xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 
2 /*-
3  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
5  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
6  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 #include <sys/cdefs.h>
22 /*-
23  * Ralink Technology RT2501USB/RT2601USB chipset driver
24  * http://www.ralinktech.com.tw/
25  */
26 
27 #include "opt_wlan.h"
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kdb.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #ifdef INET
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 #endif
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_regdomain.h>
63 #include <net80211/ieee80211_radiotap.h>
64 #include <net80211/ieee80211_ratectl.h>
65 
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include "usbdevs.h"
69 
70 #define	USB_DEBUG_VAR rum_debug
71 #include <dev/usb/usb_debug.h>
72 
73 #include <dev/usb/wlan/if_rumreg.h>
74 #include <dev/usb/wlan/if_rumvar.h>
75 #include <dev/usb/wlan/if_rumfw.h>
76 
77 #ifdef USB_DEBUG
78 static int rum_debug = 0;
79 
80 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
81     "USB rum");
82 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
83     "Debug level");
84 #endif
85 
86 static const STRUCT_USB_HOST_ID rum_devs[] = {
87 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
88     RUM_DEV(ABOCOM, HWU54DM),
89     RUM_DEV(ABOCOM, RT2573_2),
90     RUM_DEV(ABOCOM, RT2573_3),
91     RUM_DEV(ABOCOM, RT2573_4),
92     RUM_DEV(ABOCOM, WUG2700),
93     RUM_DEV(AMIT, CGWLUSB2GO),
94     RUM_DEV(ASUS, RT2573_1),
95     RUM_DEV(ASUS, RT2573_2),
96     RUM_DEV(BELKIN, F5D7050A),
97     RUM_DEV(BELKIN, F5D9050V3),
98     RUM_DEV(CISCOLINKSYS, WUSB54GC),
99     RUM_DEV(CISCOLINKSYS, WUSB54GR),
100     RUM_DEV(CONCEPTRONIC2, C54RU2),
101     RUM_DEV(COREGA, CGWLUSB2GL),
102     RUM_DEV(COREGA, CGWLUSB2GPX),
103     RUM_DEV(DICKSMITH, CWD854F),
104     RUM_DEV(DICKSMITH, RT2573),
105     RUM_DEV(EDIMAX, EW7318USG),
106     RUM_DEV(DLINK2, DWLG122C1),
107     RUM_DEV(DLINK2, WUA1340),
108     RUM_DEV(DLINK2, DWA111),
109     RUM_DEV(DLINK2, DWA110),
110     RUM_DEV(GIGABYTE, GNWB01GS),
111     RUM_DEV(GIGABYTE, GNWI05GS),
112     RUM_DEV(GIGASET, RT2573),
113     RUM_DEV(GOODWAY, RT2573),
114     RUM_DEV(GUILLEMOT, HWGUSB254LB),
115     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
116     RUM_DEV(HUAWEI3COM, WUB320G),
117     RUM_DEV(MELCO, G54HP),
118     RUM_DEV(MELCO, SG54HP),
119     RUM_DEV(MELCO, SG54HG),
120     RUM_DEV(MELCO, WLIUCG),
121     RUM_DEV(MELCO, WLRUCG),
122     RUM_DEV(MELCO, WLRUCGAOSS),
123     RUM_DEV(MSI, RT2573_1),
124     RUM_DEV(MSI, RT2573_2),
125     RUM_DEV(MSI, RT2573_3),
126     RUM_DEV(MSI, RT2573_4),
127     RUM_DEV(NOVATECH, RT2573),
128     RUM_DEV(PLANEX2, GWUS54HP),
129     RUM_DEV(PLANEX2, GWUS54MINI2),
130     RUM_DEV(PLANEX2, GWUSMM),
131     RUM_DEV(QCOM, RT2573),
132     RUM_DEV(QCOM, RT2573_2),
133     RUM_DEV(QCOM, RT2573_3),
134     RUM_DEV(RALINK, RT2573),
135     RUM_DEV(RALINK, RT2573_2),
136     RUM_DEV(RALINK, RT2671),
137     RUM_DEV(SITECOMEU, WL113R2),
138     RUM_DEV(SITECOMEU, WL172),
139     RUM_DEV(SPARKLAN, RT2573),
140     RUM_DEV(SURECOM, RT2573),
141 #undef RUM_DEV
142 };
143 
144 static device_probe_t rum_match;
145 static device_attach_t rum_attach;
146 static device_detach_t rum_detach;
147 
148 static usb_callback_t rum_bulk_read_callback;
149 static usb_callback_t rum_bulk_write_callback;
150 
151 static usb_error_t	rum_do_request(struct rum_softc *sc,
152 			    struct usb_device_request *req, void *data);
153 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
154 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
155 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
156 			    int, const uint8_t [IEEE80211_ADDR_LEN],
157 			    const uint8_t [IEEE80211_ADDR_LEN]);
158 static void		rum_vap_delete(struct ieee80211vap *);
159 static void		rum_cmdq_cb(void *, int);
160 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
161 			    size_t, uint8_t, CMD_FUNC_PROTO);
162 static void		rum_tx_free(struct rum_tx_data *, int);
163 static void		rum_setup_tx_list(struct rum_softc *);
164 static void		rum_reset_tx_list(struct rum_softc *,
165 			    struct ieee80211vap *);
166 static void		rum_unsetup_tx_list(struct rum_softc *);
167 static void		rum_beacon_miss(struct ieee80211vap *);
168 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
169 			    struct mbuf *, int,
170 			    const struct ieee80211_rx_stats *, int, int);
171 static int		rum_set_power_state(struct rum_softc *, int);
172 static int		rum_newstate(struct ieee80211vap *,
173 			    enum ieee80211_state, int);
174 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
175 static void		rum_setup_tx_desc(struct rum_softc *,
176 			    struct rum_tx_desc *, struct ieee80211_key *,
177 			    uint32_t, uint8_t, uint8_t, int, int, int);
178 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
179 			    struct ieee80211_node *,
180 			    const struct ieee80211_key *);
181 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
182 			    struct ieee80211_node *);
183 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
184 			    struct ieee80211_node *,
185 			    const struct ieee80211_bpf_params *);
186 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
187 			    struct ieee80211_node *);
188 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
189 static void		rum_start(struct rum_softc *);
190 static void		rum_parent(struct ieee80211com *);
191 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
192 			    int);
193 static uint32_t		rum_read(struct rum_softc *, uint16_t);
194 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
195 			    int);
196 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
197 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
198 			    size_t);
199 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
200 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
201 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
202 			    uint32_t);
203 static int		rum_bbp_busy(struct rum_softc *);
204 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
205 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
206 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
207 static void		rum_select_antenna(struct rum_softc *);
208 static void		rum_enable_mrr(struct rum_softc *);
209 static void		rum_set_txpreamble(struct rum_softc *);
210 static void		rum_set_basicrates(struct rum_softc *);
211 static void		rum_select_band(struct rum_softc *,
212 			    struct ieee80211_channel *);
213 static void		rum_set_chan(struct rum_softc *,
214 			    struct ieee80211_channel *);
215 static void		rum_set_maxretry(struct rum_softc *,
216 			    struct ieee80211vap *);
217 static int		rum_enable_tsf_sync(struct rum_softc *);
218 static void		rum_enable_tsf(struct rum_softc *);
219 static void		rum_abort_tsf_sync(struct rum_softc *);
220 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
221 static void		rum_update_slot_cb(struct rum_softc *,
222 			    union sec_param *, uint8_t);
223 static void		rum_update_slot(struct ieee80211com *);
224 static int		rum_wme_update(struct ieee80211com *);
225 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
226 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
227 static void		rum_update_mcast(struct ieee80211com *);
228 static void		rum_update_promisc(struct ieee80211com *);
229 static void		rum_setpromisc(struct rum_softc *);
230 static const char	*rum_get_rf(int);
231 static void		rum_read_eeprom(struct rum_softc *);
232 static int		rum_bbp_wakeup(struct rum_softc *);
233 static int		rum_bbp_init(struct rum_softc *);
234 static void		rum_clr_shkey_regs(struct rum_softc *);
235 static int		rum_init(struct rum_softc *);
236 static void		rum_stop(struct rum_softc *);
237 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
238 			    size_t);
239 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
240 static int		rum_reset(struct ieee80211vap *, u_long);
241 static int		rum_set_beacon(struct rum_softc *,
242 			    struct ieee80211vap *);
243 static int		rum_alloc_beacon(struct rum_softc *,
244 			    struct ieee80211vap *);
245 static void		rum_update_beacon_cb(struct rum_softc *,
246 			    union sec_param *, uint8_t);
247 static void		rum_update_beacon(struct ieee80211vap *, int);
248 static int		rum_common_key_set(struct rum_softc *,
249 			    struct ieee80211_key *, uint16_t);
250 static void		rum_group_key_set_cb(struct rum_softc *,
251 			    union sec_param *, uint8_t);
252 static void		rum_group_key_del_cb(struct rum_softc *,
253 			    union sec_param *, uint8_t);
254 static void		rum_pair_key_set_cb(struct rum_softc *,
255 			    union sec_param *, uint8_t);
256 static void		rum_pair_key_del_cb(struct rum_softc *,
257 			    union sec_param *, uint8_t);
258 static int		rum_key_alloc(struct ieee80211vap *,
259 			    struct ieee80211_key *, ieee80211_keyix *,
260 			    ieee80211_keyix *);
261 static int		rum_key_set(struct ieee80211vap *,
262 			    const struct ieee80211_key *);
263 static int		rum_key_delete(struct ieee80211vap *,
264 			    const struct ieee80211_key *);
265 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
266 			    const struct ieee80211_bpf_params *);
267 static void		rum_scan_start(struct ieee80211com *);
268 static void		rum_scan_end(struct ieee80211com *);
269 static void		rum_set_channel(struct ieee80211com *);
270 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
271 			    struct ieee80211_channel[]);
272 static int		rum_get_rssi(struct rum_softc *, uint8_t);
273 static void		rum_ratectl_start(struct rum_softc *,
274 			    struct ieee80211_node *);
275 static void		rum_ratectl_timeout(void *);
276 static void		rum_ratectl_task(void *, int);
277 static int		rum_pause(struct rum_softc *, int);
278 
279 static const struct {
280 	uint32_t	reg;
281 	uint32_t	val;
282 } rum_def_mac[] = {
283 	{ RT2573_TXRX_CSR0,  0x025fb032 },
284 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
285 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
286 	{ RT2573_TXRX_CSR3,  0x00858687 },
287 	{ RT2573_TXRX_CSR7,  0x2e31353b },
288 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
289 	{ RT2573_TXRX_CSR15, 0x0000000f },
290 	{ RT2573_MAC_CSR6,   0x00000fff },
291 	{ RT2573_MAC_CSR8,   0x016c030a },
292 	{ RT2573_MAC_CSR10,  0x00000718 },
293 	{ RT2573_MAC_CSR12,  0x00000004 },
294 	{ RT2573_MAC_CSR13,  0x00007f00 },
295 	{ RT2573_SEC_CSR2,   0x00000000 },
296 	{ RT2573_SEC_CSR3,   0x00000000 },
297 	{ RT2573_SEC_CSR4,   0x00000000 },
298 	{ RT2573_PHY_CSR1,   0x000023b0 },
299 	{ RT2573_PHY_CSR5,   0x00040a06 },
300 	{ RT2573_PHY_CSR6,   0x00080606 },
301 	{ RT2573_PHY_CSR7,   0x00000408 },
302 	{ RT2573_AIFSN_CSR,  0x00002273 },
303 	{ RT2573_CWMIN_CSR,  0x00002344 },
304 	{ RT2573_CWMAX_CSR,  0x000034aa }
305 };
306 
307 static const struct {
308 	uint8_t	reg;
309 	uint8_t	val;
310 } rum_def_bbp[] = {
311 	{   3, 0x80 },
312 	{  15, 0x30 },
313 	{  17, 0x20 },
314 	{  21, 0xc8 },
315 	{  22, 0x38 },
316 	{  23, 0x06 },
317 	{  24, 0xfe },
318 	{  25, 0x0a },
319 	{  26, 0x0d },
320 	{  32, 0x0b },
321 	{  34, 0x12 },
322 	{  37, 0x07 },
323 	{  39, 0xf8 },
324 	{  41, 0x60 },
325 	{  53, 0x10 },
326 	{  54, 0x18 },
327 	{  60, 0x10 },
328 	{  61, 0x04 },
329 	{  62, 0x04 },
330 	{  75, 0xfe },
331 	{  86, 0xfe },
332 	{  88, 0xfe },
333 	{  90, 0x0f },
334 	{  99, 0x00 },
335 	{ 102, 0x16 },
336 	{ 107, 0x04 }
337 };
338 
339 static const uint8_t rum_chan_5ghz[] =
340 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
341 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
342 	  149, 153, 157, 161, 165 };
343 
344 static const struct rfprog {
345 	uint8_t		chan;
346 	uint32_t	r1, r2, r3, r4;
347 }  rum_rf5226[] = {
348 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
349 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
350 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
351 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
352 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
353 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
