1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /*- 25 * Ralink Technology RT2501USB/RT2601USB chipset driver 26 * http://www.ralinktech.com.tw/ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/lock.h> 33 #include <sys/mutex.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #ifdef INET 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/if_ether.h> 61 #include <netinet/ip.h> 62 #endif 63 64 #include <net80211/ieee80211_var.h> 65 #include <net80211/ieee80211_regdomain.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_ratectl.h> 68 69 #include <dev/usb/usb.h> 70 #include <dev/usb/usbdi.h> 71 #include "usbdevs.h" 72 73 #define USB_DEBUG_VAR rum_debug 74 #include <dev/usb/usb_debug.h> 75 76 #include <dev/usb/wlan/if_rumreg.h> 77 #include <dev/usb/wlan/if_rumvar.h> 78 #include <dev/usb/wlan/if_rumfw.h> 79 80 #ifdef USB_DEBUG 81 static int rum_debug = 0; 82 83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 84 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0, 85 "Debug level"); 86 #endif 87 88 #define N(a) ((int)(sizeof (a) / sizeof ((a)[0]))) 89 90 static const STRUCT_USB_HOST_ID rum_devs[] = { 91 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 92 RUM_DEV(ABOCOM, HWU54DM), 93 RUM_DEV(ABOCOM, RT2573_2), 94 RUM_DEV(ABOCOM, RT2573_3), 95 RUM_DEV(ABOCOM, RT2573_4), 96 RUM_DEV(ABOCOM, WUG2700), 97 RUM_DEV(AMIT, CGWLUSB2GO), 98 RUM_DEV(ASUS, RT2573_1), 99 RUM_DEV(ASUS, RT2573_2), 100 RUM_DEV(BELKIN, F5D7050A), 101 RUM_DEV(BELKIN, F5D9050V3), 102 RUM_DEV(CISCOLINKSYS, WUSB54GC), 103 RUM_DEV(CISCOLINKSYS, WUSB54GR), 104 RUM_DEV(CONCEPTRONIC2, C54RU2), 105 RUM_DEV(COREGA, CGWLUSB2GL), 106 RUM_DEV(COREGA, CGWLUSB2GPX), 107 RUM_DEV(DICKSMITH, CWD854F), 108 RUM_DEV(DICKSMITH, RT2573), 109 RUM_DEV(EDIMAX, EW7318USG), 110 RUM_DEV(DLINK2, DWLG122C1), 111 RUM_DEV(DLINK2, WUA1340), 112 RUM_DEV(DLINK2, DWA111), 113 RUM_DEV(DLINK2, DWA110), 114 RUM_DEV(GIGABYTE, GNWB01GS), 115 RUM_DEV(GIGABYTE, GNWI05GS), 116 RUM_DEV(GIGASET, RT2573), 117 RUM_DEV(GOODWAY, RT2573), 118 RUM_DEV(GUILLEMOT, HWGUSB254LB), 119 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 120 RUM_DEV(HUAWEI3COM, WUB320G), 121 RUM_DEV(MELCO, G54HP), 122 RUM_DEV(MELCO, SG54HP), 123 RUM_DEV(MELCO, WLIUCG), 124 RUM_DEV(MELCO, WLRUCG), 125 RUM_DEV(MELCO, WLRUCGAOSS), 126 RUM_DEV(MSI, RT2573_1), 127 RUM_DEV(MSI, RT2573_2), 128 RUM_DEV(MSI, RT2573_3), 129 RUM_DEV(MSI, RT2573_4), 130 RUM_DEV(NOVATECH, RT2573), 131 RUM_DEV(PLANEX2, GWUS54HP), 132 RUM_DEV(PLANEX2, GWUS54MINI2), 133 RUM_DEV(PLANEX2, GWUSMM), 134 RUM_DEV(QCOM, RT2573), 135 RUM_DEV(QCOM, RT2573_2), 136 RUM_DEV(QCOM, RT2573_3), 137 RUM_DEV(RALINK, RT2573), 138 RUM_DEV(RALINK, RT2573_2), 139 RUM_DEV(RALINK, RT2671), 140 RUM_DEV(SITECOMEU, WL113R2), 141 RUM_DEV(SITECOMEU, WL172), 142 RUM_DEV(SPARKLAN, RT2573), 143 RUM_DEV(SURECOM, RT2573), 144 #undef RUM_DEV 145 }; 146 147 static device_probe_t rum_match; 148 static device_attach_t rum_attach; 149 static device_detach_t rum_detach; 150 151 static usb_callback_t rum_bulk_read_callback; 152 static usb_callback_t rum_bulk_write_callback; 153 154 static usb_error_t rum_do_request(struct rum_softc *sc, 155 struct usb_device_request *req, void *data); 156 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 157 const char [IFNAMSIZ], int, enum ieee80211_opmode, 158 int, const uint8_t [IEEE80211_ADDR_LEN], 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void rum_vap_delete(struct ieee80211vap *); 161 static void rum_tx_free(struct rum_tx_data *, int); 162 static void rum_setup_tx_list(struct rum_softc *); 163 static void rum_unsetup_tx_list(struct rum_softc *); 164 static int rum_newstate(struct ieee80211vap *, 165 enum ieee80211_state, int); 166 static void rum_setup_tx_desc(struct rum_softc *, 167 struct rum_tx_desc *, uint32_t, uint16_t, int, 168 int); 169 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 170 struct ieee80211_node *); 171 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 172 struct ieee80211_node *, 173 const struct ieee80211_bpf_params *); 174 static int rum_tx_data(struct rum_softc *, struct mbuf *, 175 struct ieee80211_node *); 176 static void rum_start(struct ifnet *); 177 static int rum_ioctl(struct ifnet *, u_long, caddr_t); 178 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 179 int); 180 static uint32_t rum_read(struct rum_softc *, uint16_t); 181 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 182 int); 183 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 184 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 185 size_t); 186 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 187 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 188 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 189 static void rum_select_antenna(struct rum_softc *); 190 static void rum_enable_mrr(struct rum_softc *); 191 static void rum_set_txpreamble(struct rum_softc *); 192 static void rum_set_basicrates(struct rum_softc *); 193 static void rum_select_band(struct rum_softc *, 194 struct ieee80211_channel *); 195 static void rum_set_chan(struct rum_softc *, 196 struct ieee80211_channel *); 197 static void rum_enable_tsf_sync(struct rum_softc *); 198 static void rum_enable_tsf(struct rum_softc *); 199 static void rum_update_slot(struct ifnet *); 200 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 201 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 202 static void rum_update_mcast(struct ifnet *); 203 static void rum_update_promisc(struct ifnet *); 204 static void rum_setpromisc(struct rum_softc *); 205 static const char *rum_get_rf(int); 206 static void rum_read_eeprom(struct rum_softc *); 207 static int rum_bbp_init(struct rum_softc *); 208 static void rum_init_locked(struct rum_softc *); 209 static void rum_init(void *); 210 static void rum_stop(struct rum_softc *); 211 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 212 size_t); 213 static void rum_prepare_beacon(struct rum_softc *, 214 struct ieee80211vap *); 215 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 216 const struct ieee80211_bpf_params *); 217 static void rum_scan_start(struct ieee80211com *); 218 static void rum_scan_end(struct ieee80211com *); 219 static void rum_set_channel(struct ieee80211com *); 220 static int rum_get_rssi(struct rum_softc *, uint8_t); 221 static void rum_ratectl_start(struct rum_softc *, 222 struct ieee80211_node *); 223 static void rum_ratectl_timeout(void *); 224 static void rum_ratectl_task(void *, int); 225 static int rum_pause(struct rum_softc *, int); 226 227 static const struct { 228 uint32_t reg; 229 uint32_t val; 230 } rum_def_mac[] = { 231 { RT2573_TXRX_CSR0, 0x025fb032 }, 232 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 233 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 234 { RT2573_TXRX_CSR3, 0x00858687 }, 235 { RT2573_TXRX_CSR7, 0x2e31353b }, 236 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 237 { RT2573_TXRX_CSR15, 0x0000000f }, 238 { RT2573_MAC_CSR6, 0x00000fff }, 239 { RT2573_MAC_CSR8, 0x016c030a }, 240 { RT2573_MAC_CSR10, 0x00000718 }, 241 { RT2573_MAC_CSR12, 0x00000004 }, 242 { RT2573_MAC_CSR13, 0x00007f00 }, 243 { RT2573_SEC_CSR0, 0x00000000 }, 244 { RT2573_SEC_CSR1, 0x00000000 }, 245 { RT2573_SEC_CSR5, 0x00000000 }, 246 { RT2573_PHY_CSR1, 0x000023b0 }, 247 { RT2573_PHY_CSR5, 0x00040a06 }, 248 { RT2573_PHY_CSR6, 0x00080606 }, 249 { RT2573_PHY_CSR7, 0x00000408 }, 250 { RT2573_AIFSN_CSR, 0x00002273 }, 251 { RT2573_CWMIN_CSR, 0x00002344 }, 252 { RT2573_CWMAX_CSR, 0x000034aa } 253 }; 254 255 static const struct { 256 uint8_t reg; 257 uint8_t val; 258 } rum_def_bbp[] = { 259 { 3, 0x80 }, 260 { 15, 0x30 }, 261 { 17, 0x20 }, 262 { 21, 0xc8 }, 263 { 22, 0x38 }, 264 { 23, 0x06 }, 265 { 24, 0xfe }, 266 { 25, 0x0a }, 267 { 26, 0x0d }, 268 { 32, 0x0b }, 269 { 34, 0x12 }, 270 { 37, 0x07 }, 271 { 39, 0xf8 }, 272 { 41, 0x60 }, 273 { 53, 0x10 }, 274 { 54, 0x18 }, 275 { 60, 0x10 }, 276 { 61, 0x04 }, 277 { 62, 0x04 }, 278 { 75, 0xfe }, 279 { 86, 0xfe }, 280 { 88, 0xfe }, 281 { 90, 0x0f }, 282 { 99, 0x00 }, 283 { 102, 0x16 }, 284 { 107, 0x04 } 285 }; 286 287 static const struct rfprog { 288 uint8_t chan; 289 uint32_t r1, r2, r3, r4; 290 } rum_rf5226[] = { 291 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 292 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 293 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 294 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 295 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 296 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 297 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 