xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*-
25  * Ralink Technology RT2501USB/RT2601USB chipset driver
26  * http://www.ralinktech.com.tw/
27  */
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <machine/bus.h>
45 #include <machine/resource.h>
46 #include <sys/rman.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_amrr.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include "usbdevs.h"
72 
73 #define	USB_DEBUG_VAR rum_debug
74 #include <dev/usb/usb_debug.h>
75 
76 #include <dev/usb/wlan/if_rumreg.h>
77 #include <dev/usb/wlan/if_rumvar.h>
78 #include <dev/usb/wlan/if_rumfw.h>
79 
80 #if USB_DEBUG
81 static int rum_debug = 0;
82 
83 SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
85     "Debug level");
86 #endif
87 
88 static const struct usb_device_id rum_devs[] = {
89 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
90     RUM_DEV(ABOCOM, HWU54DM),
91     RUM_DEV(ABOCOM, RT2573_2),
92     RUM_DEV(ABOCOM, RT2573_3),
93     RUM_DEV(ABOCOM, RT2573_4),
94     RUM_DEV(ABOCOM, WUG2700),
95     RUM_DEV(AMIT, CGWLUSB2GO),
96     RUM_DEV(ASUS, RT2573_1),
97     RUM_DEV(ASUS, RT2573_2),
98     RUM_DEV(BELKIN, F5D7050A),
99     RUM_DEV(BELKIN, F5D9050V3),
100     RUM_DEV(CISCOLINKSYS, WUSB54GC),
101     RUM_DEV(CISCOLINKSYS, WUSB54GR),
102     RUM_DEV(CONCEPTRONIC2, C54RU2),
103     RUM_DEV(COREGA, CGWLUSB2GL),
104     RUM_DEV(COREGA, CGWLUSB2GPX),
105     RUM_DEV(DICKSMITH, CWD854F),
106     RUM_DEV(DICKSMITH, RT2573),
107     RUM_DEV(EDIMAX, EW7318USG),
108     RUM_DEV(DLINK2, DWLG122C1),
109     RUM_DEV(DLINK2, WUA1340),
110     RUM_DEV(DLINK2, DWA111),
111     RUM_DEV(DLINK2, DWA110),
112     RUM_DEV(GIGABYTE, GNWB01GS),
113     RUM_DEV(GIGABYTE, GNWI05GS),
114     RUM_DEV(GIGASET, RT2573),
115     RUM_DEV(GOODWAY, RT2573),
116     RUM_DEV(GUILLEMOT, HWGUSB254LB),
117     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
118     RUM_DEV(HUAWEI3COM, WUB320G),
119     RUM_DEV(MELCO, G54HP),
120     RUM_DEV(MELCO, SG54HP),
121     RUM_DEV(MSI, RT2573_1),
122     RUM_DEV(MSI, RT2573_2),
123     RUM_DEV(MSI, RT2573_3),
124     RUM_DEV(MSI, RT2573_4),
125     RUM_DEV(NOVATECH, RT2573),
126     RUM_DEV(PLANEX2, GWUS54HP),
127     RUM_DEV(PLANEX2, GWUS54MINI2),
128     RUM_DEV(PLANEX2, GWUSMM),
129     RUM_DEV(QCOM, RT2573),
130     RUM_DEV(QCOM, RT2573_2),
131     RUM_DEV(QCOM, RT2573_3),
132     RUM_DEV(RALINK, RT2573),
133     RUM_DEV(RALINK, RT2573_2),
134     RUM_DEV(RALINK, RT2671),
135     RUM_DEV(SITECOMEU, WL113R2),
136     RUM_DEV(SITECOMEU, WL172),
137     RUM_DEV(SPARKLAN, RT2573),
138     RUM_DEV(SURECOM, RT2573),
139 #undef RUM_DEV
140 };
141 
142 MODULE_DEPEND(rum, wlan, 1, 1, 1);
143 MODULE_DEPEND(rum, wlan_amrr, 1, 1, 1);
144 MODULE_DEPEND(rum, usb, 1, 1, 1);
145 
146 static device_probe_t rum_match;
147 static device_attach_t rum_attach;
148 static device_detach_t rum_detach;
149 
150 static usb_callback_t rum_bulk_read_callback;
151 static usb_callback_t rum_bulk_write_callback;
152 
153 static usb_error_t	rum_do_request(struct rum_softc *sc,
154 			    struct usb_device_request *req, void *data);
155 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
156 			    const char name[IFNAMSIZ], int unit, int opmode,
157 			    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
159 static void		rum_vap_delete(struct ieee80211vap *);
160 static void		rum_tx_free(struct rum_tx_data *, int);
161 static void		rum_setup_tx_list(struct rum_softc *);
162 static void		rum_unsetup_tx_list(struct rum_softc *);
163 static int		rum_newstate(struct ieee80211vap *,
164 			    enum ieee80211_state, int);
165 static void		rum_setup_tx_desc(struct rum_softc *,
166 			    struct rum_tx_desc *, uint32_t, uint16_t, int,
167 			    int);
168 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
169 			    struct ieee80211_node *);
170 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
171 			    struct ieee80211_node *,
172 			    const struct ieee80211_bpf_params *);
173 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
174 			    struct ieee80211_node *);
175 static void		rum_start(struct ifnet *);
176 static int		rum_ioctl(struct ifnet *, u_long, caddr_t);
177 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
178 			    int);
179 static uint32_t		rum_read(struct rum_softc *, uint16_t);
180 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
181 			    int);
182 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
183 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
184 			    size_t);
185 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
186 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
187 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
188 static void		rum_select_antenna(struct rum_softc *);
189 static void		rum_enable_mrr(struct rum_softc *);
190 static void		rum_set_txpreamble(struct rum_softc *);
191 static void		rum_set_basicrates(struct rum_softc *);
192 static void		rum_select_band(struct rum_softc *,
193 			    struct ieee80211_channel *);
194 static void		rum_set_chan(struct rum_softc *,
195 			    struct ieee80211_channel *);
196 static void		rum_enable_tsf_sync(struct rum_softc *);
197 static void		rum_enable_tsf(struct rum_softc *);
198 static void		rum_update_slot(struct ifnet *);
199 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
200 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
201 static void		rum_update_promisc(struct ifnet *);
202 static void		rum_setpromisc(struct rum_softc *);
203 static const char	*rum_get_rf(int);
204 static void		rum_read_eeprom(struct rum_softc *);
205 static int		rum_bbp_init(struct rum_softc *);
206 static void		rum_init_locked(struct rum_softc *);
207 static void		rum_init(void *);
208 static void		rum_stop(struct rum_softc *);
209 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
210 			    size_t);
211 static int		rum_prepare_beacon(struct rum_softc *,
212 			    struct ieee80211vap *);
213 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
214 			    const struct ieee80211_bpf_params *);
215 static struct ieee80211_node *rum_node_alloc(struct ieee80211vap *,
216 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
217 static void		rum_newassoc(struct ieee80211_node *, int);
218 static void		rum_scan_start(struct ieee80211com *);
219 static void		rum_scan_end(struct ieee80211com *);
220 static void		rum_set_channel(struct ieee80211com *);
221 static int		rum_get_rssi(struct rum_softc *, uint8_t);
222 static void		rum_amrr_start(struct rum_softc *,
223 			    struct ieee80211_node *);
224 static void		rum_amrr_timeout(void *);
225 static void		rum_amrr_task(void *, int);
226 static int		rum_pause(struct rum_softc *, int);
227 
228 static const struct {
229 	uint32_t	reg;
230 	uint32_t	val;
231 } rum_def_mac[] = {
232 	{ RT2573_TXRX_CSR0,  0x025fb032 },
233 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
234 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
235 	{ RT2573_TXRX_CSR3,  0x00858687 },
236 	{ RT2573_TXRX_CSR7,  0x2e31353b },
237 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
238 	{ RT2573_TXRX_CSR15, 0x0000000f },
239 	{ RT2573_MAC_CSR6,   0x00000fff },
240 	{ RT2573_MAC_CSR8,   0x016c030a },
241 	{ RT2573_MAC_CSR10,  0x00000718 },
242 	{ RT2573_MAC_CSR12,  0x00000004 },
243 	{ RT2573_MAC_CSR13,  0x00007f00 },
244 	{ RT2573_SEC_CSR0,   0x00000000 },
245 	{ RT2573_SEC_CSR1,   0x00000000 },
246 	{ RT2573_SEC_CSR5,   0x00000000 },
247 	{ RT2573_PHY_CSR1,   0x000023b0 },
248 	{ RT2573_PHY_CSR5,   0x00040a06 },
249 	{ RT2573_PHY_CSR6,   0x00080606 },
250 	{ RT2573_PHY_CSR7,   0x00000408 },
251 	{ RT2573_AIFSN_CSR,  0x00002273 },
252 	{ RT2573_CWMIN_CSR,  0x00002344 },
253 	{ RT2573_CWMAX_CSR,  0x000034aa }
254 };
255 
256 static const struct {
257 	uint8_t	reg;
258 	uint8_t	val;
259 } rum_def_bbp[] = {
260 	{   3, 0x80 },
261 	{  15, 0x30 },
262 	{  17, 0x20 },
263 	{  21, 0xc8 },
264 	{  22, 0x38 },
265 	{  23, 0x06 },
266 	{  24, 0xfe },
267 	{  25, 0x0a },
268 	{  26, 0x0d },
269 	{  32, 0x0b },
270 	{  34, 0x12 },
271 	{  37, 0x07 },
272 	{  39, 0xf8 },
273 	{  41, 0x60 },
274 	{  53, 0x10 },
275 	{  54, 0x18 },
276 	{  60, 0x10 },
277 	{  61, 0x04 },
278 	{  62, 0x04 },
279 	{  75, 0xfe },
280 	{  86, 0xfe },
281 	{  88, 0xfe },
282 	{  90, 0x0f },
283 	{  99, 0x00 },
284 	{ 102, 0x16 },
285 	{ 107, 0x04 }
286 };
287 
288 static const struct rfprog {
289 	uint8_t		chan;
290 	uint32_t	r1, r2, r3, r4;
291 }  rum_rf5226[] = {
292 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
293 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
294 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
295 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
296 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
297 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
298 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
299 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
300 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
301 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
302 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
303 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
304 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
305 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
306 
307 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
308 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
309 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
310 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
311 
312 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
313 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
314 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
