1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_amrr.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #if USB_DEBUG 81 static int rum_debug = 0; 82 83 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 85 "Debug level"); 86 #endif 87 88 static const struct usb_device_id rum_devs[] = { 89 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 90 RUM_DEV(ABOCOM, HWU54DM), 91 RUM_DEV(ABOCOM, RT2573_2), 92 RUM_DEV(ABOCOM, RT2573_3), 93 RUM_DEV(ABOCOM, RT2573_4), 94 RUM_DEV(ABOCOM, WUG2700), 95 RUM_DEV(AMIT, CGWLUSB2GO), 96 RUM_DEV(ASUS, RT2573_1), 97 RUM_DEV(ASUS, RT2573_2), 98 RUM_DEV(BELKIN, F5D7050A), 99 RUM_DEV(BELKIN, F5D9050V3), 100 RUM_DEV(CISCOLINKSYS, WUSB54GC), 101 RUM_DEV(CISCOLINKSYS, WUSB54GR), 102 RUM_DEV(CONCEPTRONIC2, C54RU2), 103 RUM_DEV(COREGA, CGWLUSB2GL), 104 RUM_DEV(COREGA, CGWLUSB2GPX), 105 RUM_DEV(DICKSMITH, CWD854F), 106 RUM_DEV(DICKSMITH, RT2573), 107 RUM_DEV(EDIMAX, EW7318USG), 108 RUM_DEV(DLINK2, DWLG122C1), 109 RUM_DEV(DLINK2, WUA1340), 110 RUM_DEV(DLINK2, DWA111), 111 RUM_DEV(DLINK2, DWA110), 112 RUM_DEV(GIGABYTE, GNWB01GS), 113 RUM_DEV(GIGABYTE, GNWI05GS), 114 RUM_DEV(GIGASET, RT2573), 115 RUM_DEV(GOODWAY, RT2573), 116 RUM_DEV(GUILLEMOT, HWGUSB254LB), 117 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 118 RUM_DEV(HUAWEI3COM, WUB320G), 119 RUM_DEV(MELCO, G54HP), 120 RUM_DEV(MELCO, SG54HP), 121 RUM_DEV(MSI, RT2573_1), 122 RUM_DEV(MSI, RT2573_2), 123 RUM_DEV(MSI, RT2573_3), 124 RUM_DEV(MSI, RT2573_4), 125 RUM_DEV(NOVATECH, RT2573), 126 RUM_DEV(PLANEX2, GWUS54HP), 127 RUM_DEV(PLANEX2, GWUS54MINI2), 128 RUM_DEV(PLANEX2, GWUSMM), 129 RUM_DEV(QCOM, RT2573), 130 RUM_DEV(QCOM, RT2573_2), 131 RUM_DEV(QCOM, RT2573_3), 132 RUM_DEV(RALINK, RT2573), 133 RUM_DEV(RALINK, RT2573_2), 134 RUM_DEV(RALINK, RT2671), 135 RUM_DEV(SITECOMEU, WL113R2), 136 RUM_DEV(SITECOMEU, WL172), 137 RUM_DEV(SPARKLAN, RT2573), 138 RUM_DEV(SURECOM, RT2573), 139 #undef RUM_DEV 140 }; 141 142 MODULE_DEPEND(rum, wlan, 1, 1, 1); 143 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1); 144 MODULE_DEPEND(rum, usb, 1, 1, 1); 145 146 static device_probe_t rum_match; 147 static device_attach_t rum_attach; 148 static device_detach_t rum_detach; 149 150 static usb_callback_t rum_bulk_read_callback; 151 static usb_callback_t rum_bulk_write_callback; 152 153 static usb_error_t rum_do_request(struct rum_softc *sc, 154 struct usb_device_request *req, void *data); 155 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 156 const char name[IFNAMSIZ], int unit, int opmode, 157 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 158 const uint8_t mac[IEEE80211_ADDR_LEN]); 159 static void rum_vap_delete(struct ieee80211vap *); 160 static void rum_tx_free(struct rum_tx_data *, int); 161 static void rum_setup_tx_list(struct rum_softc *); 162 static void rum_unsetup_tx_list(struct rum_softc *); 163 static int rum_newstate(struct ieee80211vap *, 164 enum ieee80211_state, int); 165 static void rum_setup_tx_desc(struct rum_softc *, 166 struct rum_tx_desc *, uint32_t, uint16_t, int, 167 int); 168 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 169 struct ieee80211_node *); 170 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 171 struct ieee80211_node *, 172 const struct ieee80211_bpf_params *); 173 static int rum_tx_data(struct rum_softc *, struct mbuf *, 174 struct ieee80211_node *); 175 static void rum_start(struct ifnet *); 176 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 177 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 178 int); 179 static uint32_t rum_read(struct rum_softc *, uint16_t); 180 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 181 int); 182 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 183 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 184 size_t); 185 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 186 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 187 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 188 static void rum_select_antenna(struct rum_softc *); 189 static void rum_enable_mrr(struct rum_softc *); 190 static void rum_set_txpreamble(struct rum_softc *); 191 static void rum_set_basicrates(struct rum_softc *); 192 static void rum_select_band(struct rum_softc *, 193 struct ieee80211_channel *); 194 static void rum_set_chan(struct rum_softc *, 195 struct ieee80211_channel *); 196 static void rum_enable_tsf_sync(struct rum_softc *); 197 static void rum_enable_tsf(struct rum_softc *); 198 static void rum_update_slot(struct ifnet *); 199 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 200 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 201 static void rum_update_promisc(struct ifnet *); 202 static void rum_setpromisc(struct rum_softc *); 203 static const char *rum_get_rf(int); 204 static void rum_read_eeprom(struct rum_softc *); 205 static int rum_bbp_init(struct rum_softc *); 206 static void rum_init_locked(struct rum_softc *); 207 static void rum_init(void *); 208 static void rum_stop(struct rum_softc *); 209 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 210 size_t); 211 static int rum_prepare_beacon(struct rum_softc *, 212 struct ieee80211vap *); 213 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 214 const struct ieee80211_bpf_params *); 215 static struct ieee80211_node *rum_node_alloc(struct ieee80211vap *, 216 const uint8_t mac[IEEE80211_ADDR_LEN]); 217 static void rum_newassoc(struct ieee80211_node *, int); 218 static void rum_scan_start(struct ieee80211com *); 219 static void rum_scan_end(struct ieee80211com *); 220 static void rum_set_channel(struct ieee80211com *); 221 static int rum_get_rssi(struct rum_softc *, uint8_t); 222 static void rum_amrr_start(struct rum_softc *, 223 struct ieee80211_node *); 224 static void rum_amrr_timeout(void *); 225 static void rum_amrr_task(void *, int); 226 static int rum_pause(struct rum_softc *, int); 227 228 static const struct { 229 uint32_t reg; 230 uint32_t val; 231 } rum_def_mac[] = { 232 { RT2573_TXRX_CSR0, 0x025fb032 }, 233 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 234 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 235 { RT2573_TXRX_CSR3, 0x00858687 }, 236 { RT2573_TXRX_CSR7, 0x2e31353b }, 237 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 238 { RT2573_TXRX_CSR15, 0x0000000f }, 239 { RT2573_MAC_CSR6, 0x00000fff }, 240 { RT2573_MAC_CSR8, 0x016c030a }, 241 { RT2573_MAC_CSR10, 0x00000718 }, 242 { RT2573_MAC_CSR12, 0x00000004 }, 243 { RT2573_MAC_CSR13, 0x00007f00 }, 244 { RT2573_SEC_CSR0, 0x00000000 }, 245 { RT2573_SEC_CSR1, 0x00000000 }, 246 { RT2573_SEC_CSR5, 0x00000000 }, 247 { RT2573_PHY_CSR1, 0x000023b0 }, 248 { RT2573_PHY_CSR5, 0x00040a06 }, 249 { RT2573_PHY_CSR6, 0x00080606 }, 250 { RT2573_PHY_CSR7, 0x00000408 }, 251 { RT2573_AIFSN_CSR, 0x00002273 }, 252 { RT2573_CWMIN_CSR, 0x00002344 }, 253 { RT2573_CWMAX_CSR, 0x000034aa } 254 }; 255 256 static const struct { 257 uint8_t reg; 258 uint8_t val; 259 } rum_def_bbp[] = { 260 { 3, 0x80 }, 261 { 15, 0x30 }, 262 { 17, 0x20 }, 263 { 21, 0xc8 }, 264 { 22, 0x38 }, 265 { 23, 0x06 }, 266 { 24, 0xfe }, 267 { 25, 0x0a }, 268 { 26, 0x0d }, 269 { 32, 0x0b }, 270 { 34, 0x12 }, 271 { 37, 0x07 }, 272 { 39, 0xf8 }, 273 { 41, 0x60 }, 274 { 53, 0x10 }, 275 { 54, 0x18 }, 276 { 60, 0x10 }, 277 { 61, 0x04 }, 278 { 62, 0x04 }, 279 { 75, 0xfe }, 280 { 86, 0xfe }, 281 { 88, 0xfe }, 282 { 90, 0x0f }, 283 { 99, 0x00 }, 284 { 102, 0x16 }, 285 { 107, 0x04 } 286 }; 287 288 static const struct rfprog { 289 uint8_t chan; 290 uint32_t r1, r2, r3, r4; 291 } rum_rf5226[] = { 292 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 293 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 294 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 295 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 296 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 297 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 298 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 299 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 300 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 301 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 302 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 303 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 304 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 305 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 306 307 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 308 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 309 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 