689 690 if (opmode == IEEE80211_M_STA) { 691 /* 692 * Move device to the sleep state when 693 * beacon is received and there is no data for us. 694 * 695 * Used only for IEEE80211_S_SLEEP state. 696 */ 697 rvp->recv_mgmt = vap->iv_recv_mgmt; 698 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 699 700 /* Ignored while sleeping. */ 701 rvp->bmiss = vap->iv_bmiss; 702 vap->iv_bmiss = rum_beacon_miss; 703 } 704 705 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 706 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 707 ieee80211_ratectl_init(vap); 708 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 709 /* complete setup */ 710 ieee80211_vap_attach(vap, ieee80211_media_change, 711 ieee80211_media_status, mac); 712 ic->ic_opmode = opmode; 713 return vap; 714 } 715 716 static void 717 rum_vap_delete(struct ieee80211vap *vap) 718 { 719 struct rum_vap *rvp = RUM_VAP(vap); 720 struct ieee80211com *ic = vap->iv_ic; 721 struct rum_softc *sc = ic->ic_softc; 722 int i; 723 724 /* Put vap into INIT state. */ 725 ieee80211_new_state(vap, IEEE80211_S_INIT, -1); 726 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 727 ieee80211_draintask(ic, &vap->iv_nstate_task[i]); 728 729 RUM_LOCK(sc); 730 /* Cancel any unfinished Tx. */ 731 rum_reset_tx_list(sc, vap); 732 RUM_UNLOCK(sc); 733 734 usb_callout_drain(&rvp->ratectl_ch); 735 ieee80211_draintask(ic, &rvp->ratectl_task); 736 ieee80211_ratectl_deinit(vap); 737 ieee80211_vap_detach(vap); 738 m_freem(rvp->bcn_mbuf); 739 free(rvp, M_80211_VAP); 740 } 741 742 static void 743 rum_cmdq_cb(void *arg, int pending) 744 { 745 struct rum_softc *sc = arg; 746 struct rum_cmdq *rc; 747 748 RUM_CMDQ_LOCK(sc); 749 while (sc->cmdq[sc->cmdq_first].func != NULL) { 750 rc = &sc->cmdq[sc->cmdq_first]; 751 RUM_CMDQ_UNLOCK(sc); 752 753 RUM_LOCK(sc); 754 rc->func(sc, &rc->data, rc->rvp_id); 755 RUM_UNLOCK(sc); 756 757 RUM_CMDQ_LOCK(sc); 758 memset(rc, 0, sizeof (*rc)); 759 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 760 } 761 RUM_CMDQ_UNLOCK(sc); 762 } 763 764 static int 765 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 766 uint8_t rvp_id, CMD_FUNC_PROTO) 767 { 768 struct ieee80211com *ic = &sc->sc_ic; 769 770 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 771 772 RUM_CMDQ_LOCK(sc); 773 if (sc->cmdq[sc->cmdq_last].func != NULL) { 774 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 775 RUM_CMDQ_UNLOCK(sc); 776 777 return EAGAIN; 778 } 779 780 if (ptr != NULL) 781 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 782 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 783 sc->cmdq[sc->cmdq_last].func = func; 784 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 785 RUM_CMDQ_UNLOCK(sc); 786 787 ieee80211_runtask(ic, &sc->cmdq_task); 788 789 return 0; 790 } 791 792 static void 793 rum_tx_free(struct rum_tx_data *data, int txerr) 794 { 795 struct rum_softc *sc = data->sc; 796 797 if (data->m != NULL) { 798 ieee80211_tx_complete(data->ni, data->m, txerr); 799 data->m = NULL; 800 data->ni = NULL; 801 } 802 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 803 sc->tx_nfree++; 804 } 805 806 static void 807 rum_setup_tx_list(struct rum_softc *sc) 808 { 809 struct rum_tx_data *data; 810 int i; 811 812 sc->tx_nfree = 0; 813 STAILQ_INIT(&sc->tx_q); 814 STAILQ_INIT(&sc->tx_free); 815 816 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 817 data = &sc->tx_data[i]; 818 819 data->sc = sc; 820 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 821 sc->tx_nfree++; 822 } 823 } 824 825 static void 826 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap) 827 { 828 struct rum_tx_data *data, *tmp; 829 830 KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__)); 831 832 STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) { 833 if (data->ni != NULL && data->ni->ni_vap == vap) { 834 ieee80211_free_node(data->ni); 835 data->ni = NULL; 836 837 KASSERT(data->m != NULL, ("%s: m is NULL\n", 838 __func__)); 839 m_freem(data->m); 840 data->m = NULL; 841 842 STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next); 843 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 844 sc->tx_nfree++; 845 } 846 } 847 } 848 849 static void 850 rum_unsetup_tx_list(struct rum_softc *sc) 851 { 852 struct rum_tx_data *data; 853 int i; 854 855 /* make sure any subsequent use of the queues will fail */ 856 sc->tx_nfree = 0; 857 STAILQ_INIT(&sc->tx_q); 858 STAILQ_INIT(&sc->tx_free); 859 860 /* free up all node references and mbufs */ 861 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 862 data = &sc->tx_data[i]; 863 864 if (data->m != NULL) { 865 m_freem(data->m); 866 data->m = NULL; 867 } 868 if (data->ni != NULL) { 869 ieee80211_free_node(data->ni); 870 data->ni = NULL; 871 } 872 } 873 } 874 875 static void 876 rum_beacon_miss(struct ieee80211vap *vap) 877 { 878 struct ieee80211com *ic = vap->iv_ic; 879 struct rum_softc *sc = ic->ic_softc; 880 struct rum_vap *rvp = RUM_VAP(vap); 881 int sleep; 882 883 RUM_LOCK(sc); 884 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 885 DPRINTFN(12, "dropping 'sleeping' bit, " 886 "device must be awake now\n"); 887 888 sc->sc_sleeping = 0; 889 } 890 891 sleep = sc->sc_sleeping; 892 RUM_UNLOCK(sc); 893 894 if (!sleep) 895 rvp->bmiss(vap); 896 #ifdef USB_DEBUG 897 else 898 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 899 #endif 900 } 901 902 static void 903 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 904 const struct ieee80211_rx_stats *rxs, 905 int rssi, int nf) 906 { 907 struct ieee80211vap *vap = ni->ni_vap; 908 struct rum_softc *sc = vap->iv_ic->ic_softc; 909 struct rum_vap *rvp = RUM_VAP(vap); 910 911 if (vap->iv_state == IEEE80211_S_SLEEP && 912 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 913 RUM_LOCK(sc); 914 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 915 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 916 sc->last_rx_flags); 917 918 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 919 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 920 /* 921 * Put it to sleep here; in case if there is a data 922 * for us, iv_recv_mgmt() will wakeup the device via 923 * SLEEP -> RUN state transition. 924 */ 925 rum_set_power_state(sc, 1); 926 } 927 RUM_UNLOCK(sc); 928 } 929 930 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 931 } 932 933 static int 934 rum_set_power_state(struct rum_softc *sc, int sleep) 935 { 936 usb_error_t uerror; 937 938 RUM_LOCK_ASSERT(sc); 939 940 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 941 sleep ? "sleep" : "awake", sc->sc_sleep_time); 942 943 uerror = rum_do_mcu_request(sc, 944 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 945 if (uerror != USB_ERR_NORMAL_COMPLETION) { 946 device_printf(sc->sc_dev, 947 "%s: could not change power state: %s\n", 948 __func__, usbd_errstr(uerror)); 949 return (EIO); 950 } 951 952 sc->sc_sleeping = !!sleep; 953 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 954 955 return (0); 956 } 957 958 static int 959 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 960 { 961 struct rum_vap *rvp = RUM_VAP(vap); 962 struct ieee80211com *ic = vap->iv_ic; 963 struct rum_softc *sc = ic->ic_softc; 964 const struct ieee80211_txparam *tp; 965 enum ieee80211_state ostate; 966 struct ieee80211_node *ni; 967 usb_error_t uerror; 968 int ret = 0; 969 970 ostate = vap->iv_state; 971 DPRINTF("%s -> %s\n", 972 ieee80211_state_name[ostate], 973 ieee80211_state_name[nstate]); 974 975 IEEE80211_UNLOCK(ic); 976 RUM_LOCK(sc); 977 usb_callout_stop(&rvp->ratectl_ch); 978 979 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 980 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 981 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 982 983 /* 984 * Ignore any errors; 985 * any subsequent TX will wakeup it anyway 986 */ 987 (void) rum_set_power_state(sc, 0); 988 } 989 990 switch (nstate) { 991 case IEEE80211_S_INIT: 992 if (ostate == IEEE80211_S_RUN) 993 rum_abort_tsf_sync(sc); 994 995 break; 996 997 case IEEE80211_S_RUN: 998 if (ostate == IEEE80211_S_SLEEP) 999 break; /* already handled */ 1000 1001 ni = ieee80211_ref_node(vap->iv_bss); 1002 1003 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1004 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 1005 ni->ni_chan == IEEE80211_CHAN_ANYC) { 1006 ret = EINVAL; 1007 goto run_fail; 1008 } 1009 rum_update_slot_cb(sc, NULL, 0); 1010 rum_enable_mrr(sc); 1011 rum_set_txpreamble(sc); 1012 rum_set_basicrates(sc); 1013 rum_set_maxretry(sc, vap); 1014 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1015 rum_set_bssid(sc, sc->sc_bssid); 1016 } 1017 1018 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1019 vap->iv_opmode == IEEE80211_M_IBSS) { 1020 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 1021 goto run_fail; 1022 } 1023 1024 if (vap->iv_opmode != IEEE80211_M_MONITOR && 1025 vap->iv_opmode != IEEE80211_M_AHDEMO) { 1026 if ((ret = rum_enable_tsf_sync(sc)) != 0) 1027 goto run_fail; 1028 } else 1029 rum_enable_tsf(sc); 