315 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
316 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
317 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
318 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
319 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
320 
321 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
322 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
323 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
324 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
325 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
326 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
327 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
328 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
329 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
330 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
331 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
332 
333 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
334 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
335 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
336 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
337 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
338 }, rum_rf5225[] = {
339 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
340 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
341 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
342 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
343 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
344 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
345 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
346 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
347 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
348 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
349 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
350 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
351 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
352 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
353 
354 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
355 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
356 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
357 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
358 
359 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
360 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
361 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
362 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
363 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
364 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
365 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
366 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
367 
368 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
369 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
370 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
371 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
372 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
373 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
374 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
375 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
376 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
377 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
378 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
379 
380 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
381 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
382 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
383 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
384 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
385 };
386 
387 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
388 	[RUM_BULK_WR] = {
389 		.type = UE_BULK,
390 		.endpoint = UE_ADDR_ANY,
391 		.direction = UE_DIR_OUT,
392 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
393 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
394 		.callback = rum_bulk_write_callback,
395 		.timeout = 5000,	/* ms */
396 	},
397 	[RUM_BULK_RD] = {
398 		.type = UE_BULK,
399 		.endpoint = UE_ADDR_ANY,
400 		.direction = UE_DIR_IN,
401 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
402 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
403 		.callback = rum_bulk_read_callback,
404 	},
405 };
406 
407 static int
408 rum_match(device_t self)
409 {
410 	struct usb_attach_arg *uaa = device_get_ivars(self);
411 
412 	if (uaa->usb_mode != USB_MODE_HOST)
413 		return (ENXIO);
414 	if (uaa->info.bConfigIndex != 0)
415 		return (ENXIO);
416 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
417 		return (ENXIO);
418 
419 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
420 }
421 
422 static int
423 rum_attach(device_t self)
424 {
425 	struct usb_attach_arg *uaa = device_get_ivars(self);
426 	struct rum_softc *sc = device_get_softc(self);
427 	struct ieee80211com *ic;
428 	struct ifnet *ifp;
429 	uint8_t iface_index, bands;
430 	uint32_t tmp;
431 	int error, ntries;
432 
433 	device_set_usb_desc(self);
434 	sc->sc_udev = uaa->device;
435 	sc->sc_dev = self;
436 
437 	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
438 	    MTX_NETWORK_LOCK, MTX_DEF);
439 
440 	iface_index = RT2573_IFACE_INDEX;
441 	error = usbd_transfer_setup(uaa->device, &iface_index,
442 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
443 	if (error) {
444 		device_printf(self, "could not allocate USB transfers, "
445 		    "err=%s\n", usbd_errstr(error));
446 		goto detach;
447 	}
448 
449 	RUM_LOCK(sc);
450 	/* retrieve RT2573 rev. no */
451 	for (ntries = 0; ntries < 100; ntries++) {
452 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
453 			break;
454 		if (rum_pause(sc, hz / 100))
455 			break;
456 	}
457 	if (ntries == 100) {
458 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
459 		RUM_UNLOCK(sc);
460 		goto detach;
461 	}
462 
463 	/* retrieve MAC address and various other things from EEPROM */
464 	rum_read_eeprom(sc);
465 
466 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
467 	    tmp, rum_get_rf(sc->rf_rev));
468 
469 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
470 	RUM_UNLOCK(sc);
471 
472 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
473 	if (ifp == NULL) {
474 		device_printf(sc->sc_dev, "can not if_alloc()\n");
475 		goto detach;
476 	}
477 	ic = ifp->if_l2com;
478 
479 	ifp->if_softc = sc;
480 	if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
481 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
482 	ifp->if_init = rum_init;
483 	ifp->if_ioctl = rum_ioctl;
484 	ifp->if_start = rum_start;
485 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
486 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
487 	IFQ_SET_READY(&ifp->if_snd);
488 
489 	ic->ic_ifp = ifp;
490 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
491 
492 	/* set device capabilities */
493 	ic->ic_caps =
494 	      IEEE80211_C_STA		/* station mode supported */
495 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
496 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
497 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
498 	    | IEEE80211_C_TXPMGT	/* tx power management */
499 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
500 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
501 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
502 	    | IEEE80211_C_WPA		/* 802.11i */
503 	    ;
504 
505 	bands = 0;
506 	setbit(&bands, IEEE80211_MODE_11B);
507 	setbit(&bands, IEEE80211_MODE_11G);
508 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
509 		setbit(&bands, IEEE80211_MODE_11A);
510 	ieee80211_init_channels(ic, NULL, &bands);
511 
512 	ieee80211_ifattach(ic, sc->sc_bssid);
513 	ic->ic_update_promisc = rum_update_promisc;
514 	ic->ic_newassoc = rum_newassoc;
515 	ic->ic_raw_xmit = rum_raw_xmit;
516 	ic->ic_node_alloc = rum_node_alloc;
517 	ic->ic_scan_start = rum_scan_start;
518 	ic->ic_scan_end = rum_scan_end;
519 	ic->ic_set_channel = rum_set_channel;
520 
521 	ic->ic_vap_create = rum_vap_create;
522 	ic->ic_vap_delete = rum_vap_delete;
523 
524 	ieee80211_radiotap_attach(ic,
525 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
526 		RT2573_TX_RADIOTAP_PRESENT,
527 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
528 		RT2573_RX_RADIOTAP_PRESENT);
529 
530 	if (bootverbose)
531 		ieee80211_announce(ic);
532 
533 	return (0);
534 
535 detach:
536 	rum_detach(self);
537 	return (ENXIO);			/* failure */
538 }
539 
540 static int
541 rum_detach(device_t self)
542 {
543 	struct rum_softc *sc = device_get_softc(self);
544 	struct ifnet *ifp = sc->sc_ifp;
545 	struct ieee80211com *ic;
546 
547 	/* stop all USB transfers */
548 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
549 
550 	/* free TX list, if any */
551 	RUM_LOCK(sc);
552 	rum_unsetup_tx_list(sc);
553 	RUM_UNLOCK(sc);
554 
555 	if (ifp) {
556 		ic = ifp->if_l2com;
557 		ieee80211_ifdetach(ic);
558 		if_free(ifp);
559 	}
560 	mtx_destroy(&sc->sc_mtx);
561 
562 	return (0);
563 }
564 
565 static usb_error_t
566 rum_do_request(struct rum_softc *sc,
567     struct usb_device_request *req, void *data)
568 {
569 	usb_error_t err;
570 	int ntries = 10;
571 
572 	while (ntries--) {
573 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
574 		    req, data, 0, NULL, 250 /* ms */);
575 		if (err == 0)
576 			break;
577 
578 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
579 		    usbd_errstr(err));
580 		if (rum_pause(sc, hz / 100))
581 			break;
582 	}
583 	return (err);
584 }
585 
586 static struct ieee80211vap *
587 rum_vap_create(struct ieee80211com *ic,
588 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