310 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 311 312 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 313 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 314 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 315 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 316 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 317 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 318 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 319 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 320 321 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 322 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 323 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 324 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 325 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 326 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 327 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 328 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 329 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 330 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 331 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 332 333 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 334 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 335 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 336 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 337 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 338 }, rum_rf5225[] = { 339 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 340 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 341 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 342 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 343 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 344 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 345 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 346 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 347 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 348 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 349 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 350 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 351 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 352 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 353 354 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 355 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 356 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 357 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 358 359 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 360 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 361 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 362 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 363 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 364 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 365 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 366 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 367 368 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 369 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 370 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 371 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 372 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 373 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 374 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 375 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 376 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 377 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 378 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 379 380 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 381 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 382 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 383 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 384 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 385 }; 386 387 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 388 [RUM_BULK_WR] = { 389 .type = UE_BULK, 390 .endpoint = UE_ADDR_ANY, 391 .direction = UE_DIR_OUT, 392 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 393 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 394 .callback = rum_bulk_write_callback, 395 .timeout = 5000, /* ms */ 396 }, 397 [RUM_BULK_RD] = { 398 .type = UE_BULK, 399 .endpoint = UE_ADDR_ANY, 400 .direction = UE_DIR_IN, 401 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 402 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 403 .callback = rum_bulk_read_callback, 404 }, 405 }; 406 407 static int 408 rum_match(device_t self) 409 { 410 struct usb_attach_arg *uaa = device_get_ivars(self); 411 412 if (uaa->usb_mode != USB_MODE_HOST) 413 return (ENXIO); 414 if (uaa->info.bConfigIndex != 0) 415 return (ENXIO); 416 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 417 return (ENXIO); 418 419 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 420 } 421 422 static int 423 rum_attach(device_t self) 424 { 425 struct usb_attach_arg *uaa = device_get_ivars(self); 426 struct rum_softc *sc = device_get_softc(self); 427 struct ieee80211com *ic; 428 struct ifnet *ifp; 429 uint8_t iface_index, bands; 430 uint32_t tmp; 431 int error, ntries; 432 433 device_set_usb_desc(self); 434 sc->sc_udev = uaa->device; 435 sc->sc_dev = self; 436 437 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 438 MTX_NETWORK_LOCK, MTX_DEF); 439 440 iface_index = RT2573_IFACE_INDEX; 441 error = usbd_transfer_setup(uaa->device, &iface_index, 442 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 443 if (error) { 444 device_printf(self, "could not allocate USB transfers, " 445 "err=%s\n", usbd_errstr(error)); 446 goto detach; 447 } 448 449 RUM_LOCK(sc); 450 /* retrieve RT2573 rev. no */ 451 for (ntries = 0; ntries < 100; ntries++) { 452 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 453 break; 454 if (rum_pause(sc, hz / 100)) 455 break; 456 } 457 if (ntries == 100) { 458 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 459 RUM_UNLOCK(sc); 460 goto detach; 461 } 462 463 /* retrieve MAC address and various other things from EEPROM */ 464 rum_read_eeprom(sc); 465 466 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 467 tmp, rum_get_rf(sc->rf_rev)); 468 469 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 470 RUM_UNLOCK(sc); 471 472 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 473 if (ifp == NULL) { 474 device_printf(sc->sc_dev, "can not if_alloc()\n"); 475 goto detach; 476 } 477 ic = ifp->if_l2com; 478 479 ifp->if_softc = sc; 480 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 481 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 482 ifp->if_init = rum_init; 483 ifp->if_ioctl = rum_ioctl; 484 ifp->if_start = rum_start; 485 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 486 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 487 IFQ_SET_READY(&ifp->if_snd); 488 489 ic->ic_ifp = ifp; 490 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 491 492 /* set device capabilities */ 493 ic->ic_caps = 494 IEEE80211_C_STA /* station mode supported */ 495 | IEEE80211_C_IBSS /* IBSS mode supported */ 496 | IEEE80211_C_MONITOR /* monitor mode supported */ 497 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 498 | IEEE80211_C_TXPMGT /* tx power management */ 499 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 500 | IEEE80211_C_SHSLOT /* short slot time supported */ 501 | IEEE80211_C_BGSCAN /* bg scanning supported */ 502 | IEEE80211_C_WPA /* 802.11i */ 503 ; 504 505 bands = 0; 506 setbit(&bands, IEEE80211_MODE_11B); 507 setbit(&bands, IEEE80211_MODE_11G); 508 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 509 setbit(&bands, IEEE80211_MODE_11A); 510 ieee80211_init_channels(ic, NULL, &bands); 511 512 ieee80211_ifattach(ic, sc->sc_bssid); 513 ic->ic_update_promisc = rum_update_promisc; 514 ic->ic_newassoc = rum_newassoc; 515 ic->ic_raw_xmit = rum_raw_xmit; 516 ic->ic_node_alloc = rum_node_alloc; 517 ic->ic_scan_start = rum_scan_start; 518 ic->ic_scan_end = rum_scan_end; 519 ic->ic_set_channel = rum_set_channel; 520 521 ic->ic_vap_create = rum_vap_create; 522 ic->ic_vap_delete = rum_vap_delete; 523 524 ieee80211_radiotap_attach(ic, 525 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 526 RT2573_TX_RADIOTAP_PRESENT, 527 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 528 RT2573_RX_RADIOTAP_PRESENT); 529 530 if (bootverbose) 531 ieee80211_announce(ic); 532 533 return (0); 534 535 detach: 536 