1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #ifdef USB_DEBUG 81 static int rum_debug = 0; 82 83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 85 "Debug level"); 86 #endif 87 88 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, WLIUCG), 124 RUM_DEV(MELCO, WLRUCG), 125 RUM_DEV(MELCO, WLRUCGAOSS), 126 RUM_DEV(MSI, RT2573_1), 127 RUM_DEV(MSI, RT2573_2), 128 RUM_DEV(MSI, RT2573_3), 129 RUM_DEV(MSI, RT2573_4), 130 RUM_DEV(NOVATECH, RT2573), 131 RUM_DEV(PLANEX2, GWUS54HP), 132 RUM_DEV(PLANEX2, GWUS54MINI2), 133 RUM_DEV(PLANEX2, GWUSMM), 134 RUM_DEV(QCOM, RT2573), 135 RUM_DEV(QCOM, RT2573_2), 136 RUM_DEV(QCOM, RT2573_3), 137 RUM_DEV(RALINK, RT2573), 138 RUM_DEV(RALINK, RT2573_2), 139 RUM_DEV(RALINK, RT2671), 140 RUM_DEV(SITECOMEU, WL113R2), 141 RUM_DEV(SITECOMEU, WL172), 142 RUM_DEV(SPARKLAN, RT2573), 143 RUM_DEV(SURECOM, RT2573), 144 #undef RUM_DEV 145 }; 146 147 static device_probe_t rum_match; 148 static device_attach_t rum_attach; 149 static device_detach_t rum_detach; 150 151 static usb_callback_t rum_bulk_read_callback; 152 static usb_callback_t rum_bulk_write_callback; 153 154 static usb_error_t rum_do_request(struct rum_softc *sc, 155 struct usb_device_request *req, void *data); 156 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 157 const char [IFNAMSIZ], int, enum ieee80211_opmode, 158 int, const uint8_t [IEEE80211_ADDR_LEN], 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void rum_vap_delete(struct ieee80211vap *); 161 static void rum_tx_free(struct rum_tx_data *, int); 162 static void rum_setup_tx_list(struct rum_softc *); 163 static void rum_unsetup_tx_list(struct rum_softc *); 164 static int rum_newstate(struct ieee80211vap *, 165 enum ieee80211_state, int); 166 static void rum_setup_tx_desc(struct rum_softc *, 167 struct rum_tx_desc *, uint32_t, uint16_t, int, 168 int); 169 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 170 struct ieee80211_node *); 171 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 172 struct ieee80211_node *, 173 const struct ieee80211_bpf_params *); 174 static int rum_tx_data(struct rum_softc *, struct mbuf *, 175 struct ieee80211_node *); 176 static void rum_start(struct ifnet *); 177 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 178 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 179 int); 180 static uint32_t rum_read(struct rum_softc *, uint16_t); 181 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 182 int); 183 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 184 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 185 size_t); 186 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 187 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 188 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 189 static void rum_select_antenna(struct rum_softc *); 190 static void rum_enable_mrr(struct rum_softc *); 191 static void rum_set_txpreamble(struct rum_softc *); 192 static void rum_set_basicrates(struct rum_softc *); 193 static void rum_select_band(struct rum_softc *, 194 struct ieee80211_channel *); 195 static void rum_set_chan(struct rum_softc *, 196 struct ieee80211_channel *); 197 static void rum_enable_tsf_sync(struct rum_softc *); 198 static void rum_enable_tsf(struct rum_softc *); 199 static void rum_update_slot(struct ifnet *); 200 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 201 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 202 static void rum_update_mcast(struct ifnet *); 203 static void rum_update_promisc(struct ifnet *); 204 static void rum_setpromisc(struct rum_softc *); 205 static const char *rum_get_rf(int); 206 static void rum_read_eeprom(struct rum_softc *); 207 static int rum_bbp_init(struct rum_softc *); 208 static void rum_init_locked(struct rum_softc *); 209 static void rum_init(void *); 210 static void rum_stop(struct rum_softc *); 211 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 212 size_t); 213 static void rum_prepare_beacon(struct rum_softc *, 214 struct ieee80211vap *); 215 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 216 const struct ieee80211_bpf_params *); 217 static void rum_scan_start(struct ieee80211com *); 218 static void rum_scan_end(struct ieee80211com *); 219 static void rum_set_channel(struct ieee80211com *); 220 static int rum_get_rssi(struct rum_softc *, uint8_t); 221 static void rum_ratectl_start(struct rum_softc *, 222 struct ieee80211_node *); 223 static void rum_ratectl_timeout(void *); 224 static void rum_ratectl_task(void *, int); 225 static int rum_pause(struct rum_softc *, int); 226 227 static const struct { 228 uint32_t reg; 229 uint32_t val; 230 } rum_def_mac[] = { 231 { RT2573_TXRX_CSR0, 0x025fb032 }, 232 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 233 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 234 { RT2573_TXRX_CSR3, 0x00858687 }, 235 { RT2573_TXRX_CSR7, 0x2e31353b }, 236 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 237 { RT2573_TXRX_CSR15, 0x0000000f }, 238 { RT2573_MAC_CSR6, 0x00000fff }, 239 { RT2573_MAC_CSR8, 0x016c030a }, 240 { RT2573_MAC_CSR10, 0x00000718 }, 241 { RT2573_MAC_CSR12, 0x00000004 }, 242 { RT2573_MAC_CSR13, 0x00007f00 }, 243 { RT2573_SEC_CSR0, 0x00000000 }, 244 { RT2573_SEC_CSR1, 0x00000000 }, 245 { RT2573_SEC_CSR5, 0x00000000 }, 246 { RT2573_PHY_CSR1, 0x000023b0 }, 247 { RT2573_PHY_CSR5, 0x00040a06 }, 248 { RT2573_PHY_CSR6, 0x00080606 }, 249 { RT2573_PHY_CSR7, 0x00000408 }, 250 { RT2573_AIFSN_CSR, 0x00002273 }, 251 { RT2573_CWMIN_CSR, 0x00002344 }, 252 { RT2573_CWMAX_CSR, 0x000034aa } 253 }; 254 255 static const struct { 256 uint8_t reg; 257 uint8_t val; 258 } rum_def_bbp[] = { 259 { 3, 0x80 }, 260 { 15, 0x30 }, 261 { 17, 0x20 }, 262 { 21, 0xc8 }, 263 { 22, 0x38 }, 264 { 23, 0x06 }, 265 { 24, 0xfe }, 266 { 25, 0x0a }, 267 { 26, 0x0d }, 268 { 32, 0x0b }, 269 { 34, 0x12 }, 270 { 37, 0x07 }, 271 { 39, 0xf8 }, 272 { 41, 0x60 }, 273 { 53, 0x10 }, 274 { 54, 0x18 }, 275 { 60, 0x10 }, 276 { 61, 0x04 }, 277 { 62, 0x04 }, 278 { 75, 0xfe }, 279 { 86, 0xfe }, 280 { 88, 0xfe }, 281 { 90, 0x0f }, 282 { 99, 0x00 }, 283 { 102, 0x16 }, 284 { 107, 0x04 } 285 }; 286 287 static const struct rfprog { 288 uint8_t chan; 289 uint32_t r1, r2, r3, r4; 290 } rum_rf5226[] = { 291 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 292 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 293 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 294 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 295 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 296 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 297 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 298 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 299 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 300 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 301 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 302 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 303 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 304 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 305 306 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 307 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 308 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 309 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 310 311 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 312 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 313 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 314 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 315 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 316 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 317 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 318 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 319 320 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 321 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 322 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 323 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 324 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 325 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 326 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 327 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 328 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 329 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 330 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 