589 	const uint8_t bssid[IEEE80211_ADDR_LEN],
590 	const uint8_t mac[IEEE80211_ADDR_LEN])
591 {
592 	struct rum_softc *sc = ic->ic_ifp->if_softc;
593 	struct rum_vap *rvp;
594 	struct ieee80211vap *vap;
595 
596 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
597 		return NULL;
598 	rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap),
599 	    M_80211_VAP, M_NOWAIT | M_ZERO);
600 	if (rvp == NULL)
601 		return NULL;
602 	vap = &rvp->vap;
603 	/* enable s/w bmiss handling for sta mode */
604 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
605 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
606 
607 	/* override state transition machine */
608 	rvp->newstate = vap->iv_newstate;
609 	vap->iv_newstate = rum_newstate;
610 
611 	usb_callout_init_mtx(&rvp->amrr_ch, &sc->sc_mtx, 0);
612 	TASK_INIT(&rvp->amrr_task, 0, rum_amrr_task, rvp);
613 	ieee80211_amrr_init(&rvp->amrr, vap,
614 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
615 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
616 	    1000 /* 1 sec */);
617 
618 	/* complete setup */
619 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
620 	ic->ic_opmode = opmode;
621 	return vap;
622 }
623 
624 static void
625 rum_vap_delete(struct ieee80211vap *vap)
626 {
627 	struct rum_vap *rvp = RUM_VAP(vap);
628 	struct ieee80211com *ic = vap->iv_ic;
629 
630 	usb_callout_drain(&rvp->amrr_ch);
631 	ieee80211_draintask(ic, &rvp->amrr_task);
632 	ieee80211_amrr_cleanup(&rvp->amrr);
633 	ieee80211_vap_detach(vap);
634 	free(rvp, M_80211_VAP);
635 }
636 
637 static void
638 rum_tx_free(struct rum_tx_data *data, int txerr)
639 {
640 	struct rum_softc *sc = data->sc;
641 
642 	if (data->m != NULL) {
643 		if (data->m->m_flags & M_TXCB)
644 			ieee80211_process_callback(data->ni, data->m,
645 			    txerr ? ETIMEDOUT : 0);
646 		m_freem(data->m);
647 		data->m = NULL;
648 
649 		ieee80211_free_node(data->ni);
650 		data->ni = NULL;
651 	}
652 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
653 	sc->tx_nfree++;
654 }
655 
656 static void
657 rum_setup_tx_list(struct rum_softc *sc)
658 {
659 	struct rum_tx_data *data;
660 	int i;
661 
662 	sc->tx_nfree = 0;
663 	STAILQ_INIT(&sc->tx_q);
664 	STAILQ_INIT(&sc->tx_free);
665 
666 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
667 		data = &sc->tx_data[i];
668 
669 		data->sc = sc;
670 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
671 		sc->tx_nfree++;
672 	}
673 }
674 
675 static void
676 rum_unsetup_tx_list(struct rum_softc *sc)
677 {
678 	struct rum_tx_data *data;
679 	int i;
680 
681 	/* make sure any subsequent use of the queues will fail */
682 	sc->tx_nfree = 0;
683 	STAILQ_INIT(&sc->tx_q);
684 	STAILQ_INIT(&sc->tx_free);
685 
686 	/* free up all node references and mbufs */
687 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
688 		data = &sc->tx_data[i];
689 
690 		if (data->m != NULL) {
691 			m_freem(data->m);
692 			data->m = NULL;
693 		}
694 		if (data->ni != NULL) {
695 			ieee80211_free_node(data->ni);
696 			data->ni = NULL;
697 		}
698 	}
699 }
700 
701 static int
702 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
703 {
704 	struct rum_vap *rvp = RUM_VAP(vap);
705 	struct ieee80211com *ic = vap->iv_ic;
706 	struct rum_softc *sc = ic->ic_ifp->if_softc;
707 	const struct ieee80211_txparam *tp;
708 	enum ieee80211_state ostate;
709 	struct ieee80211_node *ni;
710 	uint32_t tmp;
711 
712 	ostate = vap->iv_state;
713 	DPRINTF("%s -> %s\n",
714 		ieee80211_state_name[ostate],
715 		ieee80211_state_name[nstate]);
716 
717 	IEEE80211_UNLOCK(ic);
718 	RUM_LOCK(sc);
719 	usb_callout_stop(&rvp->amrr_ch);
720 
721 	switch (nstate) {
722 	case IEEE80211_S_INIT:
723 		if (ostate == IEEE80211_S_RUN) {
724 			/* abort TSF synchronization */
725 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
726 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
727 		}
728 		break;
729 
730 	case IEEE80211_S_RUN:
731 		ni = vap->iv_bss;
732 
733 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
734 			rum_update_slot(ic->ic_ifp);
735 			rum_enable_mrr(sc);
736 			rum_set_txpreamble(sc);
737 			rum_set_basicrates(sc);
738 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
739 			rum_set_bssid(sc, sc->sc_bssid);
740 		}
741 
742 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
743 		    vap->iv_opmode == IEEE80211_M_IBSS)
744 			rum_prepare_beacon(sc, vap);
745 
746 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
747 			rum_enable_tsf_sync(sc);
748 		else
749 			rum_enable_tsf(sc);
750 
751 		/* enable automatic rate adaptation */
752 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
753 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
754 			rum_amrr_start(sc, ni);
755 		break;
756 	default:
757 		break;
758 	}
759 	RUM_UNLOCK(sc);
760 	IEEE80211_LOCK(ic);
761 	return (rvp->newstate(vap, nstate, arg));
762 }
763 
764 static void
765 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
766 {
767 	struct rum_softc *sc = usbd_xfer_softc(xfer);
768 	struct ifnet *ifp = sc->sc_ifp;
769 	struct ieee80211vap *vap;
770 	struct rum_tx_data *data;
771 	struct mbuf *m;
772 	struct usb_page_cache *pc;
773 	unsigned int len;
774 	int actlen, sumlen;
775 
776 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
777 
778 	switch (USB_GET_STATE(xfer)) {
779 	case USB_ST_TRANSFERRED:
780 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
781 
782 		/* free resources */
783 		data = usbd_xfer_get_priv(xfer);
784 		rum_tx_free(data, 0);
785 		usbd_xfer_set_priv(xfer, NULL);
786 
787 		ifp->if_opackets++;
788 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
789 
790 		/* FALLTHROUGH */
791 	case USB_ST_SETUP:
792 tr_setup:
793 		data = STAILQ_FIRST(&sc->tx_q);
794 		if (data) {
795 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
796 			m = data->m;
797 
798 			if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) {
799 				DPRINTFN(0, "data overflow, %u bytes\n",
800 				    m->m_pkthdr.len);
801 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
802 			}
803 			pc = usbd_xfer_get_frame(xfer, 0);
804 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
805 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
806 			    m->m_pkthdr.len);
807 
808 			vap = data->ni->ni_vap;
809 			if (ieee80211_radiotap_active_vap(vap)) {
810 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
811 
812 				tap->wt_flags = 0;
813 				tap->wt_rate = data->rate;
814 				tap->wt_antenna = sc->tx_ant;
815 
816 				ieee80211_radiotap_tx(vap, m);
817 			}
818 
819 			/* align end on a 4-bytes boundary */
820 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
821 			if ((len % 64) == 0)
822 				len += 4;
823 
824 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
825 			    m->m_pkthdr.len, len);
826 
827 			usbd_xfer_set_frame_len(xfer, 0, len);
828 			usbd_xfer_set_priv(xfer, data);
829 
830 			usbd_transfer_submit(xfer);
831 		}
832 		RUM_UNLOCK(sc);
833 		rum_start(ifp);
834 		RUM_LOCK(sc);
835 		break;
836 
837 	default:			/* Error */
838 		DPRINTFN(11, "transfer error, %s\n",
839 		    usbd_errstr(error));
840 
841 		ifp->if_oerrors++;
842 		data = usbd_xfer_get_priv(xfer);
843 		if (data != NULL) {
844 			rum_tx_free(data, error);
845 			usbd_xfer_set_priv(xfer, NULL);
846 		}
847 
848 		if (error != USB_ERR_CANCELLED) {
849 			if (error == USB_ERR_TIMEOUT)
850 				device_printf(sc->sc_dev, "device timeout\n");
851 
852 			/*
853 			 * Try to clear stall first, also if other
854 			 * errors occur, hence clearing stall
855 			 * introduces a 50 ms delay:
856 			 */
857 			usbd_xfer_set_stall(xfer);
858 			goto tr_setup;
859 		}
860 		break;
861 	}
862 }
863 
864 static void
865 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
866 {
867 	struct rum_softc *sc = usbd_xfer_softc(xfer);
868 	struct ifnet *ifp = sc->sc_ifp;
869 	struct ieee80211com *ic = ifp->if_l2com;
870 	struct ieee80211_node *ni;
871 	struct mbuf *m = NULL;
872 	struct usb_page_cache *pc;
873 	uint32_t flags;
874 	uint8_t rssi = 0;
875 	int len;
876 
877 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
878 
879 	switch (USB_GET_STATE(xfer)) {
880 	case USB_ST_TRANSFERRED:
881 
882 		DPRINTFN(15, "rx done, actlen=%d\n", len);
883 
884 		if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
885 			DPRINTF("%s: xfer too short %d\n",
886 			    device_get_nameunit(sc->sc_dev), len);
887 			ifp->if_ierrors++;
888 			goto tr_setup;
889 		}
890 
891 		len -= RT2573_RX_DESC_SIZE;
892 		pc = usbd_xfer_get_frame(xfer, 0);
893 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
894 
895 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
896 		flags = le32toh(sc->sc_rx_desc.flags);
897 		if (flags & RT2573_RX_CRC_ERROR) {
898 			/*
899 		         * This should not happen since we did not
900 		         * request to receive those frames when we
901 		         * filled RUM_TXRX_CSR2:
902 		         */
903 			DPRINTFN(5, "PHY or CRC error\n");
904 			ifp->if_ierrors++;
905 			goto tr_setup;
906 		}
907 
908 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
909 		if (m == NULL) {
910 			DPRINTF("could not allocate mbuf\n");
911 			ifp->if_ierrors++;
912 			goto tr_setup;
913 		}
914 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
915 		    mtod(m, uint8_t *), len);
916 
917 		/* finalize mbuf */
918 		m->m_pkthdr.rcvif = ifp;
919 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
920 
921 		if (ieee80211_radiotap_active(ic)) {
922 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
923 
924 			/* XXX read tsf */
925 			tap->wr_flags = 0;
926 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
927 			    (flags & RT2573_RX_OFDM) ?