rum_detach(self); 537 return (ENXIO); /* failure */ 538 } 539 540 static int 541 rum_detach(device_t self) 542 { 543 struct rum_softc *sc = device_get_softc(self); 544 struct ifnet *ifp = sc->sc_ifp; 545 struct ieee80211com *ic; 546 547 /* stop all USB transfers */ 548 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 549 550 /* free TX list, if any */ 551 RUM_LOCK(sc); 552 rum_unsetup_tx_list(sc); 553 RUM_UNLOCK(sc); 554 555 if (ifp) { 556 ic = ifp->if_l2com; 557 ieee80211_ifdetach(ic); 558 if_free(ifp); 559 } 560 mtx_destroy(&sc->sc_mtx); 561 562 return (0); 563 } 564 565 static usb_error_t 566 rum_do_request(struct rum_softc *sc, 567 struct usb_device_request *req, void *data) 568 { 569 usb_error_t err; 570 int ntries = 10; 571 572 while (ntries--) { 573 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 574 req, data, 0, NULL, 250 /* ms */); 575 if (err == 0) 576 break; 577 578 DPRINTFN(1, "Control request failed, %s (retrying)\n", 579 usbd_errstr(err)); 580 if (rum_pause(sc, hz / 100)) 581 break; 582 } 583 return (err); 584 } 585 586 static struct ieee80211vap * 587 rum_vap_create(struct ieee80211com *ic, 588 const char name[IFNAMSIZ], int unit, int opmode, int flags, 589 const uint8_t bssid[IEEE80211_ADDR_LEN], 590 const uint8_t mac[IEEE80211_ADDR_LEN]) 591 { 592 struct rum_softc *sc = ic->ic_ifp->if_softc; 593 struct rum_vap *rvp; 594 struct ieee80211vap *vap; 595 596 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 597 return NULL; 598 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 599 M_80211_VAP, M_NOWAIT | M_ZERO); 600 if (rvp == NULL) 601 return NULL; 602 vap = &rvp->vap; 603 /* enable s/w bmiss handling for sta mode */ 604 ieee80211_vap_setup(ic, vap, name, unit, opmode, 605 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 606 607 /* override state transition machine */ 608 rvp->newstate = vap->iv_newstate; 609 vap->iv_newstate = rum_newstate; 610 611 usb_callout_init_mtx(&rvp->amrr_ch, &sc->sc_mtx, 0); 612 TASK_INIT(&rvp->amrr_task, 0, rum_amrr_task, rvp); 613 ieee80211_amrr_init(&rvp->amrr, vap, 614 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 615 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 616 1000 /* 1 sec */); 617 618 /* complete setup */ 619 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 620 ic->ic_opmode = opmode; 621 return vap; 622 } 623 624 static void 625 rum_vap_delete(struct ieee80211vap *vap) 626 { 627 struct rum_vap *rvp = RUM_VAP(vap); 628 struct ieee80211com *ic = vap->iv_ic; 629 630 usb_callout_drain(&rvp->amrr_ch); 631 ieee80211_draintask(ic, &rvp->amrr_task); 632 ieee80211_amrr_cleanup(&rvp->amrr); 633 ieee80211_vap_detach(vap); 634 free(rvp, M_80211_VAP); 635 } 636 637 static void 638 rum_tx_free(struct rum_tx_data *data, int txerr) 639 { 640 struct rum_softc *sc = data->sc; 641 642 if (data->m != NULL) { 643 if (data->m->m_flags & M_TXCB) 644 ieee80211_process_callback(data->ni, data->m, 645 txerr ? ETIMEDOUT : 0); 646 m_freem(data->m); 647 data->m = NULL; 648 649 ieee80211_free_node(data->ni); 650 data->ni = NULL; 651 } 652 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 653 sc->tx_nfree++; 654 } 655 656 static void 657 rum_setup_tx_list(struct rum_softc *sc) 658 { 659 struct rum_tx_data *data; 660 int i; 661 662 sc->tx_nfree = 0; 663 STAILQ_INIT(&sc->tx_q); 664 STAILQ_INIT(&sc->tx_free); 665 666 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 667 data = &sc->tx_data[i]; 668 669 data->sc = sc; 670 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 671 sc->tx_nfree++; 672 } 673 } 674 675 static void 676 rum_unsetup_tx_list(struct rum_softc *sc) 677 { 678 struct rum_tx_data *data; 679 int i; 680 681 /* make sure any subsequent use of the queues will fail */ 682 sc->tx_nfree = 0; 683 STAILQ_INIT(&sc->tx_q); 684 STAILQ_INIT(&sc->tx_free); 685 686 /* free up all node references and mbufs */ 687 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 688 data = &sc->tx_data[i]; 689 690 if (data->m != NULL) { 691 m_freem(data->m); 692 data->m = NULL; 693 } 694 if (data->ni != NULL) { 695 ieee80211_free_node(data->ni); 696 data->ni = NULL; 697 } 698 } 699 } 700 701 static int 702 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 703 { 704 struct rum_vap *rvp = RUM_VAP(vap); 705 struct ieee80211com *ic = vap->iv_ic; 706 struct rum_softc *sc = ic->ic_ifp->if_softc; 707 const struct ieee80211_txparam *tp; 708 enum ieee80211_state ostate; 709 struct ieee80211_node *ni; 710 uint32_t tmp; 711 712 ostate = vap->iv_state; 713 DPRINTF("%s -> %s\n", 714 ieee80211_state_name[ostate], 715 ieee80211_state_name[nstate]); 716 717 IEEE80211_UNLOCK(ic); 718 RUM_LOCK(sc); 719 usb_callout_stop(&rvp->amrr_ch); 720 721 switch (nstate) { 722 case IEEE80211_S_INIT: 723 if (ostate == IEEE80211_S_RUN) { 724 /* abort TSF synchronization */ 725 tmp = rum_read(sc, RT2573_TXRX_CSR9); 726 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 727 } 728 break; 729 730 case IEEE80211_S_RUN: 731 ni = vap->iv_bss; 732 733 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 734 rum_update_slot(ic->ic_ifp); 735 rum_enable_mrr(sc); 736 rum_set_txpreamble(sc); 737 rum_set_basicrates(sc); 738 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 739 rum_set_bssid(sc, sc->sc_bssid); 740 } 741 742 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 743 vap->iv_opmode == IEEE80211_M_IBSS) 744 rum_prepare_beacon(sc, vap); 745 746 if (vap->iv_opmode != IEEE80211_M_MONITOR) 747 rum_enable_tsf_sync(sc); 748 else 749 rum_enable_tsf(sc); 750 751 /* enable automatic rate adaptation */ 752 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 753 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 754 rum_amrr_start(sc, ni); 755 break; 756 default: 757 break; 758 } 759 RUM_UNLOCK(sc); 760 IEEE80211_LOCK(ic); 761 return (rvp->newstate(vap, nstate, arg)); 762 } 763 764 static void 765 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 766 { 767 struct rum_softc *sc = usbd_xfer_softc(xfer); 768 struct ifnet *ifp = sc->sc_ifp; 769 struct ieee80211vap *vap; 770 struct rum_tx_data *data; 771 struct mbuf *m; 772 struct usb_page_cache *pc; 773 unsigned int len; 774 int actlen, sumlen; 775 776 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 777 778 switch (USB_GET_STATE(xfer)) { 779 case USB_ST_TRANSFERRED: 780 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 781 782 /* free resources */ 783 data = usbd_xfer_get_priv(xfer); 784 rum_tx_free(data, 0); 785 usbd_xfer_set_priv(xfer, NULL); 786 787 ifp->if_opackets++; 788 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 789 790 /* FALLTHROUGH */ 791 case USB_ST_SETUP: 792 tr_setup: 793 data = STAILQ_FIRST(&sc->tx_q); 794 if (data) { 795 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 796 m = data->m; 797 798 if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) { 799 DPRINTFN(0, "data overflow, %u bytes\n", 800 m->m_pkthdr.len); 801 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 802 } 803 pc = usbd_xfer_get_frame(xfer, 0); 804 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 805 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 806 m->m_pkthdr.len); 807 808 vap = data->ni->ni_vap; 809 if (ieee80211_radiotap_active_vap(vap)) { 810 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 811 812 tap->wt_flags = 0; 813 tap->wt_rate = data->rate; 814 tap->wt_antenna = sc->tx_ant; 815 816 ieee80211_radiotap_tx(vap, m); 817 } 818 819 /* align end on a 4-bytes boundary */ 820 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 821 if ((len % 64) == 0) 822 len += 4; 823 824 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 825 m->m_pkthdr.len, len); 826 827 usbd_xfer_set_frame_len(xfer, 0, len); 828 usbd_xfer_set_priv(xfer, data); 829 830 usbd_transfer_submit(xfer); 831 } 832 RUM_UNLOCK(sc); 833 rum_start(ifp); 834 RUM_LOCK(sc); 835 break; 836 837 default: /* Error */ 838 DPRINTFN(11, "transfer error, %s\n", 839 usbd_errstr(error)); 840 841 ifp->if_oerrors++; 842 data = usbd_xfer_get_priv(xfer); 843 if (data != NULL) { 844 rum_tx_free(data, error); 845 usbd_xfer_set_priv(xfer, NULL); 846 } 847 848 if (error != USB_ERR_CANCELLED) { 849 if (error == USB_ERR_TIMEOUT) 850 device_printf(sc->sc_dev, "device timeout\n"); 851 852 /* 853 * Try to clear stall first, also if other 854 * errors occur, hence clearing stall 855 * introduces a 50 ms delay: 856 */ 857 usbd_xfer_set_stall(xfer); 858 goto tr_setup; 859 } 860 break; 861 } 862 } 863 864 static void 865 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 866 { 