331 332 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 333 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 334 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 335 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 336 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 337 }, rum_rf5225[] = { 338 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 339 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 340 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 341 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 342 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 343 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 344 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 345 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 346 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 347 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 348 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 349 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 350 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 351 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 352 353 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 354 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 355 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 356 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 357 358 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 359 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 360 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 361 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 362 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 363 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 364 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 365 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 366 367 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 368 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 369 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 370 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 371 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 372 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 373 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 374 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 375 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 376 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 377 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 378 379 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 380 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 381 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 382 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 383 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 384 }; 385 386 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 387 [RUM_BULK_WR] = { 388 .type = UE_BULK, 389 .endpoint = UE_ADDR_ANY, 390 .direction = UE_DIR_OUT, 391 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 392 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 393 .callback = rum_bulk_write_callback, 394 .timeout = 5000, /* ms */ 395 }, 396 [RUM_BULK_RD] = { 397 .type = UE_BULK, 398 .endpoint = UE_ADDR_ANY, 399 .direction = UE_DIR_IN, 400 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 401 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 402 .callback = rum_bulk_read_callback, 403 }, 404 }; 405 406 static int 407 rum_match(device_t self) 408 { 409 struct usb_attach_arg *uaa = device_get_ivars(self); 410 411 if (uaa->usb_mode != USB_MODE_HOST) 412 return (ENXIO); 413 if (uaa->info.bConfigIndex != 0) 414 return (ENXIO); 415 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 416 return (ENXIO); 417 418 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 419 } 420 421 static int 422 rum_attach(device_t self) 423 { 424 struct usb_attach_arg *uaa = device_get_ivars(self); 425 struct rum_softc *sc = device_get_softc(self); 426 struct ieee80211com *ic; 427 struct ifnet *ifp; 428 uint8_t iface_index, bands; 429 uint32_t tmp; 430 int error, ntries; 431 432 device_set_usb_desc(self); 433 sc->sc_udev = uaa->device; 434 sc->sc_dev = self; 435 436 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 437 MTX_NETWORK_LOCK, MTX_DEF); 438 439 iface_index = RT2573_IFACE_INDEX; 440 error = usbd_transfer_setup(uaa->device, &iface_index, 441 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 442 if (error) { 443 device_printf(self, "could not allocate USB transfers, " 444 "err=%s\n", usbd_errstr(error)); 445 goto detach; 446 } 447 448 RUM_LOCK(sc); 449 /* retrieve RT2573 rev. no */ 450 for (ntries = 0; ntries < 100; ntries++) { 451 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 452 break; 453 if (rum_pause(sc, hz / 100)) 454 break; 455 } 456 if (ntries == 100) { 457 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 458 RUM_UNLOCK(sc); 459 goto detach; 460 } 461 462 /* retrieve MAC address and various other things from EEPROM */ 463 rum_read_eeprom(sc); 464 465 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 466 tmp, rum_get_rf(sc->rf_rev)); 467 468 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 469 RUM_UNLOCK(sc); 470 471 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 472 if (ifp == NULL) { 473 device_printf(sc->sc_dev, "can not if_alloc()\n"); 474 goto detach; 475 } 476 ic = ifp->if_l2com; 477 478 ifp->if_softc = sc; 479 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 480 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 481 ifp->if_init = rum_init; 482 ifp->if_ioctl = rum_ioctl; 483 ifp->if_start = rum_start; 484 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 485 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 486 IFQ_SET_READY(&ifp->if_snd); 487 488 ic->ic_ifp = ifp; 489 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 490 491 /* set device capabilities */ 492 ic->ic_caps = 493 IEEE80211_C_STA /* station mode supported */ 494 | IEEE80211_C_IBSS /* IBSS mode supported */ 495 | IEEE80211_C_MONITOR /* monitor mode supported */ 496 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 497 | IEEE80211_C_TXPMGT /* tx power management */ 498 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 499 | IEEE80211_C_SHSLOT /* short slot time supported */ 500 | IEEE80211_C_BGSCAN /* bg scanning supported */ 501 | IEEE80211_C_WPA /* 802.11i */ 502 ; 503 504 bands = 0; 505 setbit(&bands, IEEE80211_MODE_11B); 506 setbit(&bands, IEEE80211_MODE_11G); 507 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 508 setbit(&bands, IEEE80211_MODE_11A); 509 ieee80211_init_channels(ic, NULL, &bands); 510 511 ieee80211_ifattach(ic, sc->sc_bssid); 512 ic->ic_update_promisc = rum_update_promisc; 513 ic->ic_raw_xmit = rum_raw_xmit; 514 ic->ic_scan_start = rum_scan_start; 515 ic->ic_scan_end = rum_scan_end; 516 ic->ic_set_channel = rum_set_channel; 517 518 ic->ic_vap_create = rum_vap_create; 519 ic->ic_vap_delete = rum_vap_delete; 520 ic->ic_update_mcast = rum_update_mcast; 521 522 ieee80211_radiotap_attach(ic, 523 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 524 RT2573_TX_RADIOTAP_PRESENT, 525 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 526 RT2573_RX_RADIOTAP_PRESENT); 527 528 if (bootverbose) 529 ieee80211_announce(ic); 530 531 return (0); 532 533 detach: 534 rum_detach(self); 535 return (ENXIO); /* failure */ 536 } 537 538 static int 539 rum_detach(device_t self) 540 { 541 struct rum_softc *sc = device_get_softc(self); 542 struct ifnet *ifp = sc->sc_ifp; 543 struct ieee80211com *ic; 544 545 /* stop all USB transfers */ 546 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 547 548 /* free TX list, if any */ 549 RUM_LOCK(sc); 550 rum_unsetup_tx_list(sc); 551 RUM_UNLOCK(sc); 552 553 if (ifp) { 554 ic = ifp->if_l2com; 555 ieee80211_ifdetach(ic); 556 if_free(ifp); 557 } 558 mtx_destroy(&sc->sc_mtx); 559 560 return (0); 561 } 562 563 static usb_error_t 564 rum_do_request(struct rum_softc *sc, 565 struct usb_device_request *req, void *data) 566 { 567 usb_error_t err; 568 int ntries = 10; 569 570 while (ntries--) { 571 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 572 req, data, 0, NULL, 250 /* ms */); 573 if (err == 0) 574 break; 575 576 DPRINTFN(1, "Control request failed, %s (retrying)\n", 577 usbd_errstr(err)); 578 if (rum_pause(sc, hz / 100)) 579 break; 580 } 581 return (err); 582 } 583 584 static struct ieee80211vap * 585 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 586 enum ieee80211_opmode opmode, int flags, 587 const uint8_t bssid[IEEE80211_ADDR_LEN], 588 const uint8_t mac[IEEE80211_ADDR_LEN]) 589 { 590 struct rum_softc *sc = ic->ic_ifp->if_softc; 591 struct rum_vap *rvp; 592 struct ieee80211vap *vap; 593 594 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 595 return NULL; 596 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 597 M_80211_VAP, M_NOWAIT | M_ZERO); 598 if (rvp == NULL) 599 return NULL; 600 vap = &rvp->vap; 601 /* enable s/w bmiss handling for sta mode */ 602 ieee80211_vap_setup(ic, vap, name, unit, opmode, 603 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 604 605 /* override state transition machine */ 606 rvp->newstate = vap->iv_newstate; 607 vap->iv_newstate = rum_newstate; 608 609 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 610 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 611 ieee80211_ratectl_init(vap); 612 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 613 /* complete setup */ 614 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 615 ic->ic_opmode = opmode; 616 return vap; 617 } 618 619 static void 620 rum_vap_delete(struct ieee80211vap *vap) 621 { 622 struct rum_vap *rvp = RUM_VAP(vap); 623 struct ieee80211com *ic = vap->iv_ic; 624 625 usb_callout_drain(&rvp->ratectl_ch); 626 ieee80211_draintask(ic, &rvp->ratectl_task); 627 ieee80211_ratectl_deinit(vap); 628 ieee80211_vap_detach(vap); 629 free(rvp, M_80211_VAP); 630 } 631 632 static void 633 rum_tx_free(struct rum_tx_data *data, int txerr) 634 { 635 struct rum_softc *sc = data->sc; 636 637 if (data->m != NULL) { 638 if (data->m->m_flags & M_TXCB) 639 ieee80211_process_callback(data->ni, data->m, 640 txerr ? ETIMEDOUT : 0); 641 m_freem(data->m); 642 data->m = NULL; 643 644 ieee80211_free_node(data->ni); 645 data->ni = NULL; 646 } 647 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 648 sc->tx_nfree++; 649 } 650 651 static void 652 rum_setup_tx_list(struct rum_softc *sc) 653 { 654 struct rum_tx_data *data; 655 int i; 656 657 sc->tx_nfree = 0; 658 STAILQ_INIT(&sc->tx_q); 659 STAILQ_INIT(&sc->tx_free); 660 661 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 662 data = &sc->tx_data[i]; 663 664 data->sc = sc; 665 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 666 sc->tx_nfree++; 667 } 668 } 669 670 static void 671 rum_unsetup_tx_list(struct rum_softc *sc) 672 { 673 struct rum_tx_data *data; 674 int i; 675 676 /* make sure any subsequent use of the queues will fail */ 677 sc->tx_nfree = 0; 678 STAILQ_INIT(&sc->tx_q); 679 STAILQ_INIT(&sc->tx_free); 680 681 /* free up all node references and mbufs */ 682 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 683 data = &sc->tx_data[i]; 684 685 if (data->m != NULL) { 686 m_freem(data->m); 687 data->m = NULL; 688 } 689 if (data->ni != NULL) { 690 ieee80211_free_node(data->ni); 691 data->ni = NULL; 692 } 693 } 694 } 695 696 static int 697 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 698 { 699 struct rum_vap *rvp = RUM_VAP(vap); 700 struct ieee80211com *ic = vap->iv_ic; 701 struct rum_softc *sc = ic->ic_ifp->if_softc; 702 const struct ieee80211_txparam *tp; 703 enum ieee80211_state ostate; 704 struct ieee80211_node *ni; 705 uint32_t tmp; 706 707 ostate = vap->iv_state; 708 DPRINTF("%s -> %s\n", 709 ieee80211_state_name[ostate], 710 ieee80211_state_name[nstate]); 711 712 IEEE80211_UNLOCK(ic); 713 RUM_LOCK(sc); 714 usb_callout_stop(&rvp->ratectl_ch); 715 716 switch (nstate) { 717 case IEEE80211_S_INIT: 718 if (ostate == IEEE80211_S_RUN) { 719 /* abort TSF synchronization */ 720 tmp = rum_read(sc, RT2573_TXRX_CSR9); 721 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 722 } 723 break; 724 725 case IEEE80211_S_RUN: 726 ni = ieee80211_ref_node(vap->iv_bss); 727 728 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 729 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { 730 RUM_UNLOCK(sc); 731 IEEE80211_LOCK(ic); 732 ieee80211_free_node(ni); 733 return (-1); 734 } 735 rum_update_slot(ic->ic_ifp); 736 rum_enable_mrr(sc); 737 rum_set_txpreamble(sc); 738 rum_set_basicrates(sc); 739 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 740 rum_set_bssid(sc, sc->sc_bssid); 741 } 742 743 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 744 vap->iv_opmode == IEEE80211_M_IBSS) 745 rum_prepare_beacon(sc, vap); 746 747 if (vap->iv_opmode != IEEE80211_M_MONITOR) 748 rum_enable_tsf_sync(sc); 749 else 750 rum_enable_tsf(sc); 751 752 /* enable automatic rate adaptation */ 753 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 754 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 755 rum_ratectl_start(sc, ni); 756 ieee80211_free_node(ni); 757 break; 758 default: 759 break; 760 } 761 RUM_UNLOCK(sc); 762 IEEE80211_LOCK(ic); 763 return (rvp->newstate(vap, nstate, arg)); 764 } 765 766 static void 767 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 768 { 769 struct rum_softc *sc = usbd_xfer_softc(xfer); 770 struct ifnet *ifp = sc->sc_ifp; 771 struct ieee80211vap *vap; 772 struct rum_tx_data *data; 773 struct mbuf *m; 774 struct usb_page_cache *pc; 775 unsigned int len; 776 int actlen, sumlen; 777 778 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 779 780 switch (USB_GET_STATE(xfer)) { 781 case USB_ST_TRANSFERRED: 782 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 783 784 /* free resources */ 785 data = usbd_xfer_get_priv(xfer); 786 rum_tx_free(data, 0); 787 usbd_xfer_set_priv(xfer, NULL); 788 789 ifp->if_opackets++; 790 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 791 792 /* FALLTHROUGH */ 793 case USB_ST_SETUP: 794 tr_setup: 795 data = STAILQ_FIRST(&sc->tx_q); 796 if (data) { 797 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 798 m = data->m; 799 800 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 801 DPRINTFN(0, "data overflow, %u bytes\n", 802 m->m_pkthdr.len); 803 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 804 } 805 pc = usbd_xfer_get_frame(xfer, 0); 806 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 807 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 808 m->m_pkthdr.len); 809 810 vap = data->ni->ni_vap; 811 if (ieee80211_radiotap_active_vap(vap)) { 812 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 813 814 tap->wt_flags = 0; 815 tap->wt_rate = data->rate; 816 tap->wt_antenna = sc->tx_ant; 817 818 ieee80211_radiotap_tx(vap, m); 819 } 820 821 /* align end on a 4-bytes boundary */ 822 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 823 if ((len % 64) == 0) 824 len += 4; 825 826 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 827 m->m_pkthdr.len, len); 828 829 usbd_xfer_set_frame_len(xfer, 0, len); 830 usbd_xfer_set_priv(xfer, data); 831 832 usbd_transfer_submit(xfer); 833 } 834 RUM_UNLOCK(sc); 835 rum_start(ifp); 836 RUM_LOCK(sc); 837 break; 838 839 default: /* Error */ 840 DPRINTFN(11, "transfer error, %s\n", 841 usbd_errstr(error)); 842 843 ifp->if_oerrors++; 844 data = usbd_xfer_get_priv(xfer); 845 if (data != NULL) { 846 rum_tx_free(data, error); 847 usbd_xfer_set_priv(xfer, NULL); 848 } 849 850 if (error != USB_ERR_CANCELLED) { 851 if (error == USB_ERR_TIMEOUT) 852 device_printf(sc->sc_dev, "device timeout\n"); 853 854 /* 855 * Try to clear stall first, also if other 856 * errors occur, hence clearing stall 857 * introduces a 50 ms delay: 858 */ 859 usbd_xfer_set_stall(xfer); 860 goto tr_setup; 861 } 862 break; 863 } 864 } 865 866 static void 867 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 868 { 869 struct rum_softc *sc = usbd_xfer_softc(xfer); 870 struct ifnet *ifp = sc->sc_ifp; 871 struct ieee80211com *ic = ifp->if_l2com; 872 struct ieee80211_node *ni; 873 struct mbuf *m = NULL; 874 struct usb_page_cache *pc; 875 uint32_t flags; 876 uint8_t rssi = 0; 877 int len; 878 879 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 880 881 switch (USB_GET_STATE(xfer)) { 882 case USB_ST_TRANSFERRED: 883 884 DPRINTFN(15, "rx done, actlen=%d\n", len); 885 886 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 887 DPRINTF("%s: xfer too short %d\n", 888 device_get_nameunit(sc->sc_dev), len); 889 ifp->if_ierrors++; 890 goto tr_setup; 891 } 892 893 len -= RT2573_RX_DESC_SIZE; 894 pc = usbd_xfer_get_frame(xfer, 0); 895 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 896 897 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 898 flags = le32toh(sc->sc_rx_desc.flags); 899 if (flags & RT2573_RX_CRC_ERROR) { 900 /* 901 * This should not happen since we did not 902 * request to receive those frames when we 903 * filled RUM_TXRX_CSR2: 904 */ 905 DPRINTFN(5, "PHY or CRC error\n"); 906 ifp->if_ierrors++; 907 goto tr_setup; 908 } 909 910 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 911 if (m == NULL) { 912 DPRINTF("could not allocate mbuf\n"); 913 ifp->if_ierrors++; 914 goto tr_setup; 915 } 916 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 917 mtod(m, uint8_t *), len); 918 919 /* finalize mbuf */ 920 m->m_pkthdr.rcvif = ifp; 921 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 922 923 if (ieee80211_radiotap_active(ic)) { 924 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 925 926 /* XXX read tsf */ 927 tap->wr_flags = 0; 928 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 929 (flags & RT2573_RX_OFDM) ? 