928 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
929 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
930 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
931 			tap->wr_antenna = sc->rx_ant;
932 		}
933 		/* FALLTHROUGH */
934 	case USB_ST_SETUP:
935 tr_setup:
936 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
937 		usbd_transfer_submit(xfer);
938 
939 		/*
940 		 * At the end of a USB callback it is always safe to unlock
941 		 * the private mutex of a device! That is why we do the
942 		 * "ieee80211_input" here, and not some lines up!
943 		 */
944 		RUM_UNLOCK(sc);
945 		if (m) {
946 			ni = ieee80211_find_rxnode(ic,
947 			    mtod(m, struct ieee80211_frame_min *));
948 			if (ni != NULL) {
949 				(void) ieee80211_input(ni, m, rssi,
950 				    RT2573_NOISE_FLOOR);
951 				ieee80211_free_node(ni);
952 			} else
953 				(void) ieee80211_input_all(ic, m, rssi,
954 				    RT2573_NOISE_FLOOR);
955 		}
956 		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
957 		    !IFQ_IS_EMPTY(&ifp->if_snd))
958 			rum_start(ifp);
959 		RUM_LOCK(sc);
960 		return;
961 
962 	default:			/* Error */
963 		if (error != USB_ERR_CANCELLED) {
964 			/* try to clear stall first */
965 			usbd_xfer_set_stall(xfer);
966 			goto tr_setup;
967 		}
968 		return;
969 	}
970 }
971 
972 static uint8_t
973 rum_plcp_signal(int rate)
974 {
975 	switch (rate) {
976 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
977 	case 12:	return 0xb;
978 	case 18:	return 0xf;
979 	case 24:	return 0xa;
980 	case 36:	return 0xe;
981 	case 48:	return 0x9;
982 	case 72:	return 0xd;
983 	case 96:	return 0x8;
984 	case 108:	return 0xc;
985 
986 	/* CCK rates (NB: not IEEE std, device-specific) */
987 	case 2:		return 0x0;
988 	case 4:		return 0x1;
989 	case 11:	return 0x2;
990 	case 22:	return 0x3;
991 	}
992 	return 0xff;		/* XXX unsupported/unknown rate */
993 }
994 
995 static void
996 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
997     uint32_t flags, uint16_t xflags, int len, int rate)
998 {
999 	struct ifnet *ifp = sc->sc_ifp;
1000 	struct ieee80211com *ic = ifp->if_l2com;
1001 	uint16_t plcp_length;
1002 	int remainder;
1003 
1004 	desc->flags = htole32(flags);
1005 	desc->flags |= htole32(RT2573_TX_VALID);
1006 	desc->flags |= htole32(len << 16);
1007 
1008 	desc->xflags = htole16(xflags);
1009 
1010 	desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) |
1011 	    RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
1012 
1013 	/* setup PLCP fields */
1014 	desc->plcp_signal  = rum_plcp_signal(rate);
1015 	desc->plcp_service = 4;
1016 
1017 	len += IEEE80211_CRC_LEN;
1018 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1019 		desc->flags |= htole32(RT2573_TX_OFDM);
1020 
1021 		plcp_length = len & 0xfff;
1022 		desc->plcp_length_hi = plcp_length >> 6;
1023 		desc->plcp_length_lo = plcp_length & 0x3f;
1024 	} else {
1025 		plcp_length = (16 * len + rate - 1) / rate;
1026 		if (rate == 22) {
1027 			remainder = (16 * len) % 22;
1028 			if (remainder != 0 && remainder < 7)
1029 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1030 		}
1031 		desc->plcp_length_hi = plcp_length >> 8;
1032 		desc->plcp_length_lo = plcp_length & 0xff;
1033 
1034 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1035 			desc->plcp_signal |= 0x08;
1036 	}
1037 }
1038 
1039 static int
1040 rum_sendprot(struct rum_softc *sc,
1041     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1042 {
1043 	struct ieee80211com *ic = ni->ni_ic;
1044 	const struct ieee80211_frame *wh;
1045 	struct rum_tx_data *data;
1046 	struct mbuf *mprot;
1047 	int protrate, ackrate, pktlen, flags, isshort;
1048 	uint16_t dur;
1049 
1050 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1051 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1052 	    ("protection %d", prot));
1053 
1054 	wh = mtod(m, const struct ieee80211_frame *);
1055 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1056 
1057 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1058 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1059 
1060 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1061 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1062 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1063 	flags = RT2573_TX_MORE_FRAG;
1064 	if (prot == IEEE80211_PROT_RTSCTS) {
1065 		/* NB: CTS is the same size as an ACK */
1066 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1067 		flags |= RT2573_TX_NEED_ACK;
1068 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1069 	} else {
1070 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1071 	}
1072 	if (mprot == NULL) {
1073 		/* XXX stat + msg */
1074 		return (ENOBUFS);
1075 	}
1076 	data = STAILQ_FIRST(&sc->tx_free);
1077 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1078 	sc->tx_nfree--;
1079 
1080 	data->m = mprot;
1081 	data->ni = ieee80211_ref_node(ni);
1082 	data->rate = protrate;
1083 	rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);
1084 
1085 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1086 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1087 
1088 	return 0;
1089 }
1090 
1091 static int
1092 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1093 {
1094 	struct ieee80211vap *vap = ni->ni_vap;
1095 	struct ifnet *ifp = sc->sc_ifp;
1096 	struct ieee80211com *ic = ifp->if_l2com;
1097 	struct rum_tx_data *data;
1098 	struct ieee80211_frame *wh;
1099 	const struct ieee80211_txparam *tp;
1100 	struct ieee80211_key *k;
1101 	uint32_t flags = 0;
1102 	uint16_t dur;
1103 
1104 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1105 
1106 	data = STAILQ_FIRST(&sc->tx_free);
1107 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1108 	sc->tx_nfree--;
1109 
1110 	wh = mtod(m0, struct ieee80211_frame *);
1111 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1112 		k = ieee80211_crypto_encap(ni, m0);
1113 		if (k == NULL) {
1114 			m_freem(m0);
1115 			return ENOBUFS;
1116 		}
1117 		wh = mtod(m0, struct ieee80211_frame *);
1118 	}
1119 
1120 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1121 
1122 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1123 		flags |= RT2573_TX_NEED_ACK;
1124 
1125 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1126 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1127 		*(uint16_t *)wh->i_dur = htole16(dur);
1128 
1129 		/* tell hardware to add timestamp for probe responses */
1130 		if ((wh->i_fc[0] &
1131 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1132 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1133 			flags |= RT2573_TX_TIMESTAMP;
1134 	}
1135 
1136 	data->m = m0;
1137 	data->ni = ni;
1138 	data->rate = tp->mgmtrate;
1139 
1140 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);
1141 
1142 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1143 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1144 
1145 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1146 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1153     const struct ieee80211_bpf_params *params)
1154 {
1155 	struct ieee80211com *ic = ni->ni_ic;
1156 	struct rum_tx_data *data;
1157 	uint32_t flags;
1158 	int rate, error;
1159 
1160 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1161 	KASSERT(params != NULL, ("no raw xmit params"));
1162 
1163 	rate = params->ibp_rate0;
1164 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1165 		m_freem(m0);
1166 		return EINVAL;
1167 	}
1168 	flags = 0;
1169 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1170 		flags |= RT2573_TX_NEED_ACK;
1171 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1172 		error = rum_sendprot(sc, m0, ni,
1173 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1174 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1175 		    rate);
1176 		if (error || sc->tx_nfree == 0) {
1177 			m_freem(m0);
1178 			return ENOBUFS;
1179 		}
1180 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1181 	}
1182 
1183 	data = STAILQ_FIRST(&sc->tx_free);
1184 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1185 	sc->tx_nfree--;
1186 
1187 	data->m = m0;
1188 	data->ni = ni;
1189 	data->rate = rate;
1190 
1191 	/* XXX need to setup descriptor ourself */
1192 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1193 
1194 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1195 	    m0->m_pkthdr.len, rate);
1196 
1197 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1198 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1199 
1200 	return 0;
1201 }
1202 
1203 static int
1204 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1205 {
1206 	struct ieee80211vap *vap = ni->ni_vap;
1207 	struct ifnet *ifp = sc->sc_ifp;
1208 	struct ieee80211com *ic = ifp->if_l2com;
1209 	struct rum_tx_data *data;
1210 	struct ieee80211_frame *wh;
1211 	const struct ieee80211_txparam *tp;
1212 	struct ieee80211_key *k;
1213 	uint32_t flags = 0;
1214 	uint16_t dur;