1030 1031 /* enable automatic rate adaptation */ 1032 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1033 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1034 rum_ratectl_start(sc, ni); 1035 run_fail: 1036 ieee80211_free_node(ni); 1037 break; 1038 case IEEE80211_S_SLEEP: 1039 /* Implemented for STA mode only. */ 1040 if (vap->iv_opmode != IEEE80211_M_STA) 1041 break; 1042 1043 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1044 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1045 ret = EIO; 1046 break; 1047 } 1048 1049 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1050 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1051 ret = EIO; 1052 break; 1053 } 1054 1055 ret = rum_set_power_state(sc, 1); 1056 if (ret != 0) { 1057 device_printf(sc->sc_dev, 1058 "%s: could not move to the SLEEP state: %s\n", 1059 __func__, usbd_errstr(uerror)); 1060 } 1061 break; 1062 default: 1063 break; 1064 } 1065 RUM_UNLOCK(sc); 1066 IEEE80211_LOCK(ic); 1067 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1068 } 1069 1070 static void 1071 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1072 { 1073 struct rum_softc *sc = usbd_xfer_softc(xfer); 1074 struct ieee80211vap *vap; 1075 struct rum_tx_data *data; 1076 struct mbuf *m; 1077 struct usb_page_cache *pc; 1078 unsigned len; 1079 int actlen, sumlen; 1080 1081 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1082 1083 switch (USB_GET_STATE(xfer)) { 1084 case USB_ST_TRANSFERRED: 1085 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1086 1087 /* free resources */ 1088 data = usbd_xfer_get_priv(xfer); 1089 rum_tx_free(data, 0); 1090 usbd_xfer_set_priv(xfer, NULL); 1091 1092 /* FALLTHROUGH */ 1093 case USB_ST_SETUP: 1094 tr_setup: 1095 data = STAILQ_FIRST(&sc->tx_q); 1096 if (data) { 1097 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1098 m = data->m; 1099 1100 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1101 DPRINTFN(0, "data overflow, %u bytes\n", 1102 m->m_pkthdr.len); 1103 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1104 } 1105 pc = usbd_xfer_get_frame(xfer, 0); 1106 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1107 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1108 m->m_pkthdr.len); 1109 1110 vap = data->ni->ni_vap; 1111 if (ieee80211_radiotap_active_vap(vap)) { 1112 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1113 1114 tap->wt_flags = 0; 1115 tap->wt_rate = data->rate; 1116 tap->wt_antenna = sc->tx_ant; 1117 1118 ieee80211_radiotap_tx(vap, m); 1119 } 1120 1121 /* align end on a 4-bytes boundary */ 1122 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1123 if ((len % 64) == 0) 1124 len += 4; 1125 1126 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1127 m->m_pkthdr.len, len); 1128 1129 usbd_xfer_set_frame_len(xfer, 0, len); 1130 usbd_xfer_set_priv(xfer, data); 1131 1132 usbd_transfer_submit(xfer); 1133 } 1134 rum_start(sc); 1135 break; 1136 1137 default: /* Error */ 1138 DPRINTFN(11, "transfer error, %s\n", 1139 usbd_errstr(error)); 1140 1141 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1142 data = usbd_xfer_get_priv(xfer); 1143 if (data != NULL) { 1144 rum_tx_free(data, error); 1145 usbd_xfer_set_priv(xfer, NULL); 1146 } 1147 1148 if (error != USB_ERR_CANCELLED) { 1149 if (error == USB_ERR_TIMEOUT) 1150 device_printf(sc->sc_dev, "device timeout\n"); 1151 1152 /* 1153 * Try to clear stall first, also if other 1154 * errors occur, hence clearing stall 1155 * introduces a 50 ms delay: 1156 */ 1157 usbd_xfer_set_stall(xfer); 1158 goto tr_setup; 1159 } 1160 break; 1161 } 1162 } 1163 1164 static void 1165 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1166 { 1167 struct rum_softc *sc = usbd_xfer_softc(xfer); 1168 struct ieee80211com *ic = &sc->sc_ic; 1169 struct ieee80211_frame_min *wh; 1170 struct ieee80211_node *ni; 1171 struct mbuf *m = NULL; 1172 struct usb_page_cache *pc; 1173 uint32_t flags; 1174 uint8_t rssi = 0; 1175 int len; 1176 1177 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1178 1179 switch (USB_GET_STATE(xfer)) { 1180 case USB_ST_TRANSFERRED: 1181 1182 DPRINTFN(15, "rx done, actlen=%d\n", len); 1183 1184 if (len < RT2573_RX_DESC_SIZE) { 1185 DPRINTF("%s: xfer too short %d\n", 1186 device_get_nameunit(sc->sc_dev), len); 1187 counter_u64_add(ic->ic_ierrors, 1); 1188 goto tr_setup; 1189 } 1190 1191 len -= RT2573_RX_DESC_SIZE; 1192 pc = usbd_xfer_get_frame(xfer, 0); 1193 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1194 1195 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1196 flags = le32toh(sc->sc_rx_desc.flags); 1197 sc->last_rx_flags = flags; 1198 if (len < ((flags >> 16) & 0xfff)) { 1199 DPRINTFN(5, "%s: frame is truncated from %d to %d " 1200 "bytes\n", device_get_nameunit(sc->sc_dev), 1201 (flags >> 16) & 0xfff, len); 1202 counter_u64_add(ic->ic_ierrors, 1); 1203 goto tr_setup; 1204 } 1205 len = (flags >> 16) & 0xfff; 1206 if (len < sizeof(struct ieee80211_frame_ack)) { 1207 DPRINTFN(5, "%s: frame too short %d\n", 1208 device_get_nameunit(sc->sc_dev), len); 1209 counter_u64_add(ic->ic_ierrors, 1); 1210 goto tr_setup; 1211 } 1212 if (flags & RT2573_RX_CRC_ERROR) { 1213 /* 1214 * This should not happen since we did not 1215 * request to receive those frames when we 1216 * filled RUM_TXRX_CSR2: 1217 */ 1218 DPRINTFN(5, "PHY or CRC error\n"); 1219 counter_u64_add(ic->ic_ierrors, 1); 1220 goto tr_setup; 1221 } 1222 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1223 switch (flags & RT2573_RX_DEC_MASK) { 1224 case RT2573_RX_IV_ERROR: 1225 DPRINTFN(5, "IV/EIV error\n"); 1226 break; 1227 case RT2573_RX_MIC_ERROR: 1228 DPRINTFN(5, "MIC error\n"); 1229 break; 1230 case RT2573_RX_KEY_ERROR: 1231 DPRINTFN(5, "Key error\n"); 1232 break; 1233 } 1234 counter_u64_add(ic->ic_ierrors, 1); 1235 goto tr_setup; 1236 } 1237 1238 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1239 if (m == NULL) { 1240 DPRINTF("could not allocate mbuf\n"); 1241 counter_u64_add(ic->ic_ierrors, 1); 1242 goto tr_setup; 1243 } 1244 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1245 mtod(m, uint8_t *), len); 1246 1247 wh = mtod(m, struct ieee80211_frame_min *); 1248 1249 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1250 (flags & RT2573_RX_CIP_MASK) != 1251 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1252 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1253 m->m_flags |= M_WEP; 1254 } 1255 1256 /* finalize mbuf */ 1257 m->m_pkthdr.len = m->m_len = len; 1258 1259 if (ieee80211_radiotap_active(ic)) { 1260 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1261 1262 tap->wr_flags = 0; 1263 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1264 (flags & RT2573_RX_OFDM) ? 1265 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1266 rum_get_tsf(sc, &tap->wr_tsf); 1267 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1268 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1269 tap->wr_antenna = sc->rx_ant; 1270 } 1271 /* FALLTHROUGH */ 1272 case USB_ST_SETUP: 1273 tr_setup: 1274 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1275 usbd_transfer_submit(xfer); 1276 1277 /* 1278 * At the end of a USB callback it is always safe to unlock 1279 * the private mutex of a device! That is why we do the 1280 * "ieee80211_input" here, and not some lines up! 1281 */ 1282 RUM_UNLOCK(sc); 1283 if (m) { 1284 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1285 ni = ieee80211_find_rxnode(ic, wh); 1286 else 1287 ni = NULL; 1288 1289 if (ni != NULL) { 1290 (void) ieee80211_input(ni, m, rssi, 1291 RT2573_NOISE_FLOOR); 1292 ieee80211_free_node(ni); 1293 } else 1294 (void) ieee80211_input_all(ic, m, rssi, 1295 RT2573_NOISE_FLOOR); 1296 } 1297 RUM_LOCK(sc); 1298 rum_start(sc); 1299 return; 1300 1301 default: /* Error */ 1302 if (error != USB_ERR_CANCELLED) { 1303 /* try to clear stall first */ 1304 usbd_xfer_set_stall(xfer); 1305 goto tr_setup; 1306 } 1307 return; 1308 } 1309 } 1310 1311 static uint8_t 1312 rum_plcp_signal(int rate) 1313 { 1314 switch (rate) { 1315 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1316 case 12: return 0xb; 1317 case 18: return 0xf; 1318 case 24: return 0xa; 1319 case 36: return 0xe; 1320 case 48: return 0x9; 1321 case 72: return 0xd; 1322 case 96: return 0x8; 1323 case 108: return 0xc; 1324 1325 /* CCK rates (NB: not IEEE std, device-specific) */ 1326 case 2: return 0x0; 1327 case 4: return 0x1; 1328 case 11: return 0x2; 1329 case 22: return 0x3; 1330 } 1331 return 0xff; /* XXX unsupported/unknown rate */ 1332 } 1333 1334 /* 1335 * Map net80211 cipher to RT2573 security mode. 1336 */ 1337 static uint8_t 1338 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1339 { 1340 switch (cipher) { 1341 case IEEE80211_CIPHER_WEP: 1342 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1343 case IEEE80211_CIPHER_TKIP: 1344 return RT2573_MODE_TKIP; 1345 case IEEE80211_CIPHER_AES_CCM: 1346 return RT2573_MODE_AES_CCMP; 1347 default: 1348 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1349 