930 IEEE80211_T_OFDM : IEEE80211_T_CCK); 931 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 932 tap->wr_antnoise = RT2573_NOISE_FLOOR; 933 tap->wr_antenna = sc->rx_ant; 934 } 935 /* FALLTHROUGH */ 936 case USB_ST_SETUP: 937 tr_setup: 938 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 939 usbd_transfer_submit(xfer); 940 941 /* 942 * At the end of a USB callback it is always safe to unlock 943 * the private mutex of a device! That is why we do the 944 * "ieee80211_input" here, and not some lines up! 945 */ 946 RUM_UNLOCK(sc); 947 if (m) { 948 ni = ieee80211_find_rxnode(ic, 949 mtod(m, struct ieee80211_frame_min *)); 950 if (ni != NULL) { 951 (void) ieee80211_input(ni, m, rssi, 952 RT2573_NOISE_FLOOR); 953 ieee80211_free_node(ni); 954 } else 955 (void) ieee80211_input_all(ic, m, rssi, 956 RT2573_NOISE_FLOOR); 957 } 958 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 959 !IFQ_IS_EMPTY(&ifp->if_snd)) 960 rum_start(ifp); 961 RUM_LOCK(sc); 962 return; 963 964 default: /* Error */ 965 if (error != USB_ERR_CANCELLED) { 966 /* try to clear stall first */ 967 usbd_xfer_set_stall(xfer); 968 goto tr_setup; 969 } 970 return; 971 } 972 } 973 974 static uint8_t 975 rum_plcp_signal(int rate) 976 { 977 switch (rate) { 978 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 979 case 12: return 0xb; 980 case 18: return 0xf; 981 case 24: return 0xa; 982 case 36: return 0xe; 983 case 48: return 0x9; 984 case 72: return 0xd; 985 case 96: return 0x8; 986 case 108: return 0xc; 987 988 /* CCK rates (NB: not IEEE std, device-specific) */ 989 case 2: return 0x0; 990 case 4: return 0x1; 991 case 11: return 0x2; 992 case 22: return 0x3; 993 } 994 return 0xff; /* XXX unsupported/unknown rate */ 995 } 996 997 static void 998 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 999 uint32_t flags, uint16_t xflags, int len, int rate) 1000 { 1001 struct ifnet *ifp = sc->sc_ifp; 1002 struct ieee80211com *ic = ifp->if_l2com; 1003 uint16_t plcp_length; 1004 int remainder; 1005 1006 desc->flags = htole32(flags); 1007 desc->flags |= htole32(RT2573_TX_VALID); 1008 desc->flags |= htole32(len << 16); 1009 1010 desc->xflags = htole16(xflags); 1011 1012 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 1013 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 1014 1015 /* setup PLCP fields */ 1016 desc->plcp_signal = rum_plcp_signal(rate); 1017 desc->plcp_service = 4; 1018 1019 len += IEEE80211_CRC_LEN; 1020 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1021 desc->flags |= htole32(RT2573_TX_OFDM); 1022 1023 plcp_length = len & 0xfff; 1024 desc->plcp_length_hi = plcp_length >> 6; 1025 desc->plcp_length_lo = plcp_length & 0x3f; 1026 } else { 1027 plcp_length = (16 * len + rate - 1) / rate; 1028 if (rate == 22) { 1029 remainder = (16 * len) % 22; 1030 if (remainder != 0 && remainder < 7) 1031 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1032 } 1033 desc->plcp_length_hi = plcp_length >> 8; 1034 desc->plcp_length_lo = plcp_length & 0xff; 1035 1036 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1037 desc->plcp_signal |= 0x08; 1038 } 1039 } 1040 1041 static int 1042 rum_sendprot(struct rum_softc *sc, 1043 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1044 { 1045 struct ieee80211com *ic = ni->ni_ic; 1046 const struct ieee80211_frame *wh; 1047 struct rum_tx_data *data; 1048 struct mbuf *mprot; 1049 int protrate, ackrate, pktlen, flags, isshort; 1050 uint16_t dur; 1051 1052 RUM_LOCK_ASSERT(sc, MA_OWNED); 1053 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1054 ("protection %d", prot)); 1055 1056 wh = mtod(m, const struct ieee80211_frame *); 1057 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1058 1059 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1060 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1061 1062 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1063 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1064 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1065 flags = RT2573_TX_MORE_FRAG; 1066 if (prot == IEEE80211_PROT_RTSCTS) { 1067 /* NB: CTS is the same size as an ACK */ 1068 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1069 flags |= RT2573_TX_NEED_ACK; 1070 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1071 } else { 1072 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1073 } 1074 if (mprot == NULL) { 1075 /* XXX stat + msg */ 1076 return (ENOBUFS); 1077 } 1078 data = STAILQ_FIRST(&sc->tx_free); 1079 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1080 sc->tx_nfree--; 1081 1082 data->m = mprot; 1083 data->ni = ieee80211_ref_node(ni); 1084 data->rate = protrate; 1085 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1086 1087 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1088 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1089 1090 return 0; 1091 } 1092 1093 static int 1094 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1095 { 1096 struct ieee80211vap *vap = ni->ni_vap; 1097 struct ifnet *ifp = sc->sc_ifp; 1098 struct ieee80211com *ic = ifp->if_l2com; 1099 struct rum_tx_data *data; 1100 struct ieee80211_frame *wh; 1101 const struct ieee80211_txparam *tp; 1102 struct ieee80211_key *k; 1103 uint32_t flags = 0; 1104 uint16_t dur; 1105 1106 RUM_LOCK_ASSERT(sc, MA_OWNED); 1107 1108 data = STAILQ_FIRST(&sc->tx_free); 1109 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1110 sc->tx_nfree--; 1111 1112 wh = mtod(m0, struct ieee80211_frame *); 1113 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1114 k = ieee80211_crypto_encap(ni, m0); 1115 if (k == NULL) { 1116 m_freem(m0); 1117 return ENOBUFS; 1118 } 1119 wh = mtod(m0, struct ieee80211_frame *); 1120 } 1121 1122 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1123 1124 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1125 flags |= RT2573_TX_NEED_ACK; 1126 1127 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1128 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1129 *(uint16_t *)wh->i_dur = htole16(dur); 1130 1131 /* tell hardware to add timestamp for probe responses */ 1132 if ((wh->i_fc[0] & 1133 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1134 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1135 flags |= RT2573_TX_TIMESTAMP; 1136 } 1137 1138 data->m = m0; 1139 data->ni = ni; 1140 data->rate = tp->mgmtrate; 1141 1142 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1143 1144 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1145 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1146 1147 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1148 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1149 1150 return (0); 1151 } 1152 1153 static int 1154 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1155 const struct ieee80211_bpf_params *params) 1156 { 1157 struct ieee80211com *ic = ni->ni_ic; 1158 struct rum_tx_data *data; 1159 uint32_t flags; 1160 int rate, error; 1161 1162 RUM_LOCK_ASSERT(sc, MA_OWNED); 1163 KASSERT(params != NULL, ("no raw xmit params")); 1164 1165 rate = params->ibp_rate0; 1166 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1167 m_freem(m0); 1168 return EINVAL; 1169 } 1170 flags = 0; 1171 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1172 flags |= RT2573_TX_NEED_ACK; 1173 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1174 error = rum_sendprot(sc, m0, ni, 1175 params->ibp_flags & IEEE80211_BPF_RTS ? 