354 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
355 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
356 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
357 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
358 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
359 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
360 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
361 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
362 
363 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
364 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
365 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
366 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
367 
368 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
369 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
370 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
371 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
372 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
373 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
374 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
375 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
376 
377 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
378 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
379 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
380 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
381 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
382 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
383 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
384 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
385 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
386 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
387 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
388 
389 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
390 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
391 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
392 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
393 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
394 }, rum_rf5225[] = {
395 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
396 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
397 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
398 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
399 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
400 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
401 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
402 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
403 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
404 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
405 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
406 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
407 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
408 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
409 
410 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
411 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
412 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
413 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
414 
415 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
416 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
417 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
418 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
419 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
420 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
421 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
422 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
423 
424 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
425 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
426 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
427 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
428 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
429 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
430 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
431 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
432 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
433 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
434 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
435 
436 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
437 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
438 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
439 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
440 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
441 };
442 
443 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
444 	[RUM_BULK_WR] = {
445 		.type = UE_BULK,
446 		.endpoint = UE_ADDR_ANY,
447 		.direction = UE_DIR_OUT,
448 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
449 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
450 		.callback = rum_bulk_write_callback,
451 		.timeout = 5000,	/* ms */
452 	},
453 	[RUM_BULK_RD] = {
454 		.type = UE_BULK,
455 		.endpoint = UE_ADDR_ANY,
456 		.direction = UE_DIR_IN,
457 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
458 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
459 		.callback = rum_bulk_read_callback,
460 	},
461 };
462 
463 static int
464 rum_match(device_t self)
465 {
466 	struct usb_attach_arg *uaa = device_get_ivars(self);
467 
468 	if (uaa->usb_mode != USB_MODE_HOST)
469 		return (ENXIO);
470 	if (uaa->info.bConfigIndex != 0)
471 		return (ENXIO);
472 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
473 		return (ENXIO);
474 
475 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
476 }
477 
478 static int
479 rum_attach(device_t self)
480 {
481 	struct usb_attach_arg *uaa = device_get_ivars(self);
482 	struct rum_softc *sc = device_get_softc(self);
483 	struct ieee80211com *ic = &sc->sc_ic;
484 	uint32_t tmp;
485 	uint8_t iface_index;
486 	int error, ntries;
487 
488 	device_set_usb_desc(self);
489 	sc->sc_udev = uaa->device;
490 	sc->sc_dev = self;
491 
492 	RUM_LOCK_INIT(sc);
493 	RUM_CMDQ_LOCK_INIT(sc);
494 	mbufq_init(&sc->sc_snd, ifqmaxlen);
495 
496 	iface_index = RT2573_IFACE_INDEX;
497 	error = usbd_transfer_setup(uaa->device, &iface_index,
498 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
499 	if (error) {
500 		device_printf(self, "could not allocate USB transfers, "
501 		    "err=%s\n", usbd_errstr(error));
502 		goto detach;
503 	}
504 
505 	RUM_LOCK(sc);
506 	/* retrieve RT2573 rev. no */
507 	for (ntries = 0; ntries < 100; ntries++) {
508 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
509 			break;
510 		if (rum_pause(sc, hz / 100))
511 			break;
512 	}
513 	if (ntries == 100) {
514 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
515 		RUM_UNLOCK(sc);
516 		goto detach;
517 	}
518 
519 	/* retrieve MAC address and various other things from EEPROM */
520 	rum_read_eeprom(sc);
521 
522 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
523 	    tmp, rum_get_rf(sc->rf_rev));
524 
525 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
526 	RUM_UNLOCK(sc);
527 
528 	ic->ic_softc = sc;
529 	ic->ic_name = device_get_nameunit(self);
530 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
531 
532 	/* set device capabilities */
533 	ic->ic_caps =
534 	      IEEE80211_C_STA		/* station mode supported */
535 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
536 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
537 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
538 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
539 	    | IEEE80211_C_TXPMGT	/* tx power management */
540 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
541 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
542 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
543 	    | IEEE80211_C_WPA		/* 802.11i */
544 	    | IEEE80211_C_WME		/* 802.11e */
545 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
546 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
547 	    ;
548 
549 	ic->ic_cryptocaps =
550 	    IEEE80211_CRYPTO_WEP |
551 	    IEEE80211_CRYPTO_AES_CCM |
552 	    IEEE80211_CRYPTO_TKIPMIC |
553 	    IEEE80211_CRYPTO_TKIP;
554 
555 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
556 	    ic->ic_channels);
557 
558 	ieee80211_ifattach(ic);
559 	ic->ic_update_promisc = rum_update_promisc;
560 	ic->ic_raw_xmit = rum_raw_xmit;
561 	ic->ic_scan_start = rum_scan_start;
562 	ic->ic_scan_end = rum_scan_end;
563 	ic->ic_set_channel = rum_set_channel;
564 	ic->ic_getradiocaps = rum_getradiocaps;
565 	ic->ic_transmit = rum_transmit;
566 	ic->ic_parent = rum_parent;
567 	ic->ic_vap_create = rum_vap_create;
568 	ic->ic_vap_delete = rum_vap_delete;
569 	ic->ic_updateslot = rum_update_slot;
570 	ic->ic_wme.wme_update = rum_wme_update;
571 	ic->ic_update_mcast = rum_update_mcast;
572 
573 	ieee80211_radiotap_attach(ic,
574 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
575 		RT2573_TX_RADIOTAP_PRESENT,
576 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
577 		RT2573_RX_RADIOTAP_PRESENT);
578 
579 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
580 
581 	if (bootverbose)
582 		ieee80211_announce(ic);
583 
584 	return (0);
585 
586 detach:
587 	rum_detach(self);
588 	return (ENXIO);			/* failure */
589 }
590 
591 static int
592 rum_detach(device_t self)
593 {
594 	struct rum_softc *sc = device_get_softc(self);
595 	struct ieee80211com *ic = &sc->sc_ic;
596 
597 	/* Prevent further ioctls */
598 	RUM_LOCK(sc);
599 	sc->sc_detached = 1;
600 	RUM_UNLOCK(sc);
601 
602 	/* stop all USB transfers */
603 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
604 
605 	/* free TX list, if any */
606 	RUM_LOCK(sc);
607 	rum_unsetup_tx_list(sc);
608 	RUM_UNLOCK(sc);
609 
610 	if (ic->ic_softc == sc) {
611 		ieee80211_draintask(ic, &sc->cmdq_task);
612 		ieee80211_ifdetach(ic);
613 	}
614 
615 	mbufq_drain(&sc->sc_snd);
616 	RUM_CMDQ_LOCK_DESTROY(sc);
617 	RUM_LOCK_DESTROY(sc);
618 
619 	return (0);
620 }
621 
622 static usb_error_t
623 rum_do_request(struct rum_softc *sc,
624     struct usb_device_request *req, void *data)
625 {
626 	usb_error_t err;
627 	int ntries = 10;
628 
629 	while (ntries--) {
630 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
631 		    req, data, 0, NULL, 250 /* ms */);
632 		if (err == 0)
633 			break;
634 
635 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
636 		    usbd_errstr(err));
637 		if (rum_pause(sc, hz / 100))
638 			break;
639 	}
640 	return (err);
641 }
642 
643 static usb_error_t
644 rum_do_mcu_request(struct rum_softc *sc, int request)
645 {
646 	struct usb_device_request req;
647 
648 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
649 	req.bRequest = RT2573_MCU_CNTL;
650 	USETW(req.wValue, request);
651 	USETW(req.wIndex, 0);
652 	USETW(req.wLength, 0);
653 
654 	return (rum_do_request(sc, &req, NULL));
655 }
656 
657 static struct ieee80211vap *
658 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
659     enum ieee80211_opmode opmode, int flags,
660     const uint8_t bssid[IEEE80211_ADDR_LEN],
661     const uint8_t mac[IEEE80211_ADDR_LEN])
662 {
663 	struct rum_softc *sc = ic->ic_softc;
664 	struct rum_vap *rvp;
665 	struct ieee80211vap *vap;
666 
667 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
668 		return NULL;
669 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
670 	vap = &rvp->vap;
671 	/* enable s/w bmiss handling for sta mode */
672 
673 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
674 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
675 		/* out of memory */
676 		free(rvp, M_80211_VAP);
677 		return (NULL);
678 	}
679 
680 	/* override state transition machine */
681 	rvp->newstate = vap->iv_newstate;
682 	vap->iv_newstate = rum_newstate;
683 	vap->iv_key_alloc = rum_key_alloc;
684 	vap->iv_key_set = rum_key_set;
685 	vap->iv_key_delete = rum_key_delete;
686 	vap->iv_update_beacon = rum_update_beacon;
687 	vap->iv_reset = rum_reset;
688 	vap->iv_max_aid = RT2573_ADDR_MAX;
689 
690 	if (opmode == IEEE80211_M_STA) {
691 		/*
692 		 * Move device to the sleep state when
693 		 * beacon is received and there is no data for us.
694 		 *
695 		 * Used only for IEEE80211_S_SLEEP state.