867 struct rum_softc *sc = usbd_xfer_softc(xfer); 868 struct ifnet *ifp = sc->sc_ifp; 869 struct ieee80211com *ic = ifp->if_l2com; 870 struct ieee80211_node *ni; 871 struct mbuf *m = NULL; 872 struct usb_page_cache *pc; 873 uint32_t flags; 874 uint8_t rssi = 0; 875 int len; 876 877 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 878 879 switch (USB_GET_STATE(xfer)) { 880 case USB_ST_TRANSFERRED: 881 882 DPRINTFN(15, "rx done, actlen=%d\n", len); 883 884 if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) { 885 DPRINTF("%s: xfer too short %d\n", 886 device_get_nameunit(sc->sc_dev), len); 887 ifp->if_ierrors++; 888 goto tr_setup; 889 } 890 891 len -= RT2573_RX_DESC_SIZE; 892 pc = usbd_xfer_get_frame(xfer, 0); 893 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 894 895 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 896 flags = le32toh(sc->sc_rx_desc.flags); 897 if (flags & RT2573_RX_CRC_ERROR) { 898 /* 899 * This should not happen since we did not 900 * request to receive those frames when we 901 * filled RUM_TXRX_CSR2: 902 */ 903 DPRINTFN(5, "PHY or CRC error\n"); 904 ifp->if_ierrors++; 905 goto tr_setup; 906 } 907 908 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 909 if (m == NULL) { 910 DPRINTF("could not allocate mbuf\n"); 911 ifp->if_ierrors++; 912 goto tr_setup; 913 } 914 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 915 mtod(m, uint8_t *), len); 916 917 /* finalize mbuf */ 918 m->m_pkthdr.rcvif = ifp; 919 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 920 921 if (ieee80211_radiotap_active(ic)) { 922 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 923 924 /* XXX read tsf */ 925 tap->wr_flags = 0; 926 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 927 (flags & RT2573_RX_OFDM) ? 928 IEEE80211_T_OFDM : IEEE80211_T_CCK); 929 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 930 tap->wr_antnoise = RT2573_NOISE_FLOOR; 931 tap->wr_antenna = sc->rx_ant; 932 } 933 /* FALLTHROUGH */ 934 case USB_ST_SETUP: 935 tr_setup: 936 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 937 usbd_transfer_submit(xfer); 938 939 /* 940 * At the end of a USB callback it is always safe to unlock 941 * the private mutex of a device! That is why we do the 942 * "ieee80211_input" here, and not some lines up! 943 */ 944 RUM_UNLOCK(sc); 945 if (m) { 946 ni = ieee80211_find_rxnode(ic, 947 mtod(m, struct ieee80211_frame_min *)); 948 if (ni != NULL) { 949 (void) ieee80211_input(ni, m, rssi, 950 RT2573_NOISE_FLOOR); 951 ieee80211_free_node(ni); 952 } else 953 (void) ieee80211_input_all(ic, m, rssi, 954 RT2573_NOISE_FLOOR); 955 } 956 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 957 !IFQ_IS_EMPTY(&ifp->if_snd)) 958 rum_start(ifp); 959 RUM_LOCK(sc); 960 return; 961 962 default: /* Error */ 963 if (error != USB_ERR_CANCELLED) { 964 /* try to clear stall first */ 965 usbd_xfer_set_stall(xfer); 966 goto tr_setup; 967 } 968 return; 969 } 970 } 971 972 static uint8_t 973 rum_plcp_signal(int rate) 974 { 975 switch (rate) { 976 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 977 case 12: return 0xb; 978 case 18: return 0xf; 979 case 24: return 0xa; 980 case 36: return 0xe; 981 case 48: return 0x9; 982 case 72: return 0xd; 983 case 96: return 0x8; 984 case 108: return 0xc; 985 986 /* CCK rates (NB: not IEEE std, device-specific) */ 987 case 2: return 0x0; 988 case 4: return 0x1; 989 case 11: return 0x2; 990 case 22: return 0x3; 991 } 992 return 0xff; /* XXX unsupported/unknown rate */ 993 } 994 995 static void 996 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 997 uint32_t flags, uint16_t xflags, int len, int rate) 998 { 999 struct ifnet *ifp = sc->sc_ifp; 1000 struct ieee80211com *ic = ifp->if_l2com; 1001 uint16_t plcp_length; 1002 int remainder; 1003 1004 desc->flags = htole32(flags); 1005 desc->flags |= htole32(RT2573_TX_VALID); 1006 desc->flags |= htole32(len << 16); 1007 1008 desc->xflags = htole16(xflags); 1009 1010 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 1011 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 1012 1013 /* setup PLCP fields */ 1014 desc->plcp_signal = rum_plcp_signal(rate); 1015 desc->plcp_service = 4; 1016 1017 len += IEEE80211_CRC_LEN; 1018 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1019 desc->flags |= htole32(RT2573_TX_OFDM); 1020 1021 plcp_length = len & 0xfff; 1022 desc->plcp_length_hi = plcp_length >> 6; 1023 desc->plcp_length_lo = plcp_length & 0x3f; 1024 } else { 1025 plcp_length = (16 * len + rate - 1) / rate; 1026 if (rate == 22) { 1027 remainder = (16 * len) % 22; 1028 if (remainder != 0 && remainder < 7) 1029 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1030 } 1031 desc->plcp_length_hi = plcp_length >> 8; 1032 desc->plcp_length_lo = plcp_length & 0xff; 1033 1034 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1035 desc->plcp_signal |= 0x08; 1036 } 1037 } 1038 1039 static int 1040 rum_sendprot(struct rum_softc *sc, 1041 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1042 { 1043 struct ieee80211com *ic = ni->ni_ic; 1044 const struct ieee80211_frame *wh; 1045 struct rum_tx_data *data; 1046 struct mbuf *mprot; 1047 int protrate, ackrate, pktlen, flags, isshort; 1048 uint16_t dur; 1049 1050 RUM_LOCK_ASSERT(sc, MA_OWNED); 1051 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1052 ("protection %d", prot)); 1053 1054 wh = mtod(m, const struct ieee80211_frame *); 1055 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1056 1057 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1058 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1059 1060 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1061 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort); 1062 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1063 flags = RT2573_TX_MORE_FRAG; 1064 if (prot == IEEE80211_PROT_RTSCTS) { 1065 /* NB: CTS is the same size as an ACK */ 1066 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1067 flags |= RT2573_TX_NEED_ACK; 1068 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1069 } else { 1070 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1071 } 1072 if (mprot == NULL) { 1073 /* XXX stat + msg */ 1074 return (ENOBUFS); 1075 } 1076 data = STAILQ_FIRST(&sc->tx_free); 1077 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1078 sc->tx_nfree--; 1079 1080 data->m = mprot; 1081 data->ni = ieee80211_ref_node(ni); 1082 data->rate = protrate; 1083 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1084 1085 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1086 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1087 1088 return 0; 1089 } 1090 1091 static int 1092 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1093 { 1094 struct ieee80211vap *vap = ni->ni_vap; 1095 struct ifnet *ifp = sc->sc_ifp; 1096 struct ieee80211com *ic = ifp->if_l2com; 1097 struct rum_tx_data *data; 1098 struct ieee80211_frame *wh; 1099 const struct ieee80211_txparam *tp; 1100 struct ieee80211_key *k; 1101 uint32_t flags = 0; 1102 uint16_t dur; 1103 1104 RUM_LOCK_ASSERT(sc, MA_OWNED); 1105 1106 data = STAILQ_FIRST(&sc->tx_free); 1107 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1108 sc->tx_nfree--; 1109 1110 wh = mtod(m0, struct ieee80211_frame *); 1111 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1112 k = ieee80211_crypto_encap(ni, m0); 1113 if (k == NULL) { 1114 m_freem(m0); 1115 return ENOBUFS; 1116 } 1117 wh = mtod(m0, struct ieee80211_frame *); 1118 } 1119 1120 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1121 1122 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1123 flags |= RT2573_TX_NEED_ACK; 1124 1125 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1126 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1127 *(uint16_t *)wh->i_dur = htole16(dur); 1128 1129 /* tell hardware to add timestamp for probe responses */ 1130 if ((wh->i_fc[0] & 1131 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1132 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1133 flags |= RT2573_TX_TIMESTAMP; 1134 } 1135 1136 data->m = m0; 1137 data->ni = ni; 1138 data->rate = tp->mgmtrate; 1139 1140 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1141 1142 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1143 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1144 1145 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1146 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1147 1148 return (0); 1149 } 1150 1151 static int 1152 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1153 const struct ieee80211_bpf_params *params) 1154 { 1155 struct ieee80211com *ic = ni->ni_ic; 1156 struct rum_tx_data *data; 1157 uint32_t flags; 1158 int rate, error; 1159 1160 RUM_LOCK_ASSERT(sc, MA_OWNED); 1161 KASSERT(params != NULL, ("no raw xmit params")); 1162 1163 rate = params->ibp_rate0; 1164 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1165 m_freem(m0); 1166 return EINVAL; 1167 } 1168 flags = 0; 1169 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1170 flags |= RT2573_TX_NEED_ACK; 1171 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1172 error = rum_sendprot(sc, m0, ni, 1173 params->ibp_flags & IEEE80211_BPF_RTS ? 