1176 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1177 rate); 1178 if (error || sc->tx_nfree == 0) { 1179 m_freem(m0); 1180 return ENOBUFS; 1181 } 1182 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1183 } 1184 1185 data = STAILQ_FIRST(&sc->tx_free); 1186 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1187 sc->tx_nfree--; 1188 1189 data->m = m0; 1190 data->ni = ni; 1191 data->rate = rate; 1192 1193 /* XXX need to setup descriptor ourself */ 1194 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1195 1196 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1197 m0->m_pkthdr.len, rate); 1198 1199 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1200 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1201 1202 return 0; 1203 } 1204 1205 static int 1206 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1207 { 1208 struct ieee80211vap *vap = ni->ni_vap; 1209 struct ifnet *ifp = sc->sc_ifp; 1210 struct ieee80211com *ic = ifp->if_l2com; 1211 struct rum_tx_data *data; 1212 struct ieee80211_frame *wh; 1213 const struct ieee80211_txparam *tp; 1214 struct ieee80211_key *k; 1215 uint32_t flags = 0; 1216 uint16_t dur; 1217 int error, rate; 1218 1219 RUM_LOCK_ASSERT(sc, MA_OWNED); 1220 1221 wh = mtod(m0, struct ieee80211_frame *); 1222 1223 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1224 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1225 rate = tp->mcastrate; 1226 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1227 rate = tp->ucastrate; 1228 else 1229 rate = ni->ni_txrate; 1230 1231 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1232 k = ieee80211_crypto_encap(ni, m0); 1233 if (k == NULL) { 1234 m_freem(m0); 1235 return ENOBUFS; 1236 } 1237 1238 /* packet header may have moved, reset our local pointer */ 1239 wh = mtod(m0, struct ieee80211_frame *); 1240 } 1241 1242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1243 int prot = IEEE80211_PROT_NONE; 1244 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1245 prot = IEEE80211_PROT_RTSCTS; 1246 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1247 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1248 prot = ic->ic_protmode; 1249 if (prot != IEEE80211_PROT_NONE) { 1250 error = rum_sendprot(sc, m0, ni, prot, rate); 1251 if (error || sc->tx_nfree == 0) { 1252 m_freem(m0); 1253 return ENOBUFS; 1254 } 1255 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1256 } 1257 } 1258 1259 data = STAILQ_FIRST(&sc->tx_free); 1260 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1261 sc->tx_nfree--; 1262 1263 data->m = m0; 1264 data->ni = ni; 1265 data->rate = rate; 1266 1267 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1268 flags |= RT2573_TX_NEED_ACK; 1269 flags |= RT2573_TX_MORE_FRAG; 1270 1271 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1272 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1273 *(uint16_t *)wh->i_dur = htole16(dur); 1274 } 1275 1276 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1277 1278 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1279 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1280 1281 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1282 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1283 1284 return 0; 1285 } 1286 1287 static void 1288 rum_start(struct ifnet *ifp) 1289 { 1290 struct rum_softc *sc = ifp->if_softc; 1291 struct ieee80211_node *ni; 1292 struct mbuf *m; 1293 1294 RUM_LOCK(sc); 1295 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1296 RUM_UNLOCK(sc); 1297 return; 1298 } 1299 for (;;) { 1300 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1301 if (m == NULL) 1302 break; 1303 if (sc->tx_nfree < RUM_TX_MINFREE) { 1304 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1305 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1306 break; 1307 } 1308 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1309 if (rum_tx_data(sc, m, ni) != 0) { 1310 ieee80211_free_node(ni); 1311 ifp->if_oerrors++; 1312 break; 1313 } 1314 } 1315 RUM_UNLOCK(sc); 1316 } 1317 1318 static int 1319 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1320 { 1321 struct rum_softc *sc = ifp->if_softc; 1322 struct ieee80211com *ic = ifp->if_l2com; 1323 struct ifreq *ifr = (struct ifreq *) data; 1324 int error = 0, startall = 0; 1325 1326 switch (cmd) { 1327 case SIOCSIFFLAGS: 1328 RUM_LOCK(sc); 1329 if (ifp->if_flags & IFF_UP) { 1330 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1331 rum_init_locked(sc); 1332 startall = 1; 1333 } else 1334 rum_setpromisc(sc); 1335 } else { 1336 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1337 rum_stop(sc); 1338 } 1339 RUM_UNLOCK(sc); 1340 if (startall) 1341 ieee80211_start_all(ic); 1342 break; 1343 case SIOCGIFMEDIA: 1344 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1345 break; 1346 case SIOCGIFADDR: 1347 error = ether_ioctl(ifp, cmd, data); 1348 break; 1349 default: 1350 error = EINVAL; 1351 break; 1352 } 1353 return error; 1354 } 1355 1356 static void 1357 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1358 { 1359 struct usb_device_request req; 1360 usb_error_t error; 1361 1362 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1363 req.bRequest = RT2573_READ_EEPROM; 1364 USETW(req.wValue, 0); 1365 USETW(req.wIndex, addr); 1366 USETW(req.wLength, len); 1367 1368 error = rum_do_request(sc, &req, buf); 1369 if (error != 0) { 1370 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1371 usbd_errstr(error)); 1372 } 1373 } 1374 1375 static uint32_t 1376 rum_read(struct rum_softc *sc, uint16_t reg) 1377 { 1378 uint32_t val; 1379 1380 rum_read_multi(sc, reg, &val, sizeof val); 1381 1382 return le32toh(val); 1383 } 1384 1385 static void 1386 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1387 { 1388 struct usb_device_request req; 1389 usb_error_t error; 1390 1391 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1392 req.bRequest = RT2573_READ_MULTI_MAC; 1393 USETW(req.wValue, 0); 1394 USETW(req.wIndex, reg); 1395 USETW(req.wLength, len); 1396 1397 error = rum_do_request(sc, &req, buf); 1398 if (error != 0) { 1399 device_printf(sc->sc_dev, 1400 "could not multi read MAC register: %s\n", 1401 usbd_errstr(error)); 1402 } 1403 } 1404 1405 static usb_error_t 1406 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1407 { 1408 uint32_t tmp = htole32(val); 1409 1410 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1411 } 1412 1413 static usb_error_t 1414 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1415 { 1416 struct usb_device_request req; 1417 usb_error_t error; 1418 size_t offset; 1419 1420 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1421 req.bRequest = RT2573_WRITE_MULTI_MAC; 1422 USETW(req.wValue, 0); 1423 1424 /* write at most 64 bytes at a time */ 1425 for (offset = 0; offset < len; offset += 64) { 1426 USETW(req.wIndex, reg + offset); 1427 USETW(req.wLength, MIN(len - offset, 64)); 1428 1429 error = rum_do_request(sc, &req, (char *)buf + offset); 1430 if (error != 0) { 1431 device_printf(sc->sc_dev, 1432 "could not multi write MAC register: %s\n", 1433 usbd_errstr(error)); 1434 return (error); 1435 } 1436 } 1437 1438 return (USB_ERR_NORMAL_COMPLETION); 1439 } 1440 1441 static void 1442 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1443 { 1444 uint32_t tmp; 1445 int ntries; 1446 1447 DPRINTFN(2, "reg=0x%08x\n", reg); 1448 1449 for (ntries = 0; ntries < 100; ntries++) { 1450 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1451 break; 1452 if (rum_pause(sc, hz / 100)) 1453 break; 1454 } 1455 if (ntries == 100) { 1456 device_printf(sc->sc_dev, "could not write to BBP\n"); 1457 return; 1458 } 1459 1460 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1461 rum_write(sc, RT2573_PHY_CSR3, tmp); 1462 } 1463 1464 static uint8_t 1465 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1466 { 1467 uint32_t val; 1468 int ntries; 1469 1470 DPRINTFN(2, "reg=0x%08x\n", reg); 1471 1472 for (ntries = 0; ntries < 100; ntries++) { 1473 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1474 break; 1475 if (rum_pause(sc, hz / 100)) 1476 break; 1477 } 1478 if (ntries == 100) { 1479 device_printf(sc->sc_dev, "could not read BBP\n"); 1480 return 0; 1481 } 1482 1483 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1484 rum_write(sc, RT2573_PHY_CSR3, val); 1485 1486 for (ntries = 0; ntries < 100; ntries++) { 1487 val = rum_read(sc, RT2573_PHY_CSR3); 1488 if (!