1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /*- 26 * Ralink Technology RT2501USB/RT2601USB chipset driver 27 * http://www.ralinktech.com.tw/ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/sockio.h> 32 #include <sys/sysctl.h> 33 #include <sys/lock.h> 34 #include <sys/mutex.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/module.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/kdb.h> 44 45 #include <machine/bus.h> 46 #include <machine/resource.h> 47 #include <sys/rman.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/in_var.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/ip.h> 64 #endif 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_ratectl.h> 70 71 #include <dev/usb/usb.h> 72 #include <dev/usb/usbdi.h> 73 #include "usbdevs.h" 74 75 #define USB_DEBUG_VAR rum_debug 76 #include <dev/usb/usb_debug.h> 77 78 #include <dev/usb/wlan/if_rumreg.h> 79 #include <dev/usb/wlan/if_rumvar.h> 80 #include <dev/usb/wlan/if_rumfw.h> 81 82 #ifdef USB_DEBUG 83 static int rum_debug = 0; 84 85 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 86 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 87 "Debug level"); 88 #endif 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, SG54HG), 124 RUM_DEV(MELCO, WLIUCG), 125 RUM_DEV(MELCO, WLRUCG), 126 RUM_DEV(MELCO, WLRUCGAOSS), 127 RUM_DEV(MSI, RT2573_1), 128 RUM_DEV(MSI, RT2573_2), 129 RUM_DEV(MSI, RT2573_3), 130 RUM_DEV(MSI, RT2573_4), 131 RUM_DEV(NOVATECH, RT2573), 132 RUM_DEV(PLANEX2, GWUS54HP), 133 RUM_DEV(PLANEX2, GWUS54MINI2), 134 RUM_DEV(PLANEX2, GWUSMM), 135 RUM_DEV(QCOM, RT2573), 136 RUM_DEV(QCOM, RT2573_2), 137 RUM_DEV(QCOM, RT2573_3), 138 RUM_DEV(RALINK, RT2573), 139 RUM_DEV(RALINK, RT2573_2), 140 RUM_DEV(RALINK, RT2671), 141 RUM_DEV(SITECOMEU, WL113R2), 142 RUM_DEV(SITECOMEU, WL172), 143 RUM_DEV(SPARKLAN, RT2573), 144 RUM_DEV(SURECOM, RT2573), 145 #undef RUM_DEV 146 }; 147 148 static device_probe_t rum_match; 149 static device_attach_t rum_attach; 150 static device_detach_t rum_detach; 151 152 static usb_callback_t rum_bulk_read_callback; 153 static usb_callback_t rum_bulk_write_callback; 154 155 static usb_error_t rum_do_request(struct rum_softc *sc, 156 struct usb_device_request *req, void *data); 157 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 158 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 159 const char [IFNAMSIZ], int, enum ieee80211_opmode, 160 int, const uint8_t [IEEE80211_ADDR_LEN], 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void rum_vap_delete(struct ieee80211vap *); 163 static void rum_cmdq_cb(void *, int); 164 static int rum_cmd_sleepable(struct rum_softc *, const void *, 165 size_t, uint8_t, CMD_FUNC_PROTO); 166 static void rum_tx_free(struct rum_tx_data *, int); 167 static void rum_setup_tx_list(struct rum_softc *); 168 static void rum_unsetup_tx_list(struct rum_softc *); 169 static void rum_beacon_miss(struct ieee80211vap *); 170 static void rum_sta_recv_mgmt(struct ieee80211_node *, 171 struct mbuf *, int, 172 const struct ieee80211_rx_stats *, int, int); 173 static int rum_set_power_state(struct rum_softc *, int); 174 static int rum_newstate(struct ieee80211vap *, 175 enum ieee80211_state, int); 176 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 177 static void rum_setup_tx_desc(struct rum_softc *, 178 struct rum_tx_desc *, struct ieee80211_key *, 179 uint32_t, uint8_t, uint8_t, int, int, int); 180 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 181 struct ieee80211_node *, 182 const struct ieee80211_key *); 183 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 184 struct ieee80211_node *); 185 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 186 struct ieee80211_node *, 187 const struct ieee80211_bpf_params *); 188 static int rum_tx_data(struct rum_softc *, struct mbuf *, 189 struct ieee80211_node *); 190 static int rum_transmit(struct ieee80211com *, struct mbuf *); 191 static void rum_start(struct rum_softc *); 192 static void rum_parent(struct ieee80211com *); 193 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 194 int); 195 static uint32_t rum_read(struct rum_softc *, uint16_t); 196 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 197 int); 198 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 199 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 200 size_t); 201 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 202 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 203 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 204 uint32_t); 205 static int rum_bbp_busy(struct rum_softc *); 206 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 207 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 208 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 209 static void rum_select_antenna(struct rum_softc *); 210 static void rum_enable_mrr(struct rum_softc *); 211 static void rum_set_txpreamble(struct rum_softc *); 212 static void rum_set_basicrates(struct rum_softc *); 213 static void rum_select_band(struct rum_softc *, 214 struct ieee80211_channel *); 215 static void rum_set_chan(struct rum_softc *, 216 struct ieee80211_channel *); 217 static void rum_set_maxretry(struct rum_softc *, 218 struct ieee80211vap *); 219 static int rum_enable_tsf_sync(struct rum_softc *); 220 static void rum_enable_tsf(struct rum_softc *); 221 static void rum_abort_tsf_sync(struct rum_softc *); 222 static void rum_get_tsf(struct rum_softc *, uint64_t *); 223 static void rum_update_slot_cb(struct rum_softc *, 224 union sec_param *, uint8_t); 225 static void rum_update_slot(struct ieee80211com *); 226 static int rum_wme_update(struct ieee80211com *); 227 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 228 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 229 static void rum_update_mcast(struct ieee80211com *); 230 static void rum_update_promisc(struct ieee80211com *); 231 static void rum_setpromisc(struct rum_softc *); 232 static const char *rum_get_rf(int); 233 static void rum_read_eeprom(struct rum_softc *); 234 static int rum_bbp_wakeup(struct rum_softc *); 235 static int rum_bbp_init(struct rum_softc *); 236 static void rum_clr_shkey_regs(struct rum_softc *); 237 static int rum_init(struct rum_softc *); 238 static void rum_stop(struct rum_softc *); 239 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 240 size_t); 241 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 242 static int rum_reset(struct ieee80211vap *, u_long); 243 static int rum_set_beacon(struct rum_softc *, 244 struct ieee80211vap *); 245 static int rum_alloc_beacon(struct rum_softc *, 246 struct ieee80211vap *); 247 static void rum_update_beacon_cb(struct rum_softc *, 248 union sec_param *, uint8_t); 249 static void rum_update_beacon(struct ieee80211vap *, int); 250 static int rum_common_key_set(struct rum_softc *, 251 struct ieee80211_key *, uint16_t); 252 static void rum_group_key_set_cb(struct rum_softc *, 253 union sec_param *, uint8_t); 254 static void rum_group_key_del_cb(struct rum_softc *, 255 union sec_param *, uint8_t); 256 static void rum_pair_key_set_cb(struct rum_softc *, 257 union sec_param *, uint8_t); 258 static void rum_pair_key_del_cb(struct rum_softc *, 259 union sec_param *, uint8_t); 260 static int rum_key_alloc(struct ieee80211vap *, 261 struct ieee80211_key *, ieee80211_keyix *, 262 ieee80211_keyix *); 263 static int rum_key_set(struct ieee80211vap *, 264 const struct ieee80211_key *); 265 static int rum_key_delete(struct ieee80211vap *, 266 const struct ieee80211_key *); 267 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 268 const struct ieee80211_bpf_params *); 269 static void rum_scan_start(struct ieee80211com *); 270 static void rum_scan_end(struct ieee80211com *); 271 static void rum_set_channel(struct ieee80211com *); 272 static void rum_getradiocaps(struct ieee80211com *, int, int *, 273 struct ieee80211_channel[]); 274 static int rum_get_rssi(struct rum_softc *, uint8_t); 275 static void rum_ratectl_start(struct rum_softc *, 276 struct ieee80211_node *); 277 static void rum_ratectl_timeout(void *); 278 static void rum_ratectl_task(void *, int); 279 static int rum_pause(struct rum_softc *, int); 280 281 static const struct { 282 uint32_t reg; 283 uint32_t val; 284 } rum_def_mac[] = { 285 { RT2573_TXRX_CSR0, 0x025fb032 }, 286 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 287 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 288 { RT2573_TXRX_CSR3, 0x00858687 }, 289 { RT2573_TXRX_CSR7, 0x2e31353b }, 290 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 291 { RT2573_TXRX_CSR15, 0x0000000f }, 292 { RT2573_MAC_CSR6, 0x00000fff }, 293 { RT2573_MAC_CSR8, 0x016c030a }, 294 { RT2573_MAC_CSR10, 0x00000718 }, 295 { RT2573_MAC_CSR12, 0x00000004 }, 296 { RT2573_MAC_CSR13, 0x00007f00 }, 297 { RT2573_SEC_CSR2, 0x00000000 }, 298 { RT2573_SEC_CSR3, 0x00000000 }, 299 { RT2573_SEC_CSR4, 0x00000000 }, 300 { RT2573_PHY_CSR1, 0x000023b0 }, 301 { RT2573_PHY_CSR5, 0x00040a06 }, 302 { RT2573_PHY_CSR6, 0x00080606 }, 303 { RT2573_PHY_CSR7, 0x00000408 }, 304 { RT2573_AIFSN_CSR, 0x00002273 }, 305 { RT2573_CWMIN_CSR, 0x00002344 }, 306 { RT2573_CWMAX_CSR, 0x000034aa } 307 }; 308 309 static const struct { 310 uint8_t reg; 311 uint8_t val; 312 } rum_def_bbp[] = { 313 { 3, 0x80 }, 314 { 15, 0x30 }, 315 { 17, 0x20 }, 316 { 21, 0xc8 }, 317 { 22, 0x38 }, 318 { 23, 0x06 }, 319 { 24, 0xfe }, 320 { 25, 0x0a }, 321 { 26, 0x0d }, 322 { 32, 0x0b }, 323 { 34, 0x12 }, 324 { 37, 0x07 }, 325 { 39, 0xf8 }, 326 { 41, 0x60 }, 327 { 53, 0x10 }, 328 { 54, 0x18 }, 329 { 60, 0x10 }, 330 { 61, 0x04 }, 331 { 62, 0x04 }, 332 { 75, 0xfe }, 333 { 86, 0xfe }, 334 { 88, 0xfe }, 335 { 90, 0x0f }, 336 { 99, 0x00 }, 337 { 102, 0x16 }, 338 { 107, 0x04 } 339 }; 340 341 static const uint8_t rum_chan_2ghz[] = 342 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 343 344 static const uint8_t rum_chan_5ghz[] = 345 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 346 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 347 149, 153, 157, 161, 165 }; 348 349 static const struct rfprog { 350 uint8_t chan; 351 uint32_t r1, r2, r3, r4; 352 } rum_rf5226[] = { 353 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 354 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 355 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 356 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 357 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 358 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 359 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 360 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 361 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 362 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 363 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 364 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 365 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 366 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 367 368 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 369 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 370 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 371 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 372 373 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 374 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 375 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 376 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 377 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 378 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 379 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 380 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 381 382 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 383 