return 0; 1350 } 1351 } 1352 1353 static void 1354 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1355 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1356 int hdrlen, int len, int rate) 1357 { 1358 struct ieee80211com *ic = &sc->sc_ic; 1359 struct wmeParams *wmep = &sc->wme_params[qid]; 1360 uint16_t plcp_length; 1361 int remainder; 1362 1363 flags |= RT2573_TX_VALID; 1364 flags |= len << 16; 1365 1366 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1367 const struct ieee80211_cipher *cip = k->wk_cipher; 1368 1369 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1370 1371 desc->eiv = 0; /* for WEP */ 1372 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1373 } 1374 1375 /* setup PLCP fields */ 1376 desc->plcp_signal = rum_plcp_signal(rate); 1377 desc->plcp_service = 4; 1378 1379 len += IEEE80211_CRC_LEN; 1380 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1381 flags |= RT2573_TX_OFDM; 1382 1383 plcp_length = len & 0xfff; 1384 desc->plcp_length_hi = plcp_length >> 6; 1385 desc->plcp_length_lo = plcp_length & 0x3f; 1386 } else { 1387 if (rate == 0) 1388 rate = 2; /* avoid division by zero */ 1389 plcp_length = howmany(16 * len, rate); 1390 if (rate == 22) { 1391 remainder = (16 * len) % 22; 1392 if (remainder != 0 && remainder < 7) 1393 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1394 } 1395 desc->plcp_length_hi = plcp_length >> 8; 1396 desc->plcp_length_lo = plcp_length & 0xff; 1397 1398 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1399 desc->plcp_signal |= 0x08; 1400 } 1401 1402 desc->flags = htole32(flags); 1403 desc->hdrlen = hdrlen; 1404 desc->xflags = xflags; 1405 1406 desc->wme = htole16(RT2573_QID(qid) | 1407 RT2573_AIFSN(wmep->wmep_aifsn) | 1408 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1409 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1410 } 1411 1412 static int 1413 rum_sendprot(struct rum_softc *sc, 1414 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1415 { 1416 struct ieee80211com *ic = ni->ni_ic; 1417 struct rum_tx_data *data; 1418 struct mbuf *mprot; 1419 int protrate, flags; 1420 1421 RUM_LOCK_ASSERT(sc); 1422 1423 mprot = ieee80211_alloc_prot(ni, m, rate, prot); 1424 if (mprot == NULL) { 1425 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 1426 device_printf(sc->sc_dev, 1427 "could not allocate mbuf for protection mode %d\n", prot); 1428 return (ENOBUFS); 1429 } 1430 1431 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1432 flags = 0; 1433 if (prot == IEEE80211_PROT_RTSCTS) 1434 flags |= RT2573_TX_NEED_ACK; 1435 1436 data = STAILQ_FIRST(&sc->tx_free); 1437 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1438 sc->tx_nfree--; 1439 1440 data->m = mprot; 1441 data->ni = ieee80211_ref_node(ni); 1442 data->rate = protrate; 1443 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1444 mprot->m_pkthdr.len, protrate); 1445 1446 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1447 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1448 1449 return 0; 1450 } 1451 1452 static uint32_t 1453 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1454 const struct ieee80211_key *k) 1455 { 1456 struct ieee80211vap *vap = ni->ni_vap; 1457 u_int cipher; 1458 uint32_t flags = 0; 1459 uint8_t mode, pos; 1460 1461 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1462 cipher = k->wk_cipher->ic_cipher; 1463 pos = k->wk_keyix; 1464 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1465 if (mode == 0) 1466 return 0; 1467 1468 flags |= RT2573_TX_CIP_MODE(mode); 1469 1470 /* Do not trust GROUP flag */ 1471 if (ieee80211_is_key_unicast(vap, k)) 1472 flags |= RT2573_TX_KEY_PAIR; 1473 else 1474 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1475 1476 flags |= RT2573_TX_KEY_ID(pos); 1477 1478 if (cipher == IEEE80211_CIPHER_TKIP) 1479 flags |= RT2573_TX_TKIPMIC; 1480 } 1481 1482 return flags; 1483 } 1484 1485 static int 1486 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1487 { 1488 const struct ieee80211_txparam *tp = ni->ni_txparms; 1489 struct ieee80211com *ic = &sc->sc_ic; 1490 struct rum_tx_data *data; 1491 struct ieee80211_frame *wh; 1492 struct ieee80211_key *k = NULL; 1493 uint32_t flags = 0; 1494 uint16_t dur; 1495 uint8_t ac, type, xflags = 0; 1496 int hdrlen; 1497 1498 RUM_LOCK_ASSERT(sc); 1499 1500 data = STAILQ_FIRST(&sc->tx_free); 1501 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1502 sc->tx_nfree--; 1503 1504 wh = mtod(m0, struct ieee80211_frame *); 1505 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1506 hdrlen = ieee80211_anyhdrsize(wh); 1507 ac = M_WME_GETAC(m0); 1508 1509 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1510 k = ieee80211_crypto_get_txkey(ni, m0); 1511 if (k == NULL) 1512 return (ENOENT); 1513 1514 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1515 !k->wk_cipher->ic_encap(k, m0)) 1516 return (ENOBUFS); 1517 1518 wh = mtod(m0, struct ieee80211_frame *); 1519 } 1520 1521 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1522 flags |= RT2573_TX_NEED_ACK; 1523 1524 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1525 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1526 USETW(wh->i_dur, dur); 1527 1528 /* tell hardware to add timestamp for probe responses */ 1529 if (type == IEEE80211_FC0_TYPE_MGT && 1530 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1531 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1532 flags |= RT2573_TX_TIMESTAMP; 1533 } 1534 1535 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1536 xflags |= RT2573_TX_HWSEQ; 1537 1538 if (k != NULL) 1539 flags |= rum_tx_crypto_flags(sc, ni, k); 1540 1541 data->m = m0; 1542 data->ni = ni; 1543 data->rate = tp->mgmtrate; 1544 1545 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1546 m0->m_pkthdr.len, tp->mgmtrate); 1547 1548 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1549 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1550 1551 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1552 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1553 1554 return (0); 1555 } 1556 1557 static int 1558 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1559 const struct ieee80211_bpf_params *params) 1560 { 1561 struct ieee80211com *ic = ni->ni_ic; 1562 struct ieee80211_frame *wh; 1563 struct rum_tx_data *data; 1564 uint32_t flags; 1565 uint8_t ac, type, xflags = 0; 1566 int rate, error; 1567 1568 RUM_LOCK_ASSERT(sc); 1569 1570 wh = mtod(m0, struct ieee80211_frame *); 1571 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1572 1573 ac = params->ibp_pri & 3; 1574 1575 rate = params->ibp_rate0; 1576 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1577 return (EINVAL); 1578 1579 flags = 0; 1580 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1581 flags |= RT2573_TX_NEED_ACK; 1582 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1583 error = rum_sendprot(sc, m0, ni, 1584 params->ibp_flags & IEEE80211_BPF_RTS ? 1585 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1586 rate); 1587 if (error || sc->tx_nfree == 0) 1588 return (ENOBUFS); 1589 1590 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1591 } 1592 1593 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1594 xflags |= RT2573_TX_HWSEQ; 1595 1596 data = STAILQ_FIRST(&sc->tx_free); 1597 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1598 sc->tx_nfree--; 1599 1600 data->m = m0; 1601 data->ni = ni; 1602 data->rate = rate; 1603 1604 /* XXX need to setup descriptor ourself */ 1605 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1606 m0->m_pkthdr.len, rate); 1607 1608 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1609 m0->m_pkthdr.len, rate); 1610 1611 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1612 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1613 1614 return 0; 1615 } 1616 1617 static int 1618 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1619 { 1620 struct ieee80211vap *vap = ni->ni_vap; 1621 struct ieee80211com *ic = &sc->sc_ic; 1622 struct rum_tx_data *data; 1623 struct ieee80211_frame *wh; 1624 const struct ieee80211_txparam *tp = ni->ni_txparms; 1625 struct ieee80211_key *k = NULL; 1626 uint32_t flags = 0; 1627 uint16_t dur; 1628 uint8_t ac, type, qos, xflags = 0; 1629 int error, hdrlen, rate; 1630 1631 RUM_LOCK_ASSERT(sc); 1632 1633 wh = mtod(m0, struct ieee80211_frame *); 1634 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1635 hdrlen = ieee80211_anyhdrsize(wh); 1636 1637 if (IEEE80211_QOS_HAS_SEQ(wh)) 1638 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1639 else 1640 qos = 0; 1641 ac = M_WME_GETAC(m0); 1642 1643 if (m0->m_flags & M_EAPOL) 1644 rate = tp->mgmtrate; 1645 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1646 rate = tp->mcastrate; 1647 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1648 rate = tp->ucastrate; 1649 else { 1650 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1651 rate = ni->ni_txrate; 1652 } 1653 1654 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1655 k = ieee80211_crypto_get_txkey(ni, m0); 1656 if (k == NULL) { 1657 m_freem(m0); 1658 return (ENOENT); 1659 } 1660 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1661 !k->wk_cipher->ic_encap(k, m0)) { 1662 m_freem(m0); 1663 return (ENOBUFS); 1664 } 1665 1666 /* packet header may have moved, reset our local pointer */ 1667 wh = mtod(m0, struct ieee80211_frame *); 1668 } 1669 1670 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1671 xflags |= RT2573_TX_HWSEQ; 1672 1673 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1674 int prot = IEEE80211_PROT_NONE; 1675 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1676 prot = IEEE80211_PROT_RTSCTS; 1677 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1678 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1679 prot = ic->ic_protmode; 1680 if (prot != IEEE80211_PROT_NONE) { 1681 error = rum_sendprot(sc, m0, ni, prot, rate); 1682 if (error || sc->tx_nfree == 0) { 1683 m_freem(m0); 1684 return ENOBUFS; 1685 } 1686 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1687 } 1688 } 1689 1690 if (k != NULL) 1691 flags |= rum_tx_crypto_flags(sc, ni, k); 1692 1693 data = STAILQ_FIRST(&sc->tx_free); 1694 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1695 sc->tx_nfree--; 1696 1697 data->m = m0; 1698 data->ni = ni; 1699 data->rate = rate; 1700 1701 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1702 /* Unicast frame, check if an ACK is expected. */ 1703 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1704 IEEE80211_QOS_ACKPOLICY_NOACK) 1705 flags |= RT2573_TX_NEED_ACK; 1706 1707 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1708 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1709 USETW(wh->i_dur, dur); 1710 } 1711 1712 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1713 m0->m_pkthdr.len, rate); 1714 1715 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1716 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1717 1718 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1719 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1720 1721 return 0; 1722 } 1723 1724 static int 1725 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1726 { 1727 struct rum_softc *sc = ic->ic_softc; 1728 int error; 1729 1730 RUM_LOCK(sc); 1731 if (!sc->sc_running) { 1732 RUM_UNLOCK(sc); 1733 return (ENXIO); 1734 } 1735 error = mbufq_enqueue(&sc->sc_snd, m); 1736 if (error) { 1737 RUM_UNLOCK(sc); 1738 return (error); 1739 } 1740 rum_start(sc); 1741 RUM_UNLOCK(sc); 1742 1743 return (0); 1744 } 1745 1746 static void 1747 rum_start(struct rum_softc *sc) 1748 { 1749 struct ieee80211_node *ni; 1750 struct mbuf *m; 1751 1752 RUM_LOCK_ASSERT(sc); 1753 1754 if (!sc->sc_running) 1755 return; 1756 1757 while (sc->tx_nfree >= RUM_TX_MINFREE && 1758 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1759 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1760 if (rum_tx_data(sc, m, ni) != 0) { 1761 if_inc_counter(ni->ni_vap->iv_ifp, 1762 IFCOUNTER_OERRORS, 1); 1763 ieee80211_free_node(ni); 1764 break; 1765 } 1766 } 1767 } 1768 1769 static void 1770 rum_parent(struct ieee80211com *ic) 1771 { 1772 struct rum_softc *sc = ic->ic_softc; 1773 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1774 1775 RUM_LOCK(sc); 1776 if (sc->sc_detached) { 1777 RUM_UNLOCK(sc); 1778 return; 1779 } 1780 RUM_UNLOCK(sc); 1781 1782 if (ic->ic_nrunning > 0) { 1783 if (rum_init(sc) == 0) 1784 ieee80211_start_all(ic); 1785 else 1786 ieee80211_stop(vap); 1787 } else 1788 rum_stop(sc); 1789 } 1790 1791 static void 1792 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1793 { 1794 struct usb_device_request req; 1795 usb_error_t error; 1796 1797 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1798 req.bRequest = RT2573_READ_EEPROM; 1799 USETW(req.wValue, 0); 1800 USETW(req.wIndex, addr); 1801 USETW(req.wLength, len); 1802 1803 error = rum_do_request(sc, &req, buf); 1804 if (error != 0) { 1805 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1806 usbd_errstr(error)); 1807 } 1808 } 1809 1810 static uint32_t 1811 rum_read(struct rum_softc *sc, uint16_t reg) 1812 { 1813 uint32_t val; 1814 1815 rum_read_multi(sc, reg, &val, sizeof val); 1816 1817 return le32toh(val); 1818 } 1819 1820 static void 1821 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1822 { 1823 struct usb_device_request req; 1824 usb_error_t error; 1825 1826 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1827 req.bRequest = RT2573_READ_MULTI_MAC; 1828 USETW(req.wValue, 0); 1829 USETW(req.wIndex, reg); 1830 USETW(req.wLength, len); 1831 1832 error = rum_do_request(sc, &req, buf); 1833 if (error != 0) { 1834 device_printf(sc->sc_dev, 1835 "could not multi read MAC register: %s\n", 1836 usbd_errstr(error)); 1837 } 1838 } 1839 1840 static usb_error_t 1841 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1842 { 1843 uint32_t tmp = htole32(val); 1844 1845 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1846 } 1847 1848 static usb_error_t 1849 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1850 { 1851 struct usb_device_request req; 1852 usb_error_t error; 1853 size_t offset; 1854 1855 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1856 req.bRequest = RT2573_WRITE_MULTI_MAC; 1857 USETW(req.wValue, 0); 1858 1859 /* write at most 64 bytes at a time */ 1860 for (offset = 0; offset < len; offset += 64) { 1861 USETW(req.wIndex, reg + offset); 1862 USETW(req.wLength, MIN(len - offset, 64)); 1863 1864 error = rum_do_request(sc, &req, (char *)buf + offset); 1865 if (error != 0) { 1866 device_printf(sc->sc_dev, 1867 "could not multi write MAC register: %s\n", 1868 usbd_errstr(error)); 1869 return (error); 1870 } 1871 } 1872 1873 return (USB_ERR_NORMAL_COMPLETION); 1874 } 1875 1876 static usb_error_t 1877 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1878 { 1879 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1880 } 1881 1882 static usb_error_t 1883 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1884 { 1885 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1886 } 1887 1888 static usb_error_t 1889 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1890 { 1891 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1892 } 1893 1894 static int 1895 rum_bbp_busy(struct rum_softc *sc) 1896 { 1897 int ntries; 1898 1899 for (ntries = 0; ntries < 100; ntries++) { 1900 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1901 break; 1902 if (rum_pause(sc, hz / 100)) 1903 break; 1904 } 1905 if (ntries == 100) 1906 return (ETIMEDOUT); 1907 1908 return (0); 1909 } 1910 1911 static void 1912 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1913 { 1914 uint32_t tmp; 1915 1916 DPRINTFN(2, "reg=0x%08x\n", reg); 1917 1918 if (rum_bbp_busy(sc) != 0) { 1919 device_printf(sc->sc_dev, "could not write to BBP\n"); 1920 return; 1921 } 1922 1923 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1924 rum_write(sc, RT2573_PHY_CSR3, tmp); 1925 } 1926 1927 static uint8_t 1928 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1929 { 1930 uint32_t val; 1931 int ntries; 1932 1933 DPRINTFN(2, "reg=0x%08x\n", reg); 1934 1935 if (rum_bbp_busy(sc) != 0) { 1936 device_printf(sc->sc_dev, "could not read BBP\n"); 1937 return 0; 1938 } 1939 1940 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1941 rum_write(sc, RT2573_PHY_CSR3, val); 1942 1943 for (ntries = 0; ntries < 100; ntries++) { 1944 val = rum_read(sc, RT2573_PHY_CSR3); 1945 if (!(val & RT2573_BBP_BUSY)) 1946 return val & 0xff; 1947 if (rum_pause(sc, hz / 100)) 1948 break; 1949 } 1950 1951 device_printf(sc->sc_dev, "could not read BBP\n"); 1952 return 0; 1953 } 1954 1955 static void 1956 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1957 { 1958 uint32_t tmp; 1959 int ntries; 1960 1961 for (ntries = 0; ntries < 100; ntries++) { 1962 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1963 break; 1964 if (rum_pause(sc, hz / 100)) 1965 break; 1966 } 1967 if (ntries == 100) { 1968 device_printf(sc->sc_dev, "could not write to RF\n"); 1969 return; 1970 } 1971 1972 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1973 (reg & 3); 1974 rum_write(sc, RT2573_PHY_CSR4, tmp); 1975 1976 /* remember last written value in sc */ 1977 sc->rf_regs[reg] = val; 1978 1979 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1980 } 1981 1982 static void 1983 rum_select_antenna(struct rum_softc *sc) 1984 { 1985 uint8_t bbp4, bbp77; 1986 uint32_t tmp; 1987 1988 bbp4 = rum_bbp_read(sc, 4); 1989 bbp77 = rum_bbp_read(sc, 77); 1990 1991 /* TBD */ 1992 1993 /* make sure Rx is disabled before switching antenna */ 1994 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1995 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1996 1997 rum_bbp_write(sc, 4, bbp4); 1998 rum_bbp_write(sc, 77, bbp77); 1999 2000 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2001 } 2002 2003 /* 2004 * Enable multi-rate retries for frames sent at OFDM rates. 2005 * In 802.11b/g mode, allow fallback to CCK rates. 