1174 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1175 rate); 1176 if (error || sc->tx_nfree == 0) { 1177 m_freem(m0); 1178 return ENOBUFS; 1179 } 1180 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1181 } 1182 1183 data = STAILQ_FIRST(&sc->tx_free); 1184 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1185 sc->tx_nfree--; 1186 1187 data->m = m0; 1188 data->ni = ni; 1189 data->rate = rate; 1190 1191 /* XXX need to setup descriptor ourself */ 1192 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1193 1194 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1195 m0->m_pkthdr.len, rate); 1196 1197 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1198 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1199 1200 return 0; 1201 } 1202 1203 static int 1204 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1205 { 1206 struct ieee80211vap *vap = ni->ni_vap; 1207 struct ifnet *ifp = sc->sc_ifp; 1208 struct ieee80211com *ic = ifp->if_l2com; 1209 struct rum_tx_data *data; 1210 struct ieee80211_frame *wh; 1211 const struct ieee80211_txparam *tp; 1212 struct ieee80211_key *k; 1213 uint32_t flags = 0; 1214 uint16_t dur; 1215 int error, rate; 1216 1217 RUM_LOCK_ASSERT(sc, MA_OWNED); 1218 1219 wh = mtod(m0, struct ieee80211_frame *); 1220 1221 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1222 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1223 rate = tp->mcastrate; 1224 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1225 rate = tp->ucastrate; 1226 else 1227 rate = ni->ni_txrate; 1228 1229 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1230 k = ieee80211_crypto_encap(ni, m0); 1231 if (k == NULL) { 1232 m_freem(m0); 1233 return ENOBUFS; 1234 } 1235 1236 /* packet header may have moved, reset our local pointer */ 1237 wh = mtod(m0, struct ieee80211_frame *); 1238 } 1239 1240 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1241 int prot = IEEE80211_PROT_NONE; 1242 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1243 prot = IEEE80211_PROT_RTSCTS; 1244 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1245 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1246 prot = ic->ic_protmode; 1247 if (prot != IEEE80211_PROT_NONE) { 1248 error = rum_sendprot(sc, m0, ni, prot, rate); 1249 if (error || sc->tx_nfree == 0) { 1250 m_freem(m0); 1251 return ENOBUFS; 1252 } 1253 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1254 } 1255 } 1256 1257 data = STAILQ_FIRST(&sc->tx_free); 1258 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1259 sc->tx_nfree--; 1260 1261 data->m = m0; 1262 data->ni = ni; 1263 data->rate = rate; 1264 1265 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1266 flags |= RT2573_TX_NEED_ACK; 1267 flags |= RT2573_TX_MORE_FRAG; 1268 1269 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1270 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1271 *(uint16_t *)wh->i_dur = htole16(dur); 1272 } 1273 1274 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1275 1276 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1277 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1278 1279 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1280 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1281 1282 return 0; 1283 } 1284 1285 static void 1286 rum_start(struct ifnet *ifp) 1287 { 1288 struct rum_softc *sc = ifp->if_softc; 1289 struct ieee80211_node *ni; 1290 struct mbuf *m; 1291 1292 RUM_LOCK(sc); 1293 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1294 RUM_UNLOCK(sc); 1295 return; 1296 } 1297 for (;;) { 1298 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1299 if (m == NULL) 1300 break; 1301 if (sc->tx_nfree < RUM_TX_MINFREE) { 1302 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1303 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1304 break; 1305 } 1306 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1307 if (rum_tx_data(sc, m, ni) != 0) { 1308 ieee80211_free_node(ni); 1309 ifp->if_oerrors++; 1310 break; 1311 } 1312 } 1313 RUM_UNLOCK(sc); 1314 } 1315 1316 static int 1317 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1318 { 1319 struct rum_softc *sc = ifp->if_softc; 1320 struct ieee80211com *ic = ifp->if_l2com; 1321 struct ifreq *ifr = (struct ifreq *) data; 1322 int error = 0, startall = 0; 1323 1324 switch (cmd) { 1325 case SIOCSIFFLAGS: 1326 RUM_LOCK(sc); 1327 if (ifp->if_flags & IFF_UP) { 1328 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1329 rum_init_locked(sc); 1330 startall = 1; 1331 } else 1332 rum_setpromisc(sc); 1333 } else { 1334 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1335 rum_stop(sc); 1336 } 1337 RUM_UNLOCK(sc); 1338 if (startall) 1339 ieee80211_start_all(ic); 1340 break; 1341 case SIOCGIFMEDIA: 1342 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1343 break; 1344 case SIOCGIFADDR: 1345 error = ether_ioctl(ifp, cmd, data); 1346 break; 1347 default: 1348 error = EINVAL; 1349 break; 1350 } 1351 return error; 1352 } 1353 1354 static void 1355 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1356 { 1357 struct usb_device_request req; 1358 usb_error_t error; 1359 1360 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1361 req.bRequest = RT2573_READ_EEPROM; 1362 USETW(req.wValue, 0); 1363 USETW(req.wIndex, addr); 1364 USETW(req.wLength, len); 1365 1366 error = rum_do_request(sc, &req, buf); 1367 if (error != 0) { 1368 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1369 usbd_errstr(error)); 1370 } 1371 } 1372 1373 static uint32_t 1374 rum_read(struct rum_softc *sc, uint16_t reg) 1375 { 1376 uint32_t val; 1377 1378 rum_read_multi(sc, reg, &val, sizeof val); 1379 1380 return le32toh(val); 1381 } 1382 1383 static void 1384 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1385 { 1386 struct usb_device_request req; 1387 usb_error_t error; 1388 1389 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1390 req.bRequest = RT2573_READ_MULTI_MAC; 1391 USETW(req.wValue, 0); 1392 USETW(req.wIndex, reg); 1393 USETW(req.wLength, len); 1394 1395 error = rum_do_request(sc, &req, buf); 1396 if (error != 0) { 1397 device_printf(sc->sc_dev, 1398 "could not multi read MAC register: %s\n", 1399 usbd_errstr(error)); 1400 } 1401 } 1402 1403 static usb_error_t 1404 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1405 { 1406 uint32_t tmp = htole32(val); 1407 1408 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1409 } 1410 1411 static usb_error_t 1412 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1413 { 1414 struct usb_device_request req; 1415 usb_error_t error; 1416 1417 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1418 req.bRequest = RT2573_WRITE_MULTI_MAC; 1419 USETW(req.wValue, 0); 1420 USETW(req.wIndex, reg); 1421 USETW(req.wLength, len); 1422 1423 error = rum_do_request(sc, &req, buf); 1424 if (error != 0) { 1425 device_printf(sc->sc_dev, 1426 "could not multi write MAC register: %s\n", 1427 usbd_errstr(error)); 1428 } 1429 return (error); 1430 } 1431 1432 static void 1433 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1434 { 1435 uint32_t tmp; 1436 int ntries; 1437 1438 DPRINTFN(2, "reg=0x%08x\n", reg); 1439 1440 for (ntries = 0; ntries < 100; ntries++) { 1441 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1442 break; 1443 if (rum_pause(sc, hz / 100)) 1444 break; 1445 } 1446 if (ntries == 100) { 1447 device_printf(sc->sc_dev, "could not write to BBP\n"); 1448 return; 1449 } 1450 1451 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1452 rum_write(sc, RT2573_PHY_CSR3, tmp); 1453 } 1454 1455 static uint8_t 1456 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1457 { 1458 uint32_t val; 1459 int ntries; 1460 1461 DPRINTFN(2, "reg=0x%08x\n", reg); 1462 1463 for (ntries = 0; ntries < 100; ntries++) { 1464 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1465 break; 1466 if (rum_pause(sc, hz / 100)) 1467 break; 1468 } 1469 if (ntries == 100) { 1470 device_printf(sc->sc_dev, "could not read BBP\n"); 1471 return 0; 1472 } 1473 1474 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1475 rum_write(sc, RT2573_PHY_CSR3, val); 1476 1477 for (ntries = 0; ntries < 100; ntries++) { 1478 val = rum_read(sc, RT2573_PHY_CSR3); 1479 if (!