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 384 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 385 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 386 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 387 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 388 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 389 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 390 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 391 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 392 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 393 394 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 395 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 396 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 397 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 398 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 399 }, rum_rf5225[] = { 400 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 401 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 402 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 403 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 404 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 405 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 406 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 407 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 408 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 409 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 410 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 411 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 412 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 413 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 414 415 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 416 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 417 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 418 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 419 420 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 421 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 422 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 423 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 424 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 425 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 426 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 427 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 428 429 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 430 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 431 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 432 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 433 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 434 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 435 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 436 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 437 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 438 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 439 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 440 441 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 442 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 443 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 444 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 445 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 446 }; 447 448 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 449 [RUM_BULK_WR] = { 450 .type = UE_BULK, 451 .endpoint = UE_ADDR_ANY, 452 .direction = UE_DIR_OUT, 453 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 454 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 455 .callback = rum_bulk_write_callback, 456 .timeout = 5000, /* ms */ 457 }, 458 [RUM_BULK_RD] = { 459 .type = UE_BULK, 460 .endpoint = UE_ADDR_ANY, 461 .direction = UE_DIR_IN, 462 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 463 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 464 .callback = rum_bulk_read_callback, 465 }, 466 }; 467 468 static int 469 rum_match(device_t self) 470 { 471 struct usb_attach_arg *uaa = device_get_ivars(self); 472 473 if (uaa->usb_mode != USB_MODE_HOST) 474 return (ENXIO); 475 if (uaa->info.bConfigIndex != 0) 476 return (ENXIO); 477 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 478 return (ENXIO); 479 480 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 481 } 482 483 static int 484 rum_attach(device_t self) 485 { 486 struct usb_attach_arg *uaa = device_get_ivars(self); 487 struct rum_softc *sc = device_get_softc(self); 488 struct ieee80211com *ic = &sc->sc_ic; 489 uint32_t tmp; 490 uint8_t iface_index; 491 int error, ntries; 492 493 device_set_usb_desc(self); 494 sc->sc_udev = uaa->device; 495 sc->sc_dev = self; 496 497 RUM_LOCK_INIT(sc); 498 RUM_CMDQ_LOCK_INIT(sc); 499 mbufq_init(&sc->sc_snd, ifqmaxlen); 500 501 iface_index = RT2573_IFACE_INDEX; 502 error = usbd_transfer_setup(uaa->device, &iface_index, 503 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 504 if (error) { 505 device_printf(self, "could not allocate USB transfers, " 506 "err=%s\n", usbd_errstr(error)); 507 goto detach; 508 } 509 510 RUM_LOCK(sc); 511 /* retrieve RT2573 rev. no */ 512 for (ntries = 0; ntries < 100; ntries++) { 513 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 514 break; 515 if (rum_pause(sc, hz / 100)) 516 break; 517 } 518 if (ntries == 100) { 519 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 520 RUM_UNLOCK(sc); 521 goto detach; 522 } 523 524 /* retrieve MAC address and various other things from EEPROM */ 525 rum_read_eeprom(sc); 526 527 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 528 tmp, rum_get_rf(sc->rf_rev)); 529 530 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 531 RUM_UNLOCK(sc); 532 533 ic->ic_softc = sc; 534 ic->ic_name = device_get_nameunit(self); 535 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 536 537 /* set device capabilities */ 538 ic->ic_caps = 539 IEEE80211_C_STA /* station mode supported */ 540 | IEEE80211_C_IBSS /* IBSS mode supported */ 541 | IEEE80211_C_MONITOR /* monitor mode supported */ 542 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 543 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 544 | IEEE80211_C_TXPMGT /* tx power management */ 545 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 546 | IEEE80211_C_SHSLOT /* short slot time supported */ 547 | IEEE80211_C_BGSCAN /* bg scanning supported */ 548 | IEEE80211_C_WPA /* 802.11i */ 549 | IEEE80211_C_WME /* 802.11e */ 550 | IEEE80211_C_PMGT /* Station-side power mgmt */ 551 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 552 ; 553 554 ic->ic_cryptocaps = 555 IEEE80211_CRYPTO_WEP | 556 IEEE80211_CRYPTO_AES_CCM | 557 IEEE80211_CRYPTO_TKIPMIC | 558 IEEE80211_CRYPTO_TKIP; 559 560 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 561 ic->ic_channels); 562 563 ieee80211_ifattach(ic); 564 ic->ic_update_promisc = rum_update_promisc; 565 ic->ic_raw_xmit = rum_raw_xmit; 566 ic->ic_scan_start = rum_scan_start; 567 ic->ic_scan_end = rum_scan_end; 568 ic->ic_set_channel = rum_set_channel; 569 ic->ic_getradiocaps = rum_getradiocaps; 570 ic->ic_transmit = rum_transmit; 571 ic->ic_parent = rum_parent; 572 ic->ic_vap_create = rum_vap_create; 573 ic->ic_vap_delete = rum_vap_delete; 574 ic->ic_updateslot = rum_update_slot; 575 ic->ic_wme.wme_update = rum_wme_update; 576 ic->ic_update_mcast = rum_update_mcast; 577 578 ieee80211_radiotap_attach(ic, 579 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 580 RT2573_TX_RADIOTAP_PRESENT, 581 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 582 RT2573_RX_RADIOTAP_PRESENT); 583 584 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 585 586 if (bootverbose) 587 ieee80211_announce(ic); 588 589 return (0); 590 591 detach: 592 rum_detach(self); 593 return (ENXIO); /* failure */ 594 } 595 596 static int 597 rum_detach(device_t self) 598 { 599 struct rum_softc *sc = device_get_softc(self); 600 struct ieee80211com *ic = &sc->sc_ic; 601 602 /* Prevent further ioctls */ 603 RUM_LOCK(sc); 604 sc->sc_detached = 1; 605 RUM_UNLOCK(sc); 606 607 /* stop all USB transfers */ 608 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 609 610 /* free TX list, if any */ 611 RUM_LOCK(sc); 612 rum_unsetup_tx_list(sc); 613 RUM_UNLOCK(sc); 614 615 if (ic->ic_softc == sc) { 616 ieee80211_draintask(ic, &sc->cmdq_task); 617 ieee80211_ifdetach(ic); 618 } 619 620 mbufq_drain(&sc->sc_snd); 621 RUM_CMDQ_LOCK_DESTROY(sc); 622 RUM_LOCK_DESTROY(sc); 623 624 return (0); 625 } 626 627 static usb_error_t 628 rum_do_request(struct rum_softc *sc, 629 struct usb_device_request *req, void *data) 630 { 631 usb_error_t err; 632 int ntries = 10; 633 634 while (ntries--) { 635 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 636 req, data, 0, NULL, 250 /* ms */); 637 if (err == 0) 638 break; 639 640 DPRINTFN(1, "Control request failed, %s (retrying)\n", 641 usbd_errstr(err)); 642 if (rum_pause(sc, hz / 100)) 643 break; 644 } 645 return (err); 646 } 647 648 static usb_error_t 649 rum_do_mcu_request(struct rum_softc *sc, int request) 650 { 651 struct usb_device_request req; 652 653 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 654 req.bRequest = RT2573_MCU_CNTL; 655 USETW(req.wValue, request); 656 USETW(req.wIndex, 0); 657 USETW(req.wLength, 0); 658 659 return (rum_do_request(sc, &req, NULL)); 660 } 661 662 static struct ieee80211vap * 663 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 664 enum ieee80211_opmode opmode, int flags, 665 const uint8_t bssid[IEEE80211_ADDR_LEN], 666 const uint8_t mac[IEEE80211_ADDR_LEN]) 667 { 668 struct rum_softc *sc = ic->ic_softc; 669 struct rum_vap *rvp; 670 struct ieee80211vap *vap; 671 672 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 673 return NULL; 674 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 675 vap = &rvp->vap; 676 /* enable s/w bmiss handling for sta mode */ 677 678 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 679 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 680 /* out of memory */ 681 free(rvp, M_80211_VAP); 682 return (NULL); 683 } 684 685 /* override state transition machine */ 686 rvp->newstate = vap->iv_newstate; 687 vap->iv_newstate = rum_newstate; 688 vap->iv_key_alloc = rum_key_alloc; 689 vap->iv_key_set = rum_key_set; 690 vap->iv_key_delete = rum_key_delete; 691 vap->iv_update_beacon = rum_update_beacon; 692 vap->iv_reset = rum_reset; 693 vap->iv_max_aid = RT2573_ADDR_MAX; 694 695 if (opmode == IEEE80211_M_STA) { 696 /* 697 * Move device to the sleep state when 698 * beacon is received and there is no data for us. 699 * 700 * Used only for IEEE80211_S_SLEEP state. 