298 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 299 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 300 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 301 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 302 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 303 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 304 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 305 306 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 307 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 308 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 309 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 310 311 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 312 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 313 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 314 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 315 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 316 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 317 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 318 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 319 320 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 321 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 322 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 323 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 324 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 325 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 326 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 327 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 328 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 329 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 330 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 331 332 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 333 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 334 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 335 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 336 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 337 }, rum_rf5225[] = { 338 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 339 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 340 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 341 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 342 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 343 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 344 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 345 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 346 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 347 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 348 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 349 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 350 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 351 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 352 353 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 354 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 355 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 356 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 357 358 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 359 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 360 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 361 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 362 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 363 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 364 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 365 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 366 367 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 368 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 369 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 370 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 371 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 372 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 373 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 374 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 375 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 376 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 377 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 378 379 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 380 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 381 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 382 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 383 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 384 }; 385 386 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 387 [RUM_BULK_WR] = { 388 .type = UE_BULK, 389 .endpoint = UE_ADDR_ANY, 390 .direction = UE_DIR_OUT, 391 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 392 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 393 .callback = rum_bulk_write_callback, 394 .timeout = 5000, /* ms */ 395 }, 396 [RUM_BULK_RD] = { 397 .type = UE_BULK, 398 .endpoint = UE_ADDR_ANY, 399 .direction = UE_DIR_IN, 400 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 401 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 402 .callback = rum_bulk_read_callback, 403 }, 404 }; 405 406 static int 407 rum_match(device_t self) 408 { 409 struct usb_attach_arg *uaa = device_get_ivars(self); 410 411 if (uaa->usb_mode != USB_MODE_HOST) 412 return (ENXIO); 413 if (uaa->info.bConfigIndex != 0) 414 return (ENXIO); 415 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 416 return (ENXIO); 417 418 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 419 } 420 421 static int 422 rum_attach(device_t self) 423 { 424 struct usb_attach_arg *uaa = device_get_ivars(self); 425 struct rum_softc *sc = device_get_softc(self); 426 struct ieee80211com *ic; 427 struct ifnet *ifp; 428 uint8_t iface_index, bands; 429 uint32_t tmp; 430 int error, ntries; 431 432 device_set_usb_desc(self); 433 sc->sc_udev = uaa->device; 434 sc->sc_dev = self; 435 436 mtx_init(&sc->sc_mtx, device_get_nameunit(self), 437 MTX_NETWORK_LOCK, MTX_DEF); 438 439 iface_index = RT2573_IFACE_INDEX; 440 error = usbd_transfer_setup(uaa->device, &iface_index, 441 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 442 if (error) { 443 device_printf(self, "could not allocate USB transfers, " 444 "err=%s\n", usbd_errstr(error)); 445 goto detach; 446 } 447 448 RUM_LOCK(sc); 449 /* retrieve RT2573 rev. no */ 450 for (ntries = 0; ntries < 100; ntries++) { 451 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 452 break; 453 if (rum_pause(sc, hz / 100)) 454 break; 455 } 456 if (ntries == 100) { 457 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 458 RUM_UNLOCK(sc); 459 goto detach; 460 } 461 462 /* retrieve MAC address and various other things from EEPROM */ 463 rum_read_eeprom(sc); 464 465 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 466 tmp, rum_get_rf(sc->rf_rev)); 467 468 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 469 RUM_UNLOCK(sc); 470 471 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 472 if (ifp == NULL) { 473 device_printf(sc->sc_dev, "can not if_alloc()\n"); 474 goto detach; 475 } 476 ic = ifp->if_l2com; 477 478 ifp->if_softc = sc; 479 if_initname(ifp, "rum", device_get_unit(sc->sc_dev)); 480 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 481 ifp->if_init = rum_init; 482 ifp->if_ioctl = rum_ioctl; 483 ifp->if_start = rum_start; 484 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 485 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 486 IFQ_SET_READY(&ifp->if_snd); 487 488 ic->ic_ifp = ifp; 489 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 490 491 /* set device capabilities */ 492 ic->ic_caps = 493 IEEE80211_C_STA /* station mode supported */ 494 | IEEE80211_C_IBSS /* IBSS mode supported */ 495 | IEEE80211_C_MONITOR /* monitor mode supported */ 496 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 497 | IEEE80211_C_TXPMGT /* tx power management */ 498 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 499 | IEEE80211_C_SHSLOT /* short slot time supported */ 500 | IEEE80211_C_BGSCAN /* bg scanning supported */ 501 | IEEE80211_C_WPA /* 802.11i */ 502 ; 503 504 bands = 0; 505 setbit(&bands, IEEE80211_MODE_11B); 506 setbit(&bands, IEEE80211_MODE_11G); 507 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) 508 setbit(&bands, IEEE80211_MODE_11A); 509 ieee80211_init_channels(ic, NULL, &bands); 510 511 ieee80211_ifattach(ic, sc->sc_bssid); 512 ic->ic_update_promisc = rum_update_promisc; 513 ic->ic_raw_xmit = rum_raw_xmit; 514 ic->ic_scan_start = rum_scan_start; 515 ic->ic_scan_end = rum_scan_end; 516 