(val & RT2573_BBP_BUSY)) 1489 return val & 0xff; 1490 if (rum_pause(sc, hz / 100)) 1491 break; 1492 } 1493 1494 device_printf(sc->sc_dev, "could not read BBP\n"); 1495 return 0; 1496 } 1497 1498 static void 1499 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1500 { 1501 uint32_t tmp; 1502 int ntries; 1503 1504 for (ntries = 0; ntries < 100; ntries++) { 1505 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1506 break; 1507 if (rum_pause(sc, hz / 100)) 1508 break; 1509 } 1510 if (ntries == 100) { 1511 device_printf(sc->sc_dev, "could not write to RF\n"); 1512 return; 1513 } 1514 1515 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1516 (reg & 3); 1517 rum_write(sc, RT2573_PHY_CSR4, tmp); 1518 1519 /* remember last written value in sc */ 1520 sc->rf_regs[reg] = val; 1521 1522 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1523 } 1524 1525 static void 1526 rum_select_antenna(struct rum_softc *sc) 1527 { 1528 uint8_t bbp4, bbp77; 1529 uint32_t tmp; 1530 1531 bbp4 = rum_bbp_read(sc, 4); 1532 bbp77 = rum_bbp_read(sc, 77); 1533 1534 /* TBD */ 1535 1536 /* make sure Rx is disabled before switching antenna */ 1537 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1538 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1539 1540 rum_bbp_write(sc, 4, bbp4); 1541 rum_bbp_write(sc, 77, bbp77); 1542 1543 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1544 } 1545 1546 /* 1547 * Enable multi-rate retries for frames sent at OFDM rates. 1548 * In 802.11b/g mode, allow fallback to CCK rates. 1549 */ 1550 static void 1551 rum_enable_mrr(struct rum_softc *sc) 1552 { 1553 struct ifnet *ifp = sc->sc_ifp; 1554 struct ieee80211com *ic = ifp->if_l2com; 1555 uint32_t tmp; 1556 1557 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1558 1559 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1560 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1561 tmp |= RT2573_MRR_CCK_FALLBACK; 1562 tmp |= RT2573_MRR_ENABLED; 1563 1564 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1565 } 1566 1567 static void 1568 rum_set_txpreamble(struct rum_softc *sc) 1569 { 1570 struct ifnet *ifp = sc->sc_ifp; 1571 struct ieee80211com *ic = ifp->if_l2com; 1572 uint32_t tmp; 1573 1574 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1575 1576 tmp &= ~RT2573_SHORT_PREAMBLE; 1577 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1578 tmp |= RT2573_SHORT_PREAMBLE; 1579 1580 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1581 } 1582 1583 static void 1584 rum_set_basicrates(struct rum_softc *sc) 1585 { 1586 struct ifnet *ifp = sc->sc_ifp; 1587 struct ieee80211com *ic = ifp->if_l2com; 1588 1589 /* update basic rate set */ 1590 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1591 /* 11b basic rates: 1, 2Mbps */ 1592 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1593 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1594 /* 11a basic rates: 6, 12, 24Mbps */ 1595 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1596 } else { 1597 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1598 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1599 } 1600 } 1601 1602 /* 1603 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1604 * driver. 1605 */ 1606 static void 1607 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1608 { 1609 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1610 uint32_t tmp; 1611 1612 /* update all BBP registers that depend on the band */ 1613 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1614 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1615 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1616 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1617 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1618 } 1619 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1620 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1621 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1622 } 1623 1624 sc->bbp17 = bbp17; 1625 rum_bbp_write(sc, 17, bbp17); 1626 rum_bbp_write(sc, 96, bbp96); 1627 rum_bbp_write(sc, 104, bbp104); 1628 1629 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1630 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1631 rum_bbp_write(sc, 75, 0x80); 1632 rum_bbp_write(sc, 86, 0x80); 1633 rum_bbp_write(sc, 88, 0x80); 1634 } 1635 1636 rum_bbp_write(sc, 35, bbp35); 1637 rum_bbp_write(sc, 97, bbp97); 1638 rum_bbp_write(sc, 98, bbp98); 1639 1640 tmp = rum_read(sc, RT2573_PHY_CSR0); 1641 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1642 if (IEEE80211_IS_CHAN_2GHZ(c)) 1643 tmp |= RT2573_PA_PE_2GHZ; 1644 else 1645 tmp |= RT2573_PA_PE_5GHZ; 1646 rum_write(sc, RT2573_PHY_CSR0, tmp); 1647 } 1648 1649 static void 1650 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1651 { 1652 struct ifnet *ifp = sc->sc_ifp; 1653 struct ieee80211com *ic = ifp->if_l2com; 1654 const struct rfprog *rfprog; 1655 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1656 int8_t power; 1657 int i, chan; 1658 1659 chan = ieee80211_chan2ieee(ic, c); 1660 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1661 return; 1662 1663 /* select the appropriate RF settings based on what EEPROM says */ 1664 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1665 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1666 1667 /* find the settings for this channel (we know it exists) */ 1668 for (i = 0; rfprog[i].chan != chan; i++); 1669 1670 power = sc->txpow[i]; 1671 if (power < 0) { 1672 bbp94 += power; 1673 power = 0; 1674 } else if (power > 31) { 1675 bbp94 += power - 31; 1676 power = 31; 1677 } 1678 1679 /* 1680 * If we are switching from the 2GHz band to the 5GHz band or 1681 * vice-versa, BBP registers need to be reprogrammed. 1682 */ 1683 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1684 rum_select_band(sc, c); 1685 rum_select_antenna(sc); 1686 } 1687 ic->ic_curchan = c; 1688 1689 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1690 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1691 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1692 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1693 1694 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1695 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1696 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1697 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1698 1699 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1700 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1701 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1702 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1703 1704 rum_pause(sc, hz / 100); 1705 1706 /* enable smart mode for MIMO-capable RFs */ 1707 bbp3 = rum_bbp_read(sc, 3); 1708 1709 bbp3 &= ~RT2573_SMART_MODE; 1710 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1711 bbp3 |= RT2573_SMART_MODE; 1712 1713 rum_bbp_write(sc, 3, bbp3); 1714 1715 if (bbp94 != RT2573_BBPR94_DEFAULT) 1716 rum_bbp_write(sc, 94, bbp94); 1717 1718 /* give the chip some extra time to do the switchover */ 1719 rum_pause(sc, hz / 100); 1720 } 1721 1722 /* 1723 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1724 * and HostAP operating modes. 1725 */ 1726 static void 1727 rum_enable_tsf_sync(struct rum_softc *sc) 1728 { 1729 struct ifnet *ifp = sc->sc_ifp; 1730 struct ieee80211com *ic = ifp->if_l2com; 1731 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1732 uint32_t tmp; 1733 1734 if (vap->iv_opmode != IEEE80211_M_STA) { 1735 /* 1736 * Change default 16ms TBTT adjustment to 8ms. 1737 * Must be done before enabling beacon generation. 