701 */ 702 rvp->recv_mgmt = vap->iv_recv_mgmt; 703 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 704 705 /* Ignored while sleeping. */ 706 rvp->bmiss = vap->iv_bmiss; 707 vap->iv_bmiss = rum_beacon_miss; 708 } 709 710 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 711 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 712 ieee80211_ratectl_init(vap); 713 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 714 /* complete setup */ 715 ieee80211_vap_attach(vap, ieee80211_media_change, 716 ieee80211_media_status, mac); 717 ic->ic_opmode = opmode; 718 return vap; 719 } 720 721 static void 722 rum_vap_delete(struct ieee80211vap *vap) 723 { 724 struct rum_vap *rvp = RUM_VAP(vap); 725 struct ieee80211com *ic = vap->iv_ic; 726 727 m_freem(rvp->bcn_mbuf); 728 usb_callout_drain(&rvp->ratectl_ch); 729 ieee80211_draintask(ic, &rvp->ratectl_task); 730 ieee80211_ratectl_deinit(vap); 731 ieee80211_vap_detach(vap); 732 free(rvp, M_80211_VAP); 733 } 734 735 static void 736 rum_cmdq_cb(void *arg, int pending) 737 { 738 struct rum_softc *sc = arg; 739 struct rum_cmdq *rc; 740 741 RUM_CMDQ_LOCK(sc); 742 while (sc->cmdq[sc->cmdq_first].func != NULL) { 743 rc = &sc->cmdq[sc->cmdq_first]; 744 RUM_CMDQ_UNLOCK(sc); 745 746 RUM_LOCK(sc); 747 rc->func(sc, &rc->data, rc->rvp_id); 748 RUM_UNLOCK(sc); 749 750 RUM_CMDQ_LOCK(sc); 751 memset(rc, 0, sizeof (*rc)); 752 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 753 } 754 RUM_CMDQ_UNLOCK(sc); 755 } 756 757 static int 758 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 759 uint8_t rvp_id, CMD_FUNC_PROTO) 760 { 761 struct ieee80211com *ic = &sc->sc_ic; 762 763 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 764 765 RUM_CMDQ_LOCK(sc); 766 if (sc->cmdq[sc->cmdq_last].func != NULL) { 767 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 768 RUM_CMDQ_UNLOCK(sc); 769 770 return EAGAIN; 771 } 772 773 if (ptr != NULL) 774 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 775 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 776 sc->cmdq[sc->cmdq_last].func = func; 777 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 778 RUM_CMDQ_UNLOCK(sc); 779 780 ieee80211_runtask(ic, &sc->cmdq_task); 781 782 return 0; 783 } 784 785 static void 786 rum_tx_free(struct rum_tx_data *data, int txerr) 787 { 788 struct rum_softc *sc = data->sc; 789 790 if (data->m != NULL) { 791 ieee80211_tx_complete(data->ni, data->m, txerr); 792 data->m = NULL; 793 data->ni = NULL; 794 } 795 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 796 sc->tx_nfree++; 797 } 798 799 static void 800 rum_setup_tx_list(struct rum_softc *sc) 801 { 802 struct rum_tx_data *data; 803 int i; 804 805 sc->tx_nfree = 0; 806 STAILQ_INIT(&sc->tx_q); 807 STAILQ_INIT(&sc->tx_free); 808 809 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 810 data = &sc->tx_data[i]; 811 812 data->sc = sc; 813 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 814 sc->tx_nfree++; 815 } 816 } 817 818 static void 819 rum_unsetup_tx_list(struct rum_softc *sc) 820 { 821 struct rum_tx_data *data; 822 int i; 823 824 /* make sure any subsequent use of the queues will fail */ 825 sc->tx_nfree = 0; 826 STAILQ_INIT(&sc->tx_q); 827 STAILQ_INIT(&sc->tx_free); 828 829 /* free up all node references and mbufs */ 830 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 831 data = &sc->tx_data[i]; 832 833 if (data->m != NULL) { 834 m_freem(data->m); 835 data->m = NULL; 836 } 837 if (data->ni != NULL) { 838 ieee80211_free_node(data->ni); 839 data->ni = NULL; 840 } 841 } 842 } 843 844 static void 845 rum_beacon_miss(struct ieee80211vap *vap) 846 { 847 struct ieee80211com *ic = vap->iv_ic; 848 struct rum_softc *sc = ic->ic_softc; 849 struct rum_vap *rvp = RUM_VAP(vap); 850 int sleep; 851 852 RUM_LOCK(sc); 853 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 854 DPRINTFN(12, "dropping 'sleeping' bit, " 855 "device must be awake now\n"); 856 857 sc->sc_sleeping = 0; 858 } 859 860 sleep = sc->sc_sleeping; 861 RUM_UNLOCK(sc); 862 863 if (!sleep) 864 rvp->bmiss(vap); 865 #ifdef USB_DEBUG 866 else 867 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 868 #endif 869 } 870 871 static void 872 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 873 const struct ieee80211_rx_stats *rxs, 874 int rssi, int nf) 875 { 876 struct ieee80211vap *vap = ni->ni_vap; 877 struct rum_softc *sc = vap->iv_ic->ic_softc; 878 struct rum_vap *rvp = RUM_VAP(vap); 879 880 if (vap->iv_state == IEEE80211_S_SLEEP && 881 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 882 RUM_LOCK(sc); 883 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 884 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 885 sc->last_rx_flags); 886 887 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 888 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 889 /* 890 * Put it to sleep here; in case if there is a data 891 * for us, iv_recv_mgmt() will wakeup the device via 892 * SLEEP -> RUN state transition. 893 */ 894 rum_set_power_state(sc, 1); 895 } 896 RUM_UNLOCK(sc); 897 } 898 899 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 900 } 901 902 static int 903 rum_set_power_state(struct rum_softc *sc, int sleep) 904 { 905 usb_error_t uerror; 906 907 RUM_LOCK_ASSERT(sc); 908 909 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 910 sleep ? "sleep" : "awake", sc->sc_sleep_time); 911 912 uerror = rum_do_mcu_request(sc, 913 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 914 if (uerror != USB_ERR_NORMAL_COMPLETION) { 915 device_printf(sc->sc_dev, 916 "%s: could not change power state: %s\n", 917 __func__, usbd_errstr(uerror)); 918 return (EIO); 919 } 920 921 sc->sc_sleeping = !!sleep; 922 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 923 924 return (0); 925 } 926 927 static int 928 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 929 { 930 struct rum_vap *rvp = RUM_VAP(vap); 931 struct ieee80211com *ic = vap->iv_ic; 932 struct rum_softc *sc = ic->ic_softc; 933 const struct ieee80211_txparam *tp; 934 enum ieee80211_state ostate; 935 struct ieee80211_node *ni; 936 usb_error_t uerror; 937 int ret = 0; 938 939 ostate = vap->iv_state; 940 DPRINTF("%s -> %s\n", 941 ieee80211_state_name[ostate], 942 ieee80211_state_name[nstate]); 943 944 IEEE80211_UNLOCK(ic); 945 RUM_LOCK(sc); 946 usb_callout_stop(&rvp->ratectl_ch); 947 948 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 949 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 950 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 951 952 /* 953 * Ignore any errors; 954 * any subsequent TX will wakeup it anyway 955 */ 956 (void) rum_set_power_state(sc, 0); 957 } 958 959 switch (nstate) { 960 case IEEE80211_S_INIT: 961 if (ostate == IEEE80211_S_RUN) 962 rum_abort_tsf_sync(sc); 963 964 break; 965 966 case IEEE80211_S_RUN: 967 if (ostate == IEEE80211_S_SLEEP) 968 break; /* already handled */ 969 970 ni = ieee80211_ref_node(vap->iv_bss); 971 972 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 973 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 974 ni->ni_chan == IEEE80211_CHAN_ANYC) { 975 ret = EINVAL; 976 goto run_fail; 977 } 978 rum_update_slot_cb(sc, NULL, 0); 979 rum_enable_mrr(sc); 980 rum_set_txpreamble(sc); 981 rum_set_basicrates(sc); 982 rum_set_maxretry(sc, vap); 983 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 984 rum_set_bssid(sc, sc->sc_bssid); 985 } 986 987 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 988 vap->iv_opmode == IEEE80211_M_IBSS) { 989 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 990 goto run_fail; 991 } 992 993 if (vap->iv_opmode != IEEE80211_M_MONITOR && 994 vap->iv_opmode != IEEE80211_M_AHDEMO) { 995 if ((ret = rum_enable_tsf_sync(sc)) != 0) 996 goto run_fail; 997 } else 998 rum_enable_tsf(sc); 999 1000 /* enable automatic rate adaptation */ 1001 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1002 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1003 rum_ratectl_start(sc, ni); 1004 run_fail: 1005 ieee80211_free_node(ni); 1006 break; 1007 case IEEE80211_S_SLEEP: 1008 /* Implemented for STA mode only. */ 1009 if (vap->iv_opmode != IEEE80211_M_STA) 1010 break; 1011 1012 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1013 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1014 ret = EIO; 1015 break; 1016 } 1017 1018 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1019 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1020 ret = EIO; 1021 break; 1022 } 1023 1024 ret = rum_set_power_state(sc, 1); 1025 if (ret != 0) { 1026 device_printf(sc->sc_dev, 1027 "%s: could not move to the SLEEP state: %s\n", 1028 __func__, usbd_errstr(uerror)); 1029 } 1030 break; 1031 default: 1032 break; 1033 } 1034 RUM_UNLOCK(sc); 1035 IEEE80211_LOCK(ic); 1036 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1037 } 1038 1039 static void 1040 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1041 { 1042 struct rum_softc *sc = usbd_xfer_softc(xfer); 1043 struct ieee80211vap *vap; 1044 struct rum_tx_data *data; 1045 struct mbuf *m; 1046 struct usb_page_cache *pc; 1047 unsigned int len; 1048 int actlen, sumlen; 1049 1050 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1051 1052 switch (USB_GET_STATE(xfer)) { 1053 case USB_ST_TRANSFERRED: 1054 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1055 1056 /* free resources */ 1057 data = usbd_xfer_get_priv(xfer); 1058 rum_tx_free(data, 0); 1059 usbd_xfer_set_priv(xfer, NULL); 1060 1061 /* FALLTHROUGH */ 1062 case USB_ST_SETUP: 1063 tr_setup: 1064 data = STAILQ_FIRST(&sc->tx_q); 1065 if (data) { 1066 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1067 m = data->m; 1068 1069 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1070 DPRINTFN(0, "data overflow, %u bytes\n", 1071 m->m_pkthdr.len); 1072 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1073 } 1074 pc = usbd_xfer_get_frame(xfer, 0); 1075 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1076 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1077 m->m_pkthdr.len); 1078 1079 vap = data->ni->ni_vap; 1080 if (ieee80211_radiotap_active_vap(vap)) { 1081 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1082 1083 tap->wt_flags = 0; 1084 tap->wt_rate = data->rate; 1085 rum_get_tsf(sc, &tap->wt_tsf); 1086 tap->wt_antenna = sc->tx_ant; 1087 1088 ieee80211_radiotap_tx(vap, m); 1089 } 1090 1091 /* align end on a 4-bytes boundary */ 1092 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1093 if ((len % 64) == 0) 1094 len += 4; 1095 1096 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1097 m->m_pkthdr.len, len); 1098 1099 usbd_xfer_set_frame_len(xfer, 0, len); 1100 usbd_xfer_set_priv(xfer, data); 1101 1102 usbd_transfer_submit(xfer); 1103 } 1104 rum_start(sc); 1105 break; 1106 1107 default: /* Error */ 1108 DPRINTFN(11, "transfer error, %s\n", 1109 usbd_errstr(error)); 1110 1111 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1112 data = usbd_xfer_get_priv(xfer); 1113 if (data != NULL) { 1114 rum_tx_free(data, error); 1115 usbd_xfer_set_priv(xfer, NULL); 1116 } 1117 1118 if (error != USB_ERR_CANCELLED) { 1119 if (error == USB_ERR_TIMEOUT) 1120 device_printf(sc->sc_dev, "device timeout\n"); 1121 1122 /* 1123 * Try to clear stall first, also if other 1124 * errors occur, hence clearing stall 1125 * introduces a 50 ms delay: 1126 */ 1127 usbd_xfer_set_stall(xfer); 1128 goto tr_setup; 1129 } 1130 break; 1131 } 1132 } 1133 1134 static void 1135 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1136 { 1137 struct rum_softc *sc = usbd_xfer_softc(xfer); 1138 struct ieee80211com *ic = &sc->sc_ic; 1139 struct ieee80211_frame_min *wh; 1140 struct ieee80211_node *ni; 1141 struct mbuf *m = NULL; 1142 struct usb_page_cache *pc; 1143 uint32_t flags; 1144 uint8_t rssi = 0; 1145 int len; 1146 1147 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1148 1149 switch (USB_GET_STATE(xfer)) { 1150 case USB_ST_TRANSFERRED: 1151 1152 DPRINTFN(15, "rx done, actlen=%d\n", len); 1153 1154 if (len < RT2573_RX_DESC_SIZE) { 1155 DPRINTF("%s: xfer too short %d\n", 1156 device_get_nameunit(sc->sc_dev), len); 1157 counter_u64_add(ic->ic_ierrors, 1); 1158 goto tr_setup; 1159 } 1160 1161 len -= RT2573_RX_DESC_SIZE; 1162 pc = usbd_xfer_get_frame(xfer, 0); 1163 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1164 1165 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1166 flags = le32toh(sc->sc_rx_desc.flags); 1167 sc->last_rx_flags = flags; 1168 if (len < ((flags >> 16) & 0xfff)) { 1169 DPRINTFN(5, "%s: frame is truncated from %d to %d " 1170 "bytes\n", device_get_nameunit(sc->sc_dev), 1171 (flags >> 16) & 0xfff, len); 1172 counter_u64_add(ic->ic_ierrors, 1); 1173 goto tr_setup; 1174 } 1175 len = (flags >> 16) & 0xfff; 1176 if (len < sizeof(struct ieee80211_frame_ack)) { 1177 DPRINTFN(5, "%s: frame too short %d\n", 1178 device_get_nameunit(sc->sc_dev), len); 1179 counter_u64_add(ic->ic_ierrors, 1); 1180 goto tr_setup; 1181 } 1182 if (flags & RT2573_RX_CRC_ERROR) { 1183 /* 1184 * This should not happen since we did not 1185 * request to receive those frames when we 1186 * filled RUM_TXRX_CSR2: 1187 */ 1188 DPRINTFN(5, "PHY or CRC error\n"); 1189 counter_u64_add(ic->ic_ierrors, 1); 1190 goto tr_setup; 1191 } 1192 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1193 switch (flags & RT2573_RX_DEC_MASK) { 1194 case RT2573_RX_IV_ERROR: 1195 DPRINTFN(5, "IV/EIV error\n"); 1196 break; 1197 case RT2573_RX_MIC_ERROR: 1198 DPRINTFN(5, "MIC error\n"); 1199 break; 1200 case RT2573_RX_KEY_ERROR: 1201 DPRINTFN(5, "Key error\n"); 1202 break; 1203 } 1204 counter_u64_add(ic->ic_ierrors, 1); 1205 goto tr_setup; 1206 } 1207 1208 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1209 if (m == NULL) { 1210 DPRINTF("could not allocate mbuf\n"); 1211 counter_u64_add(ic->ic_ierrors, 1); 1212 goto tr_setup; 1213 } 1214 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1215 mtod(m, uint8_t *), len); 1216 1217 wh = mtod(m, struct ieee80211_frame_min *); 1218 1219 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1220 (flags & RT2573_RX_CIP_MASK) != 1221 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1222 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1223 m->m_flags |= M_WEP; 1224 } 1225 1226 /* finalize mbuf */ 1227 m->m_pkthdr.len = m->m_len = len; 1228 1229 if (ieee80211_radiotap_active(ic)) { 1230 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1231 1232 tap->wr_flags = 0; 1233 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1234 (flags & RT2573_RX_OFDM) ? 