ic->ic_set_channel = rum_set_channel; 517 518 ic->ic_vap_create = rum_vap_create; 519 ic->ic_vap_delete = rum_vap_delete; 520 ic->ic_update_mcast = rum_update_mcast; 521 522 ieee80211_radiotap_attach(ic, 523 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 524 RT2573_TX_RADIOTAP_PRESENT, 525 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 526 RT2573_RX_RADIOTAP_PRESENT); 527 528 if (bootverbose) 529 ieee80211_announce(ic); 530 531 return (0); 532 533 detach: 534 rum_detach(self); 535 return (ENXIO); /* failure */ 536 } 537 538 static int 539 rum_detach(device_t self) 540 { 541 struct rum_softc *sc = device_get_softc(self); 542 struct ifnet *ifp = sc->sc_ifp; 543 struct ieee80211com *ic; 544 545 /* stop all USB transfers */ 546 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 547 548 /* free TX list, if any */ 549 RUM_LOCK(sc); 550 rum_unsetup_tx_list(sc); 551 RUM_UNLOCK(sc); 552 553 if (ifp) { 554 ic = ifp->if_l2com; 555 ieee80211_ifdetach(ic); 556 if_free(ifp); 557 } 558 mtx_destroy(&sc->sc_mtx); 559 560 return (0); 561 } 562 563 static usb_error_t 564 rum_do_request(struct rum_softc *sc, 565 struct usb_device_request *req, void *data) 566 { 567 usb_error_t err; 568 int ntries = 10; 569 570 while (ntries--) { 571 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 572 req, data, 0, NULL, 250 /* ms */); 573 if (err == 0) 574 break; 575 576 DPRINTFN(1, "Control request failed, %s (retrying)\n", 577 usbd_errstr(err)); 578 if (rum_pause(sc, hz / 100)) 579 break; 580 } 581 return (err); 582 } 583 584 static struct ieee80211vap * 585 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 586 enum ieee80211_opmode opmode, int flags, 587 const uint8_t bssid[IEEE80211_ADDR_LEN], 588 const uint8_t mac[IEEE80211_ADDR_LEN]) 589 { 590 struct rum_softc *sc = ic->ic_ifp->if_softc; 591 struct rum_vap *rvp; 592 struct ieee80211vap *vap; 593 594 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 595 return NULL; 596 rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap), 597 M_80211_VAP, M_NOWAIT | M_ZERO); 598 if (rvp == NULL) 599 return NULL; 600 vap = &rvp->vap; 601 /* enable s/w bmiss handling for sta mode */ 602 ieee80211_vap_setup(ic, vap, name, unit, opmode, 603 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 604 605 /* override state transition machine */ 606 rvp->newstate = vap->iv_newstate; 607 vap->iv_newstate = rum_newstate; 608 609 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 610 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 611 ieee80211_ratectl_init(vap); 612 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 613 /* complete setup */ 614 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 615 ic->ic_opmode = opmode; 616 return vap; 617 } 618 619 static void 620 rum_vap_delete(struct ieee80211vap *vap) 621 { 622 struct rum_vap *rvp = RUM_VAP(vap); 623 struct ieee80211com *ic = vap->iv_ic; 624 625 usb_callout_drain(&rvp->ratectl_ch); 626 ieee80211_draintask(ic, &rvp->ratectl_task); 627 ieee80211_ratectl_deinit(vap); 628 ieee80211_vap_detach(vap); 629 free(rvp, M_80211_VAP); 630 } 631 632 static void 633 rum_tx_free(struct rum_tx_data *data, int txerr) 634 { 635 struct rum_softc *sc = data->sc; 636 637 if (data->m != NULL) { 638 if (data->m->m_flags & M_TXCB) 639 ieee80211_process_callback(data->ni, data->m, 640 txerr ? ETIMEDOUT : 0); 641 m_freem(data->m); 642 data->m = NULL; 643 644 ieee80211_free_node(data->ni); 645 data->ni = NULL; 646 } 647 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 648 sc->tx_nfree++; 649 } 650 651 static void 652 rum_setup_tx_list(struct rum_softc *sc) 653 { 654 struct rum_tx_data *data; 655 int i; 656 657 sc->tx_nfree = 0; 658 STAILQ_INIT(&sc->tx_q); 659 STAILQ_INIT(&sc->tx_free); 660 661 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 662 data = &sc->tx_data[i]; 663 664 data->sc = sc; 665 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 666 sc->tx_nfree++; 667 } 668 } 669 670 static void 671 rum_unsetup_tx_list(struct rum_softc *sc) 672 { 673 struct rum_tx_data *data; 674 int i; 675 676 /* make sure any subsequent use of the queues will fail */ 677 sc->tx_nfree = 0; 678 STAILQ_INIT(&sc->tx_q); 679 STAILQ_INIT(&sc->tx_free); 680 681 /* free up all node references and mbufs */ 682 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 683 data = &sc->tx_data[i]; 684 685 if (data->m != NULL) { 686 m_freem(data->m); 687 data->m = NULL; 688 } 689 if (data->ni != NULL) { 690 ieee80211_free_node(data->ni); 691 data->ni = NULL; 692 } 693 } 694 } 695 696 static int 697 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 698 { 699 struct rum_vap *rvp = RUM_VAP(vap); 700 struct ieee80211com *ic = vap->iv_ic; 701 struct rum_softc *sc = ic->ic_ifp->if_softc; 702 const struct ieee80211_txparam *tp; 703 enum ieee80211_state ostate; 704 struct ieee80211_node *ni; 705 uint32_t tmp; 706 707 ostate = vap->iv_state; 708 DPRINTF("%s -> %s\n", 709 ieee80211_state_name[ostate], 710 ieee80211_state_name[nstate]); 711 712 IEEE80211_UNLOCK(ic); 713 RUM_LOCK(sc); 714 usb_callout_stop(&rvp->ratectl_ch); 715 716 switch (nstate) { 717 case IEEE80211_S_INIT: 718 if (ostate == IEEE80211_S_RUN) { 719 /* abort TSF synchronization */ 720 tmp = rum_read(sc, RT2573_TXRX_CSR9); 721 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 722 } 723 break; 724 725 case IEEE80211_S_RUN: 726 ni = ieee80211_ref_node(vap->iv_bss); 727 728 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 729 rum_update_slot(ic->ic_ifp); 730 rum_enable_mrr(sc); 731 rum_set_txpreamble(sc); 732 rum_set_basicrates(sc); 733 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 734 rum_set_bssid(sc, sc->sc_bssid); 735 } 736 737 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 738 vap->iv_opmode == IEEE80211_M_IBSS) 739 rum_prepare_beacon(sc, vap); 740 741 if (vap->iv_opmode != IEEE80211_M_MONITOR) 742 rum_enable_tsf_sync(sc); 743 else 744 rum_enable_tsf(sc); 745 746 /* enable automatic rate adaptation */ 747 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 748 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 749 rum_ratectl_start(sc, ni); 750 ieee80211_free_node(ni); 751 break; 752 default: 753 break; 754 } 755 RUM_UNLOCK(sc); 756 IEEE80211_LOCK(ic); 757 return (rvp->newstate(vap, nstate, arg)); 758 } 759 760 static void 761 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 762 { 763 struct rum_softc *sc = usbd_xfer_softc(xfer); 764 struct ifnet *ifp = sc->sc_ifp; 765 struct ieee80211vap *vap; 766 struct rum_tx_data *data; 767 struct mbuf *m; 768 struct usb_page_cache *pc; 769 unsigned int len; 770 int actlen, sumlen; 771 772 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 773 774 switch (USB_GET_STATE(xfer)) { 775 case USB_ST_TRANSFERRED: 776 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 777 778 /* free resources */ 779 data = usbd_xfer_get_priv(xfer); 780 rum_tx_free(data, 0); 781 usbd_xfer_set_priv(xfer, NULL); 782 783 ifp->if_opackets++; 784 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 785 786 /* FALLTHROUGH */ 787 case USB_ST_SETUP: 788 tr_setup: 789 data = STAILQ_FIRST(&sc->tx_q); 790 if (data) { 791 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 792 m = data->m; 793 794 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 795 DPRINTFN(0, "data overflow, %u bytes\n", 796 m->m_pkthdr.len); 797 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 798 } 799 pc = usbd_xfer_get_frame(xfer, 0); 800 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 801 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 802 m->m_pkthdr.len); 803 804 vap = data->ni->ni_vap; 805 if (ieee80211_radiotap_active_vap(vap)) { 806 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 807 808 tap->wt_flags = 0; 809 tap->wt_rate = data->rate; 810 tap->wt_antenna = sc->tx_ant; 811 812 ieee80211_radiotap_tx(vap, m); 813 } 814 815 /* align end on a 4-bytes boundary */ 816 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 817 if ((len % 64) == 0) 818 len += 4; 819 820 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 821 m->m_pkthdr.len, len); 822 823 usbd_xfer_set_frame_len(xfer, 0, len); 824 usbd_xfer_set_priv(xfer, data); 825 826 usbd_transfer_submit(xfer); 827 } 828 RUM_UNLOCK(sc); 829 rum_start(ifp); 830 RUM_LOCK(sc); 831 break; 832 833 default: /* Error */ 834 DPRINTFN(11, "transfer error, %s\n", 835 usbd_errstr(error)); 836 837 ifp->if_oerrors++; 838 data = usbd_xfer_get_priv(xfer); 839 if (data != NULL) { 840 rum_tx_free(data, error); 841 usbd_xfer_set_priv(xfer, NULL); 842 } 843 844 if (error != USB_ERR_CANCELLED) { 845 if (error == USB_ERR_TIMEOUT) 846 device_printf(sc->sc_dev, "device timeout\n"); 847 848 /* 849 * Try to clear stall first, also if other 850 * errors occur, hence clearing stall 851 * introduces a 50 ms delay: 852 */ 853 usbd_xfer_set_stall(xfer); 854 goto tr_setup; 855 } 856 break; 857 } 858 } 859 860 static void 861 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 862 { 863 struct rum_softc *sc = usbd_xfer_softc(xfer); 864 struct ifnet *ifp = sc->sc_ifp; 865 struct ieee80211com *ic = ifp->if_l2com; 866 struct ieee80211_node *ni; 867 struct mbuf *m = NULL; 868 struct usb_page_cache *pc; 869 uint32_t flags; 870 uint8_t rssi = 0; 871 int len; 872 873 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 874 875 switch (USB_GET_STATE(xfer)) { 876 case USB_ST_TRANSFERRED: 877 878 DPRINTFN(15, "rx done, actlen=%d\n", len); 879 880 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { 881 DPRINTF("%s: xfer too short %d\n", 882 device_get_nameunit(sc->sc_dev), len); 883 ifp->if_ierrors++; 884 goto tr_setup; 885 } 886 887 len -= RT2573_RX_DESC_SIZE; 888 pc = usbd_xfer_get_frame(xfer, 0); 889 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 890 891 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 892 flags = le32toh(sc->sc_rx_desc.flags); 893 if (flags & RT2573_RX_CRC_ERROR) { 894 /* 895 * This should not happen since we did not 896 * request to receive those frames when we 897 * filled RUM_TXRX_CSR2: 898 */ 899 DPRINTFN(5, "PHY or CRC error\n"); 900 ifp->if_ierrors++; 901 goto tr_setup; 902 } 903 904 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 905 if (m == NULL) { 906 DPRINTF("could not allocate mbuf\n"); 907 ifp->if_ierrors++; 908 goto tr_setup; 909 } 910 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 911 mtod(m, uint8_t *), len); 912 913 /* finalize mbuf */ 914 m->m_pkthdr.rcvif = ifp; 915 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; 916 917 if (ieee80211_radiotap_active(ic)) { 918 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 919 920 /* XXX read tsf */ 921 tap->wr_flags = 0; 922 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 923 (flags & RT2573_RX_OFDM) ? 924 IEEE80211_T_OFDM : IEEE80211_T_CCK); 925 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 926 tap->wr_antnoise = RT2573_NOISE_FLOOR; 927 tap->wr_antenna = sc->rx_ant; 928 } 929 /* FALLTHROUGH */ 930 case USB_ST_SETUP: 931 tr_setup: 932 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 933 usbd_transfer_submit(xfer); 934 935 /* 936 * At the end of a USB callback it is always safe to unlock 937 * the private mutex of a device! That is why we do the 938 * "ieee80211_input" here, and not some lines up! 939 */ 940 RUM_UNLOCK(sc); 941 if (m) { 942 ni = ieee80211_find_rxnode(ic, 943 mtod(m, struct ieee80211_frame_min *)); 944 if (ni != NULL) { 945 (void) ieee80211_input(ni, m, rssi, 946 RT2573_NOISE_FLOOR); 947 ieee80211_free_node(ni); 948 } else 949 (void) ieee80211_input_all(ic, m, rssi, 950 RT2573_NOISE_FLOOR); 951 } 952 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 953 !IFQ_IS_EMPTY(&ifp->if_snd)) 954 rum_start(ifp); 955 RUM_LOCK(sc); 956 return; 957 958 default: /* Error */ 959 if (error != USB_ERR_CANCELLED) { 960 /* try to clear stall first */ 961 usbd_xfer_set_stall(xfer); 962 goto tr_setup; 963 } 964 return; 965 } 966 } 967 968 static uint8_t 969 rum_plcp_signal(int rate) 970 { 971 switch (rate) { 972 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 973 case 12: return 0xb; 974 case 18: return 0xf; 975 case 24: return 0xa; 976 case 36: return 0xe; 977 case 48: return 0x9; 978 case 72: return 0xd; 979 case 96: return 0x8; 980 case 108: return 0xc; 981 982 /* CCK rates (NB: not IEEE std, device-specific) */ 983 case 2: return 0x0; 984 case 4: return 0x1; 985 case 11: return 0x2; 986 case 22: return 0x3; 987 } 988 return 0xff; /* XXX unsupported/unknown rate */ 989 } 990 991 static void 992 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 993 uint32_t flags, uint16_t xflags, int len, int rate) 994 { 995 struct ifnet *ifp = sc->sc_ifp; 996 struct ieee80211com *ic = ifp->if_l2com; 997 uint16_t plcp_length; 998 int remainder; 999 1000 desc->flags = htole32(flags); 1001 desc->flags |= htole32(RT2573_TX_VALID); 1002 desc->flags |= htole32(len << 16); 1003 1004 desc->xflags = htole16(xflags); 1005 1006 desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 1007 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 1008 1009 /* setup PLCP fields */ 1010 desc->plcp_signal = rum_plcp_signal(rate); 1011 desc->plcp_service = 4; 1012 1013 len += IEEE80211_CRC_LEN; 1014 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1015 desc->flags |= htole32(RT2573_TX_OFDM); 1016 1017 plcp_length = len & 0xfff; 1018 desc->plcp_length_hi = plcp_length >> 6; 1019 desc->plcp_length_lo = plcp_length & 0x3f; 1020 } else { 1021 plcp_length = (16 * len + rate - 1) / rate; 1022 if (rate == 22) { 1023 remainder = (16 * len) % 22; 1024 if (remainder != 0 && remainder < 7) 1025 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1026 } 1027 desc->plcp_length_hi = plcp_length >> 8; 1028 desc->plcp_length_lo = plcp_length & 0xff; 1029 1030 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1031 desc->plcp_signal |= 0x08; 1032 } 1033 } 1034 1035 static int 1036 rum_sendprot(struct rum_softc *sc, 1037 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1038 { 1039 struct ieee80211com *ic = ni->ni_ic; 1040 const struct ieee80211_frame *wh; 1041 struct rum_tx_data *data; 1042 struct mbuf *mprot; 1043 int protrate, ackrate, pktlen, flags, isshort; 1044 uint16_t dur; 1045 1046 RUM_LOCK_ASSERT(sc, MA_OWNED); 1047 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 1048 ("protection %d", prot)); 1049 1050 wh = mtod(m, const struct ieee80211_frame *); 1051 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1052 1053 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1054 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 1055 1056 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 1057 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 1058 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1059 flags = RT2573_TX_MORE_FRAG; 1060 if (prot == IEEE80211_PROT_RTSCTS) { 1061 /* NB: CTS is the same size as an ACK */ 1062 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 1063 flags |= RT2573_TX_NEED_ACK; 1064 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 1065 } else { 1066 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 1067 } 1068 if (mprot == NULL) { 1069 /* XXX stat + msg */ 1070 return (ENOBUFS); 1071 } 1072 data = STAILQ_FIRST(&sc->tx_free); 1073 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1074 sc->tx_nfree--; 1075 1076 data->m = mprot; 1077 data->ni = ieee80211_ref_node(ni); 1078 data->rate = protrate; 1079 rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate); 1080 1081 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1082 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1083 1084 return 0; 1085 } 1086 1087 static int 1088 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1089 { 1090 struct ieee80211vap *vap = ni->ni_vap; 1091 struct ifnet *ifp = sc->sc_ifp; 1092 struct ieee80211com *ic = ifp->if_l2com; 1093 struct rum_tx_data *data; 1094 struct ieee80211_frame *wh; 1095 const struct ieee80211_txparam *tp; 1096 struct ieee80211_key *k; 1097 uint32_t flags = 0; 1098 uint16_t dur; 1099 1100 RUM_LOCK_ASSERT(sc, MA_OWNED); 1101 1102 data = STAILQ_FIRST(&sc->tx_free); 1103 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1104 sc->tx_nfree--; 1105 1106 wh = mtod(m0, struct ieee80211_frame *); 1107 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1108 k = ieee80211_crypto_encap(ni, m0); 1109 if (k == NULL) { 1110 m_freem(m0); 1111 return ENOBUFS; 1112 } 1113 wh = mtod(m0, struct ieee80211_frame *); 1114 } 1115 1116 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1117 1118 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1119 flags |= RT2573_TX_NEED_ACK; 1120 1121 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1122 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1123 *(uint16_t *)wh->i_dur = htole16(dur); 1124 1125 /* tell hardware to add timestamp for probe responses */ 1126 if ((wh->i_fc[0] & 1127 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1128 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1129 flags |= RT2573_TX_TIMESTAMP; 1130 } 1131 1132 data->m = m0; 1133 data->ni = ni; 1134 data->rate = tp->mgmtrate; 1135 1136 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate); 1137 1138 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1139 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1140 1141 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1142 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1143 1144 return (0); 1145 } 1146 1147 static int 1148 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1149 const struct ieee80211_bpf_params *params) 1150 { 1151 struct ieee80211com *ic = ni->ni_ic; 1152 struct rum_tx_data *data; 1153 uint32_t flags; 1154 int rate, error; 1155 1156 RUM_LOCK_ASSERT(sc, MA_OWNED); 1157 KASSERT(params != NULL, ("no raw xmit params")); 1158 1159 rate = params->ibp_rate0; 1160 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 1161 m_freem(m0); 1162 return EINVAL; 1163 } 1164 flags = 0; 1165 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1166 flags |= RT2573_TX_NEED_ACK; 1167 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1168 error = rum_sendprot(sc, m0, ni, 1169 params->ibp_flags & IEEE80211_BPF_RTS ? 