1215 	int error, rate;
1216 
1217 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1218 
1219 	wh = mtod(m0, struct ieee80211_frame *);
1220 
1221 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1222 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1223 		rate = tp->mcastrate;
1224 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1225 		rate = tp->ucastrate;
1226 	else
1227 		rate = ni->ni_txrate;
1228 
1229 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1230 		k = ieee80211_crypto_encap(ni, m0);
1231 		if (k == NULL) {
1232 			m_freem(m0);
1233 			return ENOBUFS;
1234 		}
1235 
1236 		/* packet header may have moved, reset our local pointer */
1237 		wh = mtod(m0, struct ieee80211_frame *);
1238 	}
1239 
1240 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1241 		int prot = IEEE80211_PROT_NONE;
1242 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1243 			prot = IEEE80211_PROT_RTSCTS;
1244 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1245 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1246 			prot = ic->ic_protmode;
1247 		if (prot != IEEE80211_PROT_NONE) {
1248 			error = rum_sendprot(sc, m0, ni, prot, rate);
1249 			if (error || sc->tx_nfree == 0) {
1250 				m_freem(m0);
1251 				return ENOBUFS;
1252 			}
1253 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1254 		}
1255 	}
1256 
1257 	data = STAILQ_FIRST(&sc->tx_free);
1258 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1259 	sc->tx_nfree--;
1260 
1261 	data->m = m0;
1262 	data->ni = ni;
1263 	data->rate = rate;
1264 
1265 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1266 		flags |= RT2573_TX_NEED_ACK;
1267 		flags |= RT2573_TX_MORE_FRAG;
1268 
1269 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1270 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1271 		*(uint16_t *)wh->i_dur = htole16(dur);
1272 	}
1273 
1274 	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
1275 
1276 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1277 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1278 
1279 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1280 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1281 
1282 	return 0;
1283 }
1284 
1285 static void
1286 rum_start(struct ifnet *ifp)
1287 {
1288 	struct rum_softc *sc = ifp->if_softc;
1289 	struct ieee80211_node *ni;
1290 	struct mbuf *m;
1291 
1292 	RUM_LOCK(sc);
1293 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1294 		RUM_UNLOCK(sc);
1295 		return;
1296 	}
1297 	for (;;) {
1298 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1299 		if (m == NULL)
1300 			break;
1301 		if (sc->tx_nfree < RUM_TX_MINFREE) {
1302 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1303 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1304 			break;
1305 		}
1306 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1307 		if (rum_tx_data(sc, m, ni) != 0) {
1308 			ieee80211_free_node(ni);
1309 			ifp->if_oerrors++;
1310 			break;
1311 		}
1312 	}
1313 	RUM_UNLOCK(sc);
1314 }
1315 
1316 static int
1317 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1318 {
1319 	struct rum_softc *sc = ifp->if_softc;
1320 	struct ieee80211com *ic = ifp->if_l2com;
1321 	struct ifreq *ifr = (struct ifreq *) data;
1322 	int error = 0, startall = 0;
1323 
1324 	switch (cmd) {
1325 	case SIOCSIFFLAGS:
1326 		RUM_LOCK(sc);
1327 		if (ifp->if_flags & IFF_UP) {
1328 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1329 				rum_init_locked(sc);
1330 				startall = 1;
1331 			} else
1332 				rum_setpromisc(sc);
1333 		} else {
1334 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1335 				rum_stop(sc);
1336 		}
1337 		RUM_UNLOCK(sc);
1338 		if (startall)
1339 			ieee80211_start_all(ic);
1340 		break;
1341 	case SIOCGIFMEDIA:
1342 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1343 		break;
1344 	case SIOCGIFADDR:
1345 		error = ether_ioctl(ifp, cmd, data);
1346 		break;
1347 	default:
1348 		error = EINVAL;
1349 		break;
1350 	}
1351 	return error;
1352 }
1353 
1354 static void
1355 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1356 {
1357 	struct usb_device_request req;
1358 	usb_error_t error;
1359 
1360 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1361 	req.bRequest = RT2573_READ_EEPROM;
1362 	USETW(req.wValue, 0);
1363 	USETW(req.wIndex, addr);
1364 	USETW(req.wLength, len);
1365 
1366 	error = rum_do_request(sc, &req, buf);
1367 	if (error != 0) {
1368 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1369 		    usbd_errstr(error));
1370 	}
1371 }
1372 
1373 static uint32_t
1374 rum_read(struct rum_softc *sc, uint16_t reg)
1375 {
1376 	uint32_t val;
1377 
1378 	rum_read_multi(sc, reg, &val, sizeof val);
1379 
1380 	return le32toh(val);
1381 }
1382 
1383 static void
1384 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1385 {
1386 	struct usb_device_request req;
1387 	usb_error_t error;
1388 
1389 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1390 	req.bRequest = RT2573_READ_MULTI_MAC;
1391 	USETW(req.wValue, 0);
1392 	USETW(req.wIndex, reg);
1393 	USETW(req.wLength, len);
1394 
1395 	error = rum_do_request(sc, &req, buf);
1396 	if (error != 0) {
1397 		device_printf(sc->sc_dev,
1398 		    "could not multi read MAC register: %s\n",
1399 		    usbd_errstr(error));
1400 	}
1401 }
1402 
1403 static usb_error_t
1404 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1405 {
1406 	uint32_t tmp = htole32(val);
1407 
1408 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1409 }
1410 
1411 static usb_error_t
1412 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1413 {
1414 	struct usb_device_request req;
1415 	usb_error_t error;
1416 
1417 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1418 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1419 	USETW(req.wValue, 0);
1420 	USETW(req.wIndex, reg);
1421 	USETW(req.wLength, len);
1422 
1423 	error = rum_do_request(sc, &req, buf);
1424 	if (error != 0) {
1425 		device_printf(sc->sc_dev,
1426 		    "could not multi write MAC register: %s\n",
1427 		    usbd_errstr(error));
1428 	}
1429 	return (error);
1430 }
1431 
1432 static void
1433 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1434 {
1435 	uint32_t tmp;
1436 	int ntries;
1437 
1438 	DPRINTFN(2, "reg=0x%08x\n", reg);
1439 
1440 	for (ntries = 0; ntries < 100; ntries++) {
1441 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1442 			break;
1443 		if (rum_pause(sc, hz / 100))
1444 			break;
1445 	}
1446 	if (ntries == 100) {
1447 		device_printf(sc->sc_dev, "could not write to BBP\n");
1448 		return;
1449 	}
1450 
1451 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1452 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1453 }
1454 
1455 static uint8_t
1456 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1457 {
1458 	uint32_t val;
1459 	int ntries;
1460 
1461 	DPRINTFN(2, "reg=0x%08x\n", reg);
1462 
1463 	for (ntries = 0; ntries < 100; ntries++) {
1464 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1465 			break;
1466 		if (rum_pause(sc, hz / 100))
1467 			break;
1468 	}
1469 	if (ntries == 100) {
1470 		device_printf(sc->sc_dev, "could not read BBP\n");
1471 		return 0;
1472 	}
1473 
1474 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1475 	rum_write(sc, RT2573_PHY_CSR3, val);
1476 
1477 	for (ntries = 0; ntries < 100; ntries++) {
1478 		val = rum_read(sc, RT2573_PHY_CSR3);
1479 		if (!(val & RT2573_BBP_BUSY))
1480 			return val & 0xff;
1481 		if (rum_pause(sc, hz / 100))
1482 			break;
1483 	}
1484 
1485 	device_printf(sc->sc_dev, "could not read BBP\n");
1486 	return 0;
1487 }
1488 
1489 static void
1490 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1491 {
1492 	uint32_t tmp;
1493 	int ntries;
1494 
1495 	for (ntries = 0; ntries < 100; ntries++) {
1496 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1497 			break;
1498 		if (rum_pause(sc, hz / 100))
1499 			break;
1500 	}
1501 	if (ntries == 100) {
1502 		device_printf(sc->sc_dev, "could not write to RF\n");
1503 		return;
1504 	}
1505 
1506 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1507 	    (reg & 3);
1508 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1509 
1510 	/* remember last written value in sc */
1511 	sc->rf_regs[reg] = val;
1512 
1513 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1514 }
1515 
1516 static void
1517 rum_select_antenna(struct rum_softc *sc)
1518 {
1519 	uint8_t bbp4, bbp77;
1520 	uint32_t tmp;
1521 
1522 	bbp4  = rum_bbp_read(sc, 4);
1523 	bbp77 = rum_bbp_read(sc, 77);
1524 
1525 	/* TBD */
1526 
1527 	/* make sure Rx is disabled before switching antenna */
1528 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1529 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1530 
1531 	rum_bbp_write(sc,  4, bbp4);
1532 	rum_bbp_write(sc, 77, bbp77);
1533 
1534 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1535 }
1536 
1537 /*
1538  * Enable multi-rate retries for frames sent at OFDM rates.