1235 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1236 rum_get_tsf(sc, &tap->wr_tsf); 1237 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1238 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1239 tap->wr_antenna = sc->rx_ant; 1240 } 1241 /* FALLTHROUGH */ 1242 case USB_ST_SETUP: 1243 tr_setup: 1244 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1245 usbd_transfer_submit(xfer); 1246 1247 /* 1248 * At the end of a USB callback it is always safe to unlock 1249 * the private mutex of a device! That is why we do the 1250 * "ieee80211_input" here, and not some lines up! 1251 */ 1252 RUM_UNLOCK(sc); 1253 if (m) { 1254 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1255 ni = ieee80211_find_rxnode(ic, wh); 1256 else 1257 ni = NULL; 1258 1259 if (ni != NULL) { 1260 (void) ieee80211_input(ni, m, rssi, 1261 RT2573_NOISE_FLOOR); 1262 ieee80211_free_node(ni); 1263 } else 1264 (void) ieee80211_input_all(ic, m, rssi, 1265 RT2573_NOISE_FLOOR); 1266 } 1267 RUM_LOCK(sc); 1268 rum_start(sc); 1269 return; 1270 1271 default: /* Error */ 1272 if (error != USB_ERR_CANCELLED) { 1273 /* try to clear stall first */ 1274 usbd_xfer_set_stall(xfer); 1275 goto tr_setup; 1276 } 1277 return; 1278 } 1279 } 1280 1281 static uint8_t 1282 rum_plcp_signal(int rate) 1283 { 1284 switch (rate) { 1285 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1286 case 12: return 0xb; 1287 case 18: return 0xf; 1288 case 24: return 0xa; 1289 case 36: return 0xe; 1290 case 48: return 0x9; 1291 case 72: return 0xd; 1292 case 96: return 0x8; 1293 case 108: return 0xc; 1294 1295 /* CCK rates (NB: not IEEE std, device-specific) */ 1296 case 2: return 0x0; 1297 case 4: return 0x1; 1298 case 11: return 0x2; 1299 case 22: return 0x3; 1300 } 1301 return 0xff; /* XXX unsupported/unknown rate */ 1302 } 1303 1304 /* 1305 * Map net80211 cipher to RT2573 security mode. 1306 */ 1307 static uint8_t 1308 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1309 { 1310 switch (cipher) { 1311 case IEEE80211_CIPHER_WEP: 1312 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1313 case IEEE80211_CIPHER_TKIP: 1314 return RT2573_MODE_TKIP; 1315 case IEEE80211_CIPHER_AES_CCM: 1316 return RT2573_MODE_AES_CCMP; 1317 default: 1318 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1319 return 0; 1320 } 1321 } 1322 1323 static void 1324 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1325 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1326 int hdrlen, int len, int rate) 1327 { 1328 struct ieee80211com *ic = &sc->sc_ic; 1329 struct wmeParams *wmep = &sc->wme_params[qid]; 1330 uint16_t plcp_length; 1331 int remainder; 1332 1333 flags |= RT2573_TX_VALID; 1334 flags |= len << 16; 1335 1336 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1337 const struct ieee80211_cipher *cip = k->wk_cipher; 1338 1339 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1340 1341 desc->eiv = 0; /* for WEP */ 1342 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1343 } 1344 1345 /* setup PLCP fields */ 1346 desc->plcp_signal = rum_plcp_signal(rate); 1347 desc->plcp_service = 4; 1348 1349 len += IEEE80211_CRC_LEN; 1350 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1351 flags |= RT2573_TX_OFDM; 1352 1353 plcp_length = len & 0xfff; 1354 desc->plcp_length_hi = plcp_length >> 6; 1355 desc->plcp_length_lo = plcp_length & 0x3f; 1356 } else { 1357 if (rate == 0) 1358 rate = 2; /* avoid division by zero */ 1359 plcp_length = howmany(16 * len, rate); 1360 if (rate == 22) { 1361 remainder = (16 * len) % 22; 1362 if (remainder != 0 && remainder < 7) 1363 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1364 } 1365 desc->plcp_length_hi = plcp_length >> 8; 1366 desc->plcp_length_lo = plcp_length & 0xff; 1367 1368 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1369 desc->plcp_signal |= 0x08; 1370 } 1371 1372 desc->flags = htole32(flags); 1373 desc->hdrlen = hdrlen; 1374 desc->xflags = xflags; 1375 1376 desc->wme = htole16(RT2573_QID(qid) | 1377 RT2573_AIFSN(wmep->wmep_aifsn) | 1378 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1379 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1380 } 1381 1382 static int 1383 rum_sendprot(struct rum_softc *sc, 1384 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1385 { 1386 struct ieee80211com *ic = ni->ni_ic; 1387 const struct ieee80211_frame *wh; 1388 struct rum_tx_data *data; 1389 struct mbuf *mprot; 1390 int protrate, pktlen, flags, isshort; 1391 uint16_t dur; 1392 1393 RUM_LOCK_ASSERT(sc); 1394 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1395 ("protection %d", prot)); 1396 1397 wh = mtod(m, const struct ieee80211_frame *); 1398 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1399 1400 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1401 1402 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1403 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1404 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1405 flags = 0; 1406 if (prot == IEEE80211_PROT_RTSCTS) { 1407 /* NB: CTS is the same size as an ACK */ 1408 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1409 flags |= RT2573_TX_NEED_ACK; 1410 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1411 } else { 1412 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1413 } 1414 if (mprot == NULL) { 1415 /* XXX stat + msg */ 1416 return (ENOBUFS); 1417 } 1418 data = STAILQ_FIRST(&sc->tx_free); 1419 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1420 sc->tx_nfree--; 1421 1422 data->m = mprot; 1423 data->ni = ieee80211_ref_node(ni); 1424 data->rate = protrate; 1425 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1426 mprot->m_pkthdr.len, protrate); 1427 1428 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1429 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1430 1431 return 0; 1432 } 1433 1434 static uint32_t 1435 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1436 const struct ieee80211_key *k) 1437 { 1438 struct ieee80211vap *vap = ni->ni_vap; 1439 u_int cipher; 1440 uint32_t flags = 0; 1441 uint8_t mode, pos; 1442 1443 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1444 cipher = k->wk_cipher->ic_cipher; 1445 pos = k->wk_keyix; 1446 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1447 if (mode == 0) 1448 return 0; 1449 1450 flags |= RT2573_TX_CIP_MODE(mode); 1451 1452 /* Do not trust GROUP flag */ 1453 if (!(k >= &vap->iv_nw_keys[0] && 1454 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1455 flags |= RT2573_TX_KEY_PAIR; 1456 else 1457 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1458 1459 flags |= RT2573_TX_KEY_ID(pos); 1460 1461 if (cipher == IEEE80211_CIPHER_TKIP) 1462 flags |= RT2573_TX_TKIPMIC; 1463 } 1464 1465 return flags; 1466 } 1467 1468 static int 1469 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1470 { 1471 struct ieee80211vap *vap = ni->ni_vap; 1472 struct ieee80211com *ic = &sc->sc_ic; 1473 struct rum_tx_data *data; 1474 struct ieee80211_frame *wh; 1475 const struct ieee80211_txparam *tp; 1476 struct ieee80211_key *k = NULL; 1477 uint32_t flags = 0; 1478 uint16_t dur; 1479 uint8_t ac, type, xflags = 0; 1480 int hdrlen; 1481 1482 RUM_LOCK_ASSERT(sc); 1483 1484 data = STAILQ_FIRST(&sc->tx_free); 1485 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1486 sc->tx_nfree--; 1487 1488 wh = mtod(m0, struct ieee80211_frame *); 1489 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1490 hdrlen = ieee80211_anyhdrsize(wh); 1491 ac = M_WME_GETAC(m0); 1492 1493 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1494 k = ieee80211_crypto_get_txkey(ni, m0); 1495 if (k == NULL) 1496 return (ENOENT); 1497 1498 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1499 !k->wk_cipher->ic_encap(k, m0)) 1500 return (ENOBUFS); 1501 1502 wh = mtod(m0, struct ieee80211_frame *); 1503 } 1504 1505 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1506 1507 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1508 flags |= RT2573_TX_NEED_ACK; 1509 1510 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1511 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1512 USETW(wh->i_dur, dur); 1513 1514 /* tell hardware to add timestamp for probe responses */ 1515 if (type == IEEE80211_FC0_TYPE_MGT && 1516 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1517 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1518 flags |= RT2573_TX_TIMESTAMP; 1519 } 1520 1521 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1522 xflags |= RT2573_TX_HWSEQ; 1523 1524 if (k != NULL) 1525 flags |= rum_tx_crypto_flags(sc, ni, k); 1526 1527 data->m = m0; 1528 data->ni = ni; 1529 data->rate = tp->mgmtrate; 1530 1531 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1532 m0->m_pkthdr.len, tp->mgmtrate); 1533 1534 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1535 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1536 1537 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1538 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1539 1540 return (0); 1541 } 1542 1543 static int 1544 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1545 const struct ieee80211_bpf_params *params) 1546 { 1547 struct ieee80211com *ic = ni->ni_ic; 1548 struct ieee80211_frame *wh; 1549 struct rum_tx_data *data; 1550 uint32_t flags; 1551 uint8_t ac, type, xflags = 0; 1552 int rate, error; 1553 1554 RUM_LOCK_ASSERT(sc); 1555 1556 wh = mtod(m0, struct ieee80211_frame *); 1557 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1558 1559 ac = params->ibp_pri & 3; 1560 1561 rate = params->ibp_rate0; 1562 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1563 return (EINVAL); 1564 1565 flags = 0; 1566 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1567 flags |= RT2573_TX_NEED_ACK; 1568 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1569 error = rum_sendprot(sc, m0, ni, 1570 params->ibp_flags & IEEE80211_BPF_RTS ? 