1170 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1171 rate); 1172 if (error || sc->tx_nfree == 0) { 1173 m_freem(m0); 1174 return ENOBUFS; 1175 } 1176 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1177 } 1178 1179 data = STAILQ_FIRST(&sc->tx_free); 1180 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1181 sc->tx_nfree--; 1182 1183 data->m = m0; 1184 data->ni = ni; 1185 data->rate = rate; 1186 1187 /* XXX need to setup descriptor ourself */ 1188 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1189 1190 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1191 m0->m_pkthdr.len, rate); 1192 1193 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1194 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1195 1196 return 0; 1197 } 1198 1199 static int 1200 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1201 { 1202 struct ieee80211vap *vap = ni->ni_vap; 1203 struct ifnet *ifp = sc->sc_ifp; 1204 struct ieee80211com *ic = ifp->if_l2com; 1205 struct rum_tx_data *data; 1206 struct ieee80211_frame *wh; 1207 const struct ieee80211_txparam *tp; 1208 struct ieee80211_key *k; 1209 uint32_t flags = 0; 1210 uint16_t dur; 1211 int error, rate; 1212 1213 RUM_LOCK_ASSERT(sc, MA_OWNED); 1214 1215 wh = mtod(m0, struct ieee80211_frame *); 1216 1217 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1218 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1219 rate = tp->mcastrate; 1220 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1221 rate = tp->ucastrate; 1222 else 1223 rate = ni->ni_txrate; 1224 1225 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1226 k = ieee80211_crypto_encap(ni, m0); 1227 if (k == NULL) { 1228 m_freem(m0); 1229 return ENOBUFS; 1230 } 1231 1232 /* packet header may have moved, reset our local pointer */ 1233 wh = mtod(m0, struct ieee80211_frame *); 1234 } 1235 1236 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1237 int prot = IEEE80211_PROT_NONE; 1238 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1239 prot = IEEE80211_PROT_RTSCTS; 1240 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1241 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1242 prot = ic->ic_protmode; 1243 if (prot != IEEE80211_PROT_NONE) { 1244 error = rum_sendprot(sc, m0, ni, prot, rate); 1245 if (error || sc->tx_nfree == 0) { 1246 m_freem(m0); 1247 return ENOBUFS; 1248 } 1249 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1250 } 1251 } 1252 1253 data = STAILQ_FIRST(&sc->tx_free); 1254 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1255 sc->tx_nfree--; 1256 1257 data->m = m0; 1258 data->ni = ni; 1259 data->rate = rate; 1260 1261 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1262 flags |= RT2573_TX_NEED_ACK; 1263 flags |= RT2573_TX_MORE_FRAG; 1264 1265 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1266 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1267 *(uint16_t *)wh->i_dur = htole16(dur); 1268 } 1269 1270 rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate); 1271 1272 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1273 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1274 1275 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1276 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1277 1278 return 0; 1279 } 1280 1281 static void 1282 rum_start(struct ifnet *ifp) 1283 { 1284 struct rum_softc *sc = ifp->if_softc; 1285 struct ieee80211_node *ni; 1286 struct mbuf *m; 1287 1288 RUM_LOCK(sc); 1289 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1290 RUM_UNLOCK(sc); 1291 return; 1292 } 1293 for (;;) { 1294 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1295 if (m == NULL) 1296 break; 1297 if (sc->tx_nfree < RUM_TX_MINFREE) { 1298 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1299 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1300 break; 1301 } 1302 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1303 if (rum_tx_data(sc, m, ni) != 0) { 1304 ieee80211_free_node(ni); 1305 ifp->if_oerrors++; 1306 break; 1307 } 1308 } 1309 RUM_UNLOCK(sc); 1310 } 1311 1312 static int 1313 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1314 { 1315 struct rum_softc *sc = ifp->if_softc; 1316 struct ieee80211com *ic = ifp->if_l2com; 1317 struct ifreq *ifr = (struct ifreq *) data; 1318 int error = 0, startall = 0; 1319 1320 switch (cmd) { 1321 case SIOCSIFFLAGS: 1322 RUM_LOCK(sc); 1323 if (ifp->if_flags & IFF_UP) { 1324 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1325 rum_init_locked(sc); 1326 startall = 1; 1327 } else 1328 rum_setpromisc(sc); 1329 } else { 1330 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1331 rum_stop(sc); 1332 } 1333 RUM_UNLOCK(sc); 1334 if (startall) 1335 ieee80211_start_all(ic); 1336 break; 1337 case SIOCGIFMEDIA: 1338 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1339 break; 1340 case SIOCGIFADDR: 1341 error = ether_ioctl(ifp, cmd, data); 1342 break; 1343 default: 1344 error = EINVAL; 1345 break; 1346 } 1347 return error; 1348 } 1349 1350 static void 1351 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1352 { 1353 struct usb_device_request req; 1354 usb_error_t error; 1355 1356 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1357 req.bRequest = RT2573_READ_EEPROM; 1358 USETW(req.wValue, 0); 1359 USETW(req.wIndex, addr); 1360 USETW(req.wLength, len); 1361 1362 error = rum_do_request(sc, &req, buf); 1363 if (error != 0) { 1364 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1365 usbd_errstr(error)); 1366 } 1367 } 1368 1369 static uint32_t 1370 rum_read(struct rum_softc *sc, uint16_t reg) 1371 { 1372 uint32_t val; 1373 1374 rum_read_multi(sc, reg, &val, sizeof val); 1375 1376 return le32toh(val); 1377 } 1378 1379 static void 1380 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1381 { 1382 struct usb_device_request req; 1383 usb_error_t error; 1384 1385 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1386 req.bRequest = RT2573_READ_MULTI_MAC; 1387 USETW(req.wValue, 0); 1388 USETW(req.wIndex, reg); 1389 USETW(req.wLength, len); 1390 1391 error = rum_do_request(sc, &req, buf); 1392 if (error != 0) { 1393 device_printf(sc->sc_dev, 1394 "could not multi read MAC register: %s\n", 1395 usbd_errstr(error)); 1396 } 1397 } 1398 1399 static usb_error_t 1400 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1401 { 1402 uint32_t tmp = htole32(val); 1403 1404 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1405 } 1406 1407 static usb_error_t 1408 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1409 { 1410 struct usb_device_request req; 1411 usb_error_t error; 1412 size_t offset; 1413 1414 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1415 req.bRequest = RT2573_WRITE_MULTI_MAC; 1416 USETW(req.wValue, 0); 1417 1418 /* write at most 64 bytes at a time */ 1419 for (offset = 0; offset < len; offset += 64) { 1420 USETW(req.wIndex, reg + offset); 1421 USETW(req.wLength, MIN(len - offset, 64)); 1422 1423 error = rum_do_request(sc, &req, (char *)buf + offset); 1424 if (error != 0) { 1425 device_printf(sc->sc_dev, 1426 "could not multi write MAC register: %s\n", 1427 usbd_errstr(error)); 1428 return (error); 1429 } 1430 } 1431 1432 return (USB_ERR_NORMAL_COMPLETION); 1433 } 1434 1435 static void 1436 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1437 { 1438 uint32_t tmp; 1439 int ntries; 1440 1441 DPRINTFN(2, "reg=0x%08x\n", reg); 1442 1443 for (ntries = 0; ntries < 100; ntries++) { 1444 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1445 break; 1446 if (rum_pause(sc, hz / 100)) 1447 break; 1448 } 1449 if (ntries == 100) { 1450 device_printf(sc->sc_dev, "could not write to BBP\n"); 1451 return; 1452 } 1453 1454 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1455 rum_write(sc, RT2573_PHY_CSR3, tmp); 1456 } 1457 1458 static uint8_t 1459 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1460 { 1461 uint32_t val; 1462 int ntries; 1463 1464 DPRINTFN(2, "reg=0x%08x\n", reg); 1465 1466 for (ntries = 0; ntries < 100; ntries++) { 1467 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1468 break; 1469 if (rum_pause(sc, hz / 100)) 1470 break; 1471 } 1472 if (ntries == 100) { 1473 device_printf(sc->sc_dev, "could not read BBP\n"); 1474 return 0; 1475 } 1476 1477 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1478 rum_write(sc, RT2573_PHY_CSR3, val); 1479 1480 for (ntries = 0; ntries < 100; ntries++) { 1481 val = rum_read(sc, RT2573_PHY_CSR3); 1482 if (!