(val & RT2573_BBP_BUSY)) 1480 return val & 0xff; 1481 if (rum_pause(sc, hz / 100)) 1482 break; 1483 } 1484 1485 device_printf(sc->sc_dev, "could not read BBP\n"); 1486 return 0; 1487 } 1488 1489 static void 1490 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1491 { 1492 uint32_t tmp; 1493 int ntries; 1494 1495 for (ntries = 0; ntries < 100; ntries++) { 1496 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1497 break; 1498 if (rum_pause(sc, hz / 100)) 1499 break; 1500 } 1501 if (ntries == 100) { 1502 device_printf(sc->sc_dev, "could not write to RF\n"); 1503 return; 1504 } 1505 1506 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1507 (reg & 3); 1508 rum_write(sc, RT2573_PHY_CSR4, tmp); 1509 1510 /* remember last written value in sc */ 1511 sc->rf_regs[reg] = val; 1512 1513 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1514 } 1515 1516 static void 1517 rum_select_antenna(struct rum_softc *sc) 1518 { 1519 uint8_t bbp4, bbp77; 1520 uint32_t tmp; 1521 1522 bbp4 = rum_bbp_read(sc, 4); 1523 bbp77 = rum_bbp_read(sc, 77); 1524 1525 /* TBD */ 1526 1527 /* make sure Rx is disabled before switching antenna */ 1528 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1529 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1530 1531 rum_bbp_write(sc, 4, bbp4); 1532 rum_bbp_write(sc, 77, bbp77); 1533 1534 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1535 } 1536 1537 /* 1538 * Enable multi-rate retries for frames sent at OFDM rates. 1539 * In 802.11b/g mode, allow fallback to CCK rates. 1540 */ 1541 static void 1542 rum_enable_mrr(struct rum_softc *sc) 1543 { 1544 struct ifnet *ifp = sc->sc_ifp; 1545 struct ieee80211com *ic = ifp->if_l2com; 1546 uint32_t tmp; 1547 1548 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1549 1550 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1551 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1552 tmp |= RT2573_MRR_CCK_FALLBACK; 1553 tmp |= RT2573_MRR_ENABLED; 1554 1555 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1556 } 1557 1558 static void 1559 rum_set_txpreamble(struct rum_softc *sc) 1560 { 1561 struct ifnet *ifp = sc->sc_ifp; 1562 struct ieee80211com *ic = ifp->if_l2com; 1563 uint32_t tmp; 1564 1565 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1566 1567 tmp &= ~RT2573_SHORT_PREAMBLE; 1568 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1569 tmp |= RT2573_SHORT_PREAMBLE; 1570 1571 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1572 } 1573 1574 static void 1575 rum_set_basicrates(struct rum_softc *sc) 1576 { 1577 struct ifnet *ifp = sc->sc_ifp; 1578 struct ieee80211com *ic = ifp->if_l2com; 1579 1580 /* update basic rate set */ 1581 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1582 /* 11b basic rates: 1, 2Mbps */ 1583 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1584 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1585 /* 11a basic rates: 6, 12, 24Mbps */ 1586 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1587 } else { 1588 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1589 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1590 } 1591 } 1592 1593 /* 1594 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1595 * driver. 1596 */ 1597 static void 1598 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1599 { 1600 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1601 uint32_t tmp; 1602 1603 /* update all BBP registers that depend on the band */ 1604 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1605 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1606 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1607 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1608 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1609 } 1610 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1611 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1612 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1613 } 1614 1615 sc->bbp17 = bbp17; 1616 rum_bbp_write(sc, 17, bbp17); 1617 rum_bbp_write(sc, 96, bbp96); 1618 rum_bbp_write(sc, 104, bbp104); 1619 1620 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1621 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1622 rum_bbp_write(sc, 75, 0x80); 1623 rum_bbp_write(sc, 86, 0x80); 1624 rum_bbp_write(sc, 88, 0x80); 1625 } 1626 1627 rum_bbp_write(sc, 35, bbp35); 1628 rum_bbp_write(sc, 97, bbp97); 1629 rum_bbp_write(sc, 98, bbp98); 1630 1631 tmp = rum_read(sc, RT2573_PHY_CSR0); 1632 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1633 if (IEEE80211_IS_CHAN_2GHZ(c)) 1634 tmp |= RT2573_PA_PE_2GHZ; 1635 else 1636 tmp |= RT2573_PA_PE_5GHZ; 1637 rum_write(sc, RT2573_PHY_CSR0, tmp); 1638 } 1639 1640 static void 1641 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1642 { 1643 struct ifnet *ifp = sc->sc_ifp; 1644 struct ieee80211com *ic = ifp->if_l2com; 1645 const struct rfprog *rfprog; 1646 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1647 int8_t power; 1648 int i, chan; 1649 1650 chan = ieee80211_chan2ieee(ic, c); 1651 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1652 return; 1653 1654 /* select the appropriate RF settings based on what EEPROM says */ 1655 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1656 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1657 1658 /* find the settings for this channel (we know it exists) */ 1659 for (i = 0; rfprog[i].chan != chan; i++); 1660 1661 power = sc->txpow[i]; 1662 if (power < 0) { 1663 bbp94 += power; 1664 power = 0; 1665 } else if (power > 31) { 1666 bbp94 += power - 31; 1667 power = 31; 1668 } 1669 1670 /* 1671 * If we are switching from the 2GHz band to the 5GHz band or 1672 * vice-versa, BBP registers need to be reprogrammed. 1673 */ 1674 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1675 rum_select_band(sc, c); 1676 rum_select_antenna(sc); 1677 } 1678 ic->ic_curchan = c; 1679 1680 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1681 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1682 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1683 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1684 1685 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1686 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1687 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1688 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1689 1690 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1691 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1692 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1693 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1694 1695 rum_pause(sc, hz / 100); 1696 1697 /* enable smart mode for MIMO-capable RFs */ 1698 bbp3 = rum_bbp_read(sc, 3); 1699 1700 bbp3 &= ~RT2573_SMART_MODE; 1701 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1702 bbp3 |= RT2573_SMART_MODE; 1703 1704 rum_bbp_write(sc, 3, bbp3); 1705 1706 if (bbp94 != RT2573_BBPR94_DEFAULT) 1707 rum_bbp_write(sc, 94, bbp94); 1708 1709 /* give the chip some extra time to do the switchover */ 1710 rum_pause(sc, hz / 100); 1711 } 1712 1713 /* 1714 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1715 * and HostAP operating modes. 1716 */ 1717 static void 1718 rum_enable_tsf_sync(struct rum_softc *sc) 1719 { 1720 struct ifnet *ifp = sc->sc_ifp; 1721 struct ieee80211com *ic = ifp->if_l2com; 1722 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1723 uint32_t tmp; 1724 1725 if (vap->iv_opmode != IEEE80211_M_STA) { 1726 /* 1727 * Change default 16ms TBTT adjustment to 8ms. 1728 * Must be done before enabling beacon generation. 