1571 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1572 rate); 1573 if (error || sc->tx_nfree == 0) 1574 return (ENOBUFS); 1575 1576 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1577 } 1578 1579 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1580 xflags |= RT2573_TX_HWSEQ; 1581 1582 data = STAILQ_FIRST(&sc->tx_free); 1583 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1584 sc->tx_nfree--; 1585 1586 data->m = m0; 1587 data->ni = ni; 1588 data->rate = rate; 1589 1590 /* XXX need to setup descriptor ourself */ 1591 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1592 m0->m_pkthdr.len, rate); 1593 1594 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1595 m0->m_pkthdr.len, rate); 1596 1597 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1598 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1599 1600 return 0; 1601 } 1602 1603 static int 1604 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1605 { 1606 struct ieee80211vap *vap = ni->ni_vap; 1607 struct ieee80211com *ic = &sc->sc_ic; 1608 struct rum_tx_data *data; 1609 struct ieee80211_frame *wh; 1610 const struct ieee80211_txparam *tp; 1611 struct ieee80211_key *k = NULL; 1612 uint32_t flags = 0; 1613 uint16_t dur; 1614 uint8_t ac, type, qos, xflags = 0; 1615 int error, hdrlen, rate; 1616 1617 RUM_LOCK_ASSERT(sc); 1618 1619 wh = mtod(m0, struct ieee80211_frame *); 1620 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1621 hdrlen = ieee80211_anyhdrsize(wh); 1622 1623 if (IEEE80211_QOS_HAS_SEQ(wh)) 1624 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1625 else 1626 qos = 0; 1627 ac = M_WME_GETAC(m0); 1628 1629 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1630 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1631 rate = tp->mcastrate; 1632 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1633 rate = tp->ucastrate; 1634 else 1635 rate = ni->ni_txrate; 1636 1637 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1638 k = ieee80211_crypto_get_txkey(ni, m0); 1639 if (k == NULL) { 1640 m_freem(m0); 1641 return (ENOENT); 1642 } 1643 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1644 !k->wk_cipher->ic_encap(k, m0)) { 1645 m_freem(m0); 1646 return (ENOBUFS); 1647 } 1648 1649 /* packet header may have moved, reset our local pointer */ 1650 wh = mtod(m0, struct ieee80211_frame *); 1651 } 1652 1653 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1654 xflags |= RT2573_TX_HWSEQ; 1655 1656 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1657 int prot = IEEE80211_PROT_NONE; 1658 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1659 prot = IEEE80211_PROT_RTSCTS; 1660 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1661 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1662 prot = ic->ic_protmode; 1663 if (prot != IEEE80211_PROT_NONE) { 1664 error = rum_sendprot(sc, m0, ni, prot, rate); 1665 if (error || sc->tx_nfree == 0) { 1666 m_freem(m0); 1667 return ENOBUFS; 1668 } 1669 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1670 } 1671 } 1672 1673 if (k != NULL) 1674 flags |= rum_tx_crypto_flags(sc, ni, k); 1675 1676 data = STAILQ_FIRST(&sc->tx_free); 1677 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1678 sc->tx_nfree--; 1679 1680 data->m = m0; 1681 data->ni = ni; 1682 data->rate = rate; 1683 1684 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1685 /* Unicast frame, check if an ACK is expected. */ 1686 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1687 IEEE80211_QOS_ACKPOLICY_NOACK) 1688 flags |= RT2573_TX_NEED_ACK; 1689 1690 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1691 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1692 USETW(wh->i_dur, dur); 1693 } 1694 1695 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1696 m0->m_pkthdr.len, rate); 1697 1698 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1699 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1700 1701 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1702 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1703 1704 return 0; 1705 } 1706 1707 static int 1708 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1709 { 1710 struct rum_softc *sc = ic->ic_softc; 1711 int error; 1712 1713 RUM_LOCK(sc); 1714 if (!sc->sc_running) { 1715 RUM_UNLOCK(sc); 1716 return (ENXIO); 1717 } 1718 error = mbufq_enqueue(&sc->sc_snd, m); 1719 if (error) { 1720 RUM_UNLOCK(sc); 1721 return (error); 1722 } 1723 rum_start(sc); 1724 RUM_UNLOCK(sc); 1725 1726 return (0); 1727 } 1728 1729 static void 1730 rum_start(struct rum_softc *sc) 1731 { 1732 struct ieee80211_node *ni; 1733 struct mbuf *m; 1734 1735 RUM_LOCK_ASSERT(sc); 1736 1737 if (!sc->sc_running) 1738 return; 1739 1740 while (sc->tx_nfree >= RUM_TX_MINFREE && 1741 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1742 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1743 if (rum_tx_data(sc, m, ni) != 0) { 1744 if_inc_counter(ni->ni_vap->iv_ifp, 1745 IFCOUNTER_OERRORS, 1); 1746 ieee80211_free_node(ni); 1747 break; 1748 } 1749 } 1750 } 1751 1752 static void 1753 rum_parent(struct ieee80211com *ic) 1754 { 1755 struct rum_softc *sc = ic->ic_softc; 1756 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1757 1758 RUM_LOCK(sc); 1759 if (sc->sc_detached) { 1760 RUM_UNLOCK(sc); 1761 return; 1762 } 1763 RUM_UNLOCK(sc); 1764 1765 if (ic->ic_nrunning > 0) { 1766 if (rum_init(sc) == 0) 1767 ieee80211_start_all(ic); 1768 else 1769 ieee80211_stop(vap); 1770 } else 1771 rum_stop(sc); 1772 } 1773 1774 static void 1775 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1776 { 1777 struct usb_device_request req; 1778 usb_error_t error; 1779 1780 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1781 req.bRequest = RT2573_READ_EEPROM; 1782 USETW(req.wValue, 0); 1783 USETW(req.wIndex, addr); 1784 USETW(req.wLength, len); 1785 1786 error = rum_do_request(sc, &req, buf); 1787 if (error != 0) { 1788 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1789 usbd_errstr(error)); 1790 } 1791 } 1792 1793 static uint32_t 1794 rum_read(struct rum_softc *sc, uint16_t reg) 1795 { 1796 uint32_t val; 1797 1798 rum_read_multi(sc, reg, &val, sizeof val); 1799 1800 return le32toh(val); 1801 } 1802 1803 static void 1804 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1805 { 1806 struct usb_device_request req; 1807 usb_error_t error; 1808 1809 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1810 req.bRequest = RT2573_READ_MULTI_MAC; 1811 USETW(req.wValue, 0); 1812 USETW(req.wIndex, reg); 1813 USETW(req.wLength, len); 1814 1815 error = rum_do_request(sc, &req, buf); 1816 if (error != 0) { 1817 device_printf(sc->sc_dev, 1818 "could not multi read MAC register: %s\n", 1819 usbd_errstr(error)); 1820 } 1821 } 1822 1823 static usb_error_t 1824 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1825 { 1826 uint32_t tmp = htole32(val); 1827 1828 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1829 } 1830 1831 static usb_error_t 1832 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1833 { 1834 struct usb_device_request req; 1835 usb_error_t error; 1836 size_t offset; 1837 1838 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1839 req.bRequest = RT2573_WRITE_MULTI_MAC; 1840 USETW(req.wValue, 0); 1841 1842 /* write at most 64 bytes at a time */ 1843 for (offset = 0; offset < len; offset += 64) { 1844 USETW(req.wIndex, reg + offset); 1845 USETW(req.wLength, MIN(len - offset, 64)); 1846 1847 error = rum_do_request(sc, &req, (char *)buf + offset); 1848 if (error != 0) { 1849 device_printf(sc->sc_dev, 1850 "could not multi write MAC register: %s\n", 1851 usbd_errstr(error)); 1852 return (error); 1853 } 1854 } 1855 1856 return (USB_ERR_NORMAL_COMPLETION); 1857 } 1858 1859 static usb_error_t 1860 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1861 { 1862 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1863 } 1864 1865 static usb_error_t 1866 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1867 { 1868 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1869 } 1870 1871 static usb_error_t 1872 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1873 { 1874 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1875 } 1876 1877 static int 1878 rum_bbp_busy(struct rum_softc *sc) 1879 { 1880 int ntries; 1881 1882 for (ntries = 0; ntries < 100; ntries++) { 1883 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1884 break; 1885 if (rum_pause(sc, hz / 100)) 1886 break; 1887 } 1888 if (ntries == 100) 1889 return (ETIMEDOUT); 1890 1891 return (0); 1892 } 1893 1894 static void 1895 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1896 { 1897 uint32_t tmp; 1898 1899 DPRINTFN(2, "reg=0x%08x\n", reg); 1900 1901 if (rum_bbp_busy(sc) != 0) { 1902 device_printf(sc->sc_dev, "could not write to BBP\n"); 1903 return; 1904 } 1905 1906 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1907 rum_write(sc, RT2573_PHY_CSR3, tmp); 1908 } 1909 1910 static uint8_t 1911 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1912 { 1913 uint32_t val; 1914 int ntries; 1915 1916 DPRINTFN(2, "reg=0x%08x\n", reg); 1917 1918 if (rum_bbp_busy(sc) != 0) { 1919 device_printf(sc->sc_dev, "could not read BBP\n"); 1920 return 0; 1921 } 1922 1923 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1924 rum_write(sc, RT2573_PHY_CSR3, val); 1925 1926 for (ntries = 0; ntries < 100; ntries++) { 1927 val = rum_read(sc, RT2573_PHY_CSR3); 1928 if (!(val & RT2573_BBP_BUSY)) 1929 return val & 0xff; 1930 if (rum_pause(sc, hz / 100)) 1931 break; 1932 } 1933 1934 device_printf(sc->sc_dev, "could not read BBP\n"); 1935 return 0; 1936 } 1937 1938 static void 1939 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1940 { 1941 uint32_t tmp; 1942 int ntries; 1943 1944 for (ntries = 0; ntries < 100; ntries++) { 1945 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1946 break; 1947 if (rum_pause(sc, hz / 100)) 1948 break; 1949 } 1950 if (ntries == 100) { 1951 device_printf(sc->sc_dev, "could not write to RF\n"); 1952 return; 1953 } 1954 1955 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1956 (reg & 3); 1957 rum_write(sc, RT2573_PHY_CSR4, tmp); 1958 1959 /* remember last written value in sc */ 1960 sc->rf_regs[reg] = val; 1961 1962 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1963 } 1964 1965 static void 1966 rum_select_antenna(struct rum_softc *sc) 1967 { 1968 uint8_t bbp4, bbp77; 1969 uint32_t tmp; 1970 1971 bbp4 = rum_bbp_read(sc, 4); 1972 bbp77 = rum_bbp_read(sc, 77); 1973 1974 /* TBD */ 1975 1976 /* make sure Rx is disabled before switching antenna */ 1977 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1978 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1979 1980 rum_bbp_write(sc, 4, bbp4); 1981 rum_bbp_write(sc, 77, bbp77); 1982 1983 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1984 } 1985 1986 /* 1987 * Enable multi-rate retries for frames sent at OFDM rates. 1988 * In 802.11b/g mode, allow fallback to CCK rates. 1989 */ 1990 static void 1991 rum_enable_mrr(struct rum_softc *sc) 1992 { 1993 struct ieee80211com *ic = &sc->sc_ic; 1994 1995 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1996 rum_setbits(sc, RT2573_TXRX_CSR4, 1997 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 1998 } else { 1999 rum_modbits(sc, RT2573_TXRX_CSR4, 2000 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 2001 } 2002 } 2003 2004 static void 2005 rum_set_txpreamble(struct rum_softc *sc) 2006 { 2007 struct ieee80211com *ic = &sc->sc_ic; 2008 2009 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2010 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2011 else 2012 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2013 } 2014 2015 static void 2016 rum_set_basicrates(struct rum_softc *sc) 2017 { 2018 struct ieee80211com *ic = &sc->sc_ic; 2019 2020 /* update basic rate set */ 2021 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2022 /* 11b basic rates: 1, 2Mbps */ 2023 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2024 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2025 /* 11a basic rates: 6, 12, 24Mbps */ 2026 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2027 } else { 2028 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2029 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2030 } 2031 } 2032 2033 /* 2034 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2035 * driver. 