2006 */ 2007 static void 2008 rum_enable_mrr(struct rum_softc *sc) 2009 { 2010 struct ieee80211com *ic = &sc->sc_ic; 2011 2012 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2013 rum_setbits(sc, RT2573_TXRX_CSR4, 2014 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 2015 } else { 2016 rum_modbits(sc, RT2573_TXRX_CSR4, 2017 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 2018 } 2019 } 2020 2021 static void 2022 rum_set_txpreamble(struct rum_softc *sc) 2023 { 2024 struct ieee80211com *ic = &sc->sc_ic; 2025 2026 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2027 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2028 else 2029 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2030 } 2031 2032 static void 2033 rum_set_basicrates(struct rum_softc *sc) 2034 { 2035 struct ieee80211com *ic = &sc->sc_ic; 2036 2037 /* update basic rate set */ 2038 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2039 /* 11b basic rates: 1, 2Mbps */ 2040 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2041 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2042 /* 11a basic rates: 6, 12, 24Mbps */ 2043 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2044 } else { 2045 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2046 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2047 } 2048 } 2049 2050 /* 2051 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2052 * driver. 2053 */ 2054 static void 2055 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2056 { 2057 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2058 2059 /* update all BBP registers that depend on the band */ 2060 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2061 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2062 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2063 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2064 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2065 } 2066 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2067 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2068 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2069 } 2070 2071 sc->bbp17 = bbp17; 2072 rum_bbp_write(sc, 17, bbp17); 2073 rum_bbp_write(sc, 96, bbp96); 2074 rum_bbp_write(sc, 104, bbp104); 2075 2076 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2077 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2078 rum_bbp_write(sc, 75, 0x80); 2079 rum_bbp_write(sc, 86, 0x80); 2080 rum_bbp_write(sc, 88, 0x80); 2081 } 2082 2083 rum_bbp_write(sc, 35, bbp35); 2084 rum_bbp_write(sc, 97, bbp97); 2085 rum_bbp_write(sc, 98, bbp98); 2086 2087 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2088 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2089 RT2573_PA_PE_5GHZ); 2090 } else { 2091 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2092 RT2573_PA_PE_2GHZ); 2093 } 2094 } 2095 2096 static void 2097 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2098 { 2099 struct ieee80211com *ic = &sc->sc_ic; 2100 const struct rfprog *rfprog; 2101 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2102 int8_t power; 2103 int i, chan; 2104 2105 chan = ieee80211_chan2ieee(ic, c); 2106 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2107 return; 2108 2109 /* select the appropriate RF settings based on what EEPROM says */ 2110 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2111 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2112 2113 /* find the settings for this channel (we know it exists) */ 2114 for (i = 0; rfprog[i].chan != chan; i++); 2115 2116 power = sc->txpow[i]; 2117 if (power < 0) { 2118 bbp94 += power; 2119 power = 0; 2120 } else if (power > 31) { 2121 bbp94 += power - 31; 2122 power = 31; 2123 } 2124 2125 /* 2126 * If we are switching from the 2GHz band to the 5GHz band or 2127 * vice-versa, BBP registers need to be reprogrammed. 2128 */ 2129 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2130 rum_select_band(sc, c); 2131 rum_select_antenna(sc); 2132 } 2133 ic->ic_curchan = c; 2134 2135 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2136 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2137 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2138 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2139 2140 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2141 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2142 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2143 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2144 2145 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2146 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2147 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2148 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2149 2150 rum_pause(sc, hz / 100); 2151 2152 /* enable smart mode for MIMO-capable RFs */ 2153 bbp3 = rum_bbp_read(sc, 3); 2154 2155 bbp3 &= ~RT2573_SMART_MODE; 2156 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2157 bbp3 |= RT2573_SMART_MODE; 2158 2159 rum_bbp_write(sc, 3, bbp3); 2160 2161 if (bbp94 != RT2573_BBPR94_DEFAULT) 2162 rum_bbp_write(sc, 94, bbp94); 2163 2164 /* give the chip some extra time to do the switchover */ 2165 rum_pause(sc, hz / 100); 2166 } 2167 2168 static void 2169 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2170 { 2171 struct ieee80211_node *ni = vap->iv_bss; 2172 const struct ieee80211_txparam *tp = ni->ni_txparms; 2173 struct rum_vap *rvp = RUM_VAP(vap); 2174 2175 rvp->maxretry = MIN(tp->maxretry, 0xf); 2176 2177 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2178 RT2573_LONG_RETRY(rvp->maxretry), 2179 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2180 } 2181 2182 /* 2183 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2184 * and HostAP operating modes. 2185 */ 2186 static int 2187 rum_enable_tsf_sync(struct rum_softc *sc) 2188 { 2189 struct ieee80211com *ic = &sc->sc_ic; 2190 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2191 uint32_t tmp; 2192 uint16_t bintval; 2193 2194 if (vap->iv_opmode != IEEE80211_M_STA) { 2195 /* 2196 * Change default 16ms TBTT adjustment to 8ms. 2197 * Must be done before enabling beacon generation. 2198 */ 2199 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2200 return EIO; 2201 } 2202 2203 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2204 2205 /* set beacon interval (in 1/16ms unit) */ 2206 bintval = vap->iv_bss->ni_intval; 2207 tmp |= bintval * 16; 2208 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2209 2210 switch (vap->iv_opmode) { 2211 case IEEE80211_M_STA: 2212 /* 2213 * Local TSF is always updated with remote TSF on beacon 2214 * reception. 2215 */ 2216 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2217 break; 2218 case IEEE80211_M_IBSS: 2219 /* 2220 * Local TSF is updated with remote TSF on beacon reception 2221 * only if the remote TSF is greater than local TSF. 2222 */ 2223 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2224 tmp |= RT2573_BCN_TX_EN; 2225 break; 2226 case IEEE80211_M_HOSTAP: 2227 /* SYNC with nobody */ 2228 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2229 tmp |= RT2573_BCN_TX_EN; 2230 break; 2231 default: 2232 device_printf(sc->sc_dev, 2233 "Enabling TSF failed. undefined opmode %d\n", 2234 vap->iv_opmode); 2235 return EINVAL; 2236 } 2237 2238 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2239 return EIO; 2240 2241 /* refresh current sleep time */ 2242 return (rum_set_sleep_time(sc, bintval)); 2243 } 2244 2245 static void 2246 rum_enable_tsf(struct rum_softc *sc) 2247 { 2248 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2249 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2250 } 2251 2252 static void 2253 rum_abort_tsf_sync(struct rum_softc *sc) 2254 { 2255 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2256 } 2257 2258 static void 2259 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2260 { 2261 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2262 } 2263 2264 static void 2265 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2266 { 2267 struct ieee80211com *ic = &sc->sc_ic; 2268 uint8_t slottime; 2269 2270 slottime = IEEE80211_GET_SLOTTIME(ic); 2271 2272 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2273 2274 DPRINTF("setting slot time to %uus\n", slottime); 2275 } 2276 2277 static void 2278 rum_update_slot(struct ieee80211com *ic) 2279 { 2280 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2281 } 2282 2283 static int 2284 rum_wme_update(struct ieee80211com *ic) 2285 { 2286 struct chanAccParams chp; 2287 const struct wmeParams *chanp; 2288 struct rum_softc *sc = ic->ic_softc; 2289 int error = 0; 2290 2291 ieee80211_wme_ic_getparams(ic, &chp); 2292 chanp = chp.cap_wmeParams; 2293 2294 RUM_LOCK(sc); 2295 error = rum_write(sc, RT2573_AIFSN_CSR, 2296 chanp[WME_AC_VO].wmep_aifsn << 12 | 2297 chanp[WME_AC_VI].wmep_aifsn << 8 | 2298 chanp[WME_AC_BK].wmep_aifsn << 4 | 2299 chanp[WME_AC_BE].wmep_aifsn); 2300 if (error) 2301 goto print_err; 2302 error = rum_write(sc, RT2573_CWMIN_CSR, 2303 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2304 