1539  * In 802.11b/g mode, allow fallback to CCK rates.
1540  */
1541 static void
1542 rum_enable_mrr(struct rum_softc *sc)
1543 {
1544 	struct ifnet *ifp = sc->sc_ifp;
1545 	struct ieee80211com *ic = ifp->if_l2com;
1546 	uint32_t tmp;
1547 
1548 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1549 
1550 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1551 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
1552 		tmp |= RT2573_MRR_CCK_FALLBACK;
1553 	tmp |= RT2573_MRR_ENABLED;
1554 
1555 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1556 }
1557 
1558 static void
1559 rum_set_txpreamble(struct rum_softc *sc)
1560 {
1561 	struct ifnet *ifp = sc->sc_ifp;
1562 	struct ieee80211com *ic = ifp->if_l2com;
1563 	uint32_t tmp;
1564 
1565 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1566 
1567 	tmp &= ~RT2573_SHORT_PREAMBLE;
1568 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1569 		tmp |= RT2573_SHORT_PREAMBLE;
1570 
1571 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1572 }
1573 
1574 static void
1575 rum_set_basicrates(struct rum_softc *sc)
1576 {
1577 	struct ifnet *ifp = sc->sc_ifp;
1578 	struct ieee80211com *ic = ifp->if_l2com;
1579 
1580 	/* update basic rate set */
1581 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1582 		/* 11b basic rates: 1, 2Mbps */
1583 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1584 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1585 		/* 11a basic rates: 6, 12, 24Mbps */
1586 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1587 	} else {
1588 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1589 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1590 	}
1591 }
1592 
1593 /*
1594  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1595  * driver.
1596  */
1597 static void
1598 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1599 {
1600 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1601 	uint32_t tmp;
1602 
1603 	/* update all BBP registers that depend on the band */
1604 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1605 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1606 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1607 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1608 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1609 	}
1610 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1611 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1612 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1613 	}
1614 
1615 	sc->bbp17 = bbp17;
1616 	rum_bbp_write(sc,  17, bbp17);
1617 	rum_bbp_write(sc,  96, bbp96);
1618 	rum_bbp_write(sc, 104, bbp104);
1619 
1620 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1621 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1622 		rum_bbp_write(sc, 75, 0x80);
1623 		rum_bbp_write(sc, 86, 0x80);
1624 		rum_bbp_write(sc, 88, 0x80);
1625 	}
1626 
1627 	rum_bbp_write(sc, 35, bbp35);
1628 	rum_bbp_write(sc, 97, bbp97);
1629 	rum_bbp_write(sc, 98, bbp98);
1630 
1631 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1632 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1633 	if (IEEE80211_IS_CHAN_2GHZ(c))
1634 		tmp |= RT2573_PA_PE_2GHZ;
1635 	else
1636 		tmp |= RT2573_PA_PE_5GHZ;
1637 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1638 }
1639 
1640 static void
1641 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1642 {
1643 	struct ifnet *ifp = sc->sc_ifp;
1644 	struct ieee80211com *ic = ifp->if_l2com;
1645 	const struct rfprog *rfprog;
1646 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1647 	int8_t power;
1648 	int i, chan;
1649 
1650 	chan = ieee80211_chan2ieee(ic, c);
1651 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1652 		return;
1653 
1654 	/* select the appropriate RF settings based on what EEPROM says */
1655 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1656 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1657 
1658 	/* find the settings for this channel (we know it exists) */
1659 	for (i = 0; rfprog[i].chan != chan; i++);
1660 
1661 	power = sc->txpow[i];
1662 	if (power < 0) {
1663 		bbp94 += power;
1664 		power = 0;
1665 	} else if (power > 31) {
1666 		bbp94 += power - 31;
1667 		power = 31;
1668 	}
1669 
1670 	/*
1671 	 * If we are switching from the 2GHz band to the 5GHz band or
1672 	 * vice-versa, BBP registers need to be reprogrammed.
1673 	 */
1674 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1675 		rum_select_band(sc, c);
1676 		rum_select_antenna(sc);
1677 	}
1678 	ic->ic_curchan = c;
1679 
1680 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1681 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1682 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1683 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1684 
1685 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1686 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1687 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1688 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1689 
1690 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1691 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1692 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1693 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1694 
1695 	rum_pause(sc, hz / 100);
1696 
1697 	/* enable smart mode for MIMO-capable RFs */
1698 	bbp3 = rum_bbp_read(sc, 3);
1699 
1700 	bbp3 &= ~RT2573_SMART_MODE;
1701 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1702 		bbp3 |= RT2573_SMART_MODE;
1703 
1704 	rum_bbp_write(sc, 3, bbp3);
1705 
1706 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1707 		rum_bbp_write(sc, 94, bbp94);
1708 
1709 	/* give the chip some extra time to do the switchover */
1710 	rum_pause(sc, hz / 100);
1711 }
1712 
1713 /*
1714  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1715  * and HostAP operating modes.
1716  */
1717 static void
1718 rum_enable_tsf_sync(struct rum_softc *sc)
1719 {
1720 	struct ifnet *ifp = sc->sc_ifp;
1721 	struct ieee80211com *ic = ifp->if_l2com;
1722 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1723 	uint32_t tmp;
1724 
1725 	if (vap->iv_opmode != IEEE80211_M_STA) {
1726 		/*
1727 		 * Change default 16ms TBTT adjustment to 8ms.
1728 		 * Must be done before enabling beacon generation.