1729 */ 1730 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1731 } 1732 1733 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1734 1735 /* set beacon interval (in 1/16ms unit) */ 1736 tmp |= vap->iv_bss->ni_intval * 16; 1737 1738 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1739 if (vap->iv_opmode == IEEE80211_M_STA) 1740 tmp |= RT2573_TSF_MODE(1); 1741 else 1742 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1743 1744 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1745 } 1746 1747 static void 1748 rum_enable_tsf(struct rum_softc *sc) 1749 { 1750 rum_write(sc, RT2573_TXRX_CSR9, 1751 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1752 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1753 } 1754 1755 static void 1756 rum_update_slot(struct ifnet *ifp) 1757 { 1758 struct rum_softc *sc = ifp->if_softc; 1759 struct ieee80211com *ic = ifp->if_l2com; 1760 uint8_t slottime; 1761 uint32_t tmp; 1762 1763 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1764 1765 tmp = rum_read(sc, RT2573_MAC_CSR9); 1766 tmp = (tmp & ~0xff) | slottime; 1767 rum_write(sc, RT2573_MAC_CSR9, tmp); 1768 1769 DPRINTF("setting slot time to %uus\n", slottime); 1770 } 1771 1772 static void 1773 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1774 { 1775 uint32_t tmp; 1776 1777 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1778 rum_write(sc, RT2573_MAC_CSR4, tmp); 1779 1780 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1781 rum_write(sc, RT2573_MAC_CSR5, tmp); 1782 } 1783 1784 static void 1785 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1786 { 1787 uint32_t tmp; 1788 1789 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1790 rum_write(sc, RT2573_MAC_CSR2, tmp); 1791 1792 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1793 rum_write(sc, RT2573_MAC_CSR3, tmp); 1794 } 1795 1796 static void 1797 rum_setpromisc(struct rum_softc *sc) 1798 { 1799 struct ifnet *ifp = sc->sc_ifp; 1800 uint32_t tmp; 1801 1802 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1803 1804 tmp &= ~RT2573_DROP_NOT_TO_ME; 1805 if (!(ifp->if_flags & IFF_PROMISC)) 1806 tmp |= RT2573_DROP_NOT_TO_ME; 1807 1808 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1809 1810 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1811 "entering" : "leaving"); 1812 } 1813 1814 static void 1815 rum_update_promisc(struct ifnet *ifp) 1816 { 1817 struct rum_softc *sc = ifp->if_softc; 1818 1819 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1820 return; 1821 1822 RUM_LOCK(sc); 1823 rum_setpromisc(sc); 1824 RUM_UNLOCK(sc); 1825 } 1826 1827 static const char * 1828 rum_get_rf(int rev) 1829 { 1830 switch (rev) { 1831 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1832 case RT2573_RF_2528: return "RT2528"; 1833 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1834 case RT2573_RF_5226: return "RT5226"; 1835 default: return "unknown"; 1836 } 1837 } 1838 1839 static void 1840 rum_read_eeprom(struct rum_softc *sc) 1841 { 1842 uint16_t val; 1843 #ifdef RUM_DEBUG 1844 int i; 1845 #endif 1846 1847 /* read MAC address */ 1848 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1849 1850 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1851 val = le16toh(val); 1852 sc->rf_rev = (val >> 11) & 0x1f; 1853 sc->hw_radio = (val >> 10) & 0x1; 1854 sc->rx_ant = (val >> 4) & 0x3; 1855 sc->tx_ant = (val >> 2) & 0x3; 1856 sc->nb_ant = val & 0x3; 1857 1858 DPRINTF("RF revision=%d\n", sc->rf_rev); 1859 1860 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1861 val = le16toh(val); 1862 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1863 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1864 1865 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1866 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1867 1868 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1869 val = le16toh(val); 1870 if ((val & 0xff) != 0xff) 1871 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1872 1873 /* Only [-10, 10] is valid */ 1874 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1875 sc->rssi_2ghz_corr = 0; 1876 1877 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1878 val = le16toh(val); 1879 if ((val & 0xff) != 0xff) 1880 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1881 1882 /* Only [-10, 10] is valid */ 1883 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1884 sc->rssi_5ghz_corr = 0; 1885 1886 if (sc->ext_2ghz_lna) 1887 sc->rssi_2ghz_corr -= 14; 1888 if (sc->ext_5ghz_lna) 1889 sc->rssi_5ghz_corr -= 14; 1890 1891 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1892 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1893 1894 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1895 val = le16toh(val); 1896 if ((val & 0xff) != 0xff) 1897 sc->rffreq = val & 0xff; 1898 1899 DPRINTF("RF freq=%d\n", sc->rffreq); 1900 1901 /* read Tx power for all a/b/g channels */ 1902 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1903 /* XXX default Tx power for 802.11a channels */ 1904 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1905 #ifdef RUM_DEBUG 1906 for (i = 0; i < 14; i++) 1907 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1908 #endif 1909 1910 /* read default values for BBP registers */ 1911 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1912 #ifdef RUM_DEBUG 1913 for (i = 0; i < 14; i++) { 1914 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1915 continue; 1916 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1917 sc->bbp_prom[i].val); 1918 } 1919 #endif 1920 } 1921 1922 static int 1923 rum_bbp_init(struct rum_softc *sc) 1924 { 1925 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1926 int i, ntries; 1927 1928 /* wait for BBP to be ready */ 1929 for (ntries = 0; ntries < 100; ntries++) { 1930 const uint8_t val = rum_bbp_read(sc, 0); 1931 if (val != 0 && val != 0xff) 1932 break; 1933 if (rum_pause(sc, hz / 100)) 1934 break; 1935 } 1936 if (ntries == 100) { 1937 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1938 return EIO; 1939 } 1940 1941 /* initialize BBP registers to default values */ 1942 for (i = 0; i < N(rum_def_bbp); i++) 1943 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1944 1945 /* write vendor-specific BBP values (from EEPROM) */ 1946 for (i = 0; i < 16; i++) { 1947 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1948 continue; 1949 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1950 } 1951 1952 return 0; 1953 #undef N 1954 } 1955 1956 static void 1957 rum_init_locked(struct rum_softc *sc) 1958 { 1959 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1960 struct ifnet *ifp = sc->sc_ifp; 1961 struct ieee80211com *ic = ifp->if_l2com; 1962 uint32_t tmp; 1963 usb_error_t error; 1964 int i, ntries; 1965 1966 RUM_LOCK_ASSERT(sc, MA_OWNED); 1967 1968 rum_stop(sc); 1969 1970 /* initialize MAC registers to default values */ 1971 for (i = 0; i < N(rum_def_mac); i++) 1972 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1973 1974 /* set host ready */ 1975 rum_write(sc, RT2573_MAC_CSR1, 3); 1976 rum_write(sc, RT2573_MAC_CSR1, 0); 1977 1978 /* wait for BBP/RF to wakeup */ 1979 for (ntries = 0; ntries < 100; ntries++) { 1980 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1981 break; 1982 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1983 if (rum_pause(sc, hz / 100)) 1984 break; 1985 } 1986 if (ntries == 100) { 1987 device_printf(sc->sc_dev, 1988 "timeout waiting for BBP/RF to wakeup\n"); 1989 goto fail; 1990 } 1991 1992 if ((error = rum_bbp_init(sc)) != 0) 1993 goto fail; 1994 1995 /* select default channel */ 1996 rum_select_band(sc, ic->ic_curchan); 1997 rum_select_antenna(sc); 1998 rum_set_chan(sc, ic->ic_curchan); 1999 2000 /* clear STA registers */ 2001 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2002 2003 rum_set_macaddr(sc, IF_LLADDR(ifp)); 2004 2005 /* initialize ASIC */ 2006 rum_write(sc, RT2573_MAC_CSR1, 4); 2007 2008 /* 2009 * Allocate Tx and Rx xfer queues. 2010 */ 2011 rum_setup_tx_list(sc); 2012 2013 /* update Rx filter */ 2014 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2015 2016 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2017 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2018 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2019 RT2573_DROP_ACKCTS; 2020 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2021 tmp |= RT2573_DROP_TODS; 2022 if (!