696 		 */
697 		rvp->recv_mgmt = vap->iv_recv_mgmt;
698 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
699 
700 		/* Ignored while sleeping. */
701 		rvp->bmiss = vap->iv_bmiss;
702 		vap->iv_bmiss = rum_beacon_miss;
703 	}
704 
705 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
706 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
707 	ieee80211_ratectl_init(vap);
708 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
709 	/* complete setup */
710 	ieee80211_vap_attach(vap, ieee80211_media_change,
711 	    ieee80211_media_status, mac);
712 	ic->ic_opmode = opmode;
713 	return vap;
714 }
715 
716 static void
717 rum_vap_delete(struct ieee80211vap *vap)
718 {
719 	struct rum_vap *rvp = RUM_VAP(vap);
720 	struct ieee80211com *ic = vap->iv_ic;
721 	struct rum_softc *sc = ic->ic_softc;
722 
723 	/* Put vap into INIT state. */
724 	ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
725 	ieee80211_draintask(ic, &vap->iv_nstate_task);
726 
727 	RUM_LOCK(sc);
728 	/* Cancel any unfinished Tx. */
729 	rum_reset_tx_list(sc, vap);
730 	RUM_UNLOCK(sc);
731 
732 	usb_callout_drain(&rvp->ratectl_ch);
733 	ieee80211_draintask(ic, &rvp->ratectl_task);
734 	ieee80211_ratectl_deinit(vap);
735 	ieee80211_vap_detach(vap);
736 	m_freem(rvp->bcn_mbuf);
737 	free(rvp, M_80211_VAP);
738 }
739 
740 static void
741 rum_cmdq_cb(void *arg, int pending)
742 {
743 	struct rum_softc *sc = arg;
744 	struct rum_cmdq *rc;
745 
746 	RUM_CMDQ_LOCK(sc);
747 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
748 		rc = &sc->cmdq[sc->cmdq_first];
749 		RUM_CMDQ_UNLOCK(sc);
750 
751 		RUM_LOCK(sc);
752 		rc->func(sc, &rc->data, rc->rvp_id);
753 		RUM_UNLOCK(sc);
754 
755 		RUM_CMDQ_LOCK(sc);
756 		memset(rc, 0, sizeof (*rc));
757 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
758 	}
759 	RUM_CMDQ_UNLOCK(sc);
760 }
761 
762 static int
763 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
764     uint8_t rvp_id, CMD_FUNC_PROTO)
765 {
766 	struct ieee80211com *ic = &sc->sc_ic;
767 
768 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
769 
770 	RUM_CMDQ_LOCK(sc);
771 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
772 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
773 		RUM_CMDQ_UNLOCK(sc);
774 
775 		return EAGAIN;
776 	}
777 
778 	if (ptr != NULL)
779 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
780 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
781 	sc->cmdq[sc->cmdq_last].func = func;
782 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
783 	RUM_CMDQ_UNLOCK(sc);
784 
785 	ieee80211_runtask(ic, &sc->cmdq_task);
786 
787 	return 0;
788 }
789 
790 static void
791 rum_tx_free(struct rum_tx_data *data, int txerr)
792 {
793 	struct rum_softc *sc = data->sc;
794 
795 	if (data->m != NULL) {
796 		ieee80211_tx_complete(data->ni, data->m, txerr);
797 		data->m = NULL;
798 		data->ni = NULL;
799 	}
800 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
801 	sc->tx_nfree++;
802 }
803 
804 static void
805 rum_setup_tx_list(struct rum_softc *sc)
806 {
807 	struct rum_tx_data *data;
808 	int i;
809 
810 	sc->tx_nfree = 0;
811 	STAILQ_INIT(&sc->tx_q);
812 	STAILQ_INIT(&sc->tx_free);
813 
814 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
815 		data = &sc->tx_data[i];
816 
817 		data->sc = sc;
818 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
819 		sc->tx_nfree++;
820 	}
821 }
822 
823 static void
824 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
825 {
826 	struct rum_tx_data *data, *tmp;
827 
828 	KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
829 
830 	STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
831 		if (data->ni != NULL && data->ni->ni_vap == vap) {
832 			ieee80211_free_node(data->ni);
833 			data->ni = NULL;
834 
835 			KASSERT(data->m != NULL, ("%s: m is NULL\n",
836 			    __func__));
837 			m_freem(data->m);
838 			data->m = NULL;
839 
840 			STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
841 			STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
842 			sc->tx_nfree++;
843 		}
844 	}
845 }
846 
847 static void
848 rum_unsetup_tx_list(struct rum_softc *sc)
849 {
850 	struct rum_tx_data *data;
851 	int i;
852 
853 	/* make sure any subsequent use of the queues will fail */
854 	sc->tx_nfree = 0;
855 	STAILQ_INIT(&sc->tx_q);
856 	STAILQ_INIT(&sc->tx_free);
857 
858 	/* free up all node references and mbufs */
859 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
860 		data = &sc->tx_data[i];
861 
862 		if (data->m != NULL) {
863 			m_freem(data->m);
864 			data->m = NULL;
865 		}
866 		if (data->ni != NULL) {
867 			ieee80211_free_node(data->ni);
868 			data->ni = NULL;
869 		}
870 	}
871 }
872 
873 static void
874 rum_beacon_miss(struct ieee80211vap *vap)
875 {
876 	struct ieee80211com *ic = vap->iv_ic;
877 	struct rum_softc *sc = ic->ic_softc;
878 	struct rum_vap *rvp = RUM_VAP(vap);
879 	int sleep;
880 
881 	RUM_LOCK(sc);
882 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
883 		DPRINTFN(12, "dropping 'sleeping' bit, "
884 		    "device must be awake now\n");
885 
886 		sc->sc_sleeping = 0;
887 	}
888 
889 	sleep = sc->sc_sleeping;
890 	RUM_UNLOCK(sc);
891 
892 	if (!sleep)
893 		rvp->bmiss(vap);
894 #ifdef USB_DEBUG
895 	else
896 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
897 #endif
898 }
899 
900 static void
901 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
902     const struct ieee80211_rx_stats *rxs,
903     int rssi, int nf)
904 {
905 	struct ieee80211vap *vap = ni->ni_vap;
906 	struct rum_softc *sc = vap->iv_ic->ic_softc;
907 	struct rum_vap *rvp = RUM_VAP(vap);
908 
909 	if (vap->iv_state == IEEE80211_S_SLEEP &&
910 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
911 		RUM_LOCK(sc);
912 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
913 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
914 		    sc->last_rx_flags);
915 
916 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
917 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
918 			/*
919 			 * Put it to sleep here; in case if there is a data
920 			 * for us, iv_recv_mgmt() will wakeup the device via
921 			 * SLEEP -> RUN state transition.
922 			 */
923 			rum_set_power_state(sc, 1);
924 		}
925 		RUM_UNLOCK(sc);
926 	}
927 
928 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
929 }
930 
931 static int
932 rum_set_power_state(struct rum_softc *sc, int sleep)
933 {
934 	usb_error_t uerror;
935 
936 	RUM_LOCK_ASSERT(sc);
937 
938 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
939 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
940 
941 	uerror = rum_do_mcu_request(sc,
942 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
943 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
944 		device_printf(sc->sc_dev,
945 		    "%s: could not change power state: %s\n",
946 		    __func__, usbd_errstr(uerror));
947 		return (EIO);
948 	}
949 
950 	sc->sc_sleeping = !!sleep;
951 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
952 
953 	return (0);
954 }
955 
956 static int
957 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
958 {
959 	struct rum_vap *rvp = RUM_VAP(vap);
960 	struct ieee80211com *ic = vap->iv_ic;
961 	struct rum_softc *sc = ic->ic_softc;
962 	const struct ieee80211_txparam *tp;
963 	enum ieee80211_state ostate;
964 	struct ieee80211_node *ni;
965 	usb_error_t uerror;
966 	int ret = 0;
967 
968 	ostate = vap->iv_state;
969 	DPRINTF("%s -> %s\n",
970 		ieee80211_state_name[ostate],
971 		ieee80211_state_name[nstate]);
972 
973 	IEEE80211_UNLOCK(ic);
974 	RUM_LOCK(sc);
975 	usb_callout_stop(&rvp->ratectl_ch);
976 
977 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
978 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
979 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
980 
981 		/*
982 		 * Ignore any errors;
983 		 * any subsequent TX will wakeup it anyway
984 		 */
985 		(void) rum_set_power_state(sc, 0);
986 	}
987 
988 	switch (nstate) {
989 	case IEEE80211_S_INIT:
990 		if (ostate == IEEE80211_S_RUN)
991 			rum_abort_tsf_sync(sc);
992 
993 		break;
994 
995 	case IEEE80211_S_RUN:
996 		if (ostate == IEEE80211_S_SLEEP)
997 			break;		/* already handled */
998 
999 		ni = ieee80211_ref_node(vap->iv_bss);
1000 
1001 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1002 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
1003 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
1004 				ret = EINVAL;
1005 				goto run_fail;
1006 			}
1007 			rum_update_slot_cb(sc, NULL, 0);
1008 			rum_enable_mrr(sc);
1009 			rum_set_txpreamble(sc);
1010 			rum_set_basicrates(sc);
1011 			rum_set_maxretry(sc, vap);
1012 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1013 			rum_set_bssid(sc, sc->sc_bssid);
1014 		}
1015 
1016 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1017 		    vap->iv_opmode == IEEE80211_M_IBSS) {
1018 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
1019 				goto run_fail;
1020 		}
1021 
1022 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
1023 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
1024 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
1025 				goto run_fail;
1026 		} else
1027 			rum_enable_tsf(sc);
1028 
1029 		/* enable automatic rate adaptation */
1030 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1031 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1032 			rum_ratectl_start(sc, ni);
1033 run_fail:
1034 		ieee80211_free_node(ni);
1035 		break;
1036 	case IEEE80211_S_SLEEP:
1037 		/* Implemented for STA mode only. */
1038 		if (vap->iv_opmode != IEEE80211_M_STA)
1039 			break;
1040 
1041 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1042 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1043 			ret = EIO;
1044 			break;
1045 		}
1046 
1047 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1048 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1049 			ret = EIO;
1050 			break;
1051 		}
1052 
1053 		ret = rum_set_power_state(sc, 1);
1054 		if (ret != 0) {
1055 			device_printf(sc->sc_dev,
1056 			    "%s: could not move to the SLEEP state: %s\n",
1057 			    __func__, usbd_errstr(uerror));
1058 		}
1059 		break;
1060 	default:
1061 		break;
1062 	}
1063 	RUM_UNLOCK(sc);
1064 	IEEE80211_LOCK(ic);
1065 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1066 }
1067 
1068 static void
1069 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1070 {
1071 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1072 	struct ieee80211vap *vap;
1073 	struct rum_tx_data *data;
1074 	struct mbuf *m;
1075 	struct usb_page_cache *pc;
1076 	unsigned len;
1077 	int actlen, sumlen;
1078 
1079 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1080 
1081 	switch (USB_GET_STATE(xfer)) {
1082 	case USB_ST_TRANSFERRED:
1083 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1084 
1085 		/* free resources */
1086 		data = usbd_xfer_get_priv(xfer);
1087 		rum_tx_free(data, 0);
1088 		usbd_xfer_set_priv(xfer, NULL);
1089 
1090 		/* FALLTHROUGH */
1091 	case USB_ST_SETUP:
1092 tr_setup:
1093 		data = STAILQ_FIRST(&sc->tx_q);
1094 		if (data) {
1095 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1096 			m = data->m;
1097 
1098 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1099 				DPRINTFN(0, "data overflow, %u bytes\n",
1100 				    m->m_pkthdr.len);
1101 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1102 			}
1103 			pc = usbd_xfer_get_frame(xfer, 0);
1104 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1105 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1106 			    m->m_pkthdr.len);
1107 
1108 			vap = data->ni->ni_vap;
1109 			if (ieee80211_radiotap_active_vap(vap)) {
1110 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1111 
1112 				tap->wt_flags = 0;
1113 				tap->wt_rate = data->rate;
1114 				tap->wt_antenna = sc->tx_ant;
1115 
1116 				ieee80211_radiotap_tx(vap, m);
1117 			}
1118 
1119 			/* align end on a 4-bytes boundary */
1120 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1121 			if ((len % 64) == 0)
1122 				len += 4;
1123 
1124 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1125 			    m->m_pkthdr.len, len);
1126 
1127 			usbd_xfer_set_frame_len(xfer, 0, len);
1128 			usbd_xfer_set_priv(xfer, data);
1129 
1130 			usbd_transfer_submit(xfer);
1131 		}
1132 		rum_start(sc);
1133 		break;
1134 
1135 	default:			/* Error */
1136 		DPRINTFN(11, "transfer error, %s\n",
1137 		    usbd_errstr(error));
1138 
1139 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1140 		data = usbd_xfer_get_priv(xfer);
1141 		if (data != NULL) {
1142 			rum_tx_free(data, error);
1143 			usbd_xfer_set_priv(xfer, NULL);
1144 		}
1145 
1146 		if (error != USB_ERR_CANCELLED) {
1147 			if (error == USB_ERR_TIMEOUT)
1148 				device_printf(sc->sc_dev, "device timeout\n");
1149 
1150 			/*
1151 			 * Try to clear stall first, also if other
1152 			 * errors occur, hence clearing stall
1153 			 * introduces a 50 ms delay:
1154 			 */
1155 			usbd_xfer_set_stall(xfer);
1156 			goto tr_setup;
1157 		}
1158 		break;
1159 	}
1160 }
1161 
1162 static void
1163 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1164 {
1165 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1166 	struct ieee80211com *ic = &sc->sc_ic;
1167 	struct ieee80211_frame_min *wh;
1168 	struct ieee80211_node *ni;
1169 	struct epoch_tracker et;
1170 	struct mbuf *m = NULL;
1171 	struct usb_page_cache *pc;
1172 	uint32_t flags;
1173 	uint8_t rssi = 0;
1174 	int len;
1175 
1176 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1177 
1178 	switch (USB_GET_STATE(xfer)) {
1179 	case USB_ST_TRANSFERRED:
1180 
1181 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1182 
1183 		if (len < RT2573_RX_DESC_SIZE) {
1184 			DPRINTF("%s: xfer too short %d\n",
1185 			    device_get_nameunit(sc->sc_dev), len);
1186 			counter_u64_add(ic->ic_ierrors, 1);
1187 			goto tr_setup;
1188 		}
1189 
1190 		len -= RT2573_RX_DESC_SIZE;
1191 		pc = usbd_xfer_get_frame(xfer, 0);
1192 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1193 
1194 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1195 		flags = le32toh(sc->sc_rx_desc.flags);
1196 		sc->last_rx_flags = flags;
1197 		if (len < ((flags >> 16) & 0xfff)) {
1198 			DPRINTFN(5, "%s: frame is truncated from %d to %d "
1199 			    "bytes\n", device_get_nameunit(sc->sc_dev),
1200 			    (flags >> 16) & 0xfff, len);
1201 			counter_u64_add(ic->ic_ierrors, 1);
1202 			goto tr_setup;
1203 		}
1204 		len = (flags >> 16) & 0xfff;
1205 		if (len < sizeof(struct ieee80211_frame_ack)) {
1206 			DPRINTFN(5, "%s: frame too short %d\n",
1207 			    device_get_nameunit(sc->sc_dev), len);
1208 			counter_u64_add(ic->ic_ierrors, 1);
1209 			goto tr_setup;
1210 		}
1211 		if (flags & RT2573_RX_CRC_ERROR) {
1212 			/*
1213 		         * This should not happen since we did not
1214 		         * request to receive those frames when we
1215 		         * filled RUM_TXRX_CSR2:
1216 		         */
1217 			DPRINTFN(5, "PHY or CRC error\n");
1218 			counter_u64_add(ic->ic_ierrors, 1);
1219 			goto tr_setup;
1220 		}
1221 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1222 			switch (flags & RT2573_RX_DEC_MASK) {
1223 			case RT2573_RX_IV_ERROR:
1224 				DPRINTFN(5, "IV/EIV error\n");
1225 				break;
1226 			case RT2573_RX_MIC_ERROR:
1227 				DPRINTFN(5, "MIC error\n");
1228 				break;
1229 			case RT2573_RX_KEY_ERROR:
1230 				DPRINTFN(5, "Key error\n");
1231 				break;
1232 			}
1233 			counter_u64_add(ic->ic_ierrors, 1);
1234 			goto tr_setup;
1235 		}
1236 
1237 		m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
1238 		if (m == NULL) {
1239 			DPRINTF("could not allocate mbuf\n");
1240 			counter_u64_add(ic->ic_ierrors, 1);
1241 			goto tr_setup;
1242 		}
1243 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1244 		    mtod(m, uint8_t *), len);
1245 
1246 		wh = mtod(m, struct ieee80211_frame_min *);
1247 
1248 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1249 		    (flags & RT2573_RX_CIP_MASK) !=
1250 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1251 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1252 			m->m_flags |= M_WEP;
1253 		}
1254 
1255 		/* finalize mbuf */
1256 		m->m_pkthdr.len = m->m_len = len;
1257 
1258 		if (ieee80211_radiotap_active(ic)) {
1259 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1260 
1261 			tap->wr_flags = 0;
1262 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1263 			    (flags & RT2573_RX_OFDM) ?