2036 */ 2037 static void 2038 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2039 { 2040 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2041 2042 /* update all BBP registers that depend on the band */ 2043 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2044 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2045 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2046 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2047 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2048 } 2049 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2050 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2051 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2052 } 2053 2054 sc->bbp17 = bbp17; 2055 rum_bbp_write(sc, 17, bbp17); 2056 rum_bbp_write(sc, 96, bbp96); 2057 rum_bbp_write(sc, 104, bbp104); 2058 2059 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2060 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2061 rum_bbp_write(sc, 75, 0x80); 2062 rum_bbp_write(sc, 86, 0x80); 2063 rum_bbp_write(sc, 88, 0x80); 2064 } 2065 2066 rum_bbp_write(sc, 35, bbp35); 2067 rum_bbp_write(sc, 97, bbp97); 2068 rum_bbp_write(sc, 98, bbp98); 2069 2070 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2071 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2072 RT2573_PA_PE_5GHZ); 2073 } else { 2074 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2075 RT2573_PA_PE_2GHZ); 2076 } 2077 } 2078 2079 static void 2080 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2081 { 2082 struct ieee80211com *ic = &sc->sc_ic; 2083 const struct rfprog *rfprog; 2084 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2085 int8_t power; 2086 int i, chan; 2087 2088 chan = ieee80211_chan2ieee(ic, c); 2089 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2090 return; 2091 2092 /* select the appropriate RF settings based on what EEPROM says */ 2093 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2094 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2095 2096 /* find the settings for this channel (we know it exists) */ 2097 for (i = 0; rfprog[i].chan != chan; i++); 2098 2099 power = sc->txpow[i]; 2100 if (power < 0) { 2101 bbp94 += power; 2102 power = 0; 2103 } else if (power > 31) { 2104 bbp94 += power - 31; 2105 power = 31; 2106 } 2107 2108 /* 2109 * If we are switching from the 2GHz band to the 5GHz band or 2110 * vice-versa, BBP registers need to be reprogrammed. 2111 */ 2112 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2113 rum_select_band(sc, c); 2114 rum_select_antenna(sc); 2115 } 2116 ic->ic_curchan = c; 2117 2118 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2119 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2120 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2121 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2122 2123 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2124 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2125 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2126 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2127 2128 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2129 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2130 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2131 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2132 2133 rum_pause(sc, hz / 100); 2134 2135 /* enable smart mode for MIMO-capable RFs */ 2136 bbp3 = rum_bbp_read(sc, 3); 2137 2138 bbp3 &= ~RT2573_SMART_MODE; 2139 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2140 bbp3 |= RT2573_SMART_MODE; 2141 2142 rum_bbp_write(sc, 3, bbp3); 2143 2144 if (bbp94 != RT2573_BBPR94_DEFAULT) 2145 rum_bbp_write(sc, 94, bbp94); 2146 2147 /* give the chip some extra time to do the switchover */ 2148 rum_pause(sc, hz / 100); 2149 } 2150 2151 static void 2152 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2153 { 2154 const struct ieee80211_txparam *tp; 2155 struct ieee80211_node *ni = vap->iv_bss; 2156 struct rum_vap *rvp = RUM_VAP(vap); 2157 2158 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2159 rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; 2160 2161 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2162 RT2573_LONG_RETRY(rvp->maxretry), 2163 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2164 } 2165 2166 /* 2167 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2168 * and HostAP operating modes. 2169 */ 2170 static int 2171 rum_enable_tsf_sync(struct rum_softc *sc) 2172 { 2173 struct ieee80211com *ic = &sc->sc_ic; 2174 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2175 uint32_t tmp; 2176 uint16_t bintval; 2177 2178 if (vap->iv_opmode != IEEE80211_M_STA) { 2179 /* 2180 * Change default 16ms TBTT adjustment to 8ms. 2181 * Must be done before enabling beacon generation. 2182 */ 2183 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2184 return EIO; 2185 } 2186 2187 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2188 2189 /* set beacon interval (in 1/16ms unit) */ 2190 bintval = vap->iv_bss->ni_intval; 2191 tmp |= bintval * 16; 2192 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2193 2194 switch (vap->iv_opmode) { 2195 case IEEE80211_M_STA: 2196 /* 2197 * Local TSF is always updated with remote TSF on beacon 2198 * reception. 2199 */ 2200 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2201 break; 2202 case IEEE80211_M_IBSS: 2203 /* 2204 * Local TSF is updated with remote TSF on beacon reception 2205 * only if the remote TSF is greater than local TSF. 2206 */ 2207 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2208 tmp |= RT2573_BCN_TX_EN; 2209 break; 2210 case IEEE80211_M_HOSTAP: 2211 /* SYNC with nobody */ 2212 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2213 tmp |= RT2573_BCN_TX_EN; 2214 break; 2215 default: 2216 device_printf(sc->sc_dev, 2217 "Enabling TSF failed. undefined opmode %d\n", 2218 vap->iv_opmode); 2219 return EINVAL; 2220 } 2221 2222 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2223 return EIO; 2224 2225 /* refresh current sleep time */ 2226 return (rum_set_sleep_time(sc, bintval)); 2227 } 2228 2229 static void 2230 rum_enable_tsf(struct rum_softc *sc) 2231 { 2232 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2233 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2234 } 2235 2236 static void 2237 rum_abort_tsf_sync(struct rum_softc *sc) 2238 { 2239 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2240 } 2241 2242 static void 2243 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2244 { 2245 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2246 } 2247 2248 static void 2249 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2250 { 2251 struct ieee80211com *ic = &sc->sc_ic; 2252 uint8_t slottime; 2253 2254 slottime = IEEE80211_GET_SLOTTIME(ic); 2255 2256 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2257 2258 DPRINTF("setting slot time to %uus\n", slottime); 2259 } 2260 2261 static void 2262 rum_update_slot(struct ieee80211com *ic) 2263 { 2264 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2265 } 2266 2267 static int 2268 rum_wme_update(struct ieee80211com *ic) 2269 { 2270 const struct wmeParams *chanp = 2271 ic->ic_wme.wme_chanParams.cap_wmeParams; 2272 struct rum_softc *sc = ic->ic_softc; 2273 int error = 0; 2274 2275 RUM_LOCK(sc); 2276 error = rum_write(sc, RT2573_AIFSN_CSR, 2277 chanp[WME_AC_VO].wmep_aifsn << 12 | 2278 chanp[WME_AC_VI].wmep_aifsn << 8 | 2279 chanp[WME_AC_BK].wmep_aifsn << 4 | 2280 chanp[WME_AC_BE].wmep_aifsn); 2281 if (error) 2282 goto print_err; 2283 error = rum_write(sc, RT2573_CWMIN_CSR, 2284 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2285 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2286 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2287 chanp[WME_AC_BE].wmep_logcwmin); 2288 if (error) 2289 goto print_err; 2290 error = rum_write(sc, RT2573_CWMAX_CSR, 2291 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2292 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2293 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2294 chanp[WME_AC_BE].wmep_logcwmax); 2295 if (error) 2296 goto print_err; 2297 error = rum_write(sc, RT2573_TXOP01_CSR, 2298 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2299 chanp[WME_AC_BE].wmep_txopLimit); 2300 if (error) 2301 goto print_err; 2302 error = rum_write(sc, RT2573_TXOP23_CSR, 2303 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2304 chanp[WME_AC_VI].wmep_txopLimit); 2305 if (error) 2306 goto print_err; 2307 2308 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2309 2310 print_err: 2311 RUM_UNLOCK(sc); 2312 if (error != 0) { 2313 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2314 __func__, error); 2315 } 2316 2317 return (error); 2318 } 2319 2320 static void 2321 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2322 { 2323 2324 rum_write(sc, RT2573_MAC_CSR4, 2325 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2326 rum_write(sc, RT2573_MAC_CSR5, 2327 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2328 } 2329 2330 static void 2331 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2332 { 2333 2334 rum_write(sc, RT2573_MAC_CSR2, 2335 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2336 rum_write(sc, RT2573_MAC_CSR3, 2337 addr[4] | addr[5] << 8 | 0xff << 16); 2338 } 2339 2340 static void 2341 rum_setpromisc(struct rum_softc *sc) 2342 { 2343 struct ieee80211com *ic = &sc->sc_ic; 2344 2345 if (ic->ic_promisc == 0) 2346 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2347 else 2348 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2349 2350 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2351 "entering" : "leaving"); 2352 } 2353 2354 static void 2355 rum_update_promisc(struct ieee80211com *ic) 2356 { 2357 struct rum_softc *sc = ic->ic_softc; 2358 2359 RUM_LOCK(sc); 2360 if (sc->sc_running) 2361 rum_setpromisc(sc); 2362 RUM_UNLOCK(sc); 2363 } 2364 2365 static void 2366 rum_update_mcast(struct ieee80211com *ic) 2367 { 2368 /* Ignore. */ 2369 } 2370 2371 static const char * 2372 rum_get_rf(int rev) 2373 { 2374 switch (rev) { 2375 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2376 case RT2573_RF_2528: return "RT2528"; 2377 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2378 case RT2573_RF_5226: return "RT5226"; 2379 default: return "unknown"; 2380 } 2381 } 2382 2383 static void 2384 rum_read_eeprom(struct rum_softc *sc) 2385 { 2386 uint16_t val; 2387 #ifdef RUM_DEBUG 2388 int i; 2389 #endif 2390 2391 /* read MAC address */ 2392 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2393 2394 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2395 val = le16toh(val); 2396 sc->rf_rev = (val >> 11) & 0x1f; 2397 sc->hw_radio = (val >> 10) & 0x1; 2398 sc->rx_ant = (val >> 4) & 0x3; 2399 sc->tx_ant = (val >> 2) & 0x3; 2400 sc->nb_ant = val & 0x3; 2401 2402 DPRINTF("RF revision=%d\n", sc->rf_rev); 2403 2404 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2405 val = le16toh(val); 2406 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2407 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2408 2409 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2410 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2411 2412 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2413 val = le16toh(val); 2414 if ((val & 0xff) != 0xff) 2415 