1729 		 */
1730 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1731 	}
1732 
1733 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1734 
1735 	/* set beacon interval (in 1/16ms unit) */
1736 	tmp |= vap->iv_bss->ni_intval * 16;
1737 
1738 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1739 	if (vap->iv_opmode == IEEE80211_M_STA)
1740 		tmp |= RT2573_TSF_MODE(1);
1741 	else
1742 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1743 
1744 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1745 }
1746 
1747 static void
1748 rum_enable_tsf(struct rum_softc *sc)
1749 {
1750 	rum_write(sc, RT2573_TXRX_CSR9,
1751 	    (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
1752 	    RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
1753 }
1754 
1755 static void
1756 rum_update_slot(struct ifnet *ifp)
1757 {
1758 	struct rum_softc *sc = ifp->if_softc;
1759 	struct ieee80211com *ic = ifp->if_l2com;
1760 	uint8_t slottime;
1761 	uint32_t tmp;
1762 
1763 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1764 
1765 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1766 	tmp = (tmp & ~0xff) | slottime;
1767 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1768 
1769 	DPRINTF("setting slot time to %uus\n", slottime);
1770 }
1771 
1772 static void
1773 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1774 {
1775 	uint32_t tmp;
1776 
1777 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1778 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1779 
1780 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1781 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1782 }
1783 
1784 static void
1785 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1786 {
1787 	uint32_t tmp;
1788 
1789 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1790 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1791 
1792 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1793 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1794 }
1795 
1796 static void
1797 rum_setpromisc(struct rum_softc *sc)
1798 {
1799 	struct ifnet *ifp = sc->sc_ifp;
1800 	uint32_t tmp;
1801 
1802 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1803 
1804 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1805 	if (!(ifp->if_flags & IFF_PROMISC))
1806 		tmp |= RT2573_DROP_NOT_TO_ME;
1807 
1808 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1809 
1810 	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1811 	    "entering" : "leaving");
1812 }
1813 
1814 static void
1815 rum_update_promisc(struct ifnet *ifp)
1816 {
1817 	struct rum_softc *sc = ifp->if_softc;
1818 
1819 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1820 		return;
1821 
1822 	RUM_LOCK(sc);
1823 	rum_setpromisc(sc);
1824 	RUM_UNLOCK(sc);
1825 }
1826 
1827 static const char *
1828 rum_get_rf(int rev)
1829 {
1830 	switch (rev) {
1831 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1832 	case RT2573_RF_2528:	return "RT2528";
1833 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1834 	case RT2573_RF_5226:	return "RT5226";
1835 	default:		return "unknown";
1836 	}
1837 }
1838 
1839 static void
1840 rum_read_eeprom(struct rum_softc *sc)
1841 {
1842 	uint16_t val;
1843 #ifdef RUM_DEBUG
1844 	int i;
1845 #endif
1846 
1847 	/* read MAC address */
1848 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6);
1849 
1850 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1851 	val = le16toh(val);
1852 	sc->rf_rev =   (val >> 11) & 0x1f;
1853 	sc->hw_radio = (val >> 10) & 0x1;
1854 	sc->rx_ant =   (val >> 4)  & 0x3;
1855 	sc->tx_ant =   (val >> 2)  & 0x3;
1856 	sc->nb_ant =   val & 0x3;
1857 
1858 	DPRINTF("RF revision=%d\n", sc->rf_rev);
1859 
1860 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1861 	val = le16toh(val);
1862 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1863 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1864 
1865 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1866 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1867 
1868 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1869 	val = le16toh(val);
1870 	if ((val & 0xff) != 0xff)
1871 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1872 
1873 	/* Only [-10, 10] is valid */
1874 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1875 		sc->rssi_2ghz_corr = 0;
1876 
1877 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1878 	val = le16toh(val);
1879 	if ((val & 0xff) != 0xff)
1880 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1881 
1882 	/* Only [-10, 10] is valid */
1883 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1884 		sc->rssi_5ghz_corr = 0;
1885 
1886 	if (sc->ext_2ghz_lna)
1887 		sc->rssi_2ghz_corr -= 14;
1888 	if (sc->ext_5ghz_lna)
1889 		sc->rssi_5ghz_corr -= 14;
1890 
1891 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1892 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1893 
1894 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1895 	val = le16toh(val);
1896 	if ((val & 0xff) != 0xff)
1897 		sc->rffreq = val & 0xff;
1898 
1899 	DPRINTF("RF freq=%d\n", sc->rffreq);
1900 
1901 	/* read Tx power for all a/b/g channels */
1902 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1903 	/* XXX default Tx power for 802.11a channels */
1904 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1905 #ifdef RUM_DEBUG
1906 	for (i = 0; i < 14; i++)
1907 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
1908 #endif
1909 
1910 	/* read default values for BBP registers */
1911 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1912 #ifdef RUM_DEBUG
1913 	for (i = 0; i < 14; i++) {
1914 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1915 			continue;
1916 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1917 		    sc->bbp_prom[i].val);
1918 	}
1919 #endif
1920 }
1921 
1922 static int
1923 rum_bbp_init(struct rum_softc *sc)
1924 {
1925 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1926 	int i, ntries;
1927 
1928 	/* wait for BBP to be ready */
1929 	for (ntries = 0; ntries < 100; ntries++) {
1930 		const uint8_t val = rum_bbp_read(sc, 0);
1931 		if (val != 0 && val != 0xff)
1932 			break;
1933 		if (rum_pause(sc, hz / 100))
1934 			break;
1935 	}
1936 	if (ntries == 100) {
1937 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1938 		return EIO;
1939 	}
1940 
1941 	/* initialize BBP registers to default values */
1942 	for (i = 0; i < N(rum_def_bbp); i++)
1943 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1944 
1945 	/* write vendor-specific BBP values (from EEPROM) */
1946 	for (i = 0; i < 16; i++) {
1947 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1948 			continue;
1949 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1950 	}
1951 
1952 	return 0;
1953 #undef N
1954 }
1955 
1956 static void
1957 rum_init_locked(struct rum_softc *sc)
1958 {
1959 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1960 	struct ifnet *ifp = sc->sc_ifp;
1961 	struct ieee80211com *ic = ifp->if_l2com;
1962 	uint32_t tmp;
1963 	usb_error_t error;
1964 	int i, ntries;
1965 
1966 	RUM_LOCK_ASSERT(sc, MA_OWNED);
1967 
1968 	rum_stop(sc);
1969 
1970 	/* initialize MAC registers to default values */
1971 	for (i = 0; i < N(rum_def_mac); i++)
1972 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1973 
1974 	/* set host ready */
1975 	rum_write(sc, RT2573_MAC_CSR1, 3);
1976 	rum_write(sc, RT2573_MAC_CSR1, 0);
1977 
1978 	/* wait for BBP/RF to wakeup */
1979 	for (ntries = 0; ntries < 100; ntries++) {
1980 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1981 			break;
1982 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1983 		if (rum_pause(sc, hz / 100))
1984 			break;
1985 	}
1986 	if (ntries == 100) {
1987 		device_printf(sc->sc_dev,
1988 		    "timeout waiting for BBP/RF to wakeup\n");
1989 		goto fail;
1990 	}
1991 
1992 	if ((error = rum_bbp_init(sc)) != 0)
1993 		goto fail;
1994 
1995 	/* select default channel */
1996 	rum_select_band(sc, ic->ic_curchan);
1997 	rum_select_antenna(sc);
1998 	rum_set_chan(sc, ic->ic_curchan);
1999 
2000 	/* clear STA registers */
2001 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2002 
2003 	rum_set_macaddr(sc, IF_LLADDR(ifp));
2004 
2005 	/* initialize ASIC */
2006 	rum_write(sc, RT2573_MAC_CSR1, 4);
2007 
2008 	/*
2009 	 * Allocate Tx and Rx xfer queues.
2010 	 */
2011 	rum_setup_tx_list(sc);
2012 
2013 	/* update Rx filter */
2014 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2015 
2016 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2017 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2018 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2019 		       RT2573_DROP_ACKCTS;
2020 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2021 			tmp |= RT2573_DROP_TODS;
2022 		if (!(ifp->if_flags & IFF_PROMISC))
2023 			tmp |= RT2573_DROP_NOT_TO_ME;
2024 	}
2025 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2026 
2027 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2028 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2029 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2030 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2031 	return;
2032 
2033 fail:	rum_stop(sc);
2034 #undef N
2035 }
2036 
2037 static void
2038 rum_init(void *priv)
2039 {
2040 	struct rum_softc *sc = priv;
2041 	struct ifnet *ifp = sc->sc_ifp;
2042 	struct ieee80211com *ic = ifp->if_l2com;
2043 
2044 	RUM_LOCK(sc);
2045 	rum_init_locked(sc);
2046 	RUM_UNLOCK(sc);
2047 
2048 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2049 		ieee80211_start_all(ic);		/* start all vap's */
2050 }
2051 
2052 static void
2053 rum_stop(struct rum_softc *sc)
2054 {
2055 	struct ifnet *ifp = sc->sc_ifp;
2056 	uint32_t tmp;
2057 
2058 	RUM_LOCK_ASSERT(sc, MA_OWNED);
2059 
2060 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2061 
2062 	RUM_UNLOCK(sc);
2063 
2064 	/*
2065 	 * Drain the USB transfers, if not already drained:
2066 	 */
2067 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2068 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2069 
2070 	RUM_LOCK(sc);
2071 
2072 	rum_unsetup_tx_list(sc);
2073 
2074 	/* disable Rx */
2075 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2076 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2077 
2078 	/* reset ASIC */
2079 	rum_write(sc, RT2573_MAC_CSR1, 3);
2080 	rum_write(sc, RT2573_MAC_CSR1, 0);
2081 }
2082 
2083 static void
2084 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2085 {
2086 	struct usb_device_request req;
2087 	uint16_t reg = RT2573_MCU_CODE_BASE;
2088 	usb_error_t err;
2089 
2090 	/* copy firmware image into NIC */
2091 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2092 		err = rum_write(sc, reg, UGETDW(ucode));
2093 		if (err) {
2094 			/* firmware already loaded ? */
2095 			device_printf(sc->sc_dev, "Firmware load "
2096 			    "failure! (ignored)\n");
2097 			break;
2098 		}
2099 	}
2100 
2101 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2102 	req.bRequest = RT2573_MCU_CNTL;
2103 	USETW(req.wValue, RT2573_MCU_RUN);
2104 	USETW(req.wIndex, 0);
2105 	USETW(req.wLength, 0);
2106 
2107 	err = rum_do_request(sc, &req, NULL);
2108 	if (err != 0) {
2109 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2110 		    usbd_errstr(err));
2111 	}
2112 
2113 	/* give the chip some time to boot */
2114 	rum_pause(sc, hz / 8);
2115 }
2116 
2117 static int
2118 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2119 {
2120 	struct ieee80211com *ic = vap->iv_ic;
2121 	const struct ieee80211_txparam *tp;
2122 	struct rum_tx_desc desc;
2123 	struct mbuf *m0;
2124 
2125 	m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
2126 	if (m0 == NULL) {
2127 		return ENOBUFS;
2128 	}
2129 
2130 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2131 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2132 	    m0->m_pkthdr.len, tp->mgmtrate);
2133 
2134 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2135 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2136 
2137 	/* copy beacon header and payload into NIC memory */
2138 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2139 	    m0->m_pkthdr.len);
2140 
2141 	m_freem(m0);
2142 
2143 	return 0;
2144 }
2145 
2146 static int
2147 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2148     const struct ieee80211_bpf_params *params)
2149 {
2150 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
2151 	struct rum_softc *sc = ifp->if_softc;
2152 
2153 	RUM_LOCK(sc);
2154 	/* prevent management frames from being sent if we're not ready */
2155 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2156 		RUM_UNLOCK(sc);
2157 		m_freem(m);
2158 		ieee80211_free_node(ni);
2159 		return ENETDOWN;
2160 	}
2161 	if (sc->tx_nfree < RUM_TX_MINFREE) {
2162 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2163 		RUM_UNLOCK(sc);
2164 		m_freem(m);
2165 		ieee80211_free_node(ni);
2166 		return EIO;
2167 	}
2168 
2169 	ifp->if_opackets++;
2170 
2171 	if (params == NULL) {
2172 		/*
2173 		 * Legacy path; interpret frame contents to decide
2174 		 * precisely how to send the frame.