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2305 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2306 chanp[WME_AC_BE].wmep_logcwmin); 2307 if (error) 2308 goto print_err; 2309 error = rum_write(sc, RT2573_CWMAX_CSR, 2310 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2311 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2312 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2313 chanp[WME_AC_BE].wmep_logcwmax); 2314 if (error) 2315 goto print_err; 2316 error = rum_write(sc, RT2573_TXOP01_CSR, 2317 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2318 chanp[WME_AC_BE].wmep_txopLimit); 2319 if (error) 2320 goto print_err; 2321 error = rum_write(sc, RT2573_TXOP23_CSR, 2322 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2323 chanp[WME_AC_VI].wmep_txopLimit); 2324 if (error) 2325 goto print_err; 2326 2327 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2328 2329 print_err: 2330 RUM_UNLOCK(sc); 2331 if (error != 0) { 2332 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2333 __func__, error); 2334 } 2335 2336 return (error); 2337 } 2338 2339 static void 2340 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2341 { 2342 2343 rum_write(sc, RT2573_MAC_CSR4, 2344 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2345 rum_write(sc, RT2573_MAC_CSR5, 2346 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2347 } 2348 2349 static void 2350 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2351 { 2352 2353 rum_write(sc, RT2573_MAC_CSR2, 2354 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2355 rum_write(sc, RT2573_MAC_CSR3, 2356 addr[4] | addr[5] << 8 | 0xff << 16); 2357 } 2358 2359 static void 2360 rum_setpromisc(struct rum_softc *sc) 2361 { 2362 struct ieee80211com *ic = &sc->sc_ic; 2363 2364 if (ic->ic_promisc == 0) 2365 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2366 else 2367 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2368 2369 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2370 "entering" : "leaving"); 2371 } 2372 2373 static void 2374 rum_update_promisc(struct ieee80211com *ic) 2375 { 2376 struct rum_softc *sc = ic->ic_softc; 2377 2378 RUM_LOCK(sc); 2379 if (sc->sc_running) 2380 rum_setpromisc(sc); 2381 RUM_UNLOCK(sc); 2382 } 2383 2384 static void 2385 rum_update_mcast(struct ieee80211com *ic) 2386 { 2387 /* Ignore. */ 2388 } 2389 2390 static const char * 2391 rum_get_rf(int rev) 2392 { 2393 switch (rev) { 2394 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2395 case RT2573_RF_2528: return "RT2528"; 2396 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2397 case RT2573_RF_5226: return "RT5226"; 2398 default: return "unknown"; 2399 } 2400 } 2401 2402 static void 2403 rum_read_eeprom(struct rum_softc *sc) 2404 { 2405 uint16_t val; 2406 #ifdef RUM_DEBUG 2407 int i; 2408 #endif 2409 2410 /* read MAC address */ 2411 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2412 2413 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2414 val = le16toh(val); 2415 sc->rf_rev = (val >> 11) & 0x1f; 2416 sc->hw_radio = (val >> 10) & 0x1; 2417 sc->rx_ant = (val >> 4) & 0x3; 2418 sc->tx_ant = (val >> 2) & 0x3; 2419 sc->nb_ant = val & 0x3; 2420 2421 DPRINTF("RF revision=%d\n", sc->rf_rev); 2422 2423 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2424 val = le16toh(val); 2425 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2426 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2427 2428 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2429 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2430 2431 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2432 val = le16toh(val); 2433 if ((val & 0xff) != 0xff) 2434 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2435 2436 /* Only [-10, 10] is valid */ 2437 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2438 sc->rssi_2ghz_corr = 0; 2439 2440 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2441 val = le16toh(val); 2442 if ((val & 0xff) != 0xff) 2443 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2444 2445 /* Only [-10, 10] is valid */ 2446 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2447 sc->rssi_5ghz_corr = 0; 2448 2449 if (sc->ext_2ghz_lna) 2450 sc->rssi_2ghz_corr -= 14; 2451 if (sc->ext_5ghz_lna) 2452 sc->rssi_5ghz_corr -= 14; 2453 2454 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2455 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2456 2457 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2458 val = le16toh(val); 2459 if ((val & 0xff) != 0xff) 2460 sc->rffreq = val & 0xff; 2461 2462 DPRINTF("RF freq=%d\n", sc->rffreq); 2463 2464 /* read Tx power for all a/b/g channels */ 2465 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2466 /* XXX default Tx power for 802.11a channels */ 2467 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2468 #ifdef RUM_DEBUG 2469 for (i = 0; i < 14; i++) 2470 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2471 #endif 2472 2473 /* read default values for BBP registers */ 2474 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2475 #ifdef RUM_DEBUG 2476 for (i = 0; i < 14; i++) { 2477 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2478 continue; 2479 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2480 sc->bbp_prom[i].val); 2481 } 2482 #endif 2483 } 2484 2485 static int 2486 rum_bbp_wakeup(struct rum_softc *sc) 2487 { 2488 unsigned ntries; 2489 2490 for (ntries = 0; ntries < 100; ntries++) { 2491 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2492 break; 2493 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2494 if (rum_pause(sc, hz / 100)) 2495 break; 2496 } 2497 if (ntries == 100) { 2498 device_printf(sc->sc_dev, 2499 "timeout waiting for BBP/RF to wakeup\n"); 2500 return (ETIMEDOUT); 2501 } 2502 2503 return (0); 2504 } 2505 2506 static int 2507 rum_bbp_init(struct rum_softc *sc) 2508 { 2509 int i, ntries; 2510 2511 /* wait for BBP to be ready */ 2512 for (ntries = 0; ntries < 100; ntries++) { 2513 const uint8_t val = rum_bbp_read(sc, 0); 2514 if (val != 0 && val != 0xff) 2515 break; 2516 if (rum_pause(sc, hz / 100)) 2517 break; 2518 } 2519 if (ntries == 100) { 2520 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2521 return EIO; 2522 } 2523 2524 /* initialize BBP registers to default values */ 2525 for (i = 0; i < nitems(rum_def_bbp); i++) 2526 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2527 2528 /* write vendor-specific BBP values (from EEPROM) */ 2529 for (i = 0; i < 16; i++) { 2530 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2531 continue; 2532 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2533 } 2534 2535 return 0; 2536 } 2537 2538 static void 2539 rum_clr_shkey_regs(struct rum_softc *sc) 2540 { 2541 rum_write(sc, RT2573_SEC_CSR0, 0); 2542 rum_write(sc, RT2573_SEC_CSR1, 0); 2543 rum_write(sc, RT2573_SEC_CSR5, 0); 2544 } 2545 2546 static int 2547 rum_init(struct rum_softc *sc) 2548 { 2549 struct ieee80211com *ic = &sc->sc_ic; 2550 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2551 uint32_t tmp; 2552 int i, ret; 2553 2554 RUM_LOCK(sc); 2555 if (sc->sc_running) { 2556 ret = 0; 2557 goto end; 2558 } 2559 2560 /* initialize MAC registers to default values */ 2561 for (i = 0; i < nitems(rum_def_mac); i++) 2562 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2563 2564 /* reset some WME parameters to default values */ 2565 sc->wme_params[0].wmep_aifsn = 2; 2566 sc->wme_params[0].wmep_logcwmin = 4; 2567 sc->wme_params[0].wmep_logcwmax = 10; 2568 2569 /* set host ready */ 2570 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2571 rum_write(sc, RT2573_MAC_CSR1, 0); 2572 2573 /* wait for BBP/RF to wakeup */ 2574 if ((ret = rum_bbp_wakeup(sc)) != 0) 2575 goto end; 2576 2577 if ((ret = rum_bbp_init(sc)) != 0) 2578 goto end; 2579 2580 /* select default channel */ 2581 rum_select_band(sc, ic->ic_curchan); 2582 rum_select_antenna(sc); 2583 rum_set_chan(sc, ic->ic_curchan); 2584 2585 /* clear STA registers */ 2586 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2587 2588 /* clear security registers (if required) */ 2589 if (sc->sc_clr_shkeys == 0) { 2590 rum_clr_shkey_regs(sc); 2591 sc->sc_clr_shkeys = 1; 2592 } 2593 2594 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2595 2596 /* initialize ASIC */ 2597 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2598 2599 /* 2600 * Allocate Tx and Rx xfer queues. 