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2416 2417 /* Only [-10, 10] is valid */ 2418 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2419 sc->rssi_2ghz_corr = 0; 2420 2421 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2422 val = le16toh(val); 2423 if ((val & 0xff) != 0xff) 2424 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2425 2426 /* Only [-10, 10] is valid */ 2427 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2428 sc->rssi_5ghz_corr = 0; 2429 2430 if (sc->ext_2ghz_lna) 2431 sc->rssi_2ghz_corr -= 14; 2432 if (sc->ext_5ghz_lna) 2433 sc->rssi_5ghz_corr -= 14; 2434 2435 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2436 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2437 2438 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2439 val = le16toh(val); 2440 if ((val & 0xff) != 0xff) 2441 sc->rffreq = val & 0xff; 2442 2443 DPRINTF("RF freq=%d\n", sc->rffreq); 2444 2445 /* read Tx power for all a/b/g channels */ 2446 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2447 /* XXX default Tx power for 802.11a channels */ 2448 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2449 #ifdef RUM_DEBUG 2450 for (i = 0; i < 14; i++) 2451 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2452 #endif 2453 2454 /* read default values for BBP registers */ 2455 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2456 #ifdef RUM_DEBUG 2457 for (i = 0; i < 14; i++) { 2458 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2459 continue; 2460 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2461 sc->bbp_prom[i].val); 2462 } 2463 #endif 2464 } 2465 2466 static int 2467 rum_bbp_wakeup(struct rum_softc *sc) 2468 { 2469 unsigned int ntries; 2470 2471 for (ntries = 0; ntries < 100; ntries++) { 2472 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2473 break; 2474 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2475 if (rum_pause(sc, hz / 100)) 2476 break; 2477 } 2478 if (ntries == 100) { 2479 device_printf(sc->sc_dev, 2480 "timeout waiting for BBP/RF to wakeup\n"); 2481 return (ETIMEDOUT); 2482 } 2483 2484 return (0); 2485 } 2486 2487 static int 2488 rum_bbp_init(struct rum_softc *sc) 2489 { 2490 int i, ntries; 2491 2492 /* wait for BBP to be ready */ 2493 for (ntries = 0; ntries < 100; ntries++) { 2494 const uint8_t val = rum_bbp_read(sc, 0); 2495 if (val != 0 && val != 0xff) 2496 break; 2497 if (rum_pause(sc, hz / 100)) 2498 break; 2499 } 2500 if (ntries == 100) { 2501 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2502 return EIO; 2503 } 2504 2505 /* initialize BBP registers to default values */ 2506 for (i = 0; i < nitems(rum_def_bbp); i++) 2507 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2508 2509 /* write vendor-specific BBP values (from EEPROM) */ 2510 for (i = 0; i < 16; i++) { 2511 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2512 continue; 2513 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2514 } 2515 2516 return 0; 2517 } 2518 2519 static void 2520 rum_clr_shkey_regs(struct rum_softc *sc) 2521 { 2522 rum_write(sc, RT2573_SEC_CSR0, 0); 2523 rum_write(sc, RT2573_SEC_CSR1, 0); 2524 rum_write(sc, RT2573_SEC_CSR5, 0); 2525 } 2526 2527 static int 2528 rum_init(struct rum_softc *sc) 2529 { 2530 struct ieee80211com *ic = &sc->sc_ic; 2531 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2532 uint32_t tmp; 2533 int i, ret; 2534 2535 RUM_LOCK(sc); 2536 if (sc->sc_running) { 2537 ret = 0; 2538 goto end; 2539 } 2540 2541 /* initialize MAC registers to default values */ 2542 for (i = 0; i < nitems(rum_def_mac); i++) 2543 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2544 2545 /* reset some WME parameters to default values */ 2546 sc->wme_params[0].wmep_aifsn = 2; 2547 sc->wme_params[0].wmep_logcwmin = 4; 2548 sc->wme_params[0].wmep_logcwmax = 10; 2549 2550 /* set host ready */ 2551 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2552 rum_write(sc, RT2573_MAC_CSR1, 0); 2553 2554 /* wait for BBP/RF to wakeup */ 2555 if ((ret = rum_bbp_wakeup(sc)) != 0) 2556 goto end; 2557 2558 if ((ret = rum_bbp_init(sc)) != 0) 2559 goto end; 2560 2561 /* select default channel */ 2562 rum_select_band(sc, ic->ic_curchan); 2563 rum_select_antenna(sc); 2564 rum_set_chan(sc, ic->ic_curchan); 2565 2566 /* clear STA registers */ 2567 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2568 2569 /* clear security registers (if required) */ 2570 if (sc->sc_clr_shkeys == 0) { 2571 rum_clr_shkey_regs(sc); 2572 sc->sc_clr_shkeys = 1; 2573 } 2574 2575 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2576 2577 /* initialize ASIC */ 2578 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2579 2580 /* 2581 * Allocate Tx and Rx xfer queues. 2582 */ 2583 rum_setup_tx_list(sc); 2584 2585 /* update Rx filter */ 2586 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2587 2588 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2589 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2590 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2591 RT2573_DROP_ACKCTS; 2592 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2593 tmp |= RT2573_DROP_TODS; 2594 if (ic->ic_promisc == 0) 2595 tmp |= RT2573_DROP_NOT_TO_ME; 2596 } 2597 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2598 2599 sc->sc_running = 1; 2600 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2601 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2602 2603 end: RUM_UNLOCK(sc); 2604 2605 if (ret != 0) 2606 rum_stop(sc); 2607 2608 return ret; 2609 } 2610 2611 static void 2612 rum_stop(struct rum_softc *sc) 2613 { 2614 2615 RUM_LOCK(sc); 2616 if (!sc->sc_running) { 2617 RUM_UNLOCK(sc); 2618 return; 2619 } 2620 sc->sc_running = 0; 2621 RUM_UNLOCK(sc); 2622 2623 /* 2624 * Drain the USB transfers, if not already drained: 2625 */ 2626 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2627 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2628 2629 RUM_LOCK(sc); 2630 rum_unsetup_tx_list(sc); 2631 2632 /* disable Rx */ 2633 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2634 2635 /* reset ASIC */ 2636 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2637 rum_write(sc, RT2573_MAC_CSR1, 0); 2638 RUM_UNLOCK(sc); 2639 } 2640 2641 static void 2642 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2643 { 2644 uint16_t reg = RT2573_MCU_CODE_BASE; 2645 usb_error_t err; 2646 2647 /* copy firmware image into NIC */ 2648 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2649 err = rum_write(sc, reg, UGETDW(ucode)); 2650 if (err) { 2651 /* firmware already loaded ? */ 2652 device_printf(sc->sc_dev, "Firmware load " 2653 "failure! (ignored)\n"); 2654 break; 2655 } 2656 } 2657 2658 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2659 if (err != USB_ERR_NORMAL_COMPLETION) { 2660 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2661 usbd_errstr(err)); 2662 } 2663 2664 /* give the chip some time to boot */ 2665 rum_pause(sc, hz / 8); 2666 } 2667 2668 static int 2669 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2670 { 2671 struct ieee80211com *ic = &sc->sc_ic; 2672 usb_error_t uerror; 2673 int exp, delay; 2674 2675 RUM_LOCK_ASSERT(sc); 2676 2677 exp = ic->ic_lintval / bintval; 2678 delay = ic->ic_lintval % bintval; 2679 2680 if (exp > RT2573_TBCN_EXP_MAX) 2681 exp = RT2573_TBCN_EXP_MAX; 2682 if (delay > RT2573_TBCN_DELAY_MAX) 2683 delay = RT2573_TBCN_DELAY_MAX; 2684 2685 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2686 RT2573_TBCN_EXP(exp) | 2687 RT2573_TBCN_DELAY(delay), 2688 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2689 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2690 2691 if (uerror != USB_ERR_NORMAL_COMPLETION) 2692 return (EIO); 2693 2694 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2695 2696 return (0); 2697 } 2698 2699 static int 2700 rum_reset(struct ieee80211vap *vap, u_long cmd) 2701 { 2702 struct ieee80211com *ic = vap->iv_ic; 2703 struct ieee80211_node *ni; 2704 struct rum_softc *sc = ic->ic_softc; 2705 int error; 2706 2707 switch (cmd) { 2708 case IEEE80211_IOC_POWERSAVE: 2709 case IEEE80211_IOC_PROTMODE: 2710 case IEEE80211_IOC_RTSTHRESHOLD: 2711 error = 0; 2712 break; 2713 case IEEE80211_IOC_POWERSAVESLEEP: 2714 ni = ieee80211_ref_node(vap->iv_bss); 2715 2716 RUM_LOCK(sc); 2717 error = rum_set_sleep_time(sc, ni->ni_intval); 2718 if (vap->iv_state == IEEE80211_S_SLEEP) { 2719 /* Use new values for wakeup timer. */ 2720 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2721 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2722 } 2723 /* XXX send reassoc */ 2724 RUM_UNLOCK(sc); 2725 2726 ieee80211_free_node(ni); 2727 break; 2728 default: 2729 error = ENETRESET; 2730 break; 2731 } 2732 2733 return (error); 2734 } 2735 2736 static int 2737 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2738 { 2739 struct ieee80211com *ic = vap->iv_ic; 2740 struct rum_vap *rvp = RUM_VAP(vap); 2741 struct mbuf *m = rvp->bcn_mbuf; 2742 const struct ieee80211_txparam *tp; 2743 struct rum_tx_desc desc; 2744 2745 RUM_LOCK_ASSERT(sc); 2746 2747 if (m == NULL) 2748 return EINVAL; 2749 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2750 return EINVAL; 2751 2752 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2753 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2754 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2755 2756 /* copy the Tx descriptor into NIC memory */ 2757 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2758 RT2573_TX_DESC_SIZE) != 0) 2759 return EIO; 2760 2761 /* copy beacon header and payload into NIC memory */ 2762 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2763 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2764 return EIO; 2765 2766 return 0; 2767 } 2768 2769 static int 2770 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2771 { 2772 struct rum_vap *rvp = RUM_VAP(vap); 2773 struct ieee80211_node *ni = vap->iv_bss; 2774 struct mbuf *m; 2775 2776 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2777 return EINVAL; 2778 2779 m = ieee80211_beacon_alloc(ni); 2780 if (m == NULL) 2781 return ENOMEM; 2782 2783 if (rvp->bcn_mbuf != NULL) 2784 m_freem(rvp->bcn_mbuf); 2785 2786 rvp->bcn_mbuf = m; 2787 2788 return (rum_set_beacon(sc, vap)); 2789 } 2790 2791 static void 2792 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2793 uint8_t rvp_id) 2794 { 2795 struct ieee80211vap *vap = data->vap; 2796 2797 rum_set_beacon(sc, vap); 2798 } 2799 2800 static void 2801 rum_update_beacon(struct ieee80211vap *vap, int item) 2802 { 2803 struct ieee80211com *ic = vap->iv_ic; 2804 struct rum_softc *sc = ic->ic_softc; 2805 struct rum_vap *rvp = RUM_VAP(vap); 2806 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2807 struct ieee80211_node *ni = vap->iv_bss; 2808 struct mbuf *m = rvp->bcn_mbuf; 2809 int mcast = 0; 2810 2811 RUM_LOCK(sc); 2812 if (m == NULL) { 2813 m = ieee80211_beacon_alloc(ni); 2814 if (m == NULL) { 2815 device_printf(sc->sc_dev, 2816 "%s: could not allocate beacon frame\n", __func__); 2817 RUM_UNLOCK(sc); 2818 return; 2819 } 2820 rvp->bcn_mbuf = m; 2821 } 2822 2823 switch (item) { 2824 case IEEE80211_BEACON_ERP: 2825 rum_update_slot(ic); 2826 break; 2827 case IEEE80211_BEACON_TIM: 2828 mcast = 1; /*TODO*/ 2829 break; 2830 default: 2831 break; 2832 } 2833 RUM_UNLOCK(sc); 2834 2835 setbit(bo->bo_flags, item); 2836 ieee80211_beacon_update(ni, m, mcast); 2837 2838 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2839 } 2840 2841 static int 2842 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2843 uint16_t base) 2844 { 2845 2846 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2847 return EIO; 2848 2849 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2850 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2851 