(val & RT2573_BBP_BUSY)) 1483 return val & 0xff; 1484 if (rum_pause(sc, hz / 100)) 1485 break; 1486 } 1487 1488 device_printf(sc->sc_dev, "could not read BBP\n"); 1489 return 0; 1490 } 1491 1492 static void 1493 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1494 { 1495 uint32_t tmp; 1496 int ntries; 1497 1498 for (ntries = 0; ntries < 100; ntries++) { 1499 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1500 break; 1501 if (rum_pause(sc, hz / 100)) 1502 break; 1503 } 1504 if (ntries == 100) { 1505 device_printf(sc->sc_dev, "could not write to RF\n"); 1506 return; 1507 } 1508 1509 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1510 (reg & 3); 1511 rum_write(sc, RT2573_PHY_CSR4, tmp); 1512 1513 /* remember last written value in sc */ 1514 sc->rf_regs[reg] = val; 1515 1516 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1517 } 1518 1519 static void 1520 rum_select_antenna(struct rum_softc *sc) 1521 { 1522 uint8_t bbp4, bbp77; 1523 uint32_t tmp; 1524 1525 bbp4 = rum_bbp_read(sc, 4); 1526 bbp77 = rum_bbp_read(sc, 77); 1527 1528 /* TBD */ 1529 1530 /* make sure Rx is disabled before switching antenna */ 1531 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1532 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1533 1534 rum_bbp_write(sc, 4, bbp4); 1535 rum_bbp_write(sc, 77, bbp77); 1536 1537 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1538 } 1539 1540 /* 1541 * Enable multi-rate retries for frames sent at OFDM rates. 1542 * In 802.11b/g mode, allow fallback to CCK rates. 1543 */ 1544 static void 1545 rum_enable_mrr(struct rum_softc *sc) 1546 { 1547 struct ifnet *ifp = sc->sc_ifp; 1548 struct ieee80211com *ic = ifp->if_l2com; 1549 uint32_t tmp; 1550 1551 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1552 1553 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1554 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) 1555 tmp |= RT2573_MRR_CCK_FALLBACK; 1556 tmp |= RT2573_MRR_ENABLED; 1557 1558 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1559 } 1560 1561 static void 1562 rum_set_txpreamble(struct rum_softc *sc) 1563 { 1564 struct ifnet *ifp = sc->sc_ifp; 1565 struct ieee80211com *ic = ifp->if_l2com; 1566 uint32_t tmp; 1567 1568 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1569 1570 tmp &= ~RT2573_SHORT_PREAMBLE; 1571 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1572 tmp |= RT2573_SHORT_PREAMBLE; 1573 1574 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1575 } 1576 1577 static void 1578 rum_set_basicrates(struct rum_softc *sc) 1579 { 1580 struct ifnet *ifp = sc->sc_ifp; 1581 struct ieee80211com *ic = ifp->if_l2com; 1582 1583 /* update basic rate set */ 1584 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1585 /* 11b basic rates: 1, 2Mbps */ 1586 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1587 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 1588 /* 11a basic rates: 6, 12, 24Mbps */ 1589 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1590 } else { 1591 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1592 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1593 } 1594 } 1595 1596 /* 1597 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1598 * driver. 1599 */ 1600 static void 1601 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1602 { 1603 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1604 uint32_t tmp; 1605 1606 /* update all BBP registers that depend on the band */ 1607 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1608 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1609 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1610 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1611 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1612 } 1613 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1614 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1615 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1616 } 1617 1618 sc->bbp17 = bbp17; 1619 rum_bbp_write(sc, 17, bbp17); 1620 rum_bbp_write(sc, 96, bbp96); 1621 rum_bbp_write(sc, 104, bbp104); 1622 1623 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1624 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1625 rum_bbp_write(sc, 75, 0x80); 1626 rum_bbp_write(sc, 86, 0x80); 1627 rum_bbp_write(sc, 88, 0x80); 1628 } 1629 1630 rum_bbp_write(sc, 35, bbp35); 1631 rum_bbp_write(sc, 97, bbp97); 1632 rum_bbp_write(sc, 98, bbp98); 1633 1634 tmp = rum_read(sc, RT2573_PHY_CSR0); 1635 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1636 if (IEEE80211_IS_CHAN_2GHZ(c)) 1637 tmp |= RT2573_PA_PE_2GHZ; 1638 else 1639 tmp |= RT2573_PA_PE_5GHZ; 1640 rum_write(sc, RT2573_PHY_CSR0, tmp); 1641 } 1642 1643 static void 1644 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1645 { 1646 struct ifnet *ifp = sc->sc_ifp; 1647 struct ieee80211com *ic = ifp->if_l2com; 1648 const struct rfprog *rfprog; 1649 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1650 int8_t power; 1651 int i, chan; 1652 1653 chan = ieee80211_chan2ieee(ic, c); 1654 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1655 return; 1656 1657 /* select the appropriate RF settings based on what EEPROM says */ 1658 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1659 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1660 1661 /* find the settings for this channel (we know it exists) */ 1662 for (i = 0; rfprog[i].chan != chan; i++); 1663 1664 power = sc->txpow[i]; 1665 if (power < 0) { 1666 bbp94 += power; 1667 power = 0; 1668 } else if (power > 31) { 1669 bbp94 += power - 31; 1670 power = 31; 1671 } 1672 1673 /* 1674 * If we are switching from the 2GHz band to the 5GHz band or 1675 * vice-versa, BBP registers need to be reprogrammed. 1676 */ 1677 if (c->ic_flags != ic->ic_curchan->ic_flags) { 1678 rum_select_band(sc, c); 1679 rum_select_antenna(sc); 1680 } 1681 ic->ic_curchan = c; 1682 1683 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1684 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1685 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1686 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1687 1688 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1689 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1690 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1691 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1692 1693 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1694 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1695 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1696 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1697 1698 rum_pause(sc, hz / 100); 1699 1700 /* enable smart mode for MIMO-capable RFs */ 1701 bbp3 = rum_bbp_read(sc, 3); 1702 1703 bbp3 &= ~RT2573_SMART_MODE; 1704 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1705 bbp3 |= RT2573_SMART_MODE; 1706 1707 rum_bbp_write(sc, 3, bbp3); 1708 1709 if (bbp94 != RT2573_BBPR94_DEFAULT) 1710 rum_bbp_write(sc, 94, bbp94); 1711 1712 /* give the chip some extra time to do the switchover */ 1713 rum_pause(sc, hz / 100); 1714 } 1715 1716 /* 1717 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1718 * and HostAP operating modes. 1719 */ 1720 static void 1721 rum_enable_tsf_sync(struct rum_softc *sc) 1722 { 1723 struct ifnet *ifp = sc->sc_ifp; 1724 struct ieee80211com *ic = ifp->if_l2com; 1725 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1726 uint32_t tmp; 1727 1728 if (vap->iv_opmode != IEEE80211_M_STA) { 1729 /* 1730 * Change default 16ms TBTT adjustment to 8ms. 1731 * Must be done before enabling beacon generation. 