2601 */ 2602 rum_setup_tx_list(sc); 2603 2604 /* update Rx filter */ 2605 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2606 2607 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2608 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2609 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2610 RT2573_DROP_ACKCTS; 2611 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2612 tmp |= RT2573_DROP_TODS; 2613 if (ic->ic_promisc == 0) 2614 tmp |= RT2573_DROP_NOT_TO_ME; 2615 } 2616 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2617 2618 sc->sc_running = 1; 2619 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2620 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2621 2622 end: RUM_UNLOCK(sc); 2623 2624 if (ret != 0) 2625 rum_stop(sc); 2626 2627 return ret; 2628 } 2629 2630 static void 2631 rum_stop(struct rum_softc *sc) 2632 { 2633 2634 RUM_LOCK(sc); 2635 if (!sc->sc_running) { 2636 RUM_UNLOCK(sc); 2637 return; 2638 } 2639 sc->sc_running = 0; 2640 RUM_UNLOCK(sc); 2641 2642 /* 2643 * Drain the USB transfers, if not already drained: 2644 */ 2645 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2646 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2647 2648 RUM_LOCK(sc); 2649 rum_unsetup_tx_list(sc); 2650 2651 /* disable Rx */ 2652 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2653 2654 /* reset ASIC */ 2655 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2656 rum_write(sc, RT2573_MAC_CSR1, 0); 2657 RUM_UNLOCK(sc); 2658 } 2659 2660 static void 2661 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2662 { 2663 uint16_t reg = RT2573_MCU_CODE_BASE; 2664 usb_error_t err; 2665 2666 /* copy firmware image into NIC */ 2667 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2668 err = rum_write(sc, reg, UGETDW(ucode)); 2669 if (err) { 2670 /* firmware already loaded ? */ 2671 device_printf(sc->sc_dev, "Firmware load " 2672 "failure! (ignored)\n"); 2673 break; 2674 } 2675 } 2676 2677 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2678 if (err != USB_ERR_NORMAL_COMPLETION) { 2679 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2680 usbd_errstr(err)); 2681 } 2682 2683 /* give the chip some time to boot */ 2684 rum_pause(sc, hz / 8); 2685 } 2686 2687 static int 2688 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2689 { 2690 struct ieee80211com *ic = &sc->sc_ic; 2691 usb_error_t uerror; 2692 int exp, delay; 2693 2694 RUM_LOCK_ASSERT(sc); 2695 2696 exp = ic->ic_lintval / bintval; 2697 delay = ic->ic_lintval % bintval; 2698 2699 if (exp > RT2573_TBCN_EXP_MAX) 2700 exp = RT2573_TBCN_EXP_MAX; 2701 if (delay > RT2573_TBCN_DELAY_MAX) 2702 delay = RT2573_TBCN_DELAY_MAX; 2703 2704 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2705 RT2573_TBCN_EXP(exp) | 2706 RT2573_TBCN_DELAY(delay), 2707 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2708 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2709 2710 if (uerror != USB_ERR_NORMAL_COMPLETION) 2711 return (EIO); 2712 2713 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2714 2715 return (0); 2716 } 2717 2718 static int 2719 rum_reset(struct ieee80211vap *vap, u_long cmd) 2720 { 2721 struct ieee80211com *ic = vap->iv_ic; 2722 struct ieee80211_node *ni; 2723 struct rum_softc *sc = ic->ic_softc; 2724 int error; 2725 2726 switch (cmd) { 2727 case IEEE80211_IOC_POWERSAVE: 2728 case IEEE80211_IOC_PROTMODE: 2729 case IEEE80211_IOC_RTSTHRESHOLD: 2730 error = 0; 2731 break; 2732 case IEEE80211_IOC_POWERSAVESLEEP: 2733 ni = ieee80211_ref_node(vap->iv_bss); 2734 2735 RUM_LOCK(sc); 2736 error = rum_set_sleep_time(sc, ni->ni_intval); 2737 if (vap->iv_state == IEEE80211_S_SLEEP) { 2738 /* Use new values for wakeup timer. */ 2739 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2740 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2741 } 2742 /* XXX send reassoc */ 2743 RUM_UNLOCK(sc); 2744 2745 ieee80211_free_node(ni); 2746 break; 2747 default: 2748 error = ENETRESET; 2749 break; 2750 } 2751 2752 return (error); 2753 } 2754 2755 static int 2756 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2757 { 2758 struct ieee80211com *ic = vap->iv_ic; 2759 struct rum_vap *rvp = RUM_VAP(vap); 2760 struct mbuf *m = rvp->bcn_mbuf; 2761 const struct ieee80211_txparam *tp; 2762 struct rum_tx_desc desc; 2763 2764 RUM_LOCK_ASSERT(sc); 2765 2766 if (m == NULL) 2767 return EINVAL; 2768 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2769 return EINVAL; 2770 2771 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2772 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2773 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2774 2775 /* copy the Tx descriptor into NIC memory */ 2776 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2777 RT2573_TX_DESC_SIZE) != 0) 2778 return EIO; 2779 2780 /* copy beacon header and payload into NIC memory */ 2781 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2782 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2783 return EIO; 2784 2785 return 0; 2786 } 2787 2788 static int 2789 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2790 { 2791 struct rum_vap *rvp = RUM_VAP(vap); 2792 struct ieee80211_node *ni = vap->iv_bss; 2793 struct mbuf *m; 2794 2795 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2796 return EINVAL; 2797 2798 m = ieee80211_beacon_alloc(ni); 2799 if (m == NULL) 2800 return ENOMEM; 2801 2802 if (rvp->bcn_mbuf != NULL) 2803 m_freem(rvp->bcn_mbuf); 2804 2805 rvp->bcn_mbuf = m; 2806 2807 return (rum_set_beacon(sc, vap)); 2808 } 2809 2810 static void 2811 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2812 uint8_t rvp_id) 2813 { 2814 struct ieee80211vap *vap = data->vap; 2815 2816 rum_set_beacon(sc, vap); 2817 } 2818 2819 static void 2820 rum_update_beacon(struct ieee80211vap *vap, int item) 2821 { 2822 struct ieee80211com *ic = vap->iv_ic; 2823 struct rum_softc *sc = ic->ic_softc; 2824 struct rum_vap *rvp = RUM_VAP(vap); 2825 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2826 struct ieee80211_node *ni = vap->iv_bss; 2827 struct mbuf *m = rvp->bcn_mbuf; 2828 int mcast = 0; 2829 2830 RUM_LOCK(sc); 2831 if (m == NULL) { 2832 m = ieee80211_beacon_alloc(ni); 2833 if (m == NULL) { 2834 device_printf(sc->sc_dev, 2835 "%s: could not allocate beacon frame\n", __func__); 2836 RUM_UNLOCK(sc); 2837 return; 2838 } 2839 rvp->bcn_mbuf = m; 2840 } 2841 2842 switch (item) { 2843 case IEEE80211_BEACON_ERP: 2844 rum_update_slot(ic); 2845 break; 2846 case IEEE80211_BEACON_TIM: 2847 mcast = 1; /*TODO*/ 2848 break; 2849 default: 2850 break; 2851 } 2852 RUM_UNLOCK(sc); 2853 2854 setbit(bo->bo_flags, item); 2855 ieee80211_beacon_update(ni, m, mcast); 2856 2857 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2858 } 2859 2860 static int 2861 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2862 uint16_t base) 2863 { 2864 2865 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2866 return EIO; 2867 2868 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2869 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2870 k->wk_txmic, 8)) 2871 return EIO; 2872 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2873 k->wk_rxmic, 8)) 2874 return EIO; 2875 } 2876 2877 return 0; 2878 } 2879 2880 static void 2881 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2882 uint8_t rvp_id) 2883 { 2884 struct ieee80211_key *k = &data->key; 2885 uint8_t mode; 2886 2887 if (sc->sc_clr_shkeys == 0) { 2888 rum_clr_shkey_regs(sc); 2889 sc->sc_clr_shkeys = 1; 2890 } 2891 2892 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2893 if (mode == 0) 2894 goto print_err; 2895 2896 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2897 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2898 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2899 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2900 2901 /* Install the key. */ 2902 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2903 goto print_err; 2904 2905 /* Set cipher mode. */ 2906 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2907 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2908 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2909 != 0) 2910 goto print_err; 2911 2912 /* Mark this key as valid. */ 2913 if (rum_setbits(sc, RT2573_SEC_CSR0, 2914 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2915 goto print_err; 2916 2917 return; 2918 2919 print_err: 2920 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2921 __func__, k->wk_keyix, rvp_id); 2922 } 2923 2924 static void 2925 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2926 uint8_t rvp_id) 2927 { 2928 struct ieee80211_key *k = &data->key; 2929 2930 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2931 k->wk_keyix, rvp_id); 2932 rum_clrbits(sc, 2933 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2934 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2935 rum_clrbits(sc, RT2573_SEC_CSR0, 2936 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2937 } 2938 2939 static void 2940 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2941 uint8_t rvp_id) 2942 { 2943 struct ieee80211_key *k = &data->key; 2944 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2945 uint8_t mode; 2946 2947 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2948 if (mode == 0) 2949 goto print_err; 2950 2951 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2952 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2953 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2954 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2955 2956 /* Install the key. */ 2957 