1738 */ 1739 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1740 } 1741 1742 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1743 1744 /* set beacon interval (in 1/16ms unit) */ 1745 tmp |= vap->iv_bss->ni_intval * 16; 1746 1747 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1748 if (vap->iv_opmode == IEEE80211_M_STA) 1749 tmp |= RT2573_TSF_MODE(1); 1750 else 1751 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1752 1753 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1754 } 1755 1756 static void 1757 rum_enable_tsf(struct rum_softc *sc) 1758 { 1759 rum_write(sc, RT2573_TXRX_CSR9, 1760 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1761 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1762 } 1763 1764 static void 1765 rum_update_slot(struct ifnet *ifp) 1766 { 1767 struct rum_softc *sc = ifp->if_softc; 1768 struct ieee80211com *ic = ifp->if_l2com; 1769 uint8_t slottime; 1770 uint32_t tmp; 1771 1772 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1773 1774 tmp = rum_read(sc, RT2573_MAC_CSR9); 1775 tmp = (tmp & ~0xff) | slottime; 1776 rum_write(sc, RT2573_MAC_CSR9, tmp); 1777 1778 DPRINTF("setting slot time to %uus\n", slottime); 1779 } 1780 1781 static void 1782 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1783 { 1784 uint32_t tmp; 1785 1786 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1787 rum_write(sc, RT2573_MAC_CSR4, tmp); 1788 1789 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1790 rum_write(sc, RT2573_MAC_CSR5, tmp); 1791 } 1792 1793 static void 1794 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1795 { 1796 uint32_t tmp; 1797 1798 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1799 rum_write(sc, RT2573_MAC_CSR2, tmp); 1800 1801 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1802 rum_write(sc, RT2573_MAC_CSR3, tmp); 1803 } 1804 1805 static void 1806 rum_setpromisc(struct rum_softc *sc) 1807 { 1808 struct ifnet *ifp = sc->sc_ifp; 1809 uint32_t tmp; 1810 1811 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1812 1813 tmp &= ~RT2573_DROP_NOT_TO_ME; 1814 if (!(ifp->if_flags & IFF_PROMISC)) 1815 tmp |= RT2573_DROP_NOT_TO_ME; 1816 1817 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1818 1819 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1820 "entering" : "leaving"); 1821 } 1822 1823 static void 1824 rum_update_promisc(struct ifnet *ifp) 1825 { 1826 struct rum_softc *sc = ifp->if_softc; 1827 1828 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1829 return; 1830 1831 RUM_LOCK(sc); 1832 rum_setpromisc(sc); 1833 RUM_UNLOCK(sc); 1834 } 1835 1836 static void 1837 rum_update_mcast(struct ifnet *ifp) 1838 { 1839 static int warning_printed; 1840 1841 if (warning_printed == 0) { 1842 if_printf(ifp, "need to implement %s\n", __func__); 1843 warning_printed = 1; 1844 } 1845 } 1846 1847 static const char * 1848 rum_get_rf(int rev) 1849 { 1850 switch (rev) { 1851 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1852 case RT2573_RF_2528: return "RT2528"; 1853 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1854 case RT2573_RF_5226: return "RT5226"; 1855 default: return "unknown"; 1856 } 1857 } 1858 1859 static void 1860 rum_read_eeprom(struct rum_softc *sc) 1861 { 1862 uint16_t val; 1863 #ifdef RUM_DEBUG 1864 int i; 1865 #endif 1866 1867 /* read MAC address */ 1868 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1869 1870 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1871 val = le16toh(val); 1872 sc->rf_rev = (val >> 11) & 0x1f; 1873 sc->hw_radio = (val >> 10) & 0x1; 1874 sc->rx_ant = (val >> 4) & 0x3; 1875 sc->tx_ant = (val >> 2) & 0x3; 1876 sc->nb_ant = val & 0x3; 1877 1878 DPRINTF("RF revision=%d\n", sc->rf_rev); 1879 1880 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1881 val = le16toh(val); 1882 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1883 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1884 1885 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1886 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1887 1888 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1889 val = le16toh(val); 1890 if ((val & 0xff) != 0xff) 1891 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1892 1893 /* Only [-10, 10] is valid */ 1894 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1895 sc->rssi_2ghz_corr = 0; 1896 1897 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1898 val = le16toh(val); 1899 if ((val & 0xff) != 0xff) 1900 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1901 1902 /* Only [-10, 10] is valid */ 1903 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1904 sc->rssi_5ghz_corr = 0; 1905 1906 if (sc->ext_2ghz_lna) 1907 sc->rssi_2ghz_corr -= 14; 1908 if (sc->ext_5ghz_lna) 1909 sc->rssi_5ghz_corr -= 14; 1910 1911 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1912 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1913 1914 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1915 val = le16toh(val); 1916 if ((val & 0xff) != 0xff) 1917 sc->rffreq = val & 0xff; 1918 1919 DPRINTF("RF freq=%d\n", sc->rffreq); 1920 1921 /* read Tx power for all a/b/g channels */ 1922 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1923 /* XXX default Tx power for 802.11a channels */ 1924 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1925 #ifdef RUM_DEBUG 1926 for (i = 0; i < 14; i++) 1927 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1928 #endif 1929 1930 /* read default values for BBP registers */ 1931 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1932 #ifdef RUM_DEBUG 1933 for (i = 0; i < 14; i++) { 1934 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1935 continue; 1936 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1937 sc->bbp_prom[i].val); 1938 } 1939 #endif 1940 } 1941 1942 static int 1943 rum_bbp_init(struct rum_softc *sc) 1944 { 1945 int i, ntries; 1946 1947 /* wait for BBP to be ready */ 1948 for (ntries = 0; ntries < 100; ntries++) { 1949 const uint8_t val = rum_bbp_read(sc, 0); 1950 if (val != 0 && val != 0xff) 1951 break; 1952 if (rum_pause(sc, hz / 100)) 1953 break; 1954 } 1955 if (ntries == 100) { 1956 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1957 return EIO; 1958 } 1959 1960 /* initialize BBP registers to default values */ 1961 for (i = 0; i < N(rum_def_bbp); i++) 1962 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1963 1964 /* write vendor-specific BBP values (from EEPROM) */ 1965 for (i = 0; i < 16; i++) { 1966 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1967 continue; 1968 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1969 } 1970 1971 return 0; 1972 } 1973 1974 static void 1975 rum_init_locked(struct rum_softc *sc) 1976 { 1977 struct ifnet *ifp = sc->sc_ifp; 1978 struct ieee80211com *ic = ifp->if_l2com; 1979 uint32_t tmp; 1980 usb_error_t error; 1981 int i, ntries; 1982 1983 RUM_LOCK_ASSERT(sc, MA_OWNED); 1984 1985 rum_stop(sc); 1986 1987 /* initialize MAC registers to default values */ 1988 for (i = 0; i < N(rum_def_mac); i++) 1989 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1990 1991 /* set host ready */ 1992 rum_write(sc, RT2573_MAC_CSR1, 3); 1993 rum_write(sc, RT2573_MAC_CSR1, 0); 1994 1995 /* wait for BBP/RF to wakeup */ 1996 for (ntries = 0; ntries < 100; ntries++) { 1997 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1998 break; 1999 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2000 if (rum_pause(sc, hz / 100)) 2001 break; 2002 } 2003 if (ntries == 100) { 2004 device_printf(sc->sc_dev, 2005 "timeout waiting for BBP/RF to wakeup\n"); 2006 goto fail; 2007 } 2008 2009 if ((error = rum_bbp_init(sc)) != 0) 2010 goto fail; 2011 2012 /* select default channel */ 2013 rum_select_band(sc, ic->ic_curchan); 2014 rum_select_antenna(sc); 2015 rum_set_chan(sc, ic->ic_curchan); 2016 2017 /* clear STA registers */ 2018 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2019 2020 rum_set_macaddr(sc, IF_LLADDR(ifp)); 2021 2022 /* initialize ASIC */ 2023 rum_write(sc, RT2573_MAC_CSR1, 4); 2024 2025 /* 2026 * Allocate Tx and Rx xfer queues. 2027 */ 2028 rum_setup_tx_list(sc); 2029 2030 /* update Rx filter */ 2031 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2032 2033 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2034 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2035 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2036 RT2573_DROP_ACKCTS; 2037 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2038 tmp |= RT2573_DROP_TODS; 2039 if (!