k->wk_txmic, 8)) 2852 return EIO; 2853 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2854 k->wk_rxmic, 8)) 2855 return EIO; 2856 } 2857 2858 return 0; 2859 } 2860 2861 static void 2862 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2863 uint8_t rvp_id) 2864 { 2865 struct ieee80211_key *k = &data->key; 2866 uint8_t mode; 2867 2868 if (sc->sc_clr_shkeys == 0) { 2869 rum_clr_shkey_regs(sc); 2870 sc->sc_clr_shkeys = 1; 2871 } 2872 2873 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2874 if (mode == 0) 2875 goto print_err; 2876 2877 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2878 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2879 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2880 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2881 2882 /* Install the key. */ 2883 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2884 goto print_err; 2885 2886 /* Set cipher mode. */ 2887 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2888 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2889 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2890 != 0) 2891 goto print_err; 2892 2893 /* Mark this key as valid. */ 2894 if (rum_setbits(sc, RT2573_SEC_CSR0, 2895 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2896 goto print_err; 2897 2898 return; 2899 2900 print_err: 2901 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2902 __func__, k->wk_keyix, rvp_id); 2903 } 2904 2905 static void 2906 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2907 uint8_t rvp_id) 2908 { 2909 struct ieee80211_key *k = &data->key; 2910 2911 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2912 k->wk_keyix, rvp_id); 2913 rum_clrbits(sc, 2914 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2915 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2916 rum_clrbits(sc, RT2573_SEC_CSR0, 2917 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2918 } 2919 2920 static void 2921 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2922 uint8_t rvp_id) 2923 { 2924 struct ieee80211_key *k = &data->key; 2925 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2926 uint8_t mode; 2927 2928 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2929 if (mode == 0) 2930 goto print_err; 2931 2932 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2933 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2934 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2935 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2936 2937 /* Install the key. */ 2938 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2939 goto print_err; 2940 2941 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2942 buf[IEEE80211_ADDR_LEN] = mode; 2943 2944 /* Set transmitter address and cipher mode. */ 2945 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2946 buf, sizeof buf) != 0) 2947 goto print_err; 2948 2949 /* Enable key table lookup for this vap. */ 2950 if (sc->vap_key_count[rvp_id]++ == 0) 2951 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2952 goto print_err; 2953 2954 /* Mark this key as valid. */ 2955 if (rum_setbits(sc, 2956 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2957 1 << (k->wk_keyix % 32)) != 0) 2958 goto print_err; 2959 2960 return; 2961 2962 print_err: 2963 device_printf(sc->sc_dev, 2964 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2965 rvp_id); 2966 } 2967 2968 static void 2969 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2970 uint8_t rvp_id) 2971 { 2972 struct ieee80211_key *k = &data->key; 2973 2974 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 2975 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2976 1 << (k->wk_keyix % 32)); 2977 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 2978 if (--sc->vap_key_count[rvp_id] == 0) 2979 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 2980 } 2981 2982 static int 2983 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2984 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2985 { 2986 struct rum_softc *sc = vap->iv_ic->ic_softc; 2987 uint8_t i; 2988 2989 if (!(&vap->iv_nw_keys[0] <= k && 2990 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2991 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 2992 RUM_LOCK(sc); 2993 for (i = 0; i < RT2573_ADDR_MAX; i++) { 2994 if ((sc->keys_bmap & (1ULL << i)) == 0) { 2995 sc->keys_bmap |= (1ULL << i); 2996 *keyix = i; 2997 break; 2998 } 2999 } 3000 RUM_UNLOCK(sc); 3001 if (i == RT2573_ADDR_MAX) { 3002 device_printf(sc->sc_dev, 3003 "%s: no free space in the key table\n", 3004 __func__); 3005 return 0; 3006 } 3007 } else 3008 *keyix = 0; 3009 } else { 3010 *keyix = k - vap->iv_nw_keys; 3011 } 3012 *rxkeyix = *keyix; 3013 return 1; 3014 } 3015 3016 static int 3017 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3018 { 3019 struct rum_softc *sc = vap->iv_ic->ic_softc; 3020 int group; 3021 3022 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3023 /* Not for us. */ 3024 return 1; 3025 } 3026 3027 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3028 3029 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3030 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3031 } 3032 3033 static int 3034 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3035 { 3036 struct rum_softc *sc = vap->iv_ic->ic_softc; 3037 int group; 3038 3039 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3040 /* Not for us. */ 3041 return 1; 3042 } 3043 3044 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3045 3046 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3047 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3048 } 3049 3050 static int 3051 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3052 const struct ieee80211_bpf_params *params) 3053 { 3054 struct rum_softc *sc = ni->ni_ic->ic_softc; 3055 int ret; 3056 3057 RUM_LOCK(sc); 3058 /* prevent management frames from being sent if we're not ready */ 3059 if (!sc->sc_running) { 3060 ret = ENETDOWN; 3061 goto bad; 3062 } 3063 if (sc->tx_nfree < RUM_TX_MINFREE) { 3064 ret = EIO; 3065 goto bad; 3066 } 3067 3068 if (params == NULL) { 3069 /* 3070 * Legacy path; interpret frame contents to decide 3071 * precisely how to send the frame. 3072 */ 3073 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3074 goto bad; 3075 } else { 3076 /* 3077 * Caller supplied explicit parameters to use in 3078 * sending the frame. 3079 */ 3080 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3081 goto bad; 3082 } 3083 RUM_UNLOCK(sc); 3084 3085 return 0; 3086 bad: 3087 RUM_UNLOCK(sc); 3088 m_freem(m); 3089 return ret; 3090 } 3091 3092 static void 3093 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3094 { 3095 struct ieee80211vap *vap = ni->ni_vap; 3096 struct rum_vap *rvp = RUM_VAP(vap); 3097 3098 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3099 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3100 3101 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3102 } 3103 3104 static void 3105 rum_ratectl_timeout(void *arg) 3106 { 3107 struct rum_vap *rvp = arg; 3108 struct ieee80211vap *vap = &rvp->vap; 3109 struct ieee80211com *ic = vap->iv_ic; 3110 3111 ieee80211_runtask(ic, &rvp->ratectl_task); 3112 } 3113 3114 static void 3115 rum_ratectl_task(void *arg, int pending) 3116 { 3117 struct rum_vap *rvp = arg; 3118 struct ieee80211vap *vap = &rvp->vap; 3119 struct rum_softc *sc = vap->iv_ic->ic_softc; 3120 struct ieee80211_node *ni; 3121 int ok[3], fail; 3122 int sum, success, retrycnt; 3123 3124 RUM_LOCK(sc); 3125 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3126 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3127 3128 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3129 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3130 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3131 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3132 3133 success = ok[0] + ok[1] + ok[2]; 3134 sum = success + fail; 3135 /* XXX at least */ 3136 retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3137 3138 if (sum != 0) { 3139 ni = ieee80211_ref_node(vap->iv_bss); 3140 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 3141 (void) ieee80211_ratectl_rate(ni, NULL, 0); 3142 ieee80211_free_node(ni); 3143 } 3144 3145 /* count TX retry-fail as Tx errors */ 3146 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3147 3148 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3149 RUM_UNLOCK(sc); 3150 } 3151 3152 static void 3153 rum_scan_start(struct ieee80211com *ic) 3154 { 3155 struct rum_softc *sc = ic->ic_softc; 3156 3157 RUM_LOCK(sc); 3158 rum_abort_tsf_sync(sc); 3159 rum_set_bssid(sc, ieee80211broadcastaddr); 3160 RUM_UNLOCK(sc); 3161 3162 } 3163 3164 static void 3165 rum_scan_end(struct ieee80211com *ic) 3166 { 3167 struct rum_softc *sc = ic->ic_softc; 3168 3169 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3170 RUM_LOCK(sc); 3171 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3172 rum_enable_tsf_sync(sc); 3173 else 3174 rum_enable_tsf(sc); 3175 rum_set_bssid(sc, sc->sc_bssid); 3176 RUM_UNLOCK(sc); 3177 } 3178 } 3179 3180 static void 3181 rum_set_channel(struct ieee80211com *ic) 3182 { 3183 struct rum_softc *sc = ic->ic_softc; 3184 3185 RUM_LOCK(sc); 3186 rum_set_chan(sc, ic->ic_curchan); 3187 RUM_UNLOCK(sc); 3188 } 3189 3190 static void 3191 rum_getradiocaps(struct ieee80211com *ic, 3192 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3193 { 3194 struct rum_softc *sc = ic->ic_softc; 3195 uint8_t bands[IEEE80211_MODE_BYTES]; 3196 3197 memset(bands, 0, sizeof(bands)); 3198 setbit(bands, IEEE80211_MODE_11B); 3199 setbit(bands, IEEE80211_MODE_11G); 3200 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 3201 rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0); 3202 3203 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3204 setbit(bands, IEEE80211_MODE_11A); 3205 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3206 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3207 } 3208 } 3209 3210 static int 3211 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3212 { 3213 struct ieee80211com *ic = &sc->sc_ic; 3214 int lna, agc, rssi; 3215 3216 lna = (raw >> 5) & 0x3; 3217 agc = raw & 0x1f; 3218 3219 if (lna == 0) { 3220 /* 3221 * No RSSI mapping 3222 * 3223 * NB: Since RSSI is relative to noise floor, -1 is 3224 * adequate for caller to know error happened. 3225 */ 3226 return -1; 3227 } 3228 3229 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3230 3231 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3232 rssi += sc->rssi_2ghz_corr; 3233 3234 if (lna == 1) 3235 rssi -= 64; 3236 else if (lna == 2) 3237 rssi -= 74; 3238 else if (lna == 3) 3239 rssi -= 90; 3240 } else { 3241 rssi += sc->rssi_5ghz_corr; 3242 3243 if (!sc->ext_5ghz_lna && lna != 1) 3244 rssi += 4; 3245 3246 if (lna == 1) 3247 rssi -= 64; 3248 else if (lna == 2) 3249 rssi -= 86; 3250 else if (lna == 3) 3251 rssi -= 100; 3252 } 3253 return rssi; 3254 } 3255 3256 static int 3257 rum_pause(struct rum_softc *sc, int timeout) 3258 { 3259 3260 usb_pause_mtx(&sc->sc_mtx, timeout); 3261 return (0); 3262 } 3263 3264 static device_method_t rum_methods[] = { 3265 /* Device interface */ 3266 DEVMETHOD(device_probe, rum_match), 3267 DEVMETHOD(device_attach, rum_attach), 3268 DEVMETHOD(device_detach, rum_detach), 3269 DEVMETHOD_END 3270 }; 3271 3272 static driver_t rum_driver = { 3273 .name = "rum", 3274 .methods = rum_methods, 3275 .size = sizeof(struct rum_softc), 3276 }; 3277 3278 static devclass_t rum_devclass; 3279 3280 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 3281 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3282 MODULE_DEPEND(rum, usb, 1, 1, 1); 3283 MODULE_VERSION(rum, 1); 3284 USB_PNP_HOST_INFO(rum_devs); 3285