2175 		 */
2176 		if (rum_tx_mgt(sc, m, ni) != 0)
2177 			goto bad;
2178 	} else {
2179 		/*
2180 		 * Caller supplied explicit parameters to use in
2181 		 * sending the frame.
2182 		 */
2183 		if (rum_tx_raw(sc, m, ni, params) != 0)
2184 			goto bad;
2185 	}
2186 	RUM_UNLOCK(sc);
2187 
2188 	return 0;
2189 bad:
2190 	ifp->if_oerrors++;
2191 	RUM_UNLOCK(sc);
2192 	ieee80211_free_node(ni);
2193 	return EIO;
2194 }
2195 
2196 static void
2197 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2198 {
2199 	struct ieee80211vap *vap = ni->ni_vap;
2200 	struct rum_vap *rvp = RUM_VAP(vap);
2201 
2202 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2203 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2204 
2205 	ieee80211_amrr_node_init(&rvp->amrr, &RUM_NODE(ni)->amn, ni);
2206 
2207 	usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp);
2208 }
2209 
2210 static void
2211 rum_amrr_timeout(void *arg)
2212 {
2213 	struct rum_vap *rvp = arg;
2214 	struct ieee80211vap *vap = &rvp->vap;
2215 	struct ieee80211com *ic = vap->iv_ic;
2216 
2217 	ieee80211_runtask(ic, &rvp->amrr_task);
2218 }
2219 
2220 static void
2221 rum_amrr_task(void *arg, int pending)
2222 {
2223 	struct rum_vap *rvp = arg;
2224 	struct ieee80211vap *vap = &rvp->vap;
2225 	struct ieee80211com *ic = vap->iv_ic;
2226 	struct ifnet *ifp = ic->ic_ifp;
2227 	struct rum_softc *sc = ifp->if_softc;
2228 	struct ieee80211_node *ni = vap->iv_bss;
2229 	int ok, fail;
2230 
2231 	RUM_LOCK(sc);
2232 	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2233 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2234 
2235 	ok = (le32toh(sc->sta[4]) >> 16) +	/* TX ok w/o retry */
2236 	    (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ retry */
2237 	fail = (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2238 
2239 	ieee80211_amrr_tx_update(&RUM_NODE(ni)->amn,
2240 	    ok+fail, ok, (le32toh(sc->sta[5]) & 0xffff) + fail);
2241 	(void) ieee80211_amrr_choose(ni, &RUM_NODE(ni)->amn);
2242 
2243 	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2244 
2245 	usb_callout_reset(&rvp->amrr_ch, hz, rum_amrr_timeout, rvp);
2246 	RUM_UNLOCK(sc);
2247 }
2248 
2249 /* ARGUSED */
2250 static struct ieee80211_node *
2251 rum_node_alloc(struct ieee80211vap *vap __unused,
2252 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
2253 {
2254 	struct rum_node *rn;
2255 
2256 	rn = malloc(sizeof(struct rum_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2257 	return rn != NULL ? &rn->ni : NULL;
2258 }
2259 
2260 static void
2261 rum_newassoc(struct ieee80211_node *ni, int isnew)
2262 {
2263 	struct ieee80211vap *vap = ni->ni_vap;
2264 
2265 	ieee80211_amrr_node_init(&RUM_VAP(vap)->amrr, &RUM_NODE(ni)->amn, ni);
2266 }
2267 
2268 static void
2269 rum_scan_start(struct ieee80211com *ic)
2270 {
2271 	struct ifnet *ifp = ic->ic_ifp;
2272 	struct rum_softc *sc = ifp->if_softc;
2273 	uint32_t tmp;
2274 
2275 	RUM_LOCK(sc);
2276 	/* abort TSF synchronization */
2277 	tmp = rum_read(sc, RT2573_TXRX_CSR9);
2278 	rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
2279 	rum_set_bssid(sc, ifp->if_broadcastaddr);
2280 	RUM_UNLOCK(sc);
2281 
2282 }
2283 
2284 static void
2285 rum_scan_end(struct ieee80211com *ic)
2286 {
2287 	struct rum_softc *sc = ic->ic_ifp->if_softc;
2288 
2289 	RUM_LOCK(sc);
2290 	rum_enable_tsf_sync(sc);
2291 	rum_set_bssid(sc, sc->sc_bssid);
2292 	RUM_UNLOCK(sc);
2293 
2294 }
2295 
2296 static void
2297 rum_set_channel(struct ieee80211com *ic)
2298 {
2299 	struct rum_softc *sc = ic->ic_ifp->if_softc;
2300 
2301 	RUM_LOCK(sc);
2302 	rum_set_chan(sc, ic->ic_curchan);
2303 	RUM_UNLOCK(sc);
2304 }
2305 
2306 static int
2307 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2308 {
2309 	struct ifnet *ifp = sc->sc_ifp;
2310 	struct ieee80211com *ic = ifp->if_l2com;
2311 	int lna, agc, rssi;
2312 
2313 	lna = (raw >> 5) & 0x3;
2314 	agc = raw & 0x1f;
2315 
2316 	if (lna == 0) {
2317 		/*
2318 		 * No RSSI mapping
2319 		 *
2320 		 * NB: Since RSSI is relative to noise floor, -1 is
2321 		 *     adequate for caller to know error happened.
2322 		 */
2323 		return -1;
2324 	}
2325 
2326 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2327 
2328 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2329 		rssi += sc->rssi_2ghz_corr;
2330 
2331 		if (lna == 1)
2332 			rssi -= 64;
2333 		else if (lna == 2)
2334 			rssi -= 74;
2335 		else if (lna == 3)
2336 			rssi -= 90;
2337 	} else {
2338 		rssi += sc->rssi_5ghz_corr;
2339 
2340 		if (!sc->ext_5ghz_lna && lna != 1)
2341 			rssi += 4;
2342 
2343 		if (lna == 1)
2344 			rssi -= 64;
2345 		else if (lna == 2)
2346 			rssi -= 86;
2347 		else if (lna == 3)
2348 			rssi -= 100;
2349 	}
2350 	return rssi;
2351 }
2352 
2353 static int
2354 rum_pause(struct rum_softc *sc, int timeout)
2355 {
2356 
2357 	usb_pause_mtx(&sc->sc_mtx, timeout);
2358 	return (0);
2359 }
2360 
2361 static device_method_t rum_methods[] = {
2362 	/* Device interface */
2363 	DEVMETHOD(device_probe,		rum_match),
2364 	DEVMETHOD(device_attach,	rum_attach),
2365 	DEVMETHOD(device_detach,	rum_detach),
2366 
2367 	{ 0, 0 }
2368 };
2369 
2370 static driver_t rum_driver = {
2371 	.name = "rum",
2372 	.methods = rum_methods,
2373 	.size = sizeof(struct rum_softc),
2374 };
2375 
2376 static devclass_t rum_devclass;
2377 
2378 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
2379