(ifp->if_flags & IFF_PROMISC)) 2040 tmp |= RT2573_DROP_NOT_TO_ME; 2041 } 2042 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2043 2044 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2045 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2046 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2047 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2048 return; 2049 2050 fail: rum_stop(sc); 2051 #undef N 2052 } 2053 2054 static void 2055 rum_init(void *priv) 2056 { 2057 struct rum_softc *sc = priv; 2058 struct ifnet *ifp = sc->sc_ifp; 2059 struct ieee80211com *ic = ifp->if_l2com; 2060 2061 RUM_LOCK(sc); 2062 rum_init_locked(sc); 2063 RUM_UNLOCK(sc); 2064 2065 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2066 ieee80211_start_all(ic); /* start all vap's */ 2067 } 2068 2069 static void 2070 rum_stop(struct rum_softc *sc) 2071 { 2072 struct ifnet *ifp = sc->sc_ifp; 2073 uint32_t tmp; 2074 2075 RUM_LOCK_ASSERT(sc, MA_OWNED); 2076 2077 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2078 2079 RUM_UNLOCK(sc); 2080 2081 /* 2082 * Drain the USB transfers, if not already drained: 2083 */ 2084 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2085 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2086 2087 RUM_LOCK(sc); 2088 2089 rum_unsetup_tx_list(sc); 2090 2091 /* disable Rx */ 2092 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2093 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2094 2095 /* reset ASIC */ 2096 rum_write(sc, RT2573_MAC_CSR1, 3); 2097 rum_write(sc, RT2573_MAC_CSR1, 0); 2098 } 2099 2100 static void 2101 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2102 { 2103 struct usb_device_request req; 2104 uint16_t reg = RT2573_MCU_CODE_BASE; 2105 usb_error_t err; 2106 2107 /* copy firmware image into NIC */ 2108 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2109 err = rum_write(sc, reg, UGETDW(ucode)); 2110 if (err) { 2111 /* firmware already loaded ? */ 2112 device_printf(sc->sc_dev, "Firmware load " 2113 "failure! (ignored)\n"); 2114 break; 2115 } 2116 } 2117 2118 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2119 req.bRequest = RT2573_MCU_CNTL; 2120 USETW(req.wValue, RT2573_MCU_RUN); 2121 USETW(req.wIndex, 0); 2122 USETW(req.wLength, 0); 2123 2124 err = rum_do_request(sc, &req, NULL); 2125 if (err != 0) { 2126 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2127 usbd_errstr(err)); 2128 } 2129 2130 /* give the chip some time to boot */ 2131 rum_pause(sc, hz / 8); 2132 } 2133 2134 static void 2135 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2136 { 2137 struct ieee80211com *ic = vap->iv_ic; 2138 const struct ieee80211_txparam *tp; 2139 struct rum_tx_desc desc; 2140 struct mbuf *m0; 2141 2142 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 2143 return; 2144 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2145 return; 2146 2147 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2148 if (m0 == NULL) 2149 return; 2150 2151 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2152 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2153 m0->m_pkthdr.len, tp->mgmtrate); 2154 2155 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2156 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2157 2158 /* copy beacon header and payload into NIC memory */ 2159 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2160 m0->m_pkthdr.len); 2161 2162 m_freem(m0); 2163 } 2164 2165 static int 2166 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2167 const struct ieee80211_bpf_params *params) 2168 { 2169 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2170 struct rum_softc *sc = ifp->if_softc; 2171 2172 RUM_LOCK(sc); 2173 /* prevent management frames from being sent if we're not ready */ 2174 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2175 RUM_UNLOCK(sc); 2176 m_freem(m); 2177 ieee80211_free_node(ni); 2178 return ENETDOWN; 2179 } 2180 if (sc->tx_nfree < RUM_TX_MINFREE) { 2181 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2182 RUM_UNLOCK(sc); 2183 m_freem(m); 2184 ieee80211_free_node(ni); 2185 return EIO; 2186 } 2187 2188 ifp->if_opackets++; 2189 2190 if (params == NULL) { 2191 /* 2192 * Legacy path; interpret frame contents to decide 2193 * precisely how to send the frame. 2194 */ 2195 if (rum_tx_mgt(sc, m, ni) != 0) 2196 goto bad; 2197 } else { 2198 /* 2199 * Caller supplied explicit parameters to use in 2200 * sending the frame. 2201 */ 2202 if (rum_tx_raw(sc, m, ni, params) != 0) 2203 goto bad; 2204 } 2205 RUM_UNLOCK(sc); 2206 2207 return 0; 2208 bad: 2209 ifp->if_oerrors++; 2210 RUM_UNLOCK(sc); 2211 ieee80211_free_node(ni); 2212 return EIO; 2213 } 2214 2215 static void 2216 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2217 { 2218 struct ieee80211vap *vap = ni->ni_vap; 2219 struct rum_vap *rvp = RUM_VAP(vap); 2220 2221 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2222 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2223 2224 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2225 } 2226 2227 static void 2228 rum_ratectl_timeout(void *arg) 2229 { 2230 struct rum_vap *rvp = arg; 2231 struct ieee80211vap *vap = &rvp->vap; 2232 struct ieee80211com *ic = vap->iv_ic; 2233 2234 ieee80211_runtask(ic, &rvp->ratectl_task); 2235 } 2236 2237 static void 2238 rum_ratectl_task(void *arg, int pending) 2239 { 2240 struct rum_vap *rvp = arg; 2241 struct ieee80211vap *vap = &rvp->vap; 2242 struct ieee80211com *ic = vap->iv_ic; 2243 struct ifnet *ifp = ic->ic_ifp; 2244 struct rum_softc *sc = ifp->if_softc; 2245 struct ieee80211_node *ni; 2246 int ok, fail; 2247 int sum, retrycnt; 2248 2249 RUM_LOCK(sc); 2250 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2251 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2252 2253 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2254 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2255 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2256 sum = ok+fail; 2257 retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail; 2258 2259 ni = ieee80211_ref_node(vap->iv_bss); 2260 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2261 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2262 ieee80211_free_node(ni); 2263 2264 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2265 2266 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2267 RUM_UNLOCK(sc); 2268 } 2269 2270 static void 2271 rum_scan_start(struct ieee80211com *ic) 2272 { 2273 struct ifnet *ifp = ic->ic_ifp; 2274 struct rum_softc *sc = ifp->if_softc; 2275 uint32_t tmp; 2276 2277 RUM_LOCK(sc); 2278 /* abort TSF synchronization */ 2279 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2280 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2281 rum_set_bssid(sc, ifp->if_broadcastaddr); 2282 RUM_UNLOCK(sc); 2283 2284 } 2285 2286 static void 2287 rum_scan_end(struct ieee80211com *ic) 2288 { 2289 struct rum_softc *sc = ic->ic_ifp->if_softc; 2290 2291 RUM_LOCK(sc); 2292 rum_enable_tsf_sync(sc); 2293 rum_set_bssid(sc, sc->sc_bssid); 2294 RUM_UNLOCK(sc); 2295 2296 } 2297 2298 static void 2299 rum_set_channel(struct ieee80211com *ic) 2300 { 2301 struct rum_softc *sc = ic->ic_ifp->if_softc; 2302 2303 RUM_LOCK(sc); 2304 rum_set_chan(sc, ic->ic_curchan); 2305 RUM_UNLOCK(sc); 2306 } 2307 2308 static int 2309 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2310 { 2311 struct ifnet *ifp = sc->sc_ifp; 2312 struct ieee80211com *ic = ifp->if_l2com; 2313 int lna, agc, rssi; 2314 2315 lna = (raw >> 5) & 0x3; 2316 agc = raw & 0x1f; 2317 2318 if (lna == 0) { 2319 /* 2320 * No RSSI mapping 2321 * 2322 * NB: Since RSSI is relative to noise floor, -1 is 2323 * adequate for caller to know error happened. 2324 */ 2325 return -1; 2326 } 2327 2328 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2329 2330 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2331 rssi += sc->rssi_2ghz_corr; 2332 2333 if (lna == 1) 2334 rssi -= 64; 2335 else if (lna == 2) 2336 rssi -= 74; 2337 else if (lna == 3) 2338 rssi -= 90; 2339 } else { 2340 rssi += sc->rssi_5ghz_corr; 2341 2342 if (!sc->ext_5ghz_lna && lna != 1) 2343 rssi += 4; 2344 2345 if (lna == 1) 2346 rssi -= 64; 2347 else if (lna == 2) 2348 rssi -= 86; 2349 else if (lna == 3) 2350 rssi -= 100; 2351 } 2352 return rssi; 2353 } 2354 2355 static int 2356 rum_pause(struct rum_softc *sc, int timeout) 2357 { 2358 2359 usb_pause_mtx(&sc->sc_mtx, timeout); 2360 return (0); 2361 } 2362 2363 static device_method_t rum_methods[] = { 2364 /* Device interface */ 2365 DEVMETHOD(device_probe, rum_match), 2366 DEVMETHOD(device_attach, rum_attach), 2367 DEVMETHOD(device_detach, rum_detach), 2368 2369 { 0, 0 } 2370 }; 2371 2372 static driver_t rum_driver = { 2373 .name = "rum", 2374 .methods = rum_methods, 2375 .size = sizeof(struct rum_softc), 2376 }; 2377 2378 static devclass_t rum_devclass; 2379 2380 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2381 MODULE_DEPEND(rum, wlan, 1, 1, 1); 2382 MODULE_DEPEND(rum, usb, 1, 1, 1); 2383 MODULE_VERSION(rum, 1); 2384