1264 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1265 			rum_get_tsf(sc, &tap->wr_tsf);
1266 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1267 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1268 			tap->wr_antenna = sc->rx_ant;
1269 		}
1270 		/* FALLTHROUGH */
1271 	case USB_ST_SETUP:
1272 tr_setup:
1273 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1274 		usbd_transfer_submit(xfer);
1275 
1276 		/*
1277 		 * At the end of a USB callback it is always safe to unlock
1278 		 * the private mutex of a device! That is why we do the
1279 		 * "ieee80211_input" here, and not some lines up!
1280 		 */
1281 		RUM_UNLOCK(sc);
1282 		if (m) {
1283 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1284 				ni = ieee80211_find_rxnode(ic, wh);
1285 			else
1286 				ni = NULL;
1287 
1288 			NET_EPOCH_ENTER(et);
1289 			if (ni != NULL) {
1290 				(void) ieee80211_input(ni, m, rssi,
1291 				    RT2573_NOISE_FLOOR);
1292 				ieee80211_free_node(ni);
1293 			} else
1294 				(void) ieee80211_input_all(ic, m, rssi,
1295 				    RT2573_NOISE_FLOOR);
1296 			NET_EPOCH_EXIT(et);
1297 		}
1298 		RUM_LOCK(sc);
1299 		rum_start(sc);
1300 		return;
1301 
1302 	default:			/* Error */
1303 		if (error != USB_ERR_CANCELLED) {
1304 			/* try to clear stall first */
1305 			usbd_xfer_set_stall(xfer);
1306 			goto tr_setup;
1307 		}
1308 		return;
1309 	}
1310 }
1311 
1312 static uint8_t
1313 rum_plcp_signal(int rate)
1314 {
1315 	switch (rate) {
1316 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1317 	case 12:	return 0xb;
1318 	case 18:	return 0xf;
1319 	case 24:	return 0xa;
1320 	case 36:	return 0xe;
1321 	case 48:	return 0x9;
1322 	case 72:	return 0xd;
1323 	case 96:	return 0x8;
1324 	case 108:	return 0xc;
1325 
1326 	/* CCK rates (NB: not IEEE std, device-specific) */
1327 	case 2:		return 0x0;
1328 	case 4:		return 0x1;
1329 	case 11:	return 0x2;
1330 	case 22:	return 0x3;
1331 	}
1332 	return 0xff;		/* XXX unsupported/unknown rate */
1333 }
1334 
1335 /*
1336  * Map net80211 cipher to RT2573 security mode.
1337  */
1338 static uint8_t
1339 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1340 {
1341 	switch (cipher) {
1342 	case IEEE80211_CIPHER_WEP:
1343 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1344 	case IEEE80211_CIPHER_TKIP:
1345 		return RT2573_MODE_TKIP;
1346 	case IEEE80211_CIPHER_AES_CCM:
1347 		return RT2573_MODE_AES_CCMP;
1348 	default:
1349 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1350 		return 0;
1351 	}
1352 }
1353 
1354 static void
1355 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1356     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1357     int hdrlen, int len, int rate)
1358 {
1359 	struct ieee80211com *ic = &sc->sc_ic;
1360 	struct wmeParams *wmep = &sc->wme_params[qid];
1361 	uint16_t plcp_length;
1362 	int remainder;
1363 
1364 	flags |= RT2573_TX_VALID;
1365 	flags |= len << 16;
1366 
1367 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1368 		const struct ieee80211_cipher *cip = k->wk_cipher;
1369 
1370 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1371 
1372 		desc->eiv = 0;		/* for WEP */
1373 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1374 	}
1375 
1376 	/* setup PLCP fields */
1377 	desc->plcp_signal  = rum_plcp_signal(rate);
1378 	desc->plcp_service = 4;
1379 
1380 	len += IEEE80211_CRC_LEN;
1381 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1382 		flags |= RT2573_TX_OFDM;
1383 
1384 		plcp_length = len & 0xfff;
1385 		desc->plcp_length_hi = plcp_length >> 6;
1386 		desc->plcp_length_lo = plcp_length & 0x3f;
1387 	} else {
1388 		if (rate == 0)
1389 			rate = 2;	/* avoid division by zero */
1390 		plcp_length = howmany(16 * len, rate);
1391 		if (rate == 22) {
1392 			remainder = (16 * len) % 22;
1393 			if (remainder != 0 && remainder < 7)
1394 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1395 		}
1396 		desc->plcp_length_hi = plcp_length >> 8;
1397 		desc->plcp_length_lo = plcp_length & 0xff;
1398 
1399 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1400 			desc->plcp_signal |= 0x08;
1401 	}
1402 
1403 	desc->flags = htole32(flags);
1404 	desc->hdrlen = hdrlen;
1405 	desc->xflags = xflags;
1406 
1407 	desc->wme = htole16(RT2573_QID(qid) |
1408 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1409 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1410 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1411 }
1412 
1413 static int
1414 rum_sendprot(struct rum_softc *sc,
1415     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1416 {
1417 	struct ieee80211com *ic = ni->ni_ic;
1418 	struct rum_tx_data *data;
1419 	struct mbuf *mprot;
1420 	int protrate, flags;
1421 
1422 	RUM_LOCK_ASSERT(sc);
1423 
1424 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1425 	if (mprot == NULL) {
1426 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1427 		device_printf(sc->sc_dev,
1428 		    "could not allocate mbuf for protection mode %d\n", prot);
1429 		return (ENOBUFS);
1430 	}
1431 
1432 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1433 	flags = 0;
1434 	if (prot == IEEE80211_PROT_RTSCTS)
1435 		flags |= RT2573_TX_NEED_ACK;
1436 
1437 	data = STAILQ_FIRST(&sc->tx_free);
1438 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1439 	sc->tx_nfree--;
1440 
1441 	data->m = mprot;
1442 	data->ni = ieee80211_ref_node(ni);
1443 	data->rate = protrate;
1444 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1445 	    mprot->m_pkthdr.len, protrate);
1446 
1447 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1448 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1449 
1450 	return 0;
1451 }
1452 
1453 static uint32_t
1454 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1455     const struct ieee80211_key *k)
1456 {
1457 	struct ieee80211vap *vap = ni->ni_vap;
1458 	u_int cipher;
1459 	uint32_t flags = 0;
1460 	uint8_t mode, pos;
1461 
1462 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1463 		cipher = k->wk_cipher->ic_cipher;
1464 		pos = k->wk_keyix;
1465 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1466 		if (mode == 0)
1467 			return 0;
1468 
1469 		flags |= RT2573_TX_CIP_MODE(mode);
1470 
1471 		/* Do not trust GROUP flag */
1472 		if (!(k >= &vap->iv_nw_keys[0] &&
1473 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1474 			flags |= RT2573_TX_KEY_PAIR;
1475 		else
1476 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1477 
1478 		flags |= RT2573_TX_KEY_ID(pos);
1479 
1480 		if (cipher == IEEE80211_CIPHER_TKIP)
1481 			flags |= RT2573_TX_TKIPMIC;
1482 	}
1483 
1484 	return flags;
1485 }
1486 
1487 static int
1488 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1489 {
1490 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1491 	struct ieee80211com *ic = &sc->sc_ic;
1492 	struct rum_tx_data *data;
1493 	struct ieee80211_frame *wh;
1494 	struct ieee80211_key *k = NULL;
1495 	uint32_t flags = 0;
1496 	uint16_t dur;
1497 	uint8_t ac, type, xflags = 0;
1498 	int hdrlen;
1499 
1500 	RUM_LOCK_ASSERT(sc);
1501 
1502 	data = STAILQ_FIRST(&sc->tx_free);
1503 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1504 	sc->tx_nfree--;
1505 
1506 	wh = mtod(m0, struct ieee80211_frame *);
1507 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1508 	hdrlen = ieee80211_anyhdrsize(wh);
1509 	ac = M_WME_GETAC(m0);
1510 
1511 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1512 		k = ieee80211_crypto_get_txkey(ni, m0);
1513 		if (k == NULL)
1514 			return (ENOENT);
1515 
1516 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1517 		    !k->wk_cipher->ic_encap(k, m0))
1518 			return (ENOBUFS);
1519 
1520 		wh = mtod(m0, struct ieee80211_frame *);
1521 	}
1522 
1523 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1524 		flags |= RT2573_TX_NEED_ACK;
1525 
1526 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1527 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1528 		USETW(wh->i_dur, dur);
1529 
1530 		/* tell hardware to add timestamp for probe responses */
1531 		if (type == IEEE80211_FC0_TYPE_MGT &&
1532 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1533 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1534 			flags |= RT2573_TX_TIMESTAMP;
1535 	}
1536 
1537 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1538 		xflags |= RT2573_TX_HWSEQ;
1539 
1540 	if (k != NULL)
1541 		flags |= rum_tx_crypto_flags(sc, ni, k);
1542 
1543 	data->m = m0;
1544 	data->ni = ni;
1545 	data->rate = tp->mgmtrate;
1546 
1547 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1548 	    m0->m_pkthdr.len, tp->mgmtrate);
1549 
1550 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1551 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1552 
1553 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1554 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1555 
1556 	return (0);
1557 }
1558 
1559 static int
1560 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1561     const struct ieee80211_bpf_params *params)
1562 {
1563 	struct ieee80211com *ic = ni->ni_ic;
1564 	struct ieee80211_frame *wh;
1565 	struct rum_tx_data *data;
1566 	uint32_t flags;
1567 	uint8_t ac, type, xflags = 0;
1568 	int rate, error;
1569 
1570 	RUM_LOCK_ASSERT(sc);
1571 
1572 	wh = mtod(m0, struct ieee80211_frame *);
1573 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1574 
1575 	ac = params->ibp_pri & 3;
1576 
1577 	rate = params->ibp_rate0;
1578 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1579 		return (EINVAL);
1580 
1581 	flags = 0;
1582 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1583 		flags |= RT2573_TX_NEED_ACK;
1584 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1585 		error = rum_sendprot(sc, m0, ni,
1586 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1587 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1588 		    rate);
1589 		if (error || sc->tx_nfree == 0)
1590 			return (ENOBUFS);
1591 
1592 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1593 	}
1594 
1595 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1596 		xflags |= RT2573_TX_HWSEQ;
1597 
1598 	data = STAILQ_FIRST(&sc->tx_free);
1599 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1600 	sc->tx_nfree--;
1601 
1602 	data->m = m0;
1603 	data->ni = ni;
1604 	data->rate = rate;
1605 
1606 	/* XXX need to setup descriptor ourself */
1607 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1608 	    m0->m_pkthdr.len, rate);
1609 
1610 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1611 	    m0->m_pkthdr.len, rate);
1612 
1613 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1614 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1615 