1732 */ 1733 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1734 } 1735 1736 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1737 1738 /* set beacon interval (in 1/16ms unit) */ 1739 tmp |= vap->iv_bss->ni_intval * 16; 1740 1741 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1742 if (vap->iv_opmode == IEEE80211_M_STA) 1743 tmp |= RT2573_TSF_MODE(1); 1744 else 1745 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1746 1747 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1748 } 1749 1750 static void 1751 rum_enable_tsf(struct rum_softc *sc) 1752 { 1753 rum_write(sc, RT2573_TXRX_CSR9, 1754 (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) | 1755 RT2573_TSF_TICKING | RT2573_TSF_MODE(2)); 1756 } 1757 1758 static void 1759 rum_update_slot(struct ifnet *ifp) 1760 { 1761 struct rum_softc *sc = ifp->if_softc; 1762 struct ieee80211com *ic = ifp->if_l2com; 1763 uint8_t slottime; 1764 uint32_t tmp; 1765 1766 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1767 1768 tmp = rum_read(sc, RT2573_MAC_CSR9); 1769 tmp = (tmp & ~0xff) | slottime; 1770 rum_write(sc, RT2573_MAC_CSR9, tmp); 1771 1772 DPRINTF("setting slot time to %uus\n", slottime); 1773 } 1774 1775 static void 1776 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1777 { 1778 uint32_t tmp; 1779 1780 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1781 rum_write(sc, RT2573_MAC_CSR4, tmp); 1782 1783 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1784 rum_write(sc, RT2573_MAC_CSR5, tmp); 1785 } 1786 1787 static void 1788 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1789 { 1790 uint32_t tmp; 1791 1792 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1793 rum_write(sc, RT2573_MAC_CSR2, tmp); 1794 1795 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1796 rum_write(sc, RT2573_MAC_CSR3, tmp); 1797 } 1798 1799 static void 1800 rum_setpromisc(struct rum_softc *sc) 1801 { 1802 struct ifnet *ifp = sc->sc_ifp; 1803 uint32_t tmp; 1804 1805 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1806 1807 tmp &= ~RT2573_DROP_NOT_TO_ME; 1808 if (!(ifp->if_flags & IFF_PROMISC)) 1809 tmp |= RT2573_DROP_NOT_TO_ME; 1810 1811 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1812 1813 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 1814 "entering" : "leaving"); 1815 } 1816 1817 static void 1818 rum_update_promisc(struct ifnet *ifp) 1819 { 1820 struct rum_softc *sc = ifp->if_softc; 1821 1822 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1823 return; 1824 1825 RUM_LOCK(sc); 1826 rum_setpromisc(sc); 1827 RUM_UNLOCK(sc); 1828 } 1829 1830 static void 1831 rum_update_mcast(struct ifnet *ifp) 1832 { 1833 static int warning_printed; 1834 1835 if (warning_printed == 0) { 1836 if_printf(ifp, "need to implement %s\n", __func__); 1837 warning_printed = 1; 1838 } 1839 } 1840 1841 static const char * 1842 rum_get_rf(int rev) 1843 { 1844 switch (rev) { 1845 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 1846 case RT2573_RF_2528: return "RT2528"; 1847 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 1848 case RT2573_RF_5226: return "RT5226"; 1849 default: return "unknown"; 1850 } 1851 } 1852 1853 static void 1854 rum_read_eeprom(struct rum_softc *sc) 1855 { 1856 uint16_t val; 1857 #ifdef RUM_DEBUG 1858 int i; 1859 #endif 1860 1861 /* read MAC address */ 1862 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6); 1863 1864 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1865 val = le16toh(val); 1866 sc->rf_rev = (val >> 11) & 0x1f; 1867 sc->hw_radio = (val >> 10) & 0x1; 1868 sc->rx_ant = (val >> 4) & 0x3; 1869 sc->tx_ant = (val >> 2) & 0x3; 1870 sc->nb_ant = val & 0x3; 1871 1872 DPRINTF("RF revision=%d\n", sc->rf_rev); 1873 1874 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1875 val = le16toh(val); 1876 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1877 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1878 1879 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1880 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1881 1882 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1883 val = le16toh(val); 1884 if ((val & 0xff) != 0xff) 1885 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1886 1887 /* Only [-10, 10] is valid */ 1888 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 1889 sc->rssi_2ghz_corr = 0; 1890 1891 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1892 val = le16toh(val); 1893 if ((val & 0xff) != 0xff) 1894 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1895 1896 /* Only [-10, 10] is valid */ 1897 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 1898 sc->rssi_5ghz_corr = 0; 1899 1900 if (sc->ext_2ghz_lna) 1901 sc->rssi_2ghz_corr -= 14; 1902 if (sc->ext_5ghz_lna) 1903 sc->rssi_5ghz_corr -= 14; 1904 1905 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1906 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1907 1908 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1909 val = le16toh(val); 1910 if ((val & 0xff) != 0xff) 1911 sc->rffreq = val & 0xff; 1912 1913 DPRINTF("RF freq=%d\n", sc->rffreq); 1914 1915 /* read Tx power for all a/b/g channels */ 1916 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1917 /* XXX default Tx power for 802.11a channels */ 1918 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1919 #ifdef RUM_DEBUG 1920 for (i = 0; i < 14; i++) 1921 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 1922 #endif 1923 1924 /* read default values for BBP registers */ 1925 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1926 #ifdef RUM_DEBUG 1927 for (i = 0; i < 14; i++) { 1928 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1929 continue; 1930 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 1931 sc->bbp_prom[i].val); 1932 } 1933 #endif 1934 } 1935 1936 static int 1937 rum_bbp_init(struct rum_softc *sc) 1938 { 1939 int i, ntries; 1940 1941 /* wait for BBP to be ready */ 1942 for (ntries = 0; ntries < 100; ntries++) { 1943 const uint8_t val = rum_bbp_read(sc, 0); 1944 if (val != 0 && val != 0xff) 1945 break; 1946 if (rum_pause(sc, hz / 100)) 1947 break; 1948 } 1949 if (ntries == 100) { 1950 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 1951 return EIO; 1952 } 1953 1954 /* initialize BBP registers to default values */ 1955 for (i = 0; i < N(rum_def_bbp); i++) 1956 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1957 1958 /* write vendor-specific BBP values (from EEPROM) */ 1959 for (i = 0; i < 16; i++) { 1960 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1961 continue; 1962 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1963 } 1964 1965 return 0; 1966 } 1967 1968 static void 1969 rum_init_locked(struct rum_softc *sc) 1970 { 1971 struct ifnet *ifp = sc->sc_ifp; 1972 struct ieee80211com *ic = ifp->if_l2com; 1973 uint32_t tmp; 1974 usb_error_t error; 1975 int i, ntries; 1976 1977 RUM_LOCK_ASSERT(sc, MA_OWNED); 1978 1979 rum_stop(sc); 1980 1981 /* initialize MAC registers to default values */ 1982 for (i = 0; i < N(rum_def_mac); i++) 1983 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1984 1985 /* set host ready */ 1986 rum_write(sc, RT2573_MAC_CSR1, 3); 1987 rum_write(sc, RT2573_MAC_CSR1, 0); 1988 1989 /* wait for BBP/RF to wakeup */ 1990 for (ntries = 0; ntries < 100; ntries++) { 1991 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1992 break; 1993 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1994 if (rum_pause(sc, hz / 100)) 1995 break; 1996 } 1997 if (ntries == 100) { 1998 device_printf(sc->sc_dev, 1999 "timeout waiting for BBP/RF to wakeup\n"); 2000 goto fail; 2001 } 2002 2003 if ((error = rum_bbp_init(sc)) != 0) 2004 goto fail; 2005 2006 /* select default channel */ 2007 rum_select_band(sc, ic->ic_curchan); 2008 rum_select_antenna(sc); 2009 rum_set_chan(sc, ic->ic_curchan); 2010 2011 /* clear STA registers */ 2012 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2013 2014 rum_set_macaddr(sc, IF_LLADDR(ifp)); 2015 2016 /* initialize ASIC */ 2017 rum_write(sc, RT2573_MAC_CSR1, 4); 2018 2019 /* 2020 * Allocate Tx and Rx xfer queues. 2021 */ 2022 rum_setup_tx_list(sc); 2023 2024 /* update Rx filter */ 2025 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2026 2027 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2028 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2029 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2030 RT2573_DROP_ACKCTS; 2031 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2032 tmp |= RT2573_DROP_TODS; 2033 if (!