(ifp->if_flags & IFF_PROMISC)) 2023 tmp |= RT2573_DROP_NOT_TO_ME; 2024 } 2025 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2026 2027 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2028 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2029 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2030 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2031 return; 2032 2033 fail: rum_stop(sc); 2034 #undef N 2035 } 2036 2037 static void 2038 rum_init(void *priv) 2039 { 2040 struct rum_softc *sc = priv; 2041 struct ifnet *ifp = sc->sc_ifp; 2042 struct ieee80211com *ic = ifp->if_l2com; 2043 2044 RUM_LOCK(sc); 2045 rum_init_locked(sc); 2046 RUM_UNLOCK(sc); 2047 2048 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2049 ieee80211_start_all(ic); /* start all vap's */ 2050 } 2051 2052 static void 2053 rum_stop(struct rum_softc *sc) 2054 { 2055 struct ifnet *ifp = sc->sc_ifp; 2056 uint32_t tmp; 2057 2058 RUM_LOCK_ASSERT(sc, MA_OWNED); 2059 2060 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2061 2062 RUM_UNLOCK(sc); 2063 2064 /* 2065 * Drain the USB transfers, if not already drained: 2066 */ 2067 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2068 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2069 2070 RUM_LOCK(sc); 2071 2072 rum_unsetup_tx_list(sc); 2073 2074 /* disable Rx */ 2075 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2076 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2077 2078 /* reset ASIC */ 2079 rum_write(sc, RT2573_MAC_CSR1, 3); 2080 rum_write(sc, RT2573_MAC_CSR1, 0); 2081 } 2082 2083 static void 2084 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2085 { 2086 struct usb_device_request req; 2087 uint16_t reg = RT2573_MCU_CODE_BASE; 2088 usb_error_t err; 2089 2090 /* copy firmware image into NIC */ 2091 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2092 err = rum_write(sc, reg, UGETDW(ucode)); 2093 if (err) { 2094 /* firmware already loaded ? */ 2095 device_printf(sc->sc_dev, "Firmware load " 2096 "failure! (ignored)\n"); 2097 break; 2098 } 2099 } 2100 2101 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2102 req.bRequest = RT2573_MCU_CNTL; 2103 USETW(req.wValue, RT2573_MCU_RUN); 2104 USETW(req.wIndex, 0); 2105 USETW(req.wLength, 0); 2106 2107 err = rum_do_request(sc, &req, NULL); 2108 if (err != 0) { 2109 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2110 usbd_errstr(err)); 2111 } 2112 2113 /* give the chip some time to boot */ 2114 rum_pause(sc, hz / 8); 2115 } 2116 2117 static int 2118 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2119 { 2120 struct ieee80211com *ic = vap->iv_ic; 2121 const struct ieee80211_txparam *tp; 2122 struct rum_tx_desc desc; 2123 struct mbuf *m0; 2124 2125 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2126 if (m0 == NULL) { 2127 return ENOBUFS; 2128 } 2129 2130 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2131 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2132 m0->m_pkthdr.len, tp->mgmtrate); 2133 2134 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2135 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2136 2137 /* copy beacon header and payload into NIC memory */ 2138 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2139 m0->m_pkthdr.len); 2140 2141 m_freem(m0); 2142 2143 return 0; 2144 } 2145 2146 static int 2147 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2148 const struct ieee80211_bpf_params *params) 2149 { 2150 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2151 struct rum_softc *sc = ifp->if_softc; 2152 2153 RUM_LOCK(sc); 2154 /* prevent management frames from being sent if we're not ready */ 2155 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2156 RUM_UNLOCK(sc); 2157 m_freem(m); 2158 ieee80211_free_node(ni); 2159 return ENETDOWN; 2160 } 2161 if (sc->tx_nfree < RUM_TX_MINFREE) { 2162 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2163 RUM_UNLOCK(sc); 2164 m_freem(m); 2165 ieee80211_free_node(ni); 2166 return EIO; 2167 } 2168 2169 ifp->if_opackets++; 2170 2171 if (params == NULL) { 2172 /* 2173 * Legacy path; interpret frame contents to decide 2174 * precisely how to send the frame. 2175 */ 2176 if (rum_tx_mgt(sc, m, ni) != 0) 2177 goto bad; 2178 } else { 2179 /* 2180 * Caller supplied explicit parameters to use in 2181 * sending the frame. 2182 */ 2183 if (rum_tx_raw(sc, m, ni, params) != 0) 2184 goto bad; 2185 } 2186 RUM_UNLOCK(sc); 2187 2188 return 0; 2189 bad: 2190 ifp->if_oerrors++; 2191 RUM_UNLOCK(sc); 2192 ieee80211_free_node(ni); 2193 return EIO; 2194 } 2195 2196 static void 2197 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 2198 { 2199 struct ieee80211vap *vap = ni->ni_vap; 2200 struct rum_vap *rvp = RUM_VAP(vap); 2201 2202 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2203 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2204 2205 ieee80211_amrr_node_init(&rvp->amrr, &RUM_NODE(ni)->amn, ni); 2206 2207 usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2208 } 2209 2210 static void 2211 rum_amrr_timeout(void *arg) 2212 { 2213 struct rum_vap *rvp = arg; 2214 struct ieee80211vap *vap = &rvp->vap; 2215 struct ieee80211com *ic = vap->iv_ic; 2216 2217 ieee80211_runtask(ic, &rvp->amrr_task); 2218 } 2219 2220 static void 2221 rum_amrr_task(void *arg, int pending) 2222 { 2223 struct rum_vap *rvp = arg; 2224 struct ieee80211vap *vap = &rvp->vap; 2225 struct ieee80211com *ic = vap->iv_ic; 2226 struct ifnet *ifp = ic->ic_ifp; 2227 struct rum_softc *sc = ifp->if_softc; 2228 struct ieee80211_node *ni = vap->iv_bss; 2229 int ok, fail; 2230 2231 RUM_LOCK(sc); 2232 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2233 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2234 2235 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2236 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2237 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2238 2239 ieee80211_amrr_tx_update(&RUM_NODE(ni)->amn, 2240 ok+fail, ok, (le32toh(sc->sta[5]) & 0xffff) + fail); 2241 (void) ieee80211_amrr_choose(ni, &RUM_NODE(ni)->amn); 2242 2243 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2244 2245 usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp); 2246 RUM_UNLOCK(sc); 2247 } 2248 2249 /* ARGUSED */ 2250 static struct ieee80211_node * 2251 rum_node_alloc(struct ieee80211vap *vap __unused, 2252 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 2253 { 2254 struct rum_node *rn; 2255 2256 rn = malloc(sizeof(struct rum_node), M_80211_NODE, M_NOWAIT | M_ZERO); 2257 return rn != NULL ? &rn->ni : NULL; 2258 } 2259 2260 static void 2261 rum_newassoc(struct ieee80211_node *ni, int isnew) 2262 { 2263 struct ieee80211vap *vap = ni->ni_vap; 2264 2265 ieee80211_amrr_node_init(&RUM_VAP(vap)->amrr, &RUM_NODE(ni)->amn, ni); 2266 } 2267 2268 static void 2269 rum_scan_start(struct ieee80211com *ic) 2270 { 2271 struct ifnet *ifp = ic->ic_ifp; 2272 struct rum_softc *sc = ifp->if_softc; 2273 uint32_t tmp; 2274 2275 RUM_LOCK(sc); 2276 /* abort TSF synchronization */ 2277 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2278 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2279 rum_set_bssid(sc, ifp->if_broadcastaddr); 2280 RUM_UNLOCK(sc); 2281 2282 } 2283 2284 static void 2285 rum_scan_end(struct ieee80211com *ic) 2286 { 2287 struct rum_softc *sc = ic->ic_ifp->if_softc; 2288 2289 RUM_LOCK(sc); 2290 rum_enable_tsf_sync(sc); 2291 rum_set_bssid(sc, sc->sc_bssid); 2292 RUM_UNLOCK(sc); 2293 2294 } 2295 2296 static void 2297 rum_set_channel(struct ieee80211com *ic) 2298 { 2299 struct rum_softc *sc = ic->ic_ifp->if_softc; 2300 2301 RUM_LOCK(sc); 2302 rum_set_chan(sc, ic->ic_curchan); 2303 RUM_UNLOCK(sc); 2304 } 2305 2306 static int 2307 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2308 { 2309 struct ifnet *ifp = sc->sc_ifp; 2310 struct ieee80211com *ic = ifp->if_l2com; 2311 int lna, agc, rssi; 2312 2313 lna = (raw >> 5) & 0x3; 2314 agc = raw & 0x1f; 2315 2316 if (lna == 0) { 2317 /* 2318 * No RSSI mapping 2319 * 2320 * NB: Since RSSI is relative to noise floor, -1 is 2321 * adequate for caller to know error happened. 2322 */ 2323 return -1; 2324 } 2325 2326 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2327 2328 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2329 rssi += sc->rssi_2ghz_corr; 2330 2331 if (lna == 1) 2332 rssi -= 64; 2333 else if (lna == 2) 2334 rssi -= 74; 2335 else if (lna == 3) 2336 rssi -= 90; 2337 } else { 2338 rssi += sc->rssi_5ghz_corr; 2339 2340 if (!sc->ext_5ghz_lna && lna != 1) 2341 rssi += 4; 2342 2343 if (lna == 1) 2344 rssi -= 64; 2345 else if (lna == 2) 2346 rssi -= 86; 2347 else if (lna == 3) 2348 rssi -= 100; 2349 } 2350 return rssi; 2351 } 2352 2353 static int 2354 rum_pause(struct rum_softc *sc, int timeout) 2355 { 2356 2357 usb_pause_mtx(&sc->sc_mtx, timeout); 2358 return (0); 2359 } 2360 2361 static device_method_t rum_methods[] = { 2362 /* Device interface */ 2363 DEVMETHOD(device_probe, rum_match), 2364 DEVMETHOD(device_attach, rum_attach), 2365 DEVMETHOD(device_detach, rum_detach), 2366 2367 { 0, 0 } 2368 }; 2369 2370 static driver_t rum_driver = { 2371 .name = "rum", 2372 .methods = rum_methods, 2373 .size = sizeof(struct rum_softc), 2374 }; 2375 2376 static devclass_t rum_devclass; 2377 2378 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2379