1616 	return 0;
1617 }
1618 
1619 static int
1620 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1621 {
1622 	struct ieee80211vap *vap = ni->ni_vap;
1623 	struct ieee80211com *ic = &sc->sc_ic;
1624 	struct rum_tx_data *data;
1625 	struct ieee80211_frame *wh;
1626 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1627 	struct ieee80211_key *k = NULL;
1628 	uint32_t flags = 0;
1629 	uint16_t dur;
1630 	uint8_t ac, type, qos, xflags = 0;
1631 	int error, hdrlen, rate;
1632 
1633 	RUM_LOCK_ASSERT(sc);
1634 
1635 	wh = mtod(m0, struct ieee80211_frame *);
1636 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1637 	hdrlen = ieee80211_anyhdrsize(wh);
1638 
1639 	if (IEEE80211_QOS_HAS_SEQ(wh))
1640 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1641 	else
1642 		qos = 0;
1643 	ac = M_WME_GETAC(m0);
1644 
1645 	if (m0->m_flags & M_EAPOL)
1646 		rate = tp->mgmtrate;
1647 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1648 		rate = tp->mcastrate;
1649 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1650 		rate = tp->ucastrate;
1651 	else {
1652 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1653 		rate = ni->ni_txrate;
1654 	}
1655 
1656 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1657 		k = ieee80211_crypto_get_txkey(ni, m0);
1658 		if (k == NULL) {
1659 			m_freem(m0);
1660 			return (ENOENT);
1661 		}
1662 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1663 		    !k->wk_cipher->ic_encap(k, m0)) {
1664 			m_freem(m0);
1665 			return (ENOBUFS);
1666 		}
1667 
1668 		/* packet header may have moved, reset our local pointer */
1669 		wh = mtod(m0, struct ieee80211_frame *);
1670 	}
1671 
1672 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1673 		xflags |= RT2573_TX_HWSEQ;
1674 
1675 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1676 		int prot = IEEE80211_PROT_NONE;
1677 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1678 			prot = IEEE80211_PROT_RTSCTS;
1679 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1680 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1681 			prot = ic->ic_protmode;
1682 		if (prot != IEEE80211_PROT_NONE) {
1683 			error = rum_sendprot(sc, m0, ni, prot, rate);
1684 			if (error || sc->tx_nfree == 0) {
1685 				m_freem(m0);
1686 				return ENOBUFS;
1687 			}
1688 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1689 		}
1690 	}
1691 
1692 	if (k != NULL)
1693 		flags |= rum_tx_crypto_flags(sc, ni, k);
1694 
1695 	data = STAILQ_FIRST(&sc->tx_free);
1696 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1697 	sc->tx_nfree--;
1698 
1699 	data->m = m0;
1700 	data->ni = ni;
1701 	data->rate = rate;
1702 
1703 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1704 		/* Unicast frame, check if an ACK is expected. */
1705 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1706 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1707 			flags |= RT2573_TX_NEED_ACK;
1708 
1709 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1710 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1711 		USETW(wh->i_dur, dur);
1712 	}
1713 
1714 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1715 	    m0->m_pkthdr.len, rate);
1716 
1717 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1718 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1719 
1720 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1721 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1722 
1723 	return 0;
1724 }
1725 
1726 static int
1727 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1728 {
1729 	struct rum_softc *sc = ic->ic_softc;
1730 	int error;
1731 
1732 	RUM_LOCK(sc);
1733 	if (!sc->sc_running) {
1734 		RUM_UNLOCK(sc);
1735 		return (ENXIO);
1736 	}
1737 	error = mbufq_enqueue(&sc->sc_snd, m);
1738 	if (error) {
1739 		RUM_UNLOCK(sc);
1740 		return (error);
1741 	}
1742 	rum_start(sc);
1743 	RUM_UNLOCK(sc);
1744 
1745 	return (0);
1746 }
1747 
1748 static void
1749 rum_start(struct rum_softc *sc)
1750 {
1751 	struct ieee80211_node *ni;
1752 	struct mbuf *m;
1753 
1754 	RUM_LOCK_ASSERT(sc);
1755 
1756 	if (!sc->sc_running)
1757 		return;
1758 
1759 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1760 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1761 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1762 		if (rum_tx_data(sc, m, ni) != 0) {
1763 			if_inc_counter(ni->ni_vap->iv_ifp,
1764 			    IFCOUNTER_OERRORS, 1);
1765 			ieee80211_free_node(ni);
1766 			break;
1767 		}
1768 	}
1769 }
1770 
1771 static void
1772 rum_parent(struct ieee80211com *ic)
1773 {
1774 	struct rum_softc *sc = ic->ic_softc;
1775 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1776 
1777 	RUM_LOCK(sc);
1778 	if (sc->sc_detached) {
1779 		RUM_UNLOCK(sc);
1780 		return;
1781 	}
1782 	RUM_UNLOCK(sc);
1783 
1784 	if (ic->ic_nrunning > 0) {
1785 		if (rum_init(sc) == 0)
1786 			ieee80211_start_all(ic);
1787 		else
1788 			ieee80211_stop(vap);
1789 	} else
1790 		rum_stop(sc);
1791 }
1792 
1793 static void
1794 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1795 {
1796 	struct usb_device_request req;
1797 	usb_error_t error;
1798 
1799 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1800 	req.bRequest = RT2573_READ_EEPROM;
1801 	USETW(req.wValue, 0);
1802 	USETW(req.wIndex, addr);
1803 	USETW(req.wLength, len);
1804 
1805 	error = rum_do_request(sc, &req, buf);
1806 	if (error != 0) {
1807 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1808 		    usbd_errstr(error));
1809 	}
1810 }
1811 
1812 static uint32_t
1813 rum_read(struct rum_softc *sc, uint16_t reg)
1814 {
1815 	uint32_t val;
1816 
1817 	rum_read_multi(sc, reg, &val, sizeof val);
1818 
1819 	return le32toh(val);
1820 }
1821 
1822 static void
1823 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1824 {
1825 	struct usb_device_request req;
1826 	usb_error_t error;
1827 
1828 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1829 	req.bRequest = RT2573_READ_MULTI_MAC;
1830 	USETW(req.wValue, 0);
1831 	USETW(req.wIndex, reg);
1832 	USETW(req.wLength, len);
1833 
1834 	error = rum_do_request(sc, &req, buf);
1835 	if (error != 0) {
1836 		device_printf(sc->sc_dev,
1837 		    "could not multi read MAC register: %s\n",
1838 		    usbd_errstr(error));
1839 	}
1840 }
1841 
1842 static usb_error_t
1843 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1844 {
1845 	uint32_t tmp = htole32(val);
1846 
1847 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1848 }
1849 
1850 static usb_error_t
1851 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1852 {
1853 	struct usb_device_request req;
1854 	usb_error_t error;
1855 	size_t offset;
1856 
1857 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1858 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1859 	USETW(req.wValue, 0);
1860 
1861 	/* write at most 64 bytes at a time */
1862 	for (offset = 0; offset < len; offset += 64) {
1863 		USETW(req.wIndex, reg + offset);
1864 		USETW(req.wLength, MIN(len - offset, 64));
1865 
1866 		error = rum_do_request(sc, &req, (char *)buf + offset);
1867 		if (error != 0) {
1868 			device_printf(sc->sc_dev,
1869 			    "could not multi write MAC register: %s\n",
1870 			    usbd_errstr(error));
1871 			return (error);
1872 		}
1873 	}
1874 
1875 	return (USB_ERR_NORMAL_COMPLETION);
1876 }
1877 
1878 static usb_error_t
1879 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1880 {
1881 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1882 }
1883 
1884 static usb_error_t
1885 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1886 {
1887 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1888 }
1889 
1890 static usb_error_t
1891 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1892 {
1893 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1894 }
1895 
1896 static int
1897 rum_bbp_busy(struct rum_softc *sc)
1898 {
1899 	int ntries;
1900 
1901 	for (ntries = 0; ntries < 100; ntries++) {
1902 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1903 			break;
1904 		if (rum_pause(sc, hz / 100))
1905 			break;
1906 	}
1907 	if (ntries == 100)
1908 		return (ETIMEDOUT);
1909 
1910 	return (0);
1911 }
1912 
1913 static void
1914 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1915 {
1916 	uint32_t tmp;
1917 
1918 	DPRINTFN(2, "reg=0x%08x\n", reg);
1919 
1920 	if (rum_bbp_busy(sc) != 0) {
1921 		device_printf(sc->sc_dev, "could not write to BBP\n");
1922 		return;
1923 	}
1924 
1925 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1926 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1927 }
1928 
1929 static uint8_t
1930 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1931 {
1932 	uint32_t val;
1933 	int ntries;
1934 
1935 	DPRINTFN(2, "reg=0x%08x\n", reg);
1936 
1937 	if (rum_bbp_busy(sc) != 0) {
1938 		device_printf(sc->sc_dev, "could not read BBP\n");
1939 		return 0;
1940 	}
1941 
1942 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1943 	rum_write(sc, RT2573_PHY_CSR3, val);
1944 
1945 	for (ntries = 0; ntries < 100; ntries++) {
1946 		val = rum_read(sc, RT2573_PHY_CSR3);
1947 		if (!(val & RT2573_BBP_BUSY))
1948 			return val & 0xff;
1949 		if (rum_pause(sc, hz / 100))
1950 			break;
1951 	}
1952 
1953 	device_printf(sc->sc_dev, "could not read BBP\n");
1954 	return 0;
1955 }
1956 
1957 static void
1958 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1959 {
1960 	uint32_t tmp;
1961 	int ntries;
1962 
1963 	for (ntries = 0; ntries < 100; ntries++) {
1964 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1965 			break;
1966 		if (rum_pause(sc, hz / 100))
1967 			break;
1968 	}
1969 	if (ntries == 100) {
1970 		device_printf(sc->sc_dev, "could not write to RF\n");
1971 		return;
1972 	}
1973 
1974 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1975 	    (reg & 3);
1976 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1977 
1978 	/* remember last written value in sc */
1979 	sc->rf_regs[reg] = val;
1980 
1981 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1982 }
1983 
1984 static void
1985 rum_select_antenna(struct rum_softc *sc)
1986 {
1987 	uint8_t bbp4, bbp77;
1988 	uint32_t tmp;
1989 
1990 	bbp4  = rum_bbp_read(sc, 4);
1991 	bbp77 = rum_bbp_read(sc, 77);
1992 
1993 	/* TBD */
1994 
1995 	/* make sure Rx is disabled before switching antenna */
1996 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1997 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1998 
1999 	rum_bbp_write(sc,  4, bbp4);
2000 	rum_bbp_write(sc, 77, bbp77);
2001 
2002 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2003 }
2004 
2005 /*
2006  * Enable multi-rate retries for frames sent at OFDM rates.