(ifp->if_flags & IFF_PROMISC)) 2034 tmp |= RT2573_DROP_NOT_TO_ME; 2035 } 2036 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2037 2038 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2039 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2040 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2041 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2042 return; 2043 2044 fail: rum_stop(sc); 2045 #undef N 2046 } 2047 2048 static void 2049 rum_init(void *priv) 2050 { 2051 struct rum_softc *sc = priv; 2052 struct ifnet *ifp = sc->sc_ifp; 2053 struct ieee80211com *ic = ifp->if_l2com; 2054 2055 RUM_LOCK(sc); 2056 rum_init_locked(sc); 2057 RUM_UNLOCK(sc); 2058 2059 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2060 ieee80211_start_all(ic); /* start all vap's */ 2061 } 2062 2063 static void 2064 rum_stop(struct rum_softc *sc) 2065 { 2066 struct ifnet *ifp = sc->sc_ifp; 2067 uint32_t tmp; 2068 2069 RUM_LOCK_ASSERT(sc, MA_OWNED); 2070 2071 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2072 2073 RUM_UNLOCK(sc); 2074 2075 /* 2076 * Drain the USB transfers, if not already drained: 2077 */ 2078 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2079 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2080 2081 RUM_LOCK(sc); 2082 2083 rum_unsetup_tx_list(sc); 2084 2085 /* disable Rx */ 2086 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2087 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2088 2089 /* reset ASIC */ 2090 rum_write(sc, RT2573_MAC_CSR1, 3); 2091 rum_write(sc, RT2573_MAC_CSR1, 0); 2092 } 2093 2094 static void 2095 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2096 { 2097 struct usb_device_request req; 2098 uint16_t reg = RT2573_MCU_CODE_BASE; 2099 usb_error_t err; 2100 2101 /* copy firmware image into NIC */ 2102 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2103 err = rum_write(sc, reg, UGETDW(ucode)); 2104 if (err) { 2105 /* firmware already loaded ? */ 2106 device_printf(sc->sc_dev, "Firmware load " 2107 "failure! (ignored)\n"); 2108 break; 2109 } 2110 } 2111 2112 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2113 req.bRequest = RT2573_MCU_CNTL; 2114 USETW(req.wValue, RT2573_MCU_RUN); 2115 USETW(req.wIndex, 0); 2116 USETW(req.wLength, 0); 2117 2118 err = rum_do_request(sc, &req, NULL); 2119 if (err != 0) { 2120 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2121 usbd_errstr(err)); 2122 } 2123 2124 /* give the chip some time to boot */ 2125 rum_pause(sc, hz / 8); 2126 } 2127 2128 static void 2129 rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2130 { 2131 struct ieee80211com *ic = vap->iv_ic; 2132 const struct ieee80211_txparam *tp; 2133 struct rum_tx_desc desc; 2134 struct mbuf *m0; 2135 2136 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 2137 return; 2138 2139 m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo); 2140 if (m0 == NULL) { 2141 return; 2142 } 2143 2144 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2145 rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 2146 m0->m_pkthdr.len, tp->mgmtrate); 2147 2148 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2149 rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2150 2151 /* copy beacon header and payload into NIC memory */ 2152 rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), 2153 m0->m_pkthdr.len); 2154 2155 m_freem(m0); 2156 } 2157 2158 static int 2159 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2160 const struct ieee80211_bpf_params *params) 2161 { 2162 struct ifnet *ifp = ni->ni_ic->ic_ifp; 2163 struct rum_softc *sc = ifp->if_softc; 2164 2165 RUM_LOCK(sc); 2166 /* prevent management frames from being sent if we're not ready */ 2167 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2168 RUM_UNLOCK(sc); 2169 m_freem(m); 2170 ieee80211_free_node(ni); 2171 return ENETDOWN; 2172 } 2173 if (sc->tx_nfree < RUM_TX_MINFREE) { 2174 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2175 RUM_UNLOCK(sc); 2176 m_freem(m); 2177 ieee80211_free_node(ni); 2178 return EIO; 2179 } 2180 2181 ifp->if_opackets++; 2182 2183 if (params == NULL) { 2184 /* 2185 * Legacy path; interpret frame contents to decide 2186 * precisely how to send the frame. 2187 */ 2188 if (rum_tx_mgt(sc, m, ni) != 0) 2189 goto bad; 2190 } else { 2191 /* 2192 * Caller supplied explicit parameters to use in 2193 * sending the frame. 2194 */ 2195 if (rum_tx_raw(sc, m, ni, params) != 0) 2196 goto bad; 2197 } 2198 RUM_UNLOCK(sc); 2199 2200 return 0; 2201 bad: 2202 ifp->if_oerrors++; 2203 RUM_UNLOCK(sc); 2204 ieee80211_free_node(ni); 2205 return EIO; 2206 } 2207 2208 static void 2209 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 2210 { 2211 struct ieee80211vap *vap = ni->ni_vap; 2212 struct rum_vap *rvp = RUM_VAP(vap); 2213 2214 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 2215 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2216 2217 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2218 } 2219 2220 static void 2221 rum_ratectl_timeout(void *arg) 2222 { 2223 struct rum_vap *rvp = arg; 2224 struct ieee80211vap *vap = &rvp->vap; 2225 struct ieee80211com *ic = vap->iv_ic; 2226 2227 ieee80211_runtask(ic, &rvp->ratectl_task); 2228 } 2229 2230 static void 2231 rum_ratectl_task(void *arg, int pending) 2232 { 2233 struct rum_vap *rvp = arg; 2234 struct ieee80211vap *vap = &rvp->vap; 2235 struct ieee80211com *ic = vap->iv_ic; 2236 struct ifnet *ifp = ic->ic_ifp; 2237 struct rum_softc *sc = ifp->if_softc; 2238 struct ieee80211_node *ni; 2239 int ok, fail; 2240 int sum, retrycnt; 2241 2242 RUM_LOCK(sc); 2243 /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ 2244 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 2245 2246 ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */ 2247 (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */ 2248 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 2249 sum = ok+fail; 2250 retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail; 2251 2252 ni = ieee80211_ref_node(vap->iv_bss); 2253 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); 2254 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2255 ieee80211_free_node(ni); 2256 2257 ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */ 2258 2259 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 2260 RUM_UNLOCK(sc); 2261 } 2262 2263 static void 2264 rum_scan_start(struct ieee80211com *ic) 2265 { 2266 struct ifnet *ifp = ic->ic_ifp; 2267 struct rum_softc *sc = ifp->if_softc; 2268 uint32_t tmp; 2269 2270 RUM_LOCK(sc); 2271 /* abort TSF synchronization */ 2272 tmp = rum_read(sc, RT2573_TXRX_CSR9); 2273 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 2274 rum_set_bssid(sc, ifp->if_broadcastaddr); 2275 RUM_UNLOCK(sc); 2276 2277 } 2278 2279 static void 2280 rum_scan_end(struct ieee80211com *ic) 2281 { 2282 struct rum_softc *sc = ic->ic_ifp->if_softc; 2283 2284 RUM_LOCK(sc); 2285 rum_enable_tsf_sync(sc); 2286 rum_set_bssid(sc, sc->sc_bssid); 2287 RUM_UNLOCK(sc); 2288 2289 } 2290 2291 static void 2292 rum_set_channel(struct ieee80211com *ic) 2293 { 2294 struct rum_softc *sc = ic->ic_ifp->if_softc; 2295 2296 RUM_LOCK(sc); 2297 rum_set_chan(sc, ic->ic_curchan); 2298 RUM_UNLOCK(sc); 2299 } 2300 2301 static int 2302 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 2303 { 2304 struct ifnet *ifp = sc->sc_ifp; 2305 struct ieee80211com *ic = ifp->if_l2com; 2306 int lna, agc, rssi; 2307 2308 lna = (raw >> 5) & 0x3; 2309 agc = raw & 0x1f; 2310 2311 if (lna == 0) { 2312 /* 2313 * No RSSI mapping 2314 * 2315 * NB: Since RSSI is relative to noise floor, -1 is 2316 * adequate for caller to know error happened. 2317 */ 2318 return -1; 2319 } 2320 2321 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 2322 2323 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2324 rssi += sc->rssi_2ghz_corr; 2325 2326 if (lna == 1) 2327 rssi -= 64; 2328 else if (lna == 2) 2329 rssi -= 74; 2330 else if (lna == 3) 2331 rssi -= 90; 2332 } else { 2333 rssi += sc->rssi_5ghz_corr; 2334 2335 if (!sc->ext_5ghz_lna && lna != 1) 2336 rssi += 4; 2337 2338 if (lna == 1) 2339 rssi -= 64; 2340 else if (lna == 2) 2341 rssi -= 86; 2342 else if (lna == 3) 2343 rssi -= 100; 2344 } 2345 return rssi; 2346 } 2347 2348 static int 2349 rum_pause(struct rum_softc *sc, int timeout) 2350 { 2351 2352 usb_pause_mtx(&sc->sc_mtx, timeout); 2353 return (0); 2354 } 2355 2356 static device_method_t rum_methods[] = { 2357 /* Device interface */ 2358 DEVMETHOD(device_probe, rum_match), 2359 DEVMETHOD(device_attach, rum_attach), 2360 DEVMETHOD(device_detach, rum_detach), 2361 2362 { 0, 0 } 2363 }; 2364 2365 static driver_t rum_driver = { 2366 .name = "rum", 2367 .methods = rum_methods, 2368 .size = sizeof(struct rum_softc), 2369 }; 2370 2371 static devclass_t rum_devclass; 2372 2373 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 2374 MODULE_DEPEND(rum, wlan, 1, 1, 1); 2375 MODULE_DEPEND(rum, usb, 1, 1, 1); 2376 MODULE_VERSION(rum, 1); 2377