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2958 goto print_err; 2959 2960 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2961 buf[IEEE80211_ADDR_LEN] = mode; 2962 2963 /* Set transmitter address and cipher mode. */ 2964 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2965 buf, sizeof buf) != 0) 2966 goto print_err; 2967 2968 /* Enable key table lookup for this vap. */ 2969 if (sc->vap_key_count[rvp_id]++ == 0) 2970 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2971 goto print_err; 2972 2973 /* Mark this key as valid. */ 2974 if (rum_setbits(sc, 2975 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2976 1 << (k->wk_keyix % 32)) != 0) 2977 goto print_err; 2978 2979 return; 2980 2981 print_err: 2982 device_printf(sc->sc_dev, 2983 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2984 rvp_id); 2985 } 2986 2987 static void 2988 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2989 uint8_t rvp_id) 2990 { 2991 struct ieee80211_key *k = &data->key; 2992 2993 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2994 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2995 1 << (k->wk_keyix % 32)); 2996 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 2997 if (--sc->vap_key_count[rvp_id] == 0) 2998 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2999 } 3000 3001 static int 3002 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 3003 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 3004 { 3005 struct rum_softc *sc = vap->iv_ic->ic_softc; 3006 uint8_t i; 3007 3008 if (ieee80211_is_key_unicast(vap, k)) { 3009 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 3010 RUM_LOCK(sc); 3011 for (i = 0; i < RT2573_ADDR_MAX; i++) { 3012 if ((sc->keys_bmap & (1ULL << i)) == 0) { 3013 sc->keys_bmap |= (1ULL << i); 3014 *keyix = i; 3015 break; 3016 } 3017 } 3018 RUM_UNLOCK(sc); 3019 if (i == RT2573_ADDR_MAX) { 3020 device_printf(sc->sc_dev, 3021 "%s: no free space in the key table\n", 3022 __func__); 3023 return 0; 3024 } 3025 } else 3026 *keyix = 0; 3027 } else { 3028 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 3029 } 3030 *rxkeyix = *keyix; 3031 return 1; 3032 } 3033 3034 static int 3035 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3036 { 3037 struct rum_softc *sc = vap->iv_ic->ic_softc; 3038 int group; 3039 3040 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3041 /* Not for us. */ 3042 return 1; 3043 } 3044 3045 group = ieee80211_is_key_global(vap, k); 3046 3047 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3048 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3049 } 3050 3051 static int 3052 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3053 { 3054 struct rum_softc *sc = vap->iv_ic->ic_softc; 3055 int group; 3056 3057 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3058 /* Not for us. */ 3059 return 1; 3060 } 3061 3062 group = ieee80211_is_key_global(vap, k); 3063 3064 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3065 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3066 } 3067 3068 static int 3069 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3070 const struct ieee80211_bpf_params *params) 3071 { 3072 struct rum_softc *sc = ni->ni_ic->ic_softc; 3073 int ret; 3074 3075 RUM_LOCK(sc); 3076 /* prevent management frames from being sent if we're not ready */ 3077 if (!sc->sc_running) { 3078 ret = ENETDOWN; 3079 goto bad; 3080 } 3081 if (sc->tx_nfree < RUM_TX_MINFREE) { 3082 ret = EIO; 3083 goto bad; 3084 } 3085 3086 if (params == NULL) { 3087 /* 3088 * Legacy path; interpret frame contents to decide 3089 * precisely how to send the frame. 3090 */ 3091 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3092 goto bad; 3093 } else { 3094 /* 3095 * Caller supplied explicit parameters to use in 3096 * sending the frame. 3097 */ 3098 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3099 goto bad; 3100 } 3101 RUM_UNLOCK(sc); 3102 3103 return 0; 3104 bad: 3105 RUM_UNLOCK(sc); 3106 m_freem(m); 3107 return ret; 3108 } 3109 3110 static void 3111 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3112 { 3113 struct ieee80211vap *vap = ni->ni_vap; 3114 struct rum_vap *rvp = RUM_VAP(vap); 3115 3116 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3117 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3118 3119 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3120 } 3121 3122 static void 3123 rum_ratectl_timeout(void *arg) 3124 { 3125 struct rum_vap *rvp = arg; 3126 struct ieee80211vap *vap = &rvp->vap; 3127 struct ieee80211com *ic = vap->iv_ic; 3128 3129 ieee80211_runtask(ic, &rvp->ratectl_task); 3130 } 3131 3132 static void 3133 rum_ratectl_task(void *arg, int pending) 3134 { 3135 struct rum_vap *rvp = arg; 3136 struct ieee80211vap *vap = &rvp->vap; 3137 struct rum_softc *sc = vap->iv_ic->ic_softc; 3138 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 3139 int ok[3], fail; 3140 3141 RUM_LOCK(sc); 3142 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3143 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3144 3145 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3146 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3147 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3148 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3149 3150 txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES; 3151 txs->nframes = ok[0] + ok[1] + ok[2] + fail; 3152 txs->nsuccess = txs->nframes - fail; 3153 /* XXX at least */ 3154 txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3155 3156 if (txs->nframes != 0) 3157 ieee80211_ratectl_tx_update(vap, txs); 3158 3159 /* count TX retry-fail as Tx errors */ 3160 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3161 3162 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3163 RUM_UNLOCK(sc); 3164 } 3165 3166 static void 3167 rum_scan_start(struct ieee80211com *ic) 3168 { 3169 struct rum_softc *sc = ic->ic_softc; 3170 3171 RUM_LOCK(sc); 3172 rum_abort_tsf_sync(sc); 3173 rum_set_bssid(sc, ieee80211broadcastaddr); 3174 RUM_UNLOCK(sc); 3175 3176 } 3177 3178 static void 3179 rum_scan_end(struct ieee80211com *ic) 3180 { 3181 struct rum_softc *sc = ic->ic_softc; 3182 3183 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3184 RUM_LOCK(sc); 3185 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3186 rum_enable_tsf_sync(sc); 3187 else 3188 rum_enable_tsf(sc); 3189 rum_set_bssid(sc, sc->sc_bssid); 3190 RUM_UNLOCK(sc); 3191 } 3192 } 3193 3194 static void 3195 rum_set_channel(struct ieee80211com *ic) 3196 { 3197 struct rum_softc *sc = ic->ic_softc; 3198 3199 RUM_LOCK(sc); 3200 rum_set_chan(sc, ic->ic_curchan); 3201 RUM_UNLOCK(sc); 3202 } 3203 3204 static void 3205 rum_getradiocaps(struct ieee80211com *ic, 3206 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3207 { 3208 struct rum_softc *sc = ic->ic_softc; 3209 uint8_t bands[IEEE80211_MODE_BYTES]; 3210 3211 memset(bands, 0, sizeof(bands)); 3212 setbit(bands, IEEE80211_MODE_11B); 3213 setbit(bands, IEEE80211_MODE_11G); 3214 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 3215 3216 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3217 setbit(bands, IEEE80211_MODE_11A); 3218 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3219 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3220 } 3221 } 3222 3223 static int 3224 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3225 { 3226 struct ieee80211com *ic = &sc->sc_ic; 3227 int lna, agc, rssi; 3228 3229 lna = (raw >> 5) & 0x3; 3230 agc = raw & 0x1f; 3231 3232 if (lna == 0) { 3233 /* 3234 * No RSSI mapping 3235 * 3236 * NB: Since RSSI is relative to noise floor, -1 is 3237 * adequate for caller to know error happened. 3238 */ 3239 return -1; 3240 } 3241 3242 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3243 3244 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3245 rssi += sc->rssi_2ghz_corr; 3246 3247 if (lna == 1) 3248 rssi -= 64; 3249 else if (lna == 2) 3250 rssi -= 74; 3251 else if (lna == 3) 3252 rssi -= 90; 3253 } else { 3254 rssi += sc->rssi_5ghz_corr; 3255 3256 if (!sc->ext_5ghz_lna && lna != 1) 3257 rssi += 4; 3258 3259 if (lna == 1) 3260 rssi -= 64; 3261 else if (lna == 2) 3262 rssi -= 86; 3263 else if (lna == 3) 3264 rssi -= 100; 3265 } 3266 return rssi; 3267 } 3268 3269 static int 3270 rum_pause(struct rum_softc *sc, int timeout) 3271 { 3272 3273 usb_pause_mtx(&sc->sc_mtx, timeout); 3274 return (0); 3275 } 3276 3277 static device_method_t rum_methods[] = { 3278 /* Device interface */ 3279 DEVMETHOD(device_probe, rum_match), 3280 DEVMETHOD(device_attach, rum_attach), 3281 DEVMETHOD(device_detach, rum_detach), 3282 DEVMETHOD_END 3283 }; 3284 3285 static driver_t rum_driver = { 3286 .name = "rum", 3287 .methods = rum_methods, 3288 .size = sizeof(struct rum_softc), 3289 }; 3290 3291 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL); 3292 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3293 MODULE_DEPEND(rum, usb, 1, 1, 1); 3294 MODULE_VERSION(rum, 1); 3295 USB_PNP_HOST_INFO(rum_devs); 3296