2007  * In 802.11b/g mode, allow fallback to CCK rates.
2008  */
2009 static void
2010 rum_enable_mrr(struct rum_softc *sc)
2011 {
2012 	struct ieee80211com *ic = &sc->sc_ic;
2013 
2014 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2015 		rum_setbits(sc, RT2573_TXRX_CSR4,
2016 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
2017 	} else {
2018 		rum_modbits(sc, RT2573_TXRX_CSR4,
2019 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
2020 	}
2021 }
2022 
2023 static void
2024 rum_set_txpreamble(struct rum_softc *sc)
2025 {
2026 	struct ieee80211com *ic = &sc->sc_ic;
2027 
2028 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2029 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2030 	else
2031 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2032 }
2033 
2034 static void
2035 rum_set_basicrates(struct rum_softc *sc)
2036 {
2037 	struct ieee80211com *ic = &sc->sc_ic;
2038 
2039 	/* update basic rate set */
2040 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2041 		/* 11b basic rates: 1, 2Mbps */
2042 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2043 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2044 		/* 11a basic rates: 6, 12, 24Mbps */
2045 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2046 	} else {
2047 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2048 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2049 	}
2050 }
2051 
2052 /*
2053  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2054  * driver.
2055  */
2056 static void
2057 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2058 {
2059 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2060 
2061 	/* update all BBP registers that depend on the band */
2062 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2063 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2064 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2065 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2066 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2067 	}
2068 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2069 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2070 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2071 	}
2072 
2073 	sc->bbp17 = bbp17;
2074 	rum_bbp_write(sc,  17, bbp17);
2075 	rum_bbp_write(sc,  96, bbp96);
2076 	rum_bbp_write(sc, 104, bbp104);
2077 
2078 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2079 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2080 		rum_bbp_write(sc, 75, 0x80);
2081 		rum_bbp_write(sc, 86, 0x80);
2082 		rum_bbp_write(sc, 88, 0x80);
2083 	}
2084 
2085 	rum_bbp_write(sc, 35, bbp35);
2086 	rum_bbp_write(sc, 97, bbp97);
2087 	rum_bbp_write(sc, 98, bbp98);
2088 
2089 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2090 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2091 		    RT2573_PA_PE_5GHZ);
2092 	} else {
2093 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2094 		    RT2573_PA_PE_2GHZ);
2095 	}
2096 }
2097 
2098 static void
2099 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2100 {
2101 	struct ieee80211com *ic = &sc->sc_ic;
2102 	const struct rfprog *rfprog;
2103 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2104 	int8_t power;
2105 	int i, chan;
2106 
2107 	chan = ieee80211_chan2ieee(ic, c);
2108 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2109 		return;
2110 
2111 	/* select the appropriate RF settings based on what EEPROM says */
2112 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2113 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2114 
2115 	/* find the settings for this channel (we know it exists) */
2116 	for (i = 0; rfprog[i].chan != chan; i++);
2117 
2118 	power = sc->txpow[i];
2119 	if (power < 0) {
2120 		bbp94 += power;
2121 		power = 0;
2122 	} else if (power > 31) {
2123 		bbp94 += power - 31;
2124 		power = 31;
2125 	}
2126 
2127 	/*
2128 	 * If we are switching from the 2GHz band to the 5GHz band or
2129 	 * vice-versa, BBP registers need to be reprogrammed.
2130 	 */
2131 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2132 		rum_select_band(sc, c);
2133 		rum_select_antenna(sc);
2134 	}
2135 	ic->ic_curchan = c;
2136 
2137 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2138 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2139 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2140 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2141 
2142 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2143 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2144 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2145 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2146 
2147 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2148 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2149 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2150 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2151 
2152 	rum_pause(sc, hz / 100);
2153 
2154 	/* enable smart mode for MIMO-capable RFs */
2155 	bbp3 = rum_bbp_read(sc, 3);
2156 
2157 	bbp3 &= ~RT2573_SMART_MODE;
2158 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2159 		bbp3 |= RT2573_SMART_MODE;
2160 
2161 	rum_bbp_write(sc, 3, bbp3);
2162 
2163 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2164 		rum_bbp_write(sc, 94, bbp94);
2165 
2166 	/* give the chip some extra time to do the switchover */
2167 	rum_pause(sc, hz / 100);
2168 }
2169 
2170 static void
2171 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2172 {
2173 	struct ieee80211_node *ni = vap->iv_bss;
2174 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2175 	struct rum_vap *rvp = RUM_VAP(vap);
2176 
2177 	rvp->maxretry = MIN(tp->maxretry, 0xf);
2178 
2179 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2180 	    RT2573_LONG_RETRY(rvp->maxretry),
2181 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2182 }
2183 
2184 /*
2185  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2186  * and HostAP operating modes.
2187  */
2188 static int
2189 rum_enable_tsf_sync(struct rum_softc *sc)
2190 {
2191 	struct ieee80211com *ic = &sc->sc_ic;
2192 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2193 	uint32_t tmp;
2194 	uint16_t bintval;
2195 
2196 	if (vap->iv_opmode != IEEE80211_M_STA) {
2197 		/*
2198 		 * Change default 16ms TBTT adjustment to 8ms.
2199 		 * Must be done before enabling beacon generation.
2200 		 */
2201 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2202 			return EIO;
2203 	}
2204 
2205 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2206 
2207 	/* set beacon interval (in 1/16ms unit) */
2208 	bintval = vap->iv_bss->ni_intval;
2209 	tmp |= bintval * 16;
2210 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2211 
2212 	switch (vap->iv_opmode) {
2213 	case IEEE80211_M_STA:
2214 		/*
2215 		 * Local TSF is always updated with remote TSF on beacon
2216 		 * reception.
2217 		 */
2218 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2219 		break;
2220 	case IEEE80211_M_IBSS:
2221 		/*
2222 		 * Local TSF is updated with remote TSF on beacon reception
2223 		 * only if the remote TSF is greater than local TSF.
2224 		 */
2225 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2226 		tmp |= RT2573_BCN_TX_EN;
2227 		break;
2228 	case IEEE80211_M_HOSTAP:
2229 		/* SYNC with nobody */
2230 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2231 		tmp |= RT2573_BCN_TX_EN;
2232 		break;
2233 	default:
2234 		device_printf(sc->sc_dev,
2235 		    "Enabling TSF failed. undefined opmode %d\n",
2236 		    vap->iv_opmode);
2237 		return EINVAL;
2238 	}
2239 
2240 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2241 		return EIO;
2242 
2243 	/* refresh current sleep time */
2244 	return (rum_set_sleep_time(sc, bintval));
2245 }
2246 
2247 static void
2248 rum_enable_tsf(struct rum_softc *sc)
2249 {
2250 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2251 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2252 }
2253 
2254 static void
2255 rum_abort_tsf_sync(struct rum_softc *sc)
2256 {
2257 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2258 }
2259 
2260 static void
2261 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2262 {
2263 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2264 }
2265 
2266 static void
2267 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2268 {
2269 	struct ieee80211com *ic = &sc->sc_ic;
2270 	uint8_t slottime;
2271 
2272 	slottime = IEEE80211_GET_SLOTTIME(ic);
2273 
2274 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2275 
2276 	DPRINTF("setting slot time to %uus\n", slottime);
2277 }
2278 
2279 static void
2280 rum_update_slot(struct ieee80211com *ic)
2281 {
2282 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2283 }
2284 
2285 static int
2286 rum_wme_update(struct ieee80211com *ic)
2287 {
2288 	struct chanAccParams chp;
2289 	const struct wmeParams *chanp;
2290 	struct rum_softc *sc = ic->ic_softc;
2291 	int error = 0;
2292 
2293 	ieee80211_wme_ic_getparams(ic, &chp);
2294 	chanp = chp.cap_wmeParams;
2295 
2296 	RUM_LOCK(sc);
2297 	error = rum_write(sc, RT2573_AIFSN_CSR,
2298 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2299 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2300 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2301 	    chanp[WME_AC_BE].wmep_aifsn);
2302 	if (error)
2303 		goto print_err;
2304 	error = rum_write(sc, RT2573_CWMIN_CSR,
2305 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2306 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2307 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2308 	    chanp[WME_AC_BE].wmep_logcwmin);
2309 	if (error)
2310 		goto print_err;
2311 	error = rum_write(sc, RT2573_CWMAX_CSR,
2312 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2313 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2314 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2315 	    chanp[WME_AC_BE].wmep_logcwmax);
2316 	if (error)
2317 		goto print_err;
2318 	error = rum_write(sc, RT2573_TXOP01_CSR,
2319 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2320 	    chanp[WME_AC_BE].wmep_txopLimit);
2321 	if (error)
2322 		goto print_err;
2323 	error = rum_write(sc, RT2573_TXOP23_CSR,
2324 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2325 	    chanp[WME_AC_VI].wmep_txopLimit);
2326 	if (error)
2327 		goto print_err;
2328 
2329 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2330 
2331 print_err:
2332 	RUM_UNLOCK(sc);
2333 	if (error != 0) {
2334 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2335 		    __func__, error);
2336 	}
2337 
2338 	return (error);
2339 }
2340 
2341 static void
2342 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2343 {
2344 
2345 	rum_write(sc, RT2573_MAC_CSR4,
2346 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2347 	rum_write(sc, RT2573_MAC_CSR5,
2348 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2349 }
2350 
2351 static void
2352 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2353 {
2354 
2355 	rum_write(sc, RT2573_MAC_CSR2,
2356 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2357 	rum_write(sc, RT2573_MAC_CSR3,
2358 	    addr[4] | addr[5] << 8 | 0xff << 16);
2359 }
2360 
2361 static void
2362 rum_setpromisc(struct rum_softc *sc)
2363 {
2364 	struct ieee80211com *ic = &sc->sc_ic;
2365 
2366 	if (ic->ic_promisc == 0)
2367 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2368 	else
2369 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2370 
2371 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2372 	    "entering" : "leaving");
2373 }
2374 
2375 static void
2376 rum_update_promisc(struct ieee80211com *ic)
2377 {
2378 	struct rum_softc *sc = ic->ic_softc;
2379 
2380 	RUM_LOCK(sc);
2381 	if (sc->sc_running)
2382 		rum_setpromisc(sc);
2383 	RUM_UNLOCK(sc);
2384 }
2385 
2386 static void
2387 rum_update_mcast(struct ieee80211com *ic)
2388 {
2389 	/* Ignore. */
2390 }
2391 
2392 static const char *
2393 rum_get_rf(int rev)
2394 {
2395 	switch (rev) {
2396 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2397 	case RT2573_RF_2528:	return "RT2528";
2398 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2399 	case RT2573_RF_5226:	return "RT5226";
2400 	default:		return "unknown";
2401 	}
2402 }
2403 
2404 static void
2405 rum_read_eeprom(struct rum_softc *sc)
2406 {
2407 	uint16_t val;
2408 #ifdef RUM_DEBUG
2409 	int i;
2410 #endif
2411 
2412 	/* read MAC address */
2413 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2414 
2415 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2416 	val = le16toh(val);
2417 	sc->rf_rev =   (val >> 11) & 0x1f;
2418 	sc->hw_radio = (val >> 10) & 0x1;
2419 	sc->rx_ant =   (val >> 4)  & 0x3;
2420 	sc->tx_ant =   (val >> 2)  & 0x3;
2421 	sc->nb_ant =   val & 0x3;
2422 
2423 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2424 
2425 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2426 	val = le16toh(val);
2427 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2428 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2429 
2430 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2431 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2432 
2433 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2434 	val = le16toh(val);
2435 	if ((val & 0xff) != 0xff)
2436 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2437 
2438 	/* Only [-10, 10] is valid */
2439 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2440 		sc->rssi_2ghz_corr = 0;
2441 
2442 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2443 	val = le16toh(val);
2444 	if ((val & 0xff) != 0xff)
2445 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2446 
2447 	/* Only [-10, 10] is valid */
2448 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2449 		sc->rssi_5ghz_corr = 0;
2450 
2451 	if (sc->ext_2ghz_lna)
2452 		sc->rssi_2ghz_corr -= 14;
2453 	if (sc->ext_5ghz_lna)
2454 		sc->rssi_5ghz_corr -= 14;
2455 
2456 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2457 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2458 
2459 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2460 	val = le16toh(val);
2461 	if ((val & 0xff) != 0xff)
2462 		sc->rffreq = val & 0xff;
2463 
2464 	DPRINTF("RF freq=%d\n", sc->rffreq);
2465 
2466 	/* read Tx power for all a/b/g channels */
2467 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2468 	/* XXX default Tx power for 802.11a channels */
2469 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2470 #ifdef RUM_DEBUG
2471 	for (i = 0; i < 14; i++)
2472 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2473 #endif
2474 
2475 	/* read default values for BBP registers */
2476 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2477 #ifdef RUM_DEBUG
2478 	for (i = 0; i < 14; i++) {
2479 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2480 			continue;
2481 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2482 		    sc->bbp_prom[i].val);
2483 	}
2484 #endif
2485 }
2486 
2487 static int
2488 rum_bbp_wakeup(struct rum_softc *sc)
2489 {
2490 	unsigned ntries;
2491 
2492 	for (ntries = 0; ntries < 100; ntries++) {
2493 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2494 			break;
2495 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2496 		if (rum_pause(sc, hz / 100))
2497 			break;
2498 	}
2499 	if (ntries == 100) {
2500 		device_printf(sc->sc_dev,
2501 		    "timeout waiting for BBP/RF to wakeup\n");
2502 		return (ETIMEDOUT);
2503 	}
2504 
2505 	return (0);
2506 }
2507 
2508 static int
2509 rum_bbp_init(struct rum_softc *sc)
2510 {
2511 	int i, ntries;
2512 
2513 	/* wait for BBP to be ready */
2514 	for (ntries = 0; ntries < 100; ntries++) {
2515 		const uint8_t val = rum_bbp_read(sc, 0);
2516 		if (val != 0 && val != 0xff)
2517 			break;
2518 		if (rum_pause(sc, hz / 100))
2519 			break;
2520 	}
2521 	if (ntries == 100) {
2522 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2523 		return EIO;
2524 	}
2525 
2526 	/* initialize BBP registers to default values */
2527 	for (i = 0; i < nitems(rum_def_bbp); i++)
2528 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2529 
2530 	/* write vendor-specific BBP values (from EEPROM) */
2531 	for (i = 0; i < 16; i++) {
2532 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2533 			continue;
2534 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 static void
2541 rum_clr_shkey_regs(struct rum_softc *sc)
2542 {
2543 	rum_write(sc, RT2573_SEC_CSR0, 0);
2544 	rum_write(sc, RT2573_SEC_CSR1, 0);
2545 	rum_write(sc, RT2573_SEC_CSR5, 0);
2546 }
2547 
2548 static int
2549 rum_init(struct rum_softc *sc)
2550 {
2551 	struct ieee80211com *ic = &sc->sc_ic;
2552 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2553 	uint32_t tmp;
2554 	int i, ret;
2555 
2556 	RUM_LOCK(sc);
2557 	if (sc->sc_running) {
2558 		ret = 0;
2559 		goto end;
2560 	}
2561 
2562 	/* initialize MAC registers to default values */
2563 	for (i = 0; i < nitems(rum_def_mac); i++)
2564 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2565 
2566 	/* reset some WME parameters to default values */
2567 	sc->wme_params[0].wmep_aifsn = 2;
2568 	sc->wme_params[0].wmep_logcwmin = 4;
2569 	sc->wme_params[0].wmep_logcwmax = 10;
2570 
2571 	/* set host ready */
2572 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2573 	rum_write(sc, RT2573_MAC_CSR1, 0);
2574 
2575 	/* wait for BBP/RF to wakeup */
2576 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2577 		goto end;
2578 
2579 	if ((ret = rum_bbp_init(sc)) != 0)
2580 		goto end;
2581 
2582 	/* select default channel */
2583 	rum_select_band(sc, ic->ic_curchan);
2584 	rum_select_antenna(sc);
2585 	rum_set_chan(sc, ic->ic_curchan);
2586 
2587 	/* clear STA registers */
2588 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2589 
2590 	/* clear security registers (if required) */
2591 	if (sc->sc_clr_shkeys == 0) {
2592 		rum_clr_shkey_regs(sc);
2593 		sc->sc_clr_shkeys = 1;
2594 	}
2595 
2596 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2597 
2598 	/* initialize ASIC */
2599 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2600 
2601 	/*
2602 	 * Allocate Tx and Rx xfer queues.
2603 	 */
2604 	rum_setup_tx_list(sc);
2605 
2606 	/* update Rx filter */
2607 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2608 
2609 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2610 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2611 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2612 		       RT2573_DROP_ACKCTS;
2613 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2614 			tmp |= RT2573_DROP_TODS;
2615 		if (ic->ic_promisc == 0)
2616 			tmp |= RT2573_DROP_NOT_TO_ME;
2617 	}
2618 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2619 
2620 	sc->sc_running = 1;
2621 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2622 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2623 
2624 end:	RUM_UNLOCK(sc);
2625 
2626 	if (ret != 0)
2627 		rum_stop(sc);
2628 
2629 	return ret;
2630 }
2631 
2632 static void
2633 rum_stop(struct rum_softc *sc)
2634 {
2635 
2636 	RUM_LOCK(sc);
2637 	if (!sc->sc_running) {
2638 		RUM_UNLOCK(sc);
2639 		return;
2640 	}
2641 	sc->sc_running = 0;
2642 	RUM_UNLOCK(sc);
2643 
2644 	/*
2645 	 * Drain the USB transfers, if not already drained:
2646 	 */
2647 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2648 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2649 
2650 	RUM_LOCK(sc);
2651 	rum_unsetup_tx_list(sc);
2652 
2653 	/* disable Rx */
2654 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2655 
2656 	/* reset ASIC */
2657 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2658 	rum_write(sc, RT2573_MAC_CSR1, 0);
2659 	RUM_UNLOCK(sc);
2660 }
2661 
2662 static void
2663 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2664 {
2665 	uint16_t reg = RT2573_MCU_CODE_BASE;
2666 	usb_error_t err;
2667 
2668 	/* copy firmware image into NIC */
2669 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2670 		err = rum_write(sc, reg, UGETDW(ucode));
2671 		if (err) {
2672 			/* firmware already loaded ? */
2673 			device_printf(sc->sc_dev, "Firmware load "
2674 			    "failure! (ignored)\n");
2675 			break;
2676 		}
2677 	}
2678 
2679 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2680 	if (err != USB_ERR_NORMAL_COMPLETION) {
2681 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2682 		    usbd_errstr(err));
2683 	}
2684 
2685 	/* give the chip some time to boot */
2686 	rum_pause(sc, hz / 8);
2687 }
2688 
2689 static int
2690 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2691 {
2692 	struct ieee80211com *ic = &sc->sc_ic;
2693 	usb_error_t uerror;
2694 	int exp, delay;
2695 
2696 	RUM_LOCK_ASSERT(sc);
2697 
2698 	exp = ic->ic_lintval / bintval;
2699 	delay = ic->ic_lintval % bintval;
2700 
2701 	if (exp > RT2573_TBCN_EXP_MAX)
2702 		exp = RT2573_TBCN_EXP_MAX;
2703 	if (delay > RT2573_TBCN_DELAY_MAX)
2704 		delay = RT2573_TBCN_DELAY_MAX;
2705 
2706 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2707 	    RT2573_TBCN_EXP(exp) |
2708 	    RT2573_TBCN_DELAY(delay),
2709 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2710 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2711 
2712 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2713 		return (EIO);
2714 
2715 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2716 
2717 	return (0);
2718 }
2719 
2720 static int
2721 rum_reset(struct ieee80211vap *vap, u_long cmd)
2722 {
2723 	struct ieee80211com *ic = vap->iv_ic;
2724 	struct ieee80211_node *ni;
2725 	struct rum_softc *sc = ic->ic_softc;
2726 	int error;
2727 
2728 	switch (cmd) {
2729 	case IEEE80211_IOC_POWERSAVE:
2730 	case IEEE80211_IOC_PROTMODE:
2731 	case IEEE80211_IOC_RTSTHRESHOLD:
2732 		error = 0;
2733 		break;
2734 	case IEEE80211_IOC_POWERSAVESLEEP:
2735 		ni = ieee80211_ref_node(vap->iv_bss);
2736 
2737 		RUM_LOCK(sc);
2738 		error = rum_set_sleep_time(sc, ni->ni_intval);
2739 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2740 			/* Use new values for wakeup timer. */
2741 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2742 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2743 		}
2744 		/* XXX send reassoc */
2745 		RUM_UNLOCK(sc);
2746 
2747 		ieee80211_free_node(ni);
2748 		break;
2749 	default:
2750 		error = ENETRESET;
2751 		break;
2752 	}
2753 
2754 	return (error);
2755 }
2756 
2757 static int
2758 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2759 {
2760 	struct ieee80211com *ic = vap->iv_ic;
2761 	struct rum_vap *rvp = RUM_VAP(vap);
2762 	struct mbuf *m = rvp->bcn_mbuf;
2763 	const struct ieee80211_txparam *tp;
2764 	struct rum_tx_desc desc;
2765 
2766 	RUM_LOCK_ASSERT(sc);
2767 
2768 	if (m == NULL)
2769 		return EINVAL;
2770 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2771 		return EINVAL;
2772 
2773 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2774 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2775 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2776 
2777 	/* copy the Tx descriptor into NIC memory */
2778 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2779 	    RT2573_TX_DESC_SIZE) != 0)
2780 		return EIO;
2781 
2782 	/* copy beacon header and payload into NIC memory */
2783 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2784 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2785 		return EIO;
2786 
2787 	return 0;
2788 }
2789 
2790 static int
2791 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2792 {
2793 	struct rum_vap *rvp = RUM_VAP(vap);
2794 	struct ieee80211_node *ni = vap->iv_bss;
2795 	struct mbuf *m;
2796 
2797 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2798 		return EINVAL;
2799 
2800 	m = ieee80211_beacon_alloc(ni);
2801 	if (m == NULL)
2802 		return ENOMEM;
2803 
2804 	if (rvp->bcn_mbuf != NULL)
2805 		m_freem(rvp->bcn_mbuf);
2806 
2807 	rvp->bcn_mbuf = m;
2808 
2809 	return (rum_set_beacon(sc, vap));
2810 }
2811 
2812 static void
2813 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2814     uint8_t rvp_id)
2815 {
2816 	struct ieee80211vap *vap = data->vap;
2817 
2818 	rum_set_beacon(sc, vap);
2819 }
2820 
2821 static void
2822 rum_update_beacon(struct ieee80211vap *vap, int item)
2823 {
2824 	struct ieee80211com *ic = vap->iv_ic;
2825 	struct rum_softc *sc = ic->ic_softc;
2826 	struct rum_vap *rvp = RUM_VAP(vap);
2827 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2828 	struct ieee80211_node *ni = vap->iv_bss;
2829 	struct mbuf *m = rvp->bcn_mbuf;
2830 	int mcast = 0;
2831 
2832 	RUM_LOCK(sc);
2833 	if (m == NULL) {
2834 		m = ieee80211_beacon_alloc(ni);
2835 		if (m == NULL) {
2836 			device_printf(sc->sc_dev,
2837 			    "%s: could not allocate beacon frame\n", __func__);
2838 			RUM_UNLOCK(sc);
2839 			return;
2840 		}
2841 		rvp->bcn_mbuf = m;
2842 	}
2843 
2844 	switch (item) {
2845 	case IEEE80211_BEACON_ERP:
2846 		rum_update_slot(ic);
2847 		break;
2848 	case IEEE80211_BEACON_TIM:
2849 		mcast = 1;	/*TODO*/
2850 		break;
2851 	default:
2852 		break;
2853 	}
2854 	RUM_UNLOCK(sc);
2855 
2856 	setbit(bo->bo_flags, item);
2857 	ieee80211_beacon_update(ni, m, mcast);
2858 
2859 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2860 }
2861 
2862 static int
2863 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2864     uint16_t base)
2865 {
2866 
2867 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2868 		return EIO;
2869 
2870 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2871 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2872 		    k->wk_txmic, 8))
2873 			return EIO;
2874 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2875 		    k->wk_rxmic, 8))
2876 			return EIO;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static void
2883 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2884     uint8_t rvp_id)
2885 {
2886 	struct ieee80211_key *k = &data->key;
2887 	uint8_t mode;
2888 
2889 	if (sc->sc_clr_shkeys == 0) {
2890 		rum_clr_shkey_regs(sc);
2891 		sc->sc_clr_shkeys = 1;
2892 	}
2893 
2894 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2895 	if (mode == 0)
2896 		goto print_err;
2897 
2898 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2899 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2900 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2901 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2902 
2903 	/* Install the key. */
2904 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2905 		goto print_err;
2906 
2907 	/* Set cipher mode. */
2908 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2909 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2910 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2911 	    != 0)
2912 		goto print_err;
2913 
2914 	/* Mark this key as valid. */
2915 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2916 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2917 		goto print_err;
2918 
2919 	return;
2920 
2921 print_err:
2922 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2923 	    __func__, k->wk_keyix, rvp_id);
2924 }
2925 
2926 static void
2927 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2928     uint8_t rvp_id)
2929 {
2930 	struct ieee80211_key *k = &data->key;
2931 
2932 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2933 	    k->wk_keyix, rvp_id);
2934 	rum_clrbits(sc,
2935 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2936 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2937 	rum_clrbits(sc, RT2573_SEC_CSR0,
2938 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2939 }
2940 
2941 static void
2942 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2943     uint8_t rvp_id)
2944 {
2945 	struct ieee80211_key *k = &data->key;
2946 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2947 	uint8_t mode;
2948 
2949 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2950 	if (mode == 0)
2951 		goto print_err;
2952 
2953 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2954 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2955 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2956 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2957 
2958 	/* Install the key. */
2959 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2960 		goto print_err;
2961 
2962 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2963 	buf[IEEE80211_ADDR_LEN] = mode;
2964 
2965 	/* Set transmitter address and cipher mode. */
2966 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2967 	      buf, sizeof buf) != 0)
2968 		goto print_err;
2969 
2970 	/* Enable key table lookup for this vap. */
2971 	if (sc->vap_key_count[rvp_id]++ == 0)
2972 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2973 			goto print_err;
2974 
2975 	/* Mark this key as valid. */
2976 	if (rum_setbits(sc,
2977 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2978 	      1 << (k->wk_keyix % 32)) != 0)
2979 		goto print_err;
2980 
2981 	return;
2982 
2983 print_err:
2984 	device_printf(sc->sc_dev,
2985 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2986 	    rvp_id);
2987 }
2988 
2989 static void
2990 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2991     uint8_t rvp_id)
2992 {
2993 	struct ieee80211_key *k = &data->key;
2994 
2995 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2996 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2997 	    1 << (k->wk_keyix % 32));
2998 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
2999 	if (--sc->vap_key_count[rvp_id] == 0)
3000 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
3001 }
3002 
3003 static int
3004 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3005     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3006 {
3007 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3008 	uint8_t i;
3009 
3010 	if (!(&vap->iv_nw_keys[0] <= k &&
3011 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3012 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
3013 			RUM_LOCK(sc);
3014 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
3015 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
3016 					sc->keys_bmap |= (1ULL << i);
3017 					*keyix = i;
3018 					break;
3019 				}
3020 			}
3021 			RUM_UNLOCK(sc);
3022 			if (i == RT2573_ADDR_MAX) {
3023 				device_printf(sc->sc_dev,
3024 				    "%s: no free space in the key table\n",
3025 				    __func__);
3026 				return 0;
3027 			}
3028 		} else
3029 			*keyix = 0;
3030 	} else {
3031 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
3032 	}
3033 	*rxkeyix = *keyix;
3034 	return 1;
3035 }
3036 
3037 static int
3038 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3039 {
3040 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3041 	int group;
3042 
3043 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3044 		/* Not for us. */
3045 		return 1;
3046 	}
3047 
3048 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3049 
3050 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3051 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3052 }
3053 
3054 static int
3055 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3056 {
3057 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3058 	int group;
3059 
3060 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3061 		/* Not for us. */
3062 		return 1;
3063 	}
3064 
3065 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3066 
3067 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3068 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3069 }
3070 
3071 static int
3072 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3073     const struct ieee80211_bpf_params *params)
3074 {
3075 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3076 	int ret;
3077 
3078 	RUM_LOCK(sc);
3079 	/* prevent management frames from being sent if we're not ready */
3080 	if (!sc->sc_running) {
3081 		ret = ENETDOWN;
3082 		goto bad;
3083 	}
3084 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3085 		ret = EIO;
3086 		goto bad;
3087 	}
3088 
3089 	if (params == NULL) {
3090 		/*
3091 		 * Legacy path; interpret frame contents to decide
3092 		 * precisely how to send the frame.
3093 		 */
3094 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3095 			goto bad;
3096 	} else {
3097 		/*
3098 		 * Caller supplied explicit parameters to use in
3099 		 * sending the frame.
3100 		 */
3101 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3102 			goto bad;
3103 	}
3104 	RUM_UNLOCK(sc);
3105 
3106 	return 0;
3107 bad:
3108 	RUM_UNLOCK(sc);
3109 	m_freem(m);
3110 	return ret;
3111 }
3112 
3113 static void
3114 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3115 {
3116 	struct ieee80211vap *vap = ni->ni_vap;
3117 	struct rum_vap *rvp = RUM_VAP(vap);
3118 
3119 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3120 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3121 
3122 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3123 }
3124 
3125 static void
3126 rum_ratectl_timeout(void *arg)
3127 {
3128 	struct rum_vap *rvp = arg;
3129 	struct ieee80211vap *vap = &rvp->vap;
3130 	struct ieee80211com *ic = vap->iv_ic;
3131 
3132 	ieee80211_runtask(ic, &rvp->ratectl_task);
3133 }
3134 
3135 static void
3136 rum_ratectl_task(void *arg, int pending)
3137 {
3138 	struct rum_vap *rvp = arg;
3139 	struct ieee80211vap *vap = &rvp->vap;
3140 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3141 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
3142 	int ok[3], fail;
3143 
3144 	RUM_LOCK(sc);
3145 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3146 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3147 
3148 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3149 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3150 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3151 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3152 
3153 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
3154 	txs->nframes = ok[0] + ok[1] + ok[2] + fail;
3155 	txs->nsuccess = txs->nframes - fail;
3156 	/* XXX at least */
3157 	txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3158 
3159 	if (txs->nframes != 0)
3160 		ieee80211_ratectl_tx_update(vap, txs);
3161 
3162 	/* count TX retry-fail as Tx errors */
3163 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3164 
3165 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3166 	RUM_UNLOCK(sc);
3167 }
3168 
3169 static void
3170 rum_scan_start(struct ieee80211com *ic)
3171 {
3172 	struct rum_softc *sc = ic->ic_softc;
3173 
3174 	RUM_LOCK(sc);
3175 	rum_abort_tsf_sync(sc);
3176 	rum_set_bssid(sc, ieee80211broadcastaddr);
3177 	RUM_UNLOCK(sc);
3178 
3179 }
3180 
3181 static void
3182 rum_scan_end(struct ieee80211com *ic)
3183 {
3184 	struct rum_softc *sc = ic->ic_softc;
3185 
3186 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3187 		RUM_LOCK(sc);
3188 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3189 			rum_enable_tsf_sync(sc);
3190 		else
3191 			rum_enable_tsf(sc);
3192 		rum_set_bssid(sc, sc->sc_bssid);
3193 		RUM_UNLOCK(sc);
3194 	}
3195 }
3196 
3197 static void
3198 rum_set_channel(struct ieee80211com *ic)
3199 {
3200 	struct rum_softc *sc = ic->ic_softc;
3201 
3202 	RUM_LOCK(sc);
3203 	rum_set_chan(sc, ic->ic_curchan);
3204 	RUM_UNLOCK(sc);
3205 }
3206 
3207 static void
3208 rum_getradiocaps(struct ieee80211com *ic,
3209     int maxchans, int *nchans, struct ieee80211_channel chans[])
3210 {
3211 	struct rum_softc *sc = ic->ic_softc;
3212 	uint8_t bands[IEEE80211_MODE_BYTES];
3213 
3214 	memset(bands, 0, sizeof(bands));
3215 	setbit(bands, IEEE80211_MODE_11B);
3216 	setbit(bands, IEEE80211_MODE_11G);
3217 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
3218 
3219 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3220 		setbit(bands, IEEE80211_MODE_11A);
3221 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3222 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3223 	}
3224 }
3225 
3226 static int
3227 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3228 {
3229 	struct ieee80211com *ic = &sc->sc_ic;
3230 	int lna, agc, rssi;
3231 
3232 	lna = (raw >> 5) & 0x3;
3233 	agc = raw & 0x1f;
3234 
3235 	if (lna == 0) {
3236 		/*
3237 		 * No RSSI mapping
3238 		 *
3239 		 * NB: Since RSSI is relative to noise floor, -1 is
3240 		 *     adequate for caller to know error happened.
3241 		 */
3242 		return -1;
3243 	}
3244 
3245 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3246 
3247 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3248 		rssi += sc->rssi_2ghz_corr;
3249 
3250 		if (lna == 1)
3251 			rssi -= 64;
3252 		else if (lna == 2)
3253 			rssi -= 74;
3254 		else if (lna == 3)
3255 			rssi -= 90;
3256 	} else {
3257 		rssi += sc->rssi_5ghz_corr;
3258 
3259 		if (!sc->ext_5ghz_lna && lna != 1)
3260 			rssi += 4;
3261 
3262 		if (lna == 1)
3263 			rssi -= 64;
3264 		else if (lna == 2)
3265 			rssi -= 86;
3266 		else if (lna == 3)
3267 			rssi -= 100;
3268 	}
3269 	return rssi;
3270 }
3271 
3272 static int
3273 rum_pause(struct rum_softc *sc, int timeout)
3274 {
3275 
3276 	usb_pause_mtx(&sc->sc_mtx, timeout);
3277 	return (0);
3278 }
3279 
3280 static device_method_t rum_methods[] = {
3281 	/* Device interface */
3282 	DEVMETHOD(device_probe,		rum_match),
3283 	DEVMETHOD(device_attach,	rum_attach),
3284 	DEVMETHOD(device_detach,	rum_detach),
3285 	DEVMETHOD_END
3286 };
3287 
3288 static driver_t rum_driver = {
3289 	.name = "rum",
3290 	.methods = rum_methods,
3291 	.size = sizeof(struct rum_softc),
3292 };
3293 
3294 DRIVER_MODULE(rum, uhub, rum_driver, NULL, NULL);
3295 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3296 MODULE_DEPEND(rum, usb, 1, 1, 1);
3297 MODULE_VERSION(